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Safety, Economy and Rationality in Structural Design
Sécurité, économie et rationalité dans I'étude des ouvrages

Sicherheit, Wirtschaftlichkeit und Aufwand vn der T'ragwerksberechnung

N. C. LIND C. J. TURKSTRA D. T. WRIGHT
Professor of Civil Eng. Lecturer in Civil Eng. Professor of Civil Eng.
University of Waterloo University College Dean of Engineering

Canada ' London University of Waterloo
Canada

1. Introduction

Present methods of structural design seem to provide adequate service to
society. The techniques of producing safe designs have evolved gradually;
once acceptable levels of safety have been reached, further moderate progress
has occasionally been made in economy. In the accretion of new data, however,
it often happens that new information evidently contradicts previous assump-
tions, and there arises from time to time considerable confusion about the
rationality of design procedures.

Such conflicts, and the realization that the design goals of maximum safety
and minimum cost in themselves are contradictory, have led several investiga-
tors, notably Jor~Nson [1] and FREUDENTHAL [2] to examine the problem of
formulating the design process so that known allowances may be made for risk
and uncertainty in design. These studies are preliminary in nature; TURKSTRA
[3] has demonstrated the impossibility of formulating a statistical approach
to structural design on an empirical basis without including engineering judg-
ment, because of the nature of the assumptions underlying statistics and the
limited extent of the factual information available as a basis for design. (In
this paper “design’’ is used in the narrow sense, as meaning the proportioning
and dimensioning of members.) Although TurksTRA [3] developed a more
realistic design model, his study has not provided an improved practical
system of design. It is the purpose of this paper to suggest practical means
for the improvement of design in the form of natural extensions of the present
codes. The proposals provide for a planned, continuous search for design loads
that would reconcile the requirements of safety and economy.

2. Current Design Practice

The irrationality of the traditional design method using allowable stresses
has been studied by many writers [1, 2, 3,4]. The extent of the inconsistencies
in the present-day design may be judged from Table I: comparable erratic
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Table I. Live Loads for Different Uses tn Various Codes (psf)

Code Church Private Office Private School
Authority Fixed Seats Upper Floor Dwelling Classroom
Australia [5] 40 50 30 60
Britain [6] 60 50 30 60
Canada [7] 60 50 40 60
France [8] 103 41 36 72
India (9] 80 50 40 80
Netherlands [10] 82.5 51.5 31 41
New Zealand [11] 80 60 30 60
U.S.A. [12] 60 80 1 40 40

variations may be seen in tabulations of wind pressure coefficients, coefficients
for moments in continuous beams and in other arbitrarily determined design
parameters. From such data the annual economic loss incurred by society
may be estimated: for Canada alone, magnitudes of the order of §10% to $ 107
per annum have been suggested. It may be concluded that although the prob-
lem of rational structural design is one of considerable economic importance,
it may not be sufficiently important to warrant the complete collection of
data necessary to obtain a scientific solution. It seems reasonable to suggest,
however, that in the long run codes may be “improved’’ through the realiza-
tion of reductions in design-loads from present levels of the order of 10 to 50
per cent.

Criticism of conventional design techniques stems from the realization that
there is little factual basis for the design loads assumed; and that the maximum
stresses and maximum deflections under the hypothetical design loads are,
at best, very coarse criteria for “loss behaviour’’ of a structure. The methods
are based on an extensive physical idealization; computed stresses bear no
resemblance to the stresses actually occurring in a structure [13]. Similarly,
the allowable deflection is rarely a functional requirement but is only a coarse
idealization of a psycho-physiological measure.

3. Statistical Design

The direct statistical approach seeks the minimization of total cost including
expected cost of failure, or in a more generalized form, maximization of an
unspecified utility function. Not only is this approach severely limited by a
lack of information [2, 14, 15], but there is also reason for some concern over
its logical foundations [3, 16, 17].

Some writers [18] have set themselves the more modest goal, by means of
the probability of failure concept, to improve the design process by modifica-



SAFETY, ECONOMY AND RATIONALITY IN STRUCTURAL DESIGN 187

tion within the bounds of the design load, safety factor, allowable response
scheme. It is not difficult to demonstrate the inadequacy of such approaches
by suitable examples.

A comprehensive design theory holds two elements that as yet have no
rational solution, namely that of interpersonal utility and that of decision
making under uncertainty [19]. Also, structural design does not result in
populations [16] to which a probability can be attached in the relative frequency
sense, but the potency of this concept is nevertheless required if the design
method is to be termed rational in the sense of vox Nrumaxx [19].

This latter objection unfortunately also applies to the development of a
compromise theory in which the design criterion is a limiting value of the
probability of failure or unserviceability [2.14,20.21]. By circumventing the
problem of utility these analyses centering around the probability of failure
appear to have approached a more practical stage of development. But they
are also restricted by an almost complete lack of information regarding load
and resistance distributions, without which no true probability of failure can
be obtained.

4. Structural Design as a Social System

While these studies have illuminated the complexity of the problem of
formulating the design process for optimization it is now quite apparent that
they, unfortunately, will not soon be of much direct use in practical design.
One must look in other directions for improvement over present design pro-
cedures.

Improvement may be expected to arise from a broadening of perspective
in which design is exposed as one only of the devices whereby the goals of
modern society are pursued. Present-day design is primarily an individual
process in which engineers ‘“‘play it safe’’ and design according to codes to
satisfy the designer’s own immediate interests but not necessarily the interests
of the owner, or of society as a whole. For example, the immediate problem
is that of designing a particular structure to serve a given function. The risk
involved in this problem is associated with variables for which statistics are
available, for instance snow loads in a location where snow loads already have
been extensively studied. The uncertainty involved in this problem is associated
with variables to which an empirical probability cannot be assigned, for
instance the maximum wind suction in an area where a tornado has never
occurred but is still thought to be a likely possibility. The designer may
reasonably be expected to choose amongst the variables he can control to
produce a design that will stand as being of the best value to the client.

In recognition of the uncertainties involved the engineer therefore faces a
secondary design problem: should the client’s money be spent on research to
reduce the uncertainty or should the design be made according to a code,
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through which payment in extra material is a penalty for ignorance? The
structural engineer usually has no choice now but to design by the existing
code, although the designer may himself recognize that his design is unneces-
sarily conservative. Thus we have the schizophrenic and costly result that it is
optimal to overdesign. Structural design is in fact a realization of a system
for which optimization of the whole is far from achieved through sub-system
optimization!).

Although the structural designer is ostensibly a responsible competent
professional the decision problem is effectively relegated to the code writing
authorities. The necessary decisions must be made as choices between various
design loads, allowable stresses, etc. The simplicity of the engineer’s problem,
namely that of maximizing the client’s utility, has thus become complicated:
a code clearly should be optimal in the interests in society as a whole. The
decision problem has now reached a political level in which the common goals
of society must be assessed through answers to questions such as: is too much
money being spent on structural safety as compared to fire safety?; would it
be more reasonable to expend available funds towards increasing the traffic
safety of a highway system by reducmg the structural safety of the bridges in
that highway system ?

Although a problem of political proportions the goals of structural design
are not a matter of public concern. The reasons for this must be sought in the
fact that the public sees structural safety as a matter of course, and that the
well-being of an individual depends on the safety of a large number of struc-
tures whereas his profits or losses depend only upon a few structural designs.
The resolution of the problem lies with the code writing authorities. In view
of the fact that most structural failures are attributed to bad workmanship
or other human error, which presumably would occur regardless of the level
of design loads, there is no ground for countering the postulate that present
design loads are at least 25 per cent too high overall. No design load can be
said to be verified as optimum until it is so low that the failures associated with
it are on the verge of becoming a public concern. Present design load levels
are so high that the problem has been concealed from the public.

Associated with this circumstance is a drain of public funds into unneces-
sary structural safety of such proportions that the code writing bodies cannot
claim as responsible professional engineers to act in the interests of the society
which employs them. The problem becomes more complicated because public
values themselves change. The quality of workmanship which was considered
essential in an earlier age when the individual’s rate of acquisition was low is

1) Social systems in which the aggregate of the actions of a number of individuals is
undesirable for the interests of the whole are by no means uncommon [19]. Suitable
coercive powers are usually established, often in the form of government control, to alter
such systems (civil and criminal law). Other solutions are possible (the ‘‘soil bank’), or
are still being sought (multilateral disarmament).
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nowadays a useless luxury. Thus, longevity in automotive parts is associated
with undesirable and unnecessary expense in their production in a society
where, for other reasons, automobiles have a useful service life of less than a
decade. Modern building structures, especially in North America, reflect the
understanding that a building is likely to have outlived its usefulness in less
than fifty years, and is then ready for demolition as a nuisance and deterrent
to further progress.

As a result of the considerations outlined above, although certainly not
often reflecting a conscious view of the social aspects of design, code writing
authorities have on the whole tended to reduce the safety margin over the
past several decades. Now and then a partial increase in the safety margin
has been introduced as a result of unforeseen failures. Usually the goals of the
code writing authority do not coincide with those of society and the codes
often remain unnecessarily conservative until other forces, such as sharpening
competition between competitive materials of construction, lead to reductions
in the safety margin.

Perhaps the most important characteristic of a profession is the commit-
ment to make significant decisions. The introduction of codes of design clearly
represents an attempt at reducing engineering design in many important
respects to a routine procedure to be carried out by persons of limited com-
petence and experience. A fundamental engineering decision, namely that of
determining the margin of safety appropriate to a given structure is put in
the hands of a few remote individuals — the code-writing authority. The
result is an often absurd commitment to over-design imposed upon experienced
engineers. It would seem to be of paramount importance for the economic
welfare of society as a whole that a design system be established which allows
ample freedom to the competent designer while providing at the same time
guidance for the less experienced designer.

5. A Proposal for Code Improvement

The proposal consists in the establishment of systematic reductions in
design loads coupled with an improved system of monitoring structural per-
formance. While it is clear that present design loads are unduly conservative,
reductions must be made cautiously because of the complex nature of the
existing design process, in which individual components may have significances
that are not superficially evident.

Before suitable final levels of safety would be reached, each cycle of review
would generate a new code from the previous one. If the time rate of reduction
is too large, the sequence of codes may not converge aperiodically. On the
other hand if the rate is too low, the result is a loss of economy. No optimal
decrement may be calculated, since the magnitude of the decrement depends
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upon much the same factors as determine the load distributions. While any
reasonable decrements would necessarily contribute to the improvement
desired, decrements may be based upon studies of past experiences in reducing
design loads. Otherwise, an annual relative reduction in live load of a tenth
of the standard deviation might be reasonable.

This proposed system for the evolution of design codes could be imple-
mented in either of two alternative fashions. It would of course be a simple
matter arbitrarily to reduce design live loads as suggested from time to time
in the various codes. It would be more attractive, however, to establish dual-
level design loads in the codes representing the values currently established
through the proposed process, and the values, say, of five years before. The
larger values would be clearly conservative, and the lower values could be
opted for by the designer depending upon his interpretation of the client’s
utility. It is seen that such a dual level code would return to the designer
some important discretionary power.

While, at first sight, the proposal made here may seem very radical, it may
fairly be held to represent the best pattern for progress in view of the total
problem. With the adoption of such a system for code improvement, it clearly
would be appropriate to accelerate the already recognizable trend in codes to
encourage designs in which the presence of ductility would tend to avoid
catastrophic failure [22]. The monitoring of experience under a regime such
as that proposed could be carried out effectively in any country at modest
cost by such national agencies as building research organizations. Such a
monitoring process would enable appropriate code authotities to halt the
reduction of design loads before “failure’’ rates reached a level sufficient to
alarm the public.
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Summary

The role of the safety concept in structural design is analysed from the
viewpoint of rational design as a decision problem under uncertainty and risk.
Fundamental systematic weaknesses are indicated in both classical and
probabilistic design. A new approach is suggested which will generate an
iterative solution to the problem of rational design. A design process, in which
the requirements of safety and economy are consistently reconciled, can be
developed through continuous modification of design loads and strength
parameters in current codes.

Résumé

Les auteurs analysent le réle de la notion de sécurité dans 1’étude des
ouvrages en la considérant, du point de vue d’un principe de calcul rationnel,
comme un probléme de décision a prendre dans l'incertitude et le risque. Ils
signalent les faiblesses fondamentales systématiques tant dans la conception
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classique que dans la conception probabiliste. Ils proposent de prendre une
nouvelle attitude, dynamique, en ce qui concerne le probléme de 1'étude
rationnelle. Il est possible d’établir un principe de calcul, conciliant har-
monieusement les exigences de la sécurité et de 1’économie, en prévoyant une
modification permanente des hypothéses de charge et des paramétres de
résistance définis par les normes en vigueur.

Zusammenfassung

Der Sicherheitsbegriff in der Tragwerksberechnung wird, vom Standpunkt
einer verniinftigen Bemessung aus, als EntschluBproblem zwischen Ungewil3-
heit und Risiko gedeutet. Hiebei werden, sowohl in der klassischen als auch in
der statistischen Betrachtungsweise, grundsétzliche Schwichen aufgedeckt. Die
Verfasser unterbreiten einen neuen Vorschlag, welcher zu einer schrittweisen
Anndherung an eine wirklichkeitsgetreuere Bemessung fiihrt. Dieses Bemes-
sungsverfahren will die Bediirfnisse der Sicherheit und Wirtschaftlichkeit
durch eine laufende Anpassung der normenméiBigen Belastungs- und Festig-
keitswerte befriedigen.
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L’évolution de la notion de sécurité en constructions métalliques
Dre Entwicklung des Sicherheitsbegriffes ber Stahlbauten

The Development of the Concept of Safety in Steel Structures

JEAN DUTHEIL
France

La limite de rupture de I’acier a pendant longtemps été considérée comme
sa caractéristique mécanique principale. Il en est resté encore aujourd’hui
cette vieille habitude d’identifier chaque nuance d’acier de construction par
un chiffre qui n’est autre que sa limite de rupture, exprimée en kg/mm?, par
exemple acier 37, acier 42, acier 52, etc.

Cependant, le rapport entre la contrainte limite de rupture du matériau
et la contrainte limite admissible ne donnait qu’une indication fort sommaire
sur le degré de sécurité d’un ouvrage. C’est pourquoi les constructeurs don-
naient & ce rapport, dénommé coefficient de sécurité, une valeur suffisamment
grande pour se couvrir, ceci, bien entendu, aux dépens de 1’économie.

On s’est bient6t rendu compte que la ruine d’une ossature métallique
dépendait le plus souvent de la limite élastique de l’acier, alors qu’elle ne
restait liée qu’exceptionnellement & sa limite de rupture. La limite élastique
est donc devenue la caractéristique mécanique essentielle de 1’acier. On n’aban-
donnait cependant pas complétement la limite de rupture, de sorte qu’on a vu
apparaitre une double condition de sécurité:

aé-f—e, (1)
1
o=, (2)

2

¢  contrainte maximale sous charges d’exploitation,
o, limite élastique,

o, limite de rupture,

v, v, coefficients de sécurité.

En fait, pour les systémes auxquels la loi de Hooke était applicable, la
condition (1) suffisait. Elle était méme préférable & (2) car v, avait une signifi-
cation plus précise que v,. Mais cette condition (1) ne pouvait s’appliquer aux
systémes instables, pour lesquels la contrainte critique était considérée comme
un critére de ruine. Cette contrainte critique était assimilée & o, et on lui
appliquait le méme coefficient de sécurité v,. Pour cette raison, la condition (2)
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était considérée comme indispensable. C’est bien ainsi que, finalement, on a
pris I’habitude de considérer le probléme de la sécurité. On n’a plus appliqué
que la condition (1) aux systémes obéissant & la loi de Hooke, et la condition
(2) aux systemes instables, les coefficients v, et v, étant d’ailleurs complétement
indépendants 1’un de 1’autre.

Si, aujourd’hui, une telle pratique est encore répandue, il faut reconnaitre
qu’elle est loin de donner satisfaction car il n’y a aucun moyen de comparer
valablement le degré de sécurité des deux classes de systémes, celui des sys-
témes instables n’étant posé qu’avec une grande part d’arbitraire.

Dans la tendance moderne, on cherche & déterminer pour un systéme donné,
qu’il soit stable ou instable, les valeurs des charges & partir desquelles on peut
considérer qu’il y a ruine. C’est alors, par rapport & cet état caractérisant le
début de la ruine réelle, que se mesure le degré de sécurité sous charges d’exploi-
tation.

Il n’y a plus alors qu’une seule condition & vérifier:

p<E (3)

[ 4

P charge d’exploitation,
P, charge de ruine réelle,

r

v coefficient de sécurité unique.

% *

Cependant, la condition (3), dans sa simplicité et son apparente limpidité,
est, en fait, extrémement équivoque et confuse.

Au moment ol I’on projette un ouvrage, on ne connait exactement ni P,
ni P, on ne peut faire, & leur sujet, que des prévisions entachées d’incertitudes.

Pour P, imprécisions des calculs, imperfections inévitables dans 1’exécution,
dispersion des caractéristiques mécaniques du matériau, imperfections de
structure (contraintes internes de laminage, de dressage, de soudage), etc.

Pour P, incertitudes quant aux valeurs des surcharges climatiques et quant
a une majoration accidentelle des surcharges d’exploitation, etc.

Il n’est d’ailleurs pas facile de fixer une valeur au coefficient v car les incerti-
tudes afférentes aux différentes sollicitations sont trés inégales. On connait,
par exemple, les charges permanentes avec une certaine précision, par contre
les aléas relatifs aux surcharges climatiques sont grands.

L’utilisation de 1’ouvrage intervient aussi dans le choix de v, suivant que
I’effondrement éventuel mette en cause des vies humaines ou des dégits
matériels plus ou moins considérables.

A l’intérieur méme d’un ouvrage, la ruine de certains éléments secondaires
peut n’entrainer que de faibles dégats alors que celle d’un élément principal
peut entrainer la ruine totale, etc.

Il faut donc se rendre & 1’évidence, la plupart des valeurs considérées par
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le constructeur sont aléatoires. La notion probabiliste s’introduit donc tout
naturellement dans la résistance des matériaux.

Ce n’est guere qu’a l’occasion du Congres de Liege de I’A.I.P.C., en 1948,
qu’on a pris conscience de la clarté qu’elle pouvait apporter et des progres
qu’on pouvait en attendre, le qualificatif d’aléatoire appliqué aux variables
de la résistance des matériaux étant, selon I’expression de Monsieur Robert
Lévi, le lien nécessaire entre 1’abstraction et la réalité.

La conception probabiliste a donné lieu depuis & un certain nombre d’études,
plus ou moins théoriques, dont certaines rejoignent la philosophie et méme
la morale. Notre propos n’est pas d’en disserter mais plutét d’en examiner les
conséquences les plus simples et les plus immédiates quant & la notion de
sécurité.

En bref, nous dirons que ces considérations conduisent a substituer & la
condition (3), la suivante:

m
OtCm;UiVl 5 Te» (4)

o; contrainte dans un élément d’une ossature sous 1’effet de 1'une des charges
ou surcharges & considérer,

v; coefficient de majoration propre & cette sollicitation calculé de telle fagon
que o;v; valeur maximale de la contrainte corresponde & une probabilité
suffisamment faible,

C,, coefficient de réduction tenant compte de ce que la probabilité de simul-
tanéité, a leur valeur maximale, des charges et surcharges, est d’autant
plus faible que leur nombre est grand,

« coefficient d’utilisation, égal a 1 pour les constructions courantes, inférieur

a 1 pour les constructions provisoires ou supérieur & 1 pour des ouvrages

importants.

limite élastique de 1’acier, dont la probabilité intégrale est suffisamment

faible.

La condition (4) suppose que les contraintes sont proportionnelles aux
charges, nous verrons, plus loin, comment on opére quand cela n’est plus vrai.

La contrainte provenant des charges permanentes, o, existe toujours a sa
valeur entiere quelle que soit la combinaison des surcharges, elle n’est donc
pas justiciable du coefficient de réduction C,, et il convient de la sortir du
signe somme. Il en est de méme de la contrainte o, provenant des variations
de température, dont la valeur maximale peut a tout moment s’ajouter a la
combinaison des surcharges.

Avec ces corrections, la condition (4) devient:

m

OL[OTV,.+0'!V‘+CMZIG,:V1:] é T, (5)

Il est bien entendu que la contrainte représentée par le premier membre
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doit étre calculée, pour chaque élément de la construction, dans la combinaison
la plus défavorable des charges et surcharges. Si notamment la charge per-
manente agit dans le sens de la sécurité, il faudra faire v, = 1.

I1 est bien entendu aussi que la condition (5) ne visant qu’a la vérification
de la stabilité de chaque élément de 1’ossature, il conviendra également de
procéder a la vérification de la stabilité d’ensemble en application des mémes
principes.

Ceci étant posé, il s’agit maintenant de déterminer les valeurs des diffé-
rents coefficients v, C,, et «.

On se trouve alors devant une difficulté, car si pour I’acier, on connait bien,
en général, la valeur de o, & prendre en compte, soit parce que 1’étude statis-
tique a été faite, soit par une garantie des forges, on ne dispose pas, par contre,
dans 1’état actuel d’études statistiques suffisantes pour déterminer scienti-
fiquement les différents coefficients énumérés.

Provisoirement on est donc obligé de s’en rapporter & des valeurs sanc-
tionnées par la pratique. On sait, par exemple, que v=1,5 n’a jamais donné
de mécompte dans le cas d’une surcharge agissant seule. Il semble admis
également que v, et v, peuvent varier de 1,2 a 1,33. Il parait aussi raisonnable
de faire varier (,, de 1, dans le cas d’une seule surcharge, & 0,9 dans le cas ou
toutes les surcharges agissent simultanément. Quant au coefficient « il pourrait
étre déterminé en fonction d’un classement des ouvrages en catégories. 11 faut
d’ailleurs remarquer que plus l'ouvrage est important, plus les calculs et
I’exécution sont soignés, ce qui tend & donner & « la valeur constante 1.

La notion de contrainte limite admissible est donec exclue par la condition
(5) qui correspond & une vérification directe de la stabilité a la ruine.

Les Regles concernant la sécurité, de la nouvelle édition en préparation
du Reéglement francais C. M. 1956, découlent de la condition (5).

% *
*

Comment cette vérification directe de la stabilité a la ruine peut-elle
s’appliquer aux problémes d’instabilité? Prenons, par exemple, le probléme
du flambement qui, en construction métallique, est fondamental. Jusqu’a
présent, on s’était ingénié & faire des essais de flambement sur des éprouvettes
de laboratoire aussi parfaites que possible pour se rapprocher des hypothéses
de la théorie d’Euler. On a ainsi reconnu a la formule d’Euler un certain
domaine de validité dans la bande des grands élancements. Mais une question
s’est posée depuis 200 ans sans qu’on puisse réellement y répondre: quel
coefficient de sécurité faut-il appliquer a la charge critique d’Euler, dans son
domaine de validité?

Il n’y a pas longtemps encore certains pays européens admettaient 4,
d’autres 3, puis on est descendu & 3,5 & 3 et & 2,5, tous ces chiffres étant
également arbitraires.
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La généralisation de la formule d’Euler par von Karman n’a pas résolu le
probleme. Logiquement, on aurait da appliquer & la formule d’Euler géné-
ralisée, un coefficient de sécurité unique. Mais cela aurait conduit & appliquer
a la contrainte critique d’Euler des grands élancements, le méme coefficient
de sécurité que par rapport a la limite élastique de compression simple, ce qui
était évidemment & rejeter en raison des aléas propres au flambement. Faute
de mieux, on a considéré un coefficient de sécurité arbitrairement wvariable
avec 1’élancement et sur lequel on pourrait discuter infiniment.

Tous ces essais, ces tdtonnements, ces discussions ne constituent, en fait,
qu’'une illustration et une confirmation de l'impossibilité d’aboutir & une
solution rationnelle du probléme de la sécurité sur la base de la contrainte
critique. Il subsistait, par ailleurs, entre les méthodes de calcul des systemes
stables, d’'une part, et des systémes instables, d’autre part, une discontinuité
extrémement critiquable.

La encore, la notion probabiliste a permis d’examiner le probléme sous un
angle tout différent et d’arriver a une solution rationnelle.

Les barres comprimées d’une ossature sont, en fait, des piéces industrielles,
elles présentent, a ce titre, des imperfections inévitables provoquant des
perturbations aléatoires tendant & diminuer la charge d’affaissement théorique.
Les effets de ces perturbations peuvent étre étudiés par la statistique mathé-
matique. On est ainsi amené a faire des essais statistiques sur pieces réelles
au lieu d’opérer sur des éprouvettes de laboratoire aussi voisines que possible
de la perfection.

Pour un élancement quelconque A, (fig. 1) supposons effectué un certain
nombre d’essais de flambement sur des barres de méme section, en acier laminé

¢ A Fig. L

de commerce, dressées sans plus de précautions que dans un atelier de cons-
truction métallique. Les valeurs obtenues pour la contrainte d’affaissement
sont dispersées sur une certaine bande ab.

En procédant & un ajustement sur une loi de Laplace-Gauss, on peut
classiquement déterminer la valeur de la contrainte d’affaissement dont la
probabilité intégrale a une valeur donnée.



198 JEAN DUTHEIL Ic?2

On peut notamment choisir comme valeur de cette probabilité intégrale
celle de la limite d’élasticité conventionnelle o,. Soit B, le point figuratif de
la contrainte d’affaissement déterminée dans ces conditions.

Par des essais analogues sur d’autres valeurs de 1’élancement, on obtiendra
autant de points analogues a B que l’on voudra. La courbe 4 BC qui joint
tous ces points est la courbe des contraintes d’affaissement a probabilité
intégrale constante o,=f(A). On peut appliquer par rapport & o, un coefficient
de sécurité unique qui est le méme que celui qu’on admet par rapport a o, en
compression ou flexion simple. Telle est, trés brievement résumée, la théorie
probabiliste de la sécurité dans le flambement que nous avons exposée, en
1954, & la tribune de la Société des Ingénieurs Civils de France [1] et qui est
a la base de la vérification de la stabilité au flambement dans les Régles C. M.
1956. Cette théorie a été agréée par la Commission n® 8 de la Convention
Européenne de la Construction Métallique?!) qui a décidé I’exécution d’essais
statistiques de flambement européens, répartis entre différents pays, dans le
but de vérifier les régles francaises de flambement qui apparaissaient comme
les plus avantageuses. Le grand nombre d’essais effectués jusqu’a présent n’a
fait que confirmer ces regles.

Ces essais ont, de plus, permis de donner une réponse valable & cette irri-
tante question du coefficient de sécurité aux grands élancements. L’appli-
cation d’un coefficient de sécurité constant par rapport a la contrainte critique
d’Euler, méme dans cette zone, constitue une erreur, car la dispersion diminue
a mesure que 1’élancement augmente.

Un autre point remarquable est la rapidité avec laquelle la fonction H,,
bien connue des probabilistes, tend vers 1 quand ¢ croit, c¢’est-a-dire quand la
contrainte dont on veut calculer la probabilité intégrale décroit. Cette proba-
bilité tend trés rapidement a devenir extrémement faible. Cette circonstance,
que seule pouvait mettre en évidence 1’étude probabiliste, est de nature a
rassurer quant au danger de flambement des grands élancements qui a tou-
jours été tres exagéré, faute d’éléments d’appréciation.

Mais la courbe A BC ne donne qu’une solution empirique au probléme du
flambement simple. Partant de cette courbe, on peut chercher une loi d’imper-
fections permettant d’établir par le calcul la relation o,=f(A) avec une con-
cordance suffisante. Ce résultat est atteint avec la loi d’imperfection des
Reégles C. M. 1956, on dispose alors d’une solution générale permettant de
résoudre les problémes de flambement les plus complexes, sans avoir & recourir
aux essais statistiques directs. La place nous manque pour analyser ces
solutions.

Nous indiquerons seulement que la vérification de la stabilité se raccorde
parfaitement au calcul & la ruine. Par exemple, dans le cas du flambement
simple, la ruine se produit quand la contrainte de compression simple o est

1) Commission chargée spécialement de I'étude de I'instabilité.
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telle que:
ok = &,. (6)

k étant le coefficient de flambement calculable, pouvant étre donné par un
tableau en fonction de 1’élancement.

On voit alors que la condition (5) s’applique parfaitement & une barre
soumise au flambement, il suffit de multiplier le premier membre par £.

% * %

Un probleme d’instabilité plus complexe et qui, & notre connaissance,
n’avait jamais été abordé, est celui de I’influence des imperfections inévitables
dans le cas d’un systéme hyperstatique dont certains éléments sont soumis au
flambement. On congoit que les imperfections aient pour effet de provoquer
un certain déplacement des points d’inflexion, c¢’est-a-dire de modifier la
longueur de flambement calculée dans I’hypothése de piéces idéalement par-
faites. Or, la longueur de flambement intervenant a la puissance 2, on pouvait
se demander si le fait de négliger ces circonstances n’était pas préjudiciable a
la sécurité.

Des investigations faites, il résulte précisément qu’en négligeant les imper-
fections on peut, dans certains cas, sous-estimer cette longueur de flambement
au point de lui donner, & la limite, une valeur deux fois trop faible. La prise
en compte des imperfections est donc une nécessité. Nous avons montré
comment on peut opérer, par la méthode des «modules fictifs», qui permet
d’employer les équations classiques en y introduisant des modules fictifs
expérimentaux donnés par des courbes ou des tableaux en fonction de la
contrainte de compression [2].

Il y a d’autres cas ou les méthodes classiques ne peuvent aboutir & une
conception cohérente de la sécurité.

On sait par exemple calculer la contrainte critique de déversement d’une
poutre métallique & section doublement symétrique, supposée idéalement par-
faite, dans certains cas de sollicitations et de liaisons. Mais comment en déduire
la contrainte limite admissible?

Dans la zone des grands élancements, on propose couramment un coefficient
de sécurité de 1,6 & 1,7, alors que dans le cas du flambement simple on admet
aussi couramment 2,5. Pourquoi?

Considérons 1’exemple simple d’une poutre sollicitée sous moment constant.
Nous avons montré [3] que le phénoméne du déversement d’une telle poutre
peut se ramener au flambement d’une barre prismatique plongée dans un
milieu élastique. Il en résulte que la contrainte critique de déversement se
compose en réalité de deux termes:
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Geor = Cl+0d' (7)

0., est la contrainte critique d’Euler de la membrure comprimée en flambe-
ment latéral libre,

o; représente l’augmentation de la contrainte critique o,, sous l'effet du
milieu élastique qui s’oppose & son flambement latéral, ce milieu élastique
étant constitué par la raideur de torsion combinée avec la raideur de
flexion de la membrure tendue.

On peut calculer simplement o,, et o;, qu’il s’agisse de poutres & treillis
ou & dmes pleines, ce qui permet de vérifier que ’expression (7) est alors iden-
tique a la contrainte critique classique, telle que 1’a calculé Timoshenko, par
exemple.

On se trouve alors devant un probléme connu. On sait notamment que la
charge correspondant & la contrainte critique o,, équilibre les réactions élas-
tiques internes de la barre constituée par la membrure supérieure, alors que
la charge correspondant & o, équilibrant les réactions intérieures du milieu
élastique est une contrainte de compression simple.

Il est donc bien évident que les deux contraintes o,, et o; ne sont pas
justiciables du méme coefficient de sécurité. A la premiére, on applique, en
général, 2,5 aux grands élancements, alors qu’a la seconde, on applique
généralement 1,5.

I1 en résulte que le coefficient de sécurité moyen par rapport & la contrainte
critique globale o, sera compris entre 1,5 et 2,5. On comprend alors pourquoi
il doit étre moins élevé que dans le cas du flambement simple.

Mais il faut remarquer que ce coefficient de sécurité moyen est essentielle-
ment variable suivant les valeurs relatives de o,; et o;. On ne peut donc pas
appliquer un coefficient de sécurité unique, dans le cas du déversement, comme
on le fait dans le cas du flambement aux grands élancements. Cette erreur est
cependant souvent commise.

I1 faut remarquer d’ailleurs que de toute fagon, le probléme du déversement
dans les moyens et petits élancements, reste entier, tant qu’on persiste &
vouloir se rapporter a la charge critique, car une formule de raccordement
empirique n’est qu’un pis aller. La prise en compte systématique des imper-
fections et la statistique mathématique permettent des solutions plus ration-
nelles. Les résultats obtenus pour le flambement s’étendent facilement au
déversement et aboutissent & des formules pratiques qui ont donné une excellente
concordance dans leur comparaison avec les essais récemment effectués dans
les laboratoires du Centre de Recherches et d’Etudes expérimentales du
Batiment et des Travaux Publics, & Paris, sur 75 poutres de proportions trés
diverses et soumises a différentes sollicitations.

Ces formules permettent le calcul d’un coefficient de déversement k; tel
que la ruine sous la contrainte de flexion maximale ¢ intervient lorsque:
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O'kd=0'e. (8)

On voit donc que la condition (5) s’applique parfaitement au cas d’une
poutre sollicitée au déversement, il suffit de multiplier le premier membre
par k;.

La condition (5) admet comme critére de ruine la limite élastique de 1’acier.
On sait cependant que cette limite élastique peut apparaitre dans certaines
parties d’une ossature sans inconvénients, grace au phénoméne d’adaptation
de plasticité, & condition que I’allongement soit suffisant, ce qui est bien le cas
pour les différentes nuances d’acier employées en construction métallique.

La marge de sécurité provenant de 1’adaptation de plasticité est trés variable
suivant les systémes. Il est donc logique de chercher & 1’exploiter si 1’on veut
aboutir & une sécurité homogene.

Les moyens a employer ont donné lieu & une littérature technique abondante.
Malheureusement, bon nombre des méthodes préconisées, ont créé, par leur
insuffisance, un climat de méfiance qui n’est pas encore totalement dissipé.

Une premiere erreur a été, dans le cas d’une poutre isostatique simplement
fléchie, de se référer a 1’état de saturation plastique dans la section, alors que
cet état entraine, en général, une déformation anormalement élevée, corres-
pondant & une mise hors service largement dépassée.

Dans le cas des systémes hyperstatiques, la méthode bien connue «par
égalisation des moments» appliquée sans discernement aboutit & des résul-
tats encore plus contestables. Par exemple, le moment d’adaptation calculé
en supposant 1’égalisation des moments en 4, B et C, dans le cas de la poutre
de la fig. (2) est:

_ Pl

T8

M

Fig. 2.

Il est donc indépendant de !’ ce qui est absurde, car lorsque I’ tend vers
I’infini, la valeur maximale du moment en C tend vers P[/4, valeur double
du moment d’adaptation. Il y a bien d’autres écueils. Dans un systéme hyper-
statique de degré élevé, par exemple, il peut y avoir rupture par striction a la
rotule qui s’est formée la premiére.

Par ailleurs, le phénomeéne bien connu du cumul des rotations plastiques,
peut entrainer la ruine au bout d’un nombre réduit d’alternances, dans le cas
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d’une poutre continue & plusieurs travées, dont les charges peuvent varier,
méme trés lentement dans un certain ordre.

I1 est donc absolument nécessaire de codifier les méthodes de calcul de
fagon & ne pas demander au phénomeéne d’adaptation plus qu’il n’en peut
donner. Autrement dit, il faut contréler 1’adaptation. Nous avons montré
qu’on peut y arriver par des moyens simples et que d’ailleurs les calculs en
plasticité peuvent se ramener & des calculs classiques en élasticité [4].

On est ainsi conduit & considérer un coefficient d’adaptation dans la section
iy variable avec la forme de la section et un coefficient d’adaptation entre
sections (' dans les systémes hyperstatiques, dépendant du nombre des réac-
tions inconnues et du systéme de charge. La condition (5) est alors applicable
aux calculs en plasticité, il suffit de multiplier son premier membre par 1/C.

s
H

On voit que la conception de la sécurité en construction métallique a subi
au cours de ces derniéres années une évolution profonde. A la base de cette
évolution, on trouve la conception probabiliste qui avec sa discrimination
entre les degrés d’incertitude correspondants aux différents types de sollicita-
tions, ses coefficients correctifs relatifs a leur simultanéité, etc. fait disparaitre
la notion de contrainte admissible, cependant jusqu’a présent considérée uni-
versellement comme un critére indiscutable.

La prise en compte des imperfections inévitables dans les systémes instables
isostatiques ou hyperstatiques dont la nécessité est actuellement trés géné-
ralement reconnue en Europe, a permis, combinée avec la notion probabiliste,
de donner au calcul & la ruine une généralité qui était des plus souhaitable. La
notion de charge critique reste sans doute fondamentale, mais elle reléve plus
de I’enseignement que de la construction, car elle ne constitue plus la base de
calculs pratiques de dimensionnement.

L’exploitation des phénoménes d’adaptation de plasticité, convenablement
controlée, ajoute encore & l'intérét du calcul a la ruine, que personne ne
semble plus sérieusement contester.

Il semble qu’on ait dans la premiére moitié de ce siécle, abusivement assimilé
la résistance des matériaux aux mathématiques pures, perdant ainsi de vue
I’importance de son aspect physique.

Le cadre de la théorie de 1’élasticité est devenu trop étroit. Cependant les
calculs pratiques qui résultent de la prise en compte de phénoménes qui le
dépassent, peuvent encore s’inscrire dans ce cadre, de sorte qu’ils restent
relativement simples eu égard & la complexité des problémes & résoudre et
c’est assez remarquable. C’est en tout cas rassurant pour les constructeurs.

Bien sfir, tout n’est pas résolu, mais on y voit plus clair, on sait dans quel
sens diriger les recherches et ¢’est déja beaucoup.
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Résumé

L’introduction des calculs probabilistes dans la résistance des matériaux,
I’exploitation de 1’adaptation plastique, la prise en compte des imperfections
inévitables dans les systemes instables (isostatiques ou hyperstatiques), la
disparition, par voie de conséquence, des notions de contrainte admissible et
de contrainte critique, ont permis d’aboutir & une sécurité homogéne, en
supprimant la discontinuité entre les méthodes de vérification des systémes
stables et instables.

Le degré de sécurité se mesure par rapport a la ruine réelle. La théorie de
I’élasticité s’avere alors insuffisante et les expériences redeviennent la source
naturelle des progres dans 1’art de construire.

Zusammenfassung

Die Einfithrung der Wahrscheinlichkeitsberechnung in die Festigkeitslehre,
die Ausniitzung der plastischen Materialreserven, die Beriicksichtigung der
unvermeidbaren Unvollkommenheiten bei den unstabilen Systemen (statisch
bestimmte oder unbestimmte) und das daraus sich ergebende Verschwinden
des Begriffs der zulassigen Spannung und der kritischen Spannung gestatten,
einen homogenen Sicherheitsbegriff aufzustellen, wo die Diskontinuitat in den
Nachweismethoden fiir stabile und unstabile Systeme verschwindet.

Der Sicherheitsgrad wird nun auf den tatséchlichen Bruchzustand bezogen.
In diesem Zusammenhang zeigt sich aber die Elastizitdtstheorie als ungentigend,
so daf} Versuchsergebnisse wiederum zur natiirlichen Grundlage der Entwick-
lung in der Baukunst werden.

Summary

The introduction of calculations based on the theory of probability into the
determination of the strength of materials, the taking advantage of plastic
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behaviour, the taking into consideration of the inevitable imperfections in
unstable systems (isostatic or hyperstatic) and the consequent disappearance
of the concepts of permissible stress and critical stress have all enabled con-
gruous conceptions of safety to be achieved with the elimination of the dis-
continuity between the methods of verification employed for stable and un-
stable systems.

The degree of safety is measured in relation to actual collapse. The theory
of elasticity proves to be inadequate and test results become, once again, the
natural source of progress in the art of construction.
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Plastic and Elastic Designs Compared
Comparaison du calcul plastique et du calcul élastique

Vergleich zwischen plastischer und elastischer Berechnungsweise

A. HRENNIKOFF
Sc. D., Research Professor of Civil Engineering, University of British Columbia, Canada

Elastic and plastic designs are different in their approaches. Basically they
are both sound, but in actual execution plastic design is inferior to the elastic
because it is insufficiently developed and is influenced strongly by the varia-
tions in unpredictable properties of material and complex behaviour of the
structure when it comes near failure. Weaknesses of the elastic design are in
comparison minor.

ES - ES

Plastic design although a relatively new development, has found numerous
advocates in the English speaking world. In November 1961 it was introduced
into the specifications of the American Institute of Steel Construction, thus
attaining a status equal to that of the conventional elastic method. Projec-
tion of the new method into the field of practical use and determined claims
as to its superior rationality and economy put on order its critical examination
and close comparison with the elastic design.

The inception of the new method may be traced to criticism of certain
aspects of the conventional elastic method. Thus it has been suggested that
the use of the same allowable working stress, a proposition on which the
elastic design is based, is not reasonable for I beams bent about the major
axis on the one hand and the solid rectangular beams, or the same I beams
bent about the minor axis, on the other, because in the latter case only a small
fraction of the area is subjected to a high stress; again it has been stated that
statically indeterminate beams are in general farther removed from failure
than the determinate ones designed to the same allowable stress.

The writer admits the justice of this criticism and feels that it can be met
by proper adjustment of the allowable stresses, which by the way has been
already partially done in certain areas. This admission however is far removed
from the primary tenet of plastic theory, the acceptance of failure condition
as the criterion of design. Failure is a logical basis of design only if it can be
properly pinpointed in magnitude and location, — this however, apart from
some simple cases, seems impossible, as becomes apparent from the following
discussion.
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1. Yield Stress

In the early development of plastic theory failure of a structure, such as a
statically indeterminate rigid frame, was identified with formation of a requi-
site number of plastic hinges making the structure geometrically deformable.
The values of bending moments at plastic hinges were considered constant
and independent of angle changes. This supposition will now be examined
closely.

Plastic moment is proportional to the yield stress, the value of which is
normally assumed constant. However, L. S. BEEDLE [1] found that the yield
stress of beams made of the commonly used ASTM-A7 steel, nominally
33 kips/sq. in., actually varied between 25 and 48 kips/sq. in. These figures refer
to complete sections of beams. Variation between the individual parts of
flanges and webs is undoubtedly even greater. With yield stress varying in
such wide limits, moments at plastic hinges become unknowable.

It may be argued that proper physical tests will eliminate material with
yield stress below some specified nominal value like 33 kips/sq.in., but it is
scarcely possible to exclude simultaneously the material stronger than normal,
and such material is almost equally objectionable, because its presence at the
location of a plastic hinge on the end of a member may lead to a premature
failure of the connection designed on the basis of the nominal yield stress.
With unpredictable value of yield stress plastic design may be likened to
measurement of length with a scale whose divisions are grossly in error.

Unlike its novel counterpart, elastic design is not dependent on yield stress,
although physical tests must guarantee a certain minimum value of it. What
is important in elastic design is proportionality between stress and strain, and
this is normally maintained throughout the range of the working loads. Deflec-
tions may sometimes be also significant. They are governed by the modulus
of elasticity and the value of the latter is almost invariant for structural steel.

2. Design of Beam-columns

Barring lateral-torsional buckling, the capacity moment that may be carried
by a beam equals the plastic moment. On the other hand the capacity moments
on the ends of a column are much smaller than plastic value and are affected
in a complicated way, by the thrust and the slenderness ratio. Moreover, these
moments correspond to some definite angles of rotation on the ends of columns
and should these angles be increased, as may be demanded by the consistency
of deformations, the end moments will decrease below the capacity values [2].
The behaviour of beam-columns is thus different from beams, as well as more
difficult and uncertain to analyze.
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Design of structures whether elastic or plastic is normally a check design.
This means that assumption of appropriate sections of members is made and
is followed by determination of their moments, shears and thrusts caused
by the working or factored loads. The operation is concluded by checking the
sections on the basis of the computed load functions.

In elastic theory determination of thrusts and moments is subject to a well
established rigourous procedure involving nothing intrinsically difficult in
principle, even though it may at times be supplanted for reasons of expediency,
by appropriate simplified operations. In plastic theory, at least when the struc-
ture involves columns, a similar rational analysis is impossible, because the
moment-angle change relations under elasto-plastic conditions on the verge
of collapse are unavailable. The two methods used for this purpose in plastic
analysis: [3,4] determination of statically consistent sets of thrusts and mo-
ments, with no regard for the consistency of deformations, and the method
involving moment distribution by elastic distribution factors, must both be
considered as crude approximations. The mechanism method based on con-
stancy of moments at plastic hinges is, of course, incorrect with regard to
columns.

Once the moments and thrusts have been determined the adequacy of the
members must be checked by available methods. In this phase the elastic and
plastic designs are more comparable. Verification of sections, especially of
columns, is based in both methods on the use of empirical formulae or graphs.
In plastic design this procedure however is more uncertain because the column
interaction curves [1, 5] specifying safe combinations of moments and thrusts
are based on the capacity moment, which, as has been explained earlier, may
be reduced by excessive angle changes on the ends of columns. It must however
be admitted that the empiricism of the column formulae used in the elastic
design represents one of the weaknesses of the latter.

3. Lateral Instability

The problem of lateral instability is very complex even in the elastic range.
Apart from single members with well defined conditions of restraint, the prob-
lem can be solved only approximately and with considerable difficulty by the
energy method. When instability failure occurs in the plastic range the working
load is taken as a fraction of the load at which the yield stress is first reached.

Instability problem in plastic design is considerably more formidable,
especially in relation to columns. The column theory developed by Professor
J. F. BARER of Cambridge University and his associates [3] is based on diffe-
rentiating the plastically loaded columns from the elastically loaded. In the
former the column end moments do not depend on possible rotations of the
column ends, in the latter — they do. Assuming similar types of end moments
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on both ends of the column, BAKER distinguishes nine different loading cases.
The writer considers this theory incomplete in spite of its complexity, because
it does not cover all necessary cases of column behaviour. For example, an
outer column of a two-storey (or multi-storey) rectangular frame should be
designed as plastically loaded on one end and elastically on the other, — a
case not considered by BAKER.

No wonder that the American column theory developed later [5] ignores
completely BAKER’s approach and visualizes the column as fully restrained
from lateral buckling (as well as free from bending about the minor axis) by
adequate bracing with the points of support spaced in accordance with some
empirical formulae. These limitations restrict greatly the field of applicability
of the American method.

Another important distinction between the American and English methods
is their treatment of the residual stresses caused by rolling and cooling. In
English method these stresses are completely ignored, in American method
they are taken into consideration in accordance with a standard pattern
involving compression stresses, equal to 30%, of the yield stress, at the edges
of flanges of wide flange sections.

The difference of the two methods with regard to residual stresses under-
lines further the basic uncertainties of plastic design. The American approach
is undoubtedly more correct as well as more conservative of the two, but the
writer is dubious that the effects of rolling are as constant as assumed; further-
more residual stresses are produced not only by rolling but also by cambering,
welding and accidental bending and straightening, whose effects are not likely
to conform to the assumed pattern. Accepting the premise that residual stresses
are significant in relation to buckling, one should concede that their deviation
from the assumed standard, which is certain, must also have a significant
effect on failure.

Plastic buckling, unlike elastic, is also affected by creep. The subject of
creep is not discussed in plastic literature and to what extent it is allowed for
in plastic theory is not clear.

4. Live Loading

Apart from largely academic theories of alternating plasticity and incre-
mental collapse application of plastic method has been limited almost exclu-
sively to continuously acting loads. The writer knows of only one paper in
which the presence of intermittent loading is discussed [4]. At the same time he
feels that the recommendations contained in it with regard to design of columns
underestimate greatly the design moments [6].

Diversity of live load placements required for design of different members
of a structure results in an inherent difficulty for plastic method, because
removal of live loads of failure intensity required for one set of members,
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leaves some residual stresses which often affect strongly the design stresses
for another set of members. Professor BAKER obtains an economic design of
columns [6] by simply ignoring the residual stresses produced by an earlier
plastification of beams. This procedure appears to the writer unjustified.
Considerations of probability also enter the picture in view of the high inten-
sities of the failure loads exceeding the working loads by the load factor
normally as high as 1.85.

Restrictions and qualifications of the type implied in BAKER’s approach
to the action of live loads in plastic design stand in sharp contrast with totally
unqualified application of live loads in most unfavourable positions practiced
in the elastic design.

5. Strain Hardening

Stresses higher than yield stress are not contemplated and never used in
plastic design, yet it has been demonstrated [7] that without strain hardening
plastic theory would be invalid irrespective of how long the yielding part of
the stress-strain curve may be, as the beam would rupture at the earliest
plastic hinge before the moments at the subsequent plastic hinges to be, would
develop their full plastic values. However, with material such as structural
steel, endowed with strain hardening, strains in the vicinity of plastic hinges
would extend a short way beyond yielding and the equalization of moments
would take place substantially as claimed (apart from several uncertain aspects
discussed above). On the other hand if the material although ductile is devoid
of strain hardening, like some high strength aluminum alloys, the length of
the beam on which the plastic hinge is due to develop is very short for reasons
governed by statics, the maximum unit strain is extremely high, and the beam
must fail at the first plastic hinge well in advance of the value of failure load
found by plastic theory. Plastic theory then needs both yielding and strain
hardening for its justification, and it is only owing to the presence of strain
hardening in structural steel that this theory, in spite of its basically incorrect
assumptions, gives a fairly accurate value of the failure load (excluding the
uncertainties referred to earlier).

6. Comparative Rationality

Design to a definite load factor or a definite coefficient of overload in excess
of the working load is claimed to be pre-eminently rational [3] and is cited by
the plasticians as a proof of superiority of their method over the elastic method.
The writer however fails to see why the working loads, as high as they are
usually specified, should ever be exceeded simultaneously by a factor as high
as 1.85, the usual value of the load factor. The purpose of the factor of safety
as the writer sees it, is not to provide for a great proportional overload which
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is hardly possible, but to meet a wide variety of unforeseen contingencies,
such as weaknesses and deterioration of material, defects of fabrication and
construction, errors in design and detailing, unusual and unexpected loads,
catastrophic occurrences etc. Such emergencies are met by the elastic and
plastic designs in different ways, but in the manner of meeting them one can
discern no apparent advantage of one method over the other.

Although denying the claim of plastic design for superiority in principle,
one must admit a degree of justice in the criticism of the elastic design for
certain arbitrariness. Only the main stresses are expected to be taken into
consideration in the elastic design, while a score of others, described as second-
ary stresses, are simply left out. To these belong different kinds of residual
stresses and stresses caused by load concentrations, holes, fitting ete. Designers
normally know these stresses by experience although in unusual cases special
studies or intuitive judgment may be necessary for acceptance or rejection of
some of them.

Another aspect of elastic design which sometimes raises objections is the
use of elastic formulae for calculation of the load carrying stresses, although
some of these stresses may extend locally beyond the elastic range. The treat-
ment of the main and secondary stresses as described here is however an
essential part of the elastic design, as it is practised. This practice is justified
by long experience and is allowed for in the values of the working stresses laid
down in specifications.

7. Conclusions

Generally speaking, elastic method, although somewhat discretionary is
basically simple in principle. Plastic method, as originally visualized, aimed
at even greater simplicity identified with formation of kinematic mechanisms,
and also at rationality. The simplicity however proved in the end illusory by
becoming enmeshed with the uncertain properties of material: yield, residual
stresses, creep; and highly complex phases of structure behaviour: inelastic
buckling, deformation of beam-columns and live load action. Determination
by the plasticians to cope with the difficulties as they had arisen, led to risky
assumptions and questionable procedures transforming plastic method into
a collection of rules and empirical formulae, whose relation to failure has
become obscure if not altogether non-existent.
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Summary

Plastic and elastic methods of design are comparable in so far as they are
both sound in principle and both contain some defects.
The weaknesses of plastic design include:

a) Uncertainty with regard to material properties on which plastic design is
critically dependent: residual stresses, creep and, especially, the magnitude
of the yield stress, which varies in a wide range.

b) Lack of adequate theory for plastic stress analysis of structures involving
beam-columns.

¢) Similar deficiency with regard to the action of live loads.

d) Empiricism and inadequacy of provisions for lateral instability.

The defects of elastic method are:

a) Omission of secondary stresses.

b) Empiricism of design provisions for buckling.

¢) Unjustified uniformity of the basic allowable stress for statically deter-
minate and indeterminate structures.

Of the two, the weaknesses of the plastic design are judged by far more
serious.

Résumé

Les méthodes de calcul basées sur la plasticité et I’élasticité sont compa-
rables en ce sens qu’elles reposent toutes deux sur des principes sains et com-
portent toutes deux des incorrections. Les faiblesses du calcul plastique se
rapportent:

a) A la marge d’incertitude quant aux propriétés des matériaux dont le calcul
plastique dépend de fagon critique: tensions résiduelles, fluage et, tout par-
ticuliérement, valeur de la limite élastique, dont la variation est trés étendue.

b) A I'absence de principes strs pour ’analyse plastique des tensions dans le
cas d’ouvrages comportant des éléments comprimés et fléchis.

¢) A une méme insuffisance en ce qui concerne 'action des surcharges.

d) A Pempirisme et & I'impropriété des régles relatives a I'instabilité latérale.
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Les défauts du calcul élastique sont:

a) L’omission des contraintes secondaires.

b) L’empirisme du calcul au flambage.

c) L’adoption illégitime des mémes contraintes fondamentales admissibles
pour les constructions isostatiques et hyperstatiques.

Ce sont les faiblesses du calcul plastique qui, des deux, sont jugées de
beaucoup les plus graves.

Zusammenfassung

Die auf der Plastizitits- bzw. Elastizitdtstheorie aufgebauten Berechnungs-
weisen haben dieses gemeinsam, daf sie beide auf gesunden Prinzipien beruhen
und daneben Unzuldnglichkeiten aufweisen. Die Schwichen der plastischen
Berechnungsweise bestehen:

a) In den UngewiBheiten, denen die Materialeigenschaften, insbesondere die
Eigenspannungen, das Kriechen und die starken Streuungen unterwor-
fene FlieBgrenze unterliegen.

b) In der Tatsache, daBl man iiber keine sicheren Grundlagen zur Beriicksich-
tigung von Spannungsproblemen zweiter Ordnung verfiigt.

c¢) In einer dhnlichen Unsicherheit in bezug auf die Wirkung der Auflasten.

d) In der Empirie und Unsauberkeit im Erfassen von Problemen seitlicher
Instabilitét.

Die Mangel der elastischen Berechnungsmethode sind :

a) Die Vernachlassigung der Nebenspannungen.

b) Die Empirie in der Knickberechnung.

c) Die Annahme gleicher zulédssiger Spannungen bei statisch bestimmten und
unbestimmten Konstruktionen.

Die Schwichen der plastischen Berechnungsweise werden als wesentlich
schwerwiegender beurteilt.
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Calculs d’ossatures et serviceabilité
Berechnung von Rahmen und deren Gebrauchsfdihigkert

Calculations of Frames and Serviceability

Y. GUYON
Paris

1. Notattons. Moments & un nceud: X X' pour les poutres, Y Y’ pour les
poteaux, avec indice du nceud; moment & mi-travée: M, avec indice de la

2. ’
travée; X, X;.... M, ... moments de rupture.

a= [{1-Z5) 22 5= [2(1-%)2= - [Z
= 1] BT 1TV T B T )R ELD

coefficients de flexibilité.

U et —V, rotations isostatiques aux extrémités gauche et droite des travées.
p: charge permanente. s : surcharge (par unité de longueur); wu’ vv’ coefficients
de ventilation (pour la répartition entre les barres d’un moment appliqué a
un neceud).

Xiz [Xie1 Xi>=Xi XiaXin
() (Li+1)

o] o Fig. 1.
>

2. On simplifie le calcul (sous charges verticales) en supposant les nceuds
fixes. Cela implique des forces de fixation, dont on trouve les valeurs en fin
de calcul en écrivant 1’équilibre des forces horizontales agissant sur chaque
étage. On pourra alors corriger le premier calcul en introduisant un systéme
de forces annulant les forces de fixation.

Ces corrections sont souvent trés faibles, et nulles dans de nombreux cas
(charges symétriques dans une construction symétrique) d’ou l'intérét de la
simplification.

3. La distribution des moments dans le systéme soumis & un chargement S
(de service) peut étre définie par N moments indépendants (p —1 pour chaque
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neceud & p barres); la condition & satisfaire est que les rotations soient les mémes
dans les sections, & un méme nceud, des barres qui y aboutissent.

Dans les méthodes élastiques cette condition peut s’exprimer par N équations
(p—1 pour chaque nceud) reliant quatre des N moments, rencontrés par une
des fléches de la fig. 1, et qu’on peut écrire, par exemple pour la fleche 1, sous

la forme:
b; Xi1+e; Xy+a; Xi+b, Xy +Vi+U; =0 (I)

d’ou les N moments cherchés.

Dans les calculs limites (sous le méme chargement S) on choisit les N moments
précédents. Les équations (I) ne sont plus vérifiées. Il faut, pour rétablir la
nullité du membre, y introduire des rotations inélastiques 8; celles-ci se pro-
duisent dans les zones ou le moment limite élastique est dépassé (rotules
plastiques). On considére que ces rotules plastiques sont placées aux nceuds,
dans les sections correspondant aux N moments choisis, que 1’on dimensionne
en conséquence. Partout ailleurs la construction est dimensionnée élastique-
ment.

On a donc N équations telles que:

b; Xi 1 +e; Xitay Xi+b Xo +Vi+ U +0,+6; =0 (II)

permettant de calculer les rotations des N rotules plastiques.

La construction est apte & son emploi (serviceable) si ces rotations (ou les
courbures) ne dépassent pas certaines limites.

Dans les calculs & rupture, les charges sont majorées dans un rapport ky ;
on choisit encore les moments dans les mémes N sections, qu’on dimensionne
a rupture sous ces moments; en dehors de ces sections (ou plus exactement
de ces zones) la construction est dimensionnée élastiquement (c¢’est & dire pour
ne pas dépasser le moment limite élastique).

La rupture ne survient d’ailleurs que lorsqu’une N + le rotule se forme,
c¢’est-a-dire pour un coefficient de charge ky,, 1égérement supérieur & ky.

La vérification de la compatibilité peut se faire pour le coefficient &y ou
pour le coefficient ky,,. Dans le premier cas on applique encore les équations
(II), mais sous charges majorées et en donnant aux moments les valeurs de

rupture X,,. . .; la solution est acceptable si aucune des N rotations n’atteint
sa valeur de rupture, donc si aucune rotule plastique n’atteint sa courbure
de rupture.

Pour la vérification pour le coefficient ky,, on ne peut plus déterminer les
N +1 rotations puisqu’on n’a que N équations, mais il y a une relation néces-
saire entre la rotation de la rotule qui se rompt et celles des rotules adjacentes.
On peut, dans cette relation, comme 1’a proposé 1’auteur, négliger les défor-
mations élastiques, et elle n’a lieu d’étre appliquée que dans la partie qui se
rompt, laquelle peut n’étre qu’une partie de la construction, d’un degré
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d’hyperstaticité n inférieur au degré N de la construction totale. La rupture
de cette partie se produit lorsque n+ 1 rotules se sont formées.

Pour préciser, et en méme temps parvenir & une premiere relation de base,
supposons qu’on se soit imposé pour chaque poteau une seule rotule, inférieure
(moments choisis Y,'. . .), et pour les poutres deux rotules pour chaque travée,
aux neceuds (moments choisis X; ;, X,, pour la travée 7).

Chaque poutre a un degré d’hyperstaticité n=2; la rupture d’une des
poutres se produit lors de la formation d’une troisieme (n+ 1¢) rotule, en
travée.

Aucun nceud ne peut bouger lors de cette rupture; si on néglige les défor-
mations élastiques (donc en particulier les rotations de poteaux) la condition
de compatibilité a la rupture pour cette poutre est la méme que pour une
poutre encastrée.

En supposant pour simplifier que les charges sont uniformes, que la travée
est symétrique et que X,=X, les rotations plastiques 8 sur appuis sont les
mémes aux deux extrémités; si « est la rotation de la rotule a mi portée, la
condition de compatibilité est «/2=0(1).

|, (1) e i i
X Xid Xip T >
T
Fig. 2. (El-)f’/ | .
<l I 1 ir) . |
; ‘_QC;«):_:___@_ Fig. 3.
—Ta

Tracons sur une méme épure les diagrammes: R et R’, des moments résis-
tants & rupture (positif et négatif), £ et E’, des moments limites élastiques.
On admettra pour simplifier que E et E’ coincident avec la limite de service-
abilité soit £/R =0,8 (voir parag. 5).

Soit u, la fleche du diagramme des moments dans la travée dans les con-
ditions de rupture.

En cas d’adaptation compléte on a: X, + M, =p,.

Mais ceci n’est possible que si les rotations plastiques satisfont a la condition
de compatibilité (1). Or ces rotations résultent du dépassement des limites
élastiques, c¢’est a dire du franchissement des lignes & et E’ par le diagramme
des moments (zones hachurées fig. 3). Si, tout au moins a titre d’approxima-
tion, on admet 1’existence d’une loi moment-courbure les rotations plastiques
dans chaque zone s’obtiennent par 1’intégration des courbures sur les longueurs
de ces zones.

Il apparait nettement sur la fig. 3 que la demi rotation en travée «/2 est
plus grande que la rotation au nceud, 6.
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Par conséquent, pour pouvoir inscrire, en respectant les conditions de
compatibilité, le diagramme p,, il faut augmenter légérement la distance
entre B et R’ pour que le diagramme pénétre moins profondément dans la
zone plastique positive. On est certain que la condition de compatibilité pourra
étre satisfaite si, s’étant fixé X, on prend M, tel que X,+ 0,8 M,=p,; mais
cette condition est surabondante. On peut montrer qu’il suffit de prendre
X,+0,86 M,=pu, et que, numériquement, dans le domaine pratique cette con-
dition est équivalente & la suivante: X, + M, =1,06p, (2).

Cette condition (2) peut étre appliquée poutre par poutre, et on peut ad-
mettre pour vérifier la sécurité des poutres que la construction est entiérement
surchargée, les conditions de rupture de chacune des poutres étant indépen-
dantes entre elles, par suite du cloisonnement correspondant au choix des
rotules (une seule rotule par poteau) et de la fixation (provisoire) des nceuds.
Cette condition (2) dispense pour les poutres de toute autre vérification de
compatibilité & rupture.

Par contre, pour les poteaux, il faut considérer les conditions de charge les
plus défavorables (une travée adjacente chargée, 1’autre travée non chargée).
L’auteur a indiqué les bases de ce dimensionnement, mais ce n’est pas du
calcul & la rupture pris séparément qu’il s’agit ici.

4. L’objet de la communication est de montrer les restrictions imposées
aux calculs a la rupture, lesquels laissent une marge considérable dans le choix
des moments sur appui, par les conditions de serviceabilité. Ce sont ces der-
niéres qui sont les plus importantes au point de vue pratique, le dimensionne-
ment a rupture pouvant étre obtenu facilement quand les conditions de service-
abilité sont remplies.

5. m désignant d’une facon générale le moment dans une section et m, le
moment de rupture, I’expérience montre que, pour le béton armé et pour le
béton précontraint armé (classe de béton précontraint qu’il convient d’adopter
pour les ossatures), si 1’on trace un diagramme des ouvertures de fissures en
fonction du rapport m/m,, ces ouvertures restent modérées jusqu’a m =0,8m,
puis croissent considérablement au-dela de cette limite (FERrRY BorcEs, Con-
grés 1956, MALDAGUE, Congrés 1964). En dimensionnant convenablement les
diameétres des armatures, les ouvertures restent, jusqu’a cette limite, infé-
rieures aux ouvertures admissibles.

On propose de considérer comme critére de serviceabilité!) cette condition
m=0,8m, (3).

1) 11 faudrait il est vrai tenir compte de deux considérations: 1. le moment m, dont il
s’agit est le moment résistant vrai, lequel comporte, par rapport au moment m, de dimen-
sionnement, un coefficient de minoration de 1,15 (CEB). 2. le début de fissuration pro-
voque un commencement de redistribution qui diminue la valeur de m par rapport & la
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6. La question se pose alors pour les poutres de la fagon suivante: on a
déterminé dans chaque travée (en supposant, pour simplifier, des travées
symétriques), la somme X + M, =1,06u,; mais on ne sait pas comment par-
tager cette somme entre X, et M.

11 faut que ce partage soit fait de telle sorte que, dans les conditions de service,
la parabole . vienne au plus au contact, soit de la ligne 0,8 M, & mi-travée,
soit de la ligne 0,8 X, sur appui. Si £ est le coefficient de sécurité p,=kp.

On offre donc & la parabole u un espace 1,06 X 0.8k u=0,85ku. Si k=1,6la
parabole n dispose donc pour se placer d’un espace de 1,36 u, la somme X, + M,
étant alors:

1,06 1,6 =1,7Tu.

Or, dans les conditions de service, le moment réel sur appui a une valeur

2
X=Au=2A (p+3)-18—, A désignant un coefficient que nous ne savons pas évaluer

avec exactitude mais qui n’en n’a pas moins une valeur déterminée.

Supposons qu’on ait fait une évaluation de A et qu’on ait partagé en consé-
quence 1’espace X,+ M, en dimensionnant ’appui pour obtenir le moment
a la rupture X =AX 1,7 u,. Cette répartition satisfera aux conditions de service-
abilité tant que la parabole réelle u reste comprise entre les deux positions
extrémes de la fig. 4.

M,
7 777
0,8 M,
AN\ /a 2
) Vo]
ord / \ o
(@] —
0,8 X i
D — 3 r 1y F.lg. 4,

r

Soit A" le coefficient réel (inconnu). Pour la position inférieure X =0,8 X, =
=0,8AX1,74=1,36Au; donc A'=1,36X ou A=0,74X’". Pour la position supé-

rieure, X =1,361—0,36, done \'=1,361—0,36 ou A=X"[1+0,26-37].

L’erreur admissible sur le moment «réel» X est donc de 269, par défaut ou

1-X
de 26% —
si A’> % ce qui est pratiquement toujours le cas.

Les mémes raisonnements faits sur le moment M & mi-travée montrent

que I’on peut faire sans inconvénient une erreur de 269, par défaut ou de
’

par excés. Cette derniére erreur par exces est inférieure & 269,

A 5 _ . .
269, T Par exces, cette erreur par excés étant d’ailleurs pratiquement
toujours supérieure a 269, .
valeur calculée élastiquement, dans la zone ou ce début de fissuration se produit. On

admettra que ces deux considérations se neutralisent et que le critére (3) est bien appli-
cable.



218 Y. GUYON Ic4

On peut dés lors énoncer une regle englobant tous les cas. On peut admettre
une erreur par défaut sur X ou sur M pouvant atteindre 269, .

Naturellement 1’erreur admissible est liée & la valeur du coefficient de
sécurité; si le coefficient de sécurité était 2, 1’erreur admissible par défaut sur
X ou M pourrait atteindre 419,.

Tout procédé de calcul pour lequel on a établi qu’il ne conduit pas, par
rapport au calcul élastique «exact» & des «erreurs» plus grandes que celles
indiquées ne requiert aucune vérification, et il suffit de prendre par rapport
aux moments obtenus un coefficient de majoration de 1,7 (dans le cas de k =1,6)
pour que la serviceabilité et la compatibilité a rupture soient satisfaites.

Il n’y a pas lieu d’insister ici sur le sens du mot «exact».

7. Si on n’avait & considérer qu’un seul chargement, il n’y aurait pas d’in-
térét a rechercher une précision plus grande que ces 269, par défaut, amenant

a majorer dans le rapport ——=1,36 pour tenir compte de I’imprécision, puis

0,74
encore de 259, pour assurer la serviceabilité; on a en effet 1,36 x1,25=1.7 et

la compatibilité a rupture est juste assurée; cela est évident par la fig. 4 qui
précisément ne considere qu’un cas.

Mais on a en fait & considérer plusieurs chargements; pour un méme charge-
ment maximum (p+s) d’une travée donnée, le moment réel sur appui, X,
dépend des chargements des travées adjacentes. Si pour simplifier on considére
des travées égales, de section uniforme et le cas d’une travée courante, le

2
moment X est égal approximativement au moment d’encastrement (p+s)li5

; ; y . 12 I2
quand les deux travées adjacentes sont chargées et a (P+8)z—usts (v
coefficient de ventilation, voir parag. et fig. 1), quand les deux travées adja-
centes sont vides (c’est-a-dire soumises & la charge permanente seule). Ce ne
sont la que des valeurs approchées, mais il n’en reste pas moins que 1’ensemble
des paraboles correspondant aux djfférents cas de charge occupe un espace

approximativement égal a (p +s)g E +u — - Si compte tenu de I’'imprécision on

est obligé de majorer par 1,36 puls par 1,25 pour la serviceabilité on obtiendra
2 2

pour la somme X,+ M, une valeur 1,7 [(p+s)%+u %] supérieure & celle qui

serait suffisante pour la sécurité.

On peut faire des économies en augmentant la précision. Cherchons quelle
serait la précision désirable, c’est-a-dire quel devrait étre le coefficient l+e
qui devrait remplacer le coefficient 1,36 précédent.

2

L’idéal serait que (l1+¢€)x1,25 [(p+s)l +u—]—1 7(p+s)k ou l+e=

=1,36 X ——g—,— ou une précision désirable par défaut caractérisée par le
1+5u
12 p-i-s

. 8
coefficient 0,74 [1 +E U p+8] .
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La précision désirable dépend donc de la raideur relative des poteaux et des
poutres, du rapport de la surcharge s & la charge permanente, et du coefficient
de sécurité (le coefficient 0,74 correspondant au coefficient de sécurité 1,6).

Pour ©=0,15 et s=p on trouve que la précision désirable est 0,78 (229,
par défaut).

Pour #=0,30 et s=2p on trouve que la précision désirable est 0,85 (159,
par défaut).

Cela met bien en évidence l'influence des fortes surcharges, obligeant a
serrer la réalité de plus pres.

Bien entendu rien ne s’oppose a ce qu’on conserve la présision de 269,
mais il faut accepter alors le supplément de prix correspondant a la surabon-
dance de sécurité.

8. Une méthode couramment appliquée en France consiste a appliquer le
premier déverrouillage de la méthode de Cross. Autrement dit, pour 1’évalua-
tion des moments a un nceud, on suppose d’abord I’encastrement. Soient m
et m’ les moments d’encastrement a gauche et a droite du nceud. On déver-
rouille le nceud en supposant que les barres sont encastrées a leurs extrémités
opposées, uu' vv' étant les coefficients de ventilation, les moments dans les
barres sont algébriquement:

X=m—u{m-—m'), X' =m+u (m—m'),

Y=—-v(m-m'), Y' =v¢' (m—m').

La méthode est extrémement simple puisqu’elle ne fait intervenir pour
chaque nceud que les deux poutres adjacentes.

On peut montrer que, dans les conditions usuelles, elle conduit & une sous
évaluation des moments sur appui, et dans un rapport de 1’ordre de 0,75 pour
les nceuds de rive et de 0,85 & 0,90 pour les neeuds courants. Il suffit de prendre
par rapport aux moments calculés les coefficients de sécurité usuels, sans
aucune vérification de compatibilité autre que X, + M, > 1,06 .

Cette méthode pourrait étre améliorée en reculant d’un nceud les déver-
rouillages, c¢’est-a-dire en déverrouillant non plus seulement le nceud considéré
mais les quatre qui I’entourent. La précision devient alors de 7 & 109, pour
les nceuds de rive et de 3 & 49, pour les noeuds courants. On pourrait d’ailleurs
n’apporter cette correction que pour les nceuds de rive ou les «erreurs» sont
les plus grandes, et prendre alors des coefficients de sécurité réduits assurant
la serviceabilité et la compatibilité a rupture dans ’esprit du parag. 7 (et tels
que X,+M,=1,06p,).

L’exemple de trés nombreux batiments calculés ainsi en France (sans la
correction indiquée ci-dessus et sans d’ailleurs la correction correspondant aux
forces de fixation (parag. 2) et 1’absence de tout désordre dans ces construc-
tions, montre le bien fondé de cette méthode.
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Résumé

Le critere de serviceabilité proposé d’aprés des résultats expérimentaux
est que le moment réel ne doit pas dépasser une certaine proportion du moment
de rupture (estimée & 0,8); d’ou la possibilité de calculs élastiques simplifiés.
On évalue la tolérance qu’on peut admettre par rapport aux calculs élastiques
«exactsy.

On justifie ainsi une méthode appliquée en France et ne nécessitant aucune

vérification de compatibilité autre que de s’assurer que la somme X';LX’JrM .

est légérement supérieure (de 69%,) au moment isostatique maximum sous
charges majorées.

Zusammenfassung

Das auf experimenteller Grundlage aufgebaute Gebrauchsfahigkeitskrite-
rium verlangt, daB3 das tatsichliche Moment einen gewissen Teil (geschitzt
zu 0,8) des Bruchmomentes nicht iiberschreiten soll. Darauf beruht die Mog-
lichkeit von vereinfachten elastischen Berechnungen. Die Abweichung im
Verhiltnis zu den genauen elastischen Berechnungen wird abgeschitzt.

Damit ist eine Rechnungsmethode begriindet, die in Frankreich verwendet
wird. Diese fordert als einzigen Vertriglichkeitsnachweis, dal die Summe

X';X'-i-M, etwas hoher (69,) sein soll als das maximale, statisch bestimmte

Moment unter erhohten Lasten.

Summary

The proposed criterion of serviceability, based on the experimental results,
1s that the actual moment should not exceed a certain proportion of the
ultimate moment (estimated as 0,8); hence the possibility of simplified elastic
calculations. Permissible tolerances in respect of ‘“‘exact’ calculation are

evaluated.
A method employed in France, requiring no other verification that to check

that the sum &L ;— e

under increased loads, is thus justified.

+ M, slightly (6%,) exceeds the maximum isostatic moment
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Le dimensionnement idéal des ponts en grille de béton armé
Die ideale Bemessung von Trdgerrostbriicken aus Stahlbeton

The Ideal Dimensional Design of Bridges Comprising Reinforced Concrete Beam
Grillages

ADERSON MOREIRA DA ROCHA
Rio de Janeiro

1. Les méthodes actuelles

Les méthodes classiques de calcul des ponts de béton armé sont basées sur
les couvertures des efforts, obtenues en tenant compte du fonctionnement
élastique des structures et en utilisant les lignes d’influence.

Utilisant des couvertures élastiques des efforts, on établit fréquemment les
dimensions par la méthode de rupture.

Comme 1’objectif de cette méthode est de fixer la limite de rupture de
Pouvrage, il n’existe pas de cohérence entre le calcul de la couverture des
efforts dans le domaine élastique et le dimensionnement & la rupture pour les
grandes surcharges et les charges mobiles. En effet la couverture élastique ne
représente pas un diagramme des moments de flexion réalisé simultanément
dans la structure. Le dimensionnement basé sur les efforts élastiques ne fournit
donc pas une indication précise sur la sécurité réelle de I’ouvrage.

Face a ces inconvénients, surgissent aujourd’hui les méthodes plastiques
de calcul des efforts basées sur les conditions d’ensemble de rupture de
I’ouvrage.

Toutefois, les méthodes plastiques, appliquées au béton armé, sont sujettes
a de sérieuses restrictions. Il est nécessaire en effet de leur imposer des limita-
tions afin d’éviter le danger de fissures pour les charges en service et celui de
rupture d’une rotule plastique déterminée, ceci avant la formation des autres
rotules prévues dans la configuration de rupture finale.

La limite d’ouverture des fissures et la limite de capacité des rotules plas-
tiques a amené de nombreuses autorités et de nombreux auteurs & considérer
prématuré 1’emploi des méthodes plastiques dans le calcul des structures de
béton armé et précontraint.

2. Méthode proposée

La méthode idéale est celle qui considére, avec le maximum d’économie,
les trois conditions suivantes de sécurité:
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1. Limitation de I’amplitude des fissures causées par les charges en service.

2. Limitation des déformations excessives, afin d’éviter la formation de rotules
plastiques pour les charges en service et le dépassement de la capacité de
rotation des rotules plastiques avant la rupture finale.

3. Sécurité de l'ouvrage afin d’éviter la rupture totale, avec garantie des
coefficients de sécurité donnés dans les normes officielles.

Pour obtenir ces conditions, nous proposons l’'utilisation simultanée des
deux méthodes, I’élastique et la plastique.

La méthode élastique sera utilisée pour garantir la capacité de fonctionne-
ment de ’ouvrage pour les charges en service sans fissuration et sans défor-
mation préjudiciables; la méthode plastique, pour garantir un minimum de
sécurité en ce qui concerne la rupture totale de 1’ouvrage.

Une seule méthode n’est pas suffisante pour apprécier les conditions minima
nécessaires pour 1’élaboration d’un projet technique calculé économiquement.

La méthode élastique seule peut apporter des résultats anti-économiques
sans définir la sécurité réelle, et la méthode plastique seule ne définit pas les
conditions réelles de fonctionnement de 1’ouvrage pour les charges en service.

3. Sécurité pour les charges en service

La vérification de la sécurité pour les charges en service doit étre faite avec
la connaissance des efforts maxima, connaissance obtenue en utilisant les
méthodes élastiques.

Dans ce cas, la sécurité doit étre établie en ce qui concerne les fissures et
les limites des déformations.

Comme les formules usuelles de vérification des conditions de fissuration
et de calcul de déformation emploient des parameétres empiriques peu rigou-
reux, tels que le coefficient d’élasticité et les coefficients introduits dans la
formule de fissuration, il n’est pas nécessaire d’obtenir rigoureusement la cou-
verture de diagrammes élastiques des moments de flexion.

Le calcul des poutres longitudinales des ponts en grille continue peut étre
considéré selon Courbon, Leonhardt et autres sans qu’il soit nécessaire d’adop-
ter des méthodes plus compliquées puisque la sécurité finale & la rupture est
prouvée par 'utilisation de la méthode plastique. Cela n’exclut pas I’applica-
tion des méthodes plus rigoureuses telles que celles de Trost et Homberg.

La couverture du moment de flexion peut étre obtenue par la superposition
des diagrammes des moments de flexion des charges mobiles dans la position
la plus défavorable pour les moments maximum et minimum, au centre de la
portée et aux appuis, dispensant ainsi d’utiliser des lignes d’influence. Ceci
simplifie le calcul élastique, principalement pour les ponts-routes.

Plusieurs exemples ont permis & I’auteur de constater que cette couverture
simplifiée se rapproche suffisamment de celle obtenue par les lignes d’influence.
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4. Sécurité a la rupture

Les efforts élastiques une fois connus, la sécurité & la rupture doit étre
analysée avec les méthodes plastiques appliquées a I’ouvrage dans son ensemble
et dans 1’espace.

Afin que les résultats de la méthode élastique et ceux de la méthode plas-
tique ne soient pas incompatibles, nous allons proposer une méthode dans
laquelle les moments de rupture de la méthode plastique sont proportionnels
aux moments maxima pour les charges en service de la méthode élastique. Cela
permettra de satisfaire aux exigences imposées par les deux méthodes a la fois.
Avec cet objectif nous allons proposer une méthode plastique trés simple pour
le calcul des grilles des ponts, calcul dans lequel sont utilisés les résultats
obtenus par la méthode élastique.

5. Méthode plastique proposée pour le calcul des grilles de ponts

Considérons une portée quelconque d’un tablier de pont continu avec »
poutres longitudinales et ¢ poutres transversales.

En général, la situation la plus défavorable pour la rupture du tablier dans
son ensemble correspond & des charges maxima placées au plus pres de la
poutre extréme. Dans les cas spéciaux de poutres longitudinales de moments
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d’inertie tres différents, on peut étudier une autre configuration de charge,
sans modifier les opérations de la méthode présentée.

Pour le tablier totalement chargé, en position la plus défavorable & la rup-
ture, on admettra comme configuration de rupture celle qui correspond & la
formation de rotules plastiques en ¢ poutres longitudinales, sans rupture des
autres » —i poutres. Pour que cette situation se produise, il se crée des rotules
plastiques dans les travées transversales situées entre les ¢ poutres longitudi-
nales et les n —¢ poutres en état élastique. On obtient ainsi les rotules présen-
tées dans la fig. 1.

Les moments de plastification dans plusieurs rotules sont exprimés en
fonction d’un seul paramétre m,; comme & la fig. 1. Les paramétres K K indi-
qués dans la fig. 1 sont arbitraires.

Pour établir la cohérence entre les conditions recommandées dans la méthode
élastique pour les charges en service et celles recommandées dans la méthode
plastique, nous adopterons des parametres K K proportionnels aux moments
maxima €lastiques au point ou se trouvent les rotules plastiques. De cette
fagon, on assure une relation constante entre les moments de rupture et les
moments élastiques maxima correspondants.

Pour un déplacement unitaire des rotules centrales, on arrive a 1’expres-
sion suivante, tirée de 1’équation des travaux virtuels appliqués a la con-
figuration de rupture indiquée dans la fig. 1.

i i i i v v
lfqyd:c = Zl]Kumi 6a+;K¢,mi 9,,+;Kcmi (8a+6‘b)+leKami 3a+;Kﬁmi fg. (1)

L’intégrale du premier membre s’étend aux ¢ poutres longitudinales plasti-
fides et le long de ces poutres. Les indices ¢’ et ¢” signifient que la somme s’étend
a t’ poutres transversales situées & gauche de la rotule centrale et & ¢” poutres
transversales situées & droite de cette rotule, respectivement.

Sil’on applique la méthode plastique & 1’ensemble des 7 poutres simplement
appuyées aux extrémités 4 et B, nous avons:

i[qydx=Mi(8a+Bb)° (2)

ou M; coincide avec le moment isostatique au point C' (rotule centrale) des
charges de rupture appliquées aux 7 poutres plastifiées.

Introduisant les valeurs des rotations 86 pour la déformation verticale
unitaire de la rotule centrale (fig. 1):

1 1 o B
Ga—a, Gb—g, Ba—a—)\, Hﬁ_ﬂ (3)
nous aboutissons & I’expression suivante du parametre m; :
M,
My = : (4)

- 4 i i t i
S K+3 K2 + 2K, + 3 K22 + 3 KB
i G TL T T aTay] TL B
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Une fois connus M et les coefficients K K, la formule 4 permettra de déterminer
le parameétre m; et, de ce fait, les moments de rupture dans toutes les rotules
plastiques (fig. 1).

Le nombre ¢ de poutres plastifiées sera celui qui correspond & la plus grande
valeur de m; donnée par la formule (4).

Dans la pratique, le probleme peut étre résolu en partant de I’hypothése
de l'existence de toutes les n poutres longitudinales plastifiées sans rupture
des poutres transversales, et en obtenant le moment de rupture auquel doivent
faire face les poutres transversales, afin de ne pas avoir & procéder & leur
plastification.

En appelant m, le paramétre qu’on obtient dans I’hypothése de toutes les
n poutres longitudinales plastifiées et en égalant cette valeur & celle corres-
pondant a 7 —1 poutres longitudinales plastifiées, on obtient une relation indi-
quant la part du dénominateur de 1’équation 4 qui doit étre attribuéde aux
poutres transversales.

On doit avoir en effet:

n T p-1 Mnb Ml (5)
> K, + ; K7+ Z K, +P

1

m

ou M, est le moment isostatique de la charge totale de rupture sur le tablier,
M, le moment isostatique des charges de rupture dans la poutre extréme et
F, I’effet des poutres transversales.

La formule 5 permettra de déterminer F,. L’expression de P, est, comme
nous le savons:

B =S K S+ 3 K5 (6)
7. ,\z BAL

En faisant K,= Kg=K, la formule 6 permettra de calculer X,.

Une fois connu K, on détermine le moment de rupture en fonction duquel
on doit établir les dimensions des poutres transversales:

6. Vérification de la capacité de rotation des rotules plastiques

Pour éviter la rupture d’une rotule plastique avant la réalisation de la
configuration de rupture finale, il est trés important de calculer la rotation
maximum des rotules plastiques selon la formule bien connue:

O, = X8 X + 80, (8)

ot X, sont les moments de plastification aux appuis; 8; les déformations
angulaires pour X;=1 et §,, la rotation pour la charge de rupture.
Pour les grilles calculées en utilisant des paramétres de distribution trans-
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versale et avec symétrie transversale, on peut se servir, pour I’appui 1 de la
poutre extréme, de la formule:

6, = 81121:n+812—i2m+5109 (9)

ott X,, et X,, sont les moyennes des moments de plastification aux appuis
1 et 2, respectivement, de toutes les poutres longitudinales et §,, la rotation
a P’appui 1 pour les charges de rupture transmises & la poutre extréme par
I'intermédiaire des coefficients de distribution transversaux.

La fixation précise de la capacité maximum de rotation des rotules plas-
tiques nécessite encore un plus grand nombre de recherches. Le calcul peut

étre fait par la formule connue 6,=¢

P]a_Z' La valeur de ¢, se situe entre 0,0015

(sans utilisation d’étriers) et 0,010 (avec étriers forts).

7. Calcul idéal des dimensions

Ce calcul idéal est fait par l’'usage simultané des deux méthodes élastique
et plastique.

On vérifie, le moment de rupture une fois connu, la condition de résistance
de la section avec armature simple; on détermine ensuite, avec les méthodes
usuelles, le moment résistant (phase I1I) et on calcule les armatures.

L’armature de traction une fois déterminée, on vérifie les tensions pour le
moment élastique (phase II). La contrainte de traction de ’acier doit satisfaire
aux conditions de fissuration, et les contraintes de compression doivent étre in-
férieures aux contraintes de rupture.

Exemple numérique

Pour le tablier de pont de la fig. 2, nous avons déterminé les moments
élastiques maxima dans la portée centrale, par les méthodes élastiques, avec
emploi de la méthode de distribution transversale de Courbon, et avons obtenu
les valeurs du tableau suivant, pour les situations de charges les plus défa-
vorables:

M. M.=M,
Charge permanente 42,8 tm —171.0 tm
V1 Charge mobile 141,8 tm —157,9 tm
Total 184,6 tm —328,9 tm
Charge permanente 42,8 tm —171,0 tm
V2 Charge mobile 103,2 tm —115,3 tm
Total 146,0 tm —286,3 tm

A la fig. 3 sont mentionnées les valeurs des moments élastiques maxima
et, entre parenthéses, les parameétres K K obtenus & partir des relations entre
les moments élastiques.
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Pour la charge totale permanente et mobile (en accord avec les normes
brésiliennes) nous avons calculé le moment maximum isostatique total:

Charge permanente: M, = 848,3 tm,
Charge mobile: M, =590,1 tm.

En multipliant la charge permanente par 1,65 et la charge mobile par 2,00,
pour satisfaire aux coefficients de sécurité, et en employant la formule (4), on

obtient (% = 19 = %)

M, =1,65x848,3+2,00x590,1 = 2579,9tm,

n
2
m, = ki =199,1tm.

" T (141,264 +2,253+1,961) X 2
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Les moments de rupture sont obtenus en multipliant la valeur de m,, par les
coefficients K K. Les résultats sont indiqués a la fig. 4.

Comme on le voit, les moments sont proportionnels aux moments maxima
élastiques. Le rapport entre les moments de rupture et les moments élastiques
n’est que de 1,364 — valeur assez inférieure aux coefficients de sécurité si 1’on
établit les dimensions des poutres en accord avec les moments de la méthode
plastique.

En calculant le moment isostatique pour les charges sur la poutre trans-
versale extréme nous arriverons a M, =507,6 tm.

La formule (5) permet d’écrire:

2579,9 — 507,6
(1+1,961)x 241,264 +2,253+ P’

199.1 =

d’ou ’on déduit la valeur de B:
P, = 0,969.

On a, donc, pour les deux poutres transversales (formule 7):

10,0 x 15

0,969 = I{!WX 2,

done: K, =0,174.

Le moment de rupture suivant lequel on doit établir les dimensions des
poutres transversales sera 0,174x199,1=34,6tm. Le moment maximum
obtenu par le calcul élastique est de 20,8 tm.

L’établissement des dimensions est fait pour ’acier avec la limite d’élas-
ticité apparente (0,29,)=5000kg/cm? et pour le béton avec une contrainte de
rupture op =240 kg/cm?2.

Pour I’appui, I’établissement des dimensions en phase 111 pour le moment de
448,6 tm, obtenu par la méthode simplifiée du C.E.B. (diagramme rectangu-
laire) donne, pour le moment maximum résistant de la section avec armature
simple, la valeur 557,4 > 448,6 tm.

La section de I’armature de traction obtenue est de 52,9 cm? avec z/h = 0,347.

La vérification en phase II du moment élastique de 328,9 tm pour la section
d’acier de 52,9 cm?, conduit aux tensions:

o; = 3750 kg/cm? o, = 206 kg/cm?.
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La tension de ’acier satisfait aux conditions de fissuration pour une arma-
ture de diamétre de 3/,".

Pour la vérification de la capacité de rotation des rotules plastiques on
utilise les déformations du calcul élastique (multipliées par £ J =694 400 tm?):

Pour la charge de rupture, nous avons:
810 = 1,65 X 4274 +2,00 X 3265 = 13582,

Employant la formule (9) (M,,,=M,,,=419,5tm) nous avons:

EJO, =—419,5x20—419,5x 5+ 13582 = 3095 tm2.
Done: 6, = 0,0045.

Le raccourcissement plastique est:
z j—
> =
valeur acceptable, surtout si 1’on considére 1’existence des étriers.

On remarque que les dimensions trouvées pour la section ne seraient pas
applicables en utilisant pour leur calcul la méthode classique puisque, en phase
II, on devrait appliquer les contraintes recommandées par les normes bré-
siliennes o;=3000kg/cm? et o,=110kg/cm? alors que notre calcul est établi
pour o, =3750 kg/ecm? et o, =206 kg/ecm?.

La sécurité & la rupture est garantie par l’'utilisation des coefficients des
normes brésiliennes bien que le moment de rupture soit seulement 1,364 du
moment élastique total.

On voit que, dans la méthode élastique on peut adopter pour la compres-
sion du béton des contraintes proches de sa contrainte de rupture et pour 1’acier,
des valeurs supérieures & celles des normes officielles, une fois vérifiée la con-
dition de fissuration.

Ces conclusions pourront toutefois étre modifiées selon le type de structure
employé.

Il importe d’utiliser & la fois les résultats donnés par les deux méthodes,
élastique et plastique, afin d’établir de fagon idéale les dimensions, compte
tenu de la charge en service et de la rupture finale.

e, = 0,0045 0,0045 x 0,347 = 0,00156,

Résumé

L’auteur a montré 1’inconvénient d’utiliser une seule des deux méthodes,
élastique ou plastique, pour le calcul de ponts en béton armé.

L’auteur a proposé 1’emploi d’une méthode dans laquelle sont utilisées les
résultats des deux méthodes, compte tenu de leurs domaines d’application: la
méthode élastique pour les charges en service, et la méthode plastique pour
I’étude de la sécurité a la rupture.
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L’auteur a proposé des simplifications pour le calcul des efforts élastiques,
dans le seul but de vérifier les conditions de fissuration, et a présenté la méthode
plastique pour le calcul des grilles de ponts utilisant les résultats obtenus dans
le calcul élastique. Il a établi d’autre part une systématisation du calcul en
vue d’obtenir le calcul idéal des dimensions des ponts.

Il présente également un exemple numérique qui montre la simplicité et
I’avantage économique de la méthode proposée.

Zusammenfassung

Der Verfasser deckt zuerst die Unzulédnglichkeiten einer einseitigen Bemes-
sung nach den Kriterien der Elastizitidts- oder der Plastizititstheorie auf. Er
schlagt deshalb ein Verfahren vor, in welchem beide Methoden auf schliissige
Art und Weise zum Zuge kommen, nimlich die elastische Methode zur Beur-
teilung des Verhaltens im Gebrauchszustand und die plastische Methode zur
Beurteilung der Bruchsicherheit.

Der Verfasser fiihrt zusitzliche Vereinfachungen bei der (elastischen) Be-
rechnung der Schnittkrifte ein, bei gleichzeitiger Kontrolle iiber die Zuldssig-
keit des auftretenden RifBlbildes, und stellt ein plastisches Berechnungsver-
fahren fiir Tragerrostbriicken auf, worin die elastisch berechneten Schnitt-
krifte Eingang finden. Das Verfahren wird zudem erweitert, bis zur Festlegung
idealer Abmessungen fiir die Tragelemente.

Ein Berechnungsbeispiel zeigt die Einfachheit der vorgeschlagenen Methode
und die wirtschaftlichen Vorteile, die ihre Anwendung zu bieten vermag.

Summary

The author indicates the drawbacks of using only one of the two design
methods — namely, the elastic or the plastic method — for reinforced concrete
bridges.

He proposes employing a design method which makes use of the results of
both methods, taking due account of their respective ranges of application:
the elastic method for the working loads, and the plastic method for analysis
of the safety against failure.

The author proposes simplifications for the analysis of the elastic stresses
with the sole object of checking the cracking conditions. For bridges com-
prising beam grillages he presents a plastic design method which makes use
of the results obtained in the elastic analysis. He also outlines a systematically
arranged calculation procedure for obtaining the “ideal’’ dimensional design
of bridges.

In addition, he gives a worked example which demonstrates the simplicity
and economy of the proposed method.
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Structural Behaviour and Safety Criteria
Le comportement et la sécurité des constructions

Verhalten und Sicherheit der Tragwerke

J. FERRY BORGES

Research Engineer, Head, Buildings and Bridges Department, Laboratério Nacional de
Engenharia Civil, Lisboa

1. Non-linear Structural Behaviour

In order to enable the non-linear behaviour of plane structures to be analysed
considering different moment-curvature diagrams along the bars, a special
program was prepared which allows the study of non-linear behaviour in any
type of structure for a monotonic increase of the forces [1].

This program considers the moment-curvature diagrams defined by a
polygon of twelve sides and, for each bar, by eleven elements, the two extreme
ones having a length of 1/,, and the middle ones 1/,, of the length of the bar.
A different moment-curvature diagram may be assigned to each of these
elements.

The data given to the computer are: values of the load factor to be con-
sidered, length and cross-section types of the different bars, load vectors,
displacement transformation matrix and moment-curvature diagrams cor-
responding to the different types of cross-sections.

The results obtained are displacements (translations and rotations), bending
moments and shear forces at the ends of the bars and at the points where
concentrated forces are applied. These values being indicated for each value
of the load factor, the behaviour of the structure as the load increases can be
followed. The computation is carried out by iterative cycles with accelerated
convergence.

Using this program, computations are being performed to study the influence
of the type of moment-curvature diagrams on the behaviour of different types
of structures.

If bi-linear moment-curvature diagrams are considered, these can be
reduced to diagrams of the type indicated in Fig. 1.

As an example, the results obtained in reference to a simple structure by
the use of this program are presented. The structure, Fig. 2, is made up of
two parallel stanchions, of which one has an elastic stiffness and an ultimate
moment respectively 4 times and twice those of the other. This simple type
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Fig. 1. Bi-linear moment-curvature diagrams.
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Fig. 2. Structure formed by two parallel stanchions.

of structure was chosen because the accuracy of the results can be easily
checked in this case.

Fig. 3 indicates the redistribution of the moments in function of the increase
of the horizontal force. By means of this figure it is possible to determine the
bending moment M, at the slender bar when the ultimate moment M, is
reached at the stiffer one. For a perfectly elastic behaviour M, =M,, /4 and
for a perfectly plastic behaviour M,,=M,, /2.

A correspondance can thus be set up between the bi-linear diagrams con-
sidered and the values of M,/M,,. When this ratio equals 1 that means that
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Fig. 5. Loci of the vertices of bi-linear
diagrams for reinforced concrete beams.

the distribution of moments corresponds to perfect elastic behaviour, when
the ratio equals 2 it corresponds to a perfect plastic behaviour.

Fig. 4 indicates the lines of equal value of the ratio M,/M,,. It is interesting

to note that high values of this ratio are only obtained if the vertices of the

diagrams are very near the vertex corresponding to perfect plasticity.
If bi-linear diagrams are used to represent the mechanical behaviour, it is

of interest to study the correspondence between the quality of the materials
and the position of the vertices of the bi-linear diagrams.
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Considering for instance rectangular reinforced concrete beams and sup-
posing that the ultimate moment is attained when the strains at the concrete
or at the steel reach respectively the values of 3.59/,, or 109/, , the corresponding
moment-curvature diagrams may be represented by bi-linear diagrams with
the vertices at the points indicated in Fig. 5. The position of the vertices
changes in accordance to the percentage of reinforcement and the quality of
steel. These diagrams were obtained as described in [1].

Combining Fig. 4 and 5 it is seen that, for instance in the case of deformed
twisted steel 40 for percentages of reinforcement going from 0.59%, to 49, the
corresponding values of M,/M,, change from about 1.7 to 1.1.

This shows that if elastic design was adopted it would indicate for the
slender stanchions ultimate moments, on the safe side, with errors between 70
and 109%,. On the contrary, plastic design would indicate moments on the
unsafe side with errors between 15 and 459, .

2. Randomness of the Structural Behaviour

The randomness of the behaviour of the structures can only be analysed
if the usual relations between forces and deformation are replaced by relations
statistically defined.

For instance, the moment-curvature diagrams considered as certain have
to be replaced by a statistical distribution of diagrams, Fig. 6a. Each diagram
corresponds to the behaviour of an element of length 4 L. Considering a popu-
lation of different elements, for each value of the bending moment M, or of
the curvature 6, it is possible to define a statistical distribution of the 6 and
M respectively. The cumulants of these distributions are represented by
P{0>0/M,} and P{M' <M/|f,}. The mean values, standard deviations and
coefficients of variation are represented by E (/M), D(0/M), C(6/M) and
E (M), D(M|8), C(M|[6).

The diagram of Fig. 6b indicates the values of £ (M/0) and D (M/6) cor-
responding to the diagram 6a.

If different structures are built of a material with the assumed mechanical
properties and if « is the load factor affecting the forces applied to the struc-
tures, a correspondance between the displacements, 8, of the structure, and
the load factor, «, as indicated in Fig. 6c, shall be obtained. In this case it is
also possible to define the behaviour of the structure by the F,{8'>3/«} and
P {a’ <af8}.

The safety of the structure may then be judged by the condition
P {8'>8/a} <e.

As before the mean values, standard deviation and coefficients of variation
can be considered for these distributions (Fig. 6d).

For simplifying the analysis some assumptions are made.
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It is admitted that the transformation of the mean diagrams defining the
mechanical properties, E (M/f), into those defining the mean structural
behaviour ¥ («/8) can be done in accordance with the usual structural theories.

As the contribution of the deformation of the different elements to the
deformation of the whole structure has a linear character, the central limit
theorem applies and a normal distribution shall be usually obtained.

E (MO)

Mg —— —— — — 4~ — — —

DIMIBI—— - — - ===

E(x18)

0 : 3 180 8
DlaId)f-——————= +

c) d)

Fig. 6. Statistical representation of mechanical properties and structural behaviour.

If so the object of the statistical theories of structures shall then be to
compute the standard deviations corresponding to the behaviour of the struc-
ture from those that correspond to the mechanical properties.

A general theory of this type is not yet established. For the present a
numerical analysis can easily be performed and computations are being made
following the program indicated in 1.

For these computations different M (§) diagrams are distributed by a
random process to different elements of the bars. The results concerning the
behaviour of the different structures thus obtained are statistically analysed.
It is intended to present at the Congress results of these computations.

Although a general statistical theory of structures is not available it is
hoped that useful results shall be obtained from the analysis of numerical
experiments and the application of particular theories, such as the theory of
similitude [2].
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3. Combining the Randomness of the Loads with the Randomness of the Structural
Behaviour

According to the hypotheses presented, structural behaviour may usually
be described by normal distributions. If so the probability of collapse for a load
factor, «, is given by the normal distribution

_(e—am)?

i 1
(o) = f e 2c¢a da.

V2mea

@ being the mean value and ¢ the coefficient of variation of the distribution
considered.

On the other hand the variability of the loads is much influenced by their
character.

Dead loads and some types of live loads are so well defined that they can
almost be considered as certain or as normal with a small coefficient of variation.

Other types of loads such as those due to earthquakes and wind have high
dispersions and in general their distribution cannot be considered as normal.
In this case extreme distributions [3] may be reasonably assumed. For wind
action [4] the probability of a load intensity higher than B may be taken as
an extreme distribution of type II,

b () = 1—e P77

For other types of loadings, such as exceptional live loads on highway
bridges, it is impossible to assume that their intensity is random [5]. In this
case the load factor can only be considered as strategic, depending on decisions.

If both loadings and structural behaviour are considered random, their
randomness has to be combined in order to compute the probability of collapse.

The collapse shall correspond to the probability of B<a or, what is the
same, y=a—f<0.

Considering distributions ¢ («) and ¢ (8) the probability of y <0 is given by

_wf:ﬁ(a)@' (o) d o

Table I indicates the probabilities of collapse for the distributions presented
in Fig. 7.

For the loading distribution two hypotheses were considered, one correspond-
ing to a normal distribution of mean f=1 and coefficient of variation cg=0.1
and the other corresponding to the extreme distribution ¢ (8)=1—e-CP™",
The structural behaviour was considered as certain «=2 and with normal
distribution & =2, ¢,=0.1 and 0.2.

Table I shows that a change in the dispersion of structural behaviour has
a strong influence on the probability of collapse if the load has a normal
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Table I. Probabilities of Collapse

Structural Load distribution ¢ (B)
behaviour
() F=9 Normal Extreme, Type I
¥ B=1 =02 g (B)=1—e-Br*
Certain c, =0 0.3x 106 10x 104
Normal ¢, =0.1 5x10-6 13 x10-4
Normal ¢, =0.2 200 % 10-6 20x 104
0.90 - 7o
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Fig. 7. Exemples of load factor and mechanical behaviour distributions.

distribution. On the other hand for load distributions with a long wing, the
probability of collapse is almost independent of the dispersion of structural
behaviour and the only way to reduce the probability of collapse is to increase
the mean value of «.

The consequence of this fact are important for structural design and atten-
tion was already called to this problem regarding earthquake actions [6].

4. Conclusions

The object of the present paper is to discuss some fundamental criteria of
structural design.

From the results presented the following conclusions can be drawn.

4.1. Non-linear analysis of structures has become pratical and not even too
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expensive by the use of present computational means, notably electronic
computers. This analysis enables the behaviour of the structure under increas-
ing loads to be completely followed and so to establish limit conditions on
cracking, deformation and rupture on satisfactory bases.

4.2. Although non-linear analysis may be applied to solve practical problems,
it is deemed more useful to employ it for defining the corrections to be intro-
duced in the usual methods (elastic or plastic) to make them more accurate.

4.3. A more convenient formulation of safety problem requires that the
statistical behaviour of the structures be taken into account. The best way to
establish statistical theories of structures seems to be the following: 1. to use
current theories to define the mean behaviour of the structure in function of
the mean mechanical properties of the materials; 2. to study how to transfer
the randomness of mechanical properties to the randomness of structural
behaviour. For this last purpose numerical experiments seem to be particu-
larly useful, but experimental and analytical methods have also to be con-
sidered.

4.4. In most cases collapse is attained not by rupture but because displace-
ments are much too high. If displacement values are taken as the ultimate
condition, useful simplifying assumptions can be introduced (normal distri-
bution of displacements) which would be incorrect for rupture. This justifies
the choice of limit conditions (collapse) with respect to displacements for the
usual static problem.

4.5. According to 4.3 mechanical properties diagrams corresponding to
small probabilities are inadequate to study the structural behaviour, mean
diagrams having to be used. Randomness must be introduced by affecting
the mean structural behaviour with the variability deriving from the material
properties and geometry.

4.6. To compute the probability of collapse of a structure under random
loads, it is necessary to combine this randomness with the one deriving from
structural behaviour. When the variability of the load is small, the probability
of collapse depends mainly on the wing of the distribution of the mechanical
behaviour alone. For highly variable loads (earthquakes, wind) the probability
of collapse depends mainly on average values of mechanical behaviour, being
not much affected by the dispersion of this behaviour.

These facts have important consequences for safety criteria.
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Summary

Possible improvements in methods of structural design are discussed.

A method for studying the non-linear behaviour of plane linear structures
by electronic computation is described and used. An example is presented of
the influence of the type of diagram that represents the mechanical properties
of the materials on the structural behaviour of a simple structure.

Convenient ways to establish statistical theories of structures which allow
to transfer the randomness of mechanical properties to the randomness of
structural behaviour are discussed.

For the case of random loads their randomness is combined with that of
structural behaviour in order to compute the probability of collapse. The
influence of the load randomness on safety criteria is studied for some simple
cases.

Conclusions are drawn concerning the most convenient bases for methods
of structural design.

Résumé

L’auteur discute quelques perfectionnements possibles des méthodes de
calcul statique.

Il décrit d’abord une méthode itérative pour le calcul non-linéaire de por-
tiques plans, a 1’aide des calculateurs électroniques. Cette méthode est utilisée
pour étudier 'influence du type de diagramme qui représente les propriétés
mécaniques sur le comportement d’une structure simple.

Il discute ensuite les moyens les plus convenables pour établir des théories
statistiques de structures. Ces théories doivent permettre de passer du carac-
tére aléatoire des propriétés mécaniques & celui du comportement statique.
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Pour terminer, il combine les distributions aléatoires des charges et du
comportement statique de fagon & calculer la probabilité de ruine et juge les
résultats obtenus du point de vue de la sécurité.

Il tire des conclusions sur les bases les plus convenables pour le dimen-
sionnement des constructions.

Zusammenfassung

Der Autor behandelt mogliche Verbesserungen der Bemessungsmethoden
von Tragwerken.

Fiir die Untersuchung des nicht linearen Verhaltens von ebenen Tragwerken
mit Hilfe elektronischer Rechengerite wird eine Iterationsmethode besprochen
und angewendet. Als Beispiel wird der Einflufl untersucht, den die Form der
Kurve, die durch die mechanischen Eigenschaften des Werkstoffes gegeben
ist, auf das Verhalten eines einfachen Tragwerkes ausiibt.

Es werden zweckméaBige Wege fiir die Festlegung von statistischen Theorien
behandelt, die es erlauben sollen, vom Wahrscheinlichkeitscharakter der
mechanischen Eigenschaften zu demjenigen des Verhaltens des Tragwerkes
iiberzugehen.

Die stochastische Verteilung der Lasten wird mit derjenigen des statischen
Verhaltens kombiniert und daraus die Einsturzwahrscheinlichkeit bestimmt.
Der EinfluB der Ergebnisse auf die Sicherheitskriterien wird fiir einige einfache
Fille untersucht.

Es werden Schliisse iiber die zweckmaBigsten Grundlagen fiir die Bemes-
sung von Tragwerken gezogen.
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La notion de sécurité dans le calcul des dalles a la rupture
Begriff der Sicherheit in der Traglastberechnung von Platten
The Notion of Safety in the Limit Analysis of Plates

ZDENEK SOBOTKA
Doc. Ing., D. Sc.

1. Introduction

L’auteur analyse la notion de sécurité des dalles en béton armé calculées
suivant la théorie des lignes de rupture; cette analyse tient compte de la
variabilité statistique des propriétés mécaniques des matériaux, des charges
et du comportement réel des constructions a 1’état limite. Sur la base des lois
de la théorie des probabilités et de la statistique mathématique, on peut
déterminer la probabilité de rupture ou la sécurité de la dalle, si les parametres
statistiques des données en considération sont connus. Inversement, pour un
coefficient de sécurité exigé, on peut déterminer la dimension caractéristique,
par exemple la section nécessaire des armatures par unité de longueur d’une
dalle en béton armé.

2. Méthode générale utilisée pour calculer approximativement la distribution d’une
fonction de variables aléatoires

En vue de se procurer une base exacte pour l’analyse de la sécurité des
constructions, 1’auteur, en collaboration avec J. MURZEWSKI [1,2] a dérivé
les formules approximatives permettant de déterminer les parametres de la
distribution statistique d’une fonction de variables aléatoires dont les para-
métres statistiques sont connus. En particulier, on peut par ce procédé déter-
miner les quatre premiers moments de la surface comprise entre la courbe de
fréquences et 1’axe des abscisses.

Pour dériver les relations fondamentales, supposons que la fonction

Yy=F(@1, %3, %3, .. Ty) (1)

des variables aléatoires z,,z,,%,, ... ,, indépendantes les unes des autres,
soit analytique. En développant cette fonction en série de Taylor aux environs
du point M (x,=m,,Zs=m,, ... %, =m,), OU My, My, ...m, sont les valeurs
moyennes des variables aléatoires, et en supprimant les membres de 1’ordre
supérieur & 4, nous obtenons le polynéme suivant:
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sont les dérivées de la fonction considérée au point M (z,=m, 2, =m,, ..., =

=m,).

Aprés avoir élevé le polyndme précédent au carré, au cube et a la quatrieme
puissance, nous obtenons 1’expression pour le moment du degré r de la distri-
bution de la fonction des variables aléatoires par rapport a 1’origine O (z, =0,
2,=0,...2,=0) sous la forme de l'intégrale de Stieltjes prise dans l’espace

n

entier & » dimensions z,,%,, ...z,, de la maniére suivante:
mD={[|...[¢dFdF,...dF,, r=1,234, (5)
x, s Xn
ou K, F,,...F, sont les fonctions de distributions cumulées de z,,2,,...xz,.

L’intégration est beaucoup simplifiée, dans le cas de variables aléatoires
indépendantes, quand les moments de corrélation

pre = J [ (@ —m) (@ —my)d Fd F,,
I; TIs (6)
oz =[ [ (xa—my) (23— my)d Fyd Fy, ete.

Ty T3
sont égaux a zéro et quand on ne tient compte que des moments simples par
rapport & la moyenne; ceux-ci sont donnés par la formule:

Wy = [e—my . (7)
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On peut alors déterminer les moments m® de distribution d’une fonction
a ’aide de sa valeur f; et de ses dérivées par rapport & la moyenne f;, f;;, fix,
fijm et & l’aide des quatre moments de distribution de chacun des arguments

3a,toi 2 4
aléatoires mP, u®, u®, ud.

Les moments m par rapport & l'origine peuvent étre transformés en
moments u® par rapport & la moyenne suivant les formules

#(2) — m(z)_m2,
p® = m® —3mm® + 2m?, (8)
p® = m®—4mm® + 6 m2m® — 3ml,
ou m = md (9)
est la moyenne de la fonction aléatoire y.

Aprés une série de transformations, on obtient pour la moyenne et pour
les moments de cette fonction les expressions suivantes:

n
1
m =fo+Z [%fii#%""%f«m#?) o [ (14’]+ Z qunl-‘zlh: (10)

t=1j5=2
i<j
Z[Flu'z +.f1fu-u(3)+lfzf1u#g4)+4fu 51(14)_#%)]
(11)
n—1 n
+Z Z fw+fszj+f)fn) I"‘z#;:
1= =
e
(3)_2[1‘ 23)+3]‘2fn[.4b(4)]+62 Zflf}f’l,]#ll“‘]! (12)
' t<J]_
po = me‘i”+6§ }_]fzf?f*?#?, (13)
e
dans lesquelles p2=u®, 2 =pu® @ ... représentent les dispersions ou
q pr=p®, uf =pd, p? =p p P

les carrés des écarts-types.

L’auteur dérive encore un autre procédé en développant en série de Taylor
les puissances /" de la fonction des variables aléatoires. Pour le moment du
degré r de cette fonction par rapport a l’origine, on obtient de cette maniére
I’expression suivante:

n
1 1
m" = fi + Z {%(fr)ii#mg + & (Mars b+ 57 Mg i+ -+ +3 (M P-(zr)}
=1 “ '

(14)
n—1 n 5 n—=1n n—1 n
+& 2 Z M)iiis 43 143 + Z 2 (s pP pd + Z Z (FMisaijs w2 B3 + -
1= 1]— ""L 17=2 l 17—
1<j <j i<j

Les moments par rapport & la moyenne peuvent étre déterminés a 1’aide
de la formule

F'(r) = m(")_ (;.) m m(r—l) 4 (;) m2m(r—2) e (;‘) m3 m("—3)+ W 5 @ (15)
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La courbe de distribution des fréquences de la fonction y est ainsi com-
plétement définie par les moments m® ou u®.

3. Charge limite des dalles rectangulaires & armature économique

A titre d’exemple, nous déterminerons la charge limite de dalles rec-
tangulaires & armature économique et avec appui articulé le long de la
périphérie. Les dalles rectangulaires en béton armé sont orthotropes, étant
armées dans la direction transversale par des aciers de section w, par unité de
longueur et dans la direction longitudinale par des aciers de section w, par
unité de longueur.

Sur la longueur unité, nous avons les moments de rupture

Wy Ogr,
MR = We Oy (l —Ch - )k:z: =W 0" (16)
x“bL
w, g
_ _ y“~-aL -
mRy—wycaL(l Cm) hy—wycr“LTu, (17)
Yy

@Gf\.“" { Xéﬁ :

\ P _‘ /
o A
Fig. 1. Lignes de rupture pour une dalle rec-

x a-2x x tangulaire & armature économique, soumise
4 une charge uniformément répartie.

gb

a

dont les vecteurs sont perpendiculaires aux directions des armatures (fig. 1).
Dans les formules précédentes, on a utilisé les symboles suivants:

o,z et o, représentent les contraintes limites des armatures et du béton,
h, la hauteur statique pour I’armature transversale,

h, la hauteur statique pour 1’armature longitudinale,

r, et r, les bras de levier des forces internes.

Le coefficient ¢ dépend de la forme du diagramme des contraintes dans la
zone comprimée du béton. Pour le diagramme rectangulaire, nous avons ¢=14
tandis que pour le diagramme limité par la parabole du deuxiéme, du troisiéme
et du n-iéme degré, on obtient les valeurs suivantes:

,_ 9. 8 (nt1p
T 16’ 157 2n(n+2)

En supposant que la dalle soit rigide-plastique, nous obtenons le schéma
des lignes de rupture donné par la fig. 1. Dans les conditions de 1’équilibre
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limite de deux parties 1 et 2, on peut exprimer les deux moments de rupture
par les équations:

qr b?

Mpy = 2465(3(1--4&/;), (18)
qrLx?

mRy=LT'! (19)

dans lesquelles ¢, est la charge limite, uniformément répartie.
Des équations (18) et (19), on tire:

Ab b b2 3
ot A =Ry, (21)
MRy

Le poids total des armatures est donné par la formule suivante:

b
4 - ’/“b(mﬂr+ "nﬁ'v) = 9% 1 (3qb2—4b2a)+4aa?],  (22)
Oar \ T2 y 240,17,
ou vy est la densité de ’acier et p=-Yle rapport des bras de levier des forces

Tz
internes.
Dans le cas de ’armature la plus économique, la valeur de 4 atteint son
minimum et la distance de z est donnée par la formule

_npb?

= 2
Sa” (23)

&

Il s’ensuit que les lignes de rupture obliques sont perpendiculaires aux
diagonales de la dalle rectangulaire de largeur réduite pb (fig. 1).

Le rapport économique des sections des deux armatures par unité de

longueur est
w A P (Eb)-

Y
p= o S (24)
DL R
En substituant la formule (23) dans 1’équation (19) et en exprimant la
variabilité aléatoire de la charge extérieure par un coefficient &, dont la valeur
moyenne k,; =1, on aboutit & la formule:

wzogr)?
24 kg, a? 24k, 0, (1—c322E) hia?

= (l_cwy_"“’) b, bt

hyO'bL

(25)

Dans les considérations suivantes, nous ferons, pour simplifier, abstraction
de la variabilité des dimensions de la dalle. La variabilité des sections d’acier
peut étre comprise dans la variabilité de la contrainte limite o,; rapportée
a la section nominale constante. Puis, pour étre concis, nous ne ferons usage
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que des premiers membres des équations (10) et (11), ce qui correspond a la
linéarisation du probléme de probabilité. Les dérivées de 1’expression (25)
rapportées aux valeurs moyennes peuvent étre exprimées de la manieére
suivante:

(%)M = dim =%’ (26)
(%)M _ _#-‘;{M(hywy_zphx)ﬂ, (28)
(%)ﬂf - %(hy_i_ry_zphr)y' =)

Les dispersions p?, p2, u2, p2 des quatre variables aléatoires k, o,;, o1
et ¢ étant données, 1’écart-type de la charge limite de la dalle peut étre exprimé
par la formule:
g = (30)

9 F"g 9 9 2 1 :U'g /"‘g % 20k )2
QLM i + 2 2 (hy+“ry-“.0 ha:);‘lj+ P D) + D) ( y+ry— “p ;z:)M'
Oary Tym Tyar \%rar Can

Si la distribution de la charge limite est normale, le coefficient de sécurité
pour la charge extérieure ¢ avec la dispersion u? q%, est donné par la formule:

9 24 mp, 3 a®
s = (l—ap,) =—"714—.
9 o Pir b 4y (31)
2 iu‘tzt D e D) 2 ]' I‘LIZJ !‘Lg . D] h 2
. ].—a }Lk +02 T_2 (hy"l"-?y_—PhI)JI'i'_lrz 02 +62 (hy+7y_-P .1',')31 .
ald Ty yM \ObLAr M

dans laquelle la valeur de « est déterminée par l'intégrale de Laplace. Pour
une probabilité égale a 0,999, nous avons «=3,09.

4. Dalles continues

Les lignes de rupture dans un panneau de dalle continue sont données
a la fig. 2. Sur les appuis de la dalle, nous avons les moments résistants
Mpa> Mpy> Mpa, Mg, €6 & I'intérieur du panneau les moments de rupture my,
et mp,. Les conditions de 1’équilibre limite des quatre parties du panneau
peuvent étre exprimées par les équations suivantes:

_ 1 2
Mpy+Mpq = §9L%g> (32)

Mpy,+Mpe = 9,72, (33)

1
Mpet+Mpe = aquz[Sa’_g(xd'{'xe)]: (34)
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O e e
& 1
A == -
Y O 1\
b __‘—‘“M—L';"
o Fig. 2.
1
Mpg+mp, = —a,(b—y)*[3a =2 (zg+2,)]. (35)
La charge limite est donnée par la formule:
6(mg, +m
q, = 2 ) (36)
d
_ b bo ]/ bo\?
dans laquelle Tg = [ — + (670«) + 3], (37)
a, = 2a ImR?I+de (38)
Vg, +mpq+ Vmg, +mpg,

b, 2bYVmp, +mpy (39)

VMg, +mp, + Vme +Mpy

Pour la distribution normale, la capacité portante probable est définie par
la charge limite:

6 (mRyﬂ/I +77le1¥[) [l — "/‘u‘% £ 4:“‘3; o= P‘%?i/ +P’%€d ] (40)

qrp 2 2 2
Tam iy (Mpyar+Mpan)

formule dans laquelle up, et up; représentent les écarts-types des moments de
rupture mpg, et mg,, tandis que p, est I’écart-type de la distance z,, que ’on
détermine successivement & partir des écarts-types p,, pp €t fg,, LRy Kras
KRry> MRa> e, & 1’aide des formules suivantes:

[RNEP (NS
_ bOM / bo (ao) ,Lbf, bg 2 (an) +3 ,u%
pe=—ot |/ |0~ = =+]|22- 2 (41)
2 ap ]/ bo\2 13| %om ) ( bo)?, 5 boar
g M ao M
Qopr 1 1 1 2
Fa = "9 - KRy 42
1 1 g 5 Aoar e
& - Hrd + 4q2 (m +m ) ’
VmRy"]‘de )/mRy"'de'i' VmRy+mRe M RyM RelM
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= bon Pv%%y"’#%ed
2 T (mpy+mpe)ky (43)
+ 1 (#%aﬁ#%a g P“%f.::‘l‘.“'%?b)
= :
(}/me-i-’mRa-i' ]/me-i-’mRb)M Mpry+Mp, Mpe+Mpy/ar

Le coefficient de sécurité de la dalle, soumise & la charge g avec la dispersion
p: g3, est donné par la formule:

4.2 2 2
s = 9y [1 o V'u%: + of"o: & Kiy + HRa 2:| . (44)
au Zgy  (Mpyar +Mpaar)
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Résumé

L’auteur dérive d’abord les formules générales pour la détermination des
parameétres statistiques d’'une fonction de variables aléatoires. Les résultats
simplifiés sont ensuite appliqués aux cas particuliers du coefficient de sécurité
des dalles rectangulaires en béton armé & armature économique et de
celui des dalles continues.

Zusammenfassung

Der Verfasser leitet zuerst die allgemeinen Formeln fiir die Bestimmung
von statistischen Parametern einer Funktion von zufilligen Verdnderlichen
ab. Die vereinfachten Ergebnisse werden dann fiir die besonderen Fille von
Sicherheitskoeffizienten der rechteckigen Stahlbetonplatte mit der wirtschaft-
lichen Bewehrung und der Durchlaufplatten angewandt.

Summary

The author derives the general formulas for determining the statistical
parameters of a function of random variables. The simplified results are then
applied to the particular cases of the coefficient of safety of the rectangular
reinforced-concrete slab with economical reinforcement and to that of con-
tinuous plates.
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La sécurité des ponts en acier considérée du point de vue probabiliste

Das Problem der Sicherheit der Stahlbriicken vom probabilistischen Standpunikt
aus betrachtet

Safety Problem of Steel Bridges Constdered from the Probabilistic Point of View

W. WIERZBICKI
Prof. Dr., Dr. h. ¢., Membre de I’Académie Polonaise des Sciences, Varsovie

Précisons tout d’abord la notion de «sécurité d’un pont». Nous entendons
sous ce terme un état de construction tel que toute possibilité de changements
indésirables dus aux charges soit exclue. Bien entendu, les changements pure-
ment superficiels, tels que par exemple 1’'usure du revétement du tablier, les
dégéats subis par les garde-fous, etc. ne nous intéressent pas.

Nous entendons par «catastrophe» du pont 1’avénement de changements
indésirables dans la construction du pont. Le danger menacant un élément
particulier du pont constitue — dans le sens que nous lui assignons — un
danger pour le pont tout entier.

Ainsi, nous allons considérer comme catastrophe du pont aussi bien son
effondrement complet que le fait que certaines caractéristiques de la matiére
de ses éléments ont été dépassées au-dela des limites que nous estimons comme
infranchissables pour une cause ou une autre. Dans les deux cas, ainsi que
dans les cas intermédiaires, nous aurons & faire & un indice de sécurité p,
variant selon le cas. L’indice de sécurité désigne ici la probabilité, admise a
priori, que la catastrophe du pont (au sens convenu) n’aura pas lieu.

Dans ce qui suit nous allons considérer le pont a treillis en acier dont le
tablier ne suscite pas de doutes quant & sa sécurité. Au cas ou la limite élas-
tique d’un élément quelconque du pont se trouvera dépassée, nous dirons que
le pont a subi une catastrophe.

La sécurité d’un élément donné du pont dépend de la matiere dont il est
exécuté, de la nature des charges et, dans certains cas, de ses déformations.

Ces trois facteurs qui, dans leur ensemble, ont une importance décisive
pour la sécurité d’un élément donné du pont sont difficiles a évaluer avec une
précision égale a 1’aide des méthodes statistiques. Certes, les données statis-
tiques concernant les charges sont relativement faciles & obtenir: celles relatives
aux caractéristiques de la résistance de 1’acier ne peuvent étre obtenues, dans
nombre de cas, qu’au prix de quelques difficultés. Enfin, les données statis-
tiques concernant les déformations sont difficiles & obtenir.

Il s’ensuit que les données statistiques concernant les trois facteurs men-
tionnés — vu leur valeur inégale — ne peuvent étre considérées conjointement
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comme des facteurs aléatoires, méme si nous ne reculons pas devant les diffi-
cultés du calcul inhérentes au traitement simultané de ces facteurs.

Il en résulte donc qu’il nous faut admettre en premier lieu les charges
statiques du pont les mieux appropriées aux circonstances données; en recher-
chant les coefficients de sécurité, n, ou les contraintes admissibles, k£, nous
allons considérer ces charges comme des grandeurs certaines, non-aléatoires,
indépendamment de la méthode par laquelle elles ont été obtenues.

Les contraintes provoquées par la traction, la compression et la flexion des
éléments du pont en acier calculées pour les charges statiques conformément
aux lois générales de la résistance des matériaux peuvent étre exprimées par
les formules

S S M
A NTA T W ()

1

ou S désigne la force dans un élément soumis a la traction ou a la compression
dues & la charge statique du pont, M le moment de flexion dans un élément
subissant la flexion, 4 1’aire d’un élément sujet & la traction ou a la compres-
sion, W le module de section d’une barre subissant la flexion et, enfin, « le
coefficient de réduction pour le lambage de la barre.

Etant donné que dans la plupart des cas il nous faut déterminer les con-
traintes dans les ponts se trouvant sous charges mobiles, nous remplagons dans
les formules (1) les grandeurs S et M par S & et M &, le symbole & désignant
le coefficient dynamique. Ainsi, au lieu des formules (1), on aura

S S M
=4 TTa Tw 2)

L’évaluation de 1'influence dynamique des charges sur le pont dans les cas
particuliers présente des difficultés sérieuses. Nous allons donc recourir a la
détermination expérimentale du coefficient dynamique ¢ considéré comme le
rapport de la déformation du pont sous charge mobile & celle due a la charge
statique. On exprime fréquemment le coefficient dynamique & 1’aide de la
formule

g g

a
= 1+§?, (3)
ol le symbole @ désigne 1’amplitude des oscillations perpendiculaires au fléchis-
sement maximum du pont, f la fleche statique, les deux grandeurs étant déter-
minées par des mesures directes.

En tenant compte du mode d’action dynamique des charges sur la construec-
tion du pont, le coefficient & doit étre considéré comme une grandeur aléatoire.
Nous allons considérer notamment comme grandeur aléatoire du probléme le
deuxiéme terme du binéme (3), c’est a dire la grandeur

og = —;. (4)

2f
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Pour arriver au traitement probabiliste du probléme de la sécurité du pont
en acier sujet aux charges dynamiques — ou bien pour arriver au traitement
semi-probabiliste — il y a lieu tout d’abord de tracer, pour la grandeur e,
un diagramme de la distribution des densités des probabilités. A cette fin,
nous utilisons les données qu’on trouve dans la littérature spéciale, notamment,
dans une certaine mesure, des données de LESOKHINE [2]. Les valeurs de «; dont
nous ferons usage se référent aux ponts a treillis avec des portées variant de
45 & 100 m. Dans ce qui suit nous allons nous servir de ces données sans tenir
compte de leur provenance ou des portées des ponts ! (dans les limites men-
tionnées ci-dessus). Nous allons donc construire un histogramme des fréquences
relatives n/>.n de la grandeur (4) et tracer une courbe correspondante de
probabilité (fig. 1).

n/En

4000

2000

1000

&\

&g

Les rectangles tracés sur la fig. 1 & 1’aide des lignes discontinues représentent
I’histogramme, tandis que la courbe, en trait continu représente la courbe des
probabilités. Les chiffres désignent les dix-milliemes.

En passant des nombres mentionnés & la courbe des probabilités de Gauss,
il y a lieu de diviser les ordonnées particuliéres de la fig. 1 par §=0,05, ce qui
nous permet de tenir compte de 'influence qu’exerce la largeur de 1’'intervalle.
Cette influence, d’ailleurs, n’entre en jeu qu’au moment du calcul des surfaces
comprises entre la courbe de Gauss et I’axe des abscisses. Sur la fig. 2, ou ladite
courbe est tracée, les densités des probabilités sont marquées parallélement a

¥
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l’axe, 0,Y;; le segment o,;, représentant la valeur moyenne de «, désigne la
distance entre 1’origine des coordonnées et 1’axe de la courbe.

Le nombre des valeurs «; dont nous disposons étant restreint, le diagramme
de Gauss ne peut étre considéré comme parfaitement approprié. Néanmoins,
vu sa simplicité, nous allons I’utiliser dans le cas d 'un nombre restreint d’obser-
vations, sans recourir & des diagrammes peut-étre plus appropriés.

Pour déterminer la contrainte admissible, k, pour un élément donné du
pont ou le coefficient de sécurité, n, de cet élément il nous faut déterminer la
valeur-limite des contraintes o. A cette fin nous utilisons la formule ([1], p. 146):

o, = 0o lI(1+a) (5)

ou II est le signe du produit, et ou « représente les taux d’accroissement des
contraintes, désignant, suivant les cas, soit l’accroissement (en pourcent)
admissible de la contrainte o, calculée d’apres les formules (1) (coefficients «;)
soit I’influence du facteur dynamique (coefficient o).

Les coefficients « — & ’exception du coefficient «; décrivant 1’action dyna-
mique de la charge — peuvent étre considérés soit comme les valeurs-limites
des accroissements des contraintes correspondantes (méthode semi-proba-
biliste), soit comme les valeurs pour chacune desquelles en particulier il existe
une certaine probabilité w qu’elles ne seront pas dépassées (méthode proba-
biliste).

Dans I’ensemble, la probabilité qu’aucun accroissement (en pourcent) de la
contrainte o, ne dépassera dans le cas de la charge statique la valeur «; peut
étre exprimée, conformément au théoréme sur la multiplication des probabili-
tés, par le produit

2, =1lw,;. (6)

Dans le cas ou certains des coefficients «; seront considérés comme non-
aléatoires, les probabilités correspondantes w; doivent étre considérées comme
égales a 1.

L’accroissement de la contrainte o, di aux facteurs dynamiques de la

charge est exprimé — nous l’avons dit — par le coefficient «; mentionné
ci-dessus.
Nous pouvons done écrire la formule (5) sous la forme:
ag=0'0(l+ocd)n(l+ai) (7)

ou bien — ce qui pour les valeurs réduites de «; revient presque au méme —
sous la forme
o, = oo (1 +az) (142 a;). (8)

Nous allons désigner la probabilité que le coefficient «; et, par suite, la
somme (1 + ;) aussi, ne dépasseront pas une certaine valeur — limite, par £2;.

La probabilité que la contrainte & la limite élastique de 1’acier dépassera
la contrainte-limite o, sera désignée par £2,,.
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La grandeur 2, peut étre présentée sous forme de la surface BCD (voir
fig. 3). La fig. 3 représente la courbe de Gauss pour les contraintes & la limite
élastique R. Le segment R, égal & la moyenne arithmétique des valeurs de R,
correspond ici & la distance entre 1’origine des coordonnées et 1’axe de la
courbe de Gauss.

=~

(=]

2|

Fig. 3.

Pour que la catastrophe du pont (au sens convenu du terme) ne survienne
pas, la concordance simultanée de trois facteurs indépendants est nécessaire,
& savoir:

A. Qu’aucun accroissement (en pourcent) de la contrainte o, — exprimée
a 1’aide de 1'une des formules (1) — ne dépasse la valeur de «; (probabilité 2,):

B. Que l’accroissement (en pourcent) de la contrainte o, di aux facteurs
dynamiques ne dépasse pas la valeur de oy, (probabilité ;).

C. Que la contrainte a la limite élastique de 1’acier dépasse la contrainte
limite o, (probabilité £2,,).

Ainsi, la probabilité £ que la catastrophe ne surviendra pas est une pro-
babilité composée. Elle peut étre exprimée par le produit

Q= 'Qs'Qd'Qm' (9)

Nous introduisons maintenant I’'indice de sécurité, p, (annoncé plus haut);

il désigne la probabilité — admise a priori — que la catastrophe du pont ne
surviendra pas. Done,

Q2 =np. (10)

Cette équation nous permet de déterminer la contrainte admissible dans
un élément donné du pont ou bien le coefficient correspondant de sécurité.
L’équation (10) peut étre écrite aussi sous la forme

0,2,9,, = p. (11)

En appliquant & ’examen de la sécurité du pont la méthode semi-proba-
biliste nous supposons que toutes les probabilités w sont égales & 1 et, par
conséquent, que le premier facteur dans 1’équation (11) peut étre négligé.
Nous obtenons ainsi

Qd'Qm =P (12)
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I1 est commode — pour simplifier les calculs — d’admettre que, dans la
formule (12), 2,=2,,. On obtient alors 2,=02, =V p. Il y a lieu de remarquer
que pour p=0,8 nous obtenons la méme valeur R pour les différentes dis-
tributions de probabilités et c’est pour cette raison que nous ’avons intro-
duite ([3], p. 133).

Si I’on admet Q,=17Vp, (13)

nous marquons sur le diagramme de la courbe de Gauss pour la grandeur «,
(fig. 2) la surface BC D=} p et nous arrivons ainsi & la valeur-limite pour a,
que nous avons désignée par ag,.

Aprés avoir déterminé les valeurs-limites des grandeurs «; et «4, nous
sommes & méme de résoudre 1’équation (8) par rapport & o, et de déterminer
ainsi la contrainte admissible, k, pour un élément donné du pont.

K = gy = Tu : 14
* T (U agy) (1 Z ) 4o
Nous admettons encore — nous l’avons expliqué ci-dessus — p=0,8 et

2,=£,=09. A la valeur 2,,=0,9 correspond pour 1’acier & résistance 3700
kg/em? («37») la valeur o,= R =2240 kg/cm?.

Les valeurs «; correspondant aux différentes probabilités {2; peuvent étre
trouvées & 'aide de la fig. 2 en faisant usage des nombres donnés sur la fig. 1.
Ces probabilités sont représentées par les surfaces B'C’D. D’aprés le dia-
gramme on obtient, avec ;= }/]7=~0,9, la valeur «; =0,126, donc ¢=1,126.

Si la barre du pont a été attachée au gousset d’une fagon trés précise,
si le transport de la barre a été exécuté avec les précautions nécessaires et la
position de la barre dans la construction du pont est perpendiculaire, alors la
somme » o; =0,51 [3]. Dans ces conditions, la contrainte admissible k& peut
étre calculée d’apres la formule:

2240

—— e e 2
1126.1.51 1320 kg/cm?. (15)

k=00=

Nous ne donnons cette derniére valeur que pour illustrer nos remarques
sans vouloir la considérer comme une recommandation pratique.
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Résumé

Le symbole p désigne l'indice de sécurité. Sous ce terme nous entendons la
probabilité qu’une catastrophe du pont — pour le cas considéré le dépassement
de la limite élastique dans un élément donné du pont — n’adviendra pas.

La contrainte admissible & (ou le coefficient de sécurité n) pour un pont en
acier sous une charge mobile peut étre déterminée a 1’aide de 1’équation (11),
ou £, désigne la probabilité qu’au cas d’une charge statique aucun accroisse-
ment de la contrainte o,, donnée par les équations (1), ne dépassera la valeur
a«;; §2; la probabilité que 1’accroissement de la contrainte o, dii aux facteurs
dynamiques ne dépassera pas la valeur a4, ; enfin 2, la probabilité que la
contrainte & la limite élastique dépasse la contrainte-limite donnée par la
formule (8).

Zusammenfassung

Wir bezeichnen mit dem Symbol p den Sicherheitsindex der Wahrschein-
lichkeit, daB ein Briickeneinsturz — gegebenenfalls die Uberschreitung der
FlieBgrenze in einem Briickenelement — nicht vorkommen wird.

Die Bestimmung der zulédssigen Spannung % (oder des Sicherheitskoeffizien-
ten n) fiir eine Stahlbriicke kann auf Grund der Gleichung (11) erfolgen, worin
2, die Wahrscheinlichkeit bedeutet, dall eine Zunahme der Spannung o, —
durch Gleichung (1) bestimmt — den «;-Wert nicht iiberschreiten wird. £,
bedeutet die Wahrscheinlichkeit, dafl die von dynamischen Faktoren herbei-
gefiihrte Zunahme der Spannung o, den o4,-Wert nicht iiberschreiten wird
und £2,, die Wahrscheinlichkeit, da die Spannung an der FlieBgrenze die
Grenzspannung (siehe Formel (8)) iiberschreitet.

Summary

We start by defining the conception of safety index (denoted by p). It
means the probability that the collapse of a bridge will not occur. And by the
term ‘‘collapse’’ we mean that for a given element of the bridge the yield
point will not be exceeded.

The admissible stress, & (or the safety coefficient, n), for a steel bridge
subjected to a moving load may be determined by means of Eq. (11), wherein
the symbol 2, stands for the probability that in the case of a static load no
increment of the stress oy, given by Eq. (1), will exceed the value «;; £2; denotes
the probability that the increment of the stress o, due to dynamic factors
will not exceed the limiting value «,, and, finally, £2,, denotes the probability
that the stress at the yield point exceeds the limiting stress as given by for-
mula (8).
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Strength of Concrete in Finished Structures and Its Effect on Safety
La résistance du béton dans les ouvrages et son influence sur la sécurité

Der Einfluf3 der Betonfestigkeit auf die Sicherheit der Bauwerke

NILS PETERSONS
tekn. lic., Swedish Cement and Concrete Research Institute, Stockholm, Sweden

1. Introduction

Concrete control on the site comprises, among other things, making and
testing of standard test specimens. The tests are based on the assumption
that the strength of these test specimens, which are usually small in number,
represents the strength of the concrete in the whole structure. Several objec-
tions can be raised against the correctness of this assumption.

In recent times, the problem of more accurate estimation of the strength
of the concrete in structures has met with increasing attention.

The European Concrete Committee (Comité Européen du Béton, CEB)
has proposed that the design of concrete structures should be based on a
characteristic strength. This strength is calculated by means of statistical
methods from values observed in tests on standard specimens, but includes,
in addition, a coefficient of safety which shall represent the difference in
strength between the material in the structure and that in the standard test
specimens.

Furthermore, it is of interest to know how the safety of structures is
influenced by variations in the strength of the concrete as compared with
variations in other factors, e.g. in the characteristics of the reinforcement
and in the dimensions of the cross section.

2. Estimation of Strength of Concrete in Structures from Data Available in Literature

The quality or the strength of the concrete in finished structures has so
far been studied to a limited extent only.

In general, the strength of the concrete in a finished structure converted
into cube strength may be supposed to be different from that which has been
determined on standard test specimens at the same age. To a very rough
approximation, the mean value of the strength of the concrete in a structure
may be assumed to be about 10 to 20 per cent lower than the strength of
standard test specimens, but both smaller and greater differences can be met
with.
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Calculations based on a large number of tests to failure of columns subjected
to concentric loads have shown that the strength of the concrete in columns
is on an average equal to about 68 per cent of the cube strength, and that it
may sometimes be as low as about 56 per cent of this strength.

3. Investigation of Strength of Concrete in Finished Structures

3.1. Strength of Concrete in Columns

In an investigation which has recently been completed at the Swedish
Cement and Concrete Research Institute, Stockholm, the variation in the strength
of the concrete has been studied in tests on 37 square columns.

After curing, the columns were cut into cubes, and test cylinders were
cored from these cubes by drilling in the longitudinal direction of the column.

The values of strength observed in these tests were submitted to a statistical
analysis. Some results of this analysis are stated in what follows. The strength
of the concrete in the columns exhibited a greater dispersion than in the cube
and cylinder specimens, which were cured in conformity with the relevant
standard specifications or in the same manner as the columns themselves.

In a region extending about 60 cm from the top of the column, the strength
of the concrete was lower than in the lower portion of the column.
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Fig. 1 shows the lower limit, the 10-per-cent fractile, of the cylinder strength
of the concrete in the upper portions of the columns, expressed in per cent of
the strength of test specimens cured in accordance with the relevant standard
specifications or in the same way as the columns.

The strength of the concrete in the upper portions of the columns, expressed
in per cent of that of the control test specimens, decreased as the cube strength
became greater. This was independent of whether the concrete had a plastic
consistence and was fairly cohesive or whether it had a fluid consistence and
was liable to separation.

Fig. 2 represents the lower limit, the 10-per-cent fractile, of the cylinder
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Slabs 13 31 1.12 0.30 1.64 0.63 0.74 33 82 0.94 0.23 1.33 0.60 0.65

Walls 10 22 1.02 0.27 1.35 0.65 0.67 25 56 1.04 0.24 1.63 0.70 0.73

Columns, 12 32 0.91 0.15 1.32 0.74 0.72 12 22 1.03 0.15 1.35 0.86 0.84

supports

Footings 11 53 0.91 0.20 1.34 0.70 0.65 16 77 1.05 0.24 1.50 0.61 0.74

Beams 3 10 0.92 0.02 0.95 0.91 1 2 1.01 — — —

Factory- 2 31 0.80 — 0.90 0.69 3 31 0.73 0.11 0.83 0.62

made

elements

Dams 6 34 1.15 0.20 1.43 0.94 — —_ —_— —_ — —

Floors — — — — — — 2 10 0.73 — 0.80 0.65

Total

Mean value 57 213 0.70 92 280 0.74¢
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strength of the concrete in the columns below their upper portions, expressed
in per cent of the strength of test specimens cured in accordance with the
relevant standard specifications or in the same way as the columns.

It is seen that the weakest part in respect of the compressive strength of
the concrete was the upper portion of the column.

The lower strength of the concrete in the upper portions of the columns
corresponds to that of beams cast in a horizontal position.

%
s : g ; nef
Fig. 2. Cylinder strength of the concrete in columns, in ' 2
per cent of the strength of cylinders and cubes cured in 100 1 e
: : : 2
accordance with standard specifications, Curves 1, or ook 1 : 0.
cured in the same way as the columns, Curves 2. Curves ool | 2:::::“5
a refer to a concrete which had a fluid consistence and
was liable to separation. Curves b relate to a concrete 70} B
which had a plastic consistence and was fairly cohesive. Pte] SO SR T %

1
200 400 600 kp/cm?
Cube strength

3.2. Data Collected on Building Sites

Table 1 reproduces the data which have been collected on building sites,
and which concern the strength of the concrete in finished structures, 112 in
all. The strength of the concrete in these structures was compared with the
strength of standard test specimens and with the strength specified for the
grade of concrete in question. As a rule, the strength of the concrete in the
structure, o3 47¢, was lower than the strength of the standard test specimens,
Oeube» COMPared at the same age, 28 days. In relatively many cases, the strength
of the concrete in the structures reached only about 65 to 75 per cent of the
strength of the standard test specimens, and was sometimes about 25 per cent

lower than the strength K specified for the grade of concrete.

4. Effects of Deviations in Various Factors on Safety Against Failure

In discussing the effects of the deviations in various factors on the safety
against failure, it is convenient to utilise the relation between the factor of
safety and the risk of failure, and to base the comparison on the effects pro-
duced by these deviations on the risk of failure. If the safety against failure is
expressed implicitly in terms of permissible stresses or coefficients of safety,
then it is more difficult to form an idea of the actual safety.

A comparison of the effects of the deviations on safety can be made with
the help of Fig. 3, which is applicable when the load-carrying capacity, S,
and the load effect!), @, are distributed in accordance with the logarithmic

1) The load effect is an effect produced by loads on structures, e. g. a bending moment,
a normal force, ete.
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normal distribution. The general trend of this graph would also be the same
if it were based on the normal distribution or on some distribution of extreme
values. The only difference would be that the same standard deviations in
the load-carrying capacity, sg, and in the load effect, s, would influence the
risk of failure in a higher degree in the case of the normal distribution, and in
a still higher degree in the case of the distribution of extreme values.

No

5,0F
Vs = 0,30, Vo = 0,0

Fig. 3. Relation between the risk of failure,
P, and the factor of safety, ng, for Vg=
—30/Q = 0.10 and Vs=8s/S =0.10, 0.15,
=020, " " 0.20, 0.25, and 0.30 in the case where S and
@ are distributed in conformity with the

Vs =0,25, n "

vs=0,15, " " . g - .
° logarithmic normal distribution.
V5=0,|0, " " o B
no=.9S/Q, where S = mean value of S and
it i s y p @ = mean value of Q.
10-3 107 10-® 10°®

The standard deviations in the ultimate load have been deduced in [1] for
eccentrically loaded columns in the case where the primary failure occurs in
the concrete and in the case where the reinforcement is the decisive factor
determining failure, as well as for over-reinforced and under-reinforced beams,
and have been expressed as functions of the strength of the concrete, the
characteristics of the reinforcement, and the dimensions of the cross section.
If we study the functional relations between the factor of safety or the risk
of failure, on the one hand, and the different quantities by which it is influenced,
on the other hand, then we find that it is not possible to take into account
each of these quantities separately. Therefore, the standard deviations or
uncertainties in all these quantities must be taken into consideration at the
same time.

Figs.4a,4b,and 4 c show how the coefficient of variation, Vy = % , in the ulti-

mate load varies in the case of eccentrically loaded columns, where whole
cross section is subjected to compression, when the standard deviation in the
strength of the concrete, s, the standard deviation in the depth of the cross
section, s;,, and the standard deviation in the eccentricity of the load, 8, are
variable, while the standard deviations in the other quantities to be considered
at the same time are constant.

As is seen from Fig. 4a, if the column is acted upon by a concentric load,
then, in Case 5, the coefficient of variation in the ultimate load, Vy, increases

only from about 0.15 to 0.19, when the standard deviation in the strength of
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Fig. 4a. Relation between
the coefficient of variation,

Vn=sxn/N, in the ultimate
load and the standard devi-
ation in the strength of the
concrete sl . The standard
deviations in the other re-
levant quantities are as-
sumed to be constant.

Fig. 4b. Relation between
the coefficient of variation,
Vy=snx/N, in the ultimate
load and the standard devi-
ation in the depth of the
cross section sz,. The stand-
ard deviations in the other
relevant quantities are as-
sumed to be constant.

Fig. 4c. Relation between
the coefficient of variation,
Vy=s~/N, in the ultimate
load and the standard devi-
ation in the eccentricity of
the load s . The standard
deviations in the other re-
levant quantities are as-
sumed to be constant.

4. o} = 200 kp per cm?, n =
8. o} = 400 kp per cm?, n =2

30

12. o5 = 600 kp per cm?, 5 =2

1. o} = 200 kp per cm2, 7 =0
} = 400 kp per em?, =0

5. oy

9. o) = 600 kp per cm?, =0

the concrete increases from about 20 kp per cm? to 60 kp per cm?. As may be
found from Fig. 3, this change has but a very slight effect on the safety against
failure. The reason is that the predominant amount is contributed to ¥y by the
standard deviation in the eccentricity, s,, when the eccentricity is small. On

the other hand, if, for instance, the eccentricity of the load is 7 =3—50, then the

same change in the standard deviation in the strength of the concrete causes
the coefficient of variation, Vy, to change from about 0.11 to about 0.17.
As may be found from Fig. 3, if the risk of failure is to remain unchanged,
e.g. P=10-¢, then the factor of safety should be increased from about 2.0 to
about 2.5. However, this change in the factor of safety is not great.

The effect produced by the variation in the standard deviation in the depth
of the cross section, s, , on the safety against failure can be estimated in an
analogous manner with the help of Fig. 4b.

The effect of the variation in the standard deviation in the eccentricity,
s,, on the safety against failure can likewise be estimated in a similar way by
the aid of Fig. 4c. As is seen from this graph, if, in the case of a concentric
load, the standard deviation in the position of the point of load application
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changes from s, =§% to s, =%, then the coefficient of variation in the ultimate
load changes from about ¥V, =0.15 to about ¥V, =0.29. As may be found from
Fig. 3, if the risk of failure is to remain unchanged, e.g. P=10-% then the
factor of safety, n,, should be increased from about 2.4 to about 4.4. This

change in the factor of safety is considerable. On the other hand, if the eccen-
5
=%’
tion in the eccentricity, S,s causes the coefficient of variation, V., to increase
from about 0.12 to about 0.18. Accordingly, the factor of safety should be

increased from about 2.0 to about 2.7.

tricity of the load is, say, 7 then the same increase of the standard devia-

As has been mentioned in the above, the decrease in the mean strength of
the concrete in the upper portion of the column was of the order of some 10
to 20 per cent when the cube strength was 400 kp per cm?, and some 25 to
30 per cent when the cube strength was 600 kp per cm?. We shall now estimate
the effect produced by a change of 25 per cent in o} on the safety against
failure in the case where o) should have been 400 kp per em? in a column, 30
by 30 cm in cross section, reinforced with 4 Swedish standard Type Ks 40 ribbed
bars, 16 mm in diameter. When the load is concentric, n =0, the ultimate load N
decreases from about 394 metric tons to about 304 metric tons, and when the

load is eccentric, say, n= % the ultimate load diminishes from about 241 me-

30°
tric tons to about 187 metric tons. Consequently, the coefficient of variation
increases in the first case from ¥V, =0.17 to about ¥V, =0.21, and in the second
case from Vy =0.13 to about Vy =0.17. Accordingly, if the risk of failure is to
remain unchanged, then the factor of safety, should be increased in the first

case from 2.5 to about 3.0, and in the second case from 2.3 to 2.5.

As can be found from similar calculations, if the eccentricity of the load
increases, and the cross section becomes under-reinforced, then the effects
produced by the standard deviations in the eccentricity and in the strength
of the concrete on the safety against failure become unimportant. The effect
of the standard deviation in the dimensions of the cross section still manifests
itself. The standard deviation in the yield point stress of the reinforcement
produces an effect as the eccentricity increases.

The safety against failure of over-reinforced beams is influenced in a high
degree by the standard deviations in the dimensions of the cross section and
in the strength of the concrete. On the other hand, the influence of a change
in the shape of the stress block of the concrete is of no importance in this
connection.

The safety against failure of under-reinforced beams is predominantly
affected by the standard deviations in the dimensions of the cross section
and in the yield point stress of the reinforcement, whereas the effect of the
standard deviation in the strength of the concrete matters little or nothing.

Thus, the standard deviation in the dimensions of the cross section has a
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great effect on the safety against failure in all cases dealt with in the above,
while the effects of the standard deviations in the concrete or in the yield
point stress of the reinforcement, vary from one structure to another.

5. Effect of Strength of Concrete on Ultimate Moments of Over-Reinforced Beams

In the calculation of ultimate moments, the limit stress of the concrete at
failure, o}, is brought into relation with the strength of standard test speci-
mens, and according to a proposal of the European Concrete Committee,
o =0y, i. €. the cylinder strength.

By comparing the observed and calculated values of the ultimate moments
of over-reinforced beams which have been obtained from tests made by various
researchers, it is found that the standard deviation in the ratio of the observed
value to the calculated value is small in each strength range. However, it is
to be noted that the magnitude of these values exhibits a distinct trend,
namely, the above-mentioned ratio decreases as the strength of the concrete
increases.

The results of the investigation described in [1] can also be used to estimate
the strength of the concrete in the compression zone of over-reinforced beams
as compared with the strength of test specimens, see Fig. 5.

If the ultimate moments of over-reinforced beams are calculated so as to
take account of the fact that the actual strength of the concrete in the com-

L
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Oeyl
1.0} .

Fig. 5. Relation between the compressive strength
03T of the concrete in beams, ¢}, and the strength of
0,8 cylinder test specimens, ocy:, and cube test speci-
0.7 L ] 1 | 1 1 mens, CGecube -
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Table 2. Ultimate Moments of QOuer Reinforced Beams. Comparison of Calculated and
Observed Values

Observed value
Number Range of Tonlated val
of strength, Calculated value
beams kp per cm?
o} = geyi 0}, from Fig. 5
24 200 to 300 1.05 1.09
9 300 to 400 0.96 1.04
3 > 400 0.93 1.07
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pression zone of the beam differs from the strength of standard test specimens,
then the observed and calculated values of the ultimate moment will be more
closely in agreement, see Table 2.
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Summary

Tests have been made in order to study the dispersion in the strength of
the concrete in vertically cast columns and in a few horizontally cast beams.
The strength of the concrete in these structural members was compared with
the strength of cube and cylinder specimens which had been cast at the
same time.

An analysis of the results obtained from tests made on building sites has
shown the relation between the strength of the concrete in various structures
and the strength of test specimens cast at the same time.

Finally, this paper discusses the effects produced on the safety against
failure of structures by the standard deviations in the strength of the concrete
as compared with the effects of the standard deviations in the characteristics
of the reinforcement, in the dimensions of the cross section, and in the eccen-
tricity of the load.

Résumé

L’auteur décrit des essais effectués pour étudier la dispersion de la résis-
tance du béton dans des colonnes coulées verticalement et dans quelques
poutres coulées horizontalement. La résistance du béton dans ces éléments
de construction a été comparée & celle des cubes et des cylindres d’essai qui
ont été coulés en méme temps.

Une analyse des résultats d’essais faits sur des chantiers a permis d’établir
une relation entre la résistance du béton dans divers ouvrages et la résistance
des éprouvettes coulées en méme temps.

Enfin, 'auteur discute 'influence de 1’écart quadratique moyen de la résis-
tance du béton sur la sécurité & la rupture des constructions et il compare
cette influence a celle des écarts quadratiques moyens des caractéristiques des
armatures, des dimensions de la section transversale et de 1’excentricité de
la charge.
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Zusammenfassung

Anhand von Versuchen wird die Streuung der Betonfestigkeiten in vertikal
gegossenen Séulen und horizontal gegossenen Balken untersucht. Die hierin
bestimmten Festigkeiten werden mit denen gleichzeitig in Wiirfel- und Pris-
menform gegossener Probekorper verglichen.

Ferner wird auf Grund von Versuchen eine Beziehung zwischen den Festig-
keiten von auf der Baustelle hergestellten Betonelementen und von gleich-
zeitig gegossenen Probekorpern hergeleitet.

SchlieBlich wird versucht, die Bruchsicherheit eines Tragwerks aus der
Streuung der Betonfestigkeiten und in Abhingigkeit von Bewehrungsgehalt,
Querschnittsabmessungen und Lastexzentrizitit herzuleiten.
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Der Begriff der Sicherheit im Talsperrenbau
Analysis of Safety in the Construction of Big Dams

La notion de sécurité en matiére de barrages

B. GILG
Dr. Ing., Elektro-Watt, Ziirich

1. Einleitung

Bei der Dimensionierung von Bauwerken hat der Ingenieur unter anderem
die Aufgabe, seinem Projekt gewisse Sicherheiten gegen irgendwelche uner-
wiinschten Ereignisse — zum Beispiel gegen einen lokalen Schaden oder gegen
den totalen Bruch — zu geben. Die ein solches Ereignis hervorrufenden Gréen
— zum Beispiel Krifte oder Spannungen — werden mit den fiir das Bauwerk
berechneten Maximalwerten in Beziehung gebracht und darauf die Sicherheit
als Zahl ausgedriickt. Diese Zahl, welche nachstehend ganz allgemein S,, ge-
nannt wird, stellt eine theoretische Sicherheit dar, da sie auf Grund von ver-
schiedenen Annahmen bestimmt wurde. Die tatsichliche Sicherheit S* ist
natiirlich nicht bekannt und kann groéfler oder kleiner als S, sein. Je genauer
die Annahmen getroffen wurden, um so kleiner ist der Fehler S*—5S,,.

Damit nun kein Bruch (oder eventueller Schaden) eintritt, mull S, so
gewahlt werden, dall auch eine moglichst groBe Hiufung von Fehlern in den
Annahmen den Wert §* keinesfalls unter 1 sinken laf3t.

Je sicherer aber die Annahmen, um so kleiner darf S,, angesetzt werden?).

2. Die Wahrscheinlichkeit im Talsperrenbau

Da der Bruch einer Talsperre normalerweise eine Katastrophe nach sich
zieht, soll die Wahrscheinlichkeit eines Einsturzes praktisch null sein; eine
gewisse Lockerung dieser Bedingung ist statthaft, wenn

a) der Bruch nur oberhalb des jeweiligen Seespiegels erfolgen wiirde, oder
b) die freiwerdenden Wassermassen ohne jeden Schaden sich verlaufen kénnen.

Es sollte also nebst dem Sicherheitsfaktor S,,, welcher auf Grund der
wahrscheinlichsten Annahmen berechnet wurde, noch ein weiterer Faktor
bestimmt werden, der auf denkbar ungiinstigen Annahmen basiert und trotz-
dem noch gréBer als 1 ist.

1) Vgl. dazu SBZ vom 3. Mai 1962: Elastisch oder plastisch, das ist hier die Frage.
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3. Die Uberpriifung der Annahmen

a) Die Dimensionen des Tragwerkes

Die meisten Talsperren besitzen so grofe Abmessungen, daB die tolerierten
Abweichungen nicht ins Gewicht fallen. Eine Ausnahme bilden allerdings
sehr schlanke Gewolbesperren (Malpasset, Tolla, (Gage) und stark aufgeloste
armierte Mauern, welche eigentlich als Stahlbetonkonstruktionen zu betrach-
ten sind.

b) Belastung und Beanspruchung

Die wichtigste dullere Belastung ist der Wasserdruck, welcher mit grof3er
Genauigkeit ermittelt werden kann. Auch die Eigengewichte sind vor allem
bei Betonbauwerken, heute aber auch bei Dammschiittungen mit ziemlicher
Sicherheit vorauszusagen und nach erfolgtem Bau nachzupriifen. Temperatur-
beanspruchung sowie die Verformung des Tales bei der Seefiillung spielen
nur bei Bogenmauern eine Rolle. Sie sind im allgemeinen weniger gut erfal3-
bar, doch ist ihr Einflul} auf die Sicherheit S,, gering, so dafl normale Fehler
in den Annahmen nicht stark ins Gewicht fallen.

Ebenfalls fehlerhaft kénnen die Annahmen iiber den Auftrieb unter den
Widerlagern und die eventuelle Erdbebenbelastung sein. Diese Fehler haben
nun vor allem bei Gewichtsmauern und bei Didmmen einen starken Einflufl
auf die Sicherheit. Es muB} also hier, wie wir noch sehen werden, mit moglichst
ungiinstigen Voraussetzungen gerechnet werden.

Eine letzte BelastungsgroBe ist die Uberflutung durch Hochwasser, welche
von einer Betonsperre meistens relativ gut, von einem Damm praktisch
tiberhaupt nicht ertragen wird. Damme verlangen also eine Hochwasser-
entlastungsanlage, welche moglichst ungiinstigen Annahmen Rechnung tragt.

¢) Qualitit der Baustoffe

Wiahrend die Qualitdt und Festigkeit des Betons relativ leicht vorauszu-
bestimmen ist und auch nicht allzu groBen Streuungen unterliegt, besteht
bei der Qualitétsuntersuchung der Dammbaumaterialien und des Sperren-
untergrundes (Fels oder Lockergestein) oft groBere Unsicherheit. Die Labo-
ratoriumsversuche sind im allgemeinen nicht geniigend aufschlufireich und
miissen durch Feldversuche erginzt werden. Dabei ist vor allem zu beobach-
ten, dall der im Gestein auftretende innere Wasserdruck die Materialeigen-
schaften wesentlich beeinflussen kann.

d) Berechnungsgang

Die Berechnungsmethoden fiir Betonbauwerke und fiir Dammschiittungen
sind heute sehr stark entwickelt, so dal3 bei richtiger Anwendung keine gro-
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Beren Fehler auftreten diirften. Dagegen geben die Berechnungsmethoden
fir die Widerlagerbeanspruchung schon wegen der Inhomogenitit des natiir-
lichen Bodens meist nur approximative Werte. Hier besteht also eine grofle
Fehlerwahrscheinlichkeit, welche zu beriicksichtigen ist.

4. Bogen- und Gewdilbesperren

Die modernen Berechnungsmethoden (Balkenrost, Schalentheorie) und die
Moglichkeit, deren Resultate durch Modellversuche zu iiberpriifen, sowie die
heute iibliche hohe Betonqualitdt haben dazu gefiihrt, dal dieser Sperrentyp
einige sehr kithne Vertreter aufweist. Betondruckfestigkeiten wvon rund
500 kg/em? sind keine Seltenheit, so dall die zuldssigen Spannungen 100 kg/cm?
und mehr betragen. Trotzdem wire es natiirlich irrefithrend, dem Bauwerk
nur auf Grund der Spannungen eine 4—»5fache Sicherheit zuzuschreiben, da
das Widerlager moglicherweise eine viel geringere Reserve besitzt. Bei der
Bestimmung der Widerlagerfestigkeit ist zum Beispiel die Kliiftung von
ausschlaggebender Bedeutung. Je nach deren Verlauf — parallel oder senk-
recht zur Tangente des einfallenden Bogens — ist die Kohision des Gebirges
oder die Druckfestigkeit des Gesteins malgebend.

Man ersieht daraus, da} die hohen zuldssigen Betonspannungen in der
Nahe der Widerlager gar nicht ausgeniitzt werden konnen, sofern der Fels
nicht praktisch dieselben Eigenschaften aufweist wie der Beton, was wohl
nur selten der Fall sein diirfte.

Ist der Fels geschichtet oder gekliiftet, so kann sich ein innerer Wasser-
druck einstellen, welcher entweder vom Stausee oder von der Talflanke her
beeinflullt wird. Dieser innere Wasserdruck setzt normalerweise die Scher-
festigkeit des Materials herab. Da In-situ-Messungen der Felsfestigkeit vor
dem Aufstauen des Sees durchgefiihrt werden miissen, erfassen sie im allge-
meinen dieses Phanomen nicht. Die so ermittelten Annahmen konnen somit
stark fehlerbehaftet sein.

Selbstverstandlich bewirken ausgedehnte Verfestigungsinjektionen und ein
tiefreichender Injektionsschirm eine Verbesserung der Situation.

Wihrend also S, und S* im Beton relativ nahe beieinander liegen diirften,
so ist die Differenz im Felswiderlager unter Umsténden ziemlich groB; ein
grof3es 8, ist demnach angezeigt.

5. Gewichtsmauern und Hohlmauern

Die Spannungen sind in diesen Mauern meist geringer als in den Bogen-
mauern; deshalb werden auch geringere Betonfestigkeiten zugelassen. Das
Verhiltnis aus berechneten Spannungen und Bruchfestigkeit betrigt eben-
falls 1:3 bis 1: 4, so dall die Betonfestigkeit fiir die Sicherheit wohl selten
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maBgebend ist. Der Felsuntergrund ist dank der grofen Auflagerfliche nur
relativ schwach belastet, und die Spannungen nehmen in der Tiefe rasch ab.
Somit wird die Druckfestigkeit des Untergrundes ebensowenig mafgebend
sein.

Dagegen ist ein wichtiger Punkt das eventuelle Kippen der Mauerzunge
bei maximaler Erdbebenbeanspruchung unter gleichzeitiger Annahme extre-
mer Auftriebsverhiltnisse. Die dabei entstehende schriagabwirtsgerichtete
Resultierende muf3 vom luftseitigen Auflagerrand geniigend weit entfernt
sein (meist wird '/, der Auflagerbreite vorgeschrieben), wobei gleichzeitig
die unter Awusschluff der Zugzone berechneten Spannungen die zulédssigen
Felspressungen nicht iiberschreiten diirfen.

Eine wesentliche Gefahr ist auch hier das Abgleiten infolge Uberschreitens
der Scherfestigkeit, wobei das gleiche gilt, was bereits fiir Bogenmauern ge-
sagt wurde. In diesem Fall besitzen die Gewichtsmauern gegeniiber den
gewilbten Sperren den Nachteil, dal jede Mauerzunge fiir sich unstabil
werden kann, da der Wasserdruck die Mauerblocke nicht gegeneinander ver-
keilt.

Zur Herabsetzung der ungiinstigen Auftriebsverhéltnisse wird deshalb oft
der Hohlmauertyp angewandt. Aber auch hier ist es wichtig, daf} die in tie-
feren Felslagen herrschenden inneren Wasserdriicke laufend kontrolliert wer-
den, und zwar sowohl unter dem Betonauflager als auch unter den freien
Réumen; denn es ist in gewissen Fillen — zum Beispiel bei horizontal ge-
schichteten Gneisen — ohne weiteres moglich, daB sich in der Tiefe sehr
schnell ein Auftrieb aufbaut, welcher an der Oberfliche nicht in Erscheinung
tritt.

6. Yorgespannte Mauern

Wird eine Betonmauer zwecks Volumeneinsparung mit Vorspannkabeln
im Fels verankert, so erh6hen sich natiirlich die Betonspannungen und die
Felspressungen gegeniiber einer gleich hohen unverankerten Gewichtsmauer.
Deshalb wird der Einflul des Auftriebes herabgesetzt; die errechnete Sicher-
heit gegen Gleiten diirfte also weniger fehlerempfindlich sein als bei gewdhn-
lichen Gewichtsmauern.

Uber die Sicherheit der Betonkonstruktion sowie die Kippfrage gilt das
bereits in Abschnitt 5 Gesagte. Der in der Nahe der Spannkopfe auftretenden
hohen Betonbeanspruchung muf3 bei der Bestimmung der Betonqualitit
Rechnung getragen werden.

Im iibrigen treten hier zwei weitere Faktoren auf, deren ungenaue Erfas-
sung die Sicherheit beeintrachtigen kann. Der eine ist das Verhalten der
Vorspannkraft in Funktion der Zeit, der andere die durch die Verankerungs-
krifte hervorgerufenen statischen Verhiltnisse im Felsuntergrund.

Die Relaxation der Vorspannkabel wurde zwar experimentell bereits ver-
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schiedentlich untersucht, doch sollte bei vorgespannten Mauern, bei welchen
auch das Kriechen des Betons und eventuell des Felsens maBgebend sind, in
einige Kabel ein Dynamometer eingebaut werden, welcher stindig eine
Uberpriifung der bei der Projektierung getroffenen Annahmen erlaubt.

Die statischen Verhaltnisse im Felsuntergrund kénnen am Modell unter-
sucht werden. Dieses sollte allerdings dem tatséchlichen geologischen Aufbau
Rechnung tragen, da die Spannungsverteilung und somit eine eventuelle
Uberbeanspruchung von der Inhomogenitit des Felsens (Schichtung, Kliif-
tung) entscheidend beeinflullit wird. Die Spannungsoptik eignet sich wohl in
den meisten Fillen gut fiir die Abkldrung solcher Fragen.

Werden die oben erwahnten Probleme nur summarisch behandelt, so ist
die Wahl eines groBeren Faktors S, notig, welcher unter Umstéinden die vor-
gespannte Mauer unwirtschaftlich macht.

7. Standimme

Die Berechnung von Stauddmmen ist bekanntlich in erster Linie eine
Stabilitdtsuntersuchung, wobei zwischen Dammschiittung und Untergrund
kein eigentlicher Unterschied gemacht wird. Ist der letztere felsig, so besitzt
er lediglich andere malgebende Materialeigenschaften. Die Berechnung gibt
somit keine nihere Auskunft iiber die Spannungsverteilung im Damm. Sie
betrachtet eine mogliche Rutschfliche, lings welcher die wasserseitige oder
luftseitige Boschung abgleiten konnte, und untersucht das Verhiltnis zwi-
schen den sogenannten bremsenden, das hei3t das Gleiten verhindernden, und
den treibenden, das heiflit das Gleiten fordernden Kriften.

Die ersten sind die lings der Gleitfliche auftretenden Scherfestigkeiten.
Sie setzen sich aus einem Kohisionsanteil und einem Reibungsanteil zusam-
men, welcher vom Winkel der inneren Reibung und vom senkrecht zur Gleit-
fliche auftretenden Druck abhingt.

Die zweiten sind die tatsidchlichen Gewichte der auf der Gleitfliche lasten-
den Dammteile und des Wassers sowie die Erdbebenbelastung.

Samtliche geotechnischen Eigenschaften der Bau- und Untergrundmateria-
lien miissen vor der Projektierung im Laboratorium, eventuell auch an Ver-
suchsschiittungen untersucht und wéihrend des Baues an der Dammschiittung
selber iiberpriift werden.

Da die Raumgewichte im allgemeinen ziemlich genau bestimmt werden
konnen, riithrt die Unsicherheit in der Annahme der treibenden Krifte (welche
das Gleiten férdern) hauptsichlich von der Erdbebenbeurteilung her. Hier
wird eine fehlerhafte Annahme — wie wir noch sehen werden — ein starkes
Abweichen der Werte S* von §,, verursachen.

Wihrend die treibenden Krifte als tatsichliche Werte in die Stabilitéts-
berechnung eingefithrt werden, sind die bremsenden Krifte Grenzwerte,
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Fehlerempfindliche GroBen
P T — Sensibilité a 'erreur
bar Error consequence
Sperrentyp e 1
Type de barrage FE,“Clle & ddter- mit schwachen mit starken
Dam type miner Einfliissen Einfliissen
Ea‘asy to deter- Faibles con- Fortes con-
mine 7 .
séquences séquences
weak strong
Bogensperre
Barrage volite 1. 2 3,45 6
Arch dam
Gewichtsmauer
Barrage poids 1,2 — 4, 5.6
Gravity dam
Vorgespannte Mauer
Barrage précontraint 1,2 3, 4 5.6,7.8
Prestressed dam ‘
Erd- und Steindamm
Digue en terre 1,9 — i 5, 10
Rock- and earthfilldam

1 Wasserlast Charge hydrostaticue Water head
Eigengewicht Poids propre Dead load

2 Betonspannungen Contraintes du héton Stresses in the concrete
Betonfestigkeit Résistance du béton Resistance of the concrete

3 Temperatur Température Temperature

4 Auftrieb Sous-pression Uplift

5 Erdbeben Tremblement de terre Earthquake

6 Felsfestigkeit Résistance du rocher Resistance of the rock

7 Felsbeanspruchung Sollicitations du rocher  Stresses in the rock

8 Kabelrelaxation Relaxation des cables Cable relaxation

9 Reibungswinkel Angle de frottement Friction angle

10 Porenwasserspannung  Pression interstitielle Pore pressure

Kohésion Cohésion Cohesion

das heillt Festigkeiten. Kohédsion und Winkel der inneren Reibung sind mit
den heutigen Priifgerdten relativ leicht zu bestimmen. Fehlerempfindlich ist
dagegen die Beurteilung der lings einer moglichen Gleitfliche wirkenden
Driicke, welche eine Reibung erzeugen kénnen. Es sind dies die sogenannten
Korn-zu-Korn-Driicke, welche als Differenz aus dem von der Auflast erzeugten
Totaldruck und dem inneren Wasserdruck berechnet werden. Der Bestim-
mung dieses sogenannten Porenwasserdruckes, welcher in bindigen Béden
wesentlich groBer als der hydrostatische Auftrieb werden kann, wird bei
den Laboratoriumsversuchen oft zu wenig Aufmerksamkeit geschenkt, sei es,
daf die Priifkorper zu klein sind, sei es, daBl den spdter im Dammkorper
auftretenden Verhéltnissen ungeniigend Rechnung getragen wird.
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Ein erstes Beispiel soll fiir den Fall einer homogenen Boschung die Wich-
tigkeit der Erdbebenfrage erlautern. Fiir kohisionsloses, erdfeuchtes Material
lautet die Sicherheitsformel
cosa—fPBsina
sina+fcosa’

Sy =tge

@ = Winkel der inneren Reibung,
« = Boschungswinkel,
B = Erdbebenkoeffizient.

Fir ¢ = 40° und B = 59, wird zum Beispiel eine Sicherheit von 1,3 ver-
langt; der Boschungswinkel darf dann 30° nicht tibersteigen. Um diese Sicher-
heit zu erschépfen (S* = 1) braucht es entweder einen Fehler in der Bestim-
mung des Reibungswinkels ¢ von 7°, was bei sorgfiltiger Priifung kaum mog-
lich ist, oder einen schon eher denkbaren Fehler von 3° und ein Erdbeben von
129, Beschleunigung. Dies kann bei falscher Beurteilung der Erdbebensituation
eventuell eintreten.

Das zweite Beispiel bezieht sich auf die Wichtigkeit der Porenwasserspan-
nung. Bei fehlender oder geringer Kohision ist die Scherfestigkeit praktisch
proportional zum Korn-zu-Korn-Druck. Betragt nun der Porenwasserdruck
409, des Uberlagerungsdruckes, wurde aber filschlicherweise nur zu 209,
angenommen, so kann der Einflu auf den Sicherheitsfaktor derselbe sein,
wie bei einer Abnahme des Winkels der inneren Reibung von 35° auf 28°,
was wiederum bei einer sorgfiltigen Uberpriifung undenkbar ist.

Zusammenfassung

Die vorstehenden Abschnitte sollen bei den verschiedenen Talsperrentypen
auf die den Sicherheitsfaktor mehr oder weniger stark beeinflussenden Groen
hinweisen. Zum besseren Uberblick geben wir vorstehend eine dreisprachige
Tabelle, welche die charakteristischen GrofBen, ihre MefBbarkeit und ihren
EinfluB auf die Sicherheit des Bauwerkes deutlich macht.

Summary

Chapters 1 to 7 show for different types of dams the influence of the char-
acteristics of the work and of the abutments on safety. The above schema
gives a synopsis of the results.

Résumé

Les chapitres 1 a4 7 indiquent pour divers types de barrage ’influence des
différentes caractéristiques de l’ouvrage et des appuis sur la sécurité. Le
tableau ci-dessus en donne une idée d’ensemble.
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