Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 7 (1964)

Artikel: Remarques relatives au problème de la sécurité des constructions

Autor: Beles, Aurel A.

DOI: https://doi.org/10.5169/seals-7945

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Remarques relatives au problème de la sécurité des constructions

Bemerkungen zur Frage der Bauwerkssicherheit
Observations Relating to the Problem of the Safety of Structures

AUREL A. BELES

Professeur Ingénieur, Membre de l'Académie des Sciences de Roumanie

La plupart des communications présentées au Congrès ont trait en dernier lieu au problème de la sécurité des constructions. Observons d'abord que le problème de la sécurité est le résultat global de 3 étapes qui interviennent dans la réussite d'une construction:

- 1. La conception.
- 2. Le projet comprenant le calcul et la détermination des dimensions.
- 3. L'exécution.

De toutes ces étapes, la seule où peuvent être appliquées les méthodes mathématiques est le calcul et la détermination des dimensions nécessaires, dont le rôle serait d'assurer la résistance et la stabilité de la construction. Cette assurance peut être exprimée par une valeur généralement représentée par un nombre appelé «coefficient de sécurité».

Une définition exacte de ce coefficient est bien compliquée mais comme cette notion est assez familière aux ingénieurs et qu'il existe une riche littérature sur ce problème, je n'entrerai pas dans plus de détails.

Ce que je voudrais rappeler est que cette étape nécessite la connaissance des forces qui agissent et se développent dans les constructions, des propriétés mécaniques des matériaux employés et impose la nécessité de fixer les hypothèses sur le comportement des différentes parties et de l'ensemble de la construction aux sollicitations auxquelles elles sont soumises.

Par la recherche moderne, on s'est efforcé de préciser la valeur et l'action de ces forces, le comportement mécanique des matériaux et celui de l'ensemble de la construction afin de déterminer des lois de plus en plus précises sur le comportement final de la construction. On a cherché à donner à ces lois une forme mathématique permettant de calculer et d'établir les dimensions des constructions et de leurs éléments constitutifs.

Le but final de tous ces efforts est la réalisation de constructions dans la forme la plus économique possible.

Volontairement on s'imagine qu'on obtient ainsi une représentation de

plus en plus conforme à la réalité et l'utilisation d'un appareil mathématique compliqué donne parfois l'illusion d'une sécurité plus grande des constructions.

Cependant ces méthodes mathématiques et la précision du calcul ne permettent pas d'améliorer les hypothèses et de les rendre plus conformes à la réalité. On ne fait souvent que réduire le coefficient de sécurité et en même temps les «réserves cachées» de ce coefficient.

L'appareil mathématique et les méthodes nouvelles de calcul, surtout du calcul électronique, sont d'une grande utilité pour faciliter la réalisation d'un projet, et elles sont même indispensables aujourd'hui pour la solution de certains problèmes des systèmes hyperstatiques, du calcul des coques, des vibrations, etc.

Mais bien souvent ils sont illusoires et même superflus, car les hypothèses admises sont affectées à l'origine même d'une approximation que le calcul ne peut pas améliorer. Cette situation se reflète dans les nombreux ouvrages parus dans toute la littérature technique mondiale sur les accidents survenus dans les constructions. Je trouve utile de préciser quelques-unes des actions qui peuvent intervenir dans le comportement des constructions et dont on ne tient pas ou on ne peut même pas tenir compte toujours dans les calculs. Parmi ces causes je citerai les suivantes:

1. Existence de contraintes initiales

De pareilles contraintes se produisent dans des constructions métalliques à la suite de la soudure. J'ai eu à examiner des constructions où ces contraintes atteignaient 500—600 kg/cm² et des branchements de distributeurs où les contraintes dépassaient même la résistance admissible.

Les constructions préfabriquées en béton armé peuvent être de même sujettes à des contraintes initiales produites pendant le montage à la suite de phénomènes qui interviennent aux assemblages ou par la variation de température produite pendant et après le montage.

La communication présentée par M. A. A. Van Douwen sur une méthode permettant de déterminer les contraintes résiduelles est très intéressante et place le problème de la détermination de ces contraintes sous un nouvel aspect.

2. Erreurs imprévisibles dans les valeurs de certains éléments géométriques utilisés dans le calcul

Il est impossible de prévoir la valeur réelle des encastrements des fondations dans le terrain. De même dans le calcul des cadres l'utilisation de l'axe géométrique au lieu de la fibre moyenne réelle peut donner lieu à des erreurs de 5—10% pour les moments et les efforts tranchants ainsi que je l'ai démontré en 1930.

3. Modalité d'exécution des ouvrages

Les variations des tassements, la suite de l'ordre dans lequel les différentes parties d'un ouvrage sont construites, produisent des contraintes qui sont impossibles à établir par avance et même d'être appréciées.

Dans les cadres étagés, les contraintes produites dans les membrures des cadres sont introduites successivement au fur et à mesure de la réalisation des éléments du cadre contrairement aux hypothèses de calcul qui s'établit en général en considérant la construction sous sa forme finale. Les différences entre les moments fléchissants peuvent atteindre 50% et même plus.

4. Phénomènes de retrait et de fluage

Même dans les constructions métalliques et sous une forme beaucoup plus accentuée dans les constructions en béton armé, le fluage produit des déformations qui peuvent dépasser les déformations obtenues par le calcul, ainsi que l'on montré certaines communications faites à ce Congrès, où l'influence des conditions atmosphériques pendant et après l'exécution a été mise en évidence.

Les coques en béton armé surtout, sont sensibles aux phénomènes de fluage, et déjà en 1937 DISCHINGER note certains accidents survenus dans de pareilles coques. Depuis lors la littérature technique a cité de nombreux cas de déformations ou d'accidents, et un exemple spectaculaire est publié dans le numéro 99 de la revue «Bâtir».

5. Effets de la température

La variation de la température produit des déformations importantes dans les constructions. S'il est possible de saisir dans certains cas l'effet de la température agissant sur l'ensemble d'une construction, il est pratiquement impossible de déterminer les contraintes et les déformations produites par les différences de température qui surviennent à la suite de l'insolation ou du refroidissement partiel. Surtout les coques ont beaucoup à souffrir et il existe de nombreuses ruptures dues à cette cause. J'ai pu mesurer des flèches produites dans certaines coques dépassant plusieurs fois les limites qui sont à la base du calcul.

6. Effets secondaires

Les hypothèses qui sont à la base du calcul ne tiennent et ne peuvent pas tenir compte de certaines influences qui empêchent les déformations ou changent même les aspects des phénomènes. Ainsi les remplissages dans les ossatures métalliques ou en béton armé augmentent la rigidité de l'ensemble qui d'après les indications données au 50e anniversaire du «Deutscher Beton-

Verein» peuvent augmenter de plusieurs dizaines de fois la rigidité de l'ossature initiale.

De même on a pu établir des différences de 20 à 30% dans la valeur des contraintes de poutres de ponts dues à l'action combinée des éléments de la poutre et du tablier dont on ne peut tenir compte dans le calcul initial.

7. Action dynamique des forces

L'action dynamique des forces est introduite dans le calcul en déterminant une force statique qui produit une énergie de déformation égale au travail produit par la force elle-même dans son déplacement. Cette nouvelle force est considérée comme ayant une action statique sur l'ensemble de la construction. Cette méthode représente une approximation assez grossière du phénomène car on ne tient pas compte de la vitesse de propagation de l'effet de la force dans les éléments de la construction. Ainsi un cylindre métallique soumis à une compression lente prend la forme d'un tonneau, tandis que sous l'action d'une force brusque il prend la forme d'un hyperboloïde de révolution.

Le phénomène est beaucoup plus compliqué encore quand les déplacements relatifs des éléments d'une construction sont produits par des forces développées à l'intérieur de la construction, comme c'est le cas des vibrations et surtout des tremblements de terre.

Encore faut-il remarquer qu'on n'est pas encore parvenu à préciser si sous l'action dynamique des forces la ruine d'une construction est causée par l'effet du déplacement, de la vitesse, de l'accélération ou de la variation de celle-ci. Dans ce domaine les opinions sont encore partagées et l'expérience n'a pas mis en évidence le rôle de chacun de ces éléments sur la fissuration ou la destruction d'une construction.

8. Phénomènes rhéologiques

Les caractéristiques des matériaux changent dans le temps et l'équilibre intérieur est soumis par conséquent à des variations continuelles. Ces changements sont surtout accentués pour le terrain, élément sur lequel repose toute construction et pour le béton et spécialement pour le béton précontraint. Des cas très intéressants ont été présentés au Congrès mais jusqu'à présent on n'a pas trouvé de solution convenable pour pouvoir mettre les phénomènes rhéologiques sous une forme accessible au calcul.

9. Corrosion

Dans les constructions métalliques la corrosion peut augmenter les contraintes en réduisant les sections et même les qualités mécaniques du métal, et surtout par l'inégalité de l'action de la corrosion par rapport à l'axe initial des éléments de construction, ce qui a une grande importance pour les barres comprimées. Les effets sont beaucoup plus marqués dans les constructions en béton armé ou par suite de la corrosion des armatures, la résistance du béton aux alentours est aussi réduite, ce qui produit une aggravation de l'action corrosive. Dans une construction en ossature de béton armé, des piliers en béton armé plaqués avec de la pierre ont présenté après 30 années une section des armatures longitudinales réduite de plus de 50% et des étriers partiellement détruits.

Le minaret d'une mosquée, exécuté en béton armé vers 1908 à quelques centaines de mètres du bord de la mer, a vu ses armatures d'un diamètre de 20 mm complètement détruites, en grande partie par l'action corrosive de l'air marin, surtout sur la face dirigée du côté de la mer.

Toutes ces actions, dont il est impossible de tenir compte, même approximativement dans le calcul, contribuent à réduire la sécurité des constructions. C'est ici que la conception et l'exécution jouent le rôle principal; le calcul ne pouvant saisir toutes ces actions, il est raisonnable de maintenir un coefficient de sécurité suffisamment élevé.

Lorsqu'on établit la limite de ruine d'une construction, il faut tenir compte du résultat final de toutes ces actions, ce qui est parfois bien difficile, surtout quand il s'agit de phénomènes et de problèmes liés au calcul de la stabilité élastique.

Actuellement on peut distinguer dans la littérature technique deux tendances pour déterminer la limite de ruine des constructions. Les uns considèrent les contraintes comme l'élément décisif pour la rupture des constructions, les autres attribuent aux déformations la cause de destruction. Je crois que cette séparation est causée par l'ignorance de la loi qui relie la contrainte à la déformation jusqu'au moment de la rupture. Il faut remarquer qu'il s'agit de l'ensemble de la construction où les déformations des différents éléments ont souvent entre elles une influence réciproque et qui ne peut être établie ni par des résultats de laboratoire ni par des essais sur modèles.

C'est aussi pourquoi je trouve que seule l'étude du comportement des constructions existantes permet de donner une image de la réalité. Si les essais sur modèle peuvent donner certaines indications plutôt qualitatives que quantitatives, ils ne permettent pas de fournir des indications suffisantes pour éclaireir nombre d'actions mentionnées plus haut. La grande difficulté réside surtout dans l'impossibilité pratique de reproduire assez exactement les phénomènes réels, de mesurer les contraintes et les déformations sur des constructions existantes et de poursuivre ces mesures sur une période assez longue — quelques années — afin de pouvoir tirer des conclusions valables. Il faut remarquer qu'on doit enregistrer non seulement certains éléments comme les contraintes et les déformations mais aussi simultanément la va-

leur des forces, la température, l'humidité et tous les autres facteurs qui ont une influence sur les constructions. Le nombre réduit de communications présentées au Congrès relativement aux constructions existantes en est la preuve et la difficulté de l'interprétation résulte clairement de ces communications elles-mêmes.

Je crois qu'il serait d'une grande utilité d'organiser une étude systématique sur le comportement des ouvrages, de réunir les observations qui ont été faites jusqu'à présent et de présenter l'interprétation des faits observés.

Un Symposium organisé par l'AIPC pourrait indiquer les méthodes d'observation, les possibilités existantes et les résultats à tirer des relevés obtenus. Il pourrait aussi contribuer à préciser la valeur des hypothèses admises, des calculs utilisés et du rapport réel entre la théorie et la réalité. Il ne faut pas perdre de vue que l'expérience seule est à la base du progrès et que le vrai laboratoire des constructions est la nature elle-même.

Résumé

Par suite du progrès des méthodes de calcul des constructions, il existe une tendance à réduire les coefficients de sécurité. Mais ces méthodes sont basées sur des hypothèses approximatives et ne permettent pas de tenir compte de toutes les causes qui ont une influence sur la sécurité d'une construction. Ces causes sont brièvement analysées et il en résulte la nécessité d'une étude plus approfondie du comportement des constructions existantes.

Zusammenfassung

Als Folge des erzielten Fortschrittes in den Berechnungsmethoden besteht die Tendenz, den Sicherheitskoeffizienten herabzusetzen. Diese Methoden beruhen jedoch auf vereinfachenden Voraussetzungen und erfassen nicht alle die Sicherheit eines Bauwerkes bestimmenden Faktoren. Als Schlußfolgerung der kurzen Analyse dieser Faktoren ergibt sich die Notwendigkeit, das Tragvermögen bereits bestehender Bauwerke noch genauer zu untersuchen.

Summary

The progress made in methods of design has led to a reduction of the safety factor of structures. But these methods are based on approximate hypotheses and do not make it possible to take into consideration all the causes which exert an influence on the safety of a structure. These causes are briefly analysed and show the necessity for making a more thorough study of the behaviour of existing structures.