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Ia8

Calcul des poutres croisées, compte tenu de la torsion
Berechnung von Trdgerrosten unter Beriicksichtigung der Torsion

Calculation of Interconnected Beams, Taking Torsion into Consideration

ROGER LACROIX
Paris

1. Définition des systémes étudiés

La présente note concerne les réseaux formés de deux cours de poutres
croisées (A) et (B), soumis & des charges normales & leur plan, et répondant
aux conditions ci-apres:

— Les poutres des deux cours se croisent a angle droit.

— Les poutres (A), au nombre de m, sont toutes d’égale longueur; elles sont
de section constante, et simplement appuyées a leurs extrémités.

— Les poutres (B), au nombre de n, sont toutes identiques et soumises aux
mémes conditions d’appui; leurs appuis sont d’une part les poutres (A),
sur lesquelles elles sont encastrées, et d’autre part, éventuellement, des
appuis extérieurs, simples ou doubles (encastrements).

— Les poutres (B) ont une rigidité de torsion négligeable.

— Les appuis des n poutres (B) divisent chaque poutre (A) en »n + 1 intervalles
égaux.

Nous désignerons par:

L la longueur d’une poutre (A).

E I la rigidité de flexion d’une poutre (A).

G H la rigidité de torsion d’une poutre (A).

l I’espacement de deux poutres (B) consécutives.

E J la rigidité de flexion d’une poutre (B).

I D’espacement de deux poutres (A) consécutives; !’ est affecté d’un indice
si cet espacement n’est pas constant.

EI,GH
/
EJ /4

n poutres (B)

= Fig. 1.

m poutres(A)
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2. Systémes de charges propres

Le systéme élémentaire, dont la résolution forme la base de la méthode
proposée, est celui qui est constitué d’un cours de poutres (A), réunies par
une seule poutre (B).

En supposant la poutre (B) chargée, chaque poutre (A) forme pour celle-ci
un appui élastique double; la poutre (B) est en effet soumise, de la part de la
poutre (A), & une réaction verticale R proportionnelle & sa fleche v, et & un
couple € proportionnel & la rotation w de la tangente & sa fibre moyenne au
nceud correspondant. Dans le cas ot la poutre (B) est située & mi-portée des
poutres (A), les coefficients de proportionnalité sont:

— pour les réactions verticales:

v L3
S=®-war
— pour les couples:
w L
'=¢-om

A ce cas peut étre ramené immédiatement celui de deux poutres (B) dis-
posées symétriquement par rapport au milieu des poutres (A): en décomposant
les charges appliquées en systémes de charges symétrique et antisymétrique,
les deux poutres (B) prennent des déformations égales, ou opposées, et le
probléme & résoudre est encore celui d’une poutre continue sur appuis élas-
tiques, les élasticités des appuis étant différentes suivant le systéme de charges
considéré, symétrique ou antisymétrique.

Dans le cas d’un nombre quelconque n de poutres (B), cette méthode peut
étre généralisée de la fagon suivante:

Soit une poutre (A), divisée en n + 1 intervalles par n points B,, B,, ... B,,.
On appelle systéme de charges propre relatif aux points B un systéme de char-
ges 41,9, - - ., 4y, , appliquées respectivement en ces points, et tel que les fleches
V1,0, ...,v, en ces mémes points soient proportionnelles aux charges:

h_%B_ ... ._U_g
51 9s 9n

On montre que pour » points B existent n systémes de charges propres
distincts, définis & un coefficient multiplicateur prés, et & chacun desquels
correspond une valeur différente de S1).

1) Voir le mémoire de J. CourBoN et R. Lacroix: «Calcul des réseaux de poutres
croisées.» Ann. des Pts. et Ch. Mai-Juin et Juillet-AotGt 1957. Ce mémoire détaille lo
calcul des coefficients S, valeurs propres de la matrice des coefficients de proportionnalité
des charges et des fleches.
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Dans le cas qui nous occupe, ou les poutres (A) sont de section constante,
et ol les n + 1 intervalles formés par les points B sont égaux, et de longueur /,

les charges propres q,.¢s,, - . . g, sont les multiples d’'une méme charge par les
coefficients:
T . 27w .. nrmw
k, , = 8in— ky , = sin k,,=sin—-
1,r n+1’ 2,7 n+1’ ’ n,r ,n+1’
r prenant successivement les valeurs 1,2,...,n pour chacun des n systémes

de charges propres.
Le coefficient de proportionnalité des charges aux fleches est alors donné
par:

rmw

o % 13 2+cosn+1
r—_— .
q; 6 E1 2(1—00‘.57:_;_1'1)2

Les coefficients k; , n’étant définis qu’a un facteur prés, il est commode de

i=n
les mettre sous une forme normée, c’est-a-dire telle que > k%, =1.
i=1

A

Q:r= ynilsinirﬁ, (1)

En posant nL+1=H et K =221 les coefficients deviennent:

v, 1 2+cosrf
S, =—"=— ; 2
avee T q; K 2(1—cosrf)? (2)
De la méme fagon, un systéme de couples de torsion 7,,7,, ... 7, appliqués
a la poutre (A) sera dit systéme propre si les rotations de torsion w,, w,, . ..,w,

engendrées par ces couples satisfont aux relations:

oy, U ©

Pour une poutre de section constante rigidement encastrée & la torsion &
ses deux extrémités, les coefficients des couples formant chacun des systémes
propres sont identiques aux coefficients ),, définis par la formule (1), et la
constante d’élasticité relative au systéme de rang r s’écrit:

l 1
F"=2G’H 1—cosrf’ (3)

Un systéme de charges (ou de couples de torsion) quelconques P, appliquées
aux points B, B,, ..., B, peut se décomposer en la somme de n systémes de
charges (ou couples de torsion) propres, par:

F=3 1.4, (4)
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les coefficients /I, étant donnés par:

i=n

Hr ziglPi Qir' (5)

Considérons maintenant un réseau comprenant m poutres (A) et n poutres (B)
et supposons les poutres (B,),(B,),...,(B,) soumises respectivement & des
systémes de charges (ou de couples) @, (2)). Qs,- (2)), - - ., @,p+ (D)), systémes ne
différant les uns des autres que par leur intensité, proportionnelle aux coeffi-
cients @);, des systémes propres, définis par la formule (1).

L’équilibre du réseau est réalisé si:

— les réactions verticales des poutres (A) sur les poutres (B),

— les couples de torsion exercés sur les poutres (A) par les poutres (B),

— les fleches des poutres (A),

— les rotations de torsion des poutres (A), au droit de chaque poutre (B), sont
proportionnels aux coefficients @;,.

Toutes les poutres (B) ont alors des déformations affines, et le calcul du
réseau se ramene & celui d’une poutre (B) reposant sur des appuis élastiques
doubles, dont les constantes d’élasticité sont définies par les formules (2) et (3).

Nous avons donc ainsi le moyen de calculer les réactions mutuelles des
poutres (A) et (B), c’est-a-dire la répartition des charges entre les différentes
poutres (A), dans le cas oli un systéme de charges (ou de couples) quelconques
est appliqué au droit des poutres (B). En effet, un systéme quelconque peut
étre décomposé en la somme de » systémes de charges propres, au moyen des
formules (4) et (5).

Si R;;, est la réaction exercée par la poutre (4;) sur la poutre (B,) sous
’action du systéme de charges propres de rang r, la réaction de la poutre (4,)
sur la poutre (B;) sous I’action du systéme de charges réellement appliqué sera:

r=n
Ry = 2 I Ry,.
r=1

Le cas le plus général, ou les charges ne sont pas appliquées au droit des
poutres (B) mais entre celles-ci, peut étre ramené & celui-ci par I’'introduction
des charges équivalentes:

Les réactions mutuelles des poutres (A) et (B), ne dépendant que des fléches
et rotations de torsion des poutres (A) et (B) en leurs points communs, ne sont
pas modifiées en effet si on remplace les charges appliquées au systéme par
des charges situées au droit des poutres (B), pourvu qu’elles engendrent en
ces points les mémes déformations que les charges réellement appliquées. En
d’autres termes, il suffit de remplacer les charges réelles, appliquées en des
points quelconques de la surface du réseau, par des charges équivalentes ainsi
définies:

Les charges équivalentes P, P,, ..., P, a un systéme de charges quelconque
(D)) sont les charges concentrées qui, appliquées aux points B, B,,..., B,
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d’une poutre (A) supposée libre, déterminent en ces points les mémes fleches
et les mémes rotations de torsion que le systéme (3)).

En définitive, le calcul des réactions mutuelles des poutres d’un réseau
soumis & un systéme de charges quelconque se compose des étapes suivantes:

1. Remplacement des charges données par des charges équivalentes, situées
uniquement au droit des poutres (B).

2. Décomposition des charges équivalentes en systémes de charges propres.

. Calcul de la poutre sur appuis élastiques doubles, et des réactions mutuelles

des poutres (A) et (B), pour chaque systéme de charges propres.

4. Composition des réactions obtenues, pour obtenir le résultat cherché, c’est-
a-dire les réactions mutuelles des poutres (A) et (B) sous I’action des charges
appliquées.

w

3. Calcul de la poutre continue sur appuis élastiques doubles

Soit une poutre reposant sur n + 1 appuis élastiquesdoubles 4, 4,, 4,,...,4,,
et formant n travées de longueurs l,,l,,...1, et soit S; et I'; les constantes
d’élasticité d’un appui, définies par:

i Wy
S, ==~ et Fi:J—W—;’ (6)
v; étant I’abaissement de 1’appui supportant une charge R,, et w, sa rotation
sous I’action d’un couple M.

La poutre forme un systéme hyperstatique de degré 27 et la méthode des
travaux virtuels appliquée en pratiquant des coupures de la poutre au milieu
de chaque travée permet de calculer les moments fléchissants et efforts tran-
chants, au droit des coupures, par un systéme linéaire de 2n équations & 2n
inconnues.

Nous croyons cependant préférable de rechercher les couples et les réactions
exercés par les poutres sur leurs appuis, au moyen d’une méthode de relaxation,
bien que le systéme linéaire obtenu soit de 27 + 2 équations & 27 + 2 inconnues.
En effet, on obtient ainsi directement les inconnues cherchées (réactions
mutuelles des poutres (A) et (B)), au moyen d’un systéme d’équations étagées,
a coefficients simples, méme dans le cas d’une poutre d’inertie variable pou-
vant comporter ou non des appuis fixes (articulations ou encastrements).

Considérons la travée A4, ; 4; soumise & un systéme de charges qui don-
nerait lieu, si cette travée était sur appuss fizes et encastrée, a des réactions
d’appui 7;_, et r;, et & des couples exercés par la poutre sur ses appuis, m;_,

et m; (dans le cas d’une poutre d’inertie constante, par exemple, soumise &
. l 12 " 12
une charge uniforme p, r§_1=r;’=p§, mi 1= —Pig» M= +P5

que la rotation de 1’appui A4, est déterminée par les couples exercés sur cet

). En écrivant
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appui par les deux travées adjacentes, et de méme, que sa fléche est propor-
tionnelle & la somme des réactions d’appui de ces deux travées, il vient:

v; —U; V:— V.
_ ! ) 1+1 ! ) 1+1
M, =mi—k;y (wi—_‘“—) k1+1( T '_)
1

li+1 t+1

Vi 1+ —V, , | =,
+md—h0%—4%f4)—h0%d—&%—ﬂ)
1

R, =7+ ]l‘:i+1 (wi _ 'Uil_ vi+1) + ki (“’z‘+1 e ”i+1)

i+1 l'¢+1 li+1
!
+ kiq (w- V; — z+1) + k1+1 ( Yy 'Uz+1)
1+
liva lia 1+1 Liva

.k ( Y ) ( Y —Ui)
i\ @i l
1 1

Mi-i
\ Vitl

i L R i

Ri- R; Riy)

Fig. 2.

Dans ces équations, k; et k; sont les facteurs de rigidité de la travée 4, ; 4;,
supposée symétrique; leurs valeurs sont respectivement:

h=4fJ " M=2fJ

1 1

(7)

pour une poutre d’inertie constante J 2).
En exprimant les déformations en fonction des efforts au moyen des rela-
tions (6), on obtient un systeme linéaire de 2 n + 2 équations & 27 + 2 inconnues,

2) Pour une poutre d’inertie variable, & et £" sont de la forme k = 41?‘]0 aet k' = 2ETJO B.

Pour les poutres & goussets plans ou paraboliques, les valeurs de « et f de méme que les
moments m et m’ figurent dans 'ouvrage de R. GuLpAN: « Rahmentragwerke und Durch-
lauftréger» (Springer-Verlag).
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étagé, chaque équation contenant au plus six inconnues. Dans le cas fréquent
ou toutes les travées et tous les appuis sont identiques, ces équations s’écrivent,
en posant:
kI'=1vy, KT =y, (k+k)S = A
Y M +(1+2y) M, +y' M, —AlR,_{+Al R, , =m]+m;.
(y+y )M —(y+y ) My —2M B+ (1 +4A) IR, —2XI R,y = 1r] +1r;.

(8)

Le tableau ci-aprés donne un exemple du systéme obtenu pour une poutre
comportant trois travées, avec une charge unité disposée sur un appui de rive.

Re | Mot Ry M/l R» Mo/l Rs Ma/L Ze
membre

1423 |~r+y)| =22 |=(+y)| — - - — | =0

—2A 1+y A y’ — - — — =
—2X | y+y | 1442 — -2 |[—=(+y)| — — =

-2 ¥ — 1+2y A y’ =— — =0

—_ — —22 'y-+-'yl 1+42 —_ -2 ~—(y+y’) =

— — —A y’ — 1+2y A y’ =

— — — — -2 y+y 1422 y+vy =1

— — — — —A y’ A L+y =

4. Calcul d’un réseau a I’aide d’une machine électronique

Le programme décrit ci-aprés s’applique au calcul des ponts comportant
des poutres identiques et également espacées, reliées par des entretoises elles-
mémes identiques régulierement espacées. Moyennant une légére modification,
le programme pourrait étre facilement adapté au cas ol les poutres sont de
sections non identiques, et non régulierement espacées.

Le programme établi assure la décomposition des charges données en sys-
témes de charges propres, le calcul de la poutre continue sur appuis doubles
élastiques correspondant a chacun de ces systémes, et la recomposition des
réactions obtenues, pour aboutir finalement aux réactions mutuelles des
poutres sous 1’action des charges appliquées.

Les données & introduire sont:

1. Les caractéristiques du réseau:

— nombre de poutres: m

— nombre d’entretoises: n

— espacement des entretoises: [

— espacement des poutres: U

— rigidités des poutres: EI,GH

— rigidité des entretoises: EJ (et éventuellement les facteurs « et ).
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2. Les caractéristiques du systéeme de charges:

— dans le sens longitudinal: valeurs des charges équivalentes P, 5, ..., P,
appliquées au droit des entretoises.

— dans le sens transversal; valeurs des moments et réactions m;, m;, r;, r;
engendrés par les charges dans les travées supposées encastrées.

Les résultats sont les charges et les couples supportés par les poutres sous
I’effet du systéme de charges appliqué. L’utilisateur du programme peut done
ignorer 1’existence des systémes de charges propres: le seul travail préalable
consiste a rechercher les charges équivalentes P;; ce travail peut d’ailleurs
étre notablement facilité par l’emploi de tableaux donnant directement les
charges P, en fonction des fleches v; prises par la poutre sous ’action des
charges données.

De plus, en donnant successivement toutes les valeurs convenables aux
coefficients définissant les répartitions longitudinale et transversale des charges,
il est aisé, en une seule opération, d’obtenir la surface d’influence de chacune
des réactions mutuelles des poutres.

Le principal avantage du programme, écrit en langage FORTRAN, est
d’étre congu pour des machines de capacité modeste, telles que IBM 1620,
BULL y 30, ou CAB 500.

Le programme réalisé permet de calculer des réseaux comprenant 2 a 20
poutres, et 1 & 10 entretoises, ou pas d’entretoises. Dans ce dernier cas, les
systémes propres sont les termes successifs du développement de la charge en
série de sinus suivant la portée des poutres.

5. Applications aux ponts a poutres sous chaussée en béton

Dans le cas d’un pont & poutres multiples sous chaussée, en béton armé ou
précontraint, la dalle sous chaussée est le plus souvent utilisée comme mem-
brure commune aux poutres et aux entretoises. Les moments d’inertie I et J
des poutres et des entretoises se déterminent en général sans difficulté parti-
culiére.

Pour la rigidité de torsion G H, on distinguera le cas de la poutre formée
d’une dme, avec ou sans talon, de celui de la poutre-caisson. Pour la poutre-
caisson, la rigidité de torsion pourra étre calculée en assimilant la section de la
poutre a celle d’'un tube mince. Dans le cas d’une poutre & ame simple, la
rigidité sera la somme de celles des rectangles qui composent la poutre: dalle,
ame et talon. La rigidité de torsion d’une section rectangulaire de ctés a et b
est de la forme GH=}Gbadv, v étant un coefficient inférieur a 1, tendant
vers 1 lorsque le rapport de b & a croit indéfiniment, et dont les valeurs en
fonction du rapport b/a figurent dans la plupart des traités de résistance des
matériaux. Cependant, pour les rectangles formés par la dalle sous chaussée
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et ’ame de la poutre, il est plus exact de considérer que le rapport b/a est
infini, plutét que de prendre en compte sa valeur exacte, comme on peut s’en
rendre compte par 1’analogie de la membrane.

Enfin, la méthode proposée néglige la raideur des entretoises en torsion.
Cette approximation est admissible en général, car la rigidité de torsion d’une
entretoise est la somme des rigidités de son ame et de sa membrure, et comme
celle-ci est commune aux entretoises et aux poutres, sa raideur de torsion a
déja été prise en compte dans le calcul de la raideur G H des poutres. Le seul
élément que I’on néglige est donc finalement la rigidité de torsion des Ames
des entretoises.

Résumé

La méthode proposée raméne le calcul des réseaux de poutres croisées &
celui d’une poutre continue sur appuis doubles élastiques pour différentes
valeurs des coefficients d’élasticité des appuis.

Le calcul de la poutre continue est conduit par une méthode de relaxation,
qui permet d’aboutir a un systéme d’équations linéaires étagées a coefficients
simples, méme lorsque la poutre est d’inertie variable.

Le programme de calcul & la machine électronique permet d’obtenir les
valeurs des réactions mutuelles des poutres, sans qu’il soit nécessaire de con-
naitre le principe de la méthode de résolution.

Zusammenfassung

Die vorgeschlagene Methode fiihrt die Berechnung von Triigerrosten auf
die Untersuchung eines Durchlauftrigers auf elastisch senk- und drehbaren
Stiitzen zurtick, wobei die Rechnung fiir verschiedene Werte der Senkbarkeit
der Auflager durchzufiihren ist.

Die Berechnung des Durchlauftrigers wird mit Hilfe einer Relaxations-
methode durchgefiihrt, die auf ein System gestaffelter linearer Gleichungen
mit einfachen Koeffizienten fiihrt, auch wenn der Triger ein variables Trig-
heitsmoment aufweist.

Das Rechenprogramm fiir den Elektronenrechner liefert die Werte der
gegenseitigen Triager-Reaktionen, ohne dal das Losungsprinzip bekannt sein
mulbB.

Summary
The method suggested in this paper reduces the calculation of grillages of

interconnected beams to that of a continuous beam on double elastic supports
for different values of the coefficients of elasticity of the supports.
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The calculation of the continuous beam is performed by a relaxation
method, which enables a system of stepped linear equations, with simple
coefficients, to be obtained, even when the beam is of variable inertia.

The programming for the computer makes it possible to obtain the values
for the mutual reactions of the beams, without it being necessary to know the
principle of the method of solution.
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