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Vb2

Verhalten plastischer Gelenke in Stahlbetonbalken

Behaviour of Plastic Hinges in Beinforced Concrete Beams

Le comportement des rotules plastiques dans les poutres en beton arme

M. YAMADA
Prof. Dr.-Ing., Univ. Kobe, Japan

1. Einleitung

Um die Bruchvorgänge in Stahlbetonkonstruktionen abzuklären, müssen
vorerst als Grundlage der Theorie die Formänderungseigenschaften der über
die Elastizitätsgrenze beanspruchten Bauteile, d.h. das Verhalten der plastischen

Gelenke in diesen Bauteilen untersucht werden. Damit wird erst die
Bruchanalyse des ganzen Bauwerkes nach dem modernen Traglastverfahren [1]
ermöglicht. Der Verfasser [2] hat schon früher über das Verhaltenjplastischer
Gelenke in Stahlbetonbalken unter statischem Biegemoment berichtet. In der
vorliegenden Arbeit wird das Verhalten plastischer Gelenke in Stahlbetonbalken

bei bestimmten, wechselseitigen Verdrehungen auf Grund von
Versuchsergebnissen erörtert.

2. Plastische Gelenke in Stahlbetonbalken

Die Entstehung eines ideal plastischen Gelenkes in einem Stahlbetonbalken
unter einfachem Biegemoment in Balkenmitte oder unter Biegemoment und
Querkraft am Balkenende wurde vom Verfasser experimentell bewiesen. Die
Drehfähigkeit des Gelenkes (plastischer Drehwinkel cpp) ist von der
Bewehrungsstärke (ßsfj. — kcß'sti') abhängig, d.h. je größer die Bewehrungsstärke ist,
desto kleiner wird — wie die folgenden Formeln zeigen — seine plastische
Zähigkeit.

Das Streckmoment Ms des Querschnittes mit beidseitiger Bewehrung ist

M,= [ap(p>-fccp>^{l-fez|^ (1)

Die Drehungsgrenze eines plastischen Gelenkes ergibt sich zu

maxipp (2)

2{l-(ßsp-keß'sri')}{2-(ßsHo-

(ßsH--hß'si

a-kcß'sr,')}{2-{ßsi,-kcß'sp')} + (ßsl,-kcß,sp'f /0,056_ ,-\
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_ U{l-(ßs^-kcß'sr,')} 2(ßaH.-keß'y) 1 /0.056_ ,-\
L iß^-wy) +{2-(ßs^kcß'sp')}\[/a-p °'00014^j' <3>

wobei o-j,: Prismenfestigkeit des Betons,
os: Streckspannung der Zugbewehrung,
o's: Streckspannung der Druckbewehrung,
(jl: Zugbewehrungsanteil,
//: Druckbewehrungsanteil,

ßs/i —!-p\ Zugbewehrungsstärke,

ß'/x' —/x': Druckbewehrungsstärke,
ctp

kc: Verhältnis der vorhandenen Spannung zur Streckspannung
der Druckbewehrung,

n: Ort der Druckbewehrung.

In Beton- oder Stahlbetonquerschnitten mit Profilstahlverstärkungen
entsteht ein ähnliches ideal plastisches Gelenk, und die Gleichungen (1), (2) und
(3) sind ebenfalls gültig, wenn die Werte der ProfilstahlVerstärkung in die

Bewehrungswerte umgerechnet werden.
Es stellt sich nun die Frage, welchen Widerstand und welche Zähigkeit

plastische Gelenke bei der Umkehrung des Biegemomentes aufweisen oder was
für ein mechanisches Verhalten die Gelenke bei Wechselbiegebelastungen im
plastischen Bereich zeigen. Hierüber lagen bisher noch keine Versuchsergebnisse

vor. Die Kenntnis der mechanischen Eigenschaften plastischer Gelenke
bei Wechselbiegebelastung mit bestimmter Formänderung ist aber für die

Bruchberechnung eines Bauwerkes nach dem modernen Traglastverfahren
unentbehrlich. Für die elasto-plastische Berechnung eines Tragwerkes unter
Erdbebeneinwirkung muß man z.B. die Zähigkeitseigenschaften der Bauteile

genau erfassen. Dabei stellt der Zähigkeitsfaktor [3] (Ductility factor) — Verhältnis

der gesamten Formänderung zur elastischen Formänderung — ein Maß

für die Bruchsicherheit dar oder er wird anderseits auch als Richtwert für die

Schwingungsberechnung benutzt. Davon ausgehend wird die zweckmäßigste
Methode zur statischen oder dynamischen Bemessung des Bauwerkes mit
vorgegebener Bruchsicherheit festgelegt.

3. Versuche

Die Versuchsbalken (Reihen DF-6/4, DF-4/4 und DF-3/4 in Tabelle 1) sind,
wie Fig. 1 zeigt, beidseitig gleich stark bewehrt und mit zwei symmetrischen
Lasten belastet worden. Die Durchbiegung wurde in Balkenmitte gemessen.
Dieser Versuch erstreckt sich gemäß Tabelle 1 über drei Reihen zur
Untersuchung der Einflüsse zufolge Änderung des Bewehrungsanteils. Jede Reihe
besteht anderseits aus einigen Versuchsbalken zur Untersuchung der Einflüsse,
die sich aus einer Änderung der Formänderungsamplitude ergeben.
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Tabelle 1. Angaben über die Versuchsbalken

Balken

Beton Stahl
Bewehrungs-

stärke
Prismenfestigkeit Zugfestigkeit Beweh¬

rung

rungsanteil

Streckgrenze

des Stahles

r/p kg/cm2 ot,z kg/cm2 .« % er, kg/cm2 ßtri-kcß'srt.'

RC BM 6/4 DF-1
RC BM 6/4 DF-2

RCBM 4/4 DF-1
RC BM 4/4 DF-2
RC BM 4/4 DF-3
RC BM 4/4 DF-4

RC BM 3/4 DF-1
RC BM 3/4 DF-2
RC BM 3/4 DF-3
RC BM 3/4 DF-4

198
179

206
254
181

220

216
272
239
238

22,0
21,6

20,1
26,4
20,4
22,5

25,4
28,3
23,6
23,6

2- 0 13

2- 0 13

3-0 9

3-0 9

3-0 9

3-0 9

2-0 9

2-0 9

2-0 9

2-0 9

1,51

1,51

1,09
1,09
1,09
1,09

0,72
0,72
0,72
0,72

3070
3070

3200
3200
3200
3200

3200
3200
3200
3200

0,170
0,177

0,150
0,137
0,153
0,144

0,107
0,084
0,097
0,097
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—
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Fig. 1. Versuchsbalken.

Verwendete Baustoffe (s. auch Tabelle 1):

Beton: Mischungsverhältnis (nach Gewicht) 1:2,55:3,34 mit Wasserzement¬
faktor 0,6;

Stahl: Rundeisen.

4. Versuchsergebnisse

Die Versuchsergebnisse sind in Fig. 7 (1—10) dargestellt. Daraus ist folgendes

ersichtlich:
Durch Umkehrung des Biegemomentes nach der größten plastischen

Drehung entsteht wieder ein plastisches Gelenk in umgekehrter Richtung (DF-1)
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mit einer Drehungsgrenze, die dem doppelten Amplitudenwert entspricht.
Dabei ergibt sich aber ein etwas niedrigeres Streckmoment Ms; die Biege-
steifigkeit verringert sich gegenüber der erstmaligen Belastung (Bauschinger-
effekt). Bei der Wiederholung der Wechselbiegebelastung wird die Neigung
der Hysteresisschleife allmählich kleiner, während die federnde Formänderung
allmählich vergrößert wird. Die federnde Formänderung bei der größten
Grenzdrehung (DF-1) wird jedoch von derjenigen bei kleineren Amplituden
(DF-2, DF-3, DF-4) nie überschritten.

Bei großen Amplituden ist die Zahl der Lastwechsel bis zum Bruch ziemlich

klein; sie nimmt bei kleineren Amplituden beträchtlich zu. Die Hysteresisschleife

ist visko-elastisch (Fig. 2) und wird unmittelbar vor dem Bruch
gleitelastisch (Fig. 3).

Streckmoment: Ms

Rissmoment : MR

h-*?
M

Fig. 2. Hysteresisschleife (visko-elastisch). Fig. 3. Hysteresisschleife (gloit-elastisch).

Abschließend soll noch die Beziehung zwischen der Formänderungsamplitude

cpp und der Lastwechselzahl N untersucht werden. In Fig. 4 ist die gesamte

aufgewendete Energie der Hysteresisschleife "' in Funktion der Last-
U el

wechselzahl N aufgetragen. Würde der Bruch durch die gesamte aufgewendete
Energie der Hysteresisschleife verursacht, müßte der Bruch bei gleichen
Querschnitten auf einer Parallelen zur Abszisse liegen. Wie Fig. 4 zeigt, ist diese

Hypothese falsch.
Eine bessere Übereinstimmung mit den Versuchen ergibt sich, unter der

Voraussetzung, daß der Bruch eine Funktion der gesamten aufgewendeten
Beschädigungsenergie (schraffierte Fläche in Fig. 5) isfc.Die Bruchbedingung
lautet dann

2{\(K2cpp)(2cpp)}N k, (4)

und es folgt hieraus Ntpv K (konstant). (5)

Fig. 6 stellt die Beziehung zwischen log<pp und logiV dar. Die Neigung
jeder Versuchsreihe beträgt ca. — \. Diese Bruchhypothese trifft für plastische
Zug-, Bruch-, Wechselbelastung von Stahl gut zu und ergibt auch bei Stahlbeton

— trotz der Sprödigkeit des Materials — noch eine ziemlich gute
Übereinstimmung mit den Versuchswerten.
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Fig. 4. Aufgespeicherte Energie durch die
Hysteresisschleife.
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Fig. 5. Beschädigungsenergie.
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Fig. 6. Plastische Drehamplitude tpp — Lastspielzahl N.

Die Konstante k beim Stahlbetonquerschnitt ergibt sich aus Gleichung (2),
(3) und (5) zu

K lmaxiyj maxtp|. (6)

Daraus folgt

N max <PP

9%
(7)

wobei maxojj, aus Gleichung (2) oder (3) entnommen wird.
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Fig. 7. Versuchsergebnisse.
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Fig. 8. Vergleich der Versuchsergebnisse.
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Zusammenfassung

Auf Grund von Versuchsergebnissen wird das Verhalten plastischer Gelenke
in Stahlbetonbalken unter konstanten wechselseitigen Verdrehungen untersucht.

Die Hysteresisschleife ist dabei visko-elastisch. Die Beziehung zwischen

Formänderungsamplitude cpp und Lastwechselzahl N stimmt mit der gesamten
aufgewendeten Beschädigungsenergie Gleichung (5) und (7) ziemlich gut
überein (Fig. 6).

Summary

The behaviour of plastic hinges in reinforced concrete beams under constant
reversal of moments was studied on the basis of experimental results. Under
these conditions the hysteresis loop is visco-elastic. The relationship between
the deformation amplitude tpp and the number of stress reversals N is in fairly
good agreement (fig. 6) with the total stored damage energy Eqs. (5) and (7)

employed.

Resume

A la lumiere de resultats d'essais, l'auteur etudie le comportement des

rotules plastiques dans les poutres en beton arme soumises ä des flexions
alterndes constantes. Le cycle d'hysteresis est visco-elastique. Le rapport entre
1'amplitude des deformations cpp et le nombre d'alternances N Concorde de
facon assez satisfaisante avec 1 'expression qui en est donnee dans les equations
(5) et (7) de l'energie totale d'alteration en jeu (fig. 6).
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