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IVb1

Methods of Safety Analysis of Highway Bridges
Mcéthodes pour 1’étude de la sécurité des ponts-routes

Methoden fiir die Untersuchung der Sicherheit von Strafenbriicken

ALFRED M. FREUDENTHAL
Columbia University, New York

1. Introduction

The interpretation of the safety factor used in the design of engineering
structures as a multiplier to compensate for the expected variations of the
acting loads and of the carrying capacity of the considered structure, as well
as for unavoidable shortcomings in design and construction is gradually
gaining admission into design specifications, mainly in the form of ‘“load-
factors’’. There is, however, considerable reluctance to accept the consequence
of this re-interpretation and to admit, at least for important structures,
“‘safety analysis’’ as an integral part of the structural analysis, based on the
relation between safety factor and probability of structural failure or probabi-
lity of functional unserviceability, depending on the definition of the critical
condition with respect to which the ‘“‘safety’’ has to be established. Most
likely this is due to the reluctance of the profession to discuss the possibility
of structural failure and its probability with the same rational detachment
as that of other possible types of accidents. It is not generally understood that
the introduction of the probability of structural failure into the discussion of
structural safety does not imply an unjustified attempt to lower the present
safety standards, but simply expresses the recognition of the fact that no
other rational measure of such safety exists and that, therefore, the level of
structural safety implicit in the working stresses or load factors of current
conventional specifications is actually unknown.

Since all assumptions of design parameters are based on extrapolations to
values so unlikely that they are far beyond the range of actual observation,
the risk of failure (or of unserviceability) due to this inherent uncertainty in
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the assumptions can never be completely eliminated; it may, however, be
reduced to an ‘“‘acceptable’’ very low level, the numerical specification of
which removes the associated safety factor from the realm of irrational guess-
work to that of rational probability analysis. The fact that, for instance, a
“minimum’’ strength value defined as the smallest value obtained in samples
of 4 specimens, or a “maximum’’ load value defined as the largest value
obtained in 99 observations are associated, respectively, with a chance of one
in five of the strength not being attained or of one in a hundred of the load
being exceeded makes it impossible to deal with the concept of structural
safety on any other than on a probability basis. Methods of safety analysis
for simple structures established on this basis have been proposed by various
investigators, including the present author [1]. However, most of these methods
not only introduce a number of restrictive assumptions, but also disregard the
effect of the service life of the structure on its probability of failure and on
the associated safety factor. The present approach attempts to eliminate those
shortcomings, which particularly affect the safety analysis of structures
subject to moving composite loading, of which highway bridges represent the
most important example.

2. The Safety Factor as a Statistical Variable

One feature of the new approach to safety analysis is the consideration of
the safety factor v as a statistical variable rather than as a definite number.
The central problem in safety analysis is therefore the development of the

frequency-distribution p(v) or cumulative distribution P (v)=[p(v)dv from
0

the distribution functions, p,(S), of the load-intensity S over the range of

operating conditions, and, p, (R), of the carrying capacity or ‘resistance’’ B

of the structure over the range of variation of the relevant material proper-

ties and the effects of geometry of the structural parts and connections.
Defining the safety factor as the ratio

v= RIS (2.1)
the distribution p (v) is defined as the distribution of a quotient of two statisti-
cal variables R and S. Considering that

R=vS and dR/dv=2S, (2.2)

the distribution
P (v S)pa (S)(d Rldv)dvd S = p, (v S)py (S) Sdvd S. (2.3)
is the joint distribution p (v, S) of the quotient v and the variable S. The

“marginal’’ distribution of (2.3), obtained by integrating over 0 < S<o0 is
the distribution of the quotient v alone
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V) =fSp1 (v S) 5 (S)d S (2.4)

and the associated cumulative distribution
=Ofp(v]dv Ofof (v S) py (S)d Sdv. (2.5)
Changing the order of the integration in eq. (2.5) the expression is obtained [2]
Ofpl (v 8) py (S)d S =0f1P1 (vS)d P, (2.6)

which represents the relation between P (v) and the known distribution func-
tions of R and S. The probability P (1) of a value v<1 or of R < S expresses
directly the probability of failure Pj.

Eq. (2.6) can be evaluated either directly or by numerical integration,
depending on the assumed form of the functions P, (R) and P,(S). Thus of
the asymptotic extremal distributions [3] which have been found to repro-
duce strength test results and observations of high load intensities quite well

P,(R) = 1—exp[—(R/R)*], (2.7)

with R> 0, PI(R)=(1—1/e) at the modal value R, and ap=m/c(In R) V6,
where o denotes the standard deviation, represents the (asymptotic) distri-
bution of smallest values R, and

P, (8) = exp[—(8/8)~] (2.8)

with §>0, P,(S)=1/e at the modal value § and «g=m/o (In S) V6, represents
the (asymptotic) distribution of largest values S. Introducing the auxiliary
variable P, (S)=y and the ratio between the modal values v,= R/S, eq. (2.6)
is transformed into

P ) =0f1{1—exp [_(%?)“”“dpz - l—(jexp [- (i)ak(—-ln y)“"ﬂ/"‘s] dy. (2.9)

The integral on the right-hand side of eq. (2.9) must be numerically evalu-
ated to obtain the probability function P (v) and the probability density of
the safety factor p(v)=d P (v)/dv. The probability of failure P,= P (v) for
v=1 is, according to eq. (2.9),

1
Pp=P(1) = l—OfeXP [(—vo) 2 (—Iny)=>rs]dy (2.10)

and is thus directly related to the ratio v,, which might be considered a “‘cen-
tral”’ safety factor based on the modes R and S of the distributions p, (R)
and p,(8S), and the exponents ap and ag, that are inversely proportional to
the standard deviations ¢ (In R) and o (In S), respectively. The probability of
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failure P, refers to a single application of the (statistically variable) load
intensity S to any of a large number of nominally identical structures or
structural parts of (statistically variable) resistance E.

Fig. 1 presents the results of the numerical evaluation of eq. (2.10) for
several ratios og/S and og/R which clearly illustrates the dependence of the
probability of failure on the selection of v, and the range of variation of §
and R [4]. The fact that the values of v, associated with low probabilities of
failure are much higher than the conventional safety factors is due to the
selected design basis of the modal or most likely values S and R rather than
the conventional “maximum’’ and “minimum’’ values.

If the structure is designed for a constant maximum load 8,,,,=S =49
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Fig. 1 Relation of “‘central” safety factor vo =171’/S' and probability of failure Pg.
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Fig. 2. Relation of “central’ safety factor vo:.é/é and probability of failure Pr.
(log-normal distributions.)
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rather than for a statistically variable load-intensity,«g— 00 ; therefore accord-
ing to eq. (2.10)
Pp =P (1) = 1—exp(—vy) 2, (2.11)

where vo= R[S, -
A particularly simple distribution of v arises when both R and § are
logarithmic-normally distributed

(2.12)

loge [ (log R —log R)2]
p, (R) = ———exp| —

P1(5) dr R V2n P 26%

with log R =log R where Risthe median of R at P (R)=0.5,and 8, =o (log R) =
=1/0.4341og[1 +v%), where vy = (o/R) is the coefficient of variation of R, and

(2.13)

oo Q)2
loge ox [_(1ogS log 8S)

§) =8¢

with log S =log S, where S is the median of S at F, (S)=0.5, and dg=o0c(log S)=
=1/0.4341og (1 +v%), where vg=(0g/S) is the coefficient of variation of S.
Writing eq. (2.1) in the form

logv =log R—log S (2.1a)

it is clear that when (log R) and (log S) are normally distributed their difference
logv is also normally distributed with mean log R —log S =log (R/S)=logv,
and standard deviation 8 = /8% + 8%, where v, represents a central safety factor
based on the medians. Introducing the reduced variate y = —log( ) the distri-
bution p(v) and function P (v) can be plotted directly from Normal tables;
the reduced variate corresponding to logv=0 or Pr=P (1) is y,= llog (l)

so that Pp=P (y,) can be read off. Fig. 2 presents the relations Py (v,) for
various ratios ( oS/S ) and (op/R) [4].

3. The Influence of Service Life

The effect of the anticipated service life of a structure on its safety arises
from the dependence on the service life of the distribution of extreme load-
intensities produced either by random configurations of composite loads, as in
long-span highway bridges, or by the random application of one load-type of
statistically variable intensity, as in short-span highway bridges or bridge-
elements, airplane wings and other structure subject to gust-loads, or in
flood-protection dams. This dependence is most expediently expressed by
introducing the concept of the ‘‘recurrence period’’ 7'(S) of a specified or
higher load intensity in relation to the anticipated service life of the structure.



660 ALFRED M. FREUDENTHAL IVb 1

For structures subject to a non-configurational loading of statistically variable
intensity S, recurrence periods are derived from the observed distribution
function of load intensities p (S) on the basis of the relation

T(8) = 1/[1- P(8)], (3.1)

where 7'(8) is expressed in terms of the number of “observations’, i.e., of
load applications expected between occurrences of stress-intensities equal to
or exceeding S. Since, however, the application of a specific load intensity = S
will produce failure only if it coincides with the condition 8> R or v <1, the
“recurrence period’’ of failure 7'y is identical with the recurrence period of
values v<1 or

T,=Tw<1)=1/P(l)=1/Pp, (3.2)

expressed in terms of the number of load applications of variable intensity S
to any of the large number of nominally identical structures or parts, of which
the considered structure is one. Since, in general, p (S) is not derived from all
load-observations, but only of observations of “extremal’’ intensity, such as
the highest intensity observed in groups of 10 (highest 10 percent), 100 (highest
1 percent) or 365 (highest, per year, of daily observations), the number of
load applications is only that of such “‘extremal’’ loads, rather than of all
load-intensities.

The large differences in the factors v, required to produce the same values
Py and T, arising from the assumptions of extremal or of logarithmic normal
distributions of R and S (see figs. 1 and 2) should be considered in the light
of the fact that logarithmic-normal distributions, when they are applicable,
usually represent all observations, while extremal distributions, as their name
suggests, represent only the extreme (largest or smallest) observations out of
rather large samples of observations. They will, therefore, be characterized
by much narrower ranges of variation than comparable logarithmic-normal
distributions.

With a recurrence period of failure in terms of number of load applications
determined from eq. (3.2) and figs. 1 or 2, the probability of failure Py (L)
during the anticipated service life L of the structure associated with n load
applications (which do not produce fatigue effects) per unit of life can be
expressed by the Poisson distribution

Pgp(L) =1—exp(—Ln|Tg) (3.3)

since the probability of failure of any adequately designed structure can
obviously be considered a ‘‘rare event’’. Thus the probability of “survival’’
[ (L) during the life of the structure can be expressed by the straightline semi-
logarithmic relation

Inl(L) = In[1— Py (L)] = 2.3026log (1 — Px(L)] = —(n L|Ty). (3.4)
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Since the population sizes of structures of service life L, to which eq. (3.4)
refers, are usually quite limited, it appears that the specification of Py (L)~10-1
will ensure adequate safety. Thus according to eq. (3.4) 2.30Tp~22n L
where n for bridge-structures depends on the density of the traffic. Assuming
that the passage of a single vehicle is equivalent to a single load application,
and that an extremal distribution represents the load-intensities of the heaviest
five percent of vehicles with a ratio 05/8=0.10, while the low end of the
distribution of the resistance is represented by an extremal distribution with
0r/R=0.10, the relation between P, and v, can be read off fig. 1. With an
assumed medium-heavy traffic density on a highway bridge of 5000 vehicles
per day per lane or roughly N =2 x 108 vehicles per year, of which the heaviest
one-twentieth only is counted so that n =105, the recurrence period of failure
will be roughly 105 L with respect to load application; with L =25 years this
is associated with a safety factor based on R and § of v,=4.2, which would
represent the safety-factor to be applied to short-span structures and struc-
tural parts of medium-heavily travelled highway bridges the critical load of
which is represented by a single heavy vehicle of modal weight S.

It is interesting to use the safety analysis for comparison of the above
safety factor with the factor that would be required to design a medium or
long-span girder of a bridge the critical load of which is represented by sequen-
ces of r heavy vehicles; their percentage in the total number is, as before,
5 percent.

The probability of occurrence of such sequences can be evaluated on the
basis of the theory of runs [5]. The expected number, per year, of runs of
length r of heavy vehicles within a long sequence of n>r vehicles is given by

A(r)~N(1-p)p", (3.5)

where N is the total number of vehicles per year and p the expected percentage
of heavy vehicles. With N =2 x 108 and p=0.05

A(r) = 1.8 108 " (3.6)

the mean recurrence time of such runs 7'(r)=N/A(r)=1.11p~". For rather
unlikely and therefore not too short runs the probability of exactly = runs of
length r is governed by the Poisson distribution, so that

p(x) = e O (r)]7]2! (3.7)
Hence the probability of at least one run of such length
Przl)=1-p(0)=1—e20, (3.8)

A bridge span accommodating 6 heavy vehicles on one lane would be
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critically loaded by a sequence of » =6 such vehicles; its recurrence time, under
the above assumptions, is 7' (6)=71x 10® which, with N =2 X 108, represents

35.5 years. The expected number of such runs during a service life of L =25

years being A(r) =%=O.7l, the chance of at least one such run during this

life is as high as 1 —e%1=0.51. Hence the full heavy vehicle sequence must
be considered as the critical (maximum) design load, although the probability
of occurrence of an individual heavy vehicle is only p=0.05. The expected
load intensity of a single or a very small number of occurrences of a sequence
of 6 heavy vehicles is closely enough represented by the mode S of the distri-
bution of single vehicle loads, considering that the average load intensity
arising from simultaneous action of r vehicles has a fairly normal distribution
and a much narrower range of variation [standard deviation (¢/Vr)] than the
distribution p (S) of the individual heavy vehicle loads (central limit theorem).
Since the maximum load intensity S, ~ S can be expected to occur not
more than a few times during the service life (n L < 10), the recurrence period
of failure in terms of these repetitions for Py (L)~ 10-! as before is roughly
Tw ~90 and therefore P, ~ 1072, with an associated safety factor for cg=0
and op/R=0.10 according to fig. 1 of yo=1.4.

The comparison of v, for the short-span and medium-span structural parts
of the considered highway-bridge suggests that for the same design-load
intensity S the specific resistance R provided in the short-span structural

parts should be about ‘11—'42:=3 times higher than that for the medium-span

structure. Alternatively, if the resistance analysis is based on uniform values
of material resistance the design load intensity of the medium-span structure
can be reduced by a factor of 3 in comparison to that of the short span parts,
disregarding the effect of impact which may further increase the difference,
as well as the fact that the ratio o /R is likely to decrease with increasing size
of the structural section because of the increasing number of elements making
up the section.

For long-span structures sequences of heavy vehicles occupying the whole
span will have recurrence times several order of magnitude higher than the
anticipated service life. In this case the maximum load is represented by a
vehicle sequence shorter than that filling the whole span, with recurrence
period of a length comparable to the service life. The average load-intensity is
therefore further reduced in a ratio roughly equal to the ratio of sequence
length and span, if the relatively small effect of the weight of light vehicles
filling the remainder of the span is neglected. Thus, for a variety of spans the
decrease of design load intensity with span can be evaluated.

It is implied that the estimated recurrence times of heavy vehicle sequences
are determined only by the probabilities of “‘runs’’ of such vehicles, indepen-
dently of their spacing, while in reality the average spacing in free travel,
which is a function of speed, may be so high as to increase the length of the
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critical sequence far beyond the length of the span it would occupy at rest
or in congested slow travel [6]. To correct for this effect it would be necessary
to consider the probability of occupancy of a span of given length by the »
vehicles in the ‘“‘runs’’ on the basis of the average number of such vehicles
on the span in uncongested travel. However, there are so many non-statistical
effects that may cause close spacing (‘‘bunching’’) such as repairs, traffic
congestion, etc., that the probabilities of spacing, derived statistically may
considerably overestimate the actual recurrence time.
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Summary

The presented method of safety analysis illustrated by its application to
highway bridges demonstrates the significance of the anticipated traffic density
and service life as well as that of a uniform probability of failure in the estab-
lishment of the basis for designs of balanced safety. They also show that the
current practice of specifying design loads or load factors independently of
working stresses will, in general, not lead to structures of uniform safety.

Résumé

La méthode de détermination de la sécurité qui est ici exposée, avec ap-
plication aux ponts-routes, met en évidence l'importance de la densité du
trafic a prévoir, de la durée de vie de 1’ouvrage, ainsi que d’une probabilité
uniforme de rupture, pour 1’étude d’un projet impliquant une sécurité ho-
mogene.

L’auteur montre également que la pratique courante consistant & fixer des
charges de service ou des coefficients de charge indépendants des taux de tra-
vail ne permet pas, en général, d’obtenir des ouvrages offrant une sécurié
uniforme.
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Zusammenfassung

Die dargestellten Methoden zur Bestimmung der Sicherheit mit Anwendung
auf Stralenbriicken zeigen die Bedeutung der zu erwartenden Verkehrs-
dichte und Lebensdauer wie auch diejenige einer gleichméBigen Bruchwahr-
scheinlichkeit bei Aufstellung von Bemessungsgrundlagen fiir Konstruktionen
mit ausgeglichener Sicherheit.

Sie zeigen auch, dafl die iibliche Praxis der Annahme von Normenlasten
oder von Lastfaktoren unabhingig von den Materialbeanspruchungen im all-
gemeinen nicht zu einer Konstruktion gleichméBiger Sicherheit fiihrt.
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