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IVb1

Methods of Safety Analysis of Highway Bridges
Mcéthodes pour 1’étude de la sécurité des ponts-routes

Methoden fiir die Untersuchung der Sicherheit von Strafenbriicken

ALFRED M. FREUDENTHAL
Columbia University, New York

1. Introduction

The interpretation of the safety factor used in the design of engineering
structures as a multiplier to compensate for the expected variations of the
acting loads and of the carrying capacity of the considered structure, as well
as for unavoidable shortcomings in design and construction is gradually
gaining admission into design specifications, mainly in the form of ‘“load-
factors’’. There is, however, considerable reluctance to accept the consequence
of this re-interpretation and to admit, at least for important structures,
“‘safety analysis’’ as an integral part of the structural analysis, based on the
relation between safety factor and probability of structural failure or probabi-
lity of functional unserviceability, depending on the definition of the critical
condition with respect to which the ‘“‘safety’’ has to be established. Most
likely this is due to the reluctance of the profession to discuss the possibility
of structural failure and its probability with the same rational detachment
as that of other possible types of accidents. It is not generally understood that
the introduction of the probability of structural failure into the discussion of
structural safety does not imply an unjustified attempt to lower the present
safety standards, but simply expresses the recognition of the fact that no
other rational measure of such safety exists and that, therefore, the level of
structural safety implicit in the working stresses or load factors of current
conventional specifications is actually unknown.

Since all assumptions of design parameters are based on extrapolations to
values so unlikely that they are far beyond the range of actual observation,
the risk of failure (or of unserviceability) due to this inherent uncertainty in
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the assumptions can never be completely eliminated; it may, however, be
reduced to an ‘“‘acceptable’’ very low level, the numerical specification of
which removes the associated safety factor from the realm of irrational guess-
work to that of rational probability analysis. The fact that, for instance, a
“minimum’’ strength value defined as the smallest value obtained in samples
of 4 specimens, or a “maximum’’ load value defined as the largest value
obtained in 99 observations are associated, respectively, with a chance of one
in five of the strength not being attained or of one in a hundred of the load
being exceeded makes it impossible to deal with the concept of structural
safety on any other than on a probability basis. Methods of safety analysis
for simple structures established on this basis have been proposed by various
investigators, including the present author [1]. However, most of these methods
not only introduce a number of restrictive assumptions, but also disregard the
effect of the service life of the structure on its probability of failure and on
the associated safety factor. The present approach attempts to eliminate those
shortcomings, which particularly affect the safety analysis of structures
subject to moving composite loading, of which highway bridges represent the
most important example.

2. The Safety Factor as a Statistical Variable

One feature of the new approach to safety analysis is the consideration of
the safety factor v as a statistical variable rather than as a definite number.
The central problem in safety analysis is therefore the development of the

frequency-distribution p(v) or cumulative distribution P (v)=[p(v)dv from
0

the distribution functions, p,(S), of the load-intensity S over the range of

operating conditions, and, p, (R), of the carrying capacity or ‘resistance’’ B

of the structure over the range of variation of the relevant material proper-

ties and the effects of geometry of the structural parts and connections.
Defining the safety factor as the ratio

v= RIS (2.1)
the distribution p (v) is defined as the distribution of a quotient of two statisti-
cal variables R and S. Considering that

R=vS and dR/dv=2S, (2.2)

the distribution
P (v S)pa (S)(d Rldv)dvd S = p, (v S)py (S) Sdvd S. (2.3)
is the joint distribution p (v, S) of the quotient v and the variable S. The

“marginal’’ distribution of (2.3), obtained by integrating over 0 < S<o0 is
the distribution of the quotient v alone
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V) =fSp1 (v S) 5 (S)d S (2.4)

and the associated cumulative distribution
=Ofp(v]dv Ofof (v S) py (S)d Sdv. (2.5)
Changing the order of the integration in eq. (2.5) the expression is obtained [2]
Ofpl (v 8) py (S)d S =0f1P1 (vS)d P, (2.6)

which represents the relation between P (v) and the known distribution func-
tions of R and S. The probability P (1) of a value v<1 or of R < S expresses
directly the probability of failure Pj.

Eq. (2.6) can be evaluated either directly or by numerical integration,
depending on the assumed form of the functions P, (R) and P,(S). Thus of
the asymptotic extremal distributions [3] which have been found to repro-
duce strength test results and observations of high load intensities quite well

P,(R) = 1—exp[—(R/R)*], (2.7)

with R> 0, PI(R)=(1—1/e) at the modal value R, and ap=m/c(In R) V6,
where o denotes the standard deviation, represents the (asymptotic) distri-
bution of smallest values R, and

P, (8) = exp[—(8/8)~] (2.8)

with §>0, P,(S)=1/e at the modal value § and «g=m/o (In S) V6, represents
the (asymptotic) distribution of largest values S. Introducing the auxiliary
variable P, (S)=y and the ratio between the modal values v,= R/S, eq. (2.6)
is transformed into

P ) =0f1{1—exp [_(%?)“”“dpz - l—(jexp [- (i)ak(—-ln y)“"ﬂ/"‘s] dy. (2.9)

The integral on the right-hand side of eq. (2.9) must be numerically evalu-
ated to obtain the probability function P (v) and the probability density of
the safety factor p(v)=d P (v)/dv. The probability of failure P,= P (v) for
v=1 is, according to eq. (2.9),

1
Pp=P(1) = l—OfeXP [(—vo) 2 (—Iny)=>rs]dy (2.10)

and is thus directly related to the ratio v,, which might be considered a “‘cen-
tral”’ safety factor based on the modes R and S of the distributions p, (R)
and p,(8S), and the exponents ap and ag, that are inversely proportional to
the standard deviations ¢ (In R) and o (In S), respectively. The probability of



658 ALFRED M. FREUDENTHAL IVb 1

failure P, refers to a single application of the (statistically variable) load
intensity S to any of a large number of nominally identical structures or
structural parts of (statistically variable) resistance E.

Fig. 1 presents the results of the numerical evaluation of eq. (2.10) for
several ratios og/S and og/R which clearly illustrates the dependence of the
probability of failure on the selection of v, and the range of variation of §
and R [4]. The fact that the values of v, associated with low probabilities of
failure are much higher than the conventional safety factors is due to the
selected design basis of the modal or most likely values S and R rather than
the conventional “maximum’’ and “minimum’’ values.

If the structure is designed for a constant maximum load 8,,,,=S =49

v Bz —
P/ UNDZ o et ==
n* // //A/ 9?4///
///
/2 /////2?/
g ¢ W b 2 v |wy
7 // A% - - ~ -
% (1) 6g/S=0.00 cx/R=0.05 (7) 0g/S=0.20 op/R=0.10
2 % (2) =0.10 =0.05 (8) =0.10 =0.15
/ (3) =0.00 =0.10 (9) =0.20 =0.15
o\ (4) =0.10 =0.10 (10) =0.30 =0.05
(5) =0.00 =0.15 (11) =0.30 =0.10
A () =0.20 =0.05 (12) =0.30 =0.15

Fig. 1 Relation of “‘central” safety factor vo =171’/S' and probability of failure Pg.
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Fig. 2. Relation of “central’ safety factor vo:.é/é and probability of failure Pr.
(log-normal distributions.)
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rather than for a statistically variable load-intensity,«g— 00 ; therefore accord-
ing to eq. (2.10)
Pp =P (1) = 1—exp(—vy) 2, (2.11)

where vo= R[S, -
A particularly simple distribution of v arises when both R and § are
logarithmic-normally distributed

(2.12)

loge [ (log R —log R)2]
p, (R) = ———exp| —

P1(5) dr R V2n P 26%

with log R =log R where Risthe median of R at P (R)=0.5,and 8, =o (log R) =
=1/0.4341og[1 +v%), where vy = (o/R) is the coefficient of variation of R, and

(2.13)

oo Q)2
loge ox [_(1ogS log 8S)

§) =8¢

with log S =log S, where S is the median of S at F, (S)=0.5, and dg=o0c(log S)=
=1/0.4341og (1 +v%), where vg=(0g/S) is the coefficient of variation of S.
Writing eq. (2.1) in the form

logv =log R—log S (2.1a)

it is clear that when (log R) and (log S) are normally distributed their difference
logv is also normally distributed with mean log R —log S =log (R/S)=logv,
and standard deviation 8 = /8% + 8%, where v, represents a central safety factor
based on the medians. Introducing the reduced variate y = —log( ) the distri-
bution p(v) and function P (v) can be plotted directly from Normal tables;
the reduced variate corresponding to logv=0 or Pr=P (1) is y,= llog (l)

so that Pp=P (y,) can be read off. Fig. 2 presents the relations Py (v,) for
various ratios ( oS/S ) and (op/R) [4].

3. The Influence of Service Life

The effect of the anticipated service life of a structure on its safety arises
from the dependence on the service life of the distribution of extreme load-
intensities produced either by random configurations of composite loads, as in
long-span highway bridges, or by the random application of one load-type of
statistically variable intensity, as in short-span highway bridges or bridge-
elements, airplane wings and other structure subject to gust-loads, or in
flood-protection dams. This dependence is most expediently expressed by
introducing the concept of the ‘‘recurrence period’’ 7'(S) of a specified or
higher load intensity in relation to the anticipated service life of the structure.
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For structures subject to a non-configurational loading of statistically variable
intensity S, recurrence periods are derived from the observed distribution
function of load intensities p (S) on the basis of the relation

T(8) = 1/[1- P(8)], (3.1)

where 7'(8) is expressed in terms of the number of “observations’, i.e., of
load applications expected between occurrences of stress-intensities equal to
or exceeding S. Since, however, the application of a specific load intensity = S
will produce failure only if it coincides with the condition 8> R or v <1, the
“recurrence period’’ of failure 7'y is identical with the recurrence period of
values v<1 or

T,=Tw<1)=1/P(l)=1/Pp, (3.2)

expressed in terms of the number of load applications of variable intensity S
to any of the large number of nominally identical structures or parts, of which
the considered structure is one. Since, in general, p (S) is not derived from all
load-observations, but only of observations of “extremal’’ intensity, such as
the highest intensity observed in groups of 10 (highest 10 percent), 100 (highest
1 percent) or 365 (highest, per year, of daily observations), the number of
load applications is only that of such “‘extremal’’ loads, rather than of all
load-intensities.

The large differences in the factors v, required to produce the same values
Py and T, arising from the assumptions of extremal or of logarithmic normal
distributions of R and S (see figs. 1 and 2) should be considered in the light
of the fact that logarithmic-normal distributions, when they are applicable,
usually represent all observations, while extremal distributions, as their name
suggests, represent only the extreme (largest or smallest) observations out of
rather large samples of observations. They will, therefore, be characterized
by much narrower ranges of variation than comparable logarithmic-normal
distributions.

With a recurrence period of failure in terms of number of load applications
determined from eq. (3.2) and figs. 1 or 2, the probability of failure Py (L)
during the anticipated service life L of the structure associated with n load
applications (which do not produce fatigue effects) per unit of life can be
expressed by the Poisson distribution

Pgp(L) =1—exp(—Ln|Tg) (3.3)

since the probability of failure of any adequately designed structure can
obviously be considered a ‘‘rare event’’. Thus the probability of “survival’’
[ (L) during the life of the structure can be expressed by the straightline semi-
logarithmic relation

Inl(L) = In[1— Py (L)] = 2.3026log (1 — Px(L)] = —(n L|Ty). (3.4)
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Since the population sizes of structures of service life L, to which eq. (3.4)
refers, are usually quite limited, it appears that the specification of Py (L)~10-1
will ensure adequate safety. Thus according to eq. (3.4) 2.30Tp~22n L
where n for bridge-structures depends on the density of the traffic. Assuming
that the passage of a single vehicle is equivalent to a single load application,
and that an extremal distribution represents the load-intensities of the heaviest
five percent of vehicles with a ratio 05/8=0.10, while the low end of the
distribution of the resistance is represented by an extremal distribution with
0r/R=0.10, the relation between P, and v, can be read off fig. 1. With an
assumed medium-heavy traffic density on a highway bridge of 5000 vehicles
per day per lane or roughly N =2 x 108 vehicles per year, of which the heaviest
one-twentieth only is counted so that n =105, the recurrence period of failure
will be roughly 105 L with respect to load application; with L =25 years this
is associated with a safety factor based on R and § of v,=4.2, which would
represent the safety-factor to be applied to short-span structures and struc-
tural parts of medium-heavily travelled highway bridges the critical load of
which is represented by a single heavy vehicle of modal weight S.

It is interesting to use the safety analysis for comparison of the above
safety factor with the factor that would be required to design a medium or
long-span girder of a bridge the critical load of which is represented by sequen-
ces of r heavy vehicles; their percentage in the total number is, as before,
5 percent.

The probability of occurrence of such sequences can be evaluated on the
basis of the theory of runs [5]. The expected number, per year, of runs of
length r of heavy vehicles within a long sequence of n>r vehicles is given by

A(r)~N(1-p)p", (3.5)

where N is the total number of vehicles per year and p the expected percentage
of heavy vehicles. With N =2 x 108 and p=0.05

A(r) = 1.8 108 " (3.6)

the mean recurrence time of such runs 7'(r)=N/A(r)=1.11p~". For rather
unlikely and therefore not too short runs the probability of exactly = runs of
length r is governed by the Poisson distribution, so that

p(x) = e O (r)]7]2! (3.7)
Hence the probability of at least one run of such length
Przl)=1-p(0)=1—e20, (3.8)

A bridge span accommodating 6 heavy vehicles on one lane would be



662 o ALFRED M. FREUDENTHAL IVb 1

critically loaded by a sequence of » =6 such vehicles; its recurrence time, under
the above assumptions, is 7' (6)=71x 10® which, with N =2 X 108, represents

35.5 years. The expected number of such runs during a service life of L =25

years being A(r) =%=O.7l, the chance of at least one such run during this

life is as high as 1 —e%1=0.51. Hence the full heavy vehicle sequence must
be considered as the critical (maximum) design load, although the probability
of occurrence of an individual heavy vehicle is only p=0.05. The expected
load intensity of a single or a very small number of occurrences of a sequence
of 6 heavy vehicles is closely enough represented by the mode S of the distri-
bution of single vehicle loads, considering that the average load intensity
arising from simultaneous action of r vehicles has a fairly normal distribution
and a much narrower range of variation [standard deviation (¢/Vr)] than the
distribution p (S) of the individual heavy vehicle loads (central limit theorem).
Since the maximum load intensity S, ~ S can be expected to occur not
more than a few times during the service life (n L < 10), the recurrence period
of failure in terms of these repetitions for Py (L)~ 10-! as before is roughly
Tw ~90 and therefore P, ~ 1072, with an associated safety factor for cg=0
and op/R=0.10 according to fig. 1 of yo=1.4.

The comparison of v, for the short-span and medium-span structural parts
of the considered highway-bridge suggests that for the same design-load
intensity S the specific resistance R provided in the short-span structural

parts should be about ‘11—'42:=3 times higher than that for the medium-span

structure. Alternatively, if the resistance analysis is based on uniform values
of material resistance the design load intensity of the medium-span structure
can be reduced by a factor of 3 in comparison to that of the short span parts,
disregarding the effect of impact which may further increase the difference,
as well as the fact that the ratio o /R is likely to decrease with increasing size
of the structural section because of the increasing number of elements making
up the section.

For long-span structures sequences of heavy vehicles occupying the whole
span will have recurrence times several order of magnitude higher than the
anticipated service life. In this case the maximum load is represented by a
vehicle sequence shorter than that filling the whole span, with recurrence
period of a length comparable to the service life. The average load-intensity is
therefore further reduced in a ratio roughly equal to the ratio of sequence
length and span, if the relatively small effect of the weight of light vehicles
filling the remainder of the span is neglected. Thus, for a variety of spans the
decrease of design load intensity with span can be evaluated.

It is implied that the estimated recurrence times of heavy vehicle sequences
are determined only by the probabilities of “‘runs’’ of such vehicles, indepen-
dently of their spacing, while in reality the average spacing in free travel,
which is a function of speed, may be so high as to increase the length of the
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critical sequence far beyond the length of the span it would occupy at rest
or in congested slow travel [6]. To correct for this effect it would be necessary
to consider the probability of occupancy of a span of given length by the »
vehicles in the ‘“‘runs’’ on the basis of the average number of such vehicles
on the span in uncongested travel. However, there are so many non-statistical
effects that may cause close spacing (‘‘bunching’’) such as repairs, traffic
congestion, etc., that the probabilities of spacing, derived statistically may
considerably overestimate the actual recurrence time.
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Summary

The presented method of safety analysis illustrated by its application to
highway bridges demonstrates the significance of the anticipated traffic density
and service life as well as that of a uniform probability of failure in the estab-
lishment of the basis for designs of balanced safety. They also show that the
current practice of specifying design loads or load factors independently of
working stresses will, in general, not lead to structures of uniform safety.

Résumé

La méthode de détermination de la sécurité qui est ici exposée, avec ap-
plication aux ponts-routes, met en évidence l'importance de la densité du
trafic a prévoir, de la durée de vie de 1’ouvrage, ainsi que d’une probabilité
uniforme de rupture, pour 1’étude d’un projet impliquant une sécurité ho-
mogene.

L’auteur montre également que la pratique courante consistant & fixer des
charges de service ou des coefficients de charge indépendants des taux de tra-
vail ne permet pas, en général, d’obtenir des ouvrages offrant une sécurié
uniforme.
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Zusammenfassung

Die dargestellten Methoden zur Bestimmung der Sicherheit mit Anwendung
auf Stralenbriicken zeigen die Bedeutung der zu erwartenden Verkehrs-
dichte und Lebensdauer wie auch diejenige einer gleichméBigen Bruchwahr-
scheinlichkeit bei Aufstellung von Bemessungsgrundlagen fiir Konstruktionen
mit ausgeglichener Sicherheit.

Sie zeigen auch, dafl die iibliche Praxis der Annahme von Normenlasten
oder von Lastfaktoren unabhingig von den Materialbeanspruchungen im all-
gemeinen nicht zu einer Konstruktion gleichméBiger Sicherheit fiihrt.
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Giite und Sicherheitsmafstab der Stahlbetonkonstruktionen
Quality and the Safety Criterion for Reinforced Concrete Structures

Qualité et coefficient de siireté des constructions en béton armé

KAREL WAITZMANN ZDENEK SPETLA
Dr. Ing. Dr. sc., Privatdozent, Praha Dipl. Ing., Praha

Die mathematisch-statistische, auf der Wahrscheinlichkeitstheorie gegriin-
dete Methode spielt in den bautechnischen Problemen der letzten Zeit eine
bedeutende Rolle. Sie trigt zur Verbesserung der Qualitit von Baustoffen und
der Sicherheit von Baukonstruktionen bei. Nach den auf mathematisch-
statistischem Wege behandelten verschiedenen Priifungsergebnissen wird die
Qualitit des Betons verbessert, die Wirtschaftlichkeit der Baukonstruktionen
festgestellt und zugleich wird die Moglichkeit gegeben, entweder die wirtschaft-
lich zuldssigen Spannungen oder die Grenzspannungen der einzelnen Bauele-
mente und sogar der ganzen Baukonstruktionen zu bestimmen.

Bei der Analyse der Haufigkeitskurven von verschiedenen Festigkeits-
werten wurde festgestellt, daf} diese die Form einer asymmetrischen Verteilung
haben, obwohl bisher in der Praxis iiberwiegend als Ersatzkurve die Gaussche
Normalverteilung angewendet wurde.

In der Tschechoslowakei wurde in der letzten Zeit den asymmetrischen
Héiufigkeitskurven der Wiirfelfestigkeit groBe Aufmerksamkeit gewidmet und
durch die ausfiihrliche Analyse dieser Kurven wurde klargemacht, dal} sie
durch eine einfache asymmetrische Verteilung — die Pearsonsche Haufigkeits-
kurve des III. Types — ersetzt werden kénnen?).

Zur laufenden Uberwachung der Betonqualitiat der durchgefiihrten Stahl-
betonkonstruktionen wird die zerstorungsfreie, in der Tschechoslowakei ent-
wickelte Priifmethode?) (Kugeldruckhirtepriifung mit dem adaptierten Poldi-

1) VorrfGEK: Emploi de la statistique pour 1'établissement de la résistance du héton
a la compression — Acta technica 1958 /Nr. 2.

2) WartzmMaNN: The hardness test as a means for determining mechanical properties
of building materials.



666 KAREL WAITZMANN - ZDENEK SPETLA IVDb 2

Hammer) angewendet und die Priifungsergebnisse werden statistisch ausge-
wertet. .

Durch die statistische Auswertung von Priifungsergebnissen der Festigkeit
wird die mittlere Festigkeit der Konstruktionen, Variationskoeffizient und
Asymmetrie berechnet. Diese statistischen Kennwerte dienen zur Feststellung
des Minimalwertes der untersuchten Festigkeit mit der angestrebten Wahr-
scheinlichkeit P,, — zum Beispiel P, =0,001; dies bedeutet, dafl in den unter-
suchten Konstruktionen eine bestimmte Zahl — in diesem Falle 0,19, — klei-
nere Festigkeiten als der festgestellte Minimalwert vorkommen kann. Das
zerstorungsfreie Priifverfahren bewidhrt sich, denn die Genauigkeit + 3%, ist
vorhanden, und das Alter des Betons beeinfluit die Priifungsergebnisse nicht.

Von den bisher untersuchten Baukonstruktionen wurden bei 22 Bauten
die statistischen Kennwerte der Wiirfelfestigkeitsergebnisse berechnet. Es
wurde dabei die Feststellung gemacht, dal die Kriterien, die den Variations-
koeffizient zur Beurteilung der durchgefiihrten Stahlbetonkonstruktion an-
wenden, nicht geniigen, denn es gibt Stahlbetonkonstruktionen, die iiber
20 Jahre im schweren Betriebe sind und doch nach dem bekannten Kriterium
des Bureau of Reclamation zu den Bauten von schlechter Qualitit gehoren
wiirden. Es gibt dagegen solche Stahlbetonkonstruktionen, die entweder abge-
brochen oder verstirkt werden miiiten, obwohl sie nach demselben Kriterium
zu den Bauten von guter Qualitdt gehoren wiirden.

In Fig. 1 sind die mittleren Wiirfelfestigkeiten der untersuchten Stahl-
betonkonstruktionen angefiithrt. Der Minimalwert der Wiirfelfestigkeit wurde
nach der Formel

ng=mxb(1_tvxb) . S (1)
berechnet.

1 00
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Hier bedeutet: m,, und v, die statistischen Kennwerte von einzelnen
Haufigkeitswerten der Wiirfelfestigkeitsergebnisse.

In Fig. 1 sind deutlich diejenigen Bauten bezeichnet, die abgebrochen
oder rekonstruiert wurden.

Der Wiirfelfestigkeitsminimalwert kann also nicht als einziges Kriterium
der Qualitdt der ausgefiihrten Stahlbetonkonstruktionen angesehen werden.
Deshalb wurde ein anderes Kriterium fiir die Beurteilung der Sicherheit und
Wirtschaftlichkeit der untersuchten Baukonstruktionen gesucht. Im folgenden
wird gezeigt, dal3 die Beurteilung des Sicherheitsbeiwertes der einzelnen Bau-
elemente ein passendes Kriterium ist. Dabei wurden auch andere mit der
Bemessung von Bauelementen zusammenhéingende Erkenntnisse gemacht.

Die Beurteilung der Stahlbetonkonstruktionen nach der Bruchlasten-
Berechnungsmethode liegt im Nachweis eines vorgeschriebenen Sicherheits-
beiwertes s gegen das Erreichen der Tragfahigkeit des kritischen Querschnittes.
Im Grunde genommen handelt es sich dabei darum, daf} bei der Bemessung
von Konstruktionselementen darauf geachtet wird, dafl der Minimalwert der
Tragfahigkeit des kritischen Querschnittes gleich oder gréfer als die Resul-
tierende der ungiinstigsten Belastungskombination wird. Diese Forderung
wird mathematisch durch die folgende allgemeingiiltige Formel ausgedriickt:

max S < min U. (2)
Hierbei sind:

max S: Resultierende der ungiinstigsten Belastungskombination.
min U: Minimalwert der Tragfahigkeit des kritischen Querschnittes.

Es ist notwendig die Fille zuzulassen, wo die Bedingung (2) nicht erfiillt
wird. Die Anzahl von solchen Fillen muf3 aber so gering sein, daf} sie praktisch
unbedeutend und deshalb iibersehen werden kénnen.

Die beiden Werte, max § und min U, kénnen mit geniigender Genauigkeit
erst dann bestimmt werden, wenn bekannt ist, wie und im welchen Umfange
sich die Faktoren dndern, die sie beeinflussen. Max S kann aus den Maximal-
werten der Belastung, die sich bei der untersuchten Belastungsart ergeben,
festgestellt werden. Der Maximalwert der einzelnen Belastungsart wird als
Summe der Normlast und des sogenannten « Uberlastbeiwertes» n, berechnet.

Min U des kritischen Querschnittes wird aus den Minimalwerten der zuge-
hérigen Beton- und Stahlfestigkeiten berechnet, die bei diesen Baustoffen vor-
kommen kénnen. Der Minimalwert der untersuchten Festigkeit wird als Summe
des Normfestigkeitswertes und des sogenannten «Homogenitidtsbeiwertes»
jub-a (fiir Beton), beziehungsweise jo¢, (fiir Stahl) berechnet. .

Zur Beurteilung, ob die Bedingung (2) bei den einzelnen Elementen der
durchgefiihrten Stahlbetonkonstruktion erfiillt wurde, werden also nicht nur
die durch den Homogenitatsbeiwert jx°, festgestellten Betonqualitdtsschwan-

kungen geniigend scin. Beim Vernachldssigen der Nebeneinfliisse, wie etwa
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die Ungenauigkeit der Bemessungsvoraussetzungen bei der Tragfihigkeits-
berechnung des untersuchten kritischen Querschnittes, ist es notwendig, noch
die beiden anderen Beiwerte — den Uberlastbeiwert » und den Homogenitéts-
beiwert des angewandten Betonstahles j72 zu bestimmen.

Zur Bestimmung der Beiwerte n,, j&%-¢ und jJ, wird dieselbe mathe-
matisch-statistische Methode angewendet, wobei es sich, wie schon gesagt
wurde, um das Ersetzen der empirischen Héaufigkeitskurve der untersuchten

GroBen durch die theoretische Haufigkeitskurve handelt.
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Fig. 2. Empirische und theoretische Hiufigkeitskurven der Wiirfelfestigkeit «, der
Betonwiirfel 20 x 20 x 20 em Betonmarke «250».

Fig. 2 zeigt eine charakteristische empirische Héaufigkeitskurve (Anzahl
der Proben 640 — Beton P.C. «250»). Aus ihrer Form geht der asymmetrische
Charakter hervor. Die theoretische Héaufigkeitskurve, die der Gausschen
Normalverteilung entspricht und die die empirische Kurve ersetzen sollte,
folgt nicht ihrem Verlauf, besonders im Bereich der kleinen Festigkeitsergeb-
nisse, die fiir die Beurteilung der Sicherheit der untersuchten Bauelemente
mafgebend sind. Dagegen ersetzt die Pearsonsche Haufigkeitskurve des III.
Types die empirische Kurve mit geniigender Genauigkeit. Die Gleichung der
theoretischen Ersatzkurve nimmt in der einfachsten Form folgende Gestalt an:

—2t

2% — » ;
fo = “Tom (z+8)"te, (3)

wobei z=a/2 ist und a die Asymmetrie der Verteilung der untersuchten Haufig-
keitskurve bedeutet. Ihre Gleichung wird:

a=-—3 Z (xi_m)sa (4)
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wobei
x; die einzelnen Priifungsergebnisse der untersuchten GroQe,
s die mittlere quadratische Abweichung und
n die Anzahl der Proben

bedeutet.

Bei der mathematisch-statistischen Auswertung der Haufigkeitskurven von
Beton- und Stahlfestigkeitswerten sind zur Bestimmung der theoretischen
Verteilung folgende statistische Kennwerte festzustellen:

m der mittlere Festigkeitswert
v der Variationskoeffizient und
a die Asymmetrie.

Die Beton- und Stahl-Homogenitdtsbeiwerte konnen aus den folgenden
Ausdriicken berechnet werden:

a) fir Beton:

Kb..d — M. (7 _ Me,..a =
Imin Kp.d (1 tha d) Kp.d (D)
b) fiir Stahl:
Mg, Mme,
ot =22 (L= o) = =29, (6)

wobei ¢ ein verdnderlicher Wert ist, der von der angegebenen Wahrscheinlich-
keit P;, und der Asymmetrie ¢ abhédngt und aus der Pearsonschen Haufigkeits-
kurve des dritten Types berechnet wird. Die Berechnung des Beiwertes g kann
durch das Zusammenstellen der graphischen Tabellen beschleunigt werden.

Das Ersetzen der empirischen Haufigkeitskurven der FestigkeitsgroBen
durch die Pearsonschen des III. Types entspricht sehr gut der Wirklichkeit,
denn:

a) sie erfallt die Verteilung mit der verschiedenen Asymmetrie;

b) bei der Asymmetrie, die der Null gleicht, geht sie in Normalverteilung iiber;

c) die Asymmetrie wird unabhéngig aus den Priifungsergebnissen festgestellt;
sie bestimmt mit der mittleren Festigkeit und dem Variationskoeffizient
eindeutig den Verteilungsverlauf.

Man kann beweisen, daf3

a) je grofler die vorgeschriebene Wahrscheinlichkeit P, und je groBer der
Variationskoeffizient der untersuchten Héiufigkeitskurve ist, desto grofler
auch der Einflu der Asymmetrie ¢ auf den resultierenden Beiwert g und
damit auch auf den Minimalwert der untersuchten Festigkeit wird;

b) beim Variationskoeffizient v<59%, der EinfluB der Asymmetrie bei der
Berechnung des Beiwertes g vernachléssigt werden kann (siehe Fig. 3).
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Zur Auswertung der empirischen Hiufigkeitskurven von den Belastungs-
arten wurden bisher noch keine grundsétzlichen Untersuchungen durchgefiihrt.
Es kann aber angenommen werden, daf man auch in diesem Falle die empiri-
schen Haufigkeitskurven durch die asymmetrische Verteilung — Pearsonsche
Haufigkeitskurven des III. Types — ersetzen kann.

Im Hochbau kommen am héufigsten die auf zentrischen Druck, auf exzen-
trischen Druck mit kleinen Exzentrizititen und auf einfache Biegung bean-
spruchten Elemente vor.
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Fig. 3. Zusammenhang zwischen dem Beiwert g, der Asymmetrie a und dem Variations-
koeffizienten v bei der Wahrscheinlichkeit. a) P-10-3 b) P.10-2

Der Berechnungsgang, die Bedingung (2) bei diesen Bauelementen der
untersuchten Stahlbetonkonstruktion nachweisen zu kénnen, wird im folgen-
den gezeigt.

Bei den auf zentrischen Druck beanspruchten Elementen kann man nach-
traglich folgende Berechnungsbeiwerte bestimmen:

a) den Uberlastbeiwert (fiir die linke Seite der Formel (2)) und
~b) den Homogenitétsbeiwert der angewandten Betonmarke (fiir die rechte
Seite der Formel (2)).

Den Homogenitédtsbeiwert des angewandten Stahles, dessen Querschnitt
bei der Beurteilung der Minimaltragfahigkeit der auf zentrischen Druck bean-
spruchten Bauelemente nicht vernachldssigt werden darf, kann man nicht
nachtréglich bestimmen. Es geniigt aber, fiir diesen Wert in die Tragfahigkeits-
berechnung diejenigen Homogenitédtsbeiwerte einzusetzen, die fiir die ange-
wendeten Stahlsorten festgestellt wurden.

Zum nachtriaglichen Nachweis des tatsidchlich erreichten Sicherheitsbei-
wertes der untersuchten Bauelemente werden folgende durchschnittliche
Homogenitatsbeiwerte der in der Tschechoslowakei erzeugten Betonstahl-
sorten j%. beniitzt:

min
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fiir Betonrundstahl 57, = 0,90,
filr Roxorstahl joe. = 0,90.

Die Tragfihigkeit des auf zentrischen Druck beanspruchten Elementes mit
Liangsbewehrung nach der Bruchlastentheorie wird bei einem Bewehrungs-
prozentsatz p von nicht mehr als 3%, nach der Formel

Ny =1P,% = Fye,(1+a) (7)
berechnet, wobei

a=—pu (8)

bedeutet.
Der Minimalwert der Tragfihigkeit desselben Elementes wird nach der

Formel

N —2P19-—-—(FbK ms4+ F , o™ms) (9)

bestimmt.
In der Formel (9) bedeutet:

m den Betriebsbedingungsbeiwert des untersuchten Elementes und — wie
schon erwahnt wurde — es wird in diesem Falle gleich 1 sein;

n, den durchschnittlichen Uberlastbeiwert aus der Belastung von Eigen- und
Nutzlast.

Dann nimmt die Berechnungsformel (9) die einfachere Form:

Fams)_l

Fb Kms ln1

Fb?mzn c(1+7mzn ) (10)

77717,11,

1
Nmin=m;F Kms(l+

an.

Aus dem Verhiltnis von beiden FErgebnissen N,/N,., der Festigkeits-
berechnung nach den Bruchlasten und den Grenzbeanspruchungen geht der
Sicherheitsbeiwert hervor, fiir welchen die untersuchten Elemente berechnet
werden sollten, um die Bedingung (2) zu erfiillen:

1y (1
NN1 g Tl t“) , (11)
" e
mwmn

wobei der Homogenitatsbeiwert der Prismenfestigkeit ;<. durch den Homo-
genititsbeiwert der Wiirfelfestigkeit ji*. ersetzt wird, was mit geniigender
Genauigkeit durchgefiihrt werden kann.

Den Beiwert « kann man fiir die einzelnen Betonmarken und Stahlsorten
tabellarisch in Abhéngigkeit vom Bewehrungsprozentsatz u= ¥ ,/F, und dem
Verhéltnis o,/«, zusammenstellen.

Die Gl. (11) gibt zugleich an, fiir welchen Sicherheitsbeiwert die auf zen-
trischen Druck beanspruchten Elemente berechnet werden kénnten, wenn der
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Beton mit dem unverénderlichen Homogenitdtsbeiwert j;2,, erzeugt wiirde.
Damit héngt die Moglichkeit der verantwortlichen Wahl eines neuen Sicher-
heitsbeiwertes fiir auf zentrischen Druck beanspruchte Elemente zusammen.

Den tatséchlich erreichten Minimalwert des Sicherheitsbeiwertes der auf
zentrischen Druck beanspruchten, untersuchten Stahlbetonelemente kann
man aus folgender Gleichung (12) berechnen:

. o

P
ms - . 12
Stals N]_ 1n1 (1 + a) ( )

N

min

Die Gleichungen (11) und (12) kénnen auch tabellarisch und graphisch fiir
die einzelnen Betonmarken und Stahlsorten, verschiedene Uberlastbeiwerte n,
und Homogenitatsbeiwerte j¢, ausgedriickt werden. In der graphischen Dar-
stellung (siehe Fig. 4) wird zur besseren Anschaulichkeit ein Beispiel dafiir
angegeben; es handelt sich um den Roxorstahl, Beton P.C. «250» und Uber-
lastbeiwert 1n,=1,3. Die vollausgezogenen Kurven entsprechen der graphi-
schen Darstellung der Gleichung (11) und die gestrichelten der Gleichung (12).

Die Tragfahigkeit der auf einfache Biegung beanspruchten normalbewehr-
ten Elemente wird durch die Erreichung der FlieBgrenze der verwendeten
Bewehrung und erst nachtréiglich durch die Erreichung der Festigkeitsgrenze

der gedriickten Betonzone erschopft. Die Betonqualitdt in der Druckzone soll
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Fig. 4. Zusammenhang zwischen dem Sicherheitsbeiwert s von den auf mittigen Druck

beanspruchten Elementen, dem Bewehrungsprozentsatz p und dem Homogenitéts-

beiwert 5t .
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bei der Berechnung der Tragfahigkeit von solchen Elementen nach der Bruch-
lastentheorie nur eine unbedeutende Rolle spielen.

Vorausgesetzt, dal die Moglichkeit der Tragfihigkeitserreichung der auf
einfache Biegung beanspruchten Bauelemente durch das Versagen des Betons
infolge der Querkrifte ausgeschlossen werden kann, so konnte die Beton-
qualitdt in verhaltnismiBig groBem Umfange schwanken. Bei dem nachtrag-
lichen Nachweis des Sicherheitsbeiwertes von auf einfache Biegung beanspruch-
ten Stahlbetonelementen (zum Beispiel Betonfertigteilen) ist es notwendig
festzustellen, ob die Elemente normal bewehrt sind und bei wieviel Elementen
mit Riicksicht auf die Betonqualitatsschwankung und den Bewehrungsprozent-
satz die Gefahr besteht, dafl die Tragfihigkeit durch das Versagen der Beton-
druckzone erreicht werden kann.

Die giiltigen Vorschriften geben an, in welchen Grenzen die Querschnitts-
fliche der Zugbewehrung von den auf Biegung und exzentrischen Druck mit
groen Exzentrizititen beanspruchten Platten und Balken gehalten werden
muB. Die groBte zuldssige Querschnittsfliche der Zugbewehrung, in Prozenten
der gesamten Querschnittsfliche ausgedriickt, wird je nach Betonqualitit von
2—49, angegeben. Diese Werte entsprechen der folgenden Bedingung fiir das
Feststellen des gro3ten Bewehrungsprozentsatzes:

max p%, = 502, (13)

Oq

In dieser Bedingung kommt nicht die Betonqualititsschwankung zum
Ausdruck. Aus diesem Grunde konnen von den untersuchten Bauelementen
einige vorkommen, deren Tragfahigkeit durch das Versagen des Betons in der
Druckzone bestimmt wird. Als Kriterium fiir die auf einfache Biegung bean-
spruchten Bauelemente soll darum die Formel (13) in der bearbeiteten Form
angegeben werden:

Kg®

ms’
Oq

max u% < 50 (13a)
wobei «7* und o}'° die Festigkeitsminimalwerte der angewandten Baustoffe
sind.

Da mit geniigender Genauigkeit gilt:

Kd  _ ;Kb
Imin = 7min7

nimmt die Berechnungsformel (13a) die neue Gestalt

maxu% < 507.%"”‘3-—[‘1 (14)
Jmin Oa
an.
In der Tabelle 1 sind ibersichtlich die Maximalwerte des Bewehrungs-
prozentzusatzes fiir die in der Tschechoslowakei am hédufigsten angewendeten

Betonmarken «135», «170», «250» und «330» und Stahlsorten (Rundstahl
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Tabelle 1. Zusammenhang zwischen dem Mazimalwert des Bewehrungsprozentsatzes u, dem

Homogenitatswert j.b. und der Betonmarke

Rundstahl: o, = 2300 kg/em?; j% = 0,90

max p in 9
Betonart T
0,3 0,4 0,5 0,6 0,7 0,8 0,9
135 0,87 1,20 1,45 1,74 2,03 2,32 2,60
170 1,05 1,40 1,75 2,10 2,45 2,80 3,15
250 1,50 2,00 2,50 3,00 3,50 4,00
330 1,85 2,46 3,08 3,70 4,31

Roxorstahl: ¢, = 3800 kg/cm?; joe. = 0,90

max g in 9
Betonart Tnen
0,3 0,4 0,5 0,6 0,7 0,8 0,9
135 0,53 0,70 0,88 1,05 1,23 1,40 1,58
170 0,64 0,85 1,06 1,27 1,48 1,69 1,91
250 0,91 1,21 1,51 1,82 2,12 2,46 2,72
330 1,12 1,49 1,86 2,24 2,61 2,98 3,36

und Roxorstahl) in Abhéngigkeit von den Homogenitidtsbeiwerten j;°,, und
joa =0,90 angegeben.

Im Falle, dafl der Bewehrungsprozentsatz von untersuchten Stahlbeton-
elementen mit dem festgestellten Homogenitatsbeiwert 5y, grofler wird als der-
jenige dem Homogenitiatsbeiwert ;% zugeordnete Bewehrungsbeiwert nach
der Tabelle 1, wird es vorkommen, dafl die Tragfihigkeit einer bestimmten
Zahl von Elementen durch das Versagen des Betons in der Druckzone er-
reicht wird, ohne daB8 dabei die vorgeschriebene Sicherheit erreicht wird.

Zum Feststellen dieser wahrscheinlichen Elementenzahl geht man folgen-
derweise vor:

Aus der in der Form (15) bearbeiteten Formel

M Jmtin ©
Ymin Z 5’8"’; = (15)

wird der notwendige Betonhomogenitéitsbeiwert jx¢, berechnet, um die durch
die Formel (13a) ausgedriickte Bedingung zu erfiillen.
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Aus der Gleichung
lKgls = ljglbin Kp (16)
berechnet man die entsprechende Minimaldruckfestigkeit des untersuchten
Betons.
Aus der Formel

1KpE =m,, (1—-1¢ ’UKb), (17)

wobei m,, und v,, die statistischen Kennwerte der Haufigkeitskurve von

Druckfestigkeitsergebnissen der untersuchten Bauelemente sind, wird die neue

statistische Charakteristik ¢, berechnet. Die dazugehorige bearbeitete Formel

nimmt folgende Gestalt an:

My, — 1K'
My, O,

Ky “Kp

b = (17a)

Aus dieser Sicherheitscharakteristik ¢, wird fiir die aus der untersuchten
Haufigkeitskurve festgestellte Asymmetrie a,, die neue Wahrscheinlichkeit
P} bestimmt (siehe Fig. 5). Sie legt fest, bei wie vielen aus den untersuchten
und auf einfache Biegung beanspruchten, normal bewehrten Elementen wahr-
scheinlich die Tragfahigkeit durch das Versagen des Betons in der Druckzone
erreicht wird.

Unter der Voraussetzung, dalBl bei den oben behandelten Bauelementen die
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Fig. 5. Zusammenhang zwischen der Sicherheitscharakeristik ¢, der Wahrscheinlichkeit

P), und der Asymmetrie a,, der empirischen Héufigkeitskurve von Wiirfelfestigkeit der
untersuchten Betonmarke.
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Bedingung (13a) erfiillt ist, wird der Minimalwert ihres Sicherheitsbeiwertes
folgendermaflen nachgewiesen.:

Die Tragfahigkeitsberechnung nach der Bruchlastentheorie von auf ein-
fache Biegung beanspruchten, normalbewehrten Stahlbetonelementen des
rechteckigen Querschnittes wird aus der bearbeiteten Gleichung

M gruen = Fao,h (1-0,50;) (18)
durchgefiihrt, wobei
Ua
% = El‘« (18a)

ist.
Der Minimalwert der Tragfihigkeit von demselben, auf Biegung bean-
spruchten Elemente wird nach der Formel

Myin. =" |y Foomh(1-05%5 4 (19)
Bruch 1n1 a* aa ’ K:tns
berechnet.
Die beiden Betriebsbedingungsbeiwerte — des Querschnittes m und des

Stahles m, — werden wieder 1 gleichgesetzt. Dann nimmt die Formel (19) die
folgende Form an:

O

. 1 ) ’ 'O’a_
min _‘n—IiFa%(;:inaah(l_0’5?':?:”‘K_a/‘l’):| . (19&)
1 d

Bruch — 1 )
mmn

Aus dem Verhiltnis von beiden Ergebnissen Mg, /M5 . der Tragfihig-
keitsberechnung nach den Bruchlasten und den Grenzbeanspruchungen geht
der Sicherheitsbeiwert hervor, fiir welchen die untersuchten, auf Biegung
beanspruchten Bauelemente berechnet werden sollten, um die Bedingung (2)
zu erfiillen! Die resultierende Wahrscheinlichkeit P, héngt von der im voraus
festgesetzten Wahrscheinlichkeit der einzelnen Beiwerte ab.

Den tatsichlich erreichten Minimalwert des Sicherheitsbeiwertes von auf
einfache Biegung beanspruchten Stahlbetonelementen wird aus folgender
Gleichung berechnet

‘0a
gleor -aain (1 _ 0,5-7;("—'—1:-205 )
Iim 7mbin ! (20)

ms —
Stals -
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Zusammenfassung

Die bekannten Kriterien zur Beurteilung der Qualitat ausgefiihrter Stahl-
betonkonstruktionen, und zwar das Kriterium des Variationskoeffizienten des
Bureau of Reclamation und das Kriterium der kleinsten wahrscheinlichen
Wiirfeldruckfestigkeit entsprechen nicht der Wirklichkeit, wie durch zersto-
rungsfreie Priifungen bei 22 Bauten nachgewiesen wurde, denn das Problem
der Qualitdt und Sicherheit der Baukonstruktionen ist grundsitzlich kompli-
zierter. Die Anwendung der Pearsonschen Haufigkeitskurve des III. Types
zeigt sich fiir die Analyse der empirischen Haufigkeitskurven der Betonfestig-
keitswerte als geeignet.

Aus der vorgelegten Abhandlung geht deutlich hervor, dal3 die Qualitit
und Sicherheit der Stahlbetonelemente mit Riicksicht auf die Uberlastungs-
moglichkeit und das Vorkommen der Betonminimalfestigkeitswerte beurteilt
werden mul.

Auflerdem folgen daraus wertvolle Erkenntnisse: Dall der bestimmten
Verinderlichkeit der Betonfestigkeitswerte auch ein verénderlicher Beweh-
rungsprozentsatz von auf einfache Biegung beanspruchten Stahlbetonelemen-
ten entspricht, und erst durch ihre griindliche Analyse ist es moglich, eine
gleichméBige Sicherheit zu erzielen.

Summary

The well-known criteria for judging the quality of reinforced concrete
structures — viz., the variation coefficient as envisaged by the Bureau of
Reclamation, and the criterion of the lowest probable cube strength — are
not in accordance with reality, as has been demonstrated by means of non-
destructive tests on 22 structures, because the problem of quality and strue-
tural safety is fundamentally a more complex one. The application of the
Pearson frequency curve of the third type shows itself to be suitable for the
analysis of the empirical frequency curves of the concrete strength values.

It is clearly demonstrated in the present paper that the quality and the
safety of reinforced concrete members must be assessed with reference to the
possibility of overloading and the occurrence of the minimum concrete strength
values.

In addition, some valuable inferences can be drawn from it: to the varia-
bility of the concrete strength values that have been ascertained there also
corresponds a variable percentage of reinforcement in reinforced concrete
members subjected to simple bending, and only by a thorough analysis thereof
is it possible to achieve uniform structural safety.
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Résumé

Les critéres connus pour juger de la qualité des constructions en béton
armé: le critere des coefficients variables du Bureau of Reclamation et le
critére de la plus petite résistance probable & la compression de cubes ne
correspondent pas & la réalité, comme il 1’a été démontré par des essais
non destructifs sur 22 constructions, car le probleme de la qualité et de la
streté des constructions est d’un principe plus compliqué. L’utilisation de la
courbe de répartition du troisiéme type de Pearson se montre adéquate pour
I’analyse des courbes empiriques de répartition des valeurs de la résistance
du béton.

11 ressort clairement de ce mémoire que la qualité et la streté de 1’élément
en béton armé doivent étre jugées en vue de la possibilité de la surcharge et de
I’existence des valeurs de résistance minimum du béton.

De plus, il ressort de précieuses notions: A la variation déterminée des
valeurs de résistance du béton correspond aussi un pourcentage variable
d’armature de 1’élément en béton armé soumis & la flexion, et seule leur
analyse permet d’atteindre une siireté uniforme.
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The Variation of Works Concrete Test Cubes
La variabilité des essais sur cubes de béton effectués au chantier

Die Verdnderlichkeit von Baustellen- Betonwiirfelproben

H. C. ERNTROY
M. Sc. (Eng.) A.M.I.C.E., Cement and Concrete Association, London

Introduction

In the past, it has often been customary to specify nominal mix proportions
and usually also the minimum strengths of preliminary and works test speci-
mens. Under favourable circumstances, these requirements were easily met,
but, where poor conditions were encountered, the attainment of the required
strengths presented considerable difficulty; neither circumstance is desirable
since the first is uneconomical and the second unsatisfactory. More recently
there has been a trend towards specifying the quality of concrete by the
minimum strength of works test specimens leaving the design of the mix to
the contractor. However, suitable mix proportions can only be estimated on
the basis of the mean strength so that a knowledge of the relationship between
the mean and minimum values is required.

The margin by which the mean strength must exceed the specified minimum
is, of course, related to the standard of control to be exercised but conflicting
opinions have been expressed as to whether, for any particular standard of
control, there was a constant difference between the mean and minimum
strengths, so that the standard deviation is independent of the mean, or
whether there was a constant ratio between these strengths so that the standard
deviation was proportional to the mean and the coefficient of variation was
constant. It has also been suggested that the relationship is probably inter-
mediate between the two, i.e. that “in the absence of better information. ..
the variation in cube strength is assumed to be proportional to the average
strength up to 3,000 lb/in? (about 200 kg/cm?) and constant above this figure’’.

In order to investigate thoroughly the relationship between the mean and
minimum strengths, cube results and details of the control methods have
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recently been collected from about 300 British construction sites and have
been analysed in detail. Wherever possible the degree of control being exer-
cised was carefully noted by personal observation in order to achieve maximum
accuracy in the findings and to study the effects of various particular factors
on the variability for any standard of control.

Standards of Control

For the purposes of this investigation it was, of course, necessary to define
a range of Standards of Control. Since the results obtained appeared to suggest
that the control on sites where feeding of the materials to the weighing hopper
was effected pneumatically, either directly, by means of air valves, or by
electric solenoids, was significantly better than where the weigh-batching
equipment was operated manually, these Standards have been kept separate.
Continuous mixers are not now normally used, but some data became available
for this investigation. However, although all the materials, including the
cement, are proportioned by volume, continuous mixing differs fundamentally
from those cases where batch mixers are used; the Standard for batch mixers
is therefore referred to as Da and that for continuous mixers as Db.

In addition, further results were available from laboratory work. The
highest possible standard of control, using dried aggregates and a carefully
prepared uniform quantity of cement, all the materials being accurately
weighed, has been denoted by La and gives an indication of the testing error
between nominally identical cubes from different batches made under the
most strictly controlled laboratory conditions. Other laboratory tests (Stand-
ards of Control Lb and Lc) on concrete made with dried aggregates and
various consignments of cement, give an estimate of the variation caused by
the varying rates of hardening of cement from a single works and from a wide
variety of sources respectively.

The following nine standards were therefore considered:

Standard Control measures on
of Control Cement Aggregates
La Uniform, by weight Dried, by weight
Lb By weight (single works) Dried, by weight
Le By weight (various works) : Dried, by weight
As Bulk, by weight (servo-operation) By weight (servo-operation)
Ab Bulk, by weight By weight
B By full bags By weight
C By full bags or weight By volume
Da By volume By volume
Db By volume (continuous mixer) By volume (continuous mixer)
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Analysis of Results
Definition of ““Minimum’’ Value

When investigating the relationship between the mean and minimum
values of the results of works test cubes some consideration must be given to
the interpre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>