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The Use of Stability Functions in the Analysis of Rigid Frames
Emploi de fonctions de stabilité pour U'étude des cadres rigides

Die Verwendung von Stabilititsfunktionen zur Untersuchung von steifen Rahmen

W. MERCHANT A. H. SALEM
Prof.,, M. A,, S.M,, D. Sc., M. I. Struct. E., Dr., M. Sc. Eng. (Alexandria University),
M.I.C.E., A. M. 1. Mech. E., Manchester Ph. D. (Manchester University), Lecturer

in Structural Engineering, Ain-Shams
University, Cairo

Stability Functions

It does not yet appear to be generally known that tables of stability func-
tions [1] are available which considerably simplify the elastic stability analysis
of rigid frames and even make practicable the solution of frames containing
plastic hinges.

JAMES [2] appears to have been the first to extend the Cross method of
moment distribution to include the effects of axial loads in members by
introducing the ideas of non-dimensional stiffness and carry-over factors
(s and ¢) which are not constant but depend on the axial loads in the members.
Thus in fig. la

M =8k and Mgz, =cM g,

2
where k=#, PE=—7%£,

s is the stiffness factor and ¢ the carry-over factor and both s and ¢ are func-
o P .
tions of P, a8 shown in fig. 2.

Values of s and ¢ were tabulated in terms of

_z]/i
*=2Ip,

by JamMEs and later by LunxpqQuisT and KrowLL [3] and with these tables,
frames, such as triangulated frames, where the sway of the members is not



458 W. MERCHANT - A. H. SALEM IITa 4

important, could be solved by ordinary moment distribution methods. A series
of functions, usually known in England as “Berry Functions’’, related to s
and ¢ and from which they can be obtained have also been tabulated [4, 5, 6].

The tables of reference [1] are the first in which —1%

dent variable and also cover a wider range than previous tabulations.

Where sway occurs we have to consider the shear equilibrium of a structure
as well as the equilibrium of a joint and if axial load effects are important,
the relation between the shear and the end moments is not the same as in
the no stability case.

Thus for a simple sway displacement (fig. 1b)

Mg+ Myp +FI1+Pld=0.

is taken as the indepen-

And M yp=Mg,=—s(l+c)k.
Therefore Fl =+2s(1+c)kd—n2pkd,
P
where = —,
P P,
i.e. Fi = 280T0ke
m
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. 2s(1+¢)
T 28(l4c)—m2p’

where m

For a combined displacement as in fig. 1c.

Fl =s(1+c)k[%_oA—eB],

m is a magnification factor of considerable physical significance. For a simple

sway (0,=05=0) M z=Mp, = —"%l and thus m indicates directly how

much greater the end moments due to a shear force are than when axial
forces are neglected.

Of course m like s and ¢ is a function of P_PE It is difficult in developing
a new subject to decide how many functions to name and tabulate. Thus in
trigonometry sinz, cosx, tanx are all treated as separate functions because
of the simplicity this brings to manipulations rather than using, for example,

sinx
/1—sin®z

Two further functions n and o are of considerable use and they can be
obtained as follows.

the set sinz, V1—sin®z and

In equations (I) put ¢ = ¢—%”— (6,+05).
Fl
Then MAB=k[n0A-—06’B]—m—é-,
MBA=k[—004+nBB]—mﬂ, (IT)
Fi =M=2Ak¢’
m b
where ¢ =¢'+ % (04+05),
A_¢(1+c)
=———,

n =3 [l—ﬁ(1+c)] ,
2
0 =s [—c+~72£(1+c)] .
The physical consequence of introducing ¢’ is apparent. It divides the sway

angle ¢ into a part ¢’ directly dependent on the shear force and a part due
to the end rotations of the member.
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n is the appropriate stiffness factor to use when a member can sway freely
(0g=F=0). It is arguable that greater simplicity and parallelism of results
might have been obtained if another carry-over factor had been defined to
give Mg, in terms of M , in this case instead of o which corresponds to —sc.

However n and o have the advantage of reducing to unity when stability
effects are negligible. Either set of eqgs. (I) or (II) may be used depending on
the problem. The m, n, o functions were first used in reference [7] and first
tabulated in reference [1]. They are also shown in fig. 2.

Use of Stability Functions

Consider the portal shown in fig. 3 where F is so small in comparison with
P, and P, that stability effects in the beam can be neglected. Then

Mgy = ki[8105—5,(1+¢)¢],
F,l =24,k é—s(1+¢)k, 05,

Mpe = ky[405+20,]
and similarly for the other leg.
A A
Ry g
8 Ks
A, K,
"m-—ﬁ 777e;<—5
Fig. 3.

We have the two joint equations of equilibrium and the shear equation
F=F,+F,. Therefore

0 = ($,ky+4k3)05+2ks00—s5,(14¢,)ki,
O = 2k303+(82k2+4k3)60_82(1+02)k2¢,
Fl=—s(140c)k)0p—ss(1+cp) ka0 +2(Arky+ Az k) .

These equations enable us to solve directly for 65, 6, and ¢ and thus the pro-
plem is solved. In particular the critical load of the structure is given by the
vanishing of the determinant of the equations. Numerous detailed calculations
- [8] have shown that the lateral deflections of rigid frames (also therefore
sway critical loads) are not at all sensitive to the distribution of the loads on
the columns provided that the same total load is taken. It is in fact sufficiently
accurate to distribute the total load so that the columns have the same value
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of P—i and thus the same value of their stability functions. The physical reason

for this is that transferring load from say column A to column B increases
the stiffness of 4 at the same time as it reduces the stiffness of B and to a
first order causes no change in the overall lateral stiffness.

Calculations for symmetrical bents with equal column loads are more
simply carried out by means of eqs. (II). Thus for the two storey portal shown
in fig. 4 only the two joint equations of equilibrium are required

i.e. 0 = (nyky+6k,)0c—0,k,0p _m2£4£,
Fl
O=_02k200 +(n1k1+n2k2+6k3)03—(m1+m2)—4—.

As before the sway critical load is obtained by putting F =0 and thus the n,0
functions are peculiarly suitable for critical load calculations.

References [7,9,10,11] give examples of the use of m,n,0 functions for
the calculation of critical loads of tall building frames. They can be used for
slope deflection or relaxation solutions. An example of the results is given in
fig. 5 which is taken from reference [7]. It shows how the sway critical load
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of a symmetrical single bay portal depends on the number of storeys. Some
useful relations between s,c,m,n,0 etc. are given in reference [8].

Members with Plastic Hinges

Suppose that there is a plastic hinge at B so that |[Mg,|=Mp and is
specified. Egs. (I) become

M yp—cMp, =s(l—-c2)k(0,4—¢),

Mg+ My, + Fl=—npké. (Ia)
Eqgs. (II) become
o m2p Fl
MAB'*";MBA = —TkoA—W,
(ITa)

As an example of the use of egs. (II) and (IIa) we will follow through the
development of plastic hinges for the simple portal shown in fig. 6 where the

P
/ F 72_'\\
N/

Y Lollspse mechanism.
~

|
RK b ./2‘/'//7 \\>

Fig. 6.

members are assumed to remain elastic until a plastic hinge forms. During
the elastic range

0.1Pl=2A4k¢.
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Mpy _ —6mp
Therefore 0.06 P51 = 16’
M g

0
——mp|—2 41
0.05 P, | mp[n+6+ ]

é = 0.0572%p [% + 2(71%6)] .

These values are shown graphed in fig. 6. During this range the elastic critical
load towards which the bending moments and deflections are increasing
asymptotically is given by n+6=01i.e. by p=0.748.

M ,p is greater than M, and therefore the first plastic hinges form at
the bases of the columns.

After a hinge forms at A we have M = — Mp and so from eqs. (ITa)

oMp—mn2pkfy—0.1P1

Mg, = n
0=Fk(6n—=n%p)0g+oMp—0.1 Pl.
Therefore 0.05 Pl [O.O5PEZ_2 ”] 6n—ntp’
Therefore ¢ = P [ 0.05 P, 1 ]—0.100.

During this range the critical load towards which the bending moments and
deflections are increasing asymptotically is given by 6 n — n%2p =0i.e. by p = 0.185.

To plot the moments and deflections during this second stage we require
the relation between the plastic moment on the column and the axial load

on it. For this example we will take %: 0,21 (1 —p).
The axial yield load of the column Py is given by Mp=01i.e. by p= L iy

Pg
so that in fact we are now calculating the example for P, = P,. For mild

steel with a yield stress of 15.25 tonsq.in. and £ =13,400 tonsq.in. this
corresponds to a value of % equal to 93. The numerical constant is that appro-

priate to an idealised parallel plate section. M5, and ¢ for the second stage
can now be calculated and are also shown in fig. 6. Valuable checks on the
calculation are that the two graphs for M5, and the two graphs for ¢ both
intersect at the value of p=0.135 for which M ,,=M,.

The value of ¢ for the collapse mechanism with hinges at the top and
bottom of the columns is also shown. To determine the mechanism

0.1PI+Pld=— (M p+Mg,)=2Mp,

MP
0.05 1 ~ 21 (1=p).
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Therefore b= 9.021_ 0.121.

p

The final collapse load of the portal is given by the intersection of the second
stage with the collapse mechanism i.e. by p=0.139. If the second critical
load had been lower than the load existing at the formation of the first pair
of hinges then the subsequent deflection curve would have had a negative
slope and would have represented an unstable condition. In this case the
collapse load of the structure would occur at the formation of the first pair
of hinges and not at the intersection of the second stage with the collapse
mechanism.

The rigid plastic collapse load or limit load Py ignoring stability effects is
obtained from the collapse mechanism by putting ¢=0 i.e. by py =0.173.
For this portal the interaction between stability and plasticity effects reduces
the failure load to pz=0.139 i.e. to 809, of the rigid plastic collapse load and
this for a ratio of limit load to original elastic critical load of

py _ 0.173

= ——— = (.232.
oy ~ 0748 033

Fig. 7 taken from ref. [8] shows a more complicated example. The deflections
of a two storey frame are shown for three ratios of lateral load. Over three hun-
dred cases of different types of rectangular frames have been solved in order
that the general field of the interaction between the failure loads, the limit
loads and the critical loads may be studied. The generalised results have also
been compared with a series of tests on model frames.
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Summary
A new tabulation of stability functions for prismatic members was published
in 19561), The functions tabulated are

s the non-dimensional stiffness
¢ the carry over factor

and three new functions m,n,o0 which are convenient for dealing with cases
of sway of members. The independent variable is taken as the ratio of the

1) Stability Functions for Structural Frameworks, R. K. LivesLEy and D. B. CEAND-
LER, Manchester University Press, 1956.
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axial load in a member to the Euler load of a member. It is not yet generally
realised how convenient these functions are for the stability analysis of rigid
jointed frames and the paper therefore gives examples of their use. In parti-
cular the evaluation of critical loads and the effect of plastic hinges in members
are treated.

Résumé

Un nouveau tableau de fonctions de stabilité pour barres prismatiques a
été publié en 1956. Dans ce tableau, figurent les fonctions suivantes:

Coefficient de rigidifé s (sans dimension)
Facteur de transmission ¢

ainsi que trois nouvelles fonctions m, » et o, qui peuvent étre employées dans
les problémes de déplacement latéral des barres. Le rapport entre l'effort
axial de compression et la charge de flambage d’Euler de la barre a été adopté
comme variable indépendante. Le caractére pratique de ces fonctions pour les
études de stabilité des cadres rigides n’est encore que peu connu. L’auteur en
donne donc quelques exemples d’application. Tl traite en particulier de la
détermination des charges critiques et de l’effet des articulations plastiques
dans les barres.

Zusammenfassung

Im Jahre 1956 wurde eine neue Zusammenstellung von Stabilitédtsfunk-
tionen fiir prismatische Stdbe verdffentlicht. Folgende Funktionen sind ta-
belliert worden:

Die dimensionslose Steifigkeit s
der Ubertragungsfaktor ¢

sowie drei neue Funktionen m, n und o, welche bei seitlichem Ausweichen in
Stiaben angewendet werden konnen. Als unabhingige Variable wird das Ver-
hiltnis der axialen Druckkraft zur Eulerschen Knicklast des Stabes angenom-
men. Es ist noch wenig bekannt, wie bequem diese Funktionen bei Stabilitats-
untersuchungen von steifen Rahmen sind. Die Arbeit gibt daher einige Beispiele
fir den Gebrauch dieser Funktionen. Besonders werden die Bestimmung der
kritischen Belastungen und die Wirkung von plastischen Gelenken in Stdben
behandelt.
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