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Theory of a Statically Indeternainate Pin-Jointed Framework the
Material of Which Does Not Follow Hooke's Law

Sur la theorie d'un treillis hyperstatique, dont le materiau ne suit pas la loi de Hooke

Über die Theorie eines statisch unbestimmten Fachwerkes bei beliebigem
Formänderungsgesetz

ARVO YLINEN AULIS ESKOLA
Dr. Sc. Techn., Prof., Institute of Technology, Helsinki Dipl. Eng., Research Assistant

Introduction

Classical building statics is based on Hooke's law, a Ee, in which o-

denotes the stress, E the modulus of elasticity and e the unit elongation.
Hence the methods of classical statics are no longer applicable if the stress
in a bar of statically indeterminate framework exceeds the proportional limit
of the material or if the material has no limit of proportionality whatsoever.
The general theory of a statically indeterminate framework the material of
which does not follow Hooke's law may be based either on the method of
Virtual displacements or on the principle of the minimum of the complementary
energy. Both these methods are described briefly in the following.

Method of Virtual Displacements

The axial forces produced by actual loading F in the bars of the framework
are denoted by S, and the axial forces produced by fictitious loading F by S.

Loading F causes in the bars of the framework total elongations A l which
are assumed to be very small compared with the original length l of the
bars. Furthermore, if we denote with 8 the projection of the displacement of
an arbitrary Joint in the direction of fictitious load F acting at the Joint, the
principle of the Virtual displacements for the real state of displacements
(8, A l) and for the fictitious state of loads (F, S) can be written
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ZFS-ZSAI 0. (1)

Since no assumption was made in writing this equation regarding the elastic
properties of the bars of the framework, it holds good for an arbitrary stress-
strain law.

It can be proved x) that an expression

AI SIJS\^ w/hr (2)

may be derived for the total bar elongation A l e l from each stress-strain law
which is correct in the physical respect. In the expression, A denotes the cross-
sectional area of the bar, Sy Aay the yield point force of the bar, ay the yield
point stress in tension and / (S/Sy) a function dependent on the form of the
stress-strain law. In the case of Hooke's law / (S/Sy) 1.

Because eq. (1) holds independently of what causes the changes A l in the
lengths of the bars, the elongations of bars due to a rise in temperature from
some specified temperature may also be taken into consideration in the equation.

If ol is the coefficient of thermal expansion and t is the temperature
increase, the corresponding elongation of the bar is atl. Sometimes the length
of a bar can be changed by using some mechanical device such as a turnbuckle.
Denoting such a change in length of the bar by A and superimposing displacements

produced by various causes we can write expression (2) in a more
general form,

Al 4if(^)+^l + A. (3)EA

When the expression of A l is introduced into eq. (1) the principle of Virtual
displacements for a framework the material of which does not follow Hooke's
law may be expressed

Z^-Z^f(-§-)+.tl + A 0. (4)

Deflection of the Joint of a Framework. To determine the deflection 8^. of
any Joint k of a statically determinate framework in an arbitrary direction
under the action of external loads F acting at the joints of the framework,
we imagine the fictitious force F Fk= 1 acting at the Joint in the direction
of the displacement sought. The fictitious load System consists then of force
Fk 1 and the corresponding reactions. They do not produce any work since
the supports are either immovable or move perpendicularly to the reactions.
The first sum in eq. (4) is thus reduced to l*8k. If we denote with S Sk the

x) Cf. the author's investigation «Die Knickfestigkeit eines zentrisch gedrückten geraden
Stabes im elastischen und unelastischen Bereich». Doctoral thesis. Finland's Institute of
Technology. Helsinki, 1939, p. 94. — Cf. also with formula (19) ofthe present investigation.
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forces in the bars caused by the fictitious force Fk=l, and with S the axial
forces caused by the given loading F, we obtain from eq. (4) the formula

8*-25fc[^-/(^)+«« + j] (5)

for the deflection of Joint k of the statically determinate framework. The
summation must be extended over every bar of the framework.

Statically indeterminate framework with n redundants. If the framework
is statically indeterminate internally it must be transformed into a statically
determinate one by means of fictitious sections through each of the n bars.

Replacing the unknown axial forces in the cut bars by the forces Xl3X2,. Xn,
we obtain a statically determinate primary System on which, in addition to
the given external loading F, the n redundant forces X are acting. The forces

produced in the bars of this statically determinate System by the given loading
F we denote by S0. The forces produced in any bar of the same System by
the unit redundant forces X1=l, X2=l,. .,Xn=l we denote, respectively,
by S1, S2,. Sn. Then the total axial force in a bar is

S S0 + S± X± + S2 X2 + + Sn Xn. (6)

The magnitude of the redundant forces X can now be found from the
conditions that the relative displacements of the two sides of each of the n
fictitious sections must vanish. For these displacements, we use expression (5)
which leads to the following n simultaneous equations

z*[£K£)+"M-°'
Z5-[Ä>(£)+"H=0'

^[Ä'(i)+aH=o-
Here S denotes the expression (6). The summation in every equation includes
all the bars of the framework. Supposing that equation System (7) has unique,
finite Solutions it is possible to determine from it the values of the redundant
forces Xx, X2,. Xn. When they are known, the axial force of each bar is
obtained from eq. (6).

If the framework is statically indeterminate externally it must be
transformed into a statically determinate one by removing the redundant supports.
Replacing the unknown reactions by the forces X1, X2,. Xn we obtain a

statically determinate primary System on which, in addition to the given
loading F, the n redundant forces X are acting. They can be determined in
exactly the manner described above, in which case we again obtain equation
System (7) in which S denotes the expression (6).

If the material of the framework follows Hooke's law, f(SISy) l and
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equation System (7) is reduced to the System of elasticity equations, known
in the classical theory of the statically indeterminate framework.

Method of Complementary Energy

If a bar is subjected to a tensile or compressive force S acting on the end
of the bar, the quantity

[]AldS (8)

is denoted as the complementary energy stored in the bar. It is seen in fig. 1

as the area Oab. Summing up expressions (8) for all the bars of the framework
and denoting the complementary energy of the framework by W*, we obtain

W* ZfAldS.
o

(9)

AI

Fig. 1.

From this expression we can establish a very simple method for calculating
the deflections of joints of a statically determinate framework and for deter-
mining the redundant quantities of a statically indeterminate framework2).

Deflection of a Joint of a framework. The deflection Sfc of an arbitrary Joint
k of a statically determinate framework is to be determined in the direction
of force Fk acting on it. For this purpose the axial forces Sk produced by the
force Fk=l are determined first. Force Fk itself then produces the axial
forces FkSk. If, with the exception of force Fk, the axial forces produced
by all other forces F are denoted by S0, the axial forces

S S0 + SkFk. (10)

As expression (9) of complementary energy is, according to equation (10),

2) The idea of using complementary energy for analysing structures was introduced
by F. Engesser: Zeitschr. d. Architekten- u. Ing.-Vereins zu Hannover, Vol. 35 (1889),

p. 733. Several applications are shown in a paper by H. M. Westergaard: Proc. A. S.
C. E., Vol. 67 (1941), February, p. 199. See also Henry L. Langhaar: Journal Franklin
Institute, Vol. 256 (1953), No. 3, p. 255, and N. J. Hoff: The Analysis of Structures, p. 332.

John Wiley & Sons, Inc., New York 1956.
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a function of force Fk, W* may be derived partially with respect to this
force, in which case

dW*
_

dW* es _^AJ öS
dFk ~ dS dFk ~^ dFk

By introducing the expression of A l from eq. (3) and taking into account
that according to eq. (10) dS/dFk Sk, we obtain

dW *
jf~--zs*

SI
EA

Comparing this with eq. (5), we find that
8W*

U)/ [-=- \+«tl + A (11)

8P* V (12)

We have thus proved the following important theorem: The partial derivative
of the complementary energy of a framework with respect to one of the external
forces acting in a Joint gives the deflection of this Joint in the direction of the force.

If the deflection is desired at a Joint where no force is applied, force Fk
must be assumed in the direction of the desired deflection. Then

dW*
8fc hm^V- (13)k

Fk-+0 dFk

Statically indeterminate framework with n redundants. The framework must
first be transformed into a statically determinate one either by means of
fictitious sections through each of n bars or by removing the redundant
supports. Replacing the unknown redundants by the forces Xx, X2,..., Xn we
obtain a statically determinate primary System on which, in addition to the
given external loading F, the n redundant forces X act. The forces produced
in the bars of this statically determinate System by the given loading F we
denote by S0. The forces produced in any bar of the same System by the unit
redundant forces X1= l,X2= 1,... Xn= 1 we denote, respectively, by Sl9

S2,..., Sn. Then the total axial force in a bar is

S S0 + S1X1 + S2X2+...+SnXn. (14)

The magnitude of the redundant forces X can now be found from the
conditions that the displacement in the acting points of the redundants must
vanish. For these displacements we use expression (11) which leads to the
following n simultaneous equations

dw* „ _ r si,/ s\ 47 .-] n

dw* ^ „ r si
cX2 =2^i&/(^HH=o' (l5)

bw* ^ „ r si
8X.̂ -z*-[ÄK£)+a'H-°-
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Here S denotes the expression (14). The summation in every equation must
be extended over all the bars of the framework. A comparison of equation
Systems (15) and (7) shows them to be identical.

When the values of the redundant forces have been calculated from equation

System (15) the axial force of each bar is obtained from eq. (14).
Eqs. (15) state that the redundant forces Xx, X2,..., Xn have such magnitudes

as to give the complementary energy stored in the framework a stationary value
with respect to variations in stress. It can be shown that it is a minimum.

Stress-Strain Function

For the numerical calculations it is necessary to have an analytical expression

approximating the actual stress-strain curve of the material. For this
purpose we use in the following the function

in which exponent n denotes a positive integer and c (< 1) a dimensionless

parameter whose value depends on the shape ofthe stress-strain curve. If n is an
odd number, the absolute value {\(j\jay)n of the stress ratio must be used.

Accuracy sufficient for practical purposes is obtained by selecting n=l, in
which case

(17)E X__H
oy

This contains three free parameters E, oy and c the values of which should
be determined so that the stress-strain function agrees suitably with the
stress-strain diagram. With the value c= 1 function (17) is reduced to Hooke's
law.

To obtain a general idea of the form of the stress-strain diagrams repre-
sented by function (17) we write it in a more suitable form for graphical
representation by multiplying both sides by the ratio E\ay, which gives

i_cM

°v °y i_-H

The dimensionless 3) stress-strain diagrams according to this equation may be

seen from fig. 2 where GJay is plotted against E €Jcry, with c as the parameter.

3) Cf. the author's investigation, p. 27, footnote 1.
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We see that the greater the value of c, the smaller the deviation of the stress-

strain diagrams from the broken line formed by Hooke's straight line GJay

EeJGy and the horizontal line ajay l corresponding to the yield point stress.
The stress-strain diagrams are symmetrical with respect to the origin of
coordinates. The following values of parameter c should be selected for
different materials: Steels St37 and St 52, c 0.997, Magnesium alloy, c 0.975.

r-W
1

sy ^\/^C-0S97
-08 \ C-0986

"C-0975

-0.6

-au

h v
-02 y

£i
02 OU 06 08 10 TU GZ 16

Fig. 2. Dimensionless stress-strain diagrams according to eq. (18).

The expression below for function / {SfSy) appearing in formula (2) follows
from eq. (18):

'GK
1-.M

\s[ ¦

sv

(19)

By introducing it into eqs. (3), (4) and (5) we arrive at the elongation ofthe bar

(20)
i-3

EA ,JS|

the equation of Virtual displacements

i-3
(21)

and the displacement of Joint k of the framework

ZSk
i-3

(22)

When the expression f(SISy) from the eq. (19) is introduced into equation
System (7) or (15) these equations can be expressed in the form
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i-3

i-3

l-c \S\

^[¥JYZW+Xtl+A}=0'

where S denotes expression (6).

S„

Ib8

(23)

Illustrative Example

In order to illustrate the method described above we analyse the plane
framework with one redundant shown in fig. 3. As a redundant force, we take
the reaction Xc at the intermediate support C. Removing this support we
obtain a statically determinate simple framework on two supports. The
framework is made of steel with E 2,100,000 kg/sq. cm., vy 2,400 kg/sq. cm.
and c 0.997. The cross section of all the bars ofthe framework is A 10 sq. cm.
The temperature of the framework is assumed to be constant.

is &n 13

14 «5

C~\XC ZOOcm 200cm200cm 200cm

Fig. 3.

The magnitude of the redundant reaction Xc as a function of the loading
F may be computed from the first eq. (23) in the form

Su — c \Sfi + SrXr_
2 $c ($0 + 8CXC) l a _

I a i g X 0. (24)

Here S0 denotes the axial forces in the bars of the statically determinate
primary System due to loads F, and Sc the axial forces due to unit redundant
force Xc=l. The forces S0, Sc and the values of Xc corresponding to the
different values of loading F are given in Table 1. The final axial forces are
obtained from formula (6) in the form

S S0 + SCXC.
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Table 1.
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Bar So Sc F
(kg)

xc
(kg)

1, 15 -2\/2F
1

V2
5 800 14 099

2, 14 2F -0,5 13 000 31 535

3, 13 y~2F
1

13 500 32 680

4, 12 -3F i 13 944 33 560

5, 11 -|/2JF i
V2

15 000 33 870

6, 10 4F -1,5 16 971 33 941

7, 9 0
1

V2

8 -±F 2

In fig. 4 Xc is plotted against loading F. The straight line 1 represents the
supporting reaction Xc of a framework following Hooke's law as a function
of loading F. Curve 2 represents reaction Xc of a framework the material of
which follows law (17). The maximum value of the supporting reaction is
Xcmax 33,941 kg which is attained when F 16,971 kg. The compressive stress
in the bars 1,7,9 and 15 has then reached the yield point cry — 2,400 kg/sq. cm.

35000

(f<g)

339Wkg31000 cmjM
F - 16971kg

33000

31000

15000 I600O 17000 !8000(JpJ11000

Fig. 4.
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Summary

The general theory of a statically indeterminate framework the material
of which does not follow Hooke's law may be based either on the method of
Virtual displacements or on the principle of the minimum of complementary energy.
Both methods are explained. For numerical calculation the authors present
a new stress-strain function, (17), which contains three parameters: E, oy
and c. As an example of application of the method a statically indeterminate
plane framework in fig. 3, the redundant reaction Xc of which is shown in
fig. 4 as a function of load F, is analyzed.

Resume

Dans le cas d'un treillis hyperstatique, dont le materiau ne suit pas la loi
de Hooke, on pourra baser la theorie, soit sur le principe des deplacements
virtuels, soit sur le principe de Venergie complementaire minima. Ces deux
methodes fönt l'objet de l'examen de la presente ötude.

Pour le calcul num^rique, l'auteur presente une nouvelle loi de deformation
(17) qui comprend les trois parametres E, <ry et c. La methode est utilisee
dans la resolution du treillis hyperstatique plan de la fig. 3, dont la reaction
d'appui Xc en fonetion de l'effort F est donnee en fig. 4.

Zusammenfassung

Die allgemeine Theorie eines statisch unbestimmten Fachwerkes bei
beliebigem Formänderungsgesetz kann entweder auf die Methode der virtuellen
Verschiebungen oder auf das Prinzip vom Minimum der Ergänzungsarbeit
aufgebaut werden. Die beiden Verfahren werden in der Arbeit erläutert. Für die
numerischen Berechnungen wird ein neues Formänderungsgesetz (17)
verwendet, das drei freie Parameter E, ay und c enthält. Als Anwendungsbeispiel
der Methode wird das in Fig. 3 dargestellte, statisch unbestimmte ebene

Fachwerk behandelt. Die statisch unbestimmte Auflagerkraft Xc als Funktion
der äußeren Belastung F ist in der Fig. 4 graphisch dargestellt.
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