Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht

Band: 6 (1960)

Artikel: Theory of statically indeterminate pin-jointed framework the material of
which does not follow Hooke's law

Autor: Ylinen, Arvo / Eskola, Aulis

DOl: https://doi.org/10.5169/seals-6954

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-6954
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Ib8

Theory of a Statically Indeterminate Pin-Jointed Framework the
Material of Which Does Not Follow Hooke’s Law

Sur la théorie d’un treillis hyperstatique, dont le matériau ne sust pas la loi de Hooke

Uber die Theorie eines statisch unbestimmten Fachwerkes bei beliebigem
Formdnderungsgesetz

ARVO YLINEN AULIS ESKOLA
Dr. Se. Techn., Prof., Institute of Technology, Helsinki Dipl. Eng., Research Assistant

Introduction

Classical building statics is based on HOOKE’s law, o= FEe, in which ¢
denotes the stress, £ the modulus of elasticity and e the unit elongation.
Hence the methods of classical statics are no longer applicable if the stress
in a bar of statically indeterminate framework exceeds the proportional limit
of the material or if the material has no limit of proportionality whatsoever.
The general theory of a statically indeterminate framework the material of
which does not follow HOOKE’s law may be based either on the method of
virtual displacements or on the principle of the minimum of the complementary
energy. Both these methods are described briefly in the following.

Method of Virtual Displacements

The axial forces produced by actual loading F in the bars of the framework
are denoted by S, and the axial forces produced by fictitious loading F by S.
Loading F causes in the bars of the framework total elongations 4! which
are assumed to be very small compared with the original length I of the
bars. Furthermore, if we denote with 8 the projection of the displacement of
an arbitrary joint in the direction of fictitious load F acting at the joint, the
principle of the virtual displacements for the real state of displacements
(3,41) and for the fictitious state of loads (F, S) can be written
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SFs-Y84dl=0. (1)

Since no assumption was made in writing this equation regarding the elastic
properties of the bars of the framework, it holds good for an arbitrary stress-
strain law.

It can be proved?!) that an expression

Al=%f(—8%) | (2)

may be derived for the total bar elongation 47=e¢l from each stress-strain law
which is correct in the physical respect. In the expression, 4 denotes the cross-
sectional area of the bar, S, = 4 o, the yield point force of the bar, ¢, the yield
point stress in tension and f(S/S,) a function dependent on the form of the
stress-strain law. In the case of HookE’s law f(S8/S,)=1.

Because eq. (1) holds independently of what causes the changes 417 in the
lengths of the bars, the elongations of bars due to a rise in temperature from
some specified temperature may also be taken into consideration in the equa-
tion. If « is the coefficient of thermal expansion and ¢ is the temperature
increase, the corresponding elongation of the bar is «¢/. Sometimes the length
of a bar can be changed by using some mechanical device such as a turnbuckle.
Denoting such a change in length of the bar by 4 and superimposing displace-
ments produced by various causes we can write expression (2) in a more
general form,

Al=%f(8—i)+atl+d. (3)

When the expression of 41 is introduced into eq. (1) the principle of virtual
displacements for a framework the material of which does not follow HoOKE’s
law may be expressed

ZFS—ZS[%/‘(%)+MZ+A] _o. "

Deflection of the Joint of a Framework. To determine the deflection §, of
any joint k of a statically determinate framework in an arbitrary direction
under the action of external loads F acting at the joints of the framework,
we imagine the fictitious force F =F,=1 acting at the joint in the direction
of the displacement sought. The fictitious load system consists then of force
F,=1 and the corresponding reactions. They do not produce any work since
the supports are either immovable or move perpendicularly to the reactions.
The first sum in eq. (4) is thus reduced to 1-8,. If we denote with S=.S,, the

1) Cf. the author’s investigation «Die Knickfestigkeit etnes zentrisch gedriickten geraden
Stabes im elastischen und unelastischen Bereich». Doctoral thesis. Finland’s Institute of
Technology. Helsinki, 1939, p. 94. — Cf. also with formula (19) of the present investigation.
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forces in the bars caused by the fictitious force F;,=1, and with S the axial
forces caused by the given loading F', we obtain from eq. (4) the formula
8k=ZSk[;—jf(§S;)+atl+A] (5)
for the deflection of joint k of the statically determinate framework. The
summation must be extended over every bar of the framework.

Statically indeterminate framework with n redundants. If the framework
is statically indeterminate internally it must be transformed into a statically
determinate one by means of fictitious sections through each of the n bars.
Replacing the unknown axial forces in the cut bars by the forces X, X,,..., X,,
we obtain a statically determinate primary system on which, in addition to
the given external loading ¥, the » redundant forces X are acting. The forces
produced in the bars of this statically determinate system by the given loading

F we denote by S,. The forces produced in any bar of the same system by

the unit redundant forces X, =1, X,=1,...,X, =1 we denote, respectively,
by S;,8,,...,8,. Then the total axial force in a bar is
S=So+Sl.X1+82X2+-.-+San. (6)

The magnitude of the redundant forces X can now be found from the
conditions that the relative displacements of the two sides of each of the »
fictitious sections must vanish. For these displacements, we use expression (5)
which leads to the following » simultaneous equations

[ S S |
ZSI -—Ejl—f(s—y)-*'atl—l-d-‘ =O,
[ S1 S i
282 -ﬂf(g)'Fatl-FA- =0, (7)

ooooooooooooooooooooooooo

38, Slf(£)+atl+d _o.

Here S denotes the expression (6). The summation in every equation includes
all the bars of the framework. Supposing that equation system (7) has unique,
finite solutions it is possible to determine from it the values of the redundant
forces X,,X,,...,X,. When they are known, the axial force of each bar is
obtained from eq. (6).

If the framework is statically indeterminate externally it must be trans-
formed into a statically determinate one by removing the redundant supports.
Replacing the unknown reactions by the forces X,, X,,..., X, we obtain a
statically determinate primary system on which, in addition to the given
loading F, the » redundant forces X are acting. They can be determined in
exactly the manner described above, in which case we again obtain equation
system (7) in which 8 denotes the expression (6).

If the material of the framework follows Hooke’s law, f(S8/S,)=1 and
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equation system (7) is reduced to the system of elasticity equations, known
in the classical theory of the statically indeterminate framework.

Method of Complementary Energy

If a bar is subjected to a tensile or compressive force § acting on the end
of the bar, the quantity

S
JAldS (8)

is denoted as the complementary energy stored in the bar. It is seen in fig. 1
as the area 0ab. Summing up expressions (8) for all the bars of the framework
and denoting the complementary energy of the framework by W*, we obtain

W* = > [41d58. (9)
0
A4l
)
..llll“““““"“l%
g a S
Fig. 1.

From this expression we can establish a very simple method for calculating
the deflections of joints of a statically determinate framework and for deter-
mining the redundant quantities of a statically indeterminate framework 2).

Deflection of a joint of a framework. The deflection §, of an arbitrary joint
k of a statically determinate framework is to be determined in the direction
of force F, acting on it. For this purpose the axial forces S) produced by the
force F,=1 are determined first. Force F itself then produces the axial
forces F, S,. If, with the exception of force F,, the axial forces produced
by all other forces F are denoted by S,, the axial forces

As expression (9) of complementary energy is, according to equation (10),

2) The idea of using complementary energy for analysing structures was introduced
by F. ENGESSER: Zeitschr. d. Architekten- u. Ing.-Vereins zu Hannover, Vol. 35 (1889),
p- 733. Several applications are shown in a paper by H. M. WESTERGAARD: Proc. 4. S.
C. E., Vol. 67 (1941), February, p. 199. See also HENRY L. LANGHAAR: Journal Franklin
Institute, Vol. 256 (1953), No. 3, p. 255, and N. J. Horr: The Analysis of Structures, p. 332.
John Wiley & Sons, Inc., New York 1956.
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a function of force F,,, W* may be derived partially with respect to this

force, in which case
ow* oW=* o8 . oS

oF, ~ 88 0F, Z‘”aFk

By introducing the expression of 41 from eq. (3) and taking into account
that according to eq. (10) ¢ 8/0 F,, =8}, we obtain

ow* St (8
BF, ZS"[E’A f(S )+atl+A] (11)
Comparing this with eq. (5), we find that
oW*

We have thus proved the following important theorem: The partial derivative
of the complementary energy of a framework with respect to one of the external
forces acting in a joint gives the deflection of this joint in the direction of the force.

If the deflection is desired at a joint where no force is applied, force F,
must be assumed in the direction of the desired deflection. Then

oW*
6, =lim ———
k Fg—0 8Fk

Statically indeterminate framework with n redundants. The framework must
first be transformed into a statically determinate one either by means of
fictitious sections through each of n bars or by removing the redundant sup-
ports. Replacing the unknown redundants by the forces X,,X,,..., X, we
obtain a statically determinate primary system on which, in addition to the
given external loading ¥, the » redundant forces X act. The forces produced
in the bars of this statically determinate system by the given loading F we
denote by S,. The forces produced in any bar of the same system by the unit
redundant forces X;=1,X,=1,... X, =1 we denote, respectively, by S;,
S,,...,8,. Then the total axial force in a bar is

S=8+8X+8X,+...+8,X,. (14)
The magnitude of the redundant forces X can now be found from the
conditions that the displacement in the acting points of the redundants must

vanish. For these displacements we use expression (11) which leads to the
following n simultaneous equations

(13)

ow* [ S1 S i
—E—XI“-—‘ZSI -m—f(s—y)‘*‘atl'*‘d_ =0,
* - -
s [ S ) vartea] -0, )
v i

....................................
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Here S denotes the expression (14). The summation in every equation must
be extended over all the bars of the framework. A comparison of equation
systems (15) and (7) shows them to be identical.

When the values of the redundant forces have been calculated from equa-
tion system (15) the axial force of each bar is obtained from eq. (14).

Eqgs. (15) state that the redundant forces X, X,, . . ., X, have such magnitudes
as to give the complementary energy stored in the framework a stationary value
with respect to variations in stress. It can be shown that it is a minimum.

Stress-Strain Function
For the numerical calculations it is necessary to have an analytical expres-

sion approximating the actual stress-strain curve of the material. For this
purpose we use in the following the function '

o l—c(i)n ) -
CER (16)

in which exponent n denotes a positive integer and c¢(<1) a dimensionless
parameter whose value depends on the shape of the stress-strain curve. If n is an
odd number, the absolute value (|o|/o,)* of the stress ratio must be used.
Accuracy sufficient for practical purposes is obtained by selecting =1, in
which case ‘
l1—-c¢c lol
g ay I
=5 N (17)
a

Yy

€

This contains three free parameters E, o, and ¢ the values of which should
be determined so that the stress-strain function agrees suitably with the
stress-strain diagram. With the value ¢ =1 function (17) is reduced to HoOKE’s
law. |

To obtain a general idea of the form of the stress-strain diagrams repre-
sented by function (17) we write it in a more suitable form for graphical
representation by multiplying both sides by the ratio E/s,, which gives

lo|
Ee o l—ca_y

(18)

Gy Uy ]__M

Ty

The dimensionless?) stress-strain diagrams according to this equation may be
seen from fig. 2 where /o, is plotted against E ¢/o,, with ¢ as the parameter.

3) Cf. the author’s investigation, p. 27, footnote 1.
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We see that the greater the value of ¢, the smaller the deviation of the stress-
strain diagrams from the broken line formed by HOOKE’s straight line o/o, =
E ¢/, and the horizontal line ¢/, =1 corresponding to the yield point stress.
The stress-strain diagrams are symmetrical with respect to the origin of
coordinates. The following values of parameter ¢ should be selected for dif-
ferent materials: Steels St 37 and St 52, ¢=0.997, Magnesium alloy, ¢=0.975.

~10
G > |
G, / S
oy <. C-0997
_ag / - s~
.. C-0986
“c-0975
—a (’%
’
%‘
vy
L02
Lg
02 a4 26 08 10 12 % & 16
1 Il 1 1 1 1 . J

Fig. 2. Dimensionless stress-strain diagrams according to eq. (18).

The expression below for function f(8/8,) appearing in formula (2) follows
from eq. (18):

s\ l-°5
)-8 "
Su 1 _18]
y
By introducing it into egs. (3), (4) and (5) we arrive at the elongation of the bar
S|
S1 1- CS—!/
Sy
the equation of virtual displacements
IS]
SF§->8 ﬂ—l—_—c—s——”mtuzl =0 (21)
E4 _15

v

and the displacement of joint k£ of the framework
IS]
o= 28 [SL "5 st 2
k= kB4 - IEl % . (22)
» . .

When the expression f(S/8,) from the eq. (19) is introduced into equation
system (7) or (15) these equations can be expressed in the form
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zsdﬁiiig:tza =0
1 -EA l_ﬂ + + | - H
Sy
S|
_ l_c_._
Sl S, 1_
28, E4 B +atl+d} =0, (23)
Sy
S|
l—cs5
81 10, ~
Sy

where S denotes expression (6).

Hlustrative Example

In order to illustrate the method described above we analyse the plane
framework with one redundant shown in fig. 3. As a redundant force, we take
the reaction X, at the intermediate support C. Removing this support we
obtain a statically determinate simple framework on two supports. The
framework is made of steel with E =2,100,000 kg/sq. cm., o, = 2,400 kg/sq. cm.
and ¢ =0.997. The cross section of all the bars of the framework is 4 =10sq.cm.
The temperature of the framework is assumed to be constant.

Fig. 3.

The magnitude of the redundant reaction X, as a function of the loading
F may be computed from the first eq. (23) in the form

Sy—c|Sy+ 8. X,
S, — ISO+ScXc|

Yy

28, (Se+8S,X,)1 | = 0. (24)
Here S, denotes the axial forces in the bars of the statically determinate
primary system due to loads F, and S, the axial forces due to unit redundant
force X,=1. The forces §,, S, and the values of X, corresponding to the
different values of loading F are given in Table 1. The final axial forces are
obtained from formula (6) in the form

S = 8,+8,X,.
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Table 1.
F X
Bar S S e
° ‘ (kg) (kg)
— 1
1, 15 | —2)/2F — 5800 | 14 099
V2
2, 14 2F —0,5 | 13000 | 31535
— 1
3, 13 V2 F ——= | 13500 | 32680
V2
4, 12 —3F 1 13 944 | 33 560
5,11 | —)2F 1 15000 | 33870
V2
6, 10 4F —-1,5 | 16971 | 33941
7, 9 0 -
V2
8 —4F 2

175

In fig. 4 X, is plotted against loading F. The straight line 1 represents the
supporting reaction X, of a framework following HookE’s law as a function
of loading F. Curve 2 represents reaction X, of a framework the material of
which follows law (17). The maximum value of the supporting reaction is
X ez = 33,941 kg which is attained when F =16,971 kg. The compressive stress
in the bars 1, 7, 9 and 15 has then reached the yield point ¢, = — 2,400 kg/sq.cm.
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Fig. 4.
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Summary

The general theory of a statically indeterminate framework the material
of which does not follow HoOKE’s law may be based either on the method of
virtual displacements or on the principle of the minimum of complementary energy.
Both methods are explained. For numerical calculation the authors present
a new stress-strain function, (17), which contains three parameters: E, o,
and ¢. As an example of application of the method a statically indeterminate
plane framework in fig. 3, the redundant reaction X, of which is shown in
fig. 4 as a function of load F, is analyzed.

Résumé

Dans le cas d’un treillis hyperstatique, dont le matériau ne suit pas la loi
de HooKE, on pourra baser la théorie, soit sur le principe des déplacements
virtuels, soit sur le principe de l’énergie complémentaire mintma. Ces deux
méthodes font 1’objet de 1’examen de la présente étude.

Pour le calcul numérique, I’auteur présente une nouvelle loi de déformation
(17) qui comprend les trois parameétres K, o, et c. La méthode est utilisée
dans la résolution du treillis hyperstatique plan de la fig. 3, dont la réaction
d’appui X, en fonction de ’effort F est donnée en fig. 4.

Zusammenfassung

Die allgemeine Theorie eines statisch unbestimmten Fachwerkes bei belie-
bigem Forménderungsgesetz kann entweder auf die Methode der wvirtuellen
Verschiebungen oder auf das Prinzip vom Minimum der Ergidnzungsarbeit auf-
gebaut werden. Die beiden Verfahren werden in der Arbeit erldutert. Fiir die
numerischen Berechnungen wird ein neues Forminderungsgesetz (17) ver-
wendet, das drei freie Parameter E, o, und ¢ enthilt. Als Anwendungsbeispiel
der Methode wird das in Fig. 3 dargestellte, statisch unbestimmte ebene
Fachwerk behandelt. Die statisch unbestimmte Auflagerkraft X, als Funktion
der duBeren Belastung F ist in der Fig. 4 graphisch dargestellt.
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