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Energy Methods for the Analysis of Temperature Distributions and
Thermal Stresses in Structures

Methodes energetiques pour Vetude de la repartition de la temperature et des

contraintes ä la suite des variations de temperature dans les ouvrages

Energie-Methoden zur Untersuchung von Temperaturverteilungen und Spannungen
infolge Temperaturänderungen in Baukonstruktionen

GEORGE HERRMANN
Department of Civil Engineering, Columbia University, New York, U.S.A.

Introduction

In recent years structural analysts were confronted more often than before
with the problem of predicting the effects of heat inputs on structures. This
trend was brought about by such developments as atomic reactor technology,
high speed aircraft and missile technology, and also by an increased use of
welded connection in structures.

One of the most important thermal effects in structures consists in the
occurence of thermal stresses, produced by heat inputs or temperature changes.
Thus, the structural engineer is required to determine such thermal stresses,
basing himself on the temperature distribution in the strueture, which, in
turn, has to be determined first from the given boundary conditions of the
thermal problem. This latter task, as a rule, will be a rather unfamiliar one for
the structural engineer, since the temperature distribution, which is governed
by the empirical heat conduetion equation, is of a type (diffusion) which does

not lend itself to treatment by commonly employed methods, in particular
energy methods, which have proved to be powerful tools in structural analysis.

This rather unpleasant feature of thermal stress analysis was removed
recently by Biot [1,2,3], who showed that by a suitable definition of two
quantities, namely the thermo-elastic potential and the dissipation function,
a variational formulation of either the coupled or separate problems of thermo-
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elasticity and heat conduction becomes possible. A principle, complementary
to Biot's formulation, was established by the present writer [4].

The purpose of the present contribution is to show that a complete exten-
tion of the energy principles, available in isothermal structural analysis, to the
case of thermo-elastic and temperature distribution problems is possible.

The existence of such an analogy, for the sake of brevity, will be demons-
trated here with the example of a uniaxial state of stress and for the simplest
possible loading, boundary conditions and material properties.

The three energy principles discussed in the sequel represent extentions
of Green's principle for displacements (which yields equilibrium equations),
Castigliano's principle for stresses (which yields, in the formulation used here,
Hooke's law) and Reissner's generalized principle for displacements and
stresses [5]. By way of introduction, these principles are restated first for the
case of isothermal elasticity. The formulation and terminology are borrowed
from a recent summary by Reissner [6],

On Energy Theorems in Isothermal Elastic Structural Analysis

In isothermal elastic structural analysis, as exemplified by the onedimen-
sional problem of an elastic bar of length l in compression (or extention), we
consider first the following two classical energy theorems.

The principle of minimum strain energy states, that the equilibrium equations

are obtained by setting the Variation of the strain energy V, expressed
in terms of displacements, equal to zero.

In our case

2V =$Ee2dx, (1)
o

i i i

87= {Ee8edx= (Ep^8p^dx - fE^dx + EeSu]1» (2)
J J dx dx J ox2oo o

E is Youngs's modulus, € du/dx is the strain and u is the displacement.
The term on the boundary vanishes because the displacement is not to be

varied there, while the integrand yields the equation of equilibrium, in terms
of displacement, which is, in the absence of any body forces, d2u/dx2 0. This
manner of deriving the equations of equilibrium in the three-dimensional case

was first suggested by Green.
By contrast, in Castigiano's method the strain energy V is expressed in

terms of the stress er, i.e.
i

V j^dx (3)
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and the Variation yields
i

8V=j^8adx, (4)

0

if Hooke's law, o- Ee, is assumed to be valid. Integration by parts results in
i

8V - (u^dx + u8<j]l0. (5)

o

The integrand vanishes because the equilibrium equation in terms of stresses,

daldx 0, is assumed to be satisfied. If 8 V is set equal to zero, we obtain the
usual form of Castigliano's principle, which states that the partial derivative
of the strain energy with respect to an applied force equals the displacement
of the point of application in the direction of the force.

For the present purposes we prefer to use a different version of Castigliano 's

principle. We consider not only the strain energy but also the work of external
forces, as was done by Reissner [6], i.e.

i

W -j^dx + uaV0. (6)

0

The Variation of this expression results in
i

8W f --^8adx + u8G]lQ (7)

o

and after integration by parts

^-/(-T + reH' + HäT'*- <8>

0 0

The second integral vanishes, because the equilibrium equation is again
assumed to be satisfied, while the first integral yields a E e, i. e. Hooke's law.

Since a/E is the partial derivative of strain energy density with respect
to the stress a, Hooke's law can be interpreted as resulting from Castigliano's
principle. Now it is this derivative which yields the strain, through which the
corresponding stress does work. Or, in other words, Hooke's law expresses
Castigliano's principle, if applied to a unit volume of the material.

Reissner [3] has unified the two separate principles of Green and
Castigliano. He considered the strain energy in the form

'-/(¦•-£)* (9)
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and assumed, in the Variation process, the displacement and the stress as

being independent from each other. Such Variation, followed by partial
Integration, leads to

,r-J[(.-j)».-£,. dx + a8u]l0. (10)

If 8 V is set equal to zero, the coefficient of 8 er yields Hooke's law, while the
coefficient of 8 u yields the equilibrium equation.

On the basis of this unified principle, which furnishes both Green's and
Castigliano's results, Reissner was able to prove [6], that the former is a

minimum, while the latter is a maximum principle.

The Basic Equations of Thermoelasticity and Heat Conduction

The classical problem of the coupled elastic and thermal fields in the
uniaxial case is governed by the three equations

er E€-Eol6,

^ 0
dx ' (ii)

7
d2d dd m ^ de

dx2 dt dt

9 denotes here the excess temperature above a reference temperature Tr, a is
the coefficient of thermal linear expansion, k is the heat conduction coefficient,
c is the heat capacity per unit of volume, and t is the time.

It is customary to omit the "correction" term with de)'dt in the heat
conduction equation. This permits to solve first the temperature distribution
problem, which is then independent of the elastic problem, and then, in a

second step, to tackle the thermal stress problem on the basis of the first two
equations. For purposes of the present discussion, no particular simplification
is achieved by Omission of this term, and, in fact, the development is more
lucid if this term is retained. However, it is necessary to cast these basic

equations into a different form, introducing in this course several new coneepts.
The purely elastic stress, associated with elastic isothermal straining, is

denoted by t. We further define the "relative thermal displacement" h as the
ratio of the time rate of heat flow to the reference temperature, the "thermo-
elastic strain" y by means of the equation

dh _, du ..,_v -lTz + E«^ (12)

and the "thermal force" g such that the produet gh is the work done by g in
the "displacement" h.
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With the aid of these four new quantities r, h, y and g, the basic eqs. (11)

may be put into the form

t d t „ d 6

E ox ox

The first two equations of the above set represent an obvious reformulation
of Hooke's law and the stress-equation of equilibrium, using the definition
of stress r. Eliminating g in the third equation with the use of the fourth and

substituting h from the third into the last equation, the same form of the heat
conduction equation is obtained as in the set (11). p represents the time
Operator djd t and may be treated as a constant.

Generalization of Reissner's Variational Principle for Stresses and Displacements

In the present thermodynamic System of variables we have to deal with
3 dynamic quantities, r, 9 and g and 2 kinematic quantities, u and h.

Following Biot, we introduce his thermoelastic potential W in the form

W=T- +^ (14)

and his dissipation function D in the form

We now consider the energy expression

I =$(€T-yd + hg-W-D)dx (16)
o

and assume the dynamic and kinematic variables to be independent from
each other.

The Variation of 7, followed again by partial Integration, leads to

(17)

+ (>->-("%" dx + [(T-Ex9)8u + 98hy0.



144 GEORGE HERRMANN Ib 5

The integrated part vanishes, because neither displacement u nor h is varied
at the ends x 0, l. If the integrand is to vanish, the coefficients of all varied
quantities have to vanish, and this results in the five equations of the set (13).

We have thus generalized Reissner's principle for stresses and displacements

to the case of the coupled problem of thermoelasticity and heat
conduction.

Generalization of Green's Principle for Displacements

The independent variables are now the two displacements u and A. We
consider the expression

2IG=j\Ee> +^ + ^]dx. (18)
0

The first two terms express the thermoelastic potential W in terms of kinematic
variables, while the last term is the dissipation function D, also expressed in
terms of the associated kinematic variable.

To perform the Substitution from dynamic to kinematic variables in W
and D, the first, third and fifth equations of the set (13) were employed.

The Variation of IQ yields, after partial integration

»W[(-4^-$-+(££+£*M''
o (19)

XT T V
+ \^Eocy8u-^y8h[c c Jo

The integrand, set equal to zero, furnishes the second and fourth equations,
generalizing thus Green's principle for displacements.

Generalization of Castigliano's Principle for Stresses

The independent variables are now the three dynamic quantities r, 9 and g.

We consider the expression

21-/
i

r2 c92 kg2
~E + ~T~r + ^Tr_

dx + 2[uT-Eot9u + 9h]l0. (20)

Again, the integrand is nothing but the negative of the sum of the thermo-
dynamic potential and dissipation function, but now expressed in terms of
dynamic quantities.



energy methods for the analysis of temperature 145

The Variation of Ic may be written as

»W[(-i+«)''-^*"-£K$H*]*
/|^*-£V(iF-*Hfc-

0

l (21)

+
o

The second integral vanishes because the equilibrium equations (second and
fourth equations ofthe set (13)) are assumed to be satisfied, while the vanishing
ofthe first integral yields the first, third and fifth equations ofthe basic set (13).

Concluding Remarks

Using the same line of thought as the one followed by Reissner [6] it can
be proved that in the extended variational theorem for "displacements" one
is concerned with a minimum problem, while in the extended variational
theorem for "stresses" one is concerned with a maximum problem. And just
as in the case of isothermal elasticity, the variational theorem for stresses
and displacements is no more than a stationary value problem. Details of
this proof in the general case will be dealt with by the present author elsewhere.

Biot's variational formulation [1,2,3] is recognized to be a "mixed"
principle, in the sense that it yields two equations, one being part of extended
Green's, and the other part of extended Castigliano's formulation.

All the energy theorems presented here for the special case of onedimensional
problems can easily be formulated for the general, three-dimensional bodies
and also for lumped Systems, such as framed structures.

Suitable procedures for the application of the basic energy theorems to
particular cases, as illustrated by Biot [2] in heat flow analysis, are still to be

developed.
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Summary

Some well-known energy theorems of structural analysis are generalized
for the case when a part of the stresses is due to thermal effects. These methods
assume that the temperature distribution is known. It is shown further that
the temperature distribution in the strueture itself may be determined by the
use of analogous energy theorems, which can be established for both steady-

state and transient conditions.

Resume

L'auteur g&i^ralise quelques propositions connues de la methode energetique

de la statique appliquee, pour le cas oü une partie des contraintes depend
des fluetuations de la temperature. Ces methodes de calcul supposent toutefois

une repartition connue de la temperature. L'auteur montre que cette
repartition peut etre determinee ä l'aide de propositions analogues, aussi bien

pour des conditions constantes que pour des conditions variables.

Zusammenfassung

Einige bekannte Sätze der Energiemethode der Baustatik werden
verallgemeinert für den Fall, da ein Teil der Spannungen von Temperaturwirkungen
abhängig ist. Diese Berechnungsmethoden setzen eine bekannte Temperaturverteilung

voraus. Es wird weiterhin gezeigt, daß die Temperaturverteilung
im System mit Hilfe analoger Sätze der Energiemethode bestimmt werden
kann, und zwar sowohl für gleichbleibende als auch für veränderliche
Bedingungen.
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