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Redistribution of Stresses in a Continuously Supported Beam,
due to Creep

Redistribution due auw fluage des contraintes dans une poutre sur appui continu

Krifteumlagerungen in einem Balken auf durchgehender Bettung infolge Kriechen

J. N. DISTEFANO
Rep. Argentina

1. Introduction

In a so-called “‘foundation beam’’, the deformations due to creep will
produce a variation of the reaction of the support, and consequently a redis-
tribution of the stresses in the beam will take place.

In the present paper, this redistribution has been studied, taking into
account not only the creep of the beam, but also a possible creep of the support.
We shall assume linear behaviour of creep, i.e., the case in which creep strains
are proportional at any instant to the applied stress.

Generally, linear or non-linear creep behaviour are studied by means of
standard creep tests at constant stress; but it is important to note that such
tests are not sufficient to assure linear behaviour at different rates of stress.

To admit linear behaviour is the same as to admit the generalized principle
of superposition in BoLTzMANN’s sense. So, it will be possible to investigate
linear behaviour by means of superposition.

For materials like synthetic plastics, many papers, and our own experiences
[1] show that the creep of these materials follows very closely the principle of
superposition.

For concrete, Mc HExrY 1), Ross, BracksTox ete., [2] [3] [4] have shown

1) McHENRY was the first — according to our opinion — to realize that the creep
recovery curves could be interpreted like the superposition of the separated effects of
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that the superposition method gives excellent results. In Russia, GwWOSDEW 2)
and others [5] used this method of work successfully.

In this order of ideas, the theory of creep effects can be deduced from
VoLTERRA'’s theory of hereditary phenomena [6] which naturally implies the
Borrzyaxx principle of superposition.

II. General Formulation

According to the previous considerations, it is easy to show that in those
kinds of materials the effect of a certain solicitation can be expressed by means
of VOLTERRA’s mentioned theory. In our particular case it is easy to show [7]
that the curvature of a bent beam at the instant ¢, subject to a variable
bending moment M (t) applied at the instant =, can be expressed by

>y M(t)

o
p==gm= g1 HHEOLEDT, a

where ¥ is the elastic modulus of the material of the beam, and [ the inertia
moment of the cross section.

The function f, (t,7) is called the creep function. It can be easily connected
with the curves that we obtain experimentally performing creep tests at
different ages of the material, by means of

n

fLlt7) = ==& (t,7), 2)

aT

where &, (¢, 7) is the specific creep strain at the time ¢, obtained when a unit
stress was applied at the age .

We shall consider also, a linear viscoelastic behaviour of the support. The
deflections which will take place when a pressure ¢ (,t) is applied at the
instant 7, will be expressed by means of

T .
g =100 @ o )i, 3)

To

where f, (t,7) is the creep coefficient of the support, and £ the classical coeffi-
cient of elastic reaction.

If we call p(z,t) the external load acting on the beam, we can write the
following fundamental relation between bending, external loads, and reaction
of the support

an initial load and a negative one of the same intensity, applied at the instant of unload.
In such a way — and many experiments confirm the criterion — it is proved that creep
in concrete obeys the same law, for increasing and decreasing stresses.

2) The very importance of the paper of this author in 1943 is to show that Freys-
SINET’S ideas about deformation of concrete are congruent with the linear-integral for-
mulation of VoLTERRA’s theory of hereditary phenomena.
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M
o x2 ='—1)(.'L,t)—CI(rt). (4)
Eliminating y (z,t) and M (z,t) between eqgs. (1), (3), and (4), we obtain the

following integral equation

4
EIf qf2t, 7+‘p;;“q

JE/ )it T)dT+q (>, i) =
(5)
—p(x,t)—EJ'p(:c,T)fl(t,f)dq—

To solve this equation we can imagine that functions p(x,?) and ¢ (v.t) are
expressed by the following expansions of orthogonal functions

p,t) = ;a"i () @i (%),
= (6)
_([(CL t) = Zlbz (t)‘Pt (Q/)z
where @, (x) are the Eigen-functions of the following differential equation
' p;
dm ]"‘L (Pl == O . (7)

It is noted that the g,-functions are orthogonal functions, when conditions of
free, or hinged or built-in ends are satisfied. Then, the coefficients a; (t) can
be immediately calculated as follows

—_
oo
N

| !
i(t)=ﬁfp(x,t)q>i(x)dx; D:bfqpf.(x)dx.
0

Concerning the b, (f)-coefficients, substituting eqs. (6) into (5) and taking
into account (7), the following integral equation for the b; (f)-coefficients can
be written

t
by () + A J by (r) [fr (8, 7)+ L ks fo (8, 7)]d T = g (F), (9)
E
where \,= ——— and g¢g;(!) = ———=—[a;, )+ E|a;(7)f,({,7)d7].
1+EL g 1+E;fk a, Jo 1

To solve the preceeding integral equation we shall apply some restrictions
to the functions f; (f,7) and f, (¢,7) which correspond to two important cases
of practical applications.

ITI. Case of Invariable Creep

We consider the case in which the creep of the materials is independent of
the age of loading, that is to say that the creep functions f, (f,7) and f, (¢, 7)
will depend only on the difference of the parameters (f—7). In this way the
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integral eq. (9) has an elegant solution [1] by means of the Laplace trans-

formation, as follows

by (t) = — 1 P La;(t)[1+E Lf, (t)]

LI P S WATAOEY PO (10)

where L represents the Laplace transformations defined by
) = [e=stf (1) dt
0

and L~! represents the inverse transformation.

The problem is formally solved in a very general way. If the law of variation
of external loads, and the analytical expressions of the creep coefficients are
given, we are able to calculate the b; () coefficients, using tables or direct
inverting methods, by means of expression (10).

However, the most practical interest is to know the convergence of deflec-
tions, contact-pressures, etc., when ¢t — oo that is to say the asymptotic
behaviour. In order to do this we have to investigate the asymptotic behaviour
of the functions b;(t). A theorem of PALEy and WIENER on the VOLTERRA
integral equation [8] affirms that the b,(¢) coefficients given by eq. (9) will
converge to the limit

lim g, (¢)
b; (o0) = s ; (11)
LA ST )+ 1 kify () d

if and only if
N[ @O+ Tk fo(t)]esdt +£—-1; s=0.
0

This condition is always fulfilled because A; and the integrand are positive.
Morover b;(c0) will tend to a finite limit, only if ¢, (f) tends to a finite one.
This last condition is naturally dependant on the convergence of the external
loads p (x,t). If we suppose that the external forces tend to the finite limit
limp (2, t) = p, () (12)
{— 0
the a;(t) coefficients given by eq. (8) will also tend to a finite limit a, (o0).
Consequently the limit
lim g, (t)
{—o
may be obtained by means of the mentioned theorem of PaLEy and WIENER,
using the expressions of g; (f) given in (9),

limg, () = -1 52 1+ B[}, ao). (13)
i—+% L+==k;
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Substituting (13) into (11) we obtain the following expression for the b, ()
coefficients
a; ()

bi(®) = ——F7 T3y (14)
RSy
where y, and y, are
y1=0ff1(t)dt; y2=gf2(t)d7.
If we substitute b; (co0) given by (14) in the expression (6) we obtain
o0 ai w )
CI T R

If we solve the purely elastic (classical) problem of the foundation by means
of the orthogonal functions (6) we obtain the following expansion

© (0
g0 ==Y —40) o (). (16)
1 1"“;}‘]“';‘

Comparing (15) and (16) we find that the asymptotic solution of the visco-
elastic problem is coincident with the solution of the purely elastic problem,
in which the elastic modulus £ and the coefficient of reaction of the support
are substituted by the following effective values:

E k

E* = . ¥ = 17
1+ By’ 1+ky, i)

and the asymptotic values of the external loads, instead of its initial values
is used.

Hence, to wnvestigate asymptotic behaviowr, when the creep of a material s
independent of the age (invariable creep) the so-called method of ““effective modulus’™
s perfectly correct.

IV. Concrete Beam on an Elastic Support

We shall study only the case in which the support is an elastic one, and
the loads remain constant after application. The integral eq. (9) will be
reduced to

t a’.
bi(t)+AiIbi(T)f1(t,T)dT =————ELI [1+E€0(t,'ro)]. (18)
To 1+Tkl

It is known that creep in concrete depends on the age; generally this
influence of age is studied by means of standard creep tests at constant stress
and different ages of the concrete. We shall have a certain number of tests
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that will give us the specific creep curves &, (f, 7) obtained at different ages .
Experience shows that diminution of creep with the age is an asymptotic
phenomenon.

Many authors have proposed formulas in order to represent analytically
the specific creep ¢,(t,7). Among the most important we shall mention the
Dischinger formula [9] which considers the age dependence in the following
form. The specific creep of the concrete at the age of loading is represented
by means of the following function

0(t) = yo (1 —e). (19)

Then, it is assumed that creep of concrete, when the load is introduced at a
certain time 7, can be represented by means of

&(t,7)=0(@)—0(7). (20)
That is to say, as we can see in Fig. 1, the creep produced by a load introduced

at the instant 7 can be obtained by translating vertically the creep curve
given for the reference age r=r,.

N 2
3 4:?1?’“
2 orei-arte) )
~
N — ety
§ %
v 81T2)
& 81T
c
g 81¢1-81T2)
3 8it1-80T1) 4
To T ¢ Tx T U e
Fig. 1.

This assumption has one inconvenience, namely, the intensity of creep
tends to zero when the age of concrete = tends to infinite. Generally concrete
always presents creep, and the experiments show that the intensity of creep
is lower when age increases, but tending asymptotically to a limit when 7 — co.
In other words, function ¢, (¢, 7) will tend asymptotically towards a not null
function of the type F (t—7) when 7 — co.

For this reason the DiscHINGER formula gives always a pessimistic evalua-
tion of the creep effects, when new loads are introduced in the structures at
different ages [10].

In order to represent more closely the dependance of creep on age, the
following function was proposed [11]

E(t,7) =ih(r) F(1—7), (21)

where i is an always positive function that decreases monotonously towards
the finite limit ¢ (c0) =7, and represents the gradual diminution of creep due
to age. Function F (f—7) is also positive and monotonously growing towards
an upper limit equal to unity, for great values of the parameter (t— 7). Taking
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(1) =yo+—» F(t—7)=1—¢3%D (s

[V
o
~

and choosing convenient constants y,,¢, 8 it is possible to follow as closely as
desired the creep of concrete and its dependence on the age. In Fig. 2 this
situation is shown. It is noted that y, represents the asymptotic value of the
specific creep of an aged concrete, i.e., of a concrete loaded when 7 — 0.

FoitiTa) = $ (Lol FlE-Te)

FoltrTrl® $1Te)-FLE-T

To 4] £ TINE

SPECIFIC CREEP &,(4,T]

Fig. 2.

The creep function f, (f,7) can be calculated by means of eq. (2) and its
values is

0
hilt.7) ==l (r) (1—e?C7)]. (23)
Substituting (23) in (18) eventually leads to
by (1) _)‘ifbi () (r)d~ +Ai.[tbi (7) (' +84)e®¢dr = hy(t.mg),  (24)

where A, is the second member of (18).
Differentiating the preceeding equation with respect to t,

t
B (0)+ At (0)by (1) = BN by (1) (B +89) ¥ dr = hi(f,m).  (25)
Eliminating the integral
t
be(r) ( +844) e

between (24) and (25), and differentiating once again with respect to ¢, the
following differential equation is obtained
bi (1) +8[1+A;4 ()]0 (t) =0 (26)

with the following boundary conditions

a.

by(1o) = —+— (27)
1421 g,

bi (o) = s B Sy (7). (28)

)
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The general solution of eq. (26) is obtained by means of two integrations

b, (t) = b; (r4) +b; (To)fe—*’f‘f’df, (29)

To

where J; (t) =8f[1 +A ¢ (7)]d .

Substituting ¢ (7) by its equivalent (22), the preceeding integral is trans-
formed into

t \AiCd
Ti) =8 (14 Ayg) (=m) +In (1),
0
which substituted in (29) gives
t
bi (t) = bi (To) +b§ (TO)63(1+/\.-'yo)‘ro7é,-08je—S(l—}-;\;yo)rT—)\gCSdT- (30)

To

Introducing the incomplete gamma function ¢ («,t) defined by
¢
¢ (at) =[e > dr,
0

eq. (30) can be written
by (t) = by (7o) +bi (7o) €m0 g™ ry % [ (o, 75 8) — b (o, 73 7)] (31)
where a; =1-3,08; r;=0(1+A;7,).

The integral that appears in eq. (30) is convergent if and only if

b) 1-A,08>0.

Condition a) is always satisfied because A; and vy, are positive. Condition b) is

satisfied when

E08<1+£k£kmiu!

this inequality is generally fulfilled, because £ C'8 does not exceed in practical
cases 0,5.
Now, if we substitute the value of the b, (¢) coefficients given by eq. (31)

in the second expansion (6) and substitute also the boundary values (27) and

(28), we shall obtain
: EI

- a’iTk’i
g (@) = 4 (@,70) — B84 (rg) )| — o Hy (1) p; (@), (32)
where H,(t) = eriTor—%y,~% [ (a;,7;1) — b (a;, 73 7p)]

and ¢ (z, ) is the instantaneous contact pressure.
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V. Comparison with the Dischinger Formula of Creep

At the beginning of the last section we have seen that, following DiscHIN-
GER, we can write the specific creep by means of the following function

éO (taT) = e(t)—B(T)v (33)

where 6 (t) represents the creep curve obtained at the initial age. Function 6 (¢)
can be represented by means of

0(t) = yo (1 —e). (34)

It follows that the creep function defined in (2) will be
0 . do(r) "
L 7)) = —a—Teo(t,‘r) = (35)

Hence the creep function depends only on the variable .
Substituting expression (35) in the general integral eq. (18) we obtain

t 9 .
by () +2:J b, (1) L0 D g —ﬁ[l%—E@(t)].
To +_ o
k 2

Differentiating the preceeding equation with respect to the upper limit we
shall obtain the following differential equation
a.

—————FE 0§ () (36)
1 +%Ici

the solution of which is immediately obtained as follows

2lq

b (1) = — {1 __k* e—).;f)(z)] a;.

bi (1) +4;0;(1) 6" (t) =

EI
L+ ke
Substituting the preceeding expression in (6) we obtain the following expres-
sion for the contact pressure

1(0.6) == ) [1- g7 00| ay o), (37)
1 1

In order to compare this solution with formula (32), we have solved a
particular case represented in Fig. 3. A concrete beam, hinged at the ends
and continuously supported on an elastic foundation, is loaded with a uni-
formly distributed load p, at 7,=7 days. It remains constant during three
months. Then it is doubled, remaining thereafter constant during the following
three months.

The specific creep was assumed to be
4.82 -
& (l,7) = (0,9 i —) [1—e—0026¢-7].10-3,

T

so at 7 days it will be &,(¢,7) = 1,588 [1 ——0-026(=77.10-3,
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In order to calculate with DiscHiNGER’s formula, creep at 7 days was assumed
to be equal, that is to say, function 6 (¢) considered at 7 days will be

o (t) = 1.588 [1 — ¢—0.026 (f—7)] .10-5.

rCOIVCEETE BEAM
I TPTITT A TP ITTT 7

ELASTIC FOUNDATION

MAX. DEFLECTIONS

7 days H 2 3 M 5 €  mankhs

1040
)

Fig. 3.

VI. Conclusion

In the third section we have seen that — to investigate asimptotic beha-
viour — the method of the effective modulus can be rigourously applied to
structures the creep of which does not vary with the age of the materials.
This conclusion?) is not only important for the more and more extended use
of modern plastics, but also for the aged concrete, in which the specific creep,
after a certain period of time — practically 4 or 5 months — tends to repeat
at any age of loading the same creep curve. This observation is important when
the structure is formed by pre-cast parts, long-time stored before use.

For young concrete, we think that the criterion used to represent the
specific creep in Section IV permits us to evaluate more accurately creep
effects than the DiscHINGER formula, which can only represent in one way
the diminution of creep intensity due to age.

3) This conclusion is valid for any non-homogenous structure — if the creep of each
component material is invariable — (see the paper of the author “Sul comportamento
asintotico di corpi viscoelastici a ereditarieta invariabile’ in the ““Atti dell’Accademia
delle Scienze di Torino™, Nov. 1960, Vol. 95).
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List of Notations

Bending moment [kgcm].

Curvature of the beam.

Deflection of the beam [em].

Elastic modulus of concrete [kg cm=2].

Inertia moment of the cross section of the beam [em*].
Time.

Age of the viscoelastic materials.

&, (t,7) Specific creep of concrete [em?kg—1].

f1(t,7) Creep function of concrete [cm?kg~'/day].

(t,7) Creep function of the support [em2kg~!/day].

Coefficient of elastic reaction of the support [kg em=2].
Eigenvalues [cm—].

p(x,t) External loads acting on the beam [kg cm—1].
—q (x,t) Reaction of the support [kgcm=1].

Y2

Effective modulus [kg ecm—2].

Effective coefficient of reaction of the support [kgem—2].

Asimptotic creep strain in aged concrete produced by a stress equal
to 1 kgem=2 [em2kg—1].

Asimptotic creep deflection in the support produced by a distributed
load equal to 1 kgem=! [em2?kg~1].

¢ («,t) Incomplete Gamma function.

1.

10.

11.
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Summary

In the present paper the redistribution of stresses, due to creep in a foun-
dation beam, is studied, considering not only the creep of the beam but also
a possible creep of the foundation. Linear behaviour of creep is assumed, and
the general integral-differential equation of deflections is solved for the most
important cases of applications. Particularly, it is shown that when creep of
materials composing the beam and foundation are independent of the age of
loading, the problem is immediately solved by means of the classical (elastic)
methods.

Finally, the case of materials, the creep of which varies with age, is studied,
and a discussion of the Dischinger criterion of creep of concrete is made.

Résumé

L’auteur étudie la redistribution des contraintes dans une poutre de fonda-
tion, les matériaux de la poutre et de sa fondation étant considérés comme
visco-élastiques. On a admis un comportement linéaire du fluage, conformément
a la théorie des phénomeénes héréditaires de VOLTERRA. L’équation intégrale-
différentielle régissant les déformations est résolue pour les cas d’application
pratique les plus importants. L’étude a montré que, pour le calcul des défor-
mations finales, la méthode du module effectif est parfaitement correcte quand
le fluage du matériau n’est pas variable avec le temps.

Finalement, I'auteur étudie le cas du fluage variable avec I’dge du matériau
et il discute le critére de fluage du béton proposé par DISCHINGER.

Zusammenfassung

Der vorliegende Artikel befal3t sich mit den durch das Kriechen bedingten
Krifteumlagerungen eines Fundationstriagers, wobei nicht nur das Kriechen
des Trigers, sondern auch dasjenige des Untergrundes beriicksichtigt werden.
Zur Losung der die Deformationen beherrschenden, allgemeinen Integral-
Differential-Gleichung wurde ein linearer Zusammenhang zwischen Bean-
spruchung und Kriechen angenommen, wobei die Resultate fiir die wichtig-
sten Anwendungsfille angegeben werden. Haben Triager und Untergrund ein
vom Alter des Materials im Moment der Belastung unabhéngiges Kriechmal,
so kann das Problem sofort mit Hilfe der klassischen (elastischen) Theorie
gelost werden. Zum Schlull wird der Fall des vom Alter des Materials abhingi-
gen Kriechens untersucht sowie das Dischingersche Betonkriechkriterium
diskutiert.
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