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Realistic Assessment of Loads Acting on Structures with Particular
Reference to Snow and Wind Loads on Buildings

Estimation réaliste des charges agissant sur les ouvrages, avec mention spéciale
des charges de neige et de vent sur les édifices

Realistische Einschitzung der auf ein Tragwerk wirkenden Lasten mit speziellem
Hinweis auf Schnee- und Windlasten fiir Gebdude

R. F. LEGGET W. R. SCHRIEVER
Director, Division of Building Research Head, Building Structures Section Divi-
National Research Council, Ottawa sion of Building Research National

Research Council, Ottawa

1. The Importance of Loads

It is now recognized that the importance of determining the actual loads
to which structures and particularly buildings are subjected has not been
appreciated to the extent desirable, with a few notable exceptions (1—6). In
view of the increasing attention which has been devoted in recent years to the
problem of the load carrying capacity and so to the safety of structures, it is
logical to strive for a corresponding advance in knowledge of the actual live
loads on structures, since no refinements in the methods of design analysis can
compensate for inaccuracies in load assumptions. Recognition of the impor-
tance of loads at this Congress of the I.A.B.S.E. is therefore to be welcomed.

Conventional load assumptions and design methods have resulted in safe
structures in the great majority of cases. This fact, however, only indicates
that caution has been exercised by designers and by the authorities responsible
for design specifications and building codes. It is neither proof of the accuracy
of design assumptions nor of economy of design. The real degree of safety in
many structures is unknown; there are indications that many structures at
the present time provide either excessive or non-uniform safety.

Structures are designed to perform a given function adequately, i.e., first,
with adequate safety against collapse during their lifetime; and, second, with
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adequate protection against deformations which would impair their service
The former aim, safety against collapse, is generally of primary importance

The possibility of collapse of a structure depends on a large number of
factors which can conveniently be grouped into two main variables: Loads
and carrying capacities (strengths). Design loads and design strengths are
quantitative values which are selected by the designer or code writing autho-
rity, partly based on records of actual loads and of strength properties of
materials obtained from tests and partly on the basis of judgement. Since loads
and strengths cannot be predicted with certainty but only with some degree
of probability, the concept of probability must form a basic part of a realistic
approach to design. Design is thus closely tied to the prediction of the variation
of loads and of the strength which must be expected. Determination of the
probability of coincidence of very high loads with very low strength which
will lead to failure, becomes the crucial problem. Notwithstanding the fact
that the nature of the problem is probabilistic, the use of theories of extreme
values will only find its full justification where factors with a random distri-
bution are involved. This is not always the case and many decisions in design
have to be made on basis of judgement and experience. Thus good design will
consist of a consideration of the probability of failure by statistical methods,
modified by judgement in considering all service conditions of the structure.

2. Recent Changes in Approach to Loads

If the actual loads acting on a given type of structure were plotted in form
of a histogram or frequency distribution curve, and if the load carrying capa-
cities or strengths of the same structures could be obtained and plotted in the
same manner in the same graph (see fig. 1), it would become apparent that
even if a structure is designed very conservatively there will always be a
certain, even though very small, chance that the capacity of the structure
might be exceeded by the load, as indicated by the intersection F of the two
curves. If the design ‘‘factor of safety’’ of the structure is increased, the right
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Fig. 1. Frequency Distribution Curves of Actual Loads and Strengths.
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hand curve is moved further to the right but the probability of failure does
not become zero. In other words, there is no such thing as absolute safety.

What is the factor of safety in the structures of the imaginary example in
fig. 1? Is it the ratio of the mean values R,/W, or is it the ratio of a conser-
vative (low) strength to a conservative (high) load R,/W,? Great variation in
the value R,/W, is possible, depending upon how conservatively the design
strengths and loads are selected. Since, frequently, there is no obvious upper
limit to the loads and no obvious lower limit for the strength, it is not im-
mediately apparent what the factor of safety really is. It would therefore
seem desirable, as pointed out by FREUDENTHAL [7], to establish in principle
a procedure in which the conventional concept of the factor of safety does
not occur. The ‘““probability of failure’’ appears to be the only rational quan-
tity defining the degree of safety achieved in any structure.

The concept of safety, however, seems to be so deeply engrained in the
minds of engineers at the present time that the idea of working with a ‘“‘probabi-
lity of failure’’ appears to be generally unacceptable. It may therefore be
necessary to retain, at least for some time, the concept of safety in design
rather than the probability of failure, but it is hoped that more and more
engineers will come to view safety in terms of the probability of failure.

In the past, with conventional design, a margin of safety has been achieved
by two means — by using an allowable stress, which was a certain fraction
of the yield or breaking stress of the material, and by selecting a design load
which was set at a certain level above average loads. Both these factors con-
tain a margin of safety; together they determine the true reserve of strength,
or the probability of failure. A change in either one of them means a change
in the probability of failure. More recently methods of design have been based
on ultimate load factors defining the ratio of the collapse load to the assumed
working load. No matter what method is used, the real problem of design is
the appropriate choice of the probability of failure.

Two approaches can be visualized in the choice of a suitable value for the
probability of failure. A theoretical and rational means of determining the
probability can be found from purely economical considerations, as suggested
by several authors notably TorroJa [8] and Jounson [9]. These authors
have suggested the principle of making the total cost of the structure (con-
sisting of initial capital cost plus maintenance cost plus the cost of insurance
against collapse) a minimum, assuming that the probability of failure can be
adequately estimated. As this is not generally possible however, because of
the lack of sufficient information, it may be necessary to resort to another
method which would be based upon calculating the probability of failure
inherent in existing structures. The results might then indicate in a general
way what probability of failure society and, more particularly, the engineering
profession have come to accept by evolution, through gradual adjustment of
design loads and stresses throughout the years. This has been done recently
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by some authors, their studies indicating that the probability of failure of
existing structures may be of the order of one in one million.

In view of the many difficulties encountered in a more rational approach
to structural safety, it is not surprising that there are many differing views
on the practicability of applying the theory of probability to the calculation
of load factors. One point, however, seems to stand out. Since design loads
have such a decisive effect on the probability of failure and yet in the past
have been selected mainly by estimates, a worthwhile improvement can be
achieved by assembling factual information on actual loads. The collection of
such information is an undertaking which has been urged by leading authori-
ties such as BAKER, HORNE and HEymaN [10], PugsLEY [11], the Institution
of Structural Engineers [12], FREUDENTHAL [7] and others. The collection of
this information is an undertaking of considerable magnitude since it should
be on a national or international scale. It is beyond the means of university
research as stated by BAKER, HORNE and HEYMAN.

3. Canadian Approach to Load Determination

In Canada, the vital importance of actual load records for the determina-
tion of proper design loads in buildings and other structures has been recognized
by the Associate Committee on the National Building Code, the body respon-
sible for the preparation of the most widely used building regulation in Canada.
Approximately half of the urban population of Canada now live in municipali-
ties which use the National Building Code. It is thus apparent that the design
loads specified in this Code have a significant influence on the cost and safety
of a large percentage of all structures being built in Canada.

The Committee responsible for the Code is appointed by the National
Research Council of Canada. It is a group of 20 expert individuals — engineers,
architects, building officials, builders — who are selected to serve as individuals
and not as representatives, on a professional and geographical basis. To assist
it in its work, this Committee has set up three Advisory Groups dealing with
the three bases of the Code — structural safety, public health and fire safety.
The Group concerned with design loads is the Advisory Structural Group,
whose terms of reference are, briefly, to keep the Code continually under
review with respect to all aspects of structural sufficiency, to ensure that the
Code is in accordance with the economical use of all structural materials, to
consider new developments in structural design and to suggest to the Associate
Committee how best such new developments can be covered in the Code, and
to bring to the attention of the National Research Council’s Division of
Building Research special structural problems which require research and
investigation in Canada.

The policy of the Associate Committee is to revise the National Building
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Code at intervals of about five years. A completely revised edition of the Code
is planned for 1960. The work of preparing revised parts of the Code is being
carried out by special revision committees, one of which deals specifically
with design loads.

It may be noted that the Advisory Structural Group deals with all types
of structures and structural materials and thus is unique in Canada in bringing
together in a common forum specialists in the various materials of construction
such as steel, concrete, wood and other materials. The Group has recognized
the fundamental importance of the proper assessment of design loads for
structural design, as shown by the Group’s recommendation to the Division
of Building Research that it should institute a number of special studies of
actual loads, particularly snow loads on roofs but also floor loads, earthquake
loads and wind loads. These studies are now in progress.

4. Studies of Loads in Canada

Snow loads. Specification of snow loads for design purposes is a most
important part of a building code in a country like Canada where snow generally
provides the heaviest load to be resisted by roofs. Design snow loads conse-
quently have a significant influence on the cost of construction. A particular
difficulty in specifying snow loads in Canada results from the size of the country
and its varied climatic regions. The snow cover on the ground during a normal
winter varies from a few inches in the southern part of British Columbia, to
about 2 feet in the populated areas of southwestern Ontario and Quebec, and
to approximately 3 to 4 feet in some northern areas such as Labrador, with
much greater snowfalls at high elevations in the mountainous regions of B. C.
and Alberta.

In the National Building Code (1953), use was made of detailed snow depth
observations on the ground recorded during the years of 1941—1950. The
snow loads given in the Code were calculated from the maximum recorded
snow depth on the ground, using an assumed average specific gravity, plus the
weight of the maximum 24 hour rainfall during March [13]. From these figures,
a map was prepared giving snow loads for a horizontal surface in the form of
contour lines (see fig. 2). The Code makes allowance for the slopes of roofs and
recommends consideration of non-uniformly distributed snow where shape,
differences in roof level, insulation qualities, the orientation of a building or
its proximity to other buildings may cause unusual accumulation of snow.

Although these snow loads were more rational than in the previous edition
of the Canadian Building Code, the fact remains that the loads are based on
snow measurements on the ground and thus may not be truly representative
of actual snow loads on roofs. Accordingly, the Advisory Structural Group
recommended in 1956 that the Division of Building Research should conduct
a countrywide survey of actual snow loads on roofs in order to determine the
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relationship between snow loads on the ground and snow loads on roofs, and
to assess factors which affect the accumulation of snow on roofs, particularly
the effects of wind, shelter, shape of building, heat loss, and solar radiation.
This survey was started in the winter of 1956—1957. Measurements are being
made each winter at 66 locations from coast to coast. At some of the stations,
complete measurements are made with permanent snow depth gauges installed
on flat and sloped roofs and with density measurements taken weekly and
after heavy snowstorms. At other stations simpler observations are taken by
volunteer observers who merely take depth but no density measurements.
Residential roofs and large hangar roofs at airports are being observed. Fig. 2
shows the locations of the various observation stations.

Although full observations for only two winters are available to date, the
early results suggest certain tentative conclusions. The assumption of a uni-
formly distributed snow load on roofs is seldom realized in areas with even
normal wind (see fig. 3). The average snow load on roofs is less than that on
the ground by an amount which varies widely, depending on wind and other
factors. Certain roof shapes tend to develop localized snow accumulations
which may be much deeper than the snow on the ground (see fig. 3). This is

o
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Fig. 2. Snow Loads in Canada.

—40— Design snow load on a horizontal surface (1b/ft2) according to the National Buil-
ding Code of Canada (10 psf ~ 50 kg/m?2).

® Detailed Observations | Observation stations of the National Research Council’s Survey

o Simple Observations } of Snow Loads on Roofs.
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particularly the case on roofs with several levels and upon curved roofs. Heat
loss through the roofs and solar radiation reduce snow depth only under
favourable conditions.

For determining snow loads for the mountainous areas of western Canada
for the 1960 edition of the Code, it is proposed to use a new approach based
on empirical relationships between snow load and elevation above sea level
within each of a number of climatic zones, similar to the rule followed in
Switzerland, France and Austria.

Roof failures due to snow loads are, unfortunately, not uncommon in
Canada. The winter of 1958—1959 brought greater than normal snowfall in
parts of Canada, particularly in the areas east of Lake Huron, where a number
of collapses occurred. One of these failures occurred in a hockey arena with
a curved roof supported by 110 ft. span wooden trusses and resulted in the
tragic death of seven boys and one adult. Such failures serve to remind engi-
neers of the importance of design snow loads in Canada.

Wind loads. Wind forces on structures result from differential pressures
caused by the obstruction to the free flow of the wind. The forces are therefore
functions of the velocity of the wind on the one hand and the size, shape and
orientation of the structure on the other. Information on wind loads must
come from two sources — meteorology and aerodynamics.

At present the wind load requirements of the National Code Building take
into account three factors — the gust velocity, the increase of velocity with
height, and the shape of the structure.
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Fig. 3. A Triangular Snow Accumulation (Maximum Load 80 lb./sq. ft.) Resulting From
Wind Action on a Building in an Area with a 50 lb./sq. ft. Design Load.
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Gust velocities are derived from hourly wind velocities obtained at 200
weather stations across Canada, which are then multiplied by a “gust factor’’.
The gust factor, which increases with the velocity, is based on correlations
made at a number of weather stations where both cup anemometers and
Dynes tube anemometers are available. The computed maximum gust veloci-
ties are shown in the National Building Code by lines of equal velocity on a
map of Canada.

For the increase of velocity with height, the 1/,th power law is used, this
being a familiar aerodynamic profile in wind tunnel investigations of turbulent
flow over smooth boundaries. Experimental investigations have shown, how-
ever, that there are many variations in nature to this law. It has recently
been proposed by DAVENPORT [14] that ground roughness should be taken
into account by using different exponents but the same gradient velocity. Over
flat open country an exponent of /,th, over rolling and wooded country and
the outskirts of large cities 1/3.5, and for the centre of large cities 1/2.5 might
be used. '

Shape factors are generally based on wind tunnel tests on elementary
geometrical models of structures. Attention is drawn to a recent paper by
SINGELL [15] in which factors relating to coefficients for various building shapes
have been correlated and in which it is suggested that the tables in the Swiss
Building Code [16] are the latest and most extensive records available.

Traffic loads at Toronto Subway. The construction of the Toronto Subway
by the cut-and-cover method was used as an opportunity to measure actual
loads occurring on a temporary road deck supported by steel beams [17].
These measurements, although extending over a limited period only, indicated
that the stresses in the steel beams due to traffic loads were very low and that
there was considerable room for economies. The published record of this work
provides good confirmation of the utility of a statistical approach to load
determination. The authors hope to continue this study during construction
of further stages of the Toronto Subway.

Study of failures. It has already been noted that design loads and stresses
used at the present time are largely the result of “‘engineering evolution’’, the
values having been adjusted from time to time on the basis of experience and
judgement or, in other words, on the basis of a consensus on past performance,
taking into account known structural failures or the lack of such failures on
the one hand, and the improvement, over the years, of the quality of the
construction materials on the other. This approach indicates the vital impor-
tance of assembling records of structural failures as a guide for future design.
Accordingly, the Division of Building Research maintains as complete a record
as possible of structural failures in Canada by collecting printed information
on such failures and by conducting its own investigation of such failures
whenever practicable.
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5. Conclusion

No structure, no matter how conservatively designed or how well cons-
tructed, provides for absolute safety. Every structure has some finite probability
of failure even though it may be very small, of the order of one in one million.
Loads and strengths used in design are quantities whose upper and lower
limits can only be stated in terms of probability. The safety of a structure cannot
accurately be expressed by a safety factor but only by the probability of its
failure. In simplified terms it can be said that if the probability of extreme
loads is known and if the probability of extreme strengths is also known the
probability of failure can be stated [18]. In reality the problem is much more
complicated. The probabilistic approach will, however, allow a gradual improve-
ment in the judgement of those factors affecting safety which can be treated
statistically.

Advance in the field of structural design is only possible if advance in the
analysis of structures is accompanied by a corresponding improvement of the
knowledge of actual loads on structures. Such information for Canada is now
being collected by the Division of Building Research of the National Research
Council. It is hoped that other organizations will also recognize this need and
participate in this important aspect of research, so that results can be shared
on an international basis.
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Summary

The Paper points out that no structure, no matter how conservatively
designed, provides for absolute safety, because loads and carrying capacities
of structures are variables whose upper and lower limits respectively, cannot
be predicted with certainty but only in terms of probability. The safety of
structures can therefore be expressed truly only by the probability of failure.
Advances in structural design must be accompanied by corresponding improve-
ment in the knowledge of actual loads on structures. Canadian studies of live
loads on buildings, and particularly a countrywise survey of snow loads on
roofs, are described with relation to their application in the National Building
Code of Canada.

Résumé

Les auteurs montrent qu’aucun projet, si prudent soit-il, n’offre une
sécurité absolue, car les charges et la capacité de charge des ouvrages consti-
tuent des grandeurs variables, dont il n’est possible de déterminer les limites
supérieures et inférieures qu’avec une certaine probabilité et non pas avec
certitude.

La sécurité qu’offrent les ouvrages ne peut donc étre effectivement exprimée
que sur la base d’une probabilité d’effondrement.

Les progrés réalisés dans le domaine de la construction des systémes por-
teurs doivent ainsi étre accompagnés d’une amélioration corrélative de nos
connaissances sur les charges effectives.

Les auteurs exposent les investigations canadiennes sur les charges utiles
des ouvrages et particuliérement les résultats d’une observation étendue sur
tout le pays concernant les charges imposées aux toitures par la neige; les
résultats de ces investigations sont utilisés dans le Code National du Batiment
du Canada.
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Zusammenfassung

Dieser Bericht weist darauf hin, dafl kein noch so sicher bemessenes Trag-
werk absolute Sicherheit bietet, da die Lasten und die Tragfihigkeit der
Tragwerke variable Werte sind, deren obere und untere Grenze nicht mit
Sicherheit, sondern nur nach der Wahrscheinlichkeit angenommen werden
kénnen.

Die Sicherheit von Tragwerken kann somit wirklich nur auf Grund der
Einsturzwahrscheinlichkeit ausgedriickt werden. Entsprechende Verbesserung
der Kenntnisse der effektiven Lasten miissen die Fortschritte in den Bemessungs-
verfahren begleiten.

In Verbindung mit ihrer Anwendung in den kanadischen Baunormen sind
kanadische Untersuchungen iiber Nutzlasten fiir Gebdude und hauptséchlich
eine landiiberspannende Beobachtung der Dachbelastung durch Schnee
beschrieben.
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Action dynamique des charges mobiles sur la superstructure des
ponts-rails

Dynamische Wirkung beweglicher Lasten auf Eisenbahnbriicken

The Dynamic Effects of Live Loads on the Superstructure of Railway Bridges

I. I. CASEl

Institut de recherches scientifiques pour les constructions relatives aux transports,
URSS

Le réseau ferroviaire de 1’'Union Soviétique comporte de nombreux ponts-
rails de types de construction divers. Actuellement, les ouvrages en matériaux
a haute résistance sont de plus en plus largement utilisés. On associe ’acier
et le béton armé ou précontraint dans des constructions mixtes. Les essais et
les calculs montrent que des ouvrages de méme portée, mais de types divers,
peuvent résister d’une maniére différente & 1’action dynamique des charges
mobiles.

Actuellement on introduit sur une grande échelle la traction électrique et
& diesel, on met en service de nouveaux wagons lourds; les vitesses de circu-
lation des trains montent en fléche.

Cependant, les taux des coefficients dynamiques actuellement en vigueur
ont été établis d’aprés des données expérimentales recueillies sur des ouvrages
anciens, pour des trains avec traction & vapeur et pour des wagons relative-
ment légers, & une époque ou les vitesses des trains de marchandises ne dépas-
salent pas 60—70 km/h. L’application de ces taux dans les conditions actuelles
ne traduit en tout cas pas le comportement élastique réel des constructions.

L’établissement d’une méthode générale pour le calcul dynamique des
superstructures de ponts sous I’action des diverses charges mobiles provenant
du trafic est considéré comme un probléme important dans le domaine de la,
théorie de la construction des ponts.

C’est pourquoi un certain nombre d’organisations de recherches ont effectué
ces derniéres années d’importants essais sur les ponts ferroviaires en Union
Soviétique. Des ponts-poutres et des ponts en arc de portées différentes,
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construits en matériaux divers, ont été soumis & des essais dynamiques. Des
trains conduits par des locomotives électriques ou & diesel ou par des locomo-
tives & vapeur servaient principalement de charges. Quelques essais ont été
effectués avec des trains spéciaux qui circulaient & une vitesse atteignant
170 km/h. Des appareils modernes de mesure ont été utilisés pour enregistrer
les déformations et les contraintes des ouvrages. La coordination des recherches
expérimentales et théoriques est réalisée par I'Institut de recherches scienti-
fiques pour les constructions relatives aux transports.

Actuellement 1’analyse d’un grand nombre de données expérimentales est
déja terminée, ce qui permet d’émettre certaines conclusions trés importantes,
servant & améliorer les méthodes de calcul pratiques des ponts-rails sous 1’action
dynamique des charges mobiles et permettant de tracer les principes généraux
de la théorie de ce probleme.

Les plus importantes de ces conclusions sont les suivantes:

1. La nature des actions dynamiques produites dans les ponts-rails par les
charges roulantes varie et dépend du type des véhicules ferroviaires (locomo-
tives, wagons), de la construction et de 1’état de la voie sur le pont ainsi que
sur ses acces les plus proches, de la portée prévue et des propriétés dynamiques
générales des superstructures (masse, rigidité, fréquence des vibrations, para-
metres caractéristiques de 1’amortissement etc.). Dans certaines conditions,
une force faisant partie de tout le complexe des forces dynamiques agissant
pendant le passage du train peut produire le plus grand effet dynamique
quoique la plus grande valeur instantanée de ladite force ne soit pas toujours
le maximum dans ce complexe de forces.

2. Pour les ponts & faible portée (période des oscillations verticales natu-
relles ne dépassant pas 0,07—0,10 sec.) 1’effet dynamique a souvent un carac-
tére de choc trés prononcé et provient d’une action de forces instantanées
verticales (dynamiques) qui ont dans une grande mesure une nature acciden-
telle non périodique (fig. 1).

Dans plusieurs cas, une action dynamique sensible peut apparaitre ici a
cause des particularités qui ne sont propres qu’a la locomotive en question
ou & un certain type de locomotives (par exemple & cause du grand «frétille-
ment» ou du «roulis» qui sont typiques pour cette série de locomotives ou bien
4 cause des méplats locaux ou des défauts de bandage de la locomotive etc.).

Pour les petites portées, 1’effet dynamique provoqué par le choc des roues
des différents véhicules sur les joints des rails et sur les autres inégalités peut
étre fort divers. Cet effet est surtout considérable quand les chocs se suivent
avec une régularité déterminée et quand la phase du choc postérieur coincide
avec la phase de la vibration apparalssant dans la superstructure a la suite
des chocs antérieurs.

L’effet dynamique des chocs de chaque roue augmente, pour des vitesses
de passage du train atteignant 150—170 km/h, plus lentement que les vitesses.
Une augmentation double ou triple de la masse portée par un essieu, non
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Fassage dune locomoltive é vapeur Passage dine locomolive diesel .

mw

) Action dynamique avec caractére de chocs accidentels (superstructure en béton armé
l =9,3m).

Disposition des essieux
) Disposition des essievx des wagons dune Jocomotive electrigue
) [T

I 1
OODd OO

V=56.3Km/h

b) Effet net dynamique du choc des roues du véhicule sur les joints des rails
(superstructure en béton armé, I = 9,3 m)

Action de /3 deuxiéme
locomolive

(avec un méplat dv bandage)

Action de /s premiére
locomotive

¢

V= 50Km/k
¢) Influence trés marquée des particularités (défauts des organes de roulement) de
certains véhicules (superstructure en béton armsé, I = 9,3 m)

Passage sur le pont d’un train de marchandises conduit par deux locomotives du méme
type.
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d) Influence dynamique des grandes oscillations latérales d’une locomotive électrique
& la vitesse ¥V = 86 km/h (superstructure métallique, ! = 12,1 m)
(1) contraintes dans la poutre gauche,
(2) contraintes dans la poutre droite,
(3) courbe des contraintes moyennes,

(4) courbe des différences des contraintes des deux poutres

Fig. 1. Oscillogrammes typiques des déformations dynamiques des ponts-rails & faibles
- portées.
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appuyée sur les ressorts de la voiture, provoque une augmentation valant
seulement de 1,2—1,5 fois ’effet perceptible du choc (4 la méme vitesse et
sur la méme inégalité de la voie).

3. Les diverses forces périodiques apparaissant & un certain degré pendant
le passage de presque chaque train provoquent toujours un effet dynamique
sensible dans les poutres de grande portée, si la période de leurs vibrations
naturelles verticales dépasse 0,2—0,25 sec.

Les locomotives & vapeur provoquent un effet dynamique considérable sur
les superstructures, quand leur vitesse est telle que le nombre de tours par
seconde des roues déséquilibrées est semblable & la fréquence des vibrations
naturelles de la construction (fig. 2a) dont la charge d’ailleurs varie.

Les essais ont montré qu’on peut déterminer avec une certaine précision,
a 'aide de calculs théoriques, les amplitudes des oscillations provenant du
passage des locomotives & vapeur sur les poutres de portées moyennes et
grandes. Les fleches dynamiques au centre de la superstructure (y) sont expri-
mées par 1’équation différentielle suivante:

f;t‘;!+2ueog—?+u2 aly = ﬁ:uzjw28in(wt+tp), ou
a,, M, Fréquence circulaire de 1’oscillation propre de la superstructure et
masse réduite de la superstructure.
U Fonction caractérisant la variation de la fréquence inférieure de 1’os-
cillation verticale de la superstructure pendant la variation graduelle
de son chargement.

€ Coefficient de 1’amortissement de 1’oscillation pour la superstructure
non chargée. ‘

w Vitesse angulaire des roues motrices (déséquilibrées) de la locomotive.

Mz Coefficient du déséquilibre des roues de la locomotive. '

] Coefficient provenant de la réduction de la force périodique de la loco-
motive au centre de la travée.

P Phase initiale de 1’action de la force périodique, au moment ou la

locomotive entre sur le pont.

La variation des parametres dynamiques de la superstructure pendant le
passage du train n’était pas prise en considération dans la pratique précédente.
La détermination théorique des oscillations possibles de la superstructure au
moment ou le train entre sur le pont conduisait & des résultats erronés si
pareille hypothése (v =1 ou »=const.) avait été faite.

Le complément dynamique apparaissant a cause de 1’action des forces
périodiques est lié directement & la valeur du rapport de I’intensité de la sur-
charge a la charge permanente.

Les essais ont bien confirmé le rapport du coefficient dynamique du calcul
a la vitesse du passage de la locomotive exprimé par 1’équation suivante,
adoptée par les réglements des chemins de fer soviétiques:
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Lbpy =1+ Upgy, — OU

p, Complément dynamique maximum & la vitesse critique de marche v,,.

tmaz Complément dynamique & la vitesse de marche v.

u  Coefficient qui dépend du rapport des vitesses —.

Ver
Comme les locomotives électriques et celles & diesel n’ont pas de masses
tournantes déséquilibrées, leur action dynamique différe sensiblement de 1’effet
provenant des trains conduits par des locomotives & vapeur.

)
V =348Km/h V=80Km/h
V = 46.5Km/h

a) Apparition d’une oscillation proche de la résonance, au passage d’une locomotive a
vapeur (sans wagons) sur une superstructure mixte acier-béton, ! = 56,43 m.

U=0512sec. V=45Km/h

%)

Passage dune locomolive et des wagons
de la téte-de-/rain

. |
Passage dun convor de wa_qon.fﬂ

Voudres 3 huile 3 gualre essreux |
} —r—

b) Oscillation provoquée par les groupes de chocs périodiques des roues pendant le
passage de wagons & quatre essieux & une vitesse critique sur le pont.

Superstructure métallique, I = 66 m.

c)

Fossage d une | !
locomoltive et des | |Fassage dun convor de wagons couverts 4|
wagons de I3 léle -de-train \guatre essieux avec chargement |
|

{

1 \
1 ¥

Superstructure métallique, I = 77 m.

a) T-0536sec.

I
|
|
|

H Passage dun convor de wagons foudres :
Passage de /o téle-de-frain ||| a huile & qualre essieux ]
I !
|
I f

Superstructure métallique, ! = 87,33 m.

Fig. 2. Oscillogrammes typiques des déformations dynamiques des ponts-rails & moyennes
et grandes portées.



102 I. I. CASET Ib 2

4. En étudiant ’effet dynamique des charges mobiles sur les superstruc-
tures des ponts moyens et grands et en élaborant une théorie appropriée aux
problémes pratiques du calcul dynamique des ponts, nous prétons une atten-
tion toute particuliére au probléme de la formation et de I’effet sur les super-
structures des groupes de chocs, qui apparaissent sur la voie du pont pendant
le passage du convoi et qui se répétent périodiquement.

La formation de ces groupes de chocs se manifeste de fagon sensible (fig. 2b)
pendant le passage a la vitesse critique de rames composées uniquement de
wagons d’un certain type (y compris également les wagons & quatre essieux),
quand sur le pont les inégalités (par exemple joints des rails, méplats des
champignons des rails et autres) se succédent réguliérement. Il est établi par
des recherches expérimentales et théoriques qu’il existe plusieurs vitesses cri-
tiques pour lesquelles se fait sentir 1’effet dynamique des chocs se produisant
par groupes. Les valeurs absolues des vitesses critiques dépendent du type de
wagons. La grandeur du complément dynamique correspondant dépend de la
disposition des essieux du wagon, de I’espéce et de la disposition des inégalités
de la voie ou de 1’endroit qui provoque les chocs et de la valeur de la vitesse
critique.

Les grandeurs des demi-amplitudes de 1’oscillation des superstructures
enregistrées lors de nombreux essais pendant le passage de wagons a la vitesse
critique s’accordent bien avec les valeurs données par la formule:

—p—mid

C,T,% Se rapportent au coefficient caractéristique de la rigidité, a la période
de l’oscillation, au décrément de 1’amortissement de l’oscillation de
la superstructure chargée.

Ordre de la vitesse critique.

Coefficient caractérisant les groupes de chocs provenant des wagons
du type en question sur les inégalités de la voie existant sur le pont.
Quantité des groupes de chocs provenant des wagons apres leur passage.
F Impulsion moyenne d’un choc provenant du passage d’un axe sur

une inégalité d’une certaine espéce.

N

™,

5. L’évaluation correcte du role des résistances inélastiques apparaissant
dans une construction et provoquant l’amortissement de l’oscillation a une
grande importance. Les essais ont montré que ce sont les forces extérieures, et
non pas les forces intérieures de la résistance inélastique dans le matériau lui-
méme, qui ont le plus d’influence sur 1’amortissement de 1’oscillation des
superstructures de ponts-rails, particulierement celles en acier ou en béton
précontraint.

Ces forces extérieures proviennent du frottement entre les appuis de la
voie et le pont, de 1’oscillation des culées et des piles sur le sol, etc. La dispersion
considérable des valeurs expérimentales des décréments caractérisant 1’amor-
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tisssment de 1’oscillation des superstructures s’explique par.le fait que les
causes extérieures de la dispersion de 1’énergie provenant de l’oscillation
peuvent avoir dans les conditions concrétes, une importance bien différente.
Il faut prendre en considération dans les calculs dynamiques ces forces exté-
rieures de la résistance, en tenant compte des valeurs intervenant dans n’im-
porte quelles conditions de 1’exploitation.des superstructures. :

- Actuellement on peut déja aborder par une méthode de calcul 1’établisse-
ment des décréments de I’amortissement qui doivent étre contrdlés. et ainsi
gviter pour les superstructures de types nouveaux l’adoption de coefficients
dynamiques trop grands et injustifiés.

6. L’action dynamique provenant des véhicules ferroviaires modernes a
souvent une nature vague et tres compliquée dans les superstructures de
10—20 m de portée, avec une période des oscillations verticales naturelles
valant de 0,10—0,15 sec. environ. Cet effet dynamique résulte de 1’action
commune des forces accidentelles provoquées par les chocs et provient des
forces réguliéres périodiques qui apparaissent au moment du passage des
véhicules (fig. 3). ‘

V =486 Km/h Rl
3) %)
a) Influence prédomi- b) Accroissement de charges et déchargement
nante du choc des roues de la superstructure provenant de 1’oscil-
sur les joints des rails. lation de la masse appuyée sur ses ressorts.

Fig. 3. Oscillogrammes des déformations dynamiques d’'un pont-rail en béton armé,
l = 14,77 m, pendant le passage d’une locomotive a diesel.

Pour les superstructures relativement rigides, il faut en tout cas prendre
en considération, quand on détermine les compléments dynamiques de calcul,
I'importance réelle de 1’accroissement des charges par les forces apparaissant
dans les locomotives & cause de l’oscillation de leur masse appuyée sur les
ressorts. Cette oscillation, intervenant aussi sur les acces du pont, peut atteindre
des grandeurs considérables.

7. Il ne faut pas ignorer actuellement, en faisant les calculs dynamiques de
nombreuses superstructures de ponts, 1’existence des ressorts dans le matériel
roulant moderne, qui ont, comme on le sait, un frottement sec relativement
petit.

Le systéme «superstructure + surcharge» peut se manifester, dans les
grandes travées, comme un systéme & deux degrés de liberté. Les lois de for-
mation des fleches dynamiques sous 1’influence des forces de choc et des forces
Périodiques auront alors une autre nature que lorsqu’il existe une liaison rigide
entre la charge et la superstructure.
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Le procédé de détermination des effets dynamiques produits dans les ponts-
poutres ferroviaires par les charges roulantes est déja établi en Union Sovié-
tique sur la base de I’analyse des données expérimentales et des recherches
théoriques.

Dans I'immédiat, les recommandations élaborées seront vérifiées et pré-
cisées pratiquement au moment de la détermination de la capacité portante
des ponts anciens et lors de 1’établissement des coefficients dynamiques pour
le calcul des superstructures de types nouveaux.

Résumé

En Union Soviétique, on a effectué au cours de nombreuses années un
programme important de recherches expérimentales et théoriques sur 1’action
dynamique des charges mobiles sur les ponts-rails.

Les conclusions les plus importantes découlant de ces recherches sont
formulées dans la présente contribution. Ces conclusions se rapportent &
I’évaluation des diverses composantes de 1’action dynamique des charges
roulantes en considérant des ponts ayant des paramétres dynamiques différents.

Les recherches selon le programme susmentionné seront poursuivies.

Zusammenfassung

In der Sowjetunion wurde im Verlaufe von vielen Jahren ein wichtiges
experimentelles und theoretisches Forschungsprogramm iiber die dynamischen
Wirkungen der beweglichen Lasten auf die Briicken durchgefiihrt.

Die wichtigsten Schliisse aus diesen Untersuchungen sind in der vorliegen-
den Arbeit zusammengestellt. Diese Schliisse beruhen auf der Berechnung der
verschiedenen Komponenten der dynamischen Wirkung von rollenden Lasten
bei Briicken mit verschiedenen dynamischen Parametern.

Die Untersuchungen nach dem oben erwahnten Programm werden weiter-
gefiihrt.

Summary

In the Soviet Union, a considerable programme of experimental and theo-
retical researches has been carried out, over a period of many years, on the
dynamic effects of moving loads on railway bridges.

The more important conclusions resulting from these researches are set
out in this paper and relate to the estimation of the various components of the
dynamic effects of moving loads in the case of bridges having different dynamic
parameters.

Research work in accordance with the above-mentioned programme is
being continued.
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Calcul du béton armé a la rupture en flexion simple ou composée. Compa-
raison statistique de diverses théories avec I’ensemble des résultats des
recherches expérimentales

Bruchberechnung von Eisenbeton bei einfacher oder zusammengesetzter Biegung.
Statistischer Vergleich der verschiedenen Theorien mit den verfiigbaren Versuchs-
resultaten

Calculation of the Ultimate Bending Strength of Reinforced Concrete Subjected
to Simple or Compound Bending. Statistical Comparison of Various Theories
with the Published Results of Experimental Researches

CH. MASSONNET P. MOENAERT

Professeur & 1'Université de Liége Chargé de Cours & I’Université Libre
de Bruxelles

1. But et intérét de I’étude

Pour la détermination par calcul du moment fléchissant de rupture en
flexion simple ou composée, on est amené, comme de nombreuses études 1’ont
montré, & faire une série d’hypotheses.

La grande majorité des auteurs admettent que les sections restent planes
(hypothése de Bernoulli) et que le béton tendu n’a pas d’influence sur le
moment de rupture.

D’autres conditions sont nécessaires; la plupart des auteurs limitent
théoriquement la déformabilité du béton au moment de la rupture. La valeur
admise par le Comité Européen du Béton c’est-a-dire 3,5°/,, semble une valeur
acceptable dans la plupart des cas pour une théorie approchée.

Il faut de plus que I’on détermine le diagramme des tensions du béton dans
la zone comprimée (stress block).

Ceci peut se faire soit en adoptant une courbe définie pour ce diagramme,
par exemple parabole ou rectangle, soit en le définissant par deux coefficients:
coefficient de remplissage « et coefficient de centre de gravité B.

Sur ces derniers points, I’accord des auteurs est loin d’étre réalisé. A la
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session de Rome du Comité Européen du Béton, on s’est demandé si une
étude statistique ne permettrait pas de départager les points de vue. La com-
mission n° 1 a été chargée de ce travail. Mais, avant de pouvoir 1’aborder, il
était nécessaire de réunir un grand nombre de résultats d’essais suffisamment
complets pour pouvoir étre utilisés.

Le Secrétariat permanent du Comité Européen du Béton a rassemblé dans
ce but les données d’environ deux mille essais, dont 1717 se rapportent a des
poutres rompues par flexion. Le dépouillement d’un si grand nombre d’essais
et ’application & ceux-ci de plusieurs méthodes. de calcul & la rupture ne
pouvaient se faire qu’avec des moyens mécaniques. C’est pourquoi nous avons
décidé d’effectuer les calculs sur I’ordinateur électronique IBM 650 de 1’Uni:
versité de Liége. Nous avons établi un programme général permettant a cette
machine de calculer le moment ou 1’effort normal de rupture par toutes les
méthodes retenues.

Il a été décidé d’étudier quatre formes de diagrammes des tensions dans
la zone comprimée: ’

a) la forme parabolique, qui avait été recommandée & la Session de Madrid
du Comité Européen du béton;

b) la forme rectangulaire, qui a été proposée par divers auteurs;

c) la forme triangulaire, qui correspond & la méthode de calcul classique
élastique et enfin

d) une méthode dans laquelle la forme du diagramme dépend de la qualité
du béton. On a adopté la méthode proposée par HoGNESTAD, HANSON et
McHENRY!) parce qu’elle a semblé représentative des diverses méthodes
ou I’on tente de serrer la réalité d’aussi prés que possible en faisant varier
I’ordonnée maximum du diagramme (n,) et les coefficients «, B avec la
résistance du béton.
La méthode en question est précisée au paragraphe 2.2 ci-apres.

2. Définition des méthodes de calcul étudiées

2.1. Notations (fig. 1)

b largeur de la section,

h hauteur totale de la section,

hq hauteur utile de la section,

Y1 hauteur de la zone comprimée,

d distance de I’armature comprimée au bord supérieur de la section,
w’ section de I’armature tendue,

1) E. HoaonEsTtaD, N. W. Hansown et C. Mc. HENRY, Concrete stress distribution in
ultimate strength design. Journ. A.C.1. Vol. 27, pp. 455—479, 1955.
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section de 1’armature comprimée,

ordonnée maximum du diagramme des tensions de compression dans
le béton, }

allongement proportionnel de rupture du béton,

limite élastique apparente ou a 0,29, de 1’acier tendu,

limite élastique apparente ou a 0,29, de 1’acier comprimé,
allongement proportionnel de 1’acier tendu,

allongement proportionnel de I’acier comprimé,

moment de rupture des poutres soumises a flexion simple,

effort normal de rupture des colonnes soumises a flexion composée,
excentricité de I’effort N par rapport au centre G de la section,
excentricité de I’effort N par rapport a 1’armature tendue,
coefficient de remplissage du diagramme des tensions dans le béton
comprimé,

coefficient donnant 1’ordonnée relative du centre de gravité D du
diagramme ci-dessus,

résistance du béton & la compression sur prismes ou sur cylindres,
résistance du béton & la compression sur cubes,

largeur de la table d’une poutre en té,

épaisseur de la table d’une poutre en té.

N
I | B C
T d
© 1 : T
%
h — = G h|- A - e- .
no g
“" ) iX
yo T J ] R |
b
Fig. 1.

2.2. Equations fondamentales

Le programme de calcul est établi pour une section rectangulaire possédant
une armature double et soumise & flexion composée. Il est applicable aux
sections en té, pour autant que l’axe neutre tombe dans ’aile du té. Pour
controler qu’il en est bien ainsi, il suffit de vérifier I’inégalité

Y1 = hy.

Les équations d’équilibre s’écrivent:

N=wn,—w'n,+bay,n,, (1)
M=cwn,(by—d)+bay,ny(h;—By;). (2)
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La loi de conservation des sections planes de Bernoulli se traduit par les
égalités:

— €

I‘/1—h1€b+€;’ (3)
—d =h,—¢ (4)
h-e= ley+e,

Les diagrammes tension-dilatation des aciers utilisés donnent les deux
relations:

f(eq), (5)

ng = [(eq)- (6)

La rupture survient quand 1’allongement proportionnel du béton le plus
comprimé atteint la valeur constante

€ = —35-101. (7)

Enfin, le moment et 1’effort normal sont liés par 1’équation

M
N=rosh—d (8)

Les équations (1) & (8) forment un systéme de 8 équations par rapport aux
8 inconnues du probléme:

. ’ ’
N, M,y,; ng,n,, €, €, €-

2.3. Définition des propriétés du béton

Les diagrammes parabolique, rectangulaire et triangulaire correspondent
aux valeurs suivantes des coefficients

Forme du diagramme o B
parabole 0,667 0,375
rectangle 1 0,5
triangle 0,5 0,333

Ces diagrammes sont entierement définis dés qu’on se fixe leur ordonnée maxi-
mum 7n,. Nous avons admis que n, était égal & la tension de rupture & la com-
pression sur cylindres ou sur prismes, si celle-ci est donnée par l’auteur de
I’essai. Sinon, on adopte 859, de la résistance sur cubes, ou bien la pleine
résistance sur cubes en cas d’interposition de carton ou d’enduisage des faces
du cube.

Dans la méthode de HoaNEsTaD, HaNsoN et McHENrRY (HHMH), les
valeurs de «, 8 et ny/c,, sont données en fonction de la résistance & la com-
pression sur cylindres par les formules ci-aprés:
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«=0,94—548-10"4n,,, (9)
B =0,50~1,78-10"%n,,, (10)

ng 3900+ 4,98 ey
Ry _ 11
“ne, 3200+ 14,22n,,° (1)

(n,, en kg/ocm?.

2.4. Définition des propriétés de l’acier

L’acier peut étre & palier ou écroui. En conformité avec les décisions prises
par le Comité Européen du Béton, nous avons adopté pour ces deux types des
diagrammes idéalisés définis comme suit:

2.4.1. Aciers a palier (fig. 2):
n = Ke avec F = 21000 kg/mm? si e<e,,
n=mn, sie>e,.

An.n’

nel------—-

£E

te
Fig. 2.
2.4.2. Aciers écrouis

Le diagramme tension-dilatation normalisé de ces aciers est représenté a
la fig. 3.

[/ :_E'E’.ﬂ%g

Fig. 3.
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Il se compose de trois parties:

a) la droite de HOOKE O 4 d’équation n' = K ¢’ avec E = 21 000 kg/mm?, valable
pour n’ < 0,8 n,;

b) la droite BC partant du point d’ordonnée n, égale a la limite élastique &
29/, et de coefficient angulaire E,=10n_;

¢) une courbe de raccordement 4 B définie par 6 points (n'e’) comme le
montre la fig. 3.

Nous avons choisi pour représenter cette courbe un polynéme d’interpo-
lation du troisieme degré de la forme

n=ay+a,(e—€))+ay(e—¢p) (e —€;)+a3(e—¢p) (e —€;) (e —ep)

et nous avons déterminé les 4 constantes a,, a,, a, et a; de maniére que la
courbe passe par les 4 points 4, D, F, B (fig. 3).

3. Quelques indications sur I’organisation du programme de calcul

Les équations (1) & (8) qui régissent le probléme n’étant pas linéaires, leur
résolution directe n’est pas possible. On a donc choisi de les résoudre par
approximations successives.

Pour comprendre la méthode d’itération choisie, considérons le cas élémen-
taire de la flexion simple, armature simple. Les équations sont les suivantes:

0=—wn,+bay, n,, (1)
M =bay,ng(hy—By,), (2)
-k b /
f‘/l—k1eb+€;’ (3"
m = (). (5)
En remplagant y; par sa valeur (3’) dans (1’), on obtient:
SN 6()
0=-w na+ban0h1—~€b+€&. (a)

Les équations (a) et (5') nous donnent la solution du probléme; en effet, il
suffit de trouver le couple de valeurs (n,’, €,’) qui satisfasse & ces deux équations
ou, si I’on trace les courbes (a) et (5') dans le systeme d’axes cartésiens (n,’, €,’),
il suffit de trouver le point d’intersection I de ces courbes (fig. 4).

Le processus d’itération qui se présente naturellement a l’esprit consiste
a partir d’un point arbitraire 4 (n,,¢,) de la courbe (5’), puis & parcourir le
contour orthogonal A4'DF G (fig. 4). Malheureusement, ce processus est
parfois divergent, comme le montre la fig. 4.

Pour assurer la convergence du processus d’itération dans tous les cas, on
I’a généralisé comme suit:
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ler cycle: on part du point 4 (n,,¢;) arbitrairement choisi sur (5)2); on
détermine le point A’ (n7,¢;) situé & ’intersection de la courbe (a) et de la
verticale passant par 4.

Si (n; —n,) est moindre qu’un petit écart fixé d’avance, le probleme est
résolu; sinon, on détermine le point A” (ny,¢€,) se trouvant a 'intersection de
I’horizontale par A’ et de la droite 4 A” de coefficient angulaire m menée par
A. De A", on remonte verticalement jusqu’en B (n,,¢,) sur la courbe (5°).

2e cycle: on part du point B (n,,€,); on détermine le point B’ (n,,e€,)
sur (). Si (ny, —n,) est moindre que 1’écart fixé d’avance, le probleme est
résolu; sinon on déduit de B’ le point B” (n,,e€,;) sur la droite inclinée de m
menée par B, puis on remonte verticalement jusqu’en C (n4,€;) sur la courbe
(5'), ete... La convergence du procédé qui vient d’étre décrit dépend évidem-
ment de I'inclinaison m choisie pour les droites 4 A”, B B”, etc...

L’ordinateur adopte tout d’abord pour m la valeur £/10=2100 kg/mm?.

Si le processus n’est pas convergent, la machine choisit ensuite successive-
ment m = 5000 kg/mm? puis m =10 000 kg/mm? puis finalement m = E =21 000
kg/mm?2.

Le programme est congu de telle facon que 1’ordinateur s’arréte automa-
tiquement quand 1’écart entre les valeurs n,, n; devient inférieur & une valeur
fixée d’avance; cette valeur a été choisie égale & 0,15 kg/mm?, ce qui assure
une précision surabondante aux résultats. La figure 5 représente 1’ordino-
gramme du probléme, c’est-a-dire le schéma logique selon lequel la machine
fonctionne.

Quand le probléme est résolu, la machine perfore sur cartes les renseigne-
ments suivants:

na
i (5)
| m=tg1f
mEz
—— mxC
ns[_
Tt /l/
" | /]
n2|— -y | B,
N1l D_Ir‘.\" A
| : I
|
] o
a
€ 1) ,
0 56k, ~&a
Fig. 4.

?) Dans les calculs effectivement exécutés, on a toujours pris n; égal & la limite
élastique 7, .
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1. le numéro d’ordre de la poutre étudiée;

le numéro de la méthode de calcul employée (parabole, rectangle, triangle,
HHMH);

le moment de rupture calculé;

I’effort normal de rupture calculé;

la tension dans ’armature comprimée éventuelle;

les tensions dans 1’armature tendue au départ et & la fin du dernier cycle
de calcul;

7. la distance de 1’axe neutre au bord libre de la zone comprimée.

™o

S o oo

La machine passe ensuite automatiquement & la poutre suivante. A titre
indicatif, le temps nécessaire pour effectuer le calcul par une méthode est
ordinairement d’environ 35 secondes. Dans un petit nombre de cas, le temps
nécessaire dépasse deux minutes. Le temps de calcul maximum observé a été
de 8 minutes.

4. Résultats des calculs

Comme on I’a dit au paragraphe 1, on disposait de 1717 résultats d’essai
recueillis par le Secrétariat du Comité Européen du Béton. Certains de ces
résultats sont extraits des publications figurant & la bibliographie placée a la
fin du mémoire. D’autres, non publiés ont été communiqués par leurs auteurs
au C.E. B.

Dans les tableaux ci-apres, la colonne «réf.» renvoie & la bibliographie; les
essais non publiés sont marqués «V ».

Des 1717 essais, 124 ont di étre éliminés au cours de 1’étude parce qu’il y
manquait 1'un ou 1’autre renseignement expérimental indispensable aux cal-
culs. On disposait donc de 1593 résultats effectivement utilisables.

Un petit nombre (environ 25) d’essais sur colonnes soumises & compression
centrique ou faiblement excentrique (axe neutre en dehors de la section) ont
di étre écartés, parce que le programme de calcul exposé au paragraphe 3 ne
pouvait 8’y appliquer. En outre, aprés exécution des calculs, 29 résultats sur
poutres en té ont di étre éliminés complétement parce que 1’axe neutre tom-
bait en dehors de l’aile dans les quatre méthodes de calcul. On a de plus di
éliminer, pour d’autres poutres en té, certains des quatre résultats calculés,
parce que 1’axe neutre tombait dans ’aile pour certaines formes de diagramme
et en dehors pour d’autres formes. Ceci explique que le nombre de résultats
repris dans 1’étude statistique proprement dite ci-aprés est différent d’une
méthode & 1’autre et correspond & 1500, 1513, 1465 et 1516 calculs respective-
ment.

Pour chaque poutre, on a calculé pour les quatre formes de diagramme
considérées les quatre valeurs du rapport:
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M observé N observé
r=or—— 0oU .
M calculé N calculé
M étant le moment fléchissant de rupture en flexion simple et

N Teffort normal de rupture en flexion composée.

En faisant toutes les combinaisons possibles entre les données des essais, a
savoir: Section: rectangulaire, en té ou en té renversé — flexion: simple ou
composée — armature: simple ou double — acier: & palier ou écroui, et en ne
retenant que les classes pour lesquelles des essais ont été effectivement réalisés,
on obtient douze familles d’essais. A ces douze familles correspondent les douze
tableaux de résultats reproduits ci-dessous.

Tableaw I R
Section: rectangulaire. Flexion: simple. Armature: simple. Acier: a palier

No Auteur Réf. Hssal n | n Pa:ra,- Rectftn- Trla,.n- HHMH
Cu | Pr|Cy bolique | gulaire | gulaire
1 | Brandtzaeg 1 x| 20 20 23,953 | 19,377 | 29,681 | 21,093
2 | Chambaud 2 | x 82 | 82 | 89,201 | 80,105 | 103,816 | 90,499
3| L.BT.P. N | x 15| 15| 15,098 | 14,519 | 16,208 | 15,617
4 | Cem.Conc.Ass.| N | x 16 | 16 | 16,942 | 16,507 | 18,148 | 17,130
5 | Humphrey 20 x| 77| 77| 74,041 | 72,828 | 76,246 | 74,901
6 | Grey M. W. N |x 19| 15| 16,773 | 16,076 | 18,190 | 16,674
7 | Soretz N | x 6 6 6,050 6,070 6,405 6,222
8 | Baes N b 14 | 14| 17,582 | 14,834 | 21,071 | 15,694
9 | Helfgot 12 | x 2 2 2,182 2,113 2,420 2,202
10 | Rehm N x 12| 12| 14,069 | 11,706 | 17,211 | 13,179
11 [ Rehm N | x 20 | 20 | 20,649 | 20,433 | 21,023 | 20,692
12 | Columbia 6 | x 8 8 9,807 9,714 9,968 9,912
13 | Hajnal Konyi | 11 | x 10| 10| 10,433 | 10,380 | 10,544 | 10,504
14 | France EEBA | N | x 24 | 24| 26,919 | 26,714 | 27,311 | 27,542
15 | Gehler Amos | 3 X 104 104 | 118,037 | 110,538 | 130,674 | 112,748
16 | Sampaio 4 | x 48 | 47 | 55,310 | 54,823 | 56,374 | 55,324
17 | SlaterZipprodt| 23 x| 25| 25| 24,350 | 22,856 | 28,477 | 23,823
18 | RichartJensen| 21 x| 33| 33| 39,440 | 39,165 | 39,929 | 39,568
19 | Johnston Cox | 14 x| 13| 13| 16,503 | 16,382 | 16,662 | 16,580
X

20 | Lash Brison 15 57 | 57| 59,497 54,766 66,645 56,579
21 | Pays-Bas N X 28 | 28 | 32,115 31,916 32,457 32,272
22 | Pays-Bas N | x 14 | 14 16,151 16,043 16,337 16,208
23 | France Ens. .

B.A. N | x 29 | 23| 24,670 24,583 24,871 24,851
24 | L.B.T.P. N | x 15| 14 { 15,132 14,204 16,965 15,468
25 | Burchartz-

Gehler-Amos| 19 | x 18 | 17 17,067 16,961 17,263 17,030

Sommes 709 (696 | 761,971 | 723,613 | 824,896 | 752,312
Moyennes 1,095 1,040 1,185 1,081
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Dans chaque tableau, on a consigné successivement: le nom de I’expérimen-
tateur, le type d’essai qu’il a réalisé pour mesurer la résistance a la compression
du béton (sur cubes, prismes ou cylindres), le nombre d’essais exécutés (n’),
le nombre d’essais (n) retenus pour la statistique aprés élimination, et enfin
les valeurs de D)7 obtenues par les quatre méthodes. De ces valeurs, on déduit
directement la moyenne applicable & chaque expérimentateur en appliquant
la formule

_ 2T
=<

m

Au bas de chaque tableau figurent les valeurs cumulées de >’ » et les moyen-
nes générales r,, calculées (par les quatre méthodes) pour ’ensemble des essais
de la famille considérée.

L’ensemble des valeurs moyennes r,, obtenues pour les douze familles
d’essais est récapitulé dans le tableau XIII ci-dessous. Ce tableau donne égale-
ment les moyennes générales pour I’ensemble des essais de flexion simple, puis
pour ’ensemble des essais de flexion composée, puis enfin pour la totalité des
essais.

Tableau 11

Section: rectangulaire. Flexion: simple. Armature: simple. Acier: écroui

Essai .
No |  Auteur  |Réf|— w | m | Fara- | Rectan-| Trian- | gyypy
bolique | gulaire | gulaire
Cu | Pr|Cy
1 | Soretz N | x 76 | 74| 82,377 | 77,041 | 88,004 | 77,854
2 | Ess. Comp.

Fran. N | x 18 | 18 | 16,651 | 15,792 | 17,594 | 17,079

3 | Cem.Cone.Ass.| N | x 4 4 4,115 3,887 4,350 4,093
4 | Hajnal Konyi | 1 | x 26 | 26 | 25,747 24,080 27,136 25,487
5 | Helfgot 12 | x 2 2 2,205 2,034 2,555 2,109
6 | A. Johnson 13| x 4 4 4,556 3,634 5,628 4,204
7 | Rehm N |x 10| 10 | 10,632 9,954 | 11,167 | 10,441
8 | Columbia 16 | x 12 | 12| 13,650 | 12,361 15,186 | 13,488
9 | France EEBA | N | x 80 | 29| 31,729 | 27,657 | 36,256 | 31,908
10 | Pays-Bas N | x 25| 12| 12,989 | 12,173 | 13,600 | 12,803
11 | L.B.T.P. N | x 30 | 27| 26,245 | 24,535 | 27,694 | 26,966
12 | LBTP-IRABA| N | x 22 | 21| 20,994 | 19,714 | 22,439 | 21,605
13 | Gehler-Amos | 10 x 30| 30| 32,899 | 29,516 | 37,389 | 30,214
14 | Grey Mettock | N | x 10| 10 9,591 8,806 | 10,583 9,272
15 | France EEBA | N | x 48 | 44 | 41,174 | 36,639 | 45,956 | 42,108
16 | Soretz N X 6 6 7,470 6,719 8,476 7,102
Sommes 403 | 329 |343,014 |314,542 |374,013 |336,733

Moyennes 1,043 0,956 1,137 1,024
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Tableau II1
Section: rectangulaire. Flexion: simple. Armature: double. Acier: & palier
Essai .
NO |  Auteur  |Réf. n' | m | Fara- | Rectan-| Trian- | gpyy
bolique | gulaire | gulaire
Cu | Pr|Cy
1 | BachetGraf | 5 |x 15 | 15 | 16,012 | 14,078 | 18,011 | 14,157
2 | Bach et Graf 18 b 4 6 6 5,372 4,754 5,954 5,067
3 | Sampaio 4 |x 3 3 3,382 3,330 3,469 3,384
4 | Helfgot 12 | x 6 6 6,481 6,375 6,600 6,482
5 | Pays-Bas N x 3 3 3,157 2,994 3,324 3,201
6 | Gehler-Amos | 3 x 36 | 36 | 36,775 | 36,711 | 37,055 | 37,034
Sommes 69 | 69 | 71,179 | 68,242 | 74,413 | 69,325
Moyennes 1,032 0,989 1,078 1,005
Tableau IV
Section: rectangulaire. Flexion: simple. Armature: double. Acier: écroui
Essai Para- | Rectan- | Trian-
No Auteur Réf. —| n | n boli lai lai HHMH
Cu|Pr|Cy olique | gulaire | gulaire
1 | A.Johnson | 13 | x 12 | 12 | 12,648 | 10,687 | 14,621 | 11,907
2 | France
EEBA N [x 7 6 5,048 4,704 5,594 5,379
3 | Gehler Amos| 3 X 18 | 18 | 18,106 | 17,951 | 18,302 | 18,091
4 | Helfgot 12 | x 6 6 6,322 6,134 6,493 6,248
Sommes 43 | 42 | 42,124 | 39,476 | 45,010 | 41,625
Moyennes 1,003 0,940 1,072 0,991
Tableau V

Section: rectangulaire. Flexion: composée. Armature: simple. Acier: & palier

Essai .
No Auteur Réf. n | n bPla:ra- Re(;t?’n' Trla‘n- HHMH
Cu | Pr|Cy olique | gulaire | -gulaire

1 | Oengd 17 p3 40 | 40 | 47,026 | 38,498 | 58,104 | 46,409
2 | Bachet Graf | 24 X 15 9 8,923 8,481 9,826 9,067
3 Moenaert 26 X 37 | 37 39,762 34,484 47,134 38,122
Sommes 92 | 86 | 95,711 | 81,463 |115,064 | 93,598

Moyennes 1,113 0,947 1,338 1,088
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Tableau VI
Section: rectangulaire. Flexion: composée. Armature: double. Acier: a palier
Essai Para- Rectan- Trian-
No| Auteur [Réf. n | n bol n 1 n 1 n |HHMH
Cu|Pr|Cy ole ge gle
1 | Bach et
Graf 24 | x | x 25 | 20 | 19,673 (18| 17,032 | 20| 21,383 |18 17,927
2 | Hogne-
stad 25 x| 90| 63 | 57,048 61| 51,170 | 64] 64,154 62| 56,229
3 | Moenaert | 26 x 28 | 18 {18,013 |18 17,202 | 16| 17,195 18| 17,422
Sommes 143 |101 | 94,734 |97 | 85,404 (100{102,732|98| 91,578
Moyennes 0,938 0,880 1,027 0,934
Tableau VII
Section en té. Flexion simple. Armature simple. Acier & palier
Essai Parabole | Rectangle| Triangle HHMH
No Auteur Réf. n’
Cu |Pr|Cy n r n r n r n r
1{ France EEBA| N | x 2( 2( 2,077 2| 2,069 | 2| 2,095 | 2| 2,092
2| Sampaio 4 | x 2| 2| 2,446 | 2| 2,433 | 2| 2,460 | 2| 2,447
3| Gehler-Amos | 10 x 30 (20| 21,041 {20 20,972 | 20| 21,107 20| 21,023
4| Rehm N [x 1{1f 0917 | 1| 0,859 | 1| 0,959 | 1| 0,910
5| Saliger 22 X 8{ 8| 8,972 | 8| 8,889 | 5( 5,911 | 8| 9,004
6| France N |x 2| 2| 2,077 | 2| 2,068 | 2| 2,094 | 2| 2,092
7| Burchartz
Gehler-Amos | 19 | x 13(13| 13,457 {13| 13,418 | 13| 13,538 |13 | 13,408
8| France N | x 14 (11| 11,647 (11| 11,601 |11|11,741 |11|11,736
9| Bach et Graf | 17 x 15| 3| 2,897 | 3| 2,856 | 0| O 3| 2,663
10| Baes N X 10 1} 1,025| 1| 1,018 | 1| 1,036 | 1| 1,020
Sommes 97 /63| 66,556 |63 | 66,183 (57| 60,941 |63 | 66,395
Moyennes 1,056 1,051 1,069 1,054
Tableaw VIII
Section en té. Flexion simple. Armature simple. Acier écroui
Essai Parabole | Rectangle| Triangle HHMH
No Auteur Réf. n’
Cu | Pr|Cy n r n r n r n r
R»?
1| Rehm N [x 4] 2| 2,399 | 4| 4,189 | 0| — 4| 4,309
2| L.B.T.P. N [ x 10(10| 9,458 ; 9| 7,800 |10| 10,017 {10} 9,478
3| Soretz N I x 42 (30| 31,252 |42 41,225 |12 12,137 | 32| 39,573
4 | France N |x 15(10| 10,054 (10| 9,225 (10| 10,632 |10 10,001
5| Soretz N x 8| 4| 4,980 | 4| 4,677 | 4| 5,205| 4| 4,890
6 | Gehler-Amos | 10 X 7| 3| 2,370 | 3| 2,139 3| 2,631 | 3| 2,285
Sommes 86 (59| 65,113 |72 | 69,255 |39 | 40,522 |69 | 70,536
Moyennes 1,104 0,962 1,039 1,022
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Tableaw I1X
Section en té. Flexion simple. Armature double. Acier & palier
Essai Parabole | Rectangle| Triangle HHMH
No Auteur Réf. n’
Cu i Pr‘Cy n r n r n r n r
1| Bach et Graf | 18 ' x 23(10| 8,265 (18| 14,273 | 2 | 1,542 |18 14,430
Moyennes 0,827 0,793 0,771 0,801
Tableauw X
Section en té renversé. Flexion simple. Armature double. Acier écroui
Essai Parabole | Rectangle| Triangle HHMH
No Auteur Réf. n’
Cu | Pr|Cy n r n r n r 7 r
1| IRABA N | x 29123 23,567 |19 18,379 |24 | 26,199 |24 | 24,944
Moyennes 1,025 0,967 1,092 1,039
Tableau X1
Section en té renversé. Flexion simple. Armature simple. Acier écroui
Essai Parabole | Rectangle| Triangle HHMH
No Auteur Réf. n’
Cu | Pr|Cy n r n r n r n r
1| IRABA N | x 17 16| 15,992 |16 | 14,078 |16 | 18,936 |16 | 16,155
Moyennes 1,000 0,880 1,184 1,009
Tableauw XII
Section en té renversé. Flexion simple. Armature simple. Acier & palier
Essai Parabole | Rectangle| Triangle HHMH
No Auteur Réf. n’
: Cu ‘ Prle n r n r n r n r
1 | Sampaio 4 | x| ’ 6|6|(7152 |6 7,113 | 6| 7,228 [ 6| 7,160
Moyennes 1,192 1,186 1,205 1,193
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Tableau X111
Résultats de U'étude statistique de quatre méthodes de calcul du béton armé d la rupture (1553 essais)

Nature de I’essai Nbre Parabole Rectangle Triangle Hognestad

Fa- |Sec-| Fle- | Arma- Acier tot. de , |moyen.| . moyen., _ |moyen.|  |moyen.

mille | tion | xion | ture poutres My M, Mo/M. Mo/ M, My M.
I| simple | simple | pal. | 709 | 696 | 1,095 | 696 | 1,040 | 696 | 1,185 | 696 | 1,081
II ‘ simple | simple | écr. | 403 329\ 1,043 | 329 | 0,956 | 329 | 1,137 | 329 | 1,024
II | simple | double | pal. 69 69 | 1,032 69 | 0,989 69| 1,078 69 | 1,005
Y simple | double | écr. 43 42 | 1,003 42 | 0,940 42 | 1,072 42 | 0,991
v comp. | simple | pal. 92 86 | 1,113 86 | 0,947 86 | 1,338 86| 1,088
VI | comp. | double | pal. 143 101 | 0,938 97| 0,880 | 100 1,027 98 | 0,934
VII simple | simple | pal. | 97 | 63| 1,056 | 63| 1,061 | 57| 1,069 | 63| 1,054
VIII simple | simple | écr. 86 59| 1,104 72| 0,962 39| 1,039 69 | 1,022
IX simple | double | pal. 23 10| 0,827 18 | 0,793 21 0,771 18 | 0,801
X simple | double ! écr. 29 23 | 1,025 19| 0,967 24| 1,092 24| 1,039
XI simple | simple | écr. 17 16 | 1,000 16 | 0,880 16 | 1,184 16 | 1,009
XII simple | simple | pal. 6 6| 1,192 6| 1,186 6| 1,205 6| 1,193

Moyenne générale en flexion
simple 1482 |1313 | 1,070 (1330 1,004 {1280 | 1,151 (1332 | 1,051
Moyenne générale en flexion

composée 235 187 | 1,018 | 183 | 0,912 | 186 1,171 | 184 | 1,006
Moyenne de tous les calculs 1717 ({1500 | 1,064 |1513 | 0,993 (1466 | 1,154 |1516 | 1,045

5. Courbes de fréquences

[

Les courbes de fréquences ont été tracées pour 1’ensemble des essais de
flexion simple (fig. 6) ainsi que pour ’ensemble des essais de flexion composée
(fig. 7).

Ces courbes permettent de déterminer ’allure générale du phénoméne pour
l>s différentes méthodes appliquées. Elles présentent des allures se rapprochant
d’une courbe de Gauss. Examinées par rapport & leur axe, on constate qu’elles
s’étendent toutes, sauf celle correspondant & I’hypothése rectangulaire ol les

N —— Méthodo HHMH
. _1!_. ; P _— xzzﬁode re'ctangul'alre
I e O —_—— ode triangulaire
20 J!_ f_L— B e Méthode parabolique
- 10 Y B ! - —
= R | s e i = SIS o

e T T T T T T T 71T T 1T 717 T T T
065 070 075 0BO 085 090 085 100 105 110 #S 120 125 130 135~ 140 145 150 155 160 165 170 175 180 185 190 195

Fig. 6. Flexion simple. -
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deux domaines sont pratiquement égaux, davantage du c6té des rapports plus
grands que un, ce qui est favorable & la sécurité.

En partant des courbes de fréquence, on a calculé les écarts quadratiques
moyens. Les écarts totaux pour ’ensemble des cas de flexion simple et composée
sont les suivants:

Diagramme parabolique 0,126
Diagramme rectangulaire 0,126
Diagramme triangulaire 0,176
Méthode HHMH 0,122

Ces écarts assez importants sont dus aux raisons suivantes:

Les résultats utilisés sont dus & un grand nombre de chercheurs qui ont
travaillé suivant des méthodes personnelles non normalisées. Les données ne
sont pas toujours complétes ni comparables; pour un grand nombre d’essais,
la position de l’armature tant tirée que comprimée n’est pas donnée pour
chaque poutre avec précision, souvent la résistance du béton et la limite
élastique de I’acier ne sont données que par une valeur moyenne différant par
conséquent de la valeur exacte de chaque poutre, mais surtout la résistance
du béton est déterminée suivant un grand nombre de méthodes différentes.
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Cette résistance est mesurée soit sur prisme, soit sur cylindre, soit sur cube
et méme dans quelques cas sur des bouts de prismes. Les surfaces de contact
entre les éprouvettes et les plateaux de la machine sont traitées de différentes
fagons: rectifiées, enduites de soufre ou de ciment, brutes de démoulage...

Dans beaucoup de cas, on a eu recours & des intercalaires de carton ou
autres. Dans nos calculs, nous avons tout ramené a la résistance sur cylindre
par des coefficients constants qui sont évidemment arbitraires et cause de
dispersion.

D’aprés ce qui précéde, on peut admettre qu’il y a 3 causes principales
aux dispersions:

1. Dispersion due & I’'imprécision dans les données relatives aux essais (dimen-
sions de la section droite — qualités des matériaux dont on ne connait
qu’une valeur moyenne, etc...).

Dispersion systématique due au mode opératoire des différents expérimen-

tateurs. L’examen détaillé des résultats montre que les essais d’un méme

auteur se groupent autour d’un axe moyen souvent assez différent de 1’axe
général d’'un méme type d’essais. Cette différence est principalement due
au mode de détermination de la résistance du béton.

3. Dispersion due & la différence de la qualité des matériaux de la poutre
essayée et des éprouvettes témoins. Il est évident que les matériaux du
béton armé et principalement le béton, présentent des variations de résis-
tance assez prononcées. De ce fait, la résistance du béton ou de I’armature
de la poutre essayée ne sont pas égales & la moyenne des éprouvettes
prélevées pour déterminer ces qualités.

Ces différences influent directement sur les moments de rupture qui
présenteront une dispersion & peu pres proportionnelle & celles-ci.

RosserTI a publié dans les bulletins du Comité Européen du Béton 3)
une étude dans laquelle il a déterminé le rapport entre la variation des
qualités des matériaux et la dispersion des moments de rupture.

Il a montré que pour des poutres fortement armées celle-ci variait
proportionnellement & la dispersion des résultats des essais de compression
du béton.

4. Enfin, une derniére cause de dispersion est due au choix arbitraire du dia-
gramme de compression (stress-block). Les essais ont montré que celui-ci
n’a pas une forme réguliére et ne peut étre déterminé exactement par des
coefficients. Les résultats de cette étude montrent que, toutes choses égales
d’ailleurs, le diagramme parabolique et le diagramme rectangulaire donnent
en flexion simple la méme exactitude.

o

3) Contribution & I’étude de 1’Influence des Dispersions expérimentales sur la pré-
cision du moment de rupture. Torino, Annexe II, Bulletin d’information n° 14, pp. 33
& 44 du Comité Européen du Béton, Paris.
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La méthode HHMH donne une dispersion trés légérement inférieure;
par contre, pour le diagramme triangulaire, la dispersion est notablement
plus grande.

En conclusion, pour la flexion simple, on peut estimer qu’étant donné le
grand nombre et I’importance des causes de dispersion, celles-ci sont normales
pour les méthodes employant les diagrammes parabolique et rectangulaire
ainsi que pour celle de HOGNESTAD et associés.

6. Hyper-résistances

La plupart des expérimentateurs ont constaté que pour des poutres faible-
ment armées on ne pouvait expliquer le moment de rupture qu’en admettant
dans ’armature des tensions supérieures a la limite élastique de ’acier.

C’est le surcroit de résistance qui en résulte que 1’on a appelé «Hyper-

résistance». Dans le but de vérifier ce phénomeéne, nous avons groupé ensemble
toutes les poutres pour lesquelles le pourcentage réduit c’est-a-dire ;’—h nn—:
était plus petit que 0,1.

Dans 1’ensemble des poutres rectangulaires simplement armées d’acier &
palier, soit au total 709 poutres, 111 poutres ont un pourcentage réduit inférieur
a 0,1. Les rapports moyens entre le moment observé et le moment calculé de
ces 111 poutres pour les quatre méthodes envisagées varient entre 1,15 et 1,18.

Si nous retranchons ce groupe de poutres, les rapports moyens pour les

poutres rectangulaires simplement armées d’acier a palier restantes passent:

pour la méthode parabolique de 1,095 a 1,059
pour la méthode rectangulaire de 1,040 & 0,997
pour la méthode triangulaire de 1,181 & 1,168

pour la méthode HHMH de 1,081 & 1,063
Pour I’ensemble de la flexion simple les rapports moyens deviennent

méthode parabolique 1,06

méthode rectangulaire 0,99

méthode triangulaire 1,15

méthode HHMH 1,04

Ces hyperrésistances ne se constatent pas pour les aciers écrouis si on tient
compte du diagramme proposé pour ces aciers par la Commission n® 2 du
C.E.B. car d’aprés ce diagramme la résistance de 1’acier augmente au-dela
de la limite élastique conventionnelle.

Les hyperrésistances dans le cas d’acier & palier sont certainement dues
dans la majorité des cas au fait qu’au moment de la rupture la déformation
de I’armature a dépassé le palier de ductilité et la tension dans ’acier est
supérieure & la limite élastique. Il est cependant tres difficile de tenir compte
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de ce fait avec une certaine précision car la longueur du palier est trés variable
et les métallurgistes ne peuvent donner aucune garantie a ce sujet. Il semble
done que jusqu’a nouvel ordre, il est préférable de considérer ces hyperrésis-
tances comme une sécurité supplémentaire.

7. Conclusions

Nous avons vu qu’en ce qui concerne les dispersions, les trois méthodes
parabolique, rectangulaire et HHMH sont équivalentes. Les dispersions de la
méthode triangulaire sont nettement plus grandes. Ceci prouve que le dia-
gramme des tensions données par les trois méthodes citées est meilleur que le
diagramme triangulaire des tensions. Les écarts quadratiques étant relative-
ment petits, on peut admettre que la forme des diagrammes découlant des
trois méthodes citées ne s’écarte pas beaucoup de la réalité.

Mais en dehors des dispersions il y a lieu de se préoccuper également du
résultat moyen.

Si ’on ne tient pas compte des cas d’hyperrésistances, la méthode rectan-
gulaire donne en flexion simple un rapport moyen de un pour cent inférieur a
I'unité. Elle est donc légérement trop favorable. La méthode parabolique donne
dans ’ensemble un rapport moyen supérieur de 69, & I'unité. Pour toutes les
catégories de poutres, sauf quelques rares exceptions, ce rapport est supérieur
al.

On peut dire la méme chose pour la méthode HHMH mais ici le rapport
moyen d’ensemble est supérieur de 4,09, a 1’unité.

Les méthodes parabolique et HHMH sont donc des méthodes stires. Mal-
heureusement, elles sont toutes deux assez compliquées; notamment, 1’emploi
du diagramme parabolique est assez malaisé quand la section de la poutre
n’est pas rectangulaire. C’est pourquoi beaucoup d’auteurs préférent la méthode
rectangulaire qui donne des résultats peu différents.

Cependant, il est prudent dans ce cas d’y apporter certains correctifs. Il
semble en effet que le diagramme rectangulaire étendu & toute la zone com-
primée donne des résultats trop favorables pour de forts pourcentages d’arma-
ture ou en cas de flexion composée c’est-a-dire pour les cas ol la zone compri-
mée s’étend sur la majeure partie de la section.

D’autre part, les travaux de RtscH ont montré que I’influence de la durée
d’application de la charge était d’autant plus sensible que 1’étendue relative
de la zone comprimée était plus grande. Notamment des charges centrées
maintenues pendant une longue durée provoquent la rupture pour des tensions
uniformément réparties qui se rapprochent de 0,75 n,.

C’est en se basant sur les considérations qui précédent que le Comité
Européen du Béton a préconisé dans le cas d’emploi du diagramme rectangu-
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laire la régle suivante qui limite le moment réduit m=#2no pris par rapport
a ’armature tirée ou la moins comprimée & 0,375:

«On obtient aussi des résultats concordant avec 1’expérimentation réunie
en utilisant, pour la flexion simple et composée, un diagramme rectangulaire
des tensions, la tension uniforme étant prise égale a la tension de rupture sur
cylindre, comme elle a été définie par le C. E. B., pour autant que la profondeur
du rectangle ne dépasse pas 509, de la hauteur utile A.

Pour des profondeurs plus grandes (> 0,5 b) allant jusqu’a 'infini pour la
compression simple, on doit réduire la tension uniforme du rectangle, de fagon
a maintenir constant le moment des tensions de compression sur le béton par
rapport & ’armature tendue ou la moins comprimée, tel qu’il est obtenu avec
une profondeur de 0,54. On tient compte ainsi de 1’effet des charges de longue
durée et du mode d’application des charges. Ceci permet, dans la plupart des
cas, de déterminer les armatures, sans devoir considérer 1’équation de compa-
tibilité (hypothése de planéité des sections).

Dans les autres cas, et notamment si on désire tenir compte de 1’augmen-
tation de résistance que donnent les aciers écrouis au-dela de leur limite d’élas-
ticité conventionnelle, on peut utiliser I’hypothese de planéité des sections
pour déterminer la déformation de 1’acier et la contrainte correspondante, en
considérant que le rectangle défini ci-dessus s’étend sur 759, de la zone soumise
& un raccourcissement.»

Nous pensons que 1’étude statistique qui précéde a permis de voir plus
clair dans la question de la détermination du moment de rupture et de dégager
des regles pratiques.
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Résumé

Quatre méthodes de calcul & la rupture des piéces en béton armé soumises

& flexion simple ou composée ont été comparées avec ’ensemble des résultats
d’essai publiés dans la littérature, soit 1553 essais utilisables. Ces essais portent
sur des piéces & section rectangulaire, en té ou en té renversé, possédant une
armature simple ou double faite d’acier a palier ou écroui.
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Les quatre méthodes de calcul sont basées sur les deux équations d’équilibre,
la loi de conservation des sections planes et les propriétés du béton et des aciers
mis en ceuvre, telles qu’elles ont été précisées par le Comité Européen du
Béton. Elles difféerent uniquement par la forme admise pour le diagramme des
tensions dans la zone comprimée du béton; les formes étudiées sont: la para-
bole, le rectangle, le triangle, et la loi de distribution proposée par HOGNESTAD,
Hanxson et McHENRY. Les calculs ont été exécutés & ’aide d’un programme
unique sur un ordinateur IBM 650. Le mémoire donne, pour les diverses caté-
gories de poutres essayées, les moyennes et dispersions du rapport » = moment
de rupture observé | moment de rupture calculé.

L’étude montre que 1’emploi du diagramme parabolique ou de la méthode
HHMH permet de déterminer le moment de rupture avec une bonne approxi-
mation et une légére sécurité. Au contraire, on ne peut employer un diagramme
rectangulaire qu’avec certaines restrictions, notamment en limitant le moment
réduit maximum des tensions sur béton par rapport & ’armature tendue a 0,375.

Zusammenfassung

Vier Methoden der Bruchberechnung von Eisenbetonteilen unter einfacher
oder zusammengesetzter Biegung wurden mit einer Zusammenstellung der in
der Literatur publizierten Versuchsresultate, von denen 1553 verwendbar
waren, verglichen. Diese Versuche umfassen Rechteck-, T- oder | -Quer-
schnitte mit einfacher oder doppelter Bewehrung aus normalem FluBstahl
oder gerecktem Stahl.

Die vier Berechnungsmethoden beruhen auf den zwei Gleichgewichts-
gleichungen, dem Gesetz der eben bleibenden Querschnitte und auf den Eigen-
schaften des verwendeten Betons und Stahls, wie sie durch das europiische
Komitee fiir den Beton festgelegt wurden. Sie unterscheiden sich nur in den
verschiedenen Annahmen fiir die Spannungsverteilung im Betondruckbereich;
die untersuchten Formen sind: die Parabel, das Rechteck, das Dreieck und
das von HoeNEsTAD, HanNsoN und McHENRY vorgeschlagene Verteilungs-
gesetz. Die Rechnung wurde anhand eines einzigen Programmes auf einem
IBM-650-Gerdt durchgefiihrt. Die vorliegende Arbeit gibt fiir die verschiede-
nen Kategorien untersuchter Tréiger die Mittelwerte und die Streuungen der
Verhiltniszahl r = beobachtetes Bruchmoment |/ berechnetes Bruchmoment.

Die Untersuchung zeigt, dafl die Verwendung des parabolischen Diagram-
mes oder der HHMH-Methode die Berechnung des Bruchmomentes mit guter
Nédherung und leichter Sicherheit gestattet. Dagegen darf das rechteckige
Diagramm nur mit gewissen Einschrinkungen verwendet werden, hauptsich-
lich indem das maximale reduzierte Moment der Betonspannungen bezogen
auf die Zugarmierung mit 0,375 begrenzt wird.
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Summary

Four methods for calculating the breaking strength of reinforced concrete
members subjected to simple or compound bending have been compared with
the test results published in the literature and comprising a total of 1553
usable tests. These tests relate to members having a rectangular, T, or inverted-
T section, with a single or twin reinforcement made of mild steel or high-
tension steel.

The four methods of calculation are based on the two equilibrium equa-
tions, the law of the conservation of plane sections and the properties of the
concrete and steels employed, as defined by the European Committee on
Concrete. They differ solely in the form adopted for the diagram of the stresses
in the part of the concrete under compression; the forms studied were: the
parabola, the rectangle, the triangle and the distribution law suggested by
HoenesTaDp, HansoN and McHENRY. The calculations were carried out by
means of a single programme on an IBM 650 computer. For the various types
of beam that were tested the publication gives the mean values and the degrees
of scatter of the ratio » = observed moment of rupture / calculated moment
of rupture.

The study shows that by using the parabolic diagram or the H.H.M.H.
method it is possible to determine the moment of rupture to a close approxi-
mation and with a slight margin of safety. On the other hand, a rectangular
diagram can only be employed with certain restrictions, notably by limiting
the maximum reduced moment of the stresses in the concrete in relation to
the reinforcement under tension to 0.375.
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Application de la méthode semi-probabiliste au calcul des dimensions
des constructions en acier

Anwendungen der halbprobabilistischen Methode zur Dimensionierung von
Stahlkonstruktionen

Application of the Semi-Probabilistic Method for Determining the Dimensions of
Steel Structures

W. WIERZBICKI
Prof. Dr., Membre de 1I’Académie polonaise des sciences, Varsovie

La méthode semi-probabiliste pour la détermination de la sécurité des
constructions tire son origine de la méthode probabiliste publiée par 1’auteur
en 1936 [1]. Cette derniére est basée sur 1’équation

Q-Q=p (1)

ou le symbole p désigne I’indice de sécurité, entendu comme probabilité qu’une
ruine de la construction ne se produise pas. En parlant de ruine, nous ne
supposons pas absolument un effondrement de la construction, mais seulement
I'avénement d’un état des choses que nous ne voulons pas tolérer, comme
p.ex. le dépassement de la limite de plasticité par les contraintes de I’ouvrage.

Le symbole £ signifie dans 1’éq. (1) la probabilité que la contrainte limite
o, en un point donné de la construction ne dépasse pas la contrainte R 3 la
limite de plasticité; nous appelons contrainte limite la contrainte

0y = 0o (143 a) (2)

ol nous désignons par « 1’accroissement limite de la contrainte o, au point
donné de la construction, contrainte o, calculée d’aprés les formules courantes
de la résistance des matériaux et de la théorie des constructions; le pourcentage
d’accroissement o est dans ce cas provoqué par la réalisation incompléte de
'une des hypothéses servant de base au calcul de la construction.
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Le symbole £’ désigne dans 1’éq. (1) le produit
.Q, = Hwi ' (3)

ou w; exprime la probabilité que la valeur limite « soit inférieure & ¢ fois 1’écart
moyen de la valeur o,.

Comme nous le voyons, 1’éq. (1) aussi bien que la formule (3) sont basées
sur le théoréme bien connu de la multiplication des probabilités. Le sens de
P’éq. (1) peut étre illustré a 1’aide de la fig. 1.

y
0’
c
0 g 6 bz
6q
R R
maxR

Fig. 1.

La figure représente la courbe de dispersion des contraintes R & la limite
de plasticité en traction. Les ordonnées du diagramme expriment ici la densité
des probabilités, et 1’aire hachurée — la probabilité que la valeur R donnée
soit comprise entre les valeurs R et R+d R. Nous entendons ici la courbe en
tant que courbe de Gauss ou de PEARSON du 3¢ genre, par exemple.

L’aire GG’ O’'b de la figure exprime la probabilité que la contrainte R
a la limite de plasticité soit plus grande que la contrainte limite o, — repré-
sentée par le segment OG. L’aire G G'O'b exprime donc la probabilité Q2
dont nous venons de parler.

Nous devrions en principe admettre & priori I'indice de sécurité p en nous
appuyant sur la statistique des ruines des constructions. Cependant, pour les
cas ou la statistique dont nous disposons est insuffisante, nous pouvons com-
parer — afin de déterminer p — la probabilité de ruine de la construction, ou
de I'un de ses éléments, a la probabilité d’autres catastrophes' mieux étudiées
du point de vue statistique, p.ex. & la probabilité d’incendies, de morts
humaines, d’inondations etc. Nous établissons donc la comparaison en con-
sidérant les espérances mathématiques des effets économiques des deux
catastrophes suivant la formule

K, (1-p) = K,p, (4)



APPLICATION DE LA METHODE SEMI-PROBABILISTE 131

ou K, signifie les pertes que provoquerait la ruine d’un élément de construc-
tion et p, la probabilité que se produise la catastrophe avec laquelle nous
comparons la ruine de la construction donnée; K, — désigne les pertes éco-
nomiques correspondantes.

Nous devons remarquer néanmoins que 1’éq. (4) ne nous permet pas tou-
jours de déterminer d’une fagon appropriée l'indice de sécurité, car, d’une
part, ce ne sont pas toujours seulement des facteurs économiques qui entrent
en jeu pour la détermination de p, et, d’autre part, parce que les facteurs
économiques apparaissant dans cette équation ne peuvent pas toujours étre
convenablement précisés.

Afin de déterminer la contrainte admissible £ — pour une construction
donnée — nous introduisons dans 1’éq. (2) o,=%, et nous calculons la proba-
bilité 2 en partant de 1’équation admise pour la courbe de probabilité. L’éq. (1)
devient ainsi une équation par rapport a k.

En appliquant I’éq. (1) & la pratique de l’ingénieur, on a remarqué que
les coefficients o« n’ont généralement pas un caractére marqué de grandeurs
aléatoires, c’est pourquoi la grandeur £’ et les grandeurs w;, peuvent étre
prises égales & 1’unité. La méthode probabiliste pour la détermination de la
sécurité des constructions prend dans ces conditions un caractére qui n’est
probabiliste qu’a demi — donc semi-probabiliste [2].

La difficulté principale, rencontrée lors de ’application de la méthode
semi-probabiliste & la détermination des dimensions des constructions consiste,
comme nous 1’avons déja remarqué, dans I’établissement de I’indice de sécurité
p. Nous présenterons ci-dessous les progrés nouveaux dans ce domaine.

Dans les cas ou nous ne sommes pas & méme de fixer le degré de sécurité
devant étre appliqué & l’exécution d’une construction donnée, la méthode
semi-probabiliste nous fournit néanmoins le moyen d’établir la grandeur de la
contrainte admissible appropriée, que nous traitons ici comme devant répondre
aux conditions de sécurité et d’économie optima. A ces fins, nous calculons les
contraintes admissibles pour un élément de construction donné sur la base
d’une série de diverses valeurs de l’indice de sécurité p. En nous basant sur
les contraintes admissibles & que nous obtenons de cette maniére, nous cal-
culons les poids g correspondants de 1’élément de construction donné ou bien
les frais de son exécution. Nous reportons ensuite sur I’axe des ordonnées d’un
diagramme les valeurs particuliéres des indices de sécurité p, et sur ’axe des
abscisses, les frais ou les poids g correspondants; nous obtenons ainsi une
courbe qui nous permet de trouver la valeur optimum de p. La contrainte
admissible cherchée correspondra & cette valeur [3].

Un exemple d’une telle courbe est donné & la fig. 2. Les calculs ont été
exécutés pour une poutre en double 7' reposant sur deux appuis simples, de
6 m de portée, exécutée en acier polonais «37» (résistance R=3700 kg/cm?).
La dépendance entre les indices de sécurité p et les valeurs correspondantes
de la contrainte R & la limite de plasticité a été prise sur la base de la courbe
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de Gauss et le dépassement de la limite de plasticité était considéré comme
critére de ruine. La somme 1+ > « était prise dans les calculs comme égale
a 1,61, ce qui sera motivé ci-dessous.
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Fig. 2.

Le diagramme obtenu représente une ligne brisée 4bC. La dépendance
entre les grandeurs p et g exprimée par le diagramme doit étre considérée
comme 1’expression de la dépendance entre la sécurité de la poutre et le coiit
de la construction. Sur la base du diagramme nous trouvons que c’est le
point b, donc la contrainte admissible k=1405 kg/cm? et 1’indice de sécurité
p=0,845 qui répondent & la condition optimum.

Nous démontrerons ensuite que la méthode semi-probabiliste nous permet
d’élever les contraintes admissibles, méme si nous prenons comme point de
départ pour la détermination de ces contraintes les normes obligatoires du
pays au moment donné.

La méthode semi-probabiliste assure la construction contre la ruine en
quelque sorte de deux fagons: d’un cété, par l'introduction des coefficients
d’accroissement des contraintes «, de 1’autre, par le choix d’un indice de
séeurité approprié p. Ces deux aspects, qui tendent vers le méme but, sont en
principe indépendants 'un de l’autre. Cependant, si nous ne disposons pas
de données statistiques suffisantes qui se rapportent au type donné de cons-
truction, l'introduction d’une certaine dépendance mutuelle entre ces deux
aspects nous facilite la détermination de contraintes admissibles appropriées.

Notamment, si toutes les causes pouvant influer sur 1’accroissement de la
contrainte o, nous étaient connues, la contrainte limite o, devrait étre con-
sidérée comme égale & max R, et nous pourrions donc obtenir la contrainte
admissible k£ & 1’aide de 1’équation

k(l+max Y «) = max R. (5)

Cependant, comme il n’est pas possible de saisir toutes ces causes exclusive-
ment & ’aide de coefficients «, nous devons introduire un certain indice de
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séeurité p en tant que probabilité de 1’apparition de la différence
D=maxR—(1+Y«) (6)

causée par des circonstances qui ne peuvent étre exprimées a 1’aide de coeffi-
cients a.

Nous supposons ensuite que toutes les constructions projetées conformé-
ment aux normes actuellement en vigueur ont rempli leur destination et que
leur indice de sécurité p n’était donc pas trop petit, tout en tenant compte de
la contrainte admissible d’aprés les normes pour ’acier «37», & savoir k= 1400
kg/cm?, pour la traction et pour la flexion.

En tenant compte de ces circonstances, nous cherchons & choisir pour la
barre tendue un indice de sécurité p, qui réponde au mieux sur la courbe de
probabilité pour B & la contrainte limite o, calculée d’aprés la formule (2) sur
la base de la contrainte admissible oy=Fk=1400 kg/cm? En choisissant cet
indice, nous retenons la grandeur p=0,8 car, sur les courbes de probabilité,
la méme valeur R=2330 kg/cm? répond & 1’aire 2=0,8 que ’on ait & faire
a la courbe de GAuss ou a la courbe de PEARsSON du 3° genre, ou méme au
polygone ou triangle de probabilité; autrement dit la grandeur p=0,8 ne
dépend pas de la maniére de traiter les données statistiques. Remarquons
aussi que la précision des lectures est la plus grande pour les parties des courbes
de probabilité qui répondent a £2=0,8.

Les coefficients « sont calculés d’apres les formules de la résistance des
matériaux pour diverses barres tendues, différant entre elles par leur type et
par les dimensions de leur profil; ces coefficients difféerent entre eux, il est vrai,
pour les barres particuliéres, mais nous choisissons ceux d’entre eux qui
répondent au mieux a tous les types de barre tendue. Nous devons en méme
temps chercher & ce que la somme ) o, conformément aux considérations
ci-dessus, soit aussi proche que possible de la grandeur obtenue d’apres la
formule (2) pour o,=k=1400 kg/cm?. Pour p=0,8 et o,=2330 kg/cm? la
somme ) a=0,67.

Admettons que tous les coefficients « aient été pris en considération dans
le calcul et que toutes les barres soumises & la traction et calculées sur la base
de la contrainte admissible k£ =1400 kg/cm? et des charges prévues par les
normes aient subi 1’épreuve; nous pouvons alors modifier les valeurs des coeffi-
cients «, de telle facon que leur somme soit effectivement égale & 0,67. Nous
obtenons ainsi les coefficients suivants:

0, =0,02 causé par les différences de valeur du coefficient d’élasticité Z des
éléments constitutifs d’une barre composée.

a,=0,01 causé par les écarts par rapport & I’hypothése de Bernoulli-Navier.

23=0,05 causé par les erreurs sur les dimensions des sections transversales
de la barre.

%3=0,05 causé par I’excentricité du point d’application de la force longi-
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tudinale, due aux erreurs sur les dimensions des sections trans-
versales de la barre.

as=0,05 causé par ’écart de ’axe de la barre par rapport & une droite.

og=0,06 causé par l’excentricité due aux défauts de fixation des éléments
constitutifs d’une barre composée.

a; =0,08 causé par l’excentricité due & la différence de longueur des élé-
ments constitutifs d’une barre composée.

og=0,08 causé par l’extension préliminaire.

og=0,05 causé par la flexion de la barre pendant le transport.

o0="0,07 causé par la différence de température entre les éléments consti-
tutifs d’une barre composée.

oy;=0,10 causé par I’encastrement de la barre aux nceuds.

o,=0,05 causé par la flexion de la barre par son poids mort.

En connaissant les coefficients d’accroissement des contraintes « ainsi que
P’indice de sécurité p nous pouvons augmenter les contraintes admissibles
pour les barres tendues qui se trouvent dans des conditions meilleures que
celles pour lesquelles les coefficients « ont été déterminés.

Si p.ex. la barre tendue n’est pas encastrée & son extrémité, le coefficient
oy, =0, Za=0,57, et la contrainte admissible calculée d’aprés la formule (2)
s’éleve & k=1484 kg/cm?2. Si le transport des éléments en acier est effectué
avec grand soin, on peut admettre oy =0, Z o=0,62 et la contrainte admissible
s’éleve alors a k=1437 kg/cm?, et ainsi de suite.

Quant aux contraintes de flexion admissibles, nous considérerons une poutre
en double T laminée, élément en acier le plus fréquemment usité & cet effet.

Les coefficients « suivants entrent ici en ligne de compte:

o; =0,02 qui a le méme sens que pour la traction.

ap =0,10 causé par les écarts par rapport a I’hypothése de Bernoulli-Navier.

a3 =0,07 causé par les erreurs sur les dimensions des sections transversales
de la poutre.

oy =0,10 causé par ’excentricité et 1’obliquité de la charge.

o;=0,15 causé par le manque de parallélisme des appuis de la poutre.

og=0,05 causé par la flexion due au transport.

a;,="0,12 causé par les différences de température entre les faces supérieure
et inférieure de la poutre, en tenant compte de la friction sur ’appui
mobile.

>« est donc égal dans ce cas & 0,61.

Si nous considérons toujours comme critére de ruine le depassement de la
limite de plasticité par la contrainte limite o, et si nous voulons obtenir la
méme sécurité pour la poutre fléchie que pour la barre tendue, nous admettrons,
comme ci-dessus, p=0,8. Nous trouverons donc, d’apres la formule (2) pour
o,= R=2330 kg/cm? et Y «=0,61, que la contrainte admissible normale & la
flexion k s’élévera a 1452 kg/em?2.
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Si nous sommes siirs que la charge de la poutre & double T est appliquée
sans obliquité, nous aurons «, =0, et Y«=0,51 et la contrainte admissible
vaudra k= 1543 kg/cm?.

Un raisonnement pareil nous permet d’omettre dans nos calculs certains
autres coefficients a.

La contrainte admissible pour les barres d’acier soumises a la compression
est, comme on le sait, exprimée par la formule

ol k, désigne la contrainte admissible sans tenir compte du flambage et «, le
coefficient de diminution de cette contrainte pour le cas de flambage.

La contrainte admissible k,, ordinairement fixée comme égale & la con-
trainte de traction k, differe de cette derniére du point de vue de la méthode
semi-probabiliste. Cela résulte du fait qu’une application excentrique de la
force longitudinale et une flexion initiale de la barre causent une flexion supplé-
mentaire et un accroissement correspondant des contraintes. Nous devons
done, aux douze coefficients « correspondant & la traction et conservant leur
valeur pour la compression, en ajouter un treizieme o,;; pour tenir compte
de la flexion supplémentaire mentionnée. Conformément aux formules de la
résistance des matériaux, nous établissons ce coefficient pour un type commun
de barre d’acier comme égal & «,3=0,10.

Nous illustrerons les avantages obtenus par 1’application de la méthode
semi-probabiliste aux calculs des constructions en acier par un exemple de
poutres & treillis de pont de chemin de fer secondaire & une voie (fig. 3), exé-
cutées en acier «37».

T 5x808-4040 T
Fig. 3.

Les treillis ont été projetés pour des contraintes admissibles de 1400 kg/cm?
et leur poids s’élevait & 24954 kg.

Nous posons que, pour la détermination des dimensions transversales des
éléments des treillis ainsi que de leur poids sur la base de la contrainte admis-
sible £ =1400 kg/cm?, la somme des coefficients d’accroissement de contrainte
Za, était égale a 0,67, comme nous l’avons établi ci-dessus.

Supposons ensuite que le pont en question ait été projeté avec un soin
particulier, que son exécution fiit trés bonne et que les conditions de transport
N’ajent pu avoir une mauvaise influence sur 1’état des éléments apportés sur
le chantier. Dans ces conditions, une partie des coefficients d’accroissement
des contraintes doit étre considérée égale a zéro, notamment o= og =, = ag =
=ay=0.
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Le reste des coefficients « donne une somme Za=0,35 et d’apres la for-
mule (2) nous trouvons la contrainte admissible pour les éléments tendus du
treillis:

2330

k 1,35

= 1725 kg/cm?, (8)

Pour les éléments comprimés (sans tenir compte du flambage), la somme
Z o doit étre augmentée du terme «,, et cette somme passera a Z «=0,45. La
contrainte correspondante se réduira & 1600 kg/cm?.

En tenant compte du flambage, nous aurons donc une contrainte admissible
pour les éléments particuliers soumis & la compression:

k, = 1600 « kg/cm?2. (9)

En déterminant les dimensions transversales des treillis et leurs poids nous
obtenons sur la base des contraintes (8) et (9) 22217 kg.

L’application de la méthode semi-probabiliste nous permet ainsi d’écono-
miser 119, du poids de 1’acier. Le changement de poids des toles de liaison
n’a qu’une trés petite influence sur cette relation.

En supposant que 1’indice de sécurité p ainsi que les coefficients d’accroisse-
ment des contraintes « ci-dessus aient supporté 1’épreuve du temps pour les
constructions exécutées en acier «37», nous pouvons déterminer la contrainte
admissible £ pour les constructions exécutées en acier «52» (résistance R =
5200 kg/cm?), plus rarement usité pour les constructions.

Dans nos calculs précédents, nous avons pris I'indice de sécurité p=0,8
pour la raison (entre autres) que la méme valeur de o, = R correspond & I’aire
£2=0,8 indépendamment de ce que nous prennions comme courbe de proba-
bilité la courbe de Gauss, la courbe de PEarsoN du 3¢ genre, le polygone
ou le triangle de probabilité. La question se présente de la méme fagon lorsqu’il
s’agit d’acier «52».

Nous trouvons notamment, par interpolation (en nous servant de la courbe
de Gauss, aussi bien que de la courbe de PEArRSON) que la méme valeur
0,= R =3834 kg/cm? correspond & 1’aire 2=0,8 ainsi qu’a 'indice de sécurité
p=0,8 indépendamment de la maniére de traiter les données statistiques.

En posant donc o, =3834 kg/cm?, p=0,8 et (1+ Z o)=1,67 nous trouvons
d’apres la formule (2) la contrainte admissible pour une barre tendue d’acier
«52» comme égale & k=2290 kg/cm?.

Cette contrainte devrait cependant étre quelque peu diminuée (de 4,59,
au plus), vu la quantité relativement limitée (273) des expériences qui ont
servi a la calculer.

En agissant de méme que pour I’acier «52», nous pouvons déterminer les
contraintes admissibles pour des constructions exécutées en d’autres aciers
et en d’autres métaux. Nous pouvons aussi appliquer la méthode semi-
probabiliste pour la détermination de la sécurité des constructions a d’autres
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constructions en dehors de celles exécutées en acier et particulierement &

celles en béton armé.
C’est dans ces directions que la méthode tend & se développer.
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Résumé

La méthode semi-probabiliste, qui tire son origine de la méthode probabiliste
pour la détermination de la sécurité des constructions, publiée par 1’auteur
en 1936, peut étre a présent appliquée a la solution de problémes concrets.
Elle est basée sur des théoremes de la théorie des probabilités ainsi que sur
les notions de contrainte limite o,, des coefficients d’accroissement de con-
trainte « et de 1’indice de sécurité p.

L’indice de sécurité p, en tant que probabilité qu’une ruine d’une cons-
truction ne se produise pas, ne peut parfois étre déterminé directement d’apres
les statistiques de ruines des constructions, & cause de l'insuffisance de ces
statistiques. Nous avons recours alors a la détermination des dimensions des
constructions sur la base de la sécurité et de 1’économie optima, ou bien nous
partons de la supposition que toutes les constructions exécutées conformément
aux normes en vigueur ont rempli leur destination, ce qui nous permet de
déterminer les coefficients «. Si la construction donnée se trouve dans des
conditions meilleures que les conditions moyennes, nous pouvons omettre cer-
tains coefficients o, et les contraintes admissibles peuvent étre augmentées
de ce chef.

En appliquant les grandeurs p et «, établies pour les constructions existan-
tes, & une nouvelle sorte d’acier, nous sommes & méme de déterminer aussi
les contraintes admissibles pour cet acier.

Zusammenfassung
Die halbprobabilistische Methode, die sich aus der durch den Verfasser im

Jahre 1936 verdffentlichten probabilistischen Methode zur Untersuchung der
Sicherheit der Baukonstruktionen ergibt, kann bereits bei konkreten Losungen



138 W. WIERZBICKI Ib4

angewandt werden. Sie stiitzt sich auf die Feststellungen der Wahrscheinlich-
keitsrechnung sowie auf die Begriffe der Grenzspannung o,, der Koeffizienten
des Spannungszuwachses o« und des Sicherheitsindex p.

Da die Statistiken iiber die Baukatastrophen meist unvollstdndig sind,
kann der Sicherheitsindex p als Wahrscheinlichkeit, daB} kein Einsturz des
Bauwerkes erfolgen wird, oft nicht unmittelbar bestimmt werden. Wir greifen
dann auf die Dimensionierung des Bauwerks auf Grund optimaler Sicherheit
und Wirtschaftlichkeit zuriick, oder auch auf die Voraussetzung, daf alle
nach den geltenden Normen ausgefiihrten Bauten ihre Bestimmung vor-
schriftsgemaf erfiillt haben. Dies gibt uns die Moglichkeit, die Koeffizienten o
festzusetzen. Wenn das Bauwerk sich unter besseren als den durchschnittlichen
Bedingungen befindet, konnen wir gewisse Koeffizienten « iibergehen, wobei
sich dann die zulassigen Spannungen erhshen.

Durch Anwendung der Gréen p und «, die fiir vorhandene Konstruktionen
festgesetzt werden, auf eine neue Stahlsorte, konnen wir auch fiir diese die
zuldssigen Spannungen bestimmen.

Summary

The semi-probabilistic method, which derives from the probabilistic method
for the investigation of the safety of structures — published by the author in
1936 —, can already be applied to the solution of actual problems. It is based
on theorems of the calculus of probabilities and on the notions of limiting
stress o,, stress increase coefficients «, and the safety index p.

The safety index p — the probability that collapse of a building will not
occur — can sometimes not be directly determined from the statistics of the
collapse of buildings because such statistics often are incomplete. In such
cases we have recourse to determining the structural dimensions on the basis
of optimum safety and economy or, alternatively, we may start from the
assumption that all structures built in accordance with the standard specifi-
cations that are in force have duly fulfilled their purpose. This enables us to
determine the coefficients «. If the structure under consideration conforms to
better-than-average conditions, then certain of the coefficients « may be
omitted, and the permissible stresses are increased in virtue thereof.

By applying the quantities p and «, as established for existing structures,
to a new type of steel, we shall be able to determine the permissible stresses
for this steel as well.
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Introduction

In recent years structural analysts were confronted more often than before
with the problem of predicting the effects of heat inputs on structures. This
trend was brought about by such developments as atomic reactor technology,
high speed aircraft and missile technology, and also by an increased use of
welded connection in structures.

One of the most important thermal effects in structures consists in the
occurence of thermal stresses, produced by heat inputs or temperature changes.
Thus, the structural engineer is required to determine such thermal stresses,
basing himself on the temperature distribution in the structure, which, in
turn, has to be determined first from the given boundary conditions of the
thermal problem. This latter task, as a rule, will be a rather unfamiliar one for
the structural engineer, since the temperature distribution, which is governed
by the empirical heat conduction equation, is of a type (diffusion) which does
not lend itself to treatment by commonly employed methods, in particular
energy methods, which have proved to be powerful tools in structural analysis.

This rather unpleasant feature of thermal stress analysis was removed
recently by Bror [1,2,3], who showed that by a suitable definition of two
quantities, namely the thermo-elastic potential and the dissipation function,
a variational formulation of either the coupled or separate problems of thermo-
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elasticity and heat conduction becomes possible. A principle, complementary
to Bior’s formulation, was established by the present writer [4].

The purpose of the present contribution is to show that a complete exten-
tion of the energy principles, available in isothermal structural analysis, to the
case of thermo-elastic and temperature distribution problems is possible.

The existence of such an analogy, for the sake of brevity, will be demons-
trated here with the example of a uniaxial state of stress and for the simplest
possible loading, boundary conditions and material properties.

The three energy principles discussed in the sequel represent extentions
of GREEN’s principle for displacements (which yields equilibrium equations),
CasTIGLIANO’s principle for stresses (which yields, in the formulation used here,
HookEe’s law) and REISSNER’s generalized principle for displacements and
stresses [5]. By way of introduction, these principles are restated first for the
case of isothermal elasticity. The formulation and terminology are borrowed
from a recent summary by REISSNER [6].

On Energy Theorems in Isothermal Elastic Structural Analysis

In isothermal elastic structural analysis, as exemplified by the onedimen-
sional problem of an elastic bar of length [ in compression (or extention), we
consider first the following two classical energy theorems.

The principle of minimum strain energy states, that the equilibrium equa-
tions are obtained by setting the variation of the strain energy V, expressed
in terms of displacements, equal to zero.

In our case

14
2V = [Eeda, (1)
0
I 11 1 >
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E is Younes’s modulus, e=0u/dx is the strain and u is the displacement.

The term on the boundary vanishes because the displacement is not to be
varied there, while the integrand yields the equation of equilibrium, in terms
of displacement, which is, in the absence of any body forces, 92u/0x%=0. This
manner of deriving the equations of equilibrium in the three-dimensional case
was first suggested by GREEN.

By contrast, in CAsTicIANO’s method the strain energy V is expressed in
terms of the stress o, i.e.

1
2
V= f;—de (3)
0
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and the variation yields

8V =|Zsodx, (4)

if HOORE'’s law, o= E ¢, is assumed to be valid. Integration by parts results in

1
8V=—fu—aigdx+u80]{). (5)

ox

0
The integrand vanishes because the equilibrium equation in terms of stresses,
dolox=0, is assumed to be satisfied. If 8 V is set equal to zero, we obtain the
usual form of CASTIGLIANO’S principle, which states that the partial derivative
of the strain energy with respect to an applied force equals the displacement
of the point of application in the direction of the force.

For the present purposes we prefer to use a different version of CASTIGLIANO’s
principle. We consider not only the strain energy but also the work of external

forces, as was done by REISSNER [6], i.e.

g

0

The variation of this expression results in
!
8W=f—%80dx+u80]{, (7)
0
and after integration by parts
1 1
o ou 0éc
SW—J(—E+H)80dx+fu?x—dx. (8)
0 0

The second integral vanishes, because the equilibrium equation is again
assumed to be satisfied, while the first integral yields o = F'¢, i.e. HOOKE's law.

Since o/E is the partial derivative of strain energy density with respect
to the stress ¢, HOOKE’s law can be interpreted as resulting from CASTIGLIANO’S
principle. Now it is this derivative which yields the strain, through which the
corresponding stress does work. Or, in other words, Hooke’s law expresses
CASTIGLIANO’s principle, if applied to a unit volume of the material.

REerssNer [3] has unified the two separate principles of GREEN and
CastieLiaNo. He considered the strain energy in the form

7= [ (co-s3)as o
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and assumed, in the variation process, the displacement and the stress as
being independent from each other. Such variation, followed by partial
integration, leads to

l
9
SV = f [(e—%)Sc—%Su]dx+08u]a. (10)
0

If 6V is set equal to zero, the coefficient of 6 o yields HOoOkE’s law, while the
coefficient of 3 u yields the equilibrium equation.

On the basis of this unified principle, which furnishes both GREEN’s and
CASTIGLIANO’s results, REISSNER was able to prove [6], that the former is a
minimum, while the latter is a maximum principle.

The Basic Equations of Thermoelasticity and Heat Conduction

The classical problem of the coupled elastic and thermal fields in the
uniaxial case is governed by the three equations

c=Fe—Kuab,

do
gz = (11)
020 00 Oe
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0 denotes here the excess temperature above a reference temperature 7',, « is
the coefficient of thermal linear expansion, k is the heat conduction coefficient,
¢ is the heat capacity per unit of volume, and ¢ is the time.

It is customary to omit the ‘“‘correction’’ term with ¢e/d¢ in the heat
conduction equation. This permits to solve first the temperature distribution
problem, which is then independent of the elastic problem, and then, in a
second step, to tackle the thermal stress problem on the basis of the first two
equations. For purposes of the present discussion, no particular simplification
is achieved by omission of this term, and, in fact, the development is more
lucid if this term is retained. However, it is necessary to cast these basic
equations into a different form, introducing in this course several new concepts.

The purely elastic stress, associated with elastic isothermal straining, is
denoted by 7. We further define the ‘relative thermal displacement’’ » as the
ratio of the time rate of heat flow to the reference temperature, the ‘‘thermo-
elastic strain’’ y by means of the equation

oh ou
'y=—%-+Ea% (12)

and the ‘“‘thermal force’’ g such that the product g% is the work done by ¢ in
the ‘“‘displacement’’ A.
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With the aid of these four new quantities =, &, y and g, the basic eqgs. (11)
may be put into the form

T ot 00

—Eg=% THmtPen =0
kg 06

h—g =0, —o=0, (13)
ct

Yt =0

The first two equations of the above set represent an obvious reformulation
of HookE’s law and the stress-equation of equilibrium, using the definition
of stress 7. Eliminating g in the third equation with the use of the fourth and
substituting A from the third into the last equation, the same form of the heat
conduction equation is obtained as in the set (11). p represents the time
operator 0/0¢t and may be treated as a constant.

Generalization of Reissner’s Variational Principle for Stresses and Displacements

In the present thermodynamic system of variables we have to deal with
3 dynamic quantities, 7, # and g and 2 kinematic quantities, » and A.
Following BioT, we introduce his thermoelastic potential W in the form

™ cf?

and his dissipation function D in the form
kg?
We now consider the energy expression
1
I=((er—y0+hg—W—-D)dx (186)
0

and assume the dynamic and kinematic variables to be independent from
each other.
The variation of I, followed again by partial integration, leads to

.

_ T 00 o~ kg
51 = ([(G—F)S'r—i—(Ea%—%) + (h——pTr—)Sg

(%

(17)

+ (g—g)‘éh—(y+ ?[,—0)80]dx+[(r—Ea9)8u+98k]{,.

r
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The integrated part vanishes, because neither displacement « nor %4 is varied
at the ends x=0,!/. If the integrand is to vanish, the coefficients of all varied
quantities have to vanish, and this results in the five equations of the set (13).

We have thus generalized REISSNER’s principle for stresses and displace-
ments to the case of the coupled problem of thermoelasticity and heat con-
duction. :

Generalization of Green’s Principle for Displacements

The independent variables are now the two displacements » and 2. We
consider the expression

1
2 2
2IG=f [Ee2+T’6y + T’lfh]dx. (18)

The first two terms express the thermoelastic potential W in terms of kinematic
variables, while the last term is the dissipation function D, also expressed in
terms of the associated kinematic variable.
To perform the substitution from dynamic to kinematic variables in W
and D, the first, third and fifth equations of the set (13) were employed.
The variation of I; yields, after partial integration

4
_ 2u T, T oy T,
aIG_H( g% Lg, ax)8u+(7—+7 h)Sh]dx
; (19)

T, T, !
+ [?Eoc'ySu-—TyS k]o.
The integrand, set equal to zero, furnishes the second and fourth equations,
generalizing thus GREEN’s principle for displacements.
Generalization of Castigliano’s Principle for Stresses

The independent variables are now the three dynamic quantities 7, § and g.
We consider the expression

2 002 k 2
2Ic=_f[%+ A +pg,]dx+2[u7—Eaeu+0k]{,. (20)

r r

Again, the integrand is nothing but the negative of the sum of the thermo-
dynamic potential and dissipation function, but now expressed in terms of
dynamic quantities.
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The variation of I, may be written as

1
T cl oh kg
0

r

! (21)

03871 0060 000
0

The second integral vanishes because the equilibrium equations (second and
fourth equations of the set (13)) are assumed to be satisfied, while the vanishing
of the first integral yields the first, third and fifth equations of the basic set (13).

Concluding Remarks

Using the same line of thought as the one followed by REISSNER [6] it can
be proved that in the extended variational theorem for ‘“‘displacements’’ one
is concerned with a minimum problem, while in the extended variational
theorem for ‘“‘stresses’’ one is concerned with a maximum problem. And just
as in the case of isothermal elasticity, the variational theorem for stresses
and displacements is no more than a stationary value problem. Details of
this proof in the general case will be dealt with by the present author elsewhere.

Bror’s variational formulation [1,2,3] is recognized to be a ‘“‘mixed’’
principle, in the sense that it yields two equations, one being part of extended
GREEN’s, and the other part of extended CasticLiaANO’s formulation.

All the energy theorems presented here for the special case of onedimensional
problems can easily be formulated for the general, three-dimensional bodies
and also for lumped systems, such as framed structures.

Suitable procedures for the application of the basic energy theorems to
particular cases, as illustrated by Brot [2] in heat flow analysis, are still to be
developed.
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Summary

Some well-known energy theorems of structural analysis are generalized
for the case when a part of the stresses is due to thermal effects. These methods
assume that the temperature distribution is known. It is shown further that
the temperature distribution in the structure itself may be determined by the
use of analogous energy theorems, which can be established for both steady-
state and transient conditions.

Résumé

L’auteur généralise quelques propositions connues de la méthode énergé-
tique de la statique appliquée, pour le cas ou une partie des contraintes dépend
des fluctuations de la température. Ces méthodes de calcul supposent toute-
fois une répartition connue de la température. L’auteur montre que cette
répartition peut étre déterminée & 1’aide de propositions analogues, aussi bien
pour des conditions constantes que pour des conditions variables.

Zusammenfassung

Einige bekannte Sitze der Energiemethode der Baustatik werden verall-
gemeinert fiir den Fall, da ein Teil der Spannungen von Temperaturwirkungen
abhéngig ist. Diese Berechnungsmethoden setzen eine bekannte Temperatur-
verteilung voraus. Es wird weiterhin gezeigt, daBl die Temperaturverteilung
im System mit Hilfe analoger Sidtze der Energiemethode bestimmt werden
kann, und zwar sowohl fiir gleichbleibende als auch fiir verdnderliche Bedin-
gungen.



Ib6

Die Anwendung der Schalenstatik auf die Berechnung

von Bogenstaumauern
The Application of the Theory of Thin Shells to the Calculation of Arch Dams

L’application de la théorie des voiles minces au calcul des barrages-voiite

BERNHARD GILG
Dr. Ing., Elektro-Watt, Ziirich

1. Die verschiedenen Methoden zur Berechnung von Bogenstaumauern

Da die ersten Bogenstaumauern zur Hauptsache in engen Télern errichtet
wurden, bezogen sich die entsprechenden ersten Berechnungen vor allem auf
ihre horizontale Tragfihigkeit, wobei die Mauer in verschiedene, voneinander
unabhéngige Bogentriger zerteilt und diese unter dem vollen Wasserdruck
nach der elementaren Bogenstatik untersucht wurden. Eine Erweiterung die-
ser Berechnungsart stellt die vielfach angewandte Balkenrostmethode dar, bei
welcher das Mauergewdlbe durch zwei Tragsysteme, ndmlich die horizontalen
Bogen und die vertikalen Konsolen, ersetzt wird. Die Wasserlast wird auf die
Balken und Bogentriger verteilt, so da — je nach gewiinschter Genauigkeit
— in den Kreuzungspunkten mehr oder weniger strenge Bedingungen erfiillt
werden miissen (z. B. Gleichheit der radialen Verschiebungen, evtl. zuséitzlich
der tangentialen Verschiebungen und der Winkelverdrehungen). Die Losung
des Lastverteilungsproblems erfolgt mit Hilfe eines Gleichungssystems oder
nach dem als Trial-load-method bekannten Versuchsverfahren!). Ganz abge-
sehen vom enormen Rechenaufwand kann nun aber diese Berechnungsmethode
nicht vollig befriedigen, da sie das eigentliche statische Wirken einer Bogen-
mauer nur ungeniigend beriicksichtigt. Fiir spezielle Mauerformen (z.B.
Zylinderschalen) wurden deshalb genauere Verfahren entwickelt, welche die

1) Boulder Canyon Project, Final Reports, Part V, Bull. 1.
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Schale als 2-dimensionales?) oder sogar 3-dimensionales?3) Tragwerk betrach-
ten. Auf allgemeine Mauerformen sind diese Verfahren jedoch nicht ohne
weiteres anwendbar.

Wihrend im allgemeinen die Vorprojektierung einer Staumauer durchaus
auf Grund einer einfachen Berechnung (z. B. mit einem einfachen Balkenrost
von 3 Bogen und einer Konsole, bei welchem nur die radialen Verschiebungen
beriicksichtigt werden) vorgenommen werden kann, ist doch fiir die genaue
Kenntnis. der Beanspruchungen im ausgefiihrten Bauwerk eine eingehende
Untersuchung wiinschenswert, bei welcher die Schalenform streng beriick-
sichtigt wird und welche doch nicht einen allzu groBen Rechenaufwand
erfordert.

2. Die Grundformeln einer beliebigen biegesteifen Schale

Bogenmauern besitzen im allgemeinen eine sehr komplizierte Schalenform.
Der horizontale Kriimmungsradius sowie die Schalendicke variieren in den
meisten Fiallen mit der Hohe, manchmal auch in horizontaler Richtung. Die
Zentren dieser Radien liegen auf einer raumlichen Kurve (vgl. Fig. 1). Dadurch
ergibt sich im allgemeinen in jedem Schalenpunkt auch eine vertikale Kriim-
mung. Um das Rechenproblem nicht allzu kompliziert zu gestalten, sind beim
Aufstellen der Gleichgewichtsbedingungen sowie der elastostatischen Beziehun-
gen Vereinfachungen durch Vernachlissigung kleiner GroBlen angezeigt. Es

Mauer/m‘//e/f/a“c/:e—\

Horizonlalschnilte

~ N\
oder Umfangsfuge Zen/ren//'n/b_f}{

Fig. 1. Schematische Darstellung einer Bogenstaumauer.

2) KisTer D., «Berechnung von Bogenstaumauern», Diss. T. H., Stuttgart 1956.
3) ALLEN (und weitere Verfasser), “Experimental and mathematical Analysis of
Arch Dams”, Paper 6113 of the Inst. of Civ. Eng., London.
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ist im folgenden nicht mdoglich, auf alle Vereinfachungen niher einzugehen,
doch sei hier festgestellt, dall diese auf eingehendem Studium von Berech-
nungen bereits bestehender Mauern beruhen.

Fig. 2 zeigt ein aus einer Bogenmauer herausgeschnittenes Element der
Schalenmittelfliche, welches durch zwei Horizontalebenen und zwei Vertikal-
ebenen begrenzt wird. Die letzten schneiden sich in einer Achse, welche durch

Wglz+ ey 02)'dx

q,0z*(G,dz)'ax

/ M 0z+(Myz0z)'dx

Fig. 2. Schalenelement mit angreifenden Kriften und Momenten.

das Zentrum des horizontalen Kriimmungsradius geht. Im Gegensatz zu
eigentlichen Kegel- oder Kugelschalen kénnen wir bei Staumauern den Winkel
« zwischen der z-Achse und dem Lot stets als klein voraussetzen. Deshalb ist
es ohne weiteres moglich, seine Variation in der horizontalen Richtung zu
vernachlissigen.
Als rechtwinkliges kartesisches Koordinatensystem definieren wir in jedem

Punkt:

xz-Achse = Horizontalachse (Verschiebung u),

y-Achse = Flichennormale (Verschiebung v),

z-Achse = Tangente senkrecht zur xy-Ebene (Verschiebung w).

Der horizontale Kriimmungsradius wird mit »,, der vertikale mit », be-
zeichnet. Aus den oben zitierten Voraussetzungen iiber « folgt, daB die Lingen
des Flidchenelementes d z und d z als konstant iiber die ganze Schale angesehen
werden konnen.
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In Fig. 2 sind simtliche am Schalenelement angreifenden Schnittgroen,
d.h. die Krafte N, N,, N, N,,, @, und @, sowie die Biegemomente M, und
M, und die Drillungsmomente M_, und M,, eingezeichnet, die letzten iibrigens
als Vektoren (im Sinne einer Rechtsschraube). Ferner findet sich die duBere
Belastung, namlich der in der Flichennormale wirkende Wasserdruck p,,. Das
Eigengewicht wird hier nicht beriicksichtigt, da es meist zur Wirkung gelangt,
bevor die Staumauer durch Injektion der Betonierfugen als ganzes zu wirken
beginnt.

Es ergeben sich folgende 6 Gleichgewichtsbedingungen:

z-Richtung N, —Q, c(;s “+N,, BilLe ——+N,, (1)
N : . N, COS o

Krifte | y-Richtung — @, — - N, —— Q.—p, =0, 2)
z-Richtung N, — %- _y, Hox ——+ N, -0. | (3)

um z-Achse M ,-M, Sm“+M;_Qz -0, (4)

M,, COS « o
Momente { um y-Achse —=_M,, — (N,,—N,,) =0, (trivial) (5)
um z-Achse -M, —-M. -M,, s;n“.*.Qz -0. (6)
T

Dabei wird die partielle Ableitung nach z durch ’, diejenige nach z durch °
symbolisiert.

Bei der Berechnung der SchnittgroBen in Funktion der Verschiebungen
u, v, w und ihren Ableitungen, auf deren Einzelheiten wir nicht eintreten
konnen, wurde der Einflufl der Kriimmung sowohl auf den Spannungsverlauf?)
(nicht lineare Spannungsverteilung iiber den Querschnitt) als auch auf die
Beziehung zwischen Spannungen und SchnittgréBen beriicksichtigt 8). Dadurch
werden die strengen Formeln sehr kompliziert. Eine erste Vereinfachung ergibt
sich durch den Umstand, daB das Verhiltnis aus Krimmungsradius und
Schalendicke d im allgemeinen ziemlich grof} ist und dal3 der vertikale Kriim-
mungsradius den horizontalen meist stark iibersteigt. Eine weitere Verein-
fachung resultiert aus der Tatsache, dall die Verschiebung v gegeniiber der
Verschiebung » in den Vordergrund tritt und daB die Verschiebung w nur
eine untergeordnete Rolle spielt.

In den nachstehenden Beziehungen ist auch der TemperatureinfluB beriick-
sichtigt. Dabei bedeutet t, die gleichméiBig iliber den ganzen Querschnitt

4) Vgl. FrtcgE, Statik und Dynamik der Schalen, 2. Auflage, S. 172ff.
dal2
5) Z. B, N;—foz(1+ L)ay.
—dj2
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erfolgende positive Temperaturinderung in °C, wihrend 4t/d die positive
Anderung des Temperaturgefilles zwischen Wasser- und Luftseite in °C/m
darstellt. Als materialtechnische Konstanten sind der Elastizititsmodul Z,
die Querdehnungszahl v und die Temperaturleitzahl w eingefiihrt:

N, =D, [u'+”‘305°‘+V(W’+r£)—w(1+V)tm] 3 (7)
N, =D, ['w +— +v( ’+N°S°‘)—w(1+v)tm], (8)
1
N, =N, (9)
veos?a ¥ sina v COS o .. at
M, =D, 5 +v" cos?a— +vv ' +w(l+v)—]|, (10)
re Ty Ty, d
M, =D2[v“+r£2—vcosa+vv cosza+w(l+v)f1zt], (11)
M, =M, =D, 12_ v (1+cos?a), (12)
Ed Ed?
D=1 De= 12 (1—12)°

Die Gl. (1)—(12) enthalten bekanntlich alle fiir die weitere Berechnung nétigen
Grofen.

3. Die Randbedingungen

Staumauern besitzen im allgemeinen zwei Typen von Réndern. Der eine ist
die Mauerkrone oder der freie Rand, der andere ist das Felswiderlager, welches
bei unmittelbarem AnschluBl der Mauer an den Fels eine elastische Einspannung
darstellt, bei Einschaltung einer Umfangsfuge dagegen als gelenkige Lagerung
aufgefafit werden kann.

a) Der freie Rand wird dadurch charakterisiert, daf lings ihm alle Schnitt-
groBen verschwinden, wobei bekanntlich die Querkraft ¢, und das Drillungs-
moment M, kombiniert werden:

N,=0, N_,=0, M,=0, Q,+M,=o0. (13)

2z

b) Die elastische Einspannung besteht streng genommen darin, dall3 die
Verschiebungen u, », w und die Winkeldinderung der Tangente normal zur
Randkurve Funktionen der Schnittgrofen darstellen. Da nun aber der EinfluB3
dieser Winkeldnderung bei weitem iiberwiegt, kann in den meisten Fillen die
Elastizitit der Einspannung auf die Beziehung zwischen der Ableitung der
Verschiebung v in Richtung der Randnormalen und dem Biegemoment M,
welches Spannungen in derselben Richtung erzeugt, beschrinkt werden:
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ov
= = = A (]
u=0, v=20, w=0, o kM,®). (14)
c) Die gelenkige Lagerung der Umgangsfuge besitzt theoretisch ebenfalls
eine Elastizitdt, welche sich durch Beziehungen zwischen den Verschiebungen
und den SchnittgroBen ausdriicken laf3t. Aber auch hier ist in den meisten

Fallen die Vereinfachung zuléssig:
u=0, v=0, w=0, M,=0. (15)

4. Die Berechnung von Bogenmauern in engen Tilern

Ist das Verhéaltnis der Kronenldnge einer Bogenmauer zu ihrer Hohe kleiner
oder nur wenig grofler als 1, so ist das Bauwerk in iiberwiegendem MaQle in
horizontaler Richtung beansprucht. Somit kann die Normalkraft N, sowie
die Kriimmung in vertikaler Richtung vernachlissigt werden, d.h.

N,=0, sina=0, cosa=1, 7,=c0.

Die Verschiebung w ist jetzt in erster Linie temperaturbedingt. Da iiblicher-
weise Temperaturdnderungen fiir eine bestimmte Hohe als konstant ange-
nommen werden, kann w'=0 gesetzt werden. Man erhilt nun die Schnitt-
groBen (Ausdriicke (7)—(12)) in folgender Form:

N, =Ed[u'+r1—wtm], (71)

N =N =Ed_-“ _ (91)
Xz 2x 2(1+V)’

M =D |2 o v 4wl 4n) A 107
e =Dy g0t te (L0 T (10

. At
'Mz =D2|:’U +vo +w(1+v)7:|’ (111)
M, =M, =D,(1-v)v". (121)

Die Verschiebung w tritt in diesen Ausdriicken nicht mehr auf. Aus den ver-
einfachten Gl. (4) und (6) zieht man nun die Querkrifte, setzt diese in die
Gl. (1) und (2) ein, wobei die Schnittgroen gleichzeitig durch obige Formeln
ersetzt werden. Trifft man noch die fir enge Téler iiblicherweise richtige
Annahme, dafl der Kriimmungsradius 7, und die Schalenstédrke d nur mit der
Héhe variieren und beobachtet die bisher schon beschriebenen Vereinfachun-
gen, so erhdlt man die folgenden simultanen Differentialgleichungen fiir »
und v:

6) Der Wert von k kann z. B. nach Voar (s. Boulder Canyon Report) berechnet wer-
den.
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%(v"’+v'")+%(l—v)v"—Er—jv'—Ed[u"—i—z(iu;v)] - 2"'{1?5) =0, (16)
Dy (0" 420" +0") 4+ 2Dy (0" +v") + Dy (v"+vv”)+D:;” E;;v"' Eiu'_
_E(i:t’"+w(l+v)(dfipz)“+pw=0. (17)
Entsprechend lauten die Randbedingungen folgendermafen:
a) Freier Rand (die Bedingung N, =0 ist trivial):
w=0, v 4+vv = —w(1+v)%—t, v+ R2=v)v" = —w(l+v) (%—t) (131)

b) Elastische Einspannung: Aus den Formeln (10!) und (11!) geht hervor,
daB das Biegemoment M, am Rand nur von der Kriimmung in Richtung der

Randnormalen abhéngt:

0%v 4t
Die Randbedingungen lauten dann:
ov v at
- = = —_ = il = I
u=0, v=0, w=0, o kD2[3n2+w(l+V)d]' (141)
¢) Gelenkige Lagerung:
%v 4t
- — = ol I
u=0, v=0, w=0, 3n2+w(l+v)d 0. (15%)

5. Berechnung von weitgespannten Bogenmauern

Wenn auch weitgespannte Mauern mit einiger Genauigkeit nach Abschnitt 4
berechnet werden konnen, so ist doch eine Weiterentwicklung der Berech-
nungsmethoden angebracht. Immerhin soll auch fiir diesen Mauertyp voraus-
gesetzt werden, dafl die Variation der Kriimmungsradien, der Schalenstérke
und der Temperaturdnderungen in horizontaler Richtung vernachlissigbar
klein ist?). Hingegen soll die Verschiebung w und die Normalkraft N, sowie
die vertikale Kriimmung nun beriicksichtigt werden. Als Vereinfachung neh-
men wir immerhin an, die Variation von w in z-Richtung sowie die Variation
des Kriimmungsradius r, konne auller acht gelassen werden. Weiterhin elimi-
nieren wir nachweisbar kleine Groflen und erhalten fiir die Schnittkréfte:

7) Bogenmauern mit ausgesprochener Parabelform sollen in einer spéteren Arbeit
behandelt werden.
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N;L- =D1 [u/+vCOSa+Q_w(l+v)tm], (711)
N, =Dl[w‘+r3+v(u’+m:sa)—w(l+v)tm], (811)
Na:z =Nzx=D112_vu.° (911)
v ’ - Vag;

M, =D, [7‘ " +v" cos?a+vv +w(l+v)—d—], (101L)
M D. o " a0e2 At II

, =Dy |v" +vo' cos oc+w(1+v)7 , (1111)
M, =M, =D, 1_V(1+cos2oc)v". (1211)

Durch Berechnung von @, und ¢, anhand der Gl. (4) und (6) und Einsetzen
in die GI. (1), (2) und (3) wiirde man drei simultane Differentialgleichungen
fiir die Verschiebungen %, v und w erhalten, doch zeigt es sich, dafl, wenn man
in den GIl. (1) und (2) nur die wesentlichen Glieder beriicksichtigt, in diesen
nur noch % und v auftreten:

chos o [cos2 w4 1 +0082av"'] +D,gcos<>:(1 —v)1+0082 L
’ ? N ? (19)
cosa v\ , . 1—=v 1—v ]| .. sine] .
D,[cos?av”” +(1+cos?a)v’ +v"" ]+ Dy [(1+cos?a)v” + 20" ] +
+ Dy [v +Vcoszav,,]+DICOSa(COSoc+l)v_*_DlCOS Lo (20)
’r.'lf x rz rI

A .o
+w(l+v) [(DZ t) — 0(;8 aDltm] +p,=0.

Theoretisch lassen sich aus (19) und (20) die Verschiebungen % und » und
daraus simtliche Schnittgr6f8en mit Ausnahme von N, berechnen. Fiir diese
letzte dient die Gl. (3) als Differentialgleichung:

sin o sin a

1
Ny NS Nty M-,

r.’l) z

+M;] : (21)

x

Die Randbedingungen miissen nun also fiir die Verschiebungen « und v sowie
fir die Normalkraft N, formuliert werden:

a) Frerer Rand:
N,=0, w =0, (13M)

v +vv'costa = —-w(l +v)—§—t, v +[l—v+cos2a]v = —w(14+v) (%) .
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Bei der Formulierung der letzten Bedingung wurde fiir die Mauerkrone r,= oo
gesetzt und der Ausdruck M sina/r, vernachlissigt, da M, in der obersten
Mauerpartie ohnehin schon relativ klein ist.

b) Elastische Einspannung und c) gelenkige Lagerung: Dort, wo der Win-
kel « lings dem Felsauflager null wird, gelten dieselben Randbedingungen
wie im Abschnitt 4. Da aber im allgemeinen die Elastizitdt des Felsens nur
mit beschrinkter Genauigkeit festgestellt werden kann, liegt die Ungenauig-
keit der das Biegemoment M, enthaltenden Randbedingungen vielmehr im
Koeffizienten k£ als im Abweichen des Wertes cosa von der Zahl 1. Somit
konnen die Gl. (14T) und (15T) hier ohne weiteres verwendet werden.

6. Losungsmethoden

Die Kompliziertheit der Differentialgleichungen und — in den meisten
Fillen — auch der Randbedingungen, schliet im allgemeinen eine geschlos-
sene mathematische Losung aus. Auch Potenzreihenansdtze diirften nur in
speziellen Fillen zu einem befriedigenden Resultat fithren. Jedoch ist mit Hilfe
der Differenzenrechnung, welche sowohl auf die Differentialgleichung als auch
auf die Randbedingungen ausgedehnt wird, ohne Schwierigkeiten eine geniigend
genaue Bestimmung der gesuchten Werte moglich. Da die Kriimmungsver-
hiltnisse bei Bogenstaumauern nicht allzu kompliziert sind, kann die Anzahl
der Maschenpunkte stets in einem verniinftigen Rahmen gehalten werden. Es
wird also meistens moglich sein, die Integration der Differentialgleichungen
durch die Auflésung eines Gleichungssystemes zu ersetzen, welche mit einem
elektronischen Rechengerit streng erfolgen kann. Nur in Ausnahmefillen ist
die Anzahl der Maschenpunkte so gro3, daf ein Iterationsverfahren (Relaxations-
methode) zu Hilfe genommen werden muf.

Waihrend die Maschenpunkte lings der Mauerkrone stets auf der Rand-
linie angeordnet werden konnen, ergeben sich lings dem Felsauflager meist
Differenzen zwischen den Maschenpunkten und der Randlinie, so daBl dort
die Randbedingungen mit ungleichen Maschenweiten formuliert werden miis-
sen. Da die Bedingungen lings dem Widerlager einfach sind, entstehen dadurch
keine wesentlichen Komplikationen.

Als Beispiel diene die Berechnung einer Staumauer in der Schweiz, wo im
Innern der Mauer 42 Maschenpunkte nétig waren. Die dadurch entstehenden
84 Gleichungen mit 84 Unbekannten konnten durch ein teilweises Iterations-
verfahren in 2 Systeme mit je 42 Unbekannten umgewandelt werden.
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Zusammenfassung

Fir die Schalenform einer beliebigen Bogenstaumauer werden die stat.
Grundgleichungen und die Randbedingungen, sowohl fiir direkten Anschluf}
am Fels wie auch fiir die Einschaltung einer Umfangsfuge, formuliert. Fiir
zwei hiufig auftretende Mauertypen, nidmlich die schlanke Bogenmauer in
engen Tilern sowie die doppeltgewolbte Mauer in weiten Télern, werden sodann
die Differentialgleichungen der radialen und tangentialen Verschiebungen und
der vertikalen Normalkraft aufgestellt. Es wird auf verschiedene Losungs-
methoden und auf eine durch den Verfasser erfolgte Anwendung hingewiesen.

Summary

Basic equations valid for any arch dam type are given and the boundary
conditions are indicated for dams supported directly on rock and for dams
having a perimeter joint. The differential equations of radial and tangential
displacements and of the vertical normal force have been established for two
common dam types, i.e. the slender arch dam in narrow valleys and the arch
dam with double curvature in wide valleys. Various methods of resolving the
equation system are mentioned and reference is made to a practical case
analysed by the author.

Résumé

Le systéme d’équations statiques générales d’un voile mince et les con-
ditions aux limites sont formulés pour un barrage-voiite quelconque, aussi
bien dans 1’hypothése d’un appui direct du barrage sur le rocher que pour le
cas d’un barrage & joint périmétrique. Les équations différentielles des déplace-
ments radiaux et tangentiels et de l’effort normal vertical ont été établies
pour deux cas de barrage particuliérement fréquents: le barrage 4 votite mince
dans une vallée étroite et le barrage & double courbure dans une vallée large.
Les différentes méthodes de résolution sont rappelées briévement et il est
fait mention de ’application d’une de ces méthodes & un cas particulier.
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Mathematical Background

For the small displacement elastic analysis of cylindrical shells of constant
thickness Jenkins [1] has shown that a particularly useful compatibility
equation may be derived in terms of the ring tension 7', as follows.

t AT, t #Z oX
8 2 _ 4
VP Tet 15t 52 ~ TR 98 V7 (ay) Y
a8 )Y )
ox®  0y?) oy’

where the symbols are defined in figs. 2 and 3.

A complete analytical solution to this eighth order partial differential
equation cannot be obtained and recourse must be made to the method of
constructing solutions of the form 7, =® (). ¥ (y) where @ (z) is a function
of x alone and ¥ (y) is a function of y alone. As is usual in the case of simply
supported shells and plates @ (x) is expressed as an infinite series of harmonic
functions. In most engineering calculations it is sufficiently accurate to use
simply the first term of this series, further terms, of course, giving increased
accuracy. The result of this technique is to produce an ordlnary linear eighth
order differential equation in y with constant coefficients.
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The complete solution of the compatibility equation is given by the sum
of the Complementary Function and the Particular Integral. The Comple-
mentary Function is the solution of the equation when the right hand side is
put equal to zero, and is thus independent of the loads X, Y and Z (fig. 2).
This solution contains eight arbitrary constants which are found by inserting
four conditions at each of the left hand and right hand edges of the shell
(fig. 1). The Particular Integral introduces the loading X, Y and Z.

The complementary function solution for the shell equation (1) can be
shown to be

16/Ftrun

glb/sgft - we,

lwo,}ﬁ_

|H++¢¢++++ H

o, |
\ .
\

@12
|2edge \

T .
i ‘x 1
Cy
28 - 1
v \

| ’&%
—'I 2by L— e ¢
|

Beam 11 \ 1

Cross section *

Fig. 1. Shell and Edge Beam. Dimensions and Loadings.

zraagial w radral Zradial

{gﬂw’mﬂ kﬂ@/ﬂ/dmw X longitudina!
y circumferential v circumferential Y circumferential
Co ordinales displacements applied loads

Fig. 2. Shell Co-ordinates; Displacements and Applied Loads.
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T, =9 (x)¥(y),
=@ (x)[e 7Y (a,cosk Ay +a,sinkAy) +e 12V (azcos kb, Ay +agsink, Ay)
+e9Az (b, cos k Az + b, sinkAz) +e~132 (bycosk, Az +bysink, Az)],
= D () [f, (y) + /2 (2)],

where z=s—y, s being the arc length.

(2)

Fig. 3. Tangential and Normal Group Stress Resultants.

Here j k j; and k; are the roots of the auxiliary equation to (1) and a,
nZn2 V3

a, az a, b; by by b, are the eight arbitrary constants. Further, A= ER TR

. _ nint Bt
=T 7
A convenient Particular Integral solution is that formed by considering

the shell as a portion of a loaded complete tube simply supported at its ends.

To obtain the shell edge conditions the tube is cut along the appropriate

generators and its state maintained by applying forces equivalent to the inter-

nal forces set up in the complete tube by the external loading. The transverse
loading is expressed as a whole number of sinusoidal waves on the circum-
ference, appropriate combinations of normal and tangential loads leading to
any desired transverse loading distribution.

A general stiffness matrix for one shell may be obtained by selecting the

Kirchhoff group of forces and displacements which may be expressed in terms

of T, and therefore by (2) in terms of the arbitrary constants a.

v , n being the harmonic number.

_g_f z, A - . -
R % 2 1
N ) N PV
T, 7, | 23 1.
aq _ 1
i e B 2N2R_
-J k ~h ky Cfhife o a,
~j—(1-v)k k-(1-v)j j1—(1+v)k; —k—(14v)7j; ~fo hh v - A
1 : 1 ' SR £ A A3
-1 —(1+v) 1 —(1-v) © o ~fafs @y
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t2
orT=—=MAFVa 3
e _ (3)
— ol [T M1 T
B oe “J 2AR
2w _
5;2‘ Uy 1
iy Ys AR
020 _
L—Ew— —u4— i A—
— —(1+v) 1 1-v 1 fifs - - a,
¥ 1 : ' -1 ~fah - - @y
k—(1-v)j 7.+(1".V)k ky+(1+v)5; 1—(1+v) &y - fah as
—k -) ky 1 o ~fa fs y_|
or u=NBFVa, ‘ (4)
where f, = e YcoskAy, fs = e=Avcosk, Ay,

fo = e Msinkdy, f, =eNAvVgink,Ay.

Combining the conditions at both edges, egs. (3) and (4) become

{2 £2
T=——MAFva—J ——MAFb, 5
v 2V3 213 ®)
%=NBFva+JNBF?b, (6)

where J =diag{l 1 —1 —1}.
Finally eliminating the arbitrary constants a and b leads to

Tp= 3(G—JG)(I+J T (Uyy+J %) +3(G+J Go) (I - J T?)!

(alz_']ﬁzl)?
Ty = —3J(Q=J G®) (L +J T (tyy+ J Upy) + 3 J (G+ J G8) (I — J T#)~1
(= T),
where @ = —f’z—MA B-1N-1, Qs = 2 wa FsB-1N-1,

2V/3 2)3

T¢= NBF:B-1N-1,
Both left hand and right hand edges may then be combined in one matrix
equation which represents eight simultaneous equations.

|—?12] - [ P—_ —?—J-l [?12]’ (9)
Zon ~JQ JPJ ] La,

where

} = 3G+ G)I-TT) 1+ 3 (G—J @) (I+J To)1.

QDI N
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For convenience in considering the combination of shell and edge beams,
rotational and translatory transformation matrices R and C enable the shell
edge force and displacement vectors to be referred to axes through the centrmd
of the edge beam in its principal directions.

X Py, —Q] [U
Thus [ 12] = — [ 12 12] [ 12] ’ 10
X21 - Q21 P21 U21 ( )
where X,, = —C15 Ry, 75,

and Py = (Cyq Byy) 13(012 Ryp)’

the other terms having similar relationships.
Similarly the relation between the edge beam forces and displacements at
its centroid in its principal directions can be put in the form

X=-P,U.

Combined edge beams and shell are then specified by the equation
I:XIZ] — [P11+P12 _Q12 ] [U12] (11)
Xo ~ Qs Pou+ Pyl Uyl
The edge displacements can now be found by taking into account the
boundary stress resultants and displacements of the Particular Integral.
Compatibility of the P.I. displacements of the edge beam and shell will
generally have to be established, thus causing unbalanced applied forces X®
at the junction. In a position of equilibrium the total applied force on the
junction is zero. The junction displacements are therefore found by putting
X=—-XWin eq. (11).

[U(fz)] _ [P11+P12 — @y, ]_1 [—X(llz)] (12)
UR —Qun P+ Py -X@°

The junction displacements having been computed the displacements are
determined at uniformly spaced intermediate points across the shell (fig. 4)

Fig. 4. Location of Output Stresses and Displacements.
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by the use of a constant matrix operating on the separated edge displacements.
The total displacement is the sum of the displacements caused by the edge
disturbances added to the Particular Integral. The total stress resultants at
the intermediate points across the shell are determined from the product of
the stiffness matrix at the point and the corresponding edge disturbance dis-
placement, added to the Particular Integral stress resultants.

Edge beam stresses and displacements are determined directly from the
junction displacements.

The Electronic Computer

The computer for which the shell programme has been written (the Ferranti
Pegasus) is a medium sized fixed point machine with a 4,000 (or in some cases
8,000) word drum store. In view of the complexity of the calculation and
arbitrary size of the data it was decided to use a floating point scheme. This
results in considerable slowing down of the machine but enables very simple
programming to be carried out using the ‘“Autocode’” and ‘“Matrix Inter-
pretive’’ schemes.

The Autocode converts the machine into a computer with 50 simple
arithmetic and function generating orders. The function generators include
such operations as exponentials, harmonics, square roots, etec.

With this scheme there are locations for up to 1,350 numbers and 210
orders. Instructions are printed as in normal algebraic format except that
variables are denoted by the symbol v followed by the location number, i.e.

v100 = v28Xv3l.

The Matrix Interpretive scheme converts the machine into a computer
which performs matrix operations with single orders per operation. For this
scheme there are locations for up to 3,070 matrix elements and 80 orders. All
the standard operations of matrix algebra are possible, including such opera-
tions as transposition, inversion, etc.

Instructions are printed in the following form (multiplication)

(Na’mxn) X(Nb’nxl)_)'Nc

where N,, N, and N, are the addresses at the first location of each matrix
and m, » and [ are the matrix dimensions.

Application of the Computer

From the description of the mathematical background to the problem
it will be seen that the computation falls into two stages

a) the determination of the elements of the matrices, and
b) the manipulation of matrices.
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The elements of the matrices are algebraic and trigonometric functions
of the geometric constants and the loading of the shell. The Pegasus Autocode
is a convenient method of undertaking these computations. A typical example
of part of the Autocode programme is given below, this being the determination
of the auxiliary equation root 5 which is given by

_ (Vﬁ(—u—v)u(l +v))‘/:
3 .
The value of v is available in location v 32
v38 = v32+1 Form (1+v),
v39 = v38xv38  Form (1+v)2,
v39 = v39+1 Form (1+4+v)2+1,

v39 = SQRTv39 Form V(1+v)2+1,

v39 = v39+v38  Form V(1+v)2+1+(1+v),
v39 = v39/2 Divide by 2,

v40 = SQRTv39 Formj.

Note the overwriting of elements when they are no longer required.
The application of the Matrix Interpretive Scheme to part of the shell
calculation is illustrated in the following example of the formation of

G= % M A B-1 N-1, it being assumed that these matrices are already available

in the machine.

(625, 4 X 4) — 900 Copy B,

(642) — 916 Copy 1,

(900, 4 X 4), (916) — 917 Form B,

(609, 4 X 4) X (917, 4x 4) — 900 Form A4 B!,

(601, 4/) X (900, 4x 4) — 933  Form M (4 B-Y),

(605, 4/) — 949 Copy N,

(642) — 916 Copy 1,

(949, 4/), (916) — 953 Form N1,

(933,4 X 4) X (953, 4/) — 900 Form (M A B-1) N1,

(641) X (900, 4 X 4) — 933 Form 2t—;§ (M AB-1N-1).

Points to note are that it has been necessary to copy B, I, and N since
they are required later in the mampulatlon and the operation of inversion
spoils them.

Input for Computer

The following nineteen numerical values which determine the geometry
of the structure and the applied loads are used as the data for the programme.
(see also fig. 2).
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[. = length of shell,

R = radius of shell,

t = thickness of shell,

6 = angle of inclination of central radius,
g = load on shell,

n = harmonic number,

é,, = inclination of shell edge 12.

#,; = inclination of shell edge 21,
a;; = half depth of edge beam 11,
b;; = half width of edge beam 11,
as; = half depth of edge beam 22,
by, = half width of edge beam 22,

= density of edge beam material,
‘¢;;  |co-ordinates of intersection of
di {beam 11 and edge 12,
Cs2 _ Jco-ordinates of intersection of
doy {beam 22 and edge 21,
W,,= vertical load on beam 11,
W,.= vertical load on beam 22.

The data can be given in any convenient system of units provided all linear
dimensions are in the same units and loads and densities are correctly related.
All angles are to be given in radians.

Output of Results from Computer

Since the longitudinal distribution of forces and displacements has been
specified harmonically, it is only necessary to compute their maximum values
and thus obtain the values at any other transverse section by multiplying by
the appropriate sin or cos function. In the case of the longitudinally sym-
metrical functions (w, v, 0, T, T, G,, G5, R,, and N,) the maximum value
occurs at the midpoint of the span, whereas the maximum value of the longi-
tudinally anti-symmetric functions (u, S, H, R, and N,) occurs at the gables
For the shell the transverse distribution is given at 9 points (see fig. 4) for
the following 14 stress resultants and displacements, i.e. 126 values.

g:} Displacement values obtained by
I dividing computer results by the
EZ chosen value of the elastic modulus &
S :

R T, ; Tangential group forces (fig. 2)
T,
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2 Normal group moments
7| (Gg. 2)

G, | ¢

R,

R, | Normal shear forces

N, | (fig.2)

N,

For the edge beams the longitudinally force and the vertical displacement
are computed for points 7', G and B (see fig. 4) at the mid span of the beams,
the longitudinally distribution being symmetrical.

Future Extensions of the Programine

In the first place shells are most frequently used several bays side by side.
This merely involves the evaluation of the stiffness matrices for the various
shell segments and edge beams and their combination. This analysis has
already been suggested by JENKINs [1] and more recently in connexion with
computers by MoRrice [2]. ' ' ‘ o

The second extension is the consideration of other end support conditions,
apart from simple supports. The general theory has been developed by MoRICE
[3] and this follows quite closely the method described above although it is
necessary to use SCHORER’s [4] governing equation and different stiffness
matrices. Broadly however, the steps of the existing programme can be used.
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Summary

The paper outlines the principal steps in the exact solution of a circular
cylindrical shell segment with boundary members formulated in matrix termino-
logy. The arithmetical stages in the numerical solution may be divided into
two parts. Firstly, the evaluation of the matrix elements from the structural
geometry and loading. Secondly, the manipulation of the matrices with
numerical elements.
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A short description of the electronic digital computer demonstrates that
it is ideally suited to both these tasks. The method of programming for each
is briefly described. The form in which the data is required and the way in
which the computer produces the results is also given.

The paper concludes with a short note on the extensions to the work which
are in progress.

Résumé

La présente étude expose les pas les plus importants dans la solution
exacte du probléme du segment d’un voile & cylindre circulaire avec condi-
tions marginales sous forme matricielle.

Les aspects arithmétiques de la solution numérique peuvent étre scindés
en deux parties. Les éléments matriciels sont tout d’abord déterminés & partir
des dimensions de I’ouvrage et des charges; ces matrices sont ensulte traitées
avec des éléments numériques.

Une courte description de la calculatrice digitale électronique montre
qu’elle constitue un instrument idéal pour ces deux groupes d’opérations. Les
auteurs exposent briévement les méthodes de programmation correspondantes.
Ils indiquent également le mode d’introduction des valeurs dans les machines
et le processus suivant lequel les résultats sont fournis.

Enfin, une courte notice indique les développements qui se poursuivent
dans ce domaine.

Zusammenfassung

Die vorliegende Arbeit umreit die wichtigsten Schritte in der exakten

Losung fiir ein Kreiszylinderschalensegment mit Randbedingungen in Matrizen-
form. :
Die arithmetischen Abschnitte der numerischen Losung koénnen in zwei
Teile getrennt werden. Zuerst werden die Matrix-Elemente aus den Trag-
werksabmessungen und aus den Lasten bestimmt, und dann werden diese
Matrizen mit numerischen Elementen bearbeitet.

Eine knappe Beschreibung des elektronischen Digitalrechners zeigt, da@ er
ideal fiir diese beiden Aufgaben geeignet ist. Die Programmierungsmethoden
fir jede dieser Teilaufgaben wird kurz beschrieben. Ebenso wird die Form
der Eingabe der Werte und die Art, wie das Rechengerit die Resultate abgibt,
erklart.

SchlieBlich ist im Bericht eine kurze Notiz enthalten iiber die fortlaufenden
Erweiterungen dieser Arbeit.
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Theory of a Statically Indeterminate Pin-Jointed Framework the
Material of Which Does Not Follow Hooke’s Law

Sur la théorie d’un treillis hyperstatique, dont le matériau ne sust pas la loi de Hooke

Uber die Theorie eines statisch unbestimmten Fachwerkes bei beliebigem
Formdnderungsgesetz

ARVO YLINEN AULIS ESKOLA
Dr. Se. Techn., Prof., Institute of Technology, Helsinki Dipl. Eng., Research Assistant

Introduction

Classical building statics is based on HOOKE’s law, o= FEe, in which ¢
denotes the stress, £ the modulus of elasticity and e the unit elongation.
Hence the methods of classical statics are no longer applicable if the stress
in a bar of statically indeterminate framework exceeds the proportional limit
of the material or if the material has no limit of proportionality whatsoever.
The general theory of a statically indeterminate framework the material of
which does not follow HOOKE’s law may be based either on the method of
virtual displacements or on the principle of the minimum of the complementary
energy. Both these methods are described briefly in the following.

Method of Virtual Displacements

The axial forces produced by actual loading F in the bars of the framework
are denoted by S, and the axial forces produced by fictitious loading F by S.
Loading F causes in the bars of the framework total elongations 4! which
are assumed to be very small compared with the original length I of the
bars. Furthermore, if we denote with 8 the projection of the displacement of
an arbitrary joint in the direction of fictitious load F acting at the joint, the
principle of the virtual displacements for the real state of displacements
(3,41) and for the fictitious state of loads (F, S) can be written
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SFs-Y84dl=0. (1)

Since no assumption was made in writing this equation regarding the elastic
properties of the bars of the framework, it holds good for an arbitrary stress-
strain law.

It can be proved?!) that an expression

Al=%f(—8%) | (2)

may be derived for the total bar elongation 47=e¢l from each stress-strain law
which is correct in the physical respect. In the expression, 4 denotes the cross-
sectional area of the bar, S, = 4 o, the yield point force of the bar, ¢, the yield
point stress in tension and f(S/S,) a function dependent on the form of the
stress-strain law. In the case of HookE’s law f(S8/S,)=1.

Because eq. (1) holds independently of what causes the changes 417 in the
lengths of the bars, the elongations of bars due to a rise in temperature from
some specified temperature may also be taken into consideration in the equa-
tion. If « is the coefficient of thermal expansion and ¢ is the temperature
increase, the corresponding elongation of the bar is «¢/. Sometimes the length
of a bar can be changed by using some mechanical device such as a turnbuckle.
Denoting such a change in length of the bar by 4 and superimposing displace-
ments produced by various causes we can write expression (2) in a more
general form,

Al=%f(8—i)+atl+d. (3)

When the expression of 41 is introduced into eq. (1) the principle of virtual
displacements for a framework the material of which does not follow HoOKE’s
law may be expressed

ZFS—ZS[%/‘(%)+MZ+A] _o. "

Deflection of the Joint of a Framework. To determine the deflection §, of
any joint k of a statically determinate framework in an arbitrary direction
under the action of external loads F acting at the joints of the framework,
we imagine the fictitious force F =F,=1 acting at the joint in the direction
of the displacement sought. The fictitious load system consists then of force
F,=1 and the corresponding reactions. They do not produce any work since
the supports are either immovable or move perpendicularly to the reactions.
The first sum in eq. (4) is thus reduced to 1-8,. If we denote with S=.S,, the

1) Cf. the author’s investigation «Die Knickfestigkeit etnes zentrisch gedriickten geraden
Stabes im elastischen und unelastischen Bereich». Doctoral thesis. Finland’s Institute of
Technology. Helsinki, 1939, p. 94. — Cf. also with formula (19) of the present investigation.
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forces in the bars caused by the fictitious force F;,=1, and with S the axial
forces caused by the given loading F', we obtain from eq. (4) the formula
8k=ZSk[;—jf(§S;)+atl+A] (5)
for the deflection of joint k of the statically determinate framework. The
summation must be extended over every bar of the framework.

Statically indeterminate framework with n redundants. If the framework
is statically indeterminate internally it must be transformed into a statically
determinate one by means of fictitious sections through each of the n bars.
Replacing the unknown axial forces in the cut bars by the forces X, X,,..., X,,
we obtain a statically determinate primary system on which, in addition to
the given external loading ¥, the » redundant forces X are acting. The forces
produced in the bars of this statically determinate system by the given loading

F we denote by S,. The forces produced in any bar of the same system by

the unit redundant forces X, =1, X,=1,...,X, =1 we denote, respectively,
by S;,8,,...,8,. Then the total axial force in a bar is
S=So+Sl.X1+82X2+-.-+San. (6)

The magnitude of the redundant forces X can now be found from the
conditions that the relative displacements of the two sides of each of the »
fictitious sections must vanish. For these displacements, we use expression (5)
which leads to the following » simultaneous equations

[ S S |
ZSI -—Ejl—f(s—y)-*'atl—l-d-‘ =O,
[ S1 S i
282 -ﬂf(g)'Fatl-FA- =0, (7)

ooooooooooooooooooooooooo

38, Slf(£)+atl+d _o.

Here S denotes the expression (6). The summation in every equation includes
all the bars of the framework. Supposing that equation system (7) has unique,
finite solutions it is possible to determine from it the values of the redundant
forces X,,X,,...,X,. When they are known, the axial force of each bar is
obtained from eq. (6).

If the framework is statically indeterminate externally it must be trans-
formed into a statically determinate one by removing the redundant supports.
Replacing the unknown reactions by the forces X,, X,,..., X, we obtain a
statically determinate primary system on which, in addition to the given
loading F, the » redundant forces X are acting. They can be determined in
exactly the manner described above, in which case we again obtain equation
system (7) in which 8 denotes the expression (6).

If the material of the framework follows Hooke’s law, f(S8/S,)=1 and
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equation system (7) is reduced to the system of elasticity equations, known
in the classical theory of the statically indeterminate framework.

Method of Complementary Energy

If a bar is subjected to a tensile or compressive force § acting on the end
of the bar, the quantity

S
JAldS (8)

is denoted as the complementary energy stored in the bar. It is seen in fig. 1
as the area 0ab. Summing up expressions (8) for all the bars of the framework
and denoting the complementary energy of the framework by W*, we obtain

W* = > [41d58. (9)
0
A4l
)
..llll“““““"“l%
g a S
Fig. 1.

From this expression we can establish a very simple method for calculating
the deflections of joints of a statically determinate framework and for deter-
mining the redundant quantities of a statically indeterminate framework 2).

Deflection of a joint of a framework. The deflection §, of an arbitrary joint
k of a statically determinate framework is to be determined in the direction
of force F, acting on it. For this purpose the axial forces S) produced by the
force F,=1 are determined first. Force F itself then produces the axial
forces F, S,. If, with the exception of force F,, the axial forces produced
by all other forces F are denoted by S,, the axial forces

As expression (9) of complementary energy is, according to equation (10),

2) The idea of using complementary energy for analysing structures was introduced
by F. ENGESSER: Zeitschr. d. Architekten- u. Ing.-Vereins zu Hannover, Vol. 35 (1889),
p- 733. Several applications are shown in a paper by H. M. WESTERGAARD: Proc. 4. S.
C. E., Vol. 67 (1941), February, p. 199. See also HENRY L. LANGHAAR: Journal Franklin
Institute, Vol. 256 (1953), No. 3, p. 255, and N. J. Horr: The Analysis of Structures, p. 332.
John Wiley & Sons, Inc., New York 1956.
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a function of force F,,, W* may be derived partially with respect to this

force, in which case
ow* oW=* o8 . oS

oF, ~ 88 0F, Z‘”aFk

By introducing the expression of 41 from eq. (3) and taking into account
that according to eq. (10) ¢ 8/0 F,, =8}, we obtain

ow* St (8
BF, ZS"[E’A f(S )+atl+A] (11)
Comparing this with eq. (5), we find that
oW*

We have thus proved the following important theorem: The partial derivative
of the complementary energy of a framework with respect to one of the external
forces acting in a joint gives the deflection of this joint in the direction of the force.

If the deflection is desired at a joint where no force is applied, force F,
must be assumed in the direction of the desired deflection. Then

oW*
6, =lim ———
k Fg—0 8Fk

Statically indeterminate framework with n redundants. The framework must
first be transformed into a statically determinate one either by means of
fictitious sections through each of n bars or by removing the redundant sup-
ports. Replacing the unknown redundants by the forces X,,X,,..., X, we
obtain a statically determinate primary system on which, in addition to the
given external loading ¥, the » redundant forces X act. The forces produced
in the bars of this statically determinate system by the given loading F we
denote by S,. The forces produced in any bar of the same system by the unit
redundant forces X;=1,X,=1,... X, =1 we denote, respectively, by S;,
S,,...,8,. Then the total axial force in a bar is

S=8+8X+8X,+...+8,X,. (14)
The magnitude of the redundant forces X can now be found from the
conditions that the displacement in the acting points of the redundants must

vanish. For these displacements we use expression (11) which leads to the
following n simultaneous equations

(13)

ow* [ S1 S i
—E—XI“-—‘ZSI -m—f(s—y)‘*‘atl'*‘d_ =0,
* - -
s [ S ) vartea] -0, )
v i

....................................
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Here S denotes the expression (14). The summation in every equation must
be extended over all the bars of the framework. A comparison of equation
systems (15) and (7) shows them to be identical.

When the values of the redundant forces have been calculated from equa-
tion system (15) the axial force of each bar is obtained from eq. (14).

Eqgs. (15) state that the redundant forces X, X,, . . ., X, have such magnitudes
as to give the complementary energy stored in the framework a stationary value
with respect to variations in stress. It can be shown that it is a minimum.

Stress-Strain Function
For the numerical calculations it is necessary to have an analytical expres-

sion approximating the actual stress-strain curve of the material. For this
purpose we use in the following the function '

o l—c(i)n ) -
CER (16)

in which exponent n denotes a positive integer and c¢(<1) a dimensionless
parameter whose value depends on the shape of the stress-strain curve. If n is an
odd number, the absolute value (|o|/o,)* of the stress ratio must be used.
Accuracy sufficient for practical purposes is obtained by selecting =1, in
which case ‘
l1—-c¢c lol
g ay I
=5 N (17)
a

Yy

€

This contains three free parameters E, o, and ¢ the values of which should
be determined so that the stress-strain function agrees suitably with the
stress-strain diagram. With the value ¢ =1 function (17) is reduced to HoOKE’s
law. |

To obtain a general idea of the form of the stress-strain diagrams repre-
sented by function (17) we write it in a more suitable form for graphical
representation by multiplying both sides by the ratio E/s,, which gives

lo|
Ee o l—ca_y

(18)

Gy Uy ]__M

Ty

The dimensionless?) stress-strain diagrams according to this equation may be
seen from fig. 2 where /o, is plotted against E ¢/o,, with ¢ as the parameter.

3) Cf. the author’s investigation, p. 27, footnote 1.
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We see that the greater the value of ¢, the smaller the deviation of the stress-
strain diagrams from the broken line formed by HOOKE’s straight line o/o, =
E ¢/, and the horizontal line ¢/, =1 corresponding to the yield point stress.
The stress-strain diagrams are symmetrical with respect to the origin of
coordinates. The following values of parameter ¢ should be selected for dif-
ferent materials: Steels St 37 and St 52, ¢=0.997, Magnesium alloy, ¢=0.975.

~10
G > |
G, / S
oy <. C-0997
_ag / - s~
.. C-0986
“c-0975
—a (’%
’
%‘
vy
L02
Lg
02 a4 26 08 10 12 % & 16
1 Il 1 1 1 1 . J

Fig. 2. Dimensionless stress-strain diagrams according to eq. (18).

The expression below for function f(8/8,) appearing in formula (2) follows
from eq. (18):

s\ l-°5
)-8 "
Su 1 _18]
y
By introducing it into egs. (3), (4) and (5) we arrive at the elongation of the bar
S|
S1 1- CS—!/
Sy
the equation of virtual displacements
IS]
SF§->8 ﬂ—l—_—c—s——”mtuzl =0 (21)
E4 _15

v

and the displacement of joint k£ of the framework
IS]
o= 28 [SL "5 st 2
k= kB4 - IEl % . (22)
» . .

When the expression f(S/8,) from the eq. (19) is introduced into equation
system (7) or (15) these equations can be expressed in the form
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zsdﬁiiig:tza =0
1 -EA l_ﬂ + + | - H
Sy
S|
_ l_c_._
Sl S, 1_
28, E4 B +atl+d} =0, (23)
Sy
S|
l—cs5
81 10, ~
Sy

where S denotes expression (6).

Hlustrative Example

In order to illustrate the method described above we analyse the plane
framework with one redundant shown in fig. 3. As a redundant force, we take
the reaction X, at the intermediate support C. Removing this support we
obtain a statically determinate simple framework on two supports. The
framework is made of steel with E =2,100,000 kg/sq. cm., o, = 2,400 kg/sq. cm.
and ¢ =0.997. The cross section of all the bars of the framework is 4 =10sq.cm.
The temperature of the framework is assumed to be constant.

Fig. 3.

The magnitude of the redundant reaction X, as a function of the loading
F may be computed from the first eq. (23) in the form

Sy—c|Sy+ 8. X,
S, — ISO+ScXc|

Yy

28, (Se+8S,X,)1 | = 0. (24)
Here S, denotes the axial forces in the bars of the statically determinate
primary system due to loads F, and S, the axial forces due to unit redundant
force X,=1. The forces §,, S, and the values of X, corresponding to the
different values of loading F are given in Table 1. The final axial forces are
obtained from formula (6) in the form

S = 8,+8,X,.
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Table 1.
F X
Bar S S e
° ‘ (kg) (kg)
— 1
1, 15 | —2)/2F — 5800 | 14 099
V2
2, 14 2F —0,5 | 13000 | 31535
— 1
3, 13 V2 F ——= | 13500 | 32680
V2
4, 12 —3F 1 13 944 | 33 560
5,11 | —)2F 1 15000 | 33870
V2
6, 10 4F —-1,5 | 16971 | 33941
7, 9 0 -
V2
8 —4F 2

175

In fig. 4 X, is plotted against loading F. The straight line 1 represents the
supporting reaction X, of a framework following HookE’s law as a function
of loading F. Curve 2 represents reaction X, of a framework the material of
which follows law (17). The maximum value of the supporting reaction is
X ez = 33,941 kg which is attained when F =16,971 kg. The compressive stress
in the bars 1, 7, 9 and 15 has then reached the yield point ¢, = — 2,400 kg/sq.cm.
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Fig. 4.



176 ARVO YLINEN - AULIS ESKOLA Ib S8
Summary

The general theory of a statically indeterminate framework the material
of which does not follow HoOKE’s law may be based either on the method of
virtual displacements or on the principle of the minimum of complementary energy.
Both methods are explained. For numerical calculation the authors present
a new stress-strain function, (17), which contains three parameters: E, o,
and ¢. As an example of application of the method a statically indeterminate
plane framework in fig. 3, the redundant reaction X, of which is shown in
fig. 4 as a function of load F, is analyzed.

Résumé

Dans le cas d’un treillis hyperstatique, dont le matériau ne suit pas la loi
de HooKE, on pourra baser la théorie, soit sur le principe des déplacements
virtuels, soit sur le principe de l’énergie complémentaire mintma. Ces deux
méthodes font 1’objet de 1’examen de la présente étude.

Pour le calcul numérique, I’auteur présente une nouvelle loi de déformation
(17) qui comprend les trois parameétres K, o, et c. La méthode est utilisée
dans la résolution du treillis hyperstatique plan de la fig. 3, dont la réaction
d’appui X, en fonction de ’effort F est donnée en fig. 4.

Zusammenfassung

Die allgemeine Theorie eines statisch unbestimmten Fachwerkes bei belie-
bigem Forménderungsgesetz kann entweder auf die Methode der wvirtuellen
Verschiebungen oder auf das Prinzip vom Minimum der Ergidnzungsarbeit auf-
gebaut werden. Die beiden Verfahren werden in der Arbeit erldutert. Fiir die
numerischen Berechnungen wird ein neues Forminderungsgesetz (17) ver-
wendet, das drei freie Parameter E, o, und ¢ enthilt. Als Anwendungsbeispiel
der Methode wird das in Fig. 3 dargestellte, statisch unbestimmte ebene
Fachwerk behandelt. Die statisch unbestimmte Auflagerkraft X, als Funktion
der duBeren Belastung F ist in der Fig. 4 graphisch dargestellt.



Ib9

A Plastic Theory for the Design of Reinforced Concrete Slahs
Théorie pour le calcul plastique des dalles en béton armé

Eine Theorte fir die plastische Berechnung von Eisenbetonplatten

ARNE HILLERBORG
Dr., Stockholm

1. Comparison Between the Elastic Theory and the Plastic Theory

The elastic theory and the plastic theory serve two different purposes. The
elastic theory indicates what happens when a slab is loaded within the elastic
region, that is to say, with such small loads, that the stresses are proportional
to the strains. The plastic theory, on the other hand, indicates what occurs
when a slab is loaded to its maximum carrying capacity.

The advantage of the elastic theory is that it provides information regard-
ing what occurs under the action of permissible loads. It may thus be used
for calculating deflections and distributions of stresses. It must be borne in
mind however, that the elastic theory, when applied to a homogenous, iso-
tropic plate, does not give correct information regarding, for example, the
stresses in the steel reinforcement of an ordinary reinforced concrete slab
because after the formation of cracks, the slab is neither homogenous nor
isotropic. In design procedure it is often assumed that all the reinforcement
bars in the critical sections are equally stressed, although the theoretical
strains are different. For these and other reasons the elastic theory does not
provide accurate information regarding moments, stresses and the amount of
reinforcement required, but only a roughly approximate estimate.

The reinforcement in a slab is usually placed in two directions perpen-
dicular to one another. The reinforcement must resist the bending moments
m, and m, and the torsional moment m,,. It must be pointed out that the
torsional moment cannot be assumed to be resisted without the aid of rein-
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forcement, since it is converted into a bendmg moment if the directions of the
coordinate axes are altered.

With coordinate axes parallel to the reinforcement bars, the following
formulas for design moments have been proposed by the Author [1] and
adopted in the Swedish Code [2]

my = my+k|m,

II|’ .’E’lll ’

m, =m, +% |m
where k is an arbitrary positive constant, which is usually chosen near unity.
If k is altered so that m; is increased, m,, will decrease and vice versa.

A complete calculation of a slab according to the elastic theory necessarely
involves a study of bending moments and torsional moments at many points
in the slab, because the greatest design moments often do not occur at lines
of symmetry. A Swedish investigation has shown that engineers have fre-
quently been unaware of this fact and have therefore sometimes used design
moments that were too small when calculating by means of the elastic theory.
When employed in this incorrect manner the elastic theory is unreliable. On the
other hand, if used correctly it is very laborious. For slabs of irregular shape
it is often impossible in practice to use the elastic theory in a correct manner.

The plastic theory provides a relatively simple means for calculating the
carrying capacity and thus for determining design moments giving a suitable
factor of safety against failure. It does not give a single solution, but an
infinite number of solutions, that is to say, it is possible to decrease the amount
of reinforcement at one section if it is increased at another section. All these
solutions are not equivalent for design purposes, because they lead to diffe-
rences in deflections, crack widths, ete. and also to differences in costs. When
the plastic theory is accepted in the Building Code it therefore appears to be
necessary to place some restrictions on its application in order to prevent
unsuitable solutions from being chosen.

2. Rules for the Application of the Plastic Theory According to the Swedish
Building Code

In the Swedish Building Code of 1957 [2] the plastic theory is accepted
as a method for calculating bending moments in slabs. Somewhat detailed
rules are given for its application, the most important of which are as follows:

1. Slabs in structures which must be watertight, or where limited crack
widths are essential, and slabs mainly supporting moving loads must not be
designed by means of the plastic theory.

2. The plastic properties of the slab must be adequate. This may be assumed
to be the case if the following condition is fulfilled
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b= 100]/%_’”%1

Ocube E e ’
where
h = effective depth of the slab,
o, = yield point of the reinforcement,
oe.ume = CUbe strength of the concrete,
E, = modulus of elasticity of the reinforcement,
m, = maximum bending moment per unit of width according to the elastic
theory.

For moments along supports the mean value may be taken, and for moments

on columns the value % where P is the reaction at the column. As a rule it is

sufficient to use approximate values of m,, often even roughly approximate
values (estimated to provide a large factor of safety).

3. The design moment values may not, as a rule, be chosen less than a
certain percentage below the corresponding values according to the elastic
theory. For slabs protected from the weather this percentage is

dead load
dead load +live load

-50a per cent,

where a is 1.0 for reinforcements which have a marked influence on the deflec-
tion of the slab and 2.0 for reinforcements where this influence is small.

Values between 1.0 and 2.0 may be taken for reinforcements which have a
moderate influence.

For slabs exposed to the weather half the above values are permissible.

This rule may be neglected for floor slabs in ordinary houses if the per-
missible stresses are reduced by 10 per cent.

4. The effect of the unfavourable application of live loads has to be taken
into account in a similar manner to that employed when the calculation is
made by means of the elastic theory.

3. Principles of the Equilibrium Theory. Comparison with the Yield Line Theory

For plates it is impossible, as a rule, to find an exact value of the carrying
capacity according to the plastic theory. Approximate values have then to be
used, according to one or other of the following principles (cf. [3]):

1. A load that is sufficiently great to cause failure of the plate through the
formation of plastic hinges may be found by means of the yield line theory [4].
The values found in this manner are theoretically unsafe, since we know
that the load is sufficiently great to cause failure along certain yield lines, but
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we do not know whether failure may not be caused by a smaller load through
the formation of other yield lines. '

2. A load that can be supported by the plate may be found by means of
a design procedure based on a theory which is known as the equilibrium
theory [5], and which states:

If a distribution of moments can be found which satisfies the equilibrium
equation and the boundary conditions for the plate under the action of a
given load, and if these moments do not exceed the yield moments at any
section of the plate, the plate is capable of carrying that load.

The values found by means of the equilibrium theory are safe, since we
know that the load can be carried by the plate, but we do not know whether
the plate can carry a greater load, corresponding to another distribution of
moments, which also satisfies the above conditions.

We thus have one theory giving an unsafe value and another giving a safe
value. The exact value is somewhere between these two values. With both
theories the calculations can be so refined as to give values closer to the exact
solution.

If the yield line theory is used an incorrect determination of the system
of yield lines leads to a reduction in the safety factor. It is therefore essential
that the calculations should only be made by thoroughly qualified and expe-
rienced engineers. In many cases met with in practice it has proved very
difficult to determine a sufficiently accurate system of yield lines.

On the other hand, when the equilibrium theory is employed a poor solution
leads to an increase in the safety factor. This theory may therefore be used
with safety by any engineer. An experienced and well qualified engineer would
be able to make the structures more economical by using refined solutions.

From the standpoint of safety, therefore, the equilibrium theory has
certain advantages over the yield line theory.

4. Application of the Equilibrium Theory. Strip Method

In orthogonal coordinates the equilibrium equation for a plate is

Bmy  Pmy  Pmgy
o a2 0y? dxdy

Every solution to that equation which satisfies the boundary conditions may
be used for the design of reinforced concrete slabs according to the equilibrium
theory.

As an illustration of different methods for solving the equation let us
consider a simply supported square plate with a uniform load, fig. 1, which
may for example, be treated by one of the following procedures:
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Fig. 1. Simply Supported Square Plate.

The principal bending moments in this case are

qa*
_ Matmy (Mmgp—my) rm2, = 6 L
2 4 q(a?—2%—y?)
6
3 o*m q(a—2x)?
. =~ M =gla-y)e-2) -5,
2my q (@ —x)?
|x|>ly| 7?/—2_11 =O’ my =T}
02 Mgy
dxdy 0, Moy =0,
azmx _ _q(a—y)2
ox? =0, Mz = 2
2m, _ q(a—y)*
|x]<ly| 3y2 =—q, my _q(a_x)(a_y)__é_“;
0*myy
= =O
szay My

The mean value of the positive design moment for the reinforcement in one

2 2
direction is i:- for solution No. 1 and % for Nos. 2 and 3. In this case, solu-

tion No. 1, which is the simplest solution, is not economical. Solution No. 2
requires negative reinforcement near the corners (beyond a circle of radius =a)
and is therefore less economical than solution No. 3.

As a rule it is preferable to use solutions with m,, =0, which implies that
the load is carried by means of the bending moments m, and m, only. The
plate can then be regarded as composed of strips in both directions and the
loads may be divided into two parts g, and g,, which are carried in the - and
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y-directions, respectively. This method of calculation has been called the strip
method and, as a rule, it is the most suitable method of applying the equilibrium
theory.

In using the strip method, the load may be divided between the z- and
y-strips in different ways. In the above example, solutions Nos. 1 and 3 show
the two main possibilities. In solution No. 1 a constant part of the load is
carried in one direction and the remainder in the other direction. In solution
No. 3, the entire load on certain parts of the plate is carried in one direction
and the whole of the load on the remainder of the plate in the other direction
whereby the load at each point is preferably carried by the strip in which it
causes the smallest moment. The former is the simplest and the latter the
most economical solution. The application of the strip-method to rectangular
plates under the action of distributed loads (uniform or non-uniform) is quite
simple and will not be discussed in detail in this paper.

Sometimes a plate has the bottom and top reinforcements in different
directions. In that case the strips should be assumed to act in the direction
of the reinforcement in tension. The direction of the strips is then changed
at the line of zero moment and the shear force along this line must be taken
into account in the calculation of moments. As an example, let us consider
the circular plate shown in fig. 2, which is built-in along the edges and acted
upon by a uniform load g. The bottom reinforcement is orthogonal and the
top reinforcement is radial. Within the line of zero moment it is assumed that
half the load is carried in each direction. The moment in the z-direction is then

q

m, =Z(r2——y2—x2).

The reaction force from the z-strip per unit of width of the line of zero moment is

AY

N

xY

e ol line of zero
moment

/

Fig. 2. Circular Plate with Orthogonal Bottom Reinforcement and Radial Top Rein-
forcement, Treated with Strip-method.
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r
Q, = grcomzcos:x = %cos%c.

The total reaction force per unit of width of the line of zero moment is

r . qr
Q=0Q,+@, =%(cos2a+s1n2a) =5

The bending moment at the support of the radial strip is

_ 1 [gqr (R—r)? (R—n)?] _
mr’ma‘z—_Rda [-?rdoc(R—T)+q7‘da———2———+q(R—7‘)daT =

q (R®—1%)
6R

If, for example, we take r=0,6 R, we then have m, .. =
My maz=0,090¢ R2.

In plates which are supported by columns, as shown in fig. 3, the moments
under the action of a uniform load may be calculated in the following
manner [6].:

The plate is divided by lines of zero shearing force according to fig. 3. In
parts which are supported along an edge the entire load is assumed to be
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Fig. 3. Rectangular Plate Supported Along the Edges and by a Column, Treated with
Strip-method.

—e—— Lines of Zero Shearing Force = Maximum Bending Moment.
<~ Direction, in Which the. Load is Assumed to be Carried.
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carried perpendicularly to that edge. In those parts of the plate which are
supported at a corner, the mean bending moments along two opposite edges
are equal to those which would be obtained if the plate were supported along
one of these edges. The calculations must therefore be made for each direction
as if the plate were carrying the entire load in that direction. The actual
distribution of moments within that part of the plate is somewhat complicated
and will not be discussed in detail here. It has been shown in [6] that it is
reasonable to assume that the maximum negative moment is uniformly
distributed along one-half of the edge. The design moment at that part of the
edge is thus twice the mean moment.

From fig. 3 it can be seen that we obtain fully loaded strips ( = main strips)
in both directions. The strip in the z-direction is shown in the figure. The
points of zero moment in the strip in the z-direction give the width of the
strip in the y-direction and vice versa. The mean design moments in the side
strips are 1/, times the moments in the main strips (part B).

The reactions at the walls and the column are easily calculated, since we
know the position of the lines of zero shearing force. The same method of
calculation can also be used for other types of plates, for example those shown
in fig. 4.

As a final example of the calculation by means of the strip method let us

NS

NN TEN IBEEERN

.L__l.concrete column

Fig. 4. Examples of Plates, Which Can be Treated with Strip-method.
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consider an elongated simple-supported plate carrying a narrowly distributed
load @ per unit of length across a small span (fig. 5). The distribution of the
loads may be assumed to occur according to fig. 5, that is to say, the load @
is carried by strips in the z-direction, which in their turn are carried by strips
in the y-direction. The maximum design moments are

_Qa _9Qr

m m, = .
z 8’ Vv  8a

The value of @ may be chosen so as to give a suitable and economical construc-
tion.

A\
alaabien s ——————————= = T
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: @ 4
i |
| |
, I
1 1
' l
[ : W J ot X
-Q .
4 Load on slrips
WY g s x-direction
TN g- Load on strips

in y-direction

Fig. 5. Plate With a Narrow Load.
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Summary

In Sweden the plastic theory has been accepted as a means of calculating
moments in reinforced concrete slabs under certain conditions, which are
briefly outlined in the present paper. Two different theories may be used,
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viz. the yield line theory and the equilibrium theory. The latter has the
advantage of being safer. The main purpose of the present paper is to describe
this theory and to give some examples of its application.

Résumé

En Suede, la théorie de la plasticité a été admise & titre de méthode pour
le calcul des moments dans les dalles en béton armé, dans certaines conditions
que la présente contribution expose briévement. Deux théories différentes
peuvent étre employées: la théorie des lignes de rupture et la théorie dite de
I’équilibre. Cette derniére présente I’avantage d’une plus grande siireté. L’auteur
traite essentiellement de cette théorie et présente quelques exemples de son
application.

Zusammenfassung

In Schweden wurde die Plastizitdtstheorie als Methode fiir die Momenten-
berechnung bei armierten Betonplatten unter gewissen Bedingungen aner-
kannt, die der vorliegende Beitrag kurz darlegt. Es konnen zwei verschiedene
Theorien verwendet werden, und zwar die Bruchlinientheorie und die soge-
nannte Gleichgewichtstheorie. Die letztere hat den Vorteil groflerer Sicher-
heit. Das Hauptanliegen der vorliegenden Arbeit ist die Beschreibung dieser
Theorie und die Vorfithrung einiger Anwendungsbeispiele.
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The Behavior of Viscoelastic Thin Shells of Revolution
Under Constant Normal Pressure?)

Le comportement visco-élastique des voiles minces de révolution soumis a une
pression normale uniformément répartie

Das visco-elastische Verhalten von diinnen Rotations-Schalen
unter konstantem normalem Druck

L. ALBERT SCIPIO
Ph. D., University of Minnesota, Minneapolis, Minnesota, USA

Introduction

The desire and, in some cases, the necessity to utilize materials to the limit
of their capacity necessitate more accurate analysis of structural problems.
The consideration of time effects, which are greatly influenced by temperature
(if temperature effects are experienced by the structure) require methods of
analysis beyond the limits of classical theories. The attempt to rational design
of structures subject to rate influences is being made through ‘““‘viscoelasticity
theory’’, which takes into account viscous (time-rate) effects.

The present paper considers the analysis of thin shells of revolution under
constant normal pressure. It is assumed that the material behaves as a linear
viscoelastic material which may be exposed to temperature changes.

Part I. General Theory

1. Concept of Viscoelasticity

Viscoelasticity is concerned with the analysis of materials exhibiting time
effects which include delayed elasticity and viscous flow. These material res-

1) This research was supported by the United States Air Force under Contract AF 33
(616)-5723, monitored by the Aeronautical Research Laboratory, Wright Air De-
velopment Center.
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ponses are associated with such phenomena as creep under constant stress
and relaxation of stress at constant strains. In general, the phenomenon of
viscoelastic behavior is extremely complicated. For the purpose of this ana-
lysis, the viscoelastic response is assumed to be linear, i. e. at any time instant
the strain is approximately proportional to the stress.

The physical behavior of a viscoelastic material may be represented by
fig. 1. First, consider the response of the general linear viscoelastic material

force

Load Load Time P
app{/ed removed

] K -
2 % -
Steady state 1 /ime

1
b /] g
%Z”{ Creep

E«
b

Deformation
Instontaneous

-—"1 strain
(Y

7

L

T

“Permanent viscous /)
recovery deformaltion

! ! . 3
&) General case : G=L£,E+ 7, €~T&

Deformaltion

7ime
b) Kelvin ~Voigt Body: 6-L,€+ 7€

Fig. 1. Physical Behaviors and Mechanical Models.

to an applied force, represented by fig. 1a. It consists of an instantaneous
elastic response 4 B due to spring K,, followed by a delayed elastic defor-
mation with viscous flow along BC and continued viscous flow along CD.
When the force is suddenly removed, the instantaneous elastic deformation is
immediately recovered by the spring K, as shown in D E. The delayed elastic
deformation recovers along E F, leaving the permanent viscous deformation
F G due to the dashpot 7. Therefore, the general viscoelastic linear solid exhibits
all three types of stress responses: instantaneous elasticity, delayed elasticity
and viscous flow.

For the KeLviN-VoiaT solid, the response to force is not instantaneous
but as may be seen in fig. 1b, the deformation gradually approaches an asym-
totic valve. Conversely, when the force is suddenly removed, the solid does
not undergo instantaneous recovery, but the deformation gradually disappears.
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2. Fundamental Equations of Viscoelasticity

The mathematical formulation of the linear viscoelastic response of an
isotropic, homogeneous body to combined thermal and mechanical load can
be approximately represented by the following set of differential equations:

oy, +F; = pé; =0 Equations of Motion, (1)
€.+ €5~ €. p— €. = 0 Compatibility Equations, (2)
P{S;}=2Q{E;}, e=aT Equations of State, (3)
T, =o0,2;% Boundary Conditions, (4)

where P and @ are linear operators representing different viscoelastic mate-
rials and

Bij=ej—edy,  Sy=o05-08;,  e;=14(,;+&)-
Subject to the boundary conditions, the system of nine equations on the
set of nine unknown field variables o;, £; is complete in the sense that solution

of the system is unique, if the solution exists.

3. Application to Shells of Revolution

Consider a shell of revolution subjected to a constant normal axial-sym-
metric pressure and a temperature gradient across its shell thickness (fig. 2).

Fig. 2. Coordinate System and Shell Stress Couples and Resultants.

If it is assumed that its material behaves as a KEeLviN-VoieT body with
constant viscosity, », modulus of shear, ¢, and thermal expansion coefficient,
«, the complete set of governing differential equations can be shown to reduce

2) When surface tractions are prescribed at the surface.
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to differential equations in unknowns y and @y, the angle of rotation of a
tangent to the meridian and the meridian shear stress respectively. They are:

r'r, ddr

Py 1azx+[1 8 3d8] 2%y 1[1 8 3d_8]ﬁ¢

9ior 1 91t gtor "7 |r T, T5dr|or

[ ldn L0 30 LN Ldn, 10, 40,

r Edr+f'(r)+§5l7 ot 27r|r rydr  f(r) édr

_ 3 B(Q4ry)  3aA[2O 100 3d5)00 6
=® +2s[ ————— {W*?ﬂ’ )

tor "7 or & dr
32(Q¢r2)+[1+3 ldS]a(Q¢r2)+ 1 [3_zd_r2_m_1@](g¢r2)=

or 2r
_3qnBé(dx  x pA 37, Ty d (73
=~ (5{+‘5)+7 “27(1‘; ‘m(z -

3dr, 3ry,dd eT, 10T,
~3dr ‘a—d—r]“”““’? [ataﬁ: 8r]’

where B=f (r)[1+f (r)2]", A=[1+f (r)2], Z=f(r), f (r) is slope of tangent
to a meridian, 7', is the temperature function of the middle surface.

Part II. Example of Practical Application

2. Conical Shell

As an example, we will restrict ourselves to thin conical shells (fig. 3). The
temperature is assumed steady, axial-symmetric and constant across the shell
thickness. The governing differential equation reduces to (Reference 1)

Shell temperature  Shell pressure

Fig. 3. Shell Temperature and Pressure Distributions.
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l

Px My 1ty 4%y 9 cot?y(dx x _
Gl T eon Tk T B T ® (WJF‘) = (7)
9 p 9acot'y[32Tm 1 3Tm] a2l 08 [3@ @] 9a2 02 [@ @]

= tes, T ool Tr ol 5 oF|at 7|2 ok|ai

T

Substitution of the boundary conditions y =0 when ¢=0 for all values of /
and when /=1, for all values of ¢ yields for the solution (1)

_ 22, 22,) L 2 e | 2P g
X - [Al( 1 y )+A2( 2 y )+ gta‘n yl]z G83 (1 e )’ (8)
cot? Z, 21Z, Z, 22,
% ="54%—Y[Al(ﬁ‘?l)‘flz(y—5+ ) ©
_ o PCOt?y 4Z; 2Z 4Z2 2Z1_ Z
Ny =27 52 [A1( " y2 ” —pltany, (10)
2 14
Ny = 54?"352t ”[Al(zyz 2) 1)] —plt;n"', (11)

t Z! 27 47! Z, 27 4 7
M0=_§qp00 ’}’[Al( 1, 1, 32)+A2(y2+ y22_ yal)]

8 2
y 'y 12)
_ pditan?y «28%°0
1 2G
cot Z 7, 27 Z, Z, 27
M¢=_§qp3 V[Al(—l__zl_ 32)+A2( — 31)]
y ¥y y ¥y 1)
B pSZtan2y+ «2330
1 2G
/ 14
u l[;a‘ f(2Ng—N¢)e’det—aT] (14)
0
where Z=7(y), y2="22" 7, —ber(y), Z,= —bei(y), Z'(y) is derivative

of function with respect to y, and the constants 4, and 4, are determined
from the shell edge conditions.

1. Numerical Example

Consider a conical shell after fig. 3, axial-symmetrically loaded by p=10
lb./sq.in. with a constant temperature difference across the shell thickness of
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500° F. The apex angle 2y is 90° and [, is 120 inches. The shell is considered
fixed so that the boundary conditions are as follows:

du
l=1,, u=20, ?iT:O' (15)

The resulting membrane forces and bending moments are shown in fig. 4.

vty
E~10x10% yin?
r=45°

L= 120in

h=T; = 500°F
P=1018/in?

Part III. Comparison of Linear Viscoelastic and Elastic Results

Compare now, the linear viscoelastic stresses, moments, and deformation
with those of a corresponding elastic analysis.

Linear Viscoelastic Analysis

9 » 27, 9 p 27 ptandy b
Xv —[§S§—QA1(Z1+ y )+§83GA2 Z2_ Yy + 24 G (1—-6 )

272~ 1 ,

pcoty
2 Y3 y?

7 ’ 2
(Vg)o= 543—[A1(— zyfw%)mz( 22, Zl)] _ pdtan’y ,

B (a84@ Gtany 83tan3y)

18 P 36
where 4, = 2Zio+£2_o ’ , , ,’
U s [Zzo 2y | 2 Zlo] _ [Zm _Zyy 2Z20]
2Zy _Zully, Y& Y Yo . Y& 9
o Y8
(a 340 Gtany &3%tan3 'y)
18P 36
A, = , 75 e
[.Zzo _ Zy 2210] _ va yi [Zio _Zyy 2Z§0]
Yo Y8 ¥ _2Zn, Znfly,  ¥§ ¥

s y§
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Elastic Analysis

27, 2Z;\ 3 ptandy
;= By\Z,+ 2)+B(Z——_l)+_ il ARY.
xe 1(1 y Ty ) T8 EYvROA)

27, 7 27; Z 5 tan?
(N¢)E=4E800ty[B1(——yTl+?2g)+B2(————2———1)] A S

¥ Y]] sy
where
B, = - L
ozS@ta,ny}/ l+v Ptan2y /3 (1+v)
- 2 12(1—v) 8E 1—v
— 20 20\ g 27, 47 Z 22, 474\
3 Y3 éo_l_ ( 20 b)]_[i_ 1 ( 10 20)]
_ 22 _ Zw [yo (=) Y8 Y3 Yo =) B0
s yé
B, =
aS@tany]/ 1+v _Pta,n3'y]/3(1+v)
2 12(1—v) 8 K 1—v
. 275 Zn : , '
Zyy (2Z20 4Z{o)] T [Z{o (2Z10 4Zéo):|
21y _Z%10)| _ oY —(1—v +
G 224 Za) |y TN TR
' U ys
1 9 P 9 P
If v= §, E = 3G, then Bl = EWAI’ B2 = EWAZ and

ThlIS, Xv = XE (1 _e—t/‘r) and (Nqb)v = (NqS)E'

References

1. Scirro, L. A., CHIEN, S. F., and MosEs, J. A., “Thermoviscoelastic Analysis of Thin
Shells of Revolution” (Part I). Quarterly Report, Contract AF 33(616)-5723, Uni-
versity of Minnesota, November 1958.

2. Screio, L. A., and CraNG, C. S., “Recent Developments in Inelasticity”’. WADC
58-342, December 1958 (ASTIA Document No. AD-206261).

3. Hura, J. H., “Thermal Stresses in Conical Shells’”’. Journal of the Aeronautical
Sciences, Vol. 20, No. 9, pp. 613—616, September 1953.

4. MELAN, E., and PArRkERs, H., «Wéarmespannungen». Springer, Vienna, Austria, 1953.

5. TIMOSHENKO, S., “Theory of Plates and Shells”’. McGraw-Hill Book Company, Inc.,
New York, 1940.



194

L. ALBERT SCIPIO Ib10

6. Kamke, E. 8., «Differentialgleichungen, Lésungsmethoden und Loésungen». Chelsea
Publishing Company, New York, 1948.

The author wishes to acknowledge the efforts of his colleagues of the University of
Minnesota in the preparation of this paper: Mr. S.F. CaoiEN, illustrative solution; Mr.
T. W. HuGcHES, numerical calculations; and Mr. W. E. ASTLEFORD, preparation of figures.

=

o T~
(=}

D@ Y R I R

Appendix

angle of rotation of a tangent to a meridian.
distance along cone element, measured from vertex.
length of the cone element

time.

relaxation time, 7=17/G.

shear modulus of elasticity.

cone half-angle.

coefficient of viscosity.

shell thickness.

thermal expansion coefficient.

mean shell temperature above a reference temperature = T_;T' ;

temperature differential across the shell divided by the shell thick-
T+T,

ness = 5

radii of shell.

normal pressure, positive pressure directed towards the shell.

shear stress per unit length.

membrane forces per unit length.

bending moments per unit length.

radial displacement on any xy-planes.

temperature outside the shell at the nose of the cone, or where /=0.
temperature outside the shell at the edge of the cone, or where [=1,.

temperature inside the shell.



THE BEHAVIOR OF VISCOELASTIC THIN SHELLS OF REVOLUTION 195
Summary

Thin shells of revolution under constant normal pressure are considered as
linear viscoelastic bodies to study time dependency of stresses and deforma-
tions of shell type structures.

It is shown that for the linear viscoelastic problem, temperature effects
are considered, if the temperature dependence of material properties can be
neglected, the elastic solution and results can be used with slight modification.
If the material is assumed to be incompressible, i.e. Poisson’s ratio is /,, the
following relationship between linear viscoelastic and elastic stresses, moments,
and deformations were observed:

1. The linear viscoelastic stresses and moments are identical to the elastic
stresses and moments.

2. The viscoelastic deflections differ from the elastic deflection by a time
factor (1 —e~*7), where 7 is the relaxation time of the material.

Résumé

L’auteur considére des voiles minces de révolution, soumis & une pression
normale uniformément répartie, comme des corps linéairement visco-élastiques;
il étudie ainsi la variation des contraintes et des déformations de ce type de
structures en fonction du temps. Il montre que pour un voile linéairement
visco-élastique, lorsque l’on consideére l'effet de la température, les solutions
de la théorie de I’élasticité sont applicables avec quelques modifications, pour
autant que les propriétés du matériau soient pratiquement indépendantes de la
température. Pour un matériau admis incompressible (coefficient de Poisson
0,5), les relations entre les contraintes, moments et déformations visco-élas-
tiques d’une part et élastiques d’autre part sont les suivantes:

1. Les moments et contraintes d'un voile linéairement visco-élastique sont
identiques & ceux donnés par la théorie de 1’élasticité.

2. Les déformations visco-élastiques sont égales aux déformations élastiques
multipliées par le coefficient dépendant du temps (1 —e=*7), out 7 caractérise
le temps de relaxation du matériau.

Zusammenfassung

Es werden diinne Rotations-Schalen unter gleichmaBig verteiltem Normal-
druck als linear visco-elastische Korper aufgefaBt, um allgemein die Zeit-
abhéngigkeit der Spannungen und Deformationen von solchen Gebilden zu
untersuchen.
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Es wird gezeigt, dal} fiir das linear visco-elastische Problem bei Betrach-
tung der Temperatureinfliisse die Losungen der Elastizitdtstheorie mit kleinen
Anderungen angewendet werden diirfen, falls die Temperaturabhingigkeit
der Materialeigenschaften vernachlassigt werden kann. Unter der Annahme
inkompressiblen Materials, d. h. daf3 die Poisson-Zahl 1, ist, konnten die fol-
genden Beziehungen zwischen den linear visco-elastischen und den elastischen
Spannungen, Momenten und Deformationen festgestellt werden.

1. Die linear visco-elastischen Momente und Spannungen sind identisch mit
den Momenten und Spannungen nach der Elastizitétstheorie.

2. Die visco-elastische Durchbiegung unterscheidet sich von der elastischen
Durchbiegung durch einen Zeitfaktor (1 —e—¥7), wobei = die Relaxationszeit
des Materials ist.
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