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Realistic Assessment of Loads Acting on Structures with Particular
Reference to Snow and Wind Loads on Buildings

Estimation rialiste des charges agissant sur les ouvrages, avec mention speciale
des charges de neige et de vent sur les ddifices

Realistische Einschätzung der auf ein Tragwerk wirkenden Lasten mit speziellem
Hinweis auf Schnee- und Windlasten für Gebäude

R. F. LEGGET W. R. SCHRIEVER
Director, Division of Building Research Head, Building Structures Section Divi-

National Research Council, Ottawa sion of Building Research National
Research Council, Ottawa

1. The Importance of Loads

It is now recognized that the importance of determining the actual loads
to which structures and particularly buildings are subjected has not been
appreciated to the extent desirable, with a few notable exceptions (1—6). In
view of the increasing attention which has been devoted in recent years to the
problem of the load carrying capacity and so to the safety of structures, it is
logical to strive for a corresponding advance in knowledge of the actual live
loads on structures, since no refinements in the methods of design analysis can
compensate for inaccuracies in load assumptions. Recognition of the importance

of loads at this Congress of the I.A.B.S.E. is therefore to be welcomed.
Conventional load assumptions and design methods have resulted in safe

structures in the great majority of cases. This fact, however, only indicates
that caution has been exercised by designers and by the authorities responsible
for design speeifications and building codes. It is neither proof of the aecuraey
of design assumptions nor of economy of design. The real degree of safety in
many structures is unknown; there are indications that many structures at
the present time provide either excessive or non-uniform safety.

Structures are designed to perform a given function adequately, i.e., first,
with adequate safety against collapse during their lifetime; and, second, with
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adequate protection against deformations which would impair their service
The former aim, safety against collapse, is generally of primary importance

The possibility of collapse of a strueture depends on a large number oj

factors which can conveniently be grouped into two main variables: Loads
and carrying capacities (strengths). Design loads and design strengths an
quantitative values which are selected by the designer or code writing autho-

rity, partly based on records of actual loads and of strength properties oi

materials obtained from tests and partly on the basis of judgement. Since loads
and strengths cannot be predicted with certainty but only with some degree
of probability, the coneept of probability must form a basic part of a realistic
approach to design. Design is thus closely tied to the prediction of the Variation
of loads and of the strength which must be expected. Determination of the

probability of coincidence of very high loads with very low strength which
will lead to failure, becomes the crucial problem. Notwithstanding the fact
that the nature of the problem is probabilistic, the use of theories of extreme
values will only find its füll justification where factors with a random
distribution are involved. This is not always the case and many decisions in design
have to be made on basis of judgement and experience. Thus good design will
consist of a consideration of the probability of failure by Statistical methods,
modified by judgement in considering all service conditions of the strueture.

2. Recent Changes in Approach to Loads

If the actual loads acting on a given type of strueture were plotted in form
of a histogram or frequency distribution curve, and if the load carrying capacities

or strengths of the same structures could be obtained and plotted in the
same manner in the same graph (see fig. 1), it would become apparent that
even if a strueture is designed very conservatively there will always be a

certain, even though very small, chance that the capacity of the strueture
might be exceeded by the load, as indicated by the intersection F of the two
curves. If the design "factor of safety" of the strueture is increased, the right
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Fig. 1. Frequency Distribution Curves of Actual Loads and Strengths.
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hand curve is moved further to the right but the probability of failure does

not become zero. In other words, there is no such thing as absolute safety.
What is the factor of safety in the structures of the imaginary example in

fig. 1 Is it the ratio of the mean values R0/ W0 or is it the ratio of a conser-
vative (low) strength to a conservative (high) load RJW^. Great Variation in
the value R1/W1 is possible, depending upon how conservatively the design
strengths and loads are selected. Since, frequently, there is no obvious upper
limit to the loads and no obvious lower limit for the strength, it is not im-
mediately apparent what the factor of safety really is. It would therefore
seem desirable, as pointed out by Freudenthal [7], to establish in principle
a procedure in which the conventional concept of the factor of safety does

not occur. The "probability of failure" appears to be the only rational quantity

defining the degree of safety achieved in any strueture.
The concept of safety, however, seems to be so deeply engrained in the

minds of engineers at the present time that the idea of working with a "probability
of failure" appears to be generally unacceptable. It may therefore be

necessary to retain, at least for some time, the concept of safety in design
rather than the probability of failure, but it is hoped that more and more
engineers will come to view safety in terms of the probability of failure.

In the past, with conventional design, a margin of safety has been achieved
by two means — by using an allowable stress, which was a certain fraction
of the yield or breaking stress of the material, and by selecting a design load
which was set at a certain level above average loads. Both these factors con-
tain a margin of safety; together they determine the true reserve of strength,
or the probability of failure. A change in either one of them means a change
in the probability of failure. More recently methods of design have been based
on ultimate load factors defining the ratio of the collapse load to the assumed

working load. No matter what method is used, the real problem of design is
the appropriate choiee of the probability of failure.

Two approaches can be visualized in the choiee of a suitable value for the
probability of failure. A theoretical and rational means of determining the
probability can be found from purely economical considerations, as suggested
by several authors notably Torroja [8] and Johnson [9]. These authors
have suggested the principle of making the total cost of the strueture (con-
sisting of initial capital cost plus maintenance cost plus the cost of insurance
against collapse) a minimum, assuming that the probability of failure can be

adequately estimated. As this is not generally possible however, because of
the lack of sufficient information, it may be necessary to resort to another
method which would be based upon calculating the probability of failure
inherent in existing structures. The results might then indicate in a general
way what probability of failure society and, more particularly, the engineering
profession have come to aeeept by evolution, through gradual adjustment of
design loads and stresses throughout the years. This has been done recently
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by some authors, their studies indicating that the probability of failure of
existing structures may be of the order of one in one million.

In view of the many difficulties encountered in a more rational approach
to structural safety, it is not surprising that there are many differing views
on the practicability of applying the theory of probability to the calculation
of load factors. One point, however, seems to stand out. Since design loads
have such a decisive effect on the probability of failure and yet in the past
have been selected mainly by estimates, a worthwhile improvement can be

achieved by assembling factual Information on actual loads. The collection of
such information is an undertaking which has been urged by leading authori-
ties such as Baker, Hörne and Heyman [10], Pugsley [11], the Institution
of Structural Engineers [12], Freudenthal [7] and others. The collection of
this information is an undertaking of considerable magnitude since it should
be on a national or international scale. It is beyond the means of university
research as stated by Baker, Hörne and Heyman.

3. Canadian Approach to Load Determination

In Canada, the vital importance of actual load records for the determination

of proper design loads in buildings and other structures has been recognized
by the Associate Committee on the National Building Code, the body respon-
sible for the preparation of the most widely used building regulation in Canada.

Approximately half of the urban population of Canada now five in municipali-
ties which use the National Building Code. It is thus apparent that the design
loads specified in this Code have a significant influence on the cost and safety
of a large percentage of all structures being built in Canada.

The Committee responsible for the Code is appointed by the National
Research Council of Canada. It is a group of 20 expert individuals — engineers,
architects, building officials, builders — who are selected to serve as individuals
and not as representatives, on a professional and geographical basis. To assist

it in its work, this Committee has set up three Advisory Groups dealing with
the three bases of the Code — structural safety, public health and fire safety.
The Group concerned with design loads is the Advisory Structural Group,
whose terms of reference are, briefly, to keep the Code continually under
review with respect to all aspects of structural sufficiency, to ensure that the
Code is in aecordance with the economical use of all structural materials, to
consider new developments in structural design and to suggest to the Associate
Committee how best such new developments can be covered in the Code, and
to bring to the attention of the National Research CounciTs Division of
Building Research special structural problems which require research and

investigation in Canada.
The policy of the Associate Committee is to revise the National Building
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Code at intervals of about five years. A completely revised edition of the Code
is planned for 1960. The work of preparing revised parts of the Code is being
carried out by special revision committees, one of which deals specifically
with design loads.

It may be noted that the Advisory Structural Group deals with all types
of structures and structural materials and thus is unique in Canada in bringing
together in a common forum specialists in the various materials of construction
such as steel, concrete, wood and other materials. The Group has recognized
the fundamental importance of the proper assessment of design loads for
structural design, as shown by the Group's recommendation to the Division
of Building Research that it should institute a number of special studies of
actual loads, particularly snow loads on roofs but also floor loads, earthquake
loads and wind loads. These studies are now in progress.

4. Studies of Loads in Canada

Snow loads. Specification of snow loads for design purposes is a most
important part of a building code in a country like Canada where snow generally
provides the heaviest load to be resisted by roofs. Design snow loads
consequently have a significant influence on the cost of construction. A particular
difficulty in specifying snow loads in Canada results from the size ofthe country
and its varied climatic regions. The snow cover on the ground during a normal
winter varies from a few inches in the southern part of British Columbia, to
about 2 feet in the populated areas of southwestern Ontario and Quebec, and
to approximately 3 to 4 feet in some northern areas such as Labrador, with
much greater snowfalls at high elevations in the mountainous regions of B. C.
and Alberta.

In the National Building Code (1953), use was made of detailed snow depth
observations on the ground recorded during the years of 1941—1950. The
snow loads given in the Code were calculated from the maximum recorded
snow depth on the ground, using an assumed average specific gravity, plus the
weight ofthe maximum 24 hour rainfall during March [13]. From these figures,
a map was prepared giving snow loads for a horizontal surface in the form of
contour lines (see fig. 2). The Code makes allowance for the slopes of roofs and
recommends consideration of non-uniformly distributed snow where shape,
differences in roof level, insulation qualities, the orientation of a building or
its proximity to other buildings may cause unusual accumulation of snow.

Although these snow loads were more rational than in the previous edition
of the Canadian Building Code, the fact remains that the loads are based on
snow measurements on the ground and thus may not be truly representative
of actual snow loads on roofs. Accordingly, the Advisory Structural Group
recommended in 1956 that the Division of Building Research should conduct
a countrywide survey of actual snow loads on roofs in order to determine the
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relationship between snow loads on the ground and snow loads on roofs, and
to assess factors which affect the accumulation of snow on roofs, particularly
the effects of wind, shelter, shape of building, heat loss, and solar radiation.
This survey was started in the winter of 1956—1957. Measurements are being
made each winter at 66 locations from coast to coast. At some of the stations,
complete measurements are made with permanent snow depth gauges installed
on flat and sloped roofs and with density measurements taken weekly and
after heavy snowstorms. At other stations simpler observations are taken by
volunteer observers who merely take depth but no density measurements.
Residential roofs and large hangar roofs at airports are being observed. Fig. 2

shows the locations of the various Observation stations.
Although füll observations for only two winters are available to date, the

early results suggest certain tentative conclusions. The assumption of a
uniformly distributed snow load on roofs is seldom realized in areas with even
normal wind (see fig. 3). The average snow load on roofs is less than that on
the ground by an amount which varies widely, depending on wind and other
factors. Certain roof shapes tend to develop localized snow accumulations
which may be much deeper than the snow on the ground (see fig. 3). This is
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Fig. 2. Snow Loads in Canada.

—40— Design snow load on a horizontal surface (lb/ft2) according to the National Buil¬
ding Code of Canada (lOpsf sa 50kg/m2).

• Detailed Observations 1 Observation stations of the National Research Council's Survey
o Simple Observations J of Snow Loads on Roofs.
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particularly the case on roofs with several levels and upon curved roofs. Heat
loss through the roofs and solar radiation reduce snow depth only under
favourable conditions.

For determining snow loads for the mountainous areas of western Canada
for the 1960 edition of the Code, it is proposed to use a new approach based

on empirical relationships between snow load and elevation above sea level
within each of a number of climatic zones, similar to the rule followed in
Switzerland, France and Austria.

Roof failures due to snow loads are, unfortunately, not uncommon in
Canada. The winter of 1958—1959 brought greater than normal snowfall in
parts of Canada, particularly in the areas east of Lake Huron, where a number
of collapses occurred. One of these failures occurred in a hockey arena with
a curved roof supported by 110 ft. span wooden trusses and resulted in the
tragic death of seven boys and one adult. Such failures serve to remind engineers

of the importance of design snow loads in Canada.
Wind loads. Wind forces on structures result from differential pressures

caused by the obstruction to the free flow of the wind. The forces are therefore
functions of the velocity of the wind on the one hand and the size, shape and
orientation of the strueture on the other. Information on wind loads must
come from two sources — meteorology and aerodynamics.

At present the wind load requirements of the National Code Building take
into account three factors — the gust velocity, the increase of velocity with
height, and the shape of the strueture.

¥

Fig. 3. A Triangulär Snow Accumulation (Maximum Load 80 lb./sq. ft.) Resulting From
Wind Action on a Building in an Area with a 50 lb./sq. ft. Design Load.
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Gust velocities are derived from hourly wind velocities obtained at 200
weather stations across Canada, which are then multiplied by a "gust factor".
The gust factor, which increases with the velocity, is based on correlations
made at a number of weather stations where both cup anemometers and
Dynes tube anemometers are available. The computed maximum gust velocities

are shown in the National Building Code by lines of equal velocity on a

map of Canada.
For the increase of velocity with height, the 1/7th power law is used, this

being a familiär aerodynamic profile in wind tunnel investigations of turbulent
flow over smooth boundaries. Experimental investigations have shown, however,

that there are many variations in nature to this law. It has recently
been proposed by Davenport [14] that ground roughness should be taken
into account by using different exponents but the same gradient velocity. Over
flat open country an exponent of 1/7th, over rolling and wooded country and
the outskirts of large cities 1/3.5, and for the centre of large cities 1/2.5 might
be used.

Shape factors are generally based on wind tunnel tests on elementary
geometrical modeis of structures. Attention is drawn to a recent paper by
Singell [15] in which factors relating to coefficients for various building shapes
have been correlated and in which it is suggested that the tables in the Swiss

Building Code [16] are the latest and most extensive records available.
Traffic loads at Toronto Subway. The construction of the Toronto Subway

by the cut-and-cover method was used as an opportunity to measure actual
loads occurring on a temporary road deck supported by steel beams [17].
These measurements, although extending over a limited period only, indicated
that the stresses in the steel beams due to traffic loads were very low and that
there was considerable room for economies. The published record of this work
provides good confirmation of the utility of a Statistical approach to load
determination. The authors hope to continue this study during construction
of further stages of the Toronto Subway.

Study of failures. It has already been noted that design loads and stresses
used at the present time are largely the result of "engineering evolution", the
values having been adjusted from time to time on the basis of experience and
judgement or, in other words, on the basis of a consensus on past Performance,
taking into account known structural failures or the lack of such failures on
the one hand, and the improvement, over the years, of the quality of the
construction materials on the other. This approach indicates the vital importance

of assembling records of structural failures as a guide for future design.
Accordingly, the Division of Building Research maintains as complete a record
as possible of structural failures in Canada by collecting printed information
on such failures and by conducting its own investigation of such failures
whenever practicable.
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5. Conclusion

No strueture, no matter how conservatively designed or how well
eonstrueted, provides for absolute safety. Every strueture has some finite probability
of failure even though it may be very small, of the order of one in one miUion.
Loads and strengths used in design are quantities whose upper and lower
limits can only be stated in terms ofprobability. The safety of a strueture cannot
accurately be expressed by a safety factor but only by the probability of its
failure. In simplified terms it can be said that if the probability of extreme
loads is known and if the probability of extreme strengths is also known the
probability of failure can be stated [18]. In reality the problem is much more
complicated. The probabilistic approach will, however, allow a gradual improve-
ment in the judgement of those factors affecting safety which can be treated
statistically.

Advance in the field of structural design is only possible if advance in the
analysis of structures is aecompanied by a corresponding improvement of the
knowledge of actual loads on structures. Such information for Canada is now
being collected by the Division of Building Research of the National Research
Council. It is hoped that other organizations will also recognize this need and
partieipate in this important aspect of research, so that results can be shared
on an international basis.
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Summary

The Paper points out that no strueture, no matter how conservatively
designed, provides for absolute safety, because loads and carrying capacities
of structures are variables whose upper and lower limits respectively, cannot
be predicted with certainty but only in terms of probability. The safety of
structures can therefore be expressed truly only by the probability of failure.
Advances in structural design must be aecompanied by corresponding improve-
ment in the knowledge of actual loads on structures. Canadian studies of live
loads on buildings, and particularly a countrywise survey of snow loads on
roofs, are described with relation to their application in the National Building
Code of Canada.

Resume

Les auteurs montrent qu'aucun projet, si prudent soit-il, n'offre une
securite* absolue, car les charges et la capacite de charge des ouvrages constituent

des grandeurs variables, dont il n'est possible de determiner les limites
superieures et inferieures qu'avec une certaine probabilite et non pas avec
certitude.

La securite qu'offrent les ouvrages ne peut donc etre effectivement exprimee
que sur la base d'une probabilite d'effondrement.

Les progres realises dans le domaine de la construction des systemes
porteurs doivent ainsi etre aecompagnes d'une amelioration correlative de nos
connaissances sur les charges effectives.

Les auteurs exposent les investigations canadiennes sur les charges utiles
des ouvrages et particulierement les resultats d'une Observation ^tendue sur
tout le pays concernant les charges imposees aux toitures par la neige; les

resultats de ces investigations sont utilises dans le Code National du Batiment
du Canada.
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Zusammenfassung

Dieser Bericht weist darauf hin, daß kein noch so sicher bemessenes Tragwerk

absolute Sicherheit bietet, da die Lasten und die Tragfähigkeit der
Tragwerke variable Werte sind, deren obere und untere Grenze nicht mit
Sicherheit, sondern nur nach der Wahrscheinlichkeit angenommen werden
können.

Die Sicherheit von Tragwerken kann somit wirklich nur auf Grund der
Einsturzwahrscheinlichkeit ausgedrückt werden. Entsprechende Verbesserung
der Kenntnisse der effektiven Lasten müssen dieFortschritte in den Bemessungsverfahren

begleiten.
In Verbindung mit ihrer Anwendung in den kanadischen Baunormen sind

kanadische Untersuchungen über Nutzlasten für Gebäude und hauptsächlich
eine landüberspannende Beobachtung der Dachbelastung durch Schnee
beschrieben.
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Action dynamique des charges mobiles sur la superstructure des

ponts-rails

Dynamische Wirkung beweglicher Lasten auf Eisenbahnbrücken

The Dynamic Effects of Live Loads on the Superstructure of Railway Bridges

I. I. CASEl
Institut de recherches scientifiques pour les constructions relatives aux transports,

URSS

Le reseau ferroviaire de 1'Union Sovietique comporte de nombreux ponts-
rails de types de construction divers. Actuellement, les ouvrages en materiaux
ä haute resistance sont de plus en plus largement utilises. On associe l'acier
et le beton arme ou precontraint dans des constructions mixtes. Les essais et
les calculs montrent que des ouvrages de meme portee, mais de types divers,
peuvent resister d'une maniere differente ä l'action dynamique des charges
mobiles.

Actuellement on introduit sur une grande echelle la traction electrique et
ä diesel, on met en service de nouveaux wagons lourds; les vitesses de circulation

des trains montent en fleche.
Cependant, les taux des coefficients dynamiques actuellement en vigueur

ont ete etablis d'apres des donnees experimentales recueillies sur des ouvrages
anciens, pour des trains avec traction ä vapeur et pour des wagons relativement

legers, ä une epoque oü les vitesses des trains de marchandises ne depas-
saient pas 60—70 km/h. L'application de ces taux dans les conditions actuelles
ne traduit en tout cas pas le comportement elastique reel des constructions.

L'etablissement d'une methode generale pour le calcul dynamique des

superstruetures de ponts sous l'action des diverses charges mobiles provenant
du trafic est considere comme un probleme important dans le domaine de la
theorie de la construction des ponts.

C'est pourquoi un certain nombre d'organisations de recherches ont effectue
ces dernieres annees d'importants essais sur les ponts ferroviaires en Union
Sovietique. Des ponts-poutres et des ponts en are de portees differentes,
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construits en materiaux divers, ont ete soumis ä des essais dynamiques. Des

trains conduits par des locomotives electriques ou ä diesel ou par des locomotives

ä vapeur servaient principalement de charges. Quelques essais ont ete
effectues avec des trains speciaux qui circulaient ä une vitesse atteignant
170 km/h. Des appareils modernes de mesure ont ete utilises pour enregistrer
les deformations et les contraintes des ouvrages. La coordination des recherches

experimentales et theoriques est realisee par 1'Institut de recherches scientifiques

pour les constructions relatives aux transports.
Actuellement l'analyse d'un grand nombre de donnees experimentales est

dejä terminee, ce qui permet d'emettre certaines conclusions tres importantes,
servant ä ameliorer les methodes de calcul pratiques des ponts-rails sous l'action
dynamique des charges mobiles et permettant de tracer les principes generaux
de la theorie de ce probleme.

Les plus importantes de ces conclusions sont les suivantes:
1. La nature des actions dynamiques produites dans les ponts-rails par les

charges roulantes varie et depend du type des vehicules ferroviaires (locomotives,

wagons), de la construction et de l'etat de la voie sur le pont ainsi que
sur ses acces les plus proches, de la portee prevue et des proprietes dynamiques
generales des superstruetures (masse, rigidite, frequence des vibrations,
parametres caracteristiques de l'amortissement etc.). Dans certaines conditions,
une force faisant partie de tout le complexe des forces dynamiques agissant
pendant le passage du train peut produire le plus grand effet dynamique
quoique la plus grande valeur instantanee de ladite force ne soit pas toujours
le maximum dans ce complexe de forces.

2. Pour les ponts ä faible portee (periode des oscillations verticales naturelles

ne depassant pas 0,07—0,10 see.) l'effet dynamique a souvent un caractere

de choc tres prononce et provient d'une action de forces instantanees
verticales (dynamiques) qui ont dans une grande mesure une nature aeeiden-
telle non periodique (fig. 1).

Dans plusieurs cas, une action dynamique sensible peut apparaitre ici ä

cause des particularites qui ne sont propres qu'ä la locomotive en question
ou ä un certain type de locomotives (par exemple ä cause du grand «fretille-
ment» ou du «roulis» qui sont typiques pour cette serie de locomotives ou bien
ä cause des meplats locaux ou des döfauts de bandage de la locomotive etc.).

Pour les petites portees, l'effet dynamique provoqu6 par le choc des roues
des differents vehicules sur les joints des rails et sur les autres inegalites peut
etre fort divers. Cet effet est surtout considerable quand les chocs se suivent
avec une regularite determinee et quand la phase du choc posterieur coincide
avec la phase de la Vibration apparaissant dans la superstructure ä la suite
des chocs anterieurs.

L'effet dynamique des chocs de chaque roue augmente, pour des vitesses
de passage du train atteignant 150—170 km/h, plus lentement que les vitesses.

Une augmentation double ou triple de la masse portee par un essieu, non
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Passage d'une locomotive ä vapeur Passage dune locomotive diese!

3

/= 70Km/h V= 66 Km/h

a) Action dynamique avec caractere de chocs accidentels (superstructure en beton arme,
l 9,3 m).

0) Disposition des essieux des wagons

Disposilion des essieux
d'une locomot/ve electrique

& Ä

/= 56.3Km/h

b) Effet net dynamique du choc des roues du vehicule sur les joints des rails
(superstructure en beton arme, l 9,3 m).

Adlon de la premiere
locomotive

Action de la deuxieme
locomotive

(avec un meplai du bandage)

V= 50Km/h

c) Influence tres marque*e des particularites (defauts des organes de roulement) de
certains vehicules (superstructure en beton arme, l 9,3 m).

Passage sur le pont d'un train de marchandises conduit par deux locomotives du meme
type.

700

i

m d)

-®-©0

©.
• • •

0.5sec 0.5 see 0.5sec

d) Influence dynamique des grandes oscillations laterales d'une locomotive electrique
ä la vitesse V 86 km/h (superstructure metallique, l 12,1 m).

(1) contraintes dans la poutre gauche,
(2) contraintes dans la poutre droite,
(3) courbe des contraintes moyennes,
(4) courbe des differences des contraintes des deux poutres.

Fig. 1. Oscillogrammes typiques des deformations dynamiques des ponts-rails ä faibles
portees.
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appuyee sur les ressorts de la voiture, provoque une augmentation valant
seulernent de 1,2—1,5 fois l'effet perceptible du choc (ä la meme vitesse et
sur la meme inegalite de la voie).

3. Les diverses forces periodiques apparaissant ä un certain degre pendant
le passage de presque chaque train provoquent toujours un effet dynamique
sensible dans les poutres de grande portee, si la periode de leurs vibrations
naturelles verticales depasse 0,2—0,25 sec.

Les locomotives ä vapeur provoquent un effet dynamique considerable sur
les superstruetures, quand leur vitesse est teile que le nombre de tours par
seconde des roues desequilibrees est semblable ä la frequence des vibrations
naturelles de la construction (fig. 2a) dont la charge d'ailleurs varie.

Les essais ont montre qu'on peut determiner avec une certaine precision,
ä l'aide de calculs theoriques, les amplitudes des oscillations provenant du

passage des locomotives ä vapeur sur les poutres de portees moyennes et
grandes. Les fleches dynamiques au centre de la superstructure (y) sont exprimees

par l'equation differentielle suivante:

d2y O dV 2 2
y&Z

2 • 2Q- / * \
~d¥ odf+M *py= ~wu ?a) Sm("*+?)» ou

ocp,Mp Frequence circulaire de l'oscillation propre de la superstructure et
masse reduite de la superstructure.

u Fonetion caracterisant la Variation de la frequence inferieure de l'os¬
cillation verticale de la superstructure pendant la Variation graduelle
de son chargement.

€0 Coefficient de l'amortissement de l'oscillation pour la superstructure
non chargee.

w Vitesse angulaire des roues motrices (desequilibrees) de la locomotive.
2JJ z Coefficient du desequilibre des roues de la locomotive.

j Coefficient provenant de la reduction de la force periodique de la loco¬

motive au centre de la travee.
<p Phase initiale de l'action de la force periodique, au moment oü la

locomotive entre sur le pont.

La Variation des parametres dynamiques de la superstructure pendant le

passage du train n'etait pas prise en consideration dans la pratique precedente.
La determination theorique des oscillations possibles de la superstructure au
moment oü le train entre sur le pont conduisait ä des resultats errones si

pareille hypothese (u=\ ou w const.) avait ete faite.
Le complement dynamique apparaissant ä cause de l'action des forces

periodiques est lie directement ä la valeur du rapport de l'intensite de la
surcharge ä la charge permanente.

Les essais ont bien confirme le rapport du coefficient dynamique du calcul
ä la vitesse du passage de la locomotive exprime par l'equation suivante,
adoptee par les reglements des chemins de fer sovietiques:
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jLty Complement dynamique maximum ä la vitesse critique de marehe v^.
H-max Complement dynamique ä la vitesse de marehe v.

u Coefficient qui depend du rapport des vitesses —.

Comme les locomotives electriques et Celles ä diesel n'ont pas de masses
tournantes desequilibrees, leur action dynamique differe sensiblement de l'effet
provenant des trains conduits par des locomotives ä vapeur.

8Km/h

/-465Km/h
V-80Km/h

a) Appantion d'une oscillation proche de la resonance, au passage d'une locomotive ä

vapeur (sans wagons) sur une superstructure mixte acier-beton, l 56,43 m.

Z 0 512sec V= 45 Km/h

Passage d'une locomotive et des wagons
de la tete-de-train

II
ll I

I \Passage dun convoi de wagons-\
' \toudres a huile a quatre essieux 11

-lr
b) Oscillation provoquee par les groupes de chocs periodiques des roues pendant le

passage de wagons ä quatre essieux ä une vitesse critique sur le pont.

Superstructure metallique, l 66 m.

C)

I Passage d une \

^locomotive et des '

^wagons de la tele -de-train
Passage dun convoi de wagons couverts a,
quatre essieux avec chargement \

Superstructure metallique, l 77 m.

d

Passage de ia tete-de-tram

r- 0536sec

MA/WWWWW
Passage d'un convoi de wagons foudres
a huile a quatre essieux

Superstructure metallique, l 87,33 m

Fig. 2. Oscillogrammes typiques des deformations dynamiques des ponts-rails ä moyennes
et grandes portees.
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4. En etudiant l'effet dynamique des charges mobiles sur les superstruetures

des ponts moyens et grands et en elaborant une theorie appropriee aux
problemes pratiques du calcul dynamique des ponts, nous pretons une attention

toute particuliere au probleme de la formation et de l'effet sur les
superstruetures des groupes de chocs, qui apparaissent sur la voie du pont pendant
le passage du convoi et qui se repetent periodiquement.

La formation de ces groupes de chocs se manifeste de facon sensible (fig. 2 b)
pendant le passage ä la vitesse critique de rames composees uniquement de

wagons d'un certain type (y compris egalement les wagons ä quatre essieux),
quand sur le pont les inegalites (par exemple joints des rails, meplats des

Champignons des rails et autres) se succedent regulierement. II est etabli par
des recherches experimentales et theoriques qu'il existe plusieurs vitesses
critiques pour lesquelles se fait sentir l'effet dynamique des chocs se produisant
par groupes. Les valeurs absolues des vitesses critiques dependent du type de

wagons. La grandeur du complement dynamique correspondant depend de la

disposition des essieux du wagon, de l'espece et de la disposition des inegalites
de la voie ou de l'endroit qui provoque les chocs et de la valeur de la vitesse

critique.
Les grandeurs des demi-amplitudes de l'oscillation des superstruetures

enregistrees lors de nombreux essais pendant le passage de wagons ä la vitesse

critique s'aecordent bien avec les valeurs donnees par la formule:

2tt Jn \-e-ni* „y* CT^—d—F>
C,T,& Se rapportent au coefficient caracteristique de la rigidite, ä la periode

de l'oscillation, au decrement de l'amortissement de l'oscillation de

la superstructure chargee.
n Ordre de la vitesse critique.
Jn Coefficient caracterisant les groupes de chocs provenant des wagons

du type en question sur les inegalites de la voie existant sur le pont.
i Quantite des groupes de chocs provenant des wagons apres leur passage.
F Impulsion moyenne d'un choc provenant du passage d'un axe sur

une inegalite d'une certaine espece.

5. L'evaluation correcte du role des resistances inelastiques apparaissant
dans une construction et provoquant l'amortissement de l'oscillation a une
grande importance. Les essais ont montre que ce sont les forces exterieures, et

non pas les forces interieures de la resistance inelastique dans le materiau lui-
meme, qui ont le plus d'influence sur l'amortissement de l'oscillation des

superstruetures de ponts-rails, particulierement Celles en acier ou en beton

precontraint.
Ces forces exterieures proviennent du frottement entre les appuis de la

voie et le pont, de l'oscillation des culees et des piles sur le sol, etc. La dispersion
considerable des valeurs experimentales des decrements caracterisant l'amor-
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tissement de l'oscillation des superstruetures s'explique par le fait que les

causes exterieures de la dispersion de l'energie provenant de l'oscillation
peuvent avoir dans les conditions concretes, une importance bien differente.
II faut prendre en consideration dans les calculs dynamiques ces forces
exterieures de la resistance. en tenant compte des valeurs intervenant dans n'importe

quelles conditions de l'exploitation des superstruetures.
Actuellement on peut dejä aborder par une methode de calcul 1'etablisse"

ment des decrements de l'amortissement qui doivent etre contröles et ainsi
eviter pour les superstruetures de types nouveaux l'adoption de coefficients

dynamiques trop grands et injustifies.
6. L'action dynamique provenant des vehicules ferroviaires modernes a

souvent une nature vague et tres compliquee dans les superstruetures de

10—20 m de portee, avec une periode des oscillations verticales naturelles
valant de 0,10—0,15 sec. environ. Cet effet dynamique resulte de l'action
commune des forces accidentelles provoquees par les chocs et provient des

forces regulieres periodiques qui apparaissent au moment du passage des

vehicules (fig. 3).

a)

y=48.6Km/h r^f \ ^m58-6Kf71/h

V

a) Influence predomi- b) Aecroissement de charges et dechargement
nante du choc des roues de la superstructure provenant de l'oscil-
sur les joints des rails. lation de la masse appuyee sur ses ressorts.

Fig. 3. Oscillogrammes des deformations dynamiques d'un pont-rail en beton arme,
l 14,77 m, pendant le passage d'une locomotive ä diesel.

Pour les superstruetures relativement rigides, il faut en tout cas prendre
en consideration, quand on determine les complements dynamiques de calcul,
l'importance reelle de 1'aecroissement des charges par les forces apparaissant
dans les locomotives ä cause de l'oscillation de leur masse appuyee sur les
ressorts. Cette oscillation, intervenant aussi sur les acces du pont, peut atteindre
des grandeurs considerables.

7. II ne faut pas ignorer actuellement, en faisant les calculs dynamiques de
nombreuses superstruetures de ponts, l'existence des ressorts dans le materiel
roulant moderne, qui ont, comme on le sait, un frottement sec relativement
petit.

Le Systeme «superstructure -f surcharge» peut se manifester, dans les
grandes travees, comme un Systeme ä deux degres de liberte. Les lois de
formation des fleches dynamiques sous l'influence des forces de choc et des forces
periodiques auront alors une autre nature que lorsqu'il existe une liaison rigide
entre la charge et la superstructure.
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Le procede de determination des effets dynamiques produits dans les ponts-
poutres ferroviaires par les charges roulantes est dejä etabli en Union Sovietique

sur la base de l'analyse des donnees experimentales et des recherches

theoriques.
Dans l'immediat, les recommandations elaborees seront verifiees et pre-

cisees pratiquement au moment de la determination de la capacite portante
des ponts anciens et lors de l'etablissement des coefficients dynamiques pour
le calcul des superstruetures de types nouveaux.

Resume

En Union Sovietique, on a effectue au cours de nombreuses annees un
programme important de recherches experimentales et theoriques sur l'action
dynamique des charges mobiles sur les ponts-rails.

Les conclusions les plus importantes decoulant de ces recherches sont
formulees dans la presente contribution. Ces conclusions se rapportent ä

l'evaluation des diverses composantes de l'action dynamique des charges
roulantes en considerant des ponts ayant des parametres dynamiques differents.

Les recherches selon le programme susmentionne seront poursuivies.

Zusammenfassung

In der Sowjetunion wurde im Verlaufe von vielen Jahren ein wichtiges
experimentelles und theoretisches Forschungsprogramm über die dynamischen
Wirkungen der beweglichen Lasten auf die Brücken durchgeführt.

Die wichtigsten Schlüsse aus diesen Untersuchungen sind in der vorliegenden

Arbeit zusammengestellt. Diese Schlüsse beruhen auf der Berechnung der
verschiedenen Komponenten der dynamischen Wirkung von rollenden Lasten
bei Brücken mit verschiedenen dynamischen Parametern.

Die Untersuchungen nach dem oben erwähnten Programm werden
weitergeführt.

Summary

In the Soviet Union, a considerable programme of experimental and
theoretical researches has been carried out, over a period of many years, on the
dynamic effects of moving loads on railway bridges.

The more important conclusions resulting from these researches are set

out in this paper and relate to the estimation of the various components of the
dynamic effects of moving loads in the case of bridges having different dynamic
Parameters.

Research work in aecordance with the above-mentioned programme is

being continued.
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Calcul du beton arme ä la rupture en flexion simple ou composee. Comparaison

statistique de diverses theories avec Fensemble des resultats des

recherches experimentales

Bruchberechnung von Eisenbeton bei einfacher oder zusammengesetzter Biegung.
Statistischer Vergleich der verschiedenen Theorien mit den verfügbaren Versuchs¬

resultaten

Calculation of the Ultimate Bending Strength of Reinforced Concrete Subjected
to Simple or Compound Bending. Statistical Comparison of Various Theories

with the Published Results of Experimental Researches

CH. MASSONNET P. MOENAERT
Professeur ä l'Universite de Liege Charge de Cours ä l'Universite Libre

de Bruxelles

1. But et interet de l'etude

Pour la determination par calcul du moment flechissant de rupture en
flexion simple ou composee, on est amene, comme de nombreuses etudes l'ont
montre, ä faire une serie d'hypotheses.

La grande majorite des auteurs admettent que les sections restent planes
(hypothese de Bernoulli) et que le beton tendu n'a pas d'influence sur le
moment de rupture.

D'autres conditions sont necessaires; la plupart des auteurs limitent
theoriquement la deformabilite du beton au moment de la rupture. La valeur
admise par le Comite Europeen du Beton c'est-ä-dire 3,5°/00 semble une valeur
acceptable dans la plupart des cas pour une theorie approchee.

II faut de plus que l'on determine le diagramme des tensions du beton dans
la zone comprimee (stress block).

Ceci peut se faire soit en adoptant une courbe definie pour ce diagramme,
par exemple parabole ou rectangle, soit en le definissant par deux coefficients:
coefficient de remplissage a et coefficient de centre de gravite ß.

Sur ces derniers points, l'accord des auteurs est loin d'etre realise. A la
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Session de Rome du Comite Europeen du Beton, on s'est demande si une
etude statistique ne permettrait pas de departager les points de vue. La
commission n° 1 a ete chargee de ce travail. Mais, avant de pouvoir l'aborder, il
etait necessaire de reunir un grand nombre de resultats d'essais suffisamment
complets pour pouvoir etre utilises.

Le Secretariat permanent du Comite Europeen du Beton a rassemble dans

ce but les donnees d'environ deux mille essais, dont 1717 se rapportent ä des

poutres rompues par flexion. Le depouillement d'un si grand nombre d'essais
et l'application ä ceux-ci de plusieurs methodes de calcul ä la rupture ne

pouvaient se faire qu'avec des moyens mecaniques. C'est pourquoi nous avons
decide d'effectuer les calculs sur l'ordinateur electronique IBM 650 de
l'Universite de Liege. Nous avons etabli un programme general permettant ä cette
machine de calculer le moment ou l'effort normal de rupture par toutes les

methodes retenues.
II a ete decide d'etudier quatre formes de diagrammes des tensions dans

la zone comprimee:

a) la forme parabolique, qui avait ete recommandee ä la Session de Madrid
du Comite Europeen du beton;

b) la forme rectangulaire, qui a ete proposee par divers auteurs;
c) la forme triangulaire, qui correspond ä la methode de calcul classique

elastique et enfin
d) une methode dans laquelle la forme du diagramme depend de la qualite

du beton. On a adopte la methode proposee par Hognestad, Hanson et
Mc Henry1) parce qu'elle a semble representative des diverses methodes
oü l'on tente de serrer la realite d'aussi pres que possible en faisant varier
l'ordonnee maximum du diagramme {n0) et les coefficients a, ß avec la
resistance du beton.
La methode en question est precisee au paragraphe 2.2 ci-apres.

2. Definition des methodes de calcul etudiees

2.1. Notations (fig. 1)

b largeur de la section,
h hauteur totale de la section,
hx hauteur utile de la section,

yx hauteur de la zone comprimee,
d distance de l'armature comprimee au bord superieur de la section,
o/ section de l'armature tendue,

E. Hognestad, N. W. Hanson et C. Mc. Henry, Concrete stress distribution in
ultimate strength design. Journ. A.C.I. Vol. 27, pp. 455—479, 1955.
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co section de l'armature comprimee,

n0 ordonnee maximum du diagramme des tensions de compression dans
le beton,

€ö allongement proportionnel de rupture du beton,
ne' limite elastique apparente ou ä 0,2% de l'acier tendu,
ne limite elastique apparente ou ä 0,2% de l'acier comprime,
€a' allongement proportionnel de l'acier tendu,
ea allongement proportionnel de l'acier comprime,
M moment de rupture des poutres soumises ä flexion simple,
X effort normal de rupture des colonnes soumises ä flexion composee,
e excentricite de l'effort N par rapport au centre G de la section,
e' excentricite de l'effort N par rapport ä l'armature tendue,
a coefficient de remplissage du diagramme des tensions dans le beton

comprime,
coefficient donnant l'ordonnee relative du centre de gravite D du
diagramme ci-dessus,

npr ncy resistance du beton ä la compression sur prismes ou sur cylindres,
ncu resistance du beton ä la compression sur cubes,
60 largeur de la table d'une poutre en te,
hQ epaisseur de la table d'une poutre en te.

CD
'~AB

B C Eb

:EQ

m

£0

*—I
Fig. 1.

2.2. Equations fundamentales

Le programme de calcul est etabli pour une section rectangulaire possedant
une armature double et soumise ä flexion composee. II est applicable aux
sections en te, pour autant que l'axe neutre tombe dans l'aile du te. Pour
controler qu'il en est bien ainsi, il suffit de verifier l'inegalite

Vi ^ V
Les equations d'equilibre s'ecrivent:

N cvnu-aj'n'u + bccy^, (1)

M=tona(h1-d) + b*y1n0(h1-ß*Jl). (2)
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La loi de conservation des sections planes de Bernoulli se traduit par les

egalites:

eb + ea

yy-d K~r- W

Les diagrammes tension-dilatation des aciers utilises donnent les deux
relations:

< /«)> (5)

»„ /(«.)¦ (6)

La rupture survient quand 1'allongement proportionnel du beton le plus
comprime atteint la valeur constante

eb -35.10-*. (7)

Enfin, le moment et l'effort normal sont lies par l'equation

N
e + 0,5h~d- (8)

Les equations (1) ä (8) forment un Systeme de 8 equations par rapport aux
8 inconnues du probleme:

N,M,y1; na,n'a, ea, €a, eb.

2.3. Definition des proprietes du beton

Les diagrammes parabolique, rectangulaire et triangulaire correspondent
aux valeurs suivantes des coefficients

Forme du diagramme a ß

parabole 0,667 0,375
rectangle 1 0,5
triangle 0,5 0,333

Ces diagrammes sont entierement definis des qu'on se fixe leur ordonnee maximum

nQ. Nous avons admis que n0 etait egal ä la tension de rupture ä la
compression sur cylindres ou sur prismes, si celle-ci est donnee par l'auteur de

l'essai. Sinon, on adopte 85% de la resistance sur cubes, ou bien la pleine
resistance sur cubes en cas d'interposition de carton ou d'enduisage des faces

du cube.
Dans la methode de Hognestad, Hanson et Mc Henry (HHMH), les

valeurs de a, ß et n^\ccy sont donnees en fonetion de la resistance ä la
compression sur cylindres par les formules ci-apres:
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a 0,94 - 5,48-lO-4^,
ß 0,50-1,78-10-4?iC|/,

3900 + 4,9871^nn

3200+14,22^

(9)

(10)

(11)
cy

(riCi/en kg/cm2*.

2.4. Definition des proprietes de Vacier

L'acier peut etre ä palier ou ecroui. En conformite avec les decisions prises
par le Comite Europeen du Beton, nous avons adopte pour ces deux types des

diagrammes idealises definis comme suit:

2.4.1. Aciers ä palier (fig. 2):

n Ee avec E 21 000 kg/mm2 si €^ ee,

n ne si € > ee.

An,n'

e,e'_

2.4.2. Aciers ecrouis
Fig. 2.

Le diagramme tension-dilatation normalise de ces aciers est represente ä
la fig. 3.

n.n

Etne
0.975 nt
QSSOifc _DX /0,900 n'i

/ /0.850 m

0,800rä —
/ // / /

/ /

* I /
03 1 2 £,£ en/ia

Fig. 3.
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II se compose de trois parties:

a) la droite de Hooke OA d'equation n' Ee' avec E 21 000 kg/mm2, valable

pour 7*/5^0,8 n'e;

b) la droite BC partant du point d'ordonnee n'e egale ä la limite elastique ä

2°/00 et de coefficient angulaire Et=l0n'e;
c) une courbe de raccordement AB definie par 6 points (n'e') comme le

montre la fig. 3.

Nous avons choisi pour representer cette courbe un polynöme d'Interpolation

du troisieme degre de la forme

n a0 + ax (e - e0) + a2 (e - €0) (e - ex) + a3 (e - €0) (e - ex) (e - e2)

et nous avons determine les 4 constantes a0, a1? a2 et as de maniere que la
courbe passe par les 4 points A, D, F, B (fig. 3).

3. Quelques indications sur l9Organisation du programme de calcul

Les equations (1) ä (8) qui regissent le probleme n'etant pas lineaires, leur
resolution directe n'est pas possible. On a donc choisi de les resoudre par
approximations successives.

Pour comprendre la methode d'iteration choisie, considerons le cas elementaire

de la flexion simple, armature simple. Les equations sont les suivantes:

0 -Oj,nfa + b(xy1rj0, (1')

M ^bay^fa-ßy^, (2')

€&~f~€a

< /(0- (5')

En remplacant yx par sa valeur (3') dans (T), on obtient:

0 — co''n'a + b a n0 /&! lL-T. (a)
€ö + €a

Les equations (a) et (5') nous donnent la Solution du probleme; en effet, il
suffit de trouver le couple de valeurs (na', ea') qui satisfasse ä ces deux equations
ou, si l'on trace les courbes (a) et (5') dans le Systeme d'axes cartesiens (naf, ea'),

il suffit de trouver le point d'intersection I de ces courbes (fig. 4).
Le processus d'iteration qui se presente naturellement ä l'esprit consiste

ä partir d'un point arbitraire A (r&^cj) de la courbe (5'), puis ä parcourir le

contour orthogonal AA'DFG (fig. 4). Malheureusement, ce processus est

parfois divergent, comme le montre la fig. 4.

Pour assurer la convergence du processus d'iteration dans tous les cas, on
l'a generalise comme suit:
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ler cycle: on part du point A {n-^^^ arbitrairement choisi sur (5')2); on
determine le point A' (n'x,e^) situe ä l'intersection de la courbe (a) et de la
verticale passant par A.

Si (n[— nx) est moindre qu'un petit ecart fixe d'avance, le probleme est
resolu; sinon, on determine le point A" (n[,€2) se trouvant ä l'intersection de

l'horizontale par A' et de la droite ^4^4" de coefficient angulaire m menee par
A. De A", on remonte verticalement jusqu'en jB (n2,e2) sur la courbe (5').

2e cycle: on part du point B (n2,e2); on determine le point B' (n2,e2)
sur (a). Si {n2— n2) est moindre que l'ecart fixe d'avance, le probleme est
resolu; sinon on deduit de B' le point B" (n2,€3) sur la droite inclinee de m
menee par B, puis on remonte verticalement jusqu'en C (n3,e3) sur la courbe
(5'), etc.. La convergence du procede qui vient d'etre decrit depend evidemment

de l'inclinaison m choisie pour les droites AA", BB", etc..
L'ordinateur adopte tout d'abord pour m la valeur ^7/10 2100 kg/mm2.
Si le processus n'est pas convergent, la machine choisit ensuite successive-

ment ra 5000 kg/mm2 puis m 10 000 kg/mm2 puis finalement m E 21 000

kg/mm2.
Le programme est concu de teile facon que. l'ordinateur s'arrete

automatiquement quand l'ecart entre les valeurs n1, n[ devient inferieur ä une valeur
fixee d'avance; cette valeur a ete choisie egale ä 0,15 kg/mm2, ce qui assure
une precision surabondante aux resultats. La figure 5 represente l'ordino-
gramme du probleme, c'est-ä-dire le schema logique selon lequel la machine
fonctionne.

Quand le probleme est resolu, la machine perfore sur cartes les renseigne-
ments suivants:

Tx

D"t

(a

£3*2 fei

Fig. 4.

2) Dans les calculs effectivement executes, on a toujours pris n\ egal ä la limite
elastique ne.
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LECTURE OES DONNEES

CALCUL DES CONSTANTES DE REPARTITION DES TENSIONS DANS LE BETON

CALCUL DE E.c

<z ACIER TENDU EST-IL A PALIER >

CALCUL PAR LA 1«*METHODE

CHOIX DU 1er MODE D'APPROXIMATION

DEPART DU CALCUL POUR LE f CYCLE D'APPROXIMATION

CHOIX OES CONSTANTES

IE
CALCUL DE to, A PARTIR DES VALEURS CI-DESSUS

X
CALCUL DE y, D'APRES EQUATION Li)

CALCUL DE na, «((to.)

< L* ACIER TENDU EST-L A PALIER?)

CALCUL DE no,«f(to,)

POUTRE A ARMATURE SIMPLE

CALCUL DE do D'APRES EQUATION 141

CALCUL DE no *f(£o)

-<£ACIER COMPRWE EST-IL A PALIER

CALCUL OE no »f(fco)

CALCUL DE Mr D APRES EQUATION Z)

CALCUL DE n'o D'APRES EQUATION U)

<ET-ON DE LA FLEXION SIMPLE
J

-^ TEST |no-n'0l|<0 ^>-

PERFORER LES RESULTATS

"pAoUTES LES METHODES SONT ELLES EPUISEES P}^

NÄES

CALCUL DE Nr D APRES EQUATION (8)

CALCUL DE no D APRES EQUATIONU

EST-ON AU fCYCLE D APPROXIMATIONr\
PASSER A LA METHODE

SUIVANTE

'j'^kcONVERGENCE
0UI

OUl /JrOUS LES MODES D'APPROXIMATONVjjos

|~\ SONT • ILS EPUISES y/

CHOIX DES NOUVELLES

VALEURS DE DEPART

PERFORER UN
INDICATIF

SPECIAL

MODE D'APPROXIMATION

SUIVANT

Fig. 5. Ordinogramme de programme de calcul.
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1. le numero d'ordre de la poutre etudiee;
2. le numero de la methode de calcul employee (parabole, rectangle, triangle,

HHMH);
3. le moment de rupture calcule;
4. l'effort normal de rupture calcule;
5. la tension dans l'armature comprimee eventuelle;
6. les tensions dans l'armature tendue au depart et ä la fin du dernier cycle

de calcul;
7. la distance de l'axe neutre au bord libre de la zone comprimee.

La machine passe ensuite automatiquement ä la poutre suivante. A titre
indicatif, le temps necessaire pour effectuer le calcul par une methode est
ordinairement d'environ 35 secondes. Dans un petit nombre de cas, le temps
necessaire depasse deux minutes. Le temps de calcul maximum observe a ete
de 8 minutes.

4« Resultats des calculs

Comme on l'a dit au paragraphe 1, on disposait de 1717 resultats d'essai
recueilhs par le Secretariat du Comite Europeen du Beton. Certains de ces

resultats sont extraits des publications figurant ä la bibliographie placee ä la
fin du memoire. D'autres, non publies ont ete communiques par leurs auteurs
auC.E.B.

Dans les tableaux ci-apres, la colonne «ref.» renvoie ä la bibliographie; les
essais non publies sont marques «iV».

Des 1717 essais, 124 ont du etre eiimines au cours de l'etude parce qu'il y
manquait Tun ou l'autre renseignement experimental indispensable aux
calculs. On disposait donc de 1593 resultats effectivement utilisables.

Un petit nombre (environ 25) d'essais sur colonnes soumises ä compression
centrique ou faiblement excentrique (axe neutre en dehors de la section) ont
du etre ecartes, parce que le programme de calcul expose au paragraphe 3 ne
pouvait s'y appliquer. En outre, apres execution des calculs, 29 resultats sur
poutres en te ont du etre eiimines completement parce que l'axe neutre tom-
bait en dehors de l'aile dans les quatre methodes de calcul. On a de plus du
eliminer, pour d'autres poutres en te, certains des quatre resultats calcules,
parce que l'axe neutre tombait dans l'aile pour certaines formes de diagramme
et en dehors pour d'autres formes. Ceci explique que le nombre de resultats
repris dans l'etude statistique proprement dite ci-apres est different d'une
methode ä l'autre et correspond ä 1500, 1513, 1465 et 1516 calculs respectivement.

Pour chaque poutre, on a calcule pour les quatre formes de diagramme
considerees les quatre valeurs du rapport:
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Mt
r observe

OU
¦N observd

•"* calcuU -" calcule

M etant le moment flechissant de rupture en flexion simple et
N l'effort normal de rupture en flexion composee.

En faisant toutes les combinaisons possibles entre les donnees des essais, ä

savoir: Section: rectangulaire, en te ou en te renverse — flexion: simple ou

composee — armature: simple ou double — acier: ä paher ou ecroui, et en ne
retenant que les classes pour lesquelles des essais ont ete effectivement realises.

on obtient douze familles d'essais. A ces douze familles correspondent les douze

tableaux de resultats reproduits ci-dessous.

Tableau I
Section: rectangulaire. Flexion: simple. Armature: simple. Acier: ä palier

N° Auteur Ref.
Essai Para- Trian¬ HHMH

Cu Pr Cy bolique gulaire gulaire

1 Brandtzaeg 1 X 20 20 23,953 19,377 29,681 21,093
2 Chambaud 2 X 82 82 89,201 80,105 103,816 90,499
3 L.B.T.P. N X 15 15 15,098 14,519 16,208 15,617
4 Cem.Conc.Ass. N X 16 16 16,942 16,507 18,148 17,130
5 Humphrey 20 X 77 77 74,041 72,828 76,246 74,901
6 Grey M.W. N X 19 15 16,773 16,076 18,190 16,674
7 Soretz N X 6 6 6,050 6,070 6,405 6,222
8 Baes N X 14 14 17,582 14,834 21,071 15,694
9 Helfgot 12 X 2 2 2,182 2,113 2,420 2,202

10 Rehm N X 12 12 14,069 11,706 17,211 13,179
11 Rehm N X 20 20 20,649 20,433 21,023 20,692
12 Columbia 6 X 8 8 9,807 9,714 9,968 9,912
13 Hajnal Konyi 11 X 10 10 10,433 10,380 10,544 10,504
14 France EEBA N X 24 24 26,919 26,714 27,311 27,542
15 Gehler Arnos 3 X 104 104 118,037 110,538 130,674 112,748
16 Sampaio 4 X 48 47 55,310 54,823 56,374 55,324
17 SlaterZipprodt 23 X 25 25 24,350 22,856 28,477 23,823
18 Richart Jensen 21 X 33 33 39,440 39,165 39,929 39,568
19 Johnston Cox 14 X 13 13 16,503 16,382 16,662 16,580
20 Lash Brison 15 X 57 57 59,497 54,766 66,645 56,579
21 Pays-Bas N X 28 28 32,115 31,916 32,457 32,272
22 Pays-Bas N X 14 14 16,151 16,043 16,337 16,208
23 France Ens.

B.A. N X 29 23 24,670 24,583 24,871 24,851
24 L.B.T.P. N X 15 14 15,132 14,204 16,965 15,468
25 Burchartz-

Gehler-Amos 19 X 18 17 17,067 16,961 17,263 17,030

Sommes 709 696 761,971 723,613 824,896 752,312
Moyennes 1,095 1,040 1,185 1,081
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Dans chaque tableau, on a consigne successivement: le nom de l'experimen-
tateur, le type d'essai qu'il a realise pour mesurer la resistance ä la compression
du beton (sur cubes, prismes ou cylindres), le nombre d'essais executes (n'),
le nombre d'essais (n) retenus pour la statistique apres elimination, et enfin
les valeurs de 2 r obtenues par les quatre methodes. De ces valeurs, on deduit
directement la moyenne applicable ä chaque experimentateur en appliquant
la formule

' rn n

Au bas de chaque tableau figurent les valeurs cumulees de 2 r e^ los moyennes

generales rm calculees (par les quatre methodes) pour l'ensemble des essais
de la famille consideree.

L'ensemble des valeurs moyennes rm obtenues pour les douze familles
d'essais est recapitule dans le tableau XIII ci-dessous. Ce tableau donne egalement

les moyennes generales pour l'ensemble des essais de flexion simple, puis
pour l'ensemble des essais de flexion composee, puis enfin pour la totahte des
essais.

Tableau II
Section: rectangulaire. Flexion: simple. Armature: simple. Acier: ecroui

N° Auteur Ref.
Essai

n' n Para-
bolique

Rectangulaire

Triangulaire
HHMH

Cu Pr Cy

1 Soretz N X 76 14t 82,377 77,041 88,004 77,854
2 Ess. Comp.

Fran. N X 18 18 16,651 15,792 17,594 17,079
3 Cem.Conc.Ass. N X 4 4 4,115 3,887 4,350 4,093
4 Hajnal Konyi 1 X 26 26 25,747 24,080 27,136 25,487
5 Helfgot 12 X 2 2 2,205 2,034 2,555 2,109
6 A. Johnson 13 X 4 4 4,556 3,634 5,628 4,204
7 Rehm N X 10 10 10,632 9,954 11,167 10,441
8 Columbia 16 X 12 12 13,650 12,361 15,186 13,488
9 France EEBA N X 80 29 31,729 27,657 36,256 31,908

10 Pays-Bas N X 25 12 12,989 12,173 13,600 12,803
11 L.B.T.P. N X 30 27 26,245 24,535 27,694 26,966
12 LBTP-IRABA N X 22 21 20,994 19,714 22,439 21,605
13 Gehler-Arnos 10 X 30 30 32,899 29,516 37,389 30,214
14 Grey Mettock N X 10 10 9,591 8,806 10,583 9,272
15 France EEBA N X 48 44 41,174 36,639 45,956 42,108
16 Soretz N X 6 6 7,470 6,719 8,476 7,102

Sommes 403 329 343,014 314,542 374,013 336,733
Moyennes 1,043 0,956 1,137 1,024
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Tableau III
Section: rectangulaire. Flexion: simple. Armature: double. Acier: ä palier

N° Auteur Ref.
Essai

n' n
Para-

bolique
Rectangulaire

Triangulaire
HHMH

Cu Pr Cy

1

2

3

4
5

6

Bach et Graf
Bach et Graf
Sampaio
Helfgot
Pays-Bas
Gehler-Amos

5

18

4
12

N
3

X

X

X

X

X
X

15

6

3

6

3

36

15

6

3

6

3

36

16,012
5,372
3,382
6,481
3,157

36,775

14,078
4,754
3,330
6,375
2,994

36,711

18,011
5,954
3,469
6,600
3,324

37,055

14,157
5,067
3,384
6,482
3,201

37,034

S omr
[oye

aes

nneS

69 69 71,179
1,032

68,242
0,989

74,413
1,078

69,325
1,005

Tableau IV
Section: rectangulaire. Flexion: simple. Armature: double. Acier: ecroui

N° Auteur Ref.
Essai

n' n
Para-

bolique
Rectangulaire

Triangulaire
HHMH

Cu Pr Cy

1

2

3

4

A. Johnson
France

EEBA
Gehler Amos
Helfgot

13

N
3

12

X

X

X

X

12

7

18
6

12

6

18

6

12,648

5,048
18,106
6,322

10,687

4,704
17,951
6,134

14,621

5,594
18,302
6,493

11,907

5,379
18,091
6,248

Somr
[oye

nes

nneS

43 42 42,124
1,003

39,476
0,940

45,010
1,072

41,625
0,991

Tableau V

Section: rectangulaire. Flexion: composee. Armature: simple. Acier: ä palier

N° Auteur Ref.
Essai

n' n
Para-

bolique

Rectangulaire

Triangulaire
HHMH

Cu Pr Cy

1

2

3

Oengö
Bach et Graf
Moenaert

17

24
26

X
X

X

40
15

37

40
9

37

47,026
8,923

39,762

38,498
8,481

34,484

58,104
9,826

47,134

46,409
9,067

38,122

S

IV!

omr
[oye

aes

nneS

92 86 95,711
1,113

81,463
0,947

115,064
1,338

93,598
1,088
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Tableau IX
Section en te. Flexion simple. Armature double. Acier ä palier

N° Auteur Ref.
Essai

n'
Parabole Rectangle Triangle HHMH

Cu Pr Cy n r n r n r n r

1 Bach et Graf 18 X 23 10 8,265 18 14,273 2 1,542 18 14,430

Moyennes 0,827 0,793 0,771 0,801

Tableau X
Section en te renverse. Flexion simple. Armature double. Acier ecroui

N° Auteur Ref.
Essai

n'
Parabole Rectangle Triangle HHMH

Cu Pr Cy n r n r n r n r

1 IRABA N X 29 23 23,567 19 18,379 24 26,199 24 24,944

Moyennes 1,025 0,967 1,092 1,039

Tableau XI
Section en te renverse. Flexion simple. Armature simple. Acier ecroui

N° Auteur Ref.
Essai

n'
Parabole Rectangle Triangle HHMH

Cu Pr Cy n r n r n r n r

1 IRABA N X 17 16 15,992 16 14,078 16 18,936 16 16,155

Moyennes 1,000 0,880 1,184 1,009

Tableau XII
Section en te renverse. Flexion simple. Armature simple. Acier ä palier

N° Auteur Ref.
Essai

n'
Parabole Rectangle Triangle HHMH

Cu Pr Cy n r n r n r n r

1 Sampaio 4 X 6 6 7,152 6 7,113 6 7,228 6 7,160

Moyennes 1,192 1,186 1,205 1,193
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Tableau XIII
Resultats de Vetude statistique de quatre methodes de calcul du biton armi ä la rupture (1553 essais)

Nature de l'essai Nbre
tot. de

poutres

Parabole Rectangle Triangle Hognestad

Fa- Sec-

mille 1 tion Flexion

Armature
Acier n moyen.

M0/Mc
n moyen.

M0/Mc
n moyen.

M0/Mc
n moyen.

M0/Mr
i

I 1 simple simple pal. 709 696 1,095 696 1,040 696 1,185 696 1,081

II
'

simple simple ecr. 403 329 1,043 329 0,956 329 1,137 329 1,024

III simple double pal. 69 69 1,032 69 0,989 69 1,078 69 1,005
IV simple double ecr. 43 42 1,003 42 0,940 42 1,072 42 0,991
V comp. simple pal. 92 86 1,113 86 0,947 86 1,338 86 1,088

VI comp. double pal. 143 101 0,938 97 0,880 100 1,027 98 0,934
VII simple simple pal. 97 63 1,056 63 1,051 57 1,069 63 1,054

VIII simple simple ecr. 86 59 1,104 72 0,962 39 1,039 69 1,022
IX simple double pal. 23 10 0,827 18 0,793 2 0,771 18 0,801
X simple double ecr. 29 23 1,025 19 0,967 24 1,092 24 1,039

XI simple simple ecr. 17 16 1,000 16 0,880 16 1,184 16 1,009
XII simple simple pal. 6 6 1,192 6 1,186 6 1,205 6 1,193

Moyenne generale en flexion
simple 1482 1313 1,070 1330 1,004 1280 1,151 1332 1,051

Moyenne generale en flexion
composee 235 187 1,018 183 0,912 186 1,171 184 1,006

Moyenne de tous les calculs 1717 1500 1,064 1513 0,993 1466 1,154 1516 1,045

5. Courbes de frequences

Les courbes de frequences ont ete tracees pour l'ensemble des essais de
flexion simple (fig. 6) ainsi que pour l'ensemble des essais de flexion composee
(%. 7).

Ces courbes permettent de determiner l'allure generale du phenomene pour
hs differentes methodes appliquees. Elles presentent des allures se rapprochant
d'une courbe de Gauss. Examinees par rapport ä leur axe, on constate qu'elles
s'etendent toutes, sauf celle correspondant ä l'hypothese rectangulaire oü les

i
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Fig. 6. Flexion simple.
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deux domaines sont pratiquement egaux, davantage du cote des rapports plus
grands que un, ce qui est favorable ä la securite.

En partant des courbes de frequence, on a calcule les ecarts quadratiques
moyens. Les ecarts totaux pour l'ensemble des cas de flexion simple et composee
sont les suivants:

Diagramme parabolique 0,126
Diagramme rectangulaire 0,126

Diagramme triangulaire 0,176
Methode HHMH 0,122

Ces ecarts assez importants sont dus aux raisons suivantes:
Les resultats utilises sont dus ä un grand nombre de chercheurs qui ont

travaille suivant des methodes personnelles non normalisees. Les donnees ne
sont pas toujours completes ni comparables, pour un grand nombre d'essais,
la position de l'armature tant tiree que comprimee n'est pas donnee pour
chaque poutre avec precision, souvent la resistance du beton et la limite
elastique de l'acier ne sont donnees que par une valeur moyenne differant par
consequent de la valeur exacte de chaque poutre, mais surtout la resistance
du beton est determinee suivant un grand nombre de methodes differentes.

r.

n-j

u,
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0» 060 065 070 075 060 OBS 090 095 »0 105 HO 115 120 125 130 135 140 145 ISO 155 160 165 170 175 180 «5

Fig. 7. Flexion composee.
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Cette resistance est mesuree soit sur prisme, soit sur cylindre, soit sur cube

et meme dans quelques cas sur des bouts de prismes. Les surfaces de contact
entre les eprouvettes et les plateaux de la machine sont traitees de differentes
facons: rectifiees, enduites de soufre ou de ciment, brutes de demoulage...

Dans beaucoup de cas, on a eu recours ä des intercalaires de carton ou
autres. Dans nos calculs, nous avons tout ramene ä la resistance sur cylindre
par des coefficients constants qui sont evidemment arbitraires et cause de

dispersion.

D'apres ce qui precede, on peut admettre qu'il y a 3 causes principales
aux dispersions:

1. Dispersion due ä l'imprecision dans les donnees relatives aux essais (dimensions

de la section droite — qualites des materiaux dont on ne connait
qu'une valeur moyenne, etc.).

2. Dispersion systematique due au mode operatoire des differents experimen-
tateurs. L'examen detaille des resultats montre que les essais d'un meme
auteur se groupent autour d'un axe moyen souvent assez different de l'axe
general d'un meme type d'essais. Cette difference est principalement due

au mode de determination de la resistance du beton.
3. Dispersion due ä la difference de la qualite des materiaux de la poutre

essayee et des eprouvettes temoins. II est evident que les materiaux du
beton arme et principalement le beton, presentent des variations de
resistance assez prononc^es. De ce fait, la resistance du beton ou de l'armature
de la poutre essayee ne sont pas egales ä la moyenne des eprouvettes
preievees pour determiner ces qualites.

Ces differences influent directement sur les moments de rupture qui
presenteront une dispersion ä peu pres proportionnelle ä Celles-ci.

Rossetti a publie dans les bulletins du Comite Europeen du Beton3)
une etude dans laquelle il a determine le rapport entre la Variation des

qualites des materiaux et la dispersion des moments de rupture.
II a montre que pour des poutres fortement armees celle-ci variait

proportionnellement ä la dispersion des resultats des essais de compression
du beton.

4. Enfin, une derniere cause de dispersion est due au choix arbitraire du
diagramme de compression (stress-block). Les essais ont montre que celui-ci
n'a pas une forme reguliere et ne peut etre determine exactement par des

coefficients. Les resultats de cette etude montrent que, toutes choses egales
d'ailleurs, le diagramme parabolique et le diagramme rectangulaire donnent
en flexion simple la meme exactitude.

3) Contribution ä l'etude de rinfluence des Dispersions experimentales sur la
precision du moment de rupture. Torino, Annexe II, Bulletin d'information n° 14, pp. 33
a 44 du Comite Europeen du Beton, Paris.
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La methode HHMH donne une dispersion tres legerement inferieure;
par contre, pour le diagramme triangulaire, la dispersion est notablement
plus grande.

En conclusion, pour la flexion simple, on peut estimer qu'etant donne le

grand nombre et l'importance des causes de dispersion, celles-ci sont normales

pour les methodes employant les diagrammes parabolique et rectangulaire
ainsi que pour celle de Hognestad et associes.

6. Hyper-resistances

La plupart des experimentateurs ont constate que pour des poutres faible-
ment armees on ne pouvait expliquer le moment de rupture qu'en admettant
dans l'armature des tensions superieures ä la limite elastique de l'acier.

C'est le surcroit de resistance qui en resulte que l'on a appele «Hyper-
resistance». Dans le but de verifier ce phenomene, nous avons groupe ensemble

toutes les poutres pour lesquelles le pourcentage reduit c'est-ä-dire £- —
etait plus petit que 0,1.

Dans l'ensemble des poutres rectangulaires simplement armees d'acier ä

palier, soit au total 709 poutres, 111 poutres ont un pourcentage reduit inferieur
ä 0,1. Les rapports moyens entre le moment observe et le moment calcule de

ces 111 poutres pour les quatre methodes envisagees varient entre 1,15 et 1,18.
Si nous retranchons ce groupe de poutres, les rapports moyens pour les

poutres rectangulaires simplement armees d'acier ä paher restantes passent:

pour la methode parabolique de 1,095 ä 1,059

pour la methode rectangulaire de 1,040 ä 0,997

pour la methode triangulaire de 1,181 ä 1,168

pour la methode HHMH de 1,081 ä 1,063

Pour l'ensemble de la flexion simple les rapports moyens deviennent

methode parabolique 1,06
methode rectangulaire 0,99
methode triangulaire 1,15
methode HHMH 1,04

Ces hyperresistances ne se constatent pas pour les aciers ecrouis si on tient
compte du diagramme propose pour ces aciers par la Commission n° 2 du
C.E.B. car d'apres ce diagramme la resistance de l'acier augmente au-delä
de la limite elastique conventionnelle.

Les hyperresistances dans le cas d'acier ä paher sont certainement dues
dans la majorite des cas au fait qu'au moment de la rupture la deformation
de l'armature a depasse le paher de ductilite et la tension dans l'acier est

superieure ä la limite elastique. II est cependant tres difficile de tenir compte
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de ce fait avec une certaine precision car la longueur du paher est tres variable
et les metallurgistes ne peuvent donner aucune garantie ä ce sujet. II semble

donc que jusqu'a nouvel ordre, il est preferable de considerer ces hyperresistances

comme une securite supplementaire.

7. Conclusions

Nous avons vu qu'en ce qui concerne les dispersions, les trois methodes

parabolique, rectangulaire et HHMH sont equivalentes. Les dispersions de la
methode triangulaire sont nettement plus grandes. Ceci prouve que le

diagramme des tensions donnees par les trois methodes citees est meilleur que le

diagramme triangulaire des tensions. Les ecarts quadratiques etant relativement

petits, on peut admettre que la forme des diagrammes decoulant des

trois methodes citees ne s'ecarte pas beaucoup de la realite.
Mais en dehors des dispersions il y a heu de se preoccuper egalement du

resultat moyen.
Si l'on ne tient pas compte des cas d'hyperresistances, la methode rectangulaire

donne en flexion simple un rapport moyen de un pour cent inferieur ä
l'unite. Elle est donc legerement trop favorable. La methode parabolique donne
dans l'ensemble un rapport moyen superieur de 6% ä l'unite. Pour toutes les

categories de poutres, sauf quelques rares exceptions, ce rapport est superieur
ä 1.

On peut dire la meme chose pour la methode HHMH mais ici le rapport
moyen d'ensemble est superieur de 4,0% ä l'unite.

Les methodes parabolique et HHMH sont donc des methodes süres. Mal-
heureusement, elles sont toutes deux assez compliquees; notamment, l'emploi
du diagramme parabolique est assez malaise quand la section de la poutre
n'est pas rectangulaire. C'est pourquoi beaucoup d'auteurs preferent la methode
rectangulaire qui donne des resultats peu differents.

Cependant, il est prudent dans ce cas d'y apporter certains correctifs. II
semble en effet que le diagramme rectangulaire etendu ä toute la zone
comprimee donne des resultats trop favorables pour de forts pourcentages d'armature

ou en cas de flexion composee c'est-ä-dire pour les cas oü la zone comprimee

s'etend sur la majeure partie de la section.
D'autre part, les travaux de Rüsch ont montre que l'influence de la duree

d'application de la charge etait d'autant plus sensible que l'etendue relative
de la zone comprimee etait plus grande. Notamment des charges centrees
maintenues pendant une longue duree provoquent la rupture pour des tensions
uniformement reparties qui se rapprochent de 0,75 n0.

C'est en se basant sur les considerations qui precedent que le Comite
Europeen du Beton a preconise dans le cas d'emploi du diagramme rectangu-
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laire la regle suivante qui limite le moment reduit m T-p— pris par rapport
ä l'armature tiree ou la moins comprimee ä 0,375:

«On obtient aussi des resultats concordant avec rexperimentation reunie
en utilisant, pour la flexion simple et composee, un diagramme rectangulaire
des tensions, la tension uniforme etant prise egale ä la tension de rupture sur
cylindre, comme eile a ete definie par le C. E. B., pour autant que la profondeur
du rectangle ne depasse pas 50% de la hauteur utile h.

Pour des profondeurs plus grandes (> 0,5 h) allant jusqu'a l'infini pour la
compression simple, on doit reduire la tension umforme du rectangle, de facon
ä maintenir constant le moment des tensions de compression sur le beton par
rapport ä l'armature tendue ou la moins comprimee, tel qu'il est obtenu avec
une profondeur de 0,5 h. On tient compte ainsi de l'effet des charges de longue
duree et du mode d'application des charges. Ceci permet, dans la plupart des

cas, de determiner les armatures, sans devoir considerer l'equation de compa-
tibilite (hypothese de planeite des sections).

Dans les autres cas, et notamment si on desire tenir compte de l'augmentation

de resistance que donnent les aciers ecrouis au-delä de leur limite d'elasticite

conventionnelle, on peut utiliser l'hypothese de planeite des sections

pour determiner la deformation de l'acier et la contrainte correspondante, en
considerant que le rectangle defini ci-dessus s'etend sur 75% de la zone soumise
ä un raccourcissement.»

Nous pensons que l'etude statistique qui precede a permis de voir plus
clair dans la question de la determination du moment de rupture et de degager
des regles pratiques.
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Resume

Quatre methodes de calcul ä la rupture des pieces en beton arme soumises
ä flexion simple ou composee ont ete comparees avec l'ensemble des resultats
d'essai publies dans la litterature, soit 1553 essais utilisables. Ces essais portent
sur des pieces ä section rectangulaire, en te ou en te renverse, possedant une
armature simple ou double faite d'acier ä paher ou ecroui.
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Les quatre methodes de calcul sont basees sur les deux equations d'equilibre,
la loi de conservation des sections planes et les proprietes du beton et des aciers
mis en oeuvre, telles qu'elles ont ete precisees par le Comite Europeen du
Beton. Elles different uniquement par la forme admise pour le diagramme des

tensions dans la zone comprimee du beton; les formes etudiees sont: la parabole,

le rectangle, le triangle, et la loi de distribution proposee par Hognestad.
Hanson et Mc Henry. Les calculs ont ete executes ä l'aide d'un programme
unique sur un ordinateur IBM 650. Le memoire donne, pour les diverses cate-

gories de poutres essayees, les moyennes et dispersions du rapport r moment
de rupture observe / moment de rupture calcule.

L'etude montre que l'emploi du diagramme parabolique ou de la methode
HHMH permet de determiner le moment de rupture avec une bonne approximation

et une legere securite. Au contraire, on ne peut employer un diagramme
rectangulaire qu'avec certaines restrictions, notamment en limitant le moment
reduit maximum des tensions sur beton par rapport ä l'armature tendue ä 0,375.

Zusammenfassung

Vier Methoden der Bruchberechnung von Eisenbetonteilen unter einfacher
oder zusammengesetzter Biegung wurden mit einer Zusammenstellung der in
der Literatur publizierten Versuchsresultate, von denen 1553 verwendbar
waren, verglichen. Diese Versuche umfassen Rechteck-, T- oder ^-Querschnitte

mit einfacher oder doppelter Bewehrung aus normalem Flußstahl
oder gerecktem Stahl.

Die vier Berechnungsmethoden beruhen auf den zwei Gleichgewichts-
gleichungen, dem Gesetz der eben bleibenden Querschnitte und auf den
Eigenschaften des verwendeten Betons und Stahls, wie sie durch das europäische
Komitee für den Beton festgelegt wurden. Sie unterscheiden sich nur in den
verschiedenen Annahmen für die Spannungsverteilung im Betondruckbereich:
die untersuchten Formen sind: die Parabel, das Rechteck, das Dreieck und
das von Hognestad, Hanson und McHenry vorgeschlagene Verteilungsgesetz.

Die Rechnung wurde anhand eines einzigen Programmes auf einem
IBM-650-Gerät durchgeführt. Die vorliegende Arbeit gibt für die verschiedenen

Kategorien untersuchter Träger die Mittelwerte und die Streuungen der
Verhältniszahl r beobachtetes Bruchmoment / berechnetes Bruchmoment.

Die Untersuchung zeigt, daß die Verwendung des parabolischen Diagrammes

oder der HHMH-Methode die Berechnung des Bruchmomentes mit guter
Näherung und leichter Sicherheit gestattet. Dagegen darf das rechteckige
Diagramm nur mit gewissen Einschränkungen verwendet werden, hauptsächlich

indem das maximale reduzierte Moment der Betonspannungen bezogen
auf die Zugarmierung mit 0,375 begrenzt wird.
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Summary

Four methods for calculating the breaking strength of reinforced concrete
members subjected to simple or Compound bending have been compared with
the test results published in the literature and comprising a total of 1553

usable tests. These tests relate to members having a rectangular, T, or inverted-
T section, with a single or twin reinforcement made of mild steel or high-
tension steel.

The four methods of calculation are based on the two equilibrium equations,

the law of the conservation of plane sections and the properties of the
concrete and steels employed, as defined by the European Committee on
Concrete. They differ solely in the form adopted for the diagram of the stresses
in the part of the concrete under compression; the forms studied were: the
parabola, the rectangle, the triangle and the distribution law suggested by
Hognestad, Hanson and McHenry. The calculations were carried out by
means of a single programme on an IBM 650 Computer. For the various types
of beam that were tested the publication gives the mean values and the degrees
of scatter of the ratio r observed moment of rupture / calculated moment
of rupture.

The study shows that by using the parabolic diagram or the H.H.M.H.
method it is possible to determine the moment of rupture to a close approximation

and with a slight margin of safety. On the other hand, a rectangular
diagram can only be employed with certain restrictions, notably by limiting
the maximum reduced moment of the stresses in the concrete in relation to
the reinforcement under tension to 0.375.
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Application de la methode semi-probabiliste au calcul des dimensions
des constructions en acier

Anwendungen der halbprobabilistischen Methode zur Dimensionierung von
Stahlkonstruktionen

Application of the Semi-Probabilistic Method for Determining the Dimensions of
Steel Structures

W. WIERZBICKI
Prof. Dr., Membre de TAcademie polonaise des sciences, Varsovie

La methode semi-probabiliste pour la determination de la securite des

constructions tire son origine de la methode probabiliste publiee par l'auteur
en 1936 [1], Cette derniere est basee sur l'equation

Q'-Q p (1)

oü le Symbole p designe Vindice de sdcurite, entendu comme probabilite qu'une
ruine de la construction ne se produise pas. En parlant de ruine, nous ne
supposons pas absolument un effondrement de la construction, mais seulernent
l'avenement d'un etat des choses que nous ne voulons pas toierer, comme
p.ex. le depassement de la limite de plasticite par les contraintes de l'ouvrage.

Le Symbole Q signifie dans l'eq. (1) la probabilite que la contrainte limite
(Tg en un point donne de la construction ne depasse pas la contrainte R ä la
limite de plasticite; nous appelons contrainte limite la contrainte

", *o(l+Z«) (2)

oü nous designons par a 1'aecroissement limite de la contrainte a0 au point
donne de la construction, contrainte cr0 calculee d'apres les formules courantes
de la resistance des materiaux et de la theorie des constructions; le pourcentage
d'aecroissement a est dans ce cas provoque par la realisation incomplete de
l'une des hypotheses servant de base au calcul de la construction.
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Le Symbole Q' designe dans l'eq. (1) le produit

ß' nw4

Ib4

(3)

oü coi exprime la probabilite que la valeur limite a soit inferieure ä c fois l'ecart
moyen de la valeur o-0.

Comme nous le voyons, l'eq. (1) aussi bien que la formule (3) sont basees

sur le theoreme bien connu de la multiplication des probabilites. Le sens de

l'eq. (1) peut etre illustre ä l'aide de la fig. 1.

1

maxR

Fig. 1.

La figure represente la courbe de dispersion des contraintes R ä la limite
de plasticite en traction. Les ordonnees du diagramme expriment ici la densite
des probabilites, et l'aire hachuree — la probabilite que la valeur R donnee
soit comprise entre les valeurs R et R + dR. Nous entendons ici la courbe en

tant que courbe de Gauss ou de Pearson du 3e genre, par exemple.
L'aire GG'O'b de la figure exprime la probabilite que la contrainte R

ä la limite de plasticite soit plus grande que la contrainte limite ag —
representee par le segment OG. L'aire GG' O'b exprime donc la probabilite Q

dont nous venons de parier.
Nous devrions en principe admettre ä priori l'indice de securite p en nous

appuyant sur la statistique des ruines des constructions. Cependant, pour les

cas oü la statistique dont nous disposons est insuffisante, nous pouvons com-

parer — afin de determiner p — la probabilite de ruine de la construction, ou
de l'un de ses elements, ä la probabilite d'autres catastrophes mieux etudiees
du point de vue statistique, p.ex. ä la probabilite d'incendies, de morts
humaines, d'inondations etc. Nous etablissons donc la comparaison en
considerant les esperances mathematiques des effets economiques des deux

catastrophes suivant la formule

Kb(l-p) K0Po (4)
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oü Kb signifie les pertes que provoquerait la ruine d'un element de construction

et p0 la probabilite que se produise la catastrophe avec laquelle nous

comparons la ruine de la construction donnee; K0 — designe les pertes
economiques correspondantes.

Nous devons remarquer neanmoins que l'eq. (4) ne nous permet pas
toujours de determiner d'une facon appropriee l'indice de securite, car, d'une
part, ce ne sont pas toujours seulernent des facteurs economiques qui entrent
en jeu pour la determination de p, et, d'autre part, parce que les facteurs
economiques apparaissant dans cette equation ne peuvent pas toujours etre
convenablement precises.

Afin de determiner la contrainte admissible k — pour une construction
donnee — nous introduisons dans l'eq. (2) a0 k, et nous calculons la probabilite

Q en partant de l'equation admise pour la courbe de probabilite. L'eq. (1)
devient ainsi une equation par rapport ä k.

En appliquant l'eq. (1) ä la pratique de l'ingenieur, on a remarque que
les coefficients <x n'ont generalement pas un caractere marque de grandeurs
aleatoires, c'est pourquoi la grandeur Q' et les grandeurs a^, peuvent etre
prises egales ä l'unite. La methode probabiliste pour la determination de la
securite des constructions prend dans ces conditions un caractere qui n'est
probabiliste qu'ä demi — donc semi-probabiliste [2].

La difficulte principale, rencontree lors de l'application de la methode
semi-probabiliste ä la determination des dimensions des constructions consiste,
comme nous 1'avons dejä remarque, dans l'etablissement de l'indice de securite
p. Nous presenterons ci-dessous les progres nouveaux dans ce domaine.

Dans les cas oü nous ne sommes pas ä meme de fixer le degre de securite
devant etre applique ä l'execution d'une construction donnee, la methode
semi-probabiliste nous fournit neanmoins le moyen d'etablir la grandeur de la
contrainte admissible appropriee, que nous traitons ici comme devant repondre
aux conditions de securite et d'economie optima. A ces fins, nous calculons les
contraintes admissibles pour un element de construction donne sur la base
d'une serie de diverses valeurs de l'indice de securite p. En nous basant sur
les contraintes admissibles k que nous obtenons de cette maniere, nous
calculons les poids g correspondants de l'element de construction donne ou bien
les frais de son execution. Nous reportons ensuite sur l'axe des ordonnees d'un
diagramme les valeurs particulieres des indices de securite p, et sur l'axe des

abscisses, les frais ou les poids g correspondants; nous obtenons ainsi une
courbe qui nous permet de trouver la valeur optimum de p. La contrainte
admissible cherchee correspondra ä cette valeur [3].

Un exemple d'une teile courbe est donne ä la fig. 2. Les calculs ont ete
executes pour une poutre en double T reposant sur deux appuis simples, de
6 m de portee, executee en acier polonais «37» (resistance i? 3700 kg/cm2).
La dependance entre les indices de securite p et les valeurs correspondantes
de la contrainte R ä la limite de plasticite a ete prise sur la base de la courbe
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de Gauss et le depassement de la limite de plasticite etait considere* comme
critere de ruine. La somme 1 + 2a etait prise dans les calculs comme ögale
ä 1,61, ce qui sera motive ci-dessous.

*<<**'
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////
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Fig. 2.

Le diagramme obtenu represente une ligne brisee AbC. La dependance
entre les grandeurs p et g exprimee par le diagramme doit etre consideree

comme 1'expression de la dependance entre la securite de la poutre et le coüt
de la construction. Sur la base du diagramme nous trouvons que c'est le

point b, donc la contrainte admissible &=1405 kg/cm2 et l'indice de securite

P 0,845 qui repondent ä la condition optimum.
Nous demontrerons ensuite que la methode semi-probabiliste nous permet

d'eiever les contraintes admissibles, meme si nous prenons comme point de

depart pour la determination de ces contraintes les normes obligatoires du

pays au moment donne.
La methode semi-probabiliste assure la construction contre la ruine en

quelque sorte de deux facons: d'un cote, par l'introduction des coefficients
d'aecroissement des contraintes a, de l'autre, par le choix d'un indice de

securite approprie p. Ces deux aspects, qui tendent vers le meme but, sont en

principe independants l'un de l'autre. Cependant, si nous ne disposons pas
de donnees statistiques süffisantes qui se rapportent au type donne de
construction, l'introduction d'une certaine dependance mutuelle entre ces deux

aspects nous facilite la determination de contraintes admissibles appropriees.
Notamment, si toutes les causes pouvant influer sur 1'aecroissement de la

contrainte a0 nous etaient connues, la contrainte limite ag devrait etre
consideree comme egale ä max R, et nous pourrions donc obtenir la contrainte
admissible k ä l'aide de l'equation

&(l + max2a) maxiZ. (5)

Cependant, comme il n'est pas possible de saisir toutes ces causes exclusivement

ä l'aide de coefficients a, nous devons introduire un certain indice de
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securite p en tant que probabilite de l'apparition de la difference

D max R- (1 + 2«) (6)

causee par des circonstances qui ne peuvent etre exprimees ä l'aide de coefficients

OL.

Nous supposons ensuite que toutes les constructions projetees conforme-
ment aux normes actuellement en vigueur ont rempli leur destination et que
leur indice de securite p n'etait donc pas trop petit, tout en tenant compte de

la contrainte admissible d'apres les normes pour l'acier «37», ä savoir k= 1400

kg/cm2, pour la traction et pour la flexion.
En tenant compte de ces circonstances, nous cherchons ä choisir pour la

barre tendue un indice de securite p} qui reponde au mieux sur la courbe de

probabilite pour R ä la contrainte limite ag calculee d'apres la formule (2) sur
la base de la contrainte admissible cr0 &=1400 kg/cm2. En choisissant cet
indice, nous retenons la grandeur p 0,S car, sur les courbes de probabilite,
la meme valeur J? 2330 kg/cm2 repond ä l'aire ß 0,8 que l'on ait ä faire
ä la courbe de Gauss ou ä la courbe de Pearson du 3e genre, ou meme au
polygone ou triangle de probabilite; autrement dit la grandeur p 0,S ne
depend pas de la maniere de traiter les donnees statistiques. Remarquons
aussi que la precision des lectures est la plus grande pour les parties des courbes
de probabilite qui repondent ä Q 0,8.

Les coefficients a sont calcules d'apres les formules de la resistance des

materiaux pour diverses barres tendues, differant entre elles par leur type et
par les dimensions de leur profil; ces coefficients different entre eux, il est vrai,
pour les barres particulieres, mais nous choisissons ceux d'entre eux qui
repondent au mieux ä tous les types de barre tendue. Nous devons en meme
temps chercher ä ce que la somme £]a, conformement aux considerations
ci-dessus, soit aussi proche que possible de la grandeur obtenue d'apres la
formule (2) pour (j0 k=U00 kg/cm2. Pour p 0,8 et 0^ 2330 kg/cm2 la
somme £]a 0,67.

Admettons que tous les coefficients oc aient ete pris en consideration dans
le calcul et que toutes les barres soumises ä la traction et calculees sur la base
de la contrainte admissible £=1400 kg/cm2 et des charges prevues par les

normes aient subi l'epreuve; nous pouvons alors modifier les valeurs des coefficients

ol, de teile facon que leur somme soit effectivement egale ä 0,67. Nous
obtenons ainsi les coefficients suivants:

0^ 0,02 cause par les differences de valeur du coefficient d'elasticite E des

elements constitutifs d'une barre composee.
a2 0,01 cause par les ecarts par rapport ä l'hypothese de Bernoulli-Navier.
a3 0,05 cause par les erreurs sur les dimensions des sections transversales

de la barre.
«4 0,05 cause par l'excentricite du point d'application de la force longi-
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tudinale, due aux erreurs sur les dimensions des sections
transversales de la barre.

a5 0,05 cause par l'ecart de l'axe de la barre par rapport ä une droite.
a6 0,06 cause par l'excentricite due aux defauts de fixation des elements

constitutifs d'une barre composee.

a7 0,08 cause par l'excentricite due ä la difference de longueur des ele¬

ments constitutifs d'une barre composee.
a8 0,08 cause par l'extension preliminaire.
a9 0,05 cause par la flexion de la barre pendant le transport.

a10 0,07 cause par la difference de temperature entre les elements consti¬

tutifs d'une barre composee.

an 0,10 cause par l'encastrement de la barre aux nceuds.

a12 0,05 cause par la flexion de la barre par son poids mort.

En connaissant les coefficients d'aecroissement des contraintes a ainsi que
l'indice de securite p nous pouvons augmenter les contraintes admissibles

pour les barres tendues qui se trouvent dans des conditions meilleures que
Celles pour lesquelles les coefficients a ont ete determines.

Si p. ex. la barre tendue n'est pas encastree ä son extremite, le coefficient

an 0, £]a 0,57, et la contrainte admissible calculee d'apres la formule (2)

s 'eleve ä &=1484 kg/cm2. Si le transport des elements en acier est effectue
avec grand soin, on peut admettre a9 0, ^ a 0,62 et la contrainte admissible
s 'eleve alors ä k= 1437 kg/cm2, et ainsi de suite.

Quant aux contraintes de flexion admissibles, nous considererons une poutre
en double T laminee, element en acier le plus frequemment usite ä cet effet.

Les coefficients a suivants entrent ici en ligne de compte:

0^ 0,02 qui a le meme sens que pour la traction.
a2 0,10 cause par les ecarts par rapport ä l'hypothese de Bernoulli-Navier.
a3 0,07 cause par les erreurs sur les dimensions des sections transversales

de la poutre.
a4 0,10 cause par l'excentricite et l'obliquite de la charge.

a5 0,15 cause par le manque de parallelisme des appuis de la poutre.
a9 0,05 cause par la flexion due au transport.

a10 0,12 cause par les differences de temperature entre les faces superieure
et inferieure de la poutre, en tenant compte de la friction sur l'appui
mobile.

2 a est donc egal dans ce cas ä 0,61.
Si nous considerons toujours comme critere de ruine le depassement de la

limite de plasticite par la contrainte limite ag et si nous voulons obtenir la

meme securite pour la poutre flechie que pour la barre tendue, nous admettrons,
comme ci-dessus, p 0,8. Nous trouverons donc, d'apres la formule (2) pour
0-^ 72 2330 kg/cm2 et ]?oc 0,61, que la contrainte admissible normale ä la
flexion k s'eievera ä 1452 kg/cm2.
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Si nous sommes sürs que la charge de la poutre ä double T est appliquee
sans obliquite, nous aurons a4 0, et 27a 0,51 et la contrainte admissible
vaudra k 1543 kg/cm2.

Un raisonnement pareil nous permet d'omettre dans nos calculs certains
autres coefficients a.

La contrainte admissible pour les barres d'acier soumises ä la compression
est, comme on le sait, exprimee par la formule

kb kcK (7)

oü kc designe la contrainte admissible sans tenir compte du flambage et k, le

coefficient de diminution de cette contrainte pour le cas de flambage.
La contrainte admissible kc, ordinairement fixee comme egale ä la

contrainte de traction k, differe de cette derniere du point de vue de la methode
semi-probabiliste. Cela resulte du fait qu'une application excentrique de la
force longitudinale et une flexion initiale de la barre causent une flexion
supplementaire et un aecroissement correspondant des contraintes. Nous devons
donc, aux douze coefficients a correspondant ä la traction et conservant leur
valeur pour la compression, en ajouter un treizieme a13 pour tenir compte
de la flexion supplementaire mentionnee. Conformement aux formules de la
resistance des materiaux, nous etablissons ce coefficient pour un type commun
de barre d'acier comme egal ä a13 0,10.

Nous illustrerons les avantages obtenus par l'application de la methode
semi-probabiliste aux calculs des constructions en acier par un exemple de

poutres ä treillis de pont de chemin de fer secondaire ä une voie (fig. 3),
executees en acier «37».

5*8.08:4040

Fig. 3.

Les treillis ont ete projetes pour des contraintes admissibles de 1400 kg/cm2
et leur poids s'elevait ä 24954 kg.

Nous posons que, pour la determination des dimensions transversales des
elements des treillis ainsi que de leur poids sur la base de la contrainte admissible

k= 1400 kg/cm2, la somme des coefficients d'aecroissement de contrainte
2<*j etait egale ä 0,67, comme nous l'avons etabli ci-dessus.

Supposons ensuite que le pont en question ait ete projete avec un soin
particulier, que son execution fut tres bonne et que les conditions de transport
n'aient pu avoir une mauvaise influence sur l'etat des elements apportes sur
le chantier. Dans ces conditions, une partie des coefficients d'aecroissement
des contraintes doit etre consideree egale ä zero, notamment a5 a6 a7 a8

«« 0.
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Le reste des coefficients a donne une somme £]a 0,35 et d'apres la
formule (2) nous trouvons la contrainte admissible pour les elements tendus du
treillis:

oooa
* "W 1725kg/cm2' (8)

Pour les elements comprimes (sans tenir compte du flambage), la somme
£]a doit etre augmentee du terme a13 et cette somme passera ä £]a 0,45. La
contrainte correspondante se reduira ä 1600 kg/cm2.

En tenant compte du flambage, nous aurons donc une contrainte admissible

pour les elements particuliers soumis ä la compression:

kb 1600 k kg/cm2. (9)

En determinant les dimensions transversales des treillis et leurs poids nous
obtenons sur la base des contraintes (8) et (9) 22217 kg.

L'application de la methode semi-probabiliste nous permet ainsi d'econo-
miser 11% du poids de l'acier. Le changement de poids des töles de liaison
n'a qu'une tres petite influence sur cette relation.

En supposant que l'indice de securite p ainsi que les coefficients d'aecroissement

des contraintes a ci-dessus aient supporte l'epreuve du temps pour les

constructions executees en acier «37», nous pouvons determiner la contrainte
admissible k pour les constructions executees en acier «52» (resistance R
5200 kg/cm2), plus rarement usite pour les constructions.

Dans nos calculs precedents, nous avons pris l'indice de securite p 0,8

pour la raison (entre autres) que la meme valeur de crg R correspond ä l'aire
ß 0,8 independamment de ce que nous prennions comme courbe de probabilite

la courbe de Gauss, la courbe de Pearson du 3e genre, le polygone
ou le triangle de probabilite. La question se presente de la meme facon lorsqu'il
s'agit d'acier «52».

Nous trouvons notamment, par interpolation (en nous servant de la courbe
de Gauss, aussi bien que de la courbe de Pearson) que la meme valeur
<jg J? 3834 kg/cm2 correspond ä l'aire ß 0,8 ainsi qu'ä l'indice de securite

p 0,8 independamment de la maniere de traiter les donnees statistiques.
En posant donc 0^ 3834 kg/cm2, p 0,S et (1 +£]a) 1,67 nous trouvons

d'apres la formule (2) la contrainte admissible pour une barre tendue d'acier
«52» comme egale ä & 2290 kg/cm2.

Cette contrainte devrait cependant etre quelque peu diminuee (de 4,5%
au plus), vu la quantite relativement limitee (273) des experiences qui ont
servi ä la calculer.

En agissant de meme que pour l'acier «52», nous pouvons determiner les

contraintes admissibles pour des constructions executees en d'autres aciers

et en d'autres metaux. Nous pouvons aussi appliquer la methode semi-

probabiliste pour la determination de la securite des constructions ä d'autres
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constructions en dehors de celles executees en acier et particulierement ä

Celles en beton arme.
C'est dans ces directions que la methode tend ä se developper.
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Resume

La methode semi-probabiliste, qui tire son origine de la methode probabiliste
pour la determination de la securite des constructions, publiee par l'auteur
en 1936, peut etre ä present appliquee ä la Solution de problemes concrets.
Elle est basee sur des theoremes de la theorie des probabilites ainsi que sur
les notions de contrainte limite ag, des coefficients d'aecroissement de
contrainte a et de l'indice de securite p.

L'indice de securite p, en tant que probabilite qu'une ruine d'une
construction ne se produise pas, ne peut parfois etre determine directement d'apres
les statistiques de ruines des constructions, ä cause de l'insuffisance de ces

statistiques. Nous avons recours alors ä la determination des dimensions des

constructions sur la base de la securite et de l'economie optima, ou bien nous
partons de la supposition que toutes les constructions executees conformement
aux normes en vigueur ont rempli leur destination, ce qui nous permet de

determiner les coefficients a. Si la construction donnee se trouve dans des

conditions meilleures que les conditions moyennes, nous pouvons omettre
certains coefficients a, et les contraintes admissibles peuvent etre augmentees
de ce chef.

En appliquant les grandeurs p et a, etablies pour les constructions existan-
tes, ä une nouvelle sorte d'acier, nous sommes ä meme de determiner aussi
les contraintes admissibles pour cet acier.

Zusammenfassung

Die halbprobabilistische Methode, die sich aus der durch den Verfasser im
Jahre 1936 veröffentlichten probabilistischen Methode zur Untersuchung der
Sicherheit der Baukonstruktionen ergibt, kann bereits bei konkreten Lösungen



138 W. WIERZBICKI Ib 4

angewandt werden. Sie stützt sich auf die Feststellungen der Wahrscheinlichkeitsrechnung

sowie auf die Begriffe der Grenzspannung ag, der Koeffizienten
des Spannungszuwachses a und des Sicherheitsindex p.

Da die Statistiken über die Baukatastrophen meist unvollständig sind,
kann der Sicherheitsindex p als Wahrscheinlichkeit, daß kein Einsturz des

Bauwerkes erfolgen wird, oft nicht unmittelbar bestimmt werden. Wir greifen
dann auf die Dimensionierung des Bauwerks auf Grund optimaler Sicherheit
und Wirtschaftlichkeit zurück, oder auch auf die Voraussetzung, daß alle
nach den geltenden Normen ausgeführten Bauten ihre Bestimmung
vorschriftsgemäß erfüllt haben. Dies gibt uns die Möglichkeit, die Koeffizienten a
festzusetzen. Wenn das Bauwerk sich unter besseren als den durchschnittlichen
Bedingungen befindet, können wir gewisse Koeffizienten a übergehen, wobei
sich dann die zulässigen Spannungen erhöhen.

Durch Anwendung der Größen p und ol, die für vorhandene Konstruktionen
festgesetzt werden, auf eine neue Stahlsorte, können wir auch für diese die

zulässigen Spannungen bestimmen.

Summary

The semi-probabilistic method, which derives from the probabilistic method
for the investigation of the safety of structures — published by the author in
1936 —, can already be applied to the Solution of actual problems. It is based

on theorems of the calculus of probabilities and on the notions of limiting
stress org, stress increase coefficients ol, and the safety index p.

The safety index p — the probability that collapse of a building will not
occur — can sometimes not be directly determined from the statistics of the
collapse of buildings because such statistics often are incomplete. In such

cases we have recourse to determining the structural dimensions on the basis

of optimum safety and economy or, alternatively, we may start from the
assumption that all structures built in aecordance with the Standard
speeifications that are in force have duly fulfilled their purpose. This enables us to
determine the coefficients a. If the strueture under consideration conforms to
better-than-average conditions, then certain of the coefficients a may be

omitted, and the permissible stresses are increased in virtue thereof.

By applying the quantities p and ol, as established for existing structures,
to a new type of steel, we shall be able to determine the permissible stresses

for this steel as well.
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Introduction

In recent years structural analysts were confronted more often than before
with the problem of predicting the effects of heat inputs on structures. This
trend was brought about by such developments as atomic reactor technology,
high speed aircraft and missile technology, and also by an increased use of
welded connection in structures.

One of the most important thermal effects in structures consists in the
occurence of thermal stresses, produced by heat inputs or temperature changes.
Thus, the structural engineer is required to determine such thermal stresses,
basing himself on the temperature distribution in the strueture, which, in
turn, has to be determined first from the given boundary conditions of the
thermal problem. This latter task, as a rule, will be a rather unfamiliar one for
the structural engineer, since the temperature distribution, which is governed
by the empirical heat conduetion equation, is of a type (diffusion) which does

not lend itself to treatment by commonly employed methods, in particular
energy methods, which have proved to be powerful tools in structural analysis.

This rather unpleasant feature of thermal stress analysis was removed
recently by Biot [1,2,3], who showed that by a suitable definition of two
quantities, namely the thermo-elastic potential and the dissipation function,
a variational formulation of either the coupled or separate problems of thermo-
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elasticity and heat conduction becomes possible. A principle, complementary
to Biot's formulation, was established by the present writer [4].

The purpose of the present contribution is to show that a complete exten-
tion of the energy principles, available in isothermal structural analysis, to the
case of thermo-elastic and temperature distribution problems is possible.

The existence of such an analogy, for the sake of brevity, will be demons-
trated here with the example of a uniaxial state of stress and for the simplest
possible loading, boundary conditions and material properties.

The three energy principles discussed in the sequel represent extentions
of Green's principle for displacements (which yields equilibrium equations),
Castigliano's principle for stresses (which yields, in the formulation used here,
Hooke's law) and Reissner's generalized principle for displacements and
stresses [5]. By way of introduction, these principles are restated first for the
case of isothermal elasticity. The formulation and terminology are borrowed
from a recent summary by Reissner [6],

On Energy Theorems in Isothermal Elastic Structural Analysis

In isothermal elastic structural analysis, as exemplified by the onedimen-
sional problem of an elastic bar of length l in compression (or extention), we
consider first the following two classical energy theorems.

The principle of minimum strain energy states, that the equilibrium equations

are obtained by setting the Variation of the strain energy V, expressed
in terms of displacements, equal to zero.

In our case

2V =$Ee2dx, (1)
o

i i i

87= {Ee8edx= (Ep^8p^dx - fE^dx + EeSu]1» (2)
J J dx dx J ox2oo o

E is Youngs's modulus, € du/dx is the strain and u is the displacement.
The term on the boundary vanishes because the displacement is not to be

varied there, while the integrand yields the equation of equilibrium, in terms
of displacement, which is, in the absence of any body forces, d2u/dx2 0. This
manner of deriving the equations of equilibrium in the three-dimensional case

was first suggested by Green.
By contrast, in Castigiano's method the strain energy V is expressed in

terms of the stress er, i.e.
i

V j^dx (3)
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and the Variation yields
i

8V=j^8adx, (4)

0

if Hooke's law, o- Ee, is assumed to be valid. Integration by parts results in
i

8V - (u^dx + u8<j]l0. (5)

o

The integrand vanishes because the equilibrium equation in terms of stresses,

daldx 0, is assumed to be satisfied. If 8 V is set equal to zero, we obtain the
usual form of Castigliano's principle, which states that the partial derivative
of the strain energy with respect to an applied force equals the displacement
of the point of application in the direction of the force.

For the present purposes we prefer to use a different version of Castigliano 's

principle. We consider not only the strain energy but also the work of external
forces, as was done by Reissner [6], i.e.

i

W -j^dx + uaV0. (6)

0

The Variation of this expression results in
i

8W f --^8adx + u8G]lQ (7)

o

and after integration by parts

^-/(-T + reH' + HäT'*- <8>

0 0

The second integral vanishes, because the equilibrium equation is again
assumed to be satisfied, while the first integral yields a E e, i. e. Hooke's law.

Since a/E is the partial derivative of strain energy density with respect
to the stress a, Hooke's law can be interpreted as resulting from Castigliano's
principle. Now it is this derivative which yields the strain, through which the
corresponding stress does work. Or, in other words, Hooke's law expresses
Castigliano's principle, if applied to a unit volume of the material.

Reissner [3] has unified the two separate principles of Green and
Castigliano. He considered the strain energy in the form

'-/(¦•-£)* (9)
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and assumed, in the Variation process, the displacement and the stress as

being independent from each other. Such Variation, followed by partial
Integration, leads to

,r-J[(.-j)».-£,. dx + a8u]l0. (10)

If 8 V is set equal to zero, the coefficient of 8 er yields Hooke's law, while the
coefficient of 8 u yields the equilibrium equation.

On the basis of this unified principle, which furnishes both Green's and
Castigliano's results, Reissner was able to prove [6], that the former is a

minimum, while the latter is a maximum principle.

The Basic Equations of Thermoelasticity and Heat Conduction

The classical problem of the coupled elastic and thermal fields in the
uniaxial case is governed by the three equations

er E€-Eol6,

^ 0
dx ' (ii)

7
d2d dd m ^ de

dx2 dt dt

9 denotes here the excess temperature above a reference temperature Tr, a is
the coefficient of thermal linear expansion, k is the heat conduction coefficient,
c is the heat capacity per unit of volume, and t is the time.

It is customary to omit the "correction" term with de)'dt in the heat
conduction equation. This permits to solve first the temperature distribution
problem, which is then independent of the elastic problem, and then, in a

second step, to tackle the thermal stress problem on the basis of the first two
equations. For purposes of the present discussion, no particular simplification
is achieved by Omission of this term, and, in fact, the development is more
lucid if this term is retained. However, it is necessary to cast these basic

equations into a different form, introducing in this course several new coneepts.
The purely elastic stress, associated with elastic isothermal straining, is

denoted by t. We further define the "relative thermal displacement" h as the
ratio of the time rate of heat flow to the reference temperature, the "thermo-
elastic strain" y by means of the equation

dh _, du ..,_v -lTz + E«^ (12)

and the "thermal force" g such that the produet gh is the work done by g in
the "displacement" h.
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With the aid of these four new quantities r, h, y and g, the basic eqs. (11)

may be put into the form

t d t „ d 6

E ox ox

The first two equations of the above set represent an obvious reformulation
of Hooke's law and the stress-equation of equilibrium, using the definition
of stress r. Eliminating g in the third equation with the use of the fourth and

substituting h from the third into the last equation, the same form of the heat
conduction equation is obtained as in the set (11). p represents the time
Operator djd t and may be treated as a constant.

Generalization of Reissner's Variational Principle for Stresses and Displacements

In the present thermodynamic System of variables we have to deal with
3 dynamic quantities, r, 9 and g and 2 kinematic quantities, u and h.

Following Biot, we introduce his thermoelastic potential W in the form

W=T- +^ (14)

and his dissipation function D in the form

We now consider the energy expression

I =$(€T-yd + hg-W-D)dx (16)
o

and assume the dynamic and kinematic variables to be independent from
each other.

The Variation of 7, followed again by partial Integration, leads to

(17)

+ (>->-("%" dx + [(T-Ex9)8u + 98hy0.
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The integrated part vanishes, because neither displacement u nor h is varied
at the ends x 0, l. If the integrand is to vanish, the coefficients of all varied
quantities have to vanish, and this results in the five equations of the set (13).

We have thus generalized Reissner's principle for stresses and displacements

to the case of the coupled problem of thermoelasticity and heat
conduction.

Generalization of Green's Principle for Displacements

The independent variables are now the two displacements u and A. We
consider the expression

2IG=j\Ee> +^ + ^]dx. (18)
0

The first two terms express the thermoelastic potential W in terms of kinematic
variables, while the last term is the dissipation function D, also expressed in
terms of the associated kinematic variable.

To perform the Substitution from dynamic to kinematic variables in W
and D, the first, third and fifth equations of the set (13) were employed.

The Variation of IQ yields, after partial integration

»W[(-4^-$-+(££+£*M''
o (19)

XT T V
+ \^Eocy8u-^y8h[c c Jo

The integrand, set equal to zero, furnishes the second and fourth equations,
generalizing thus Green's principle for displacements.

Generalization of Castigliano's Principle for Stresses

The independent variables are now the three dynamic quantities r, 9 and g.

We consider the expression

21-/
i

r2 c92 kg2
~E + ~T~r + ^Tr_

dx + 2[uT-Eot9u + 9h]l0. (20)

Again, the integrand is nothing but the negative of the sum of the thermo-
dynamic potential and dissipation function, but now expressed in terms of
dynamic quantities.
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The Variation of Ic may be written as

»W[(-i+«)''-^*"-£K$H*]*
/|^*-£V(iF-*Hfc-

0

l (21)

+
o

The second integral vanishes because the equilibrium equations (second and
fourth equations ofthe set (13)) are assumed to be satisfied, while the vanishing
ofthe first integral yields the first, third and fifth equations ofthe basic set (13).

Concluding Remarks

Using the same line of thought as the one followed by Reissner [6] it can
be proved that in the extended variational theorem for "displacements" one
is concerned with a minimum problem, while in the extended variational
theorem for "stresses" one is concerned with a maximum problem. And just
as in the case of isothermal elasticity, the variational theorem for stresses
and displacements is no more than a stationary value problem. Details of
this proof in the general case will be dealt with by the present author elsewhere.

Biot's variational formulation [1,2,3] is recognized to be a "mixed"
principle, in the sense that it yields two equations, one being part of extended
Green's, and the other part of extended Castigliano's formulation.

All the energy theorems presented here for the special case of onedimensional
problems can easily be formulated for the general, three-dimensional bodies
and also for lumped Systems, such as framed structures.

Suitable procedures for the application of the basic energy theorems to
particular cases, as illustrated by Biot [2] in heat flow analysis, are still to be

developed.
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Summary

Some well-known energy theorems of structural analysis are generalized
for the case when a part of the stresses is due to thermal effects. These methods
assume that the temperature distribution is known. It is shown further that
the temperature distribution in the strueture itself may be determined by the
use of analogous energy theorems, which can be established for both steady-

state and transient conditions.

Resume

L'auteur g&i^ralise quelques propositions connues de la methode energetique

de la statique appliquee, pour le cas oü une partie des contraintes depend
des fluetuations de la temperature. Ces methodes de calcul supposent toutefois

une repartition connue de la temperature. L'auteur montre que cette
repartition peut etre determinee ä l'aide de propositions analogues, aussi bien

pour des conditions constantes que pour des conditions variables.

Zusammenfassung

Einige bekannte Sätze der Energiemethode der Baustatik werden
verallgemeinert für den Fall, da ein Teil der Spannungen von Temperaturwirkungen
abhängig ist. Diese Berechnungsmethoden setzen eine bekannte Temperaturverteilung

voraus. Es wird weiterhin gezeigt, daß die Temperaturverteilung
im System mit Hilfe analoger Sätze der Energiemethode bestimmt werden
kann, und zwar sowohl für gleichbleibende als auch für veränderliche
Bedingungen.
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Die Anwendung der Schalenstatik auf die Berechnung
von Bogenstaumauern

The Application of the Theory of Thin Shells to the Calculation of Arch Dams

L'application de la theorie des voiles minces au calcul des barrages-voute

BERNHARD GILG
Dr. Ing., Elektro-Watt, Zürich

1. Die verschiedenen Methoden zur Berechnung von Bogenstaumauern

Da die ersten Bogenstaumauern zur Hauptsache in engen Tälern errichtet
wurden, bezogen sich die entsprechenden ersten Berechnungen vor allem auf
ihre horizontale Tragfähigkeit, wobei die Mauer in verschiedene, voneinander
unabhängige Bogenträger zerteilt und diese unter dem vollen Wasserdruck
nach der elementaren Bogenstatik untersucht wurden. Eine Erweiterung dieser

Berechnungsart stellt die vielfach angewandte Balkenrostmethode dar, bei
welcher das Mauergewölbe durch zwei Tragsysteme, nämlich die horizontalen
Bogen und die vertikalen Konsolen, ersetzt wird. Die Wasserlast wird auf die
Balken und Bogenträger verteilt, so daß — je nach gewünschter Genauigkeit
— in den Kreuzungspunkten mehr oder weniger strenge Bedingungen erfüllt
werden müssen (z.B. Gleichheit der radialen Verschiebungen, evtl. zusätzlich
der tangentialen Verschiebungen und der WinkelVerdrehungen). Die Lösung
des Lastverteilungsproblems erfolgt mit Hilfe eines Gleichungssystems oder
nach dem als Trial-load-method bekannten Versuchsverfahren1). Ganz abgesehen

vom enormen Rechenaufwand kann nun aber diese Berechnungsmethode
nicht völlig befriedigen, da sie das eigentliche statische Wirken einer Bogen-
mauer nur ungenügend berücksichtigt. Für spezielle Mauerformen (z.B.
Zylinderschalen) wurden deshalb genauere Verfahren entwickelt, welche die

x) Boulder Canyon Project, Final Reports, Part V, Bull. 1.
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Schale als 2-dimensionales2) oder sogar 3-dimensionales3) Tragwerk betrachten.

Auf allgemeine Mauerformen sind diese Verfahren jedoch nicht ohne
weiteres anwendbar.

Während im allgemeinen die Vorprojektierung einer Staumauer durchaus
auf Grund einer einfachen Berechnung (z.B. mit einem einfachen Balkenrost
von 3 Bogen und einer Konsole, bei welchem nur die radialen Verschiebungen
berücksichtigt werden) vorgenommen werden kann, ist doch für die genaue
Kenntnis der Beanspruchungen im ausgeführten Bauwerk eine eingehende
Untersuchung wünschenswert, bei welcher die Schalenform streng berücksichtigt

wird und welche doch nicht einen allzu großen Rechenaufwand
erfordert.

2. Die Grundformeln einer beliebigen biegesteifen Schale

Bogenmauern besitzen im allgemeinen eine sehr komplizierte Schalenform.
Der horizontale Krümmungsradius sowie die Schalendicke variieren in den
meisten Fällen mit der Höhe, manchmal auch in horizontaler Richtung. Die
Zentren dieser Radien hegen auf einer räumlichen Kurve (vgl. Fig. 1). Dadurch
ergibt sich im allgemeinen in jedem Schalenpunkt auch eine vertikale Krümmung.

Um das Rechenproblem nicht allzu kompliziert zu gestalten, sind beim
Aufstellen der Gleichgewichtsbedingungen sowie der elastostatischen Beziehungen

Vereinfachungen durch Vernachlässigung kleiner Größen angezeigt. Es

Mauermittelflache-

tforizontalschnitte ^3

dfc
s /i \fä/01 N

ig
is> -üA -MIM

#/o
f / \

X *mSä*^ V /V /

-V

Felsm'derlag^ - '^.a,'
oder (Jmfangsfuge Zentrenlinie /

Fig. 1. Schematische Darstellung einer Bogenstaumauer.

2) Kister D., «Berechnung von Bogenstaumauern», Diss. T. H., Stuttgart 1956.

3) Allen (und weitere Verfasser), "Experimental and mathematical Analysis of
Arch Dams", Paper 6113 of the Inst, of Civ. Eng., London.



BERECHNUNG VON BOGENSTAUMAUERN 149

ist im folgenden nicht möglich, auf alle Vereinfachungen näher einzugehen,
doch sei hier festgestellt, daß diese auf eingehendem Studium von Berechnungen

bereits bestehender Mauern beruhen.

Fig. 2 zeigt ein aus einer Bogenmauer herausgeschnittenes Element der
Schalenmittelfläche, welches durch zwei Horizontalebenen und zwei Vertikalebenen

begrenzt wird. Die letzten schneiden sich in einer Achse, welche durch

\
oc \Nzdx+(Nzdx)'dz

M„dz

4Mxdz

Qzdx*(Qzdx)'dz
N,dz

iV„dx+(iVrXdx)'dz
Qxdz

Mzdx+(Mzdx)-dzW/ MdxHM\dK).dz
N„dz

Pw 4Mzdx

M„dx ////

XNxzdz+(NXZ dz) 'dxSSJ iv,*dx

Qxdz+(Qxdz)'dx

*%
NxdzKNtdzydx f ^fifito/ ll N

y i I\7 v /

N,dx

/ Mxzdz+(Mxzdz)'dx

Fig. 2. Schalenelement mit angreifenden Kräften und Momenten.

das Zentrum des horizontalen Krümmungsradius geht. Im Gegensatz zu
eigenthchen Kegel- oder Kugelschalen können wir bei Staumauern den Winkel
ol zwischen der z-Achse und dem Lot stets als klein voraussetzen. Deshalb ist
es ohne weiteres möglich, seine Variation in der horizontalen Richtung zu
vernachlässigen.

Als rechtwinkhges kartesisches Koordinatensystem definieren wir in jedem
Punkt:

x-Achse Horizontalachse (Verschiebung u),
y-Achse Flächennormale (Verschiebung v),
z-Achse Tangente senkrecht zur #2/-Ebene (Verschiebung w).

Der horizontale Krümmungsradius wird mit rx, der vertikale mit rz
bezeichnet. Aus den oben zitierten Voraussetzungen über a folgt, daß die Längen
des Flächenelementes d x und d z als konstant über die ganze Schale angesehen
werden können.
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In Fig. 2 sind sämtliche am Schalenelement angreifenden Schnittgrößen,
d. h. die Kräfte Nx, Nz, Nxz, Nzx, Qx und Qz sowie die Biegemomente Mx und
Mz und die Drillungsmomente Mxz und Mzx eingezeichnet, die letzten übrigens
als Vektoren (im Sinne einer Rechtsschraube). Ferner findet sich die äußere

Belastung, nämlich der in der Flächennormale wirkende Wasserdruck pw. Das

Eigengewicht wird hier nicht berücksichtigt, da es meist zur Wirkung gelangt,
bevor die Staumauer durch Injektion der Betonierfugen als ganzes zu wirken
beginnt.

Es ergeben sich folgende 6 Gleichgewichtsbedingungen:

t->- i *t/ s\ cos a ,T sina
z-Richtung N'x - Qx —- + Nxz —— + NZX 0, (1)

' ty. r~

Kräfte

Momente

y-Richtung -Q--E>-Nx^-Q'x-Pw =0, (2)
rz rx

z-Richtung n;-^*—Nx— + N'm =0. (3)
rz rx

um x-Achse M'JLZ-MX-^m-a + M'Z-QZ 0, (4)
rx

umy-Achse ^ - Mxz^ + {Nxz -Nzx) 0, (trivial) (5)
'z rx

um z-Achse -M'zx-M'x-Mxz-^ + Qx 0. (6)

Dabei wird die partielle Ableitung nach x durch ', diejenige nach z durch
symbolisiert.

Bei der Berechnung der Schnittgrößen in Funktion der Verschiebungen
u, v, w und ihren Ableitungen, auf deren Einzelheiten wir nicht eintreten
können, wurde der Einfluß der Krümmung sowohl auf den Spannungsverlauf4)
(nicht lineare Spannungsverteilung über den Querschnitt) als auch auf die

Beziehung zwischen Spannungen und Schnittgrößen berücksichtigt5). Dadurch
werden die strengen Formeln sehr kompliziert. Eine erste Vereinfachung ergibt
sich durch den Umstand, daß das Verhältnis aus Krümmungsradius und
Schalendicke d im allgemeinen ziemlich groß ist und daß der vertikale
Krümmungsradius den horizontalen meist stark übersteigt. Eine weitere
Vereinfachung resultiert aus der Tatsache, daß die Verschiebung v gegenüber der

Verschiebung u in den Vordergrund tritt und daß die Verschiebung w nur
eine untergeordnete Rolle spielt.

In den nachstehenden Beziehungen ist auch der Temperatureinfluß
berücksichtigt. Dabei bedeutet tm die gleichmäßig über den ganzen Querschnitt

4) Vgl. Flügge, Statik und Dynamik der Schalen, 2. Auflage, S. 172ff.
m l v\'o)Z.B.Nx $ox(l + y-)dy.

-M9 \ rz '-d/2
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erfolgende positive Temperaturänderung in °C, während Atjd die positive
Änderung des Temperaturgefälles zwischen Wasser- und Luftseite in °C/m
darstellt. Als materialtechnische Konstanten sind der Elastizitätsmodul E,
die Querdehnungszahl v und die Temperaturleitzahl cd eingeführt:

Nx =D1[u'+'^+y(i»-+?-yu>(l+v)tm], (7)

N, =D1\w-+^ + v(u'+V-^y<t>{l-rv)tn^, (8)

Nxz=Nzx D1^[w, + u], (9)

utr -r, T^cos2a vsinoL 0 vcosoc A i] .^,Mx =D2 —^- + — + */'cos2a- —— + vv +a>(l+v)-f (10)
L rx rx rxrz a J

utr t, X v VCOSOL 9 ._ .At] /11XJf, =Da v +^-—v- + vv"cos2« + w(l+v)-T (11)
L rs rxrz a J

Jfx, Jf« D,-^»'" (1 +cos2a), (12)

D_JE± _
Ed*

^1_ 1-v2' 2" 12(l-v2)*

Die Gl. (1)—(12) enthalten bekanntlich alle für die weitere Berechnung nötigen
Größen.

3. Die Randbedingungen

Staumauern besitzen im allgemeinen zwei Typen von Rändern. Der eine ist
die Mauerkrone oder der freie Rand, der andere ist das Felswiderlager, welches
bei unmittelbarem Anschluß der Mauer an den Fels eine elastische Einspannung
darstellt, bei Einschaltung einer Umfangsfuge dagegen als gelenkige Lagerung
aufgefaßt werden kann.

a) Der freie Rand wird dadurch charakterisiert, daß längs ihm alle Schnittgrößen

verschwinden, wobei bekanntlich die Querkraft Qz und das Drillungsmoment

Mzx kombiniert werden:

Nz 0, Nzx 0, Mz 0, Qz + M'zx 0. (13)

b) Die elastische Einspannung besteht streng genommen darin, daß die
Verschiebungen u, v, w und die Winkeländerung der Tangente normal zur
Randkurve Funktionen der Schnittgrößen darstellen. Da nun aber der Einfluß
dieser Winkeländerung bei weitem überwiegt, kann in den meisten Fällen die
Elastizität der Einspannung auf die Beziehung zwischen der Ableitung der
Verschiebung v in Richtung der Randnormalen und dem Biegemoment Mn,
welches Spannungen in derselben Richtung erzeugt, beschränkt werden:
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^ 0, v 0, w 0, ^- kMn«). (14)
on

c) Die gelenkige Lagerung der Umgangsfuge besitzt theoretisch ebenfalls
eine Elastizität, welche sich durch Beziehungen zwischen den Verschiebungen
und den Schnittgrößen ausdrücken läßt. Aber auch hier ist in den meisten
Fällen die Vereinfachung zulässig:

u Q, v 0, w 0, Mn 0. (15)

4. Die Berechnung von Bogenmauern in engen Tälern

Ist das Verhältnis der Kronenlänge einer Bogenmauer zu ihrer Höhe kleiner
oder nur wenig größer als 1, so ist das Bauwerk in überwiegendem Maße in
horizontaler Richtung beansprucht. Somit kann die Normalkraft Nz sowie
die Krümmung in vertikaler Richtung vernachlässigt werden, d. h.

Nz 0, sin ol 0, cos a 1, rz oo.

Die Verschiebung w ist jetzt in erster Linie temperaturbedingt. Da üblicherweise

Temperaturänderungen für eine bestimmte Höhe als konstant
angenommen werden, kann w' 0 gesetzt werden. Man erhält nun die Schnittgrößen

(Ausdrücke (7)—(12)) in folgender Form:

N„ =Ed i v
u +_ a>t„ (71)

Nxz =NZX= Ed0" (91)xz zx 2(1+v)

Mz D2 \v" +w" + o)(l+v

(101)

(lli)Af]

Mxz Mzx D2(l-v)v'\ (12i)

Die Verschiebung w tritt in diesen Ausdrücken nicht mehr auf. Aus den
vereinfachten Gl. (4) und (6) zieht man nun die Querkräfte, setzt diese in die
Gl. (1) und (2) ein, wobei die Schnittgrößen gleichzeitig durch obige Formeln
ersetzt werden. Trifft man noch die für enge Täler üblicherweise richtige
Annahme, daß der Krümmungsradius rx und die Schalenstärke d nur mit der
Höhe variieren und beobachtet die bisher schon beschriebenen Vereinfachungen,

so erhält man die folgenden simultanen Differentialgleichungen für u
und v:

6) Der Wert von k kann z. B. nach Vogt (s. Boulder Canyon Report) berechnet werden.



BERECHNUNG VON BOGENSTAUMAUERN 153

D2/ ,„ ,..x Di,, Ed ruX u" 1 Ed%u _ .,_._V»+I, )+^(1_vK__^_M^ +__j___-o, (16)

D9v" Edv Edu'
D2(v"" + 2v"~ +v"") + 2D:2(v"' +v~)+D2 {v~ +w") + ~V" + —ä~ +

Edwtm „ JAtD2Y'—m + <»(l+v)[—ÄA) +Pw 0' (17)

Entsprechend lauten die Randbedingungen folgendermaßen:

a) Freier Rand (die Bedingung Nz 0 ist trivial):

u=0, v'+vv" -a>(l+v)^, tT^^-iOt/'" =-0,(1+^)/*! (13I)

b) Elastische Einspannung: Aus den Formeln (IO1) und (ll1) geht hervor,
daß das Biegemoment Mn am Rand nur von der Krümmung in Richtung der
Randnormalen abhängt:

Mn D2 7T-»+lO (1+V -T-

Die Randbedingungen lauten dann:

« 0, v 0, w> 0, — Ä;Z>2 h^ + w(l+v)-^-

(18)

(14i)

c) Gelenkige Lagerung:

d2v At
u 0, v 0, w 0, ^-^ + o>(l+v)-r=0. (151)

dn2 d

5. Berechnung von weitgespannten Bogenmauern

Wenn auch weitgespannte Mauern mit einiger Genauigkeit nach Abschnitt 4

berechnet werden können, so ist doch eine Weiterentwicklung der
Berechnungsmethoden angebracht. Immerhin soll auch für diesen Mauertyp vorausgesetzt

werden, daß die Variation der Krümmungsradien, der Schalenstärke
und der Temperaturänderungen in horizontaler Richtung vernachlässigbar
klein ist7). Hingegen soll die Verschiebung w und die Normalkraft Nz sowie
die vertikale Krümmung nun berücksichtigt werden. Als Vereinfachung nehmen

wir immerhin an, die Variation von w in ^-Richtung sowie die Variation
des Krümmungsradius rz könne außer acht gelassen werden. Weiterhin
eliminieren wir nachweisbar kleine Größen und erhalten für die Schnittkräfte:

7) Bogenmauern mit ausgesprochener Parabelform sollen in einer späteren Arbeit
behandelt werden.
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n f «cos<x vv 1
Nx =Z>1^' + ——+ _-a>(l+v)«mj,

¦KT n T f / VCOS<x\ 1

#x* =-^« ^l-ö-^«'.

iWx D2 \-^—+ v" cos2 oc + vv" +w(l+v)-j- \,
lrxrz d J

Mz D2\v" +vv" cos2 cc +w(l+v): d

Mxz Mzx D2 -i-? (1 + cos* «) v-

Ib6

(7")

(8n)

(9")

(10")

(11")

(12")

Durch Berechnung von Qx und Qz anhand der Gl. (4) und (6) und Einsetzen
in die Gl. (1), (2) und (3) würde man drei simultane Differentialgleichungen
für die Verschiebungen u, v und w erhalten, doch zeigt es sich, daß, wenn man
in den Gl. (1) und (2) nur die wesentlichen Glieder berücksichtigt, in diesen

nur noch u und v auftreten:

+ cos2a

Di+Di

V —

sma
(19)

u 0,

^COSaf 9 ,„ l+COS2a ,..1 ^.COSa., xl
D2-_|cos2a*/'' + v' J+D2^^(l-v)-

^ /cosa v\ ^ T // 1—" ..1 1-

D2[cos2av",, + (l + cos2a)2;,,-+v-]-hD2[(l + cos2a)?;",+2?;-]-f-

t^.. r o ,,-, t^ COS a/cos a v\ _. COSa
+ D2 [v +vco82olv"] + D1 I + — I v + D1 u'+ (20)

rx \ 'x 'zl 'x

+ oj(1+v) m cosa
D1tn + pw 0.

Theoretisch lassen sich aus (19) und (20) die Verschiebungen u und v und
daraus sämtliche Schnittgrößen mit Ausnahme von Nz berechnen. Für diese

letzte dient die Gl. (3) als Differentialgleichung:

„. ,T sina ,T, 1 [,.., sina ,-..1 /rt_.Nt Nx- N'„ + -\M'X,-MX— + M,\. (21)
X Z L X J

Die Randbedingungen müssen nun also für die Verschiebungen u und v sowie

für die Normalkraft N9 formuliert werden:

a) Freier Rand:

v" + w" cos2ol —co(l +v)

Nz 0

At
d '

u=0, (1311)

V" +[l-V + COS20t]v'" -0)(l+v)l-r-\
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Bei der Formulierung der letzten Bedingung wurde für die Mauerkrone rz=co
gesetzt und der Ausdruck Mxsmotlrx vernachlässigt, da Mx in der obersten

Mauerpartie ohnehin schon relativ klein ist.

b) Elastische Einspannung und c) gelenkige Lagerung: Dort, wo der Winkel

ol längs dem Felsauflager null wird, gelten dieselben Randbedingungen
wie im Abschnitt 4. Da aber im allgemeinen die Elastizität des Felsens nur
mit beschränkter Genauigkeit festgestellt werden kann, hegt die Ungenauig-
keit der das Biegemoment Mn enthaltenden Randbedingungen vielmehr im
Koeffizienten k als im Abweichen des Wertes cosa von der Zahl 1. Somit
können die Gl. (141) und (151) hier ohne weiteres verwendet werden.

6. Lösungsmethoden

Die Kompliziertheit der Differentialgleichungen und — in den meisten
Fällen — auch der Randbedingungen, schließt im allgemeinen eine geschlossene

mathematische Lösung aus. Auch Potenzreihenansätze dürften nur in
speziellen Fällen zu einem befriedigenden Resultat führen. Jedoch ist mit Hilfe
der Differenzenrechnung, welche sowohl auf die Differentialgleichung als auch
auf die Randbedingungen ausgedehnt wird, ohne Schwierigkeiten eine genügend

genaue Bestimmung der gesuchten Werte möglich. Da die KrümmungsVerhältnisse

bei Bogenstaumauern nicht allzu kompliziert sind, kann die Anzahl
der Maschenpunkte stets in einem vernünftigen Rahmen gehalten werden. Es
wird also meistens möglich sein, die Integration der Differentialgleichungen
durch die Auflösung eines Gleichungssystemes zu ersetzen, welche mit einem
elektronischen Rechengerät streng erfolgen kann. Nur in Ausnahmefällen ist
die Anzahl der Maschenpunkte so groß, daß einIterationsverfahren (Relaxationsmethode)

zu Hilfe genommen werden muß.
Während die Maschenpunkte längs der Mauerkrone stets auf der Randlinie

angeordnet werden können, ergeben sich längs dem Felsauflager meist
Differenzen zwischen den Maschenpunkten und der Randlinie, so daß dort
die Randbedingungen mit ungleichen Maschenweiten formuliert werden müssen.

Da die Bedingungen längs dem Widerlager einfach sind, entstehen dadurch
keine wesentlichen Komphkationen.

Als Beispiel diene die Berechnung einer Staumauer in der Schweiz, wo im
Innern der Mauer 42 Maschenpunkte nötig waren. Die dadurch entstehenden
84 Gleichungen mit 84 Unbekannten konnten durch ein teilweises Iterations-
verfahren in 2 Systeme mit je 42 Unbekannten umgewandelt werden.
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Zusammenfassung

Für die Schalenform einer behebigen Bogenstaumauer werden die stat.
Grundgleichungen und die Randbedingungen, sowohl für direkten Anschluß
am Fels wie auch für die Einschaltung einer Umfangsfuge, formuliert. Für
zwei häufig auftretende Mauertypen, nämlich die schlanke Bogenmauer in
engen Tälern sowie die doppeltgewölbte Mauer in weiten Tälern, werden sodann
die Differentialgleichungen der radialen und tangentialen Verschiebungen und
der vertikalen Normalkraft aufgestellt. Es wird auf verschiedene
Lösungsmethoden und auf eine durch den Verfasser erfolgte Anwendung hingewiesen.

Summary

Basic equations valid for any arch dam type are given and the boundary
conditions are indicated for dams supported directly on rock and for dams

having a perimeter Joint. The differential equations of radial and tangential
displacements and of the vertical normal force have been established for two
common dam types, i. e. the slender arch dam in narrow Valleys and the arch
dam with double curvature in wide Valleys. Various methods of resolving the
equation System are mentioned and reference is made to a practical case

analysed by the author.

Resume

Le Systeme d'equations statiques generales d'un voile mince et les
conditions aux limites sont formules pour un barrage-voüte quelconque, aussi

bien dans l'hypothese d'un appui direct du barrage sur le rocher que pour le

cas d'un barrage ä Joint perimetrique. Les equations differentielles des deplacements

radiaux et tangentiels et de l'effort normal vertical ont et6 etablies

pour deux cas de barrage particulierement frequents: le barrage ä voüte mince
dans une vallee etroite et le barrage ä double courbure dans une valtee large.
Les differentes methodes de resolution sont rappel^es brievement et il est

fait mention de l'application d'une de ces methodes ä un cas particulier.
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Mathematical Background

For the small displacement elastic analysis of cylindrical shells of constant
thickness Jenkins [1] has shown that a particularly useful compatibility
equation may be derived in terms of the ring tension T2 as follows.

Ji_d^ __ _±_d^Z 1 d2\dX
V 2 + IR2 dx* ~ IR dx* + \dv2) dx¦~fä

\ dx2 dy2/ dy
er W

where the Symbols are defined in figs. 2 and 3.

A complete analytical Solution to this eighth order partial differential
equation cannot be obtained and recourse must be made to the method of
constructing Solutions of the form T2 0(x). W(y) where <P(x) is a function
of x alone and ^(y) is a function of y alone. As is usual in the case of simply
supported shells and plates <2> (x) is expressed as an infinite series of harmonic
functions. In most engineering calculations it is sufficiently accurate to use
simply the first term of this series, further terms, of course, giving increased

accuracy. The result of this technique is to produce an ordinary linear eighth
order differential equation in y with constant coefficients.
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The complete Solution of the compatibility equation is given by the sum
of the Complementary Function and the Particular Integral. The Comple-
mentary Function is the Solution of the equation when the right hand side is

put equal to zero, and is thus independent of the loads X, Y and Z (fig. 2).
This Solution contains eight arbitrary constants which are found by inserting
four conditions at each of the left hand and right hand edges of the shell

(fig. 1). The Particular Integral introduces the loading X, Y and Z.
The complementary function Solution for the shell equation (1) can be

shown to be

Ib/FtrunWbm. glb/saFt

\ \ \ k I * * +

S 021 iiedge,

A
—\2b

- thickness t

Beam 22
<pn

tzedge

— 20

%
Beam 11

Cross section

Fig. 1. Shell and Edge Beam. Dimensions and Loadings.

x longitudinal

z radial w radial

u longitudinal X longitudinal

Z radial

y circumferenhal v circumferenhal Y circumFerential

Co ordinales displacements applied loads

Fig. 2. Shell Co-ordinates; Displacements and Applied Loads.
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T2 <P(x)¥(y),
0(x)[e~jXy (a1coskXy-\-a2smkXy)-{-e~hXv (azcosk1Xy-ha4:8mk1Xy)

+ e~jX z (6X cos k X z + 62 sin k X z) + e-'1*2 (63 cos kx X z + 64 sin ix A z)],

*W[/iW+/iW],
where z s — y, s being the are length.

(2)

ft /y,

Fig. 3. Tangential and Normal Group Stress Resultants.

Here j k jx and kx are the roots of the auxiliary equation to (1) and ax

a2 a3 a4 &! 62 63 64 are the eight arbitrary constants. Further, A4 -^- -^-,
"2 —— —, n being the harmonic number.

Z2

A convenient Particular Integral Solution is that formed by considering
the shell as a portion of a loaded complete tube simply supported at its ends.
To obtain the shell edge conditions the tube is cut along the appropriate
generators and its state maintained by applying forces equivalent to the internal

forces set up in the complete tube by the external loading. The transverse
loading is expressed as a whole number of sinusoidal waves on the circum-
ference, appropriate combinations of normal and tangential loads leading to
any desired transverse loading distribution.

A general stiffness matrix for one shell may be obtained by selecting the
Kirchhoff group of forces and displacements which may be expressed in terms
of T2 and therefore by (2) in terms of the arbitrary constants a.

" dS"
dx xx

R2

T2

x2

x3

t2

21/3

o, *i

2\R

1

2A2i?

-j k

-j-(l-v)k k-(l-v)j
1

-1 -(1+v)
1

1

*1

-K-{\+v)jx -hk
«1

kk_

a2

a3
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t2
or x ——MAFva

2/3

Sirl üxdx
T1d2w

dx2 u2

w&v>
dx2 u3

n&®Ein Ut

2X2R

2XR

-(l+v) l-v 1

-1
/l/t
-/l/l

"12

Ib7

(3)

• «i
a2

kh «3

kkj _ß4_
k-(l-v)j j+(l-v)k *1+(l+v);1 ^-(l+v)*!

-* -i ki k J L
or ü NBFva,

where /x e~^v cos kXy, f3 e~ilXy cos kxXy,
f2 e-iXvamk\y, /4 e-^'sin^Ay.

Combining the conditions at both edges, eqs. (3) and (4) become

x -^=MAFya-J-^=MAF'b,
2]fZ 2 )/3

ü NBFva + JNBFzb,
where J diag {1 1 — 1 — 1}.

Finally eliminating the arbitrary constants a and 6 leads to

\(Q-J&)U + JT»)-i{üu + Jün) + \iß+J&)a-J&)-1
(ü12-Jü21),

*8i -%J(G-JG°){I-r JT°)-1(ü12 + Jw21) + £ J(Ö + JG»){I- JT°)-x
(ü12-Jü21),

(*)

(5)

(6)

(7)

(8)

where G
t2

.MAB-^N-1,
21/3'

T° NBF*B-lN~1.

Gs JL
21/3

MAF'B-^N-1,

Both left hand and right hand edges may then be combined in one matrix
equation which represents eight simultaneous equations.

pi2i=rp ~qj~\ r*»i
U21J L-JQ jpj\ U2J'

where ^ \{G + J G>) (I - J T*)-1 ± HG - JG°)(I + JT»)-1.

(9)
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For convenience in considering the combination of shell and edge beams,
rotational and translatory transformation matrices R and C enable the shell
edge force and displacement vectors to be referred to axes through the centroid
of the edge beam in its prineipal directions.

Thus m - -
where

and

X,

12

-Q21

-a
21

¦} m (10)

12 ^12 ^12 '

P±2 — (Cl2 ^12) P (^12 ^12)

the other terms having similar relationships.
Similarly the relation between the edge beam forces and displacements at

its centroid in its prineipal directions can be put in the form

X -P1XU.

Combined edge beams and shell are then speeified by the equation

Kl ¦ p,,+-p,
Q21

-Qi
P*+P>.21. u,21J

(11)

The edge displacements can now be found by taking into account the
boundary stress resultants and displacements of the Particular Integral.
Compatibility of the P.I. displacements of the edge beam and shell will
generally have to be established, thus causing unbalanced applied forces Jf(1)

at the junction. In a position of equilibrium the total apphed force on the
junction is zero. The junction displacements are therefore found by putting
X=-X1Hneq. (11).

Pn+P-12

-e.
¦Qi, n--x®

W (12)

The junction displacements having been computed the displacements are
determined at uniformly spaced intermediate points across the shell (fig. 4)

Fig. 4. Location of Output Stresses and Displacements.
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by the use of a constant matrix operating on the separated edge displacements.
The total displacement is the sum of the displacements caused by the edge
disturbances added to the Particular Integral. The total stress resultants at
the intermediate points across the shell are determined from the product of
the stiffness matrix at the point and the corresponding edge disturbance
displacement, added to the Particular Integral stress resultants.

Edge beam stresses and displacements are determined directly from the
junction displacements.

The Electronic Computer

The Computer for which the shell programme has been written (the Ferranti
Pegasus) is a medium sized fixed point machine with a 4,000 (or in some cases

8,000) word drum störe. In view of the complexity of the calculation and
arbitrary size of the data it was decided to use a floating point scheme. This
results in considerable slowing down of the machine but enables very simple
programming to be carried out using the "Autocode" and "Matrix Inter-
pretive" schemes.

The Autocode converts the machine into a Computer with 50 simple
arithmetic and function generating Orders. The function generators include
such Operations as exponentials, harmonics, square roots, etc.

With this scheme there are locations for up to 1,350 numbers and 210
Orders. Instructions are printed as in normal algebraic format except that
variables are denoted by the symbol v followed by the location number, i.e.

*;100 v 28 xv 31.

The Matrix Interpretive scheme converts the machine into a Computer
which performs matrix Operations with single Orders per Operation. For this
scheme there are locations for up to 3,070 matrix elements and 80 Orders. All
the Standard Operations of matrix algebra are possible, including such Operations

as transposition, inversion, etc.
Instructions are printed in the following form (multiplication)

(Na,mxn) x(Nb,nxl)-+Nc
where Na, Nb and Nc are the addresses at the first location of each matrix
and m, n and l are the matrix dimensions.

Application of the Computer

From the description of the mathematical background to the problem
it will be seen that the computation falls into two stages

a) the determination of the elements of the matrices, and
b) the manipulation of matrices.
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The elements of the matrices are algebraic and trigonometric functions
of the geometric constants and the loading of the shell. The Pegasus Autocode
is a convenient method of undertaking these computations. A typical example
of part ofthe Autocode programme is given below, this being the determination
of the auxiliary equation root j which is given by

/l/l + (l+y)2 + (l+y)V/'

The value of v is available in location v 32

t;38 v32+l Form (1+v),
v39 v 38x^38 Form (1+v)2,
v39 v39+l Form (l+v)2+l,
v39 SQRTvSd Form j/(l+v)2+l,
v39 v39 + v38 Form V(l +v)2+ 1 + (1 +^),
v 39 v 39/2 Divide by 2,

v±0 SQRTv39 Form j.
Note the overwriting of elements when they are no longer required.

The application of the Matrix Interpretive Scheme to part of the shell
calculation is illustrated in the following example of the formation of
— t2

G —— MA B~x N'1, it being assumed that these matrices are already available

in the machine.

(625, 4x4)-^ 900 Copy B,
(642) -> 916 Copy /,
(900, 4 x 4), (916) -> 917 Form ß-1,
(609, 4 x 4) x (917, 4 x 4) -> 900 Form A ß-1,
(601, 4/) x (900, 4x4)-^ 933 Form M (A ß-1),
(605, 4/) -> 949 Copy N,
(642) -> 916 Copy /,
(949, 4/), (916) -> 953 Form N~\
(933,4 x 4) x (953, 4/) -> 900 Form (ikf^4 ß-1) N~\
(641) x (900, 4 x 4) -> 933 Form -^= (ilfA ß-1 N'1).

Points to note are that it has been necessary to copy B, I, and N since
they are required later in the manipulation and the Operation of inversion
spoils them.

Input for Computer

The following nineteen numerical values which determine the geometry
of the strueture and the applied loads are used as the data for the programme.
(see also fig. 2).
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l length of shell,
R radius of shell,
t thickness of shell,
6 angle of inclination of central radius,
g load on shell,
n harmonic number,
<f>l2 inclination of shell edge 12,

<f>21 inclination of shell edge 21,

an half depth of edge beam 11,

6n half width of edge beam 11,

a22 half depth of edge beam 22,
ö22 half width of edge beam 22,

p density of edge beam material,
cn _

fco-ordinates of mtersection of
dn (beam 11 and edge 12,

c22 fco-ordinates of intersection of
d22 (beam 22 and edge 21,

Wbl= vertical load on beam 11,

Wb2 vertical load on beam 22.

The data can be given in any convenient System of units provided all linear
dimensions are in the same units and loads and densities are correctly related.
All angles are to be given in radians.

Output of Results from Computer

Since the longitudinal distribution of forces and displacements has been

specified harmoniQally, it is only necessary to compute their maximum values
and thus obtain the values at any other transverse section by multiplying by
the appropriate sin or cos function. In the case of the longitudinally sym-
metrical functions (w, v, 6, Tl9 T2, Glf G2, R2, and N2) the maximum value
occurs at the midpoint of the span, whereas the maximum value of the
longitudinally anti-symmetric functions (u, S, H, Rx and Nx) occurs at the gables
For the shell the transverse distribution is given at 9 points (see fig. 4) for
the following 14 stress resultants and displacements, i.e. 126 values.

Eu
Ew
Ev
Ed

S

?i
T9

Displacement values obtained by
dividing Computer results by the
chosen value of the elastic modulus E

Tangential group forces (fig. 2)
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H
G1

G2

Pi
R2

^1
N2

Normal group moments
(%. 2)

Normal shear forces

(fig- 2)

For the edge beams the longitudinally force and the vertical displacement
are computed for points T, G and B (see fig. 4) at the mid span of the beams,
the longitudinally distribution being symmetrical.

Future Extensions of the Programme

In the first place shells are most frequently used several bays side by side.
This merely involves the evaluation of the stiffness matrices foi* the various
shell Segments and edge beams and their combination. This analysis has

already been suggested by Jenkins [1] and more recently in connexion with
Computers by Morice [2].

The second extension is the consideration of other end support conditions,
apart from simple supports. The general theory has been developed by Moricü
[3] and this follows quite closely the method described above although it is

necessary to use Schorer's [4] governing equation and different stiffness
matrices. Broadly however, the steps of the existing programme can be used.
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Summary

The paper outlines the prineipal steps in the exact Solution of a circular
cylindrical shell segment with boundary members formulated in matrix termino-
logy. The arithmetical stages in the numerical Solution may be divided into
two parts. Firstly, the evaluation of the matrix elements from the structural
geometry and loading. Secondly, the manipulation of the matrices with
numerical elements.
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A short description of the electronic digital Computer demonstrates that
it is ideally suited to both these tasks. The method of programming for each
is briefly described. The form in which the data is required and the way in
which the Computer produces the results is also given.

The paper concludes with a short note on the extensions to the work which
are in progress.

Resume

La presente etude expose les pas les plus imrJortants dans la Solution
exacte du probleme du segment d'un voile ä cylindre circulaire avec conditions

marginales sous forme matricielle.
Les aspects arithmetiques de la Solution numerique peuvent etre scindes

en deux parties. Les elements matriciels sont tout d'abord determines ä partir
des dimensions de l'ouvrage et des charges; ces matrices sont ensuite traitees
avec des elements numeriques.

Une courte description de la calculatrice digitale electronique montre
qu'elle constitue un instrument ideal pour ces deux groupes d'Operations. Les
auteurs exposent brievement les methodes de programmation correspondantes.
Ils indiquent egalement le mode d'introduction des valeurs dans les machines
et le processus suivant lequel les resultats sont fournis.

Enfin, une courte notice indique les developpements qui se poursuivent
dans ce domaine.

Zusammenfassung

Die vorhegende Arbeit umreißt die wichtigsten Schritte in der exakten
Lösung für ein Kreiszylinderschalensegment mit Randbedingungen in Matrizenform.

Die arithmetischen Abschnitte der numerischen Lösung können in zwei
Teile getrennt werden. Zuerst werden die Matrix-Elemente aus den Trag-
werksabmessungen und aus den Lasten bestimmt, und dann werden diese

Matrizen mit numerischen Elementen bearbeitet.
Eine knappe Beschreibung des elektronischen Digitalrechners zeigt, daß er

ideal für diese beiden Aufgaben geeignet ist. Die Programmierungsmethoden
für jede dieser Teilaufgaben wird kurz beschrieben. Ebenso wird die Form
der Eingabe der Werte und die Art, wie das Rechengerät die Resultate abgibt,
erklärt.

Schließlich ist im Bericht eine kurze Notiz enthalten über die fortlaufenden
Erweiterungen dieser Arbeit.
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Theory of a Statically Indeternainate Pin-Jointed Framework the
Material of Which Does Not Follow Hooke's Law

Sur la theorie d'un treillis hyperstatique, dont le materiau ne suit pas la loi de Hooke

Über die Theorie eines statisch unbestimmten Fachwerkes bei beliebigem
Formänderungsgesetz
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Dr. Sc. Techn., Prof., Institute of Technology, Helsinki Dipl. Eng., Research Assistant

Introduction

Classical building statics is based on Hooke's law, a Ee, in which o-

denotes the stress, E the modulus of elasticity and e the unit elongation.
Hence the methods of classical statics are no longer applicable if the stress
in a bar of statically indeterminate framework exceeds the proportional limit
of the material or if the material has no limit of proportionality whatsoever.
The general theory of a statically indeterminate framework the material of
which does not follow Hooke's law may be based either on the method of
Virtual displacements or on the principle of the minimum of the complementary
energy. Both these methods are described briefly in the following.

Method of Virtual Displacements

The axial forces produced by actual loading F in the bars of the framework
are denoted by S, and the axial forces produced by fictitious loading F by S.

Loading F causes in the bars of the framework total elongations A l which
are assumed to be very small compared with the original length l of the
bars. Furthermore, if we denote with 8 the projection of the displacement of
an arbitrary Joint in the direction of fictitious load F acting at the Joint, the
principle of the Virtual displacements for the real state of displacements
(8, A l) and for the fictitious state of loads (F, S) can be written
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ZFS-ZSAI 0. (1)

Since no assumption was made in writing this equation regarding the elastic
properties of the bars of the framework, it holds good for an arbitrary stress-
strain law.

It can be proved x) that an expression

AI SIJS\^ w/hr (2)

may be derived for the total bar elongation A l e l from each stress-strain law
which is correct in the physical respect. In the expression, A denotes the cross-
sectional area of the bar, Sy Aay the yield point force of the bar, ay the yield
point stress in tension and / (S/Sy) a function dependent on the form of the
stress-strain law. In the case of Hooke's law / (S/Sy) 1.

Because eq. (1) holds independently of what causes the changes A l in the
lengths of the bars, the elongations of bars due to a rise in temperature from
some specified temperature may also be taken into consideration in the equation.

If ol is the coefficient of thermal expansion and t is the temperature
increase, the corresponding elongation of the bar is atl. Sometimes the length
of a bar can be changed by using some mechanical device such as a turnbuckle.
Denoting such a change in length of the bar by A and superimposing displacements

produced by various causes we can write expression (2) in a more
general form,

Al 4if(^)+^l + A. (3)EA

When the expression of A l is introduced into eq. (1) the principle of Virtual
displacements for a framework the material of which does not follow Hooke's
law may be expressed

Z^-Z^f(-§-)+.tl + A 0. (4)

Deflection of the Joint of a Framework. To determine the deflection 8^. of
any Joint k of a statically determinate framework in an arbitrary direction
under the action of external loads F acting at the joints of the framework,
we imagine the fictitious force F Fk= 1 acting at the Joint in the direction
of the displacement sought. The fictitious load System consists then of force
Fk 1 and the corresponding reactions. They do not produce any work since
the supports are either immovable or move perpendicularly to the reactions.
The first sum in eq. (4) is thus reduced to l*8k. If we denote with S Sk the

x) Cf. the author's investigation «Die Knickfestigkeit eines zentrisch gedrückten geraden
Stabes im elastischen und unelastischen Bereich». Doctoral thesis. Finland's Institute of
Technology. Helsinki, 1939, p. 94. — Cf. also with formula (19) ofthe present investigation.
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forces in the bars caused by the fictitious force Fk=l, and with S the axial
forces caused by the given loading F, we obtain from eq. (4) the formula

8*-25fc[^-/(^)+«« + j] (5)

for the deflection of Joint k of the statically determinate framework. The
summation must be extended over every bar of the framework.

Statically indeterminate framework with n redundants. If the framework
is statically indeterminate internally it must be transformed into a statically
determinate one by means of fictitious sections through each of the n bars.

Replacing the unknown axial forces in the cut bars by the forces Xl3X2,. Xn,
we obtain a statically determinate primary System on which, in addition to
the given external loading F, the n redundant forces X are acting. The forces

produced in the bars of this statically determinate System by the given loading
F we denote by S0. The forces produced in any bar of the same System by
the unit redundant forces X1=l, X2=l,. .,Xn=l we denote, respectively,
by S1, S2,. Sn. Then the total axial force in a bar is

S S0 + S± X± + S2 X2 + + Sn Xn. (6)

The magnitude of the redundant forces X can now be found from the
conditions that the relative displacements of the two sides of each of the n
fictitious sections must vanish. For these displacements, we use expression (5)
which leads to the following n simultaneous equations

z*[£K£)+"M-°'
Z5-[Ä>(£)+"H=0'

^[Ä'(i)+aH=o-
Here S denotes the expression (6). The summation in every equation includes
all the bars of the framework. Supposing that equation System (7) has unique,
finite Solutions it is possible to determine from it the values of the redundant
forces Xx, X2,. Xn. When they are known, the axial force of each bar is
obtained from eq. (6).

If the framework is statically indeterminate externally it must be
transformed into a statically determinate one by removing the redundant supports.
Replacing the unknown reactions by the forces X1, X2,. Xn we obtain a

statically determinate primary System on which, in addition to the given
loading F, the n redundant forces X are acting. They can be determined in
exactly the manner described above, in which case we again obtain equation
System (7) in which S denotes the expression (6).

If the material of the framework follows Hooke's law, f(SISy) l and
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equation System (7) is reduced to the System of elasticity equations, known
in the classical theory of the statically indeterminate framework.

Method of Complementary Energy

If a bar is subjected to a tensile or compressive force S acting on the end
of the bar, the quantity

[]AldS (8)

is denoted as the complementary energy stored in the bar. It is seen in fig. 1

as the area Oab. Summing up expressions (8) for all the bars of the framework
and denoting the complementary energy of the framework by W*, we obtain

W* ZfAldS.
o

(9)

AI

Fig. 1.

From this expression we can establish a very simple method for calculating
the deflections of joints of a statically determinate framework and for deter-
mining the redundant quantities of a statically indeterminate framework2).

Deflection of a Joint of a framework. The deflection Sfc of an arbitrary Joint
k of a statically determinate framework is to be determined in the direction
of force Fk acting on it. For this purpose the axial forces Sk produced by the
force Fk=l are determined first. Force Fk itself then produces the axial
forces FkSk. If, with the exception of force Fk, the axial forces produced
by all other forces F are denoted by S0, the axial forces

S S0 + SkFk. (10)

As expression (9) of complementary energy is, according to equation (10),

2) The idea of using complementary energy for analysing structures was introduced
by F. Engesser: Zeitschr. d. Architekten- u. Ing.-Vereins zu Hannover, Vol. 35 (1889),

p. 733. Several applications are shown in a paper by H. M. Westergaard: Proc. A. S.
C. E., Vol. 67 (1941), February, p. 199. See also Henry L. Langhaar: Journal Franklin
Institute, Vol. 256 (1953), No. 3, p. 255, and N. J. Hoff: The Analysis of Structures, p. 332.

John Wiley & Sons, Inc., New York 1956.
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a function of force Fk, W* may be derived partially with respect to this
force, in which case

dW*
_

dW* es _^AJ öS
dFk ~ dS dFk ~^ dFk

By introducing the expression of A l from eq. (3) and taking into account
that according to eq. (10) dS/dFk Sk, we obtain

dW *
jf~--zs*

SI
EA

Comparing this with eq. (5), we find that
8W*

U)/ [-=- \+«tl + A (11)

8P* V (12)

We have thus proved the following important theorem: The partial derivative
of the complementary energy of a framework with respect to one of the external
forces acting in a Joint gives the deflection of this Joint in the direction of the force.

If the deflection is desired at a Joint where no force is applied, force Fk
must be assumed in the direction of the desired deflection. Then

dW*
8fc hm^V- (13)k

Fk-+0 dFk

Statically indeterminate framework with n redundants. The framework must
first be transformed into a statically determinate one either by means of
fictitious sections through each of n bars or by removing the redundant
supports. Replacing the unknown redundants by the forces Xx, X2,..., Xn we
obtain a statically determinate primary System on which, in addition to the
given external loading F, the n redundant forces X act. The forces produced
in the bars of this statically determinate System by the given loading F we
denote by S0. The forces produced in any bar of the same System by the unit
redundant forces X1= l,X2= 1,... Xn= 1 we denote, respectively, by Sl9

S2,..., Sn. Then the total axial force in a bar is

S S0 + S1X1 + S2X2+...+SnXn. (14)

The magnitude of the redundant forces X can now be found from the
conditions that the displacement in the acting points of the redundants must
vanish. For these displacements we use expression (11) which leads to the
following n simultaneous equations

dw* „ _ r si,/ s\ 47 .-] n

dw* ^ „ r si
cX2 =2^i&/(^HH=o' (l5)

bw* ^ „ r si
8X.̂ -z*-[ÄK£)+a'H-°-
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Here S denotes the expression (14). The summation in every equation must
be extended over all the bars of the framework. A comparison of equation
Systems (15) and (7) shows them to be identical.

When the values of the redundant forces have been calculated from equation

System (15) the axial force of each bar is obtained from eq. (14).
Eqs. (15) state that the redundant forces Xx, X2,..., Xn have such magnitudes

as to give the complementary energy stored in the framework a stationary value
with respect to variations in stress. It can be shown that it is a minimum.

Stress-Strain Function

For the numerical calculations it is necessary to have an analytical expression

approximating the actual stress-strain curve of the material. For this
purpose we use in the following the function

in which exponent n denotes a positive integer and c (< 1) a dimensionless

parameter whose value depends on the shape ofthe stress-strain curve. If n is an
odd number, the absolute value {\(j\jay)n of the stress ratio must be used.

Accuracy sufficient for practical purposes is obtained by selecting n=l, in
which case

(17)E X__H
oy

This contains three free parameters E, oy and c the values of which should
be determined so that the stress-strain function agrees suitably with the
stress-strain diagram. With the value c= 1 function (17) is reduced to Hooke's
law.

To obtain a general idea of the form of the stress-strain diagrams repre-
sented by function (17) we write it in a more suitable form for graphical
representation by multiplying both sides by the ratio E\ay, which gives

i_cM

°v °y i_-H

The dimensionless 3) stress-strain diagrams according to this equation may be

seen from fig. 2 where GJay is plotted against E €Jcry, with c as the parameter.

3) Cf. the author's investigation, p. 27, footnote 1.
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We see that the greater the value of c, the smaller the deviation of the stress-

strain diagrams from the broken line formed by Hooke's straight line GJay

EeJGy and the horizontal line ajay l corresponding to the yield point stress.
The stress-strain diagrams are symmetrical with respect to the origin of
coordinates. The following values of parameter c should be selected for
different materials: Steels St37 and St 52, c 0.997, Magnesium alloy, c 0.975.

r-W
1

sy ^\/^C-0S97
-08 \ C-0986

"C-0975

-0.6

-au

h v
-02 y

£i
02 OU 06 08 10 TU GZ 16

Fig. 2. Dimensionless stress-strain diagrams according to eq. (18).

The expression below for function / {SfSy) appearing in formula (2) follows
from eq. (18):

'GK
1-.M

\s[ ¦

sv

(19)

By introducing it into eqs. (3), (4) and (5) we arrive at the elongation ofthe bar

(20)
i-3

EA ,JS|

the equation of Virtual displacements

i-3
(21)

and the displacement of Joint k of the framework

ZSk
i-3

(22)

When the expression f(SISy) from the eq. (19) is introduced into equation
System (7) or (15) these equations can be expressed in the form
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i-3

i-3

l-c \S\

^[¥JYZW+Xtl+A}=0'

where S denotes expression (6).

S„

Ib8

(23)

Illustrative Example

In order to illustrate the method described above we analyse the plane
framework with one redundant shown in fig. 3. As a redundant force, we take
the reaction Xc at the intermediate support C. Removing this support we
obtain a statically determinate simple framework on two supports. The
framework is made of steel with E 2,100,000 kg/sq. cm., vy 2,400 kg/sq. cm.
and c 0.997. The cross section of all the bars ofthe framework is A 10 sq. cm.
The temperature of the framework is assumed to be constant.

is &n 13

14 «5

C~\XC ZOOcm 200cm200cm 200cm

Fig. 3.

The magnitude of the redundant reaction Xc as a function of the loading
F may be computed from the first eq. (23) in the form

Su — c \Sfi + SrXr_
2 $c ($0 + 8CXC) l a _

I a i g X 0. (24)

Here S0 denotes the axial forces in the bars of the statically determinate
primary System due to loads F, and Sc the axial forces due to unit redundant
force Xc=l. The forces S0, Sc and the values of Xc corresponding to the
different values of loading F are given in Table 1. The final axial forces are
obtained from formula (6) in the form

S S0 + SCXC.
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Table 1.
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Bar So Sc F
(kg)

xc
(kg)

1, 15 -2\/2F
1

V2
5 800 14 099

2, 14 2F -0,5 13 000 31 535

3, 13 y~2F
1

13 500 32 680

4, 12 -3F i 13 944 33 560

5, 11 -|/2JF i
V2

15 000 33 870

6, 10 4F -1,5 16 971 33 941

7, 9 0
1

V2

8 -±F 2

In fig. 4 Xc is plotted against loading F. The straight line 1 represents the
supporting reaction Xc of a framework following Hooke's law as a function
of loading F. Curve 2 represents reaction Xc of a framework the material of
which follows law (17). The maximum value of the supporting reaction is
Xcmax 33,941 kg which is attained when F 16,971 kg. The compressive stress
in the bars 1,7,9 and 15 has then reached the yield point cry — 2,400 kg/sq. cm.

35000

(f<g)

339Wkg31000 cmjM
F - 16971kg

33000

31000

15000 I600O 17000 !8000(JpJ11000

Fig. 4.
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Summary

The general theory of a statically indeterminate framework the material
of which does not follow Hooke's law may be based either on the method of
Virtual displacements or on the principle of the minimum of complementary energy.
Both methods are explained. For numerical calculation the authors present
a new stress-strain function, (17), which contains three parameters: E, oy
and c. As an example of application of the method a statically indeterminate
plane framework in fig. 3, the redundant reaction Xc of which is shown in
fig. 4 as a function of load F, is analyzed.

Resume

Dans le cas d'un treillis hyperstatique, dont le materiau ne suit pas la loi
de Hooke, on pourra baser la theorie, soit sur le principe des deplacements
virtuels, soit sur le principe de Venergie complementaire minima. Ces deux
methodes fönt l'objet de l'examen de la presente ötude.

Pour le calcul num^rique, l'auteur presente une nouvelle loi de deformation
(17) qui comprend les trois parametres E, <ry et c. La methode est utilisee
dans la resolution du treillis hyperstatique plan de la fig. 3, dont la reaction
d'appui Xc en fonetion de l'effort F est donnee en fig. 4.

Zusammenfassung

Die allgemeine Theorie eines statisch unbestimmten Fachwerkes bei
beliebigem Formänderungsgesetz kann entweder auf die Methode der virtuellen
Verschiebungen oder auf das Prinzip vom Minimum der Ergänzungsarbeit
aufgebaut werden. Die beiden Verfahren werden in der Arbeit erläutert. Für die
numerischen Berechnungen wird ein neues Formänderungsgesetz (17)
verwendet, das drei freie Parameter E, ay und c enthält. Als Anwendungsbeispiel
der Methode wird das in Fig. 3 dargestellte, statisch unbestimmte ebene

Fachwerk behandelt. Die statisch unbestimmte Auflagerkraft Xc als Funktion
der äußeren Belastung F ist in der Fig. 4 graphisch dargestellt.
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A Plastic Theory for the Design of Reinforced Concrete Slabs

Theorie pour le calcul plastique des dalles en beton arme

Eine Theorie für die plastische Berechnung von Eisenbetonplatten

ARNE HILLERBORG
Dr., Stockholm

1. Comparison Between the Elastic Theory and the Plastic Theory

The elastic theory and the plastic theory serve two different purposes. The
elastic theory indicates what happens when a slab is loaded within the elastic
region, that is to say, with such small loads, that the stresses are proportional
to the strains. The plastic theory, on the other hand, indicates what occurs
when a slab is loaded to its maximum carrying capacity.

The advantage of the elastic theory is that it provides information regarding

what occurs under the action of permissible loads. It may thus be used
for calculating deflections and distributions of stresses. It must be borne in
mind however, that the elastic theory, when applied to a homogenous,
isotropic plate, does not give correct information regarding, for example, the
stresses in the steel reinforcement of an ordinary reinforced concrete slab
because after the formation of cracks, the slab is neither homogenous nor
isotropic. In design procedure it is often assumed that all the reinforcement
bars in the critical sections are equally stressed, although the theoretical
strains are different. For these and other reasons the elastic theory does not
provide accurate information regarding moments, stresses and the amount of
reinforcement required, but only a roughly approximate estimate.

The reinforcement in a slab is usually placed in two directions perpen-
dicular to one another. The reinforcement must resist the bending moments
mx and my and the torsional moment mxy. It must be pointed out that the
torsional moment cannot be assumed to be resisted without the aid of rein-



178 ARNE HILLERBORG Ib 9

forcement, since it is converted into a bending moment if the directions of the
coordinate axes are altered.

With coordinate axes parallel to the reinforcement bars, the following
formulas for design moments have been proposed by the Author [1] and

adopted in the Swedish Code [2]

7 11 / 1.1mx mx + k \mxy\, my my + ^\mxy\,

where k is an arbitrary positive constant, which is usually chosen near unity.
If k is altered so that m'x is increased, my will decrease and vice versa.

A complete calculation of a slab according to the elastic theory necessarely
involves a study of bending moments and torsional moments at many points
in the slab, because the greatest design moments often do not occur at lines
of symmetry. A Swedish investigation has shown that engineers have fre-
quently been unaware of this fact and have therefore sometimes used design
moments that were too small when calculating by means of the elastic theory.
When employed in this incorrect manner the elastic theory is unreliable. On the
other hand, if used correctly it is very laborious. For slabs of irregulär shape
it is often impossible in practice to use the elastic theory in a correct manner.

The plastic theory provides a relatively simple means for calculating the
carrying capacity and thus for determining design moments giving a suitable
factor of safety against failure. It does not give a single Solution, but an
infinite number of Solutions, that is to say, it is possible to decrease the amount
of reinforcement at one section if it is increased at another section. All these
Solutions are not equivalent for design purposes, because they lead to
differences in deflections, crack widths, etc. and also to differences in costs. When
the plastic theory is accepted in the Building Code it therefore appears to be

necessary to place some restrictions on its application in order to prevent
unsuitable Solutions from being chosen.

2. Rules for the Application of the Plastic Theory According to the Swedish

Building Code

In the Swedish Building Code of 1957 [2] the plastic theory is accepted
as a method for calculating bending moments in slabs. Somewhat detailed
rules are given for its application, the most important of which are as follows:

1. Slabs in structures which must be watertight, or where limited crack
widths are essential, and slabs mainly supporting moving loads must not be

designed by means of the plastic theory.
2. The plastic properties ofthe slab must be adequate. This may be assumed

to be the case if the following condition is fulfilled
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k > 1001 °V™>el

7cube -^e

where

h effective depth of the slab,

ay yield point of the reinforcement,
acube= cube strength of the concrete,
Ee modulus of elasticity of the reinforcement,
md maximum bending moment per unit of width according to the elastic

theory.

For moments along supports the mean value may be taken, and for moments
p

on columns the value -=¦ where P is the reaction at the column. As a rule it is
o

sufficient to use approximate values of md, often even roughly approximate
values (estimated to provide a large factor of safety).

3. The design moment values may not, as a rule, be chosen less than a
certain percentage below the corresponding values according to the elastic
theory. For slabs protected from the weather this percentage is

dead load
i—r^ i—r- i r * 50 a per cent,dead load + hve load

where a is 1.0 for reinforcements which have a marked influence on the deflection

of the slab and 2.0 for reinforcements where this influence is small.
Values between 1.0 and 2.0 may be taken for reinforcements which have a

moderate influence.
For slabs exposed to the weather half the above values are permissible.
This rule may be neglected for floor slabs in ordinary houses if the

permissible stresses are reduced by 10 per cent.
4. The effect of the unfavourable application of hve loads has to be taken

into account in a similar manner to that employed when the calculation is
made by means of the elastic theory.

3. Principles of the Equilibrium Theory. Comparison with the Yield Line Theory

For plates it is impossible, as a rule, to find an exact value of the carrying
capacity according to the plastic theory. Approximate values have then to be
used, according to one or other of the following principles (cf. [3]):

1. A load that is sufficiently great to cause failure of the plate through the
formation of plastic hinges may be found by means of the yield line theory [4].
The values found in this manner are theoretically unsafe, since we know
that the load is sufficiently great to cause failure along certain yield lines, but
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we do not know whether failure may not be caused by a smaller load through
the formation of other yield lines.

2. A load that can be supported by the plate may be found by means of
a design procedure based on a theory which is known as the equilibrium
theory [5], and which states:

If a distribution of moments can be found which satisfies the equilibrium
equation and the boundary conditions for the plate under the action of a

given load, and if these moments do not exceed the yield moments at any
section of the plate, the plate is capable of carrying that load.

The values found by means of the equilibrium theory are safe, since we
know that the load can be carried by the plate, but we do not know whether
the plate can carry a greater load, corresponding to another distribution of
moments, which also satisfies the above conditions.

We thus have one theory giving an unsafe value and another giving a safe
value. The exact value is somewhere between these two values. With both
theories the calculations can be so refined as to give values closer to the exact
Solution.

If the yield line theory is used an incorrect determination of the System
of yield lines leads to a reduction in the safety factor. It is therefore essential
that the calculations should only be made by thoroughly qualified and expe-
rienced engineers. In many cases met with in practice it has proved very
difficult to determine a sufficiently accurate System of yield lines.

On the other hand, when the equihbrium theory is employed a poor Solution
leads to an increase in the safety factor. This theory may therefore be used

with safety by any engineer. An experienced and well qualified engineer would
be able to make the structures more economical by using refined Solutions.

From the standpoint of safety, therefore, the equihbrium theory has

certain advantages over the yield hne theory.

4. Application of the Equilibrium Theory. Strip Method

In orthogonal coordinates the equihbrium equation for a plate is

d2mx
|

d2my 2d2mxv
dx2 dy2 dxdy

Every Solution to that equation which satisfies the boundary conditions may
be used for the design of reinforced concrete slabs according to the equihbrium
theory.

As an illustration of different methods for solving the equation let us

consider a simply supported square plate with a uniform load, fig. 1, which

may for example, be treated by one of the following procedures:
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d2mx
dx2

d2my

~W
d2mxy

dxdy

dx2

d2my

~w
d2mxy

dxdy

g
2'
g

g
3'
g
3'

mx |(a2-z2),

m„

4

0.

g
6'

mx f (a2-z2),

mv =ä(a2-y2)>

mxv=§xy-

hY

i

L _

2a

Fig. 1. Simply Supported Square Plate.

The prineipal bending moments in this case are

mx-\-my

d2m„

(mx-my)2
+™>z

qa*
~6~'

q(a2 — x2 — y2)
6

\x\>\y\

\x\<\y\

dx2

d2m

~w
B2mxy

dxdy
&mx
dx2

d2my

~w
d2mxy

dxdy

-?!
V =0,

0,

0,

mx =q(a-y)(a-x)- q (a — x)2

m„
q (a — x)2

mxy=0,

ra„
q(a-y)2

-q>

0,

my =q(a-x)(a-y)

0.

q(a-y)2

m

The mean value of the positive design moment for the reinforcement in one
o a^ o a^direction is -±7- for Solution No. 1 and -^r- for Nos. 2 and 3. In this case, solu-
4 6

tion No. 1, which is the simplest Solution, is not economical. Solution No. 2

requires negative reinforcement near the corners (beyond a circle of radius =a)
and is therefore less economical than Solution No. 3.

As a rule it is preferable to use Solutions with mxy 0, which implies that
the load is carried by means of the bending moments mx and my only. The
plate can then be regarded as composed of strips in both directions and the
loads may be divided into two parts qx and qy, which are carried in the x- and
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^/-directions, respectively. This method of calculation has been called the strip
method and, as a rule, it is the most suitable method of applying the equihbrium
theory.

In using the strip method, the load may be divided between the x- and
?/-strips in different ways. In the above example, Solutions Nos. 1 and 3 show
the two main possibilities. In Solution No. 1 a constant part of the load is
carried in one direction and the remainder in the other direction. In Solution
No. 3, the entire load on certain parts of the plate is carried in one direction
and the whole of the load on the remainder of the plate in the other direction
whereby the load at each point is preferably carried by the strip in which it
causes the smallest moment. The former is the simplest and the latter the
most economical Solution. The apphcation of the strip-method to rectangular
plates under the action of distributed loads (uniform or non-uniform) is quite
simple and will not be discussed in detail in this paper.

Sometimes a plate has the bottom and top reinforcements in different
directions. In that case the strips should be assumed to act in the direction
of the reinforcement in tension. The direction of the strips is then changed
at the line of zero moment and the shear force along this line must be taken
into account in the calculation of moments. As an example, let us consider
the circular plate shown in fig. 2, which is built-in along the edges and acted

upon by a uniform load q. The bottom reinforcement is orthogonal and the
top reinforcement is radial. Within the line of zero moment it is assumed that
half the load is carried in each direction. The moment in the ^-direction is then

mx ^(r2-y2-x2)-

The reaction force from the x-strip per unit of width ofthe line of zero moment is

h/

R-r

kl

line orzero
moment

Fig. 2. Circular Plate with Orthogonal Bottom Reinforcement and Radial Top Rein¬

forcement, Treated with Strip-method.
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ff qr
Qx ^rcosacosa — cos2a.

The total reaction force per unit of width of the line of zero moment is

Q Qx + Qy ^(cos2a + sin2a) =^.
The bending moment at the support of the radial strip is

m„
<lr i ,t> ^ * (P-r)2 fT> x, (R-r)2'
^-rdo:(R-r) + qrdocK ' +q(R-r)d*yRdoL

q(R*-r*)
6R '

If, for example, we take r 0,6R, we then have mrmax= -0,131 qR2 and

%, max 0,090 q R2.

In plates which are supported by columns, as shown in fig. 3, the moments
under the action of a uniform load may be calculated in the following
manner [6].:

The plate is divided by lines of zero shearing force according to fig. 3. In
parts which are supported along an edge the entire load is assumed to be

ky

side
strip

main
strip

side
strip

\i
j +

\y

+ i

+ i +

\VV\^\\V\\\^^^VV\V\VV^VV^VVV^VV\\\V t\JJTOWTOW

r&jmmuiujuuunix
^PartA

\mean moment

-.. v\
" Part

moments in [V
main strip I x

Fig. 3. Rectangular Plate Supported Along the Edges and by a Column, Treated with
Strip-method.

_._._. Lines of Zero Shearing Force Maximum Bending Moment.
<—>• Direction, in Which the Load is Assumed to be Carried,
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carried perpendicularly to that edge. In those parts of the plate which are
supported at a corner, the mean bending moments along two opposite edges

are equal to those which would be obtained if the plate were supported along
one of these edges. The calculations must therefore be made for each direction
as if the plate were carrying the entire load in that direction. The actual
distribution of moments within that part of the plate is somewhat comphcated
and will not be discussed in detail here. It has been shown in [6] that it is
reasonable to assume that the maximum negative moment is uniformly
distributed along one-half of the edge. The design moment at that part of the
edge is thus twice the mean moment.

From fig. 3 it can be seen that we obtain fully loaded strips main strips)
in both directions. The strip in the ^-direction is shown in the figure. The

points of zero moment in the strip in the ^-direction give the width of the
strip in the «/-direction and vice versa. The mean design moments in the side

strips are 1/3 times the moments in the main strips (part B).
The reactions at the walls and the column are easily calculated, since we

know the position of the lines of zero shearing force. The same method of
calculation can also be used for other types of plates, for example those shown
in fig. 4.

As a final example of the calculation by means of the strip method let us

j
+ i i

i

i *f

T"

<7777777777777777777?

t

1111111111 11111111
.J iconcrete column

\l
-f J

V/WWWW//MMW/*

\

Fig. 4. Examples of Plates, Which Can be Treated with Strip-method.
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consider an elongated simple-supported plate carrying a narrowly distributed
load Q per unit of length across a small span (fig. 5). The distribution of the
loads may be assumed to occur according to fig. 5, that is to say, the load Q

is carried by strips in the z-direction, which in their turn are carried by strips
in the y-direction. The maximum design moments are

m„
Qa Ol

8a "

The value of a may be chosen so as to give a suitable and economical construction.

i,y

i
1 1 n

i
i

i
i
i /

L rrr 1
X

mntmmtttttt
r—1 H

J

Load on strips
in x-direction

Load on strips
in y-direction

Fig. 5. Plate With a Narrow Load.
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Summary

In Sweden the plastic theory has been accepted as a means of calculating
moments in reinforced concrete slabs under certain conditions, which are
briefly outlined in the present paper. Two different theories may be used,
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viz. the yield line theory and the equihbrium theory. The latter has the
advantage of being safer. The main purpose of the present paper is to describe
this theory and to give some examples of its application.

Resume

En Suede, la theorie de la plasticite a ete admise ä titre de methode pour
le calcul des moments dans les dalles en beton arme, dans certaines conditions

que la presente contribution expose brievement. Deux theories differentes
peuvent etre employees: la theorie des lignes de rupture et la theorie dite de

l'equilibre. Cette derniere presente l'avantage d'une plus grande sürete. L'auteur
traite essentiellement de cette theorie et presente quelques exemples de son
application.

Zusammenfassung

In Schweden wurde die Plastizitätstheorie als Methode für die
Momentenberechnung bei armierten Betonplatten unter gewissen Bedingungen
anerkannt, die der vorhegende Beitrag kurz darlegt. Es können zwei verschiedene
Theorien verwendet werden, und zwar die Bruchlinientheorie und die
sogenannte Gleichgewichtstheorie. Die letztere hat den Vorteil größerer Sicherheit.

Das Hauptanhegen der vorhegenden Arbeit ist die Beschreibung dieser
Theorie und die Vorführung einiger Anwendungsbeispiele.
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The Behavior of Viscoelastic Thin Shells of Revolution
Under Constant Normal Pressure1)

Le comportement visco-elastique des voiles minces de revolution soumis ä une
pression normale uniformement repartie

Das visco-elastische Verhalten von dünnen Rotations-Schalen
unter konstantem normalem Druck

L. ALBERT SCIPIO
Ph. D., University of Minnesota, Minneapolis, Minnesota, USA

Introduction

The desire and, in some cases, the necessity to utilize materials to the limit
of their capacity necessitate more accurate analysis of structural problems.
The consideration of time effects, which are greatly influenced by temperature
(if temperature effects are experienced by the strueture) require methods of
analysis beyond the limits of classical theories. The attempt to rational design
of structures subjeet to rate influences is being made through "viscoelasticity
theory", which takes into account viscous (time-rate) effects.

The present paper considers the analysis of thin shells of revolution under
constant normal pressure. It is assumed that the material behaves as a linear
viscoelastic material which may be exposed to temperature changes.

Part I. General Theory

1. Concept of Viscoelasticity

Viscoelasticity is concerned with the analysis of materials exhibiting time
effects which include delayed elasticity and viscous flow. These material res-

x) This research was supported by the United States Air Force under Contract AF 33

(616)-5723, monitored by the Aeronautical Research Laboratory, Wright Air
Development Center.
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ponses are associated with such phenomena as creep under constant stress
and relaxation of stress at constant strains. In general, the phenomenon of
viscoelastic behavior is extremely complicated. For the purpose of this
analysis, the viscoelastic response is assumed to be linear, i. e. at any time instant
the strain is approximately proportional to the stress.

The physical behavior of a viscoelastic material may be represented by
fig. 1. First, consider the response of the general linear viscoelastic material
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Fig. 1. Physical Behaviors and Mechanical Models.

to an applied force, represented by fig. la. It consists of an instantaneous
elastic response AB due to spring Kl9 followed by a delayed elastic
deformation with viscous flow along BC and continued viscous flow along CD.
When the force is suddenly removed, the instantaneous elastic deformation is

immediately recovered by the spring K1 as shown in DE. The delayed elastic
deformation recovers along EF, leaving the permanent viscous deformation
F G due to the dashpot rj. Therefore, the general viscoelastic linear solid exhibits
all three types of stress responses: instantaneous elasticity, delayed elasticity
and viscous flow.

For the Kelvin-Voigt sohd, the response to force is not instantaneous
but as may be seen in fig. 1 b, the deformation gradually approaches an asym-
totic valve. Conversely, when the force is suddenly removed, the sohd does

not undergo instantaneous recovery, but the deformation gradually disappears.
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2. Fundamental Equations of Viscoelasticity

The mathematical formulation of the linear viscoelastic response of an
isotropic, homogeneous body to combined thermal and mechanical load can
be approximately represented by the following set of differential equations:

aijj+Fi p€i ° Equations of Motion,

€ij,ki + €ki,ij ~ *ikji~ €ji,ik ° Compatibility Equations,

P{Sij} 2Q{Eij}, e «T
Ti oijXi2)

Equations of State,

Boundary Conditions,

(i)
(2)

(3)

(4)

where P and Q are linear Operators representing different viscoelastic materials

and

¦T^ij €ij € °{j j Sij Vij-v^ij' €ij ~~ 2 \T>i,j ' »j,i/

Subject to the boundary conditions, the system of nine equations on the
set of nine unknown field variables g{j ^ is complete in the sense that Solution
of the System is unique, if the Solution exists.

3. Application to Shells of Revolution

Consider a shell of revolution subjected to a constant normal axial-sym-
metric pressure and a temperature gradient across its shell thickness (fig. 2).

zw

Fig. 2. Coordinate System and Shell Stress Couples and Resultants.

If it is assumed that its material behaves as a Kelvin-Voigt body with
constant viscosity, rj, modulus of shear, G, and thermal expansion coefficient,
ol, the complete set of governing differential equations can be shown to reduce

2) When surface tractions are prescribed at the surface.
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to differential equations in unknowns x an(i Q</>> the angle of rotation of a

tangent to the meridian and the meridian shear stress respectively. They are:
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where ß f (r) [1 + /' (r)2]v', A [1 +/' (r)2]1/a, Z f(r), /' (r) is slope of tangent
to a meridian, ym is the temperature function of the middle surface.

Part II. Example of Practical Application

2. Conical Shell

As an example, we will restrict ourselves to thin conical shells (fig. 3). The

temperature is assumed steady, axial-symmetric and constant across the shell
thickness. The governing differential equation reduces to (Reference 1)

/- it
o o
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Fig. 3. Shell Temperature and Pressure Distributions.
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Substitution of the boundary conditions x — 0 when £ 0 for all values of Z

and when l Z0 for all values of £ yields for the Solution (1)
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where Z Z(y), y2 %—*—> Z1 ber(y), Z2= —bei(y), Z' (y) is derivative

of function with respect to y, and the constants Ax and A2 are determined
from the shell edge conditions.

1. Numerical Example

Consider a conical shell after fig. 3, axial-symmetrically loaded by p=10
lb./sq. in. with a constant temperature difference across the shell thickness of
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500° F. The apex angle 2y is 90° and Z0 is 120 inches. The shell is considered
fixed so that the boundary conditions are as follows:

7 7 r, dul l0, u 0, d7 0- (15)

The resulting membrane forces and bending moments are shown in fig. 4.
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Fig. 4.

Part DI. Comparison of Linear Viscoelastic and Elastic Results

Compare now, the linear viscoelastic stresses, moments, and deformation
with those of a corresponding elastic analysis.

Linear Viscoelastic Analysis
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Elastic Analysis
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Appendix

X angle of rotation of a tangent to a meridian.
I distance along cone element, measured from vertex.
l0 length of the cone element

t time.

r relaxation time, r — y]\G.

G shear modulus of elasticity.

y cone half-angle.

t] coefficient of viscosity.
8 shell thickness.

ol thermal expansion coefficient.
T -\- Tt

Tm mean shell temperature above a reference temperature —~— •

© temperature differential across the shell divided by the shell thick-
T + Ti

ness —r—.0

r, rx, r2 radii of shell.

p normal pressure, positive pressure directed towards the shell.

Q± shear stress per unit length.

Nq,N^ membrane forces per unit length.

Mq,M^ bending moments per unit length.

u radial displacement on any xy-jA&nes.

Tx temperature outside the shell at the nose of the cone, or where 1 0.

T2 temperature outside the shell at the edge of the cone, or where l l0.

Tt temperature inside the shell.
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Summary

Thin shells of revolution under constant normal pressure are considered as

hnear viscoelastic bodies to study time dependency of stresses and deformations

of shell type structures.
It is shown that for the hnear viscoelastic problem, temperature effects

are considered, if the temperature dependence of material properties can be

neglected, the elastic Solution and results can be used with slight modification.
If the material is assumed to be incompressible, i.e. Poisson's ratio is 1/2, the
following relationship between hnear viscoelastic and elastic stresses, moments,
and deformations were observed:

1. The hnear viscoelastic stresses and moments are identical to the elastic
stresses and moments.

2. The viscoelastic deflections differ from the elastic deflection by a time
factor (1 — e-*/T), where r is the relaxation time of the material.

Resume

L'auteur considere des voiles minces de revolution, soumis ä une pression
normale uniformement repartie, comme des corps lineairement visco-elastiques;
il Studie ainsi la Variation des contraintes et des deformations de ce type de

structures en fonetion du temps. II montre que pour un voile lineairement
visco-elastique, lorsque l'on considere reffet de la temperature, les Solutions
de la theorie de l'elasticite sont applicables avec quelques modifications, pour
autant que les proprietes du materiau soient pratiquement independantes de la
temperature. Pour un materiau admis incompressible (coefficient de Poisson
0,5), les relations entre les contraintes, moments et deformations visco-elastiques

d'une part et elastiques d'autre part sont les suivantes:

1. Les moments et contraintes d'un voile lineairement visco-elastique sont
identiques ä ceux donnes par la theorie de l'elasticite.

2. Les deformations visco-elastiques sont egales aux deformations elastiques
multipliees par le coefficient dependant du temps (1 —e~tlT), oü r caracterise
le temps de relaxation du materiau.

Zusammenfassung

Es werden dünne Rotations-Schalen unter gleichmäßig verteiltem Normaldruck

als linear visco-elastische Körper aufgefaßt, um allgemein die
Zeitabhängigkeit der Spannungen und Deformationen von solchen Gebilden zu
untersuchen.
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Es wird gezeigt, daß für das linear visco-elastische Problem bei Betrachtung

der Temperatureinflüsse die Lösungen der Elastizitätstheorie mit kleinen
Änderungen angewendet werden dürfen, falls die Temperaturabhängigkeit
der Materialeigenschaften vernachlässigt werden kann. Unter der Annahme
inkompressiblen Materials, d. h. daß die Poisson-Zahl y2 ist, konnten die
folgenden Beziehungen zwischen den linear visco-elastischen und den elastischen
Spannungen, Momenten und Deformationen festgestellt werden.

1. Die linear visco-elastischen Momente und Spannungen sind identisch mit
den Momenten und Spannungen nach der Elastizitätstheorie.

2. Die visco-elastische Durchbiegung unterscheidet sich von der elastischen

Durchbiegung durch einen Zeitfaktor (1 —e~ilT), wobei r die Relaxationszeit
des Materials ist.
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