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Numerische Methode zur Berechnung statischer Probleme

Numerical Method for Solving Statical Problems

Methode numerique pour le calcul de problemes statiques

B. GILG
Dr. Ing., Elektro-Watt, Zürich

1. Einleitung

Die Aufstehung von Differentialgleichungen für statische Probleme bietet
im allgemeinen keine großen Schwierigkeiten, doch ist es bisweilen schon bei
linearen Fähen, viel öfters aber noch bei zwei- und mehrdimensionalen
Tragwerken sowie bei dynamischen und thermischen Problemen unmöghch, eine
geschlossene Lösung mit Befriedigung aller Randbedingungen zu finden.

Ein oft verwendetes Näherungsverfahren ist die von Markus in seiner
Theorie der elastischen Gewebe angewandte Differenzenrechnung, bei welcher
bekanntlich die Differentialquotienten durch endliche Differenzen approximiert

und die Differentialgleichungen in Gleichungssysteme umgewandelt
werden. Die Anzahl der zu wählenden Punkte hängt bei einer gewünschten
Genauigkeit von den Krümmungsverhältnissen des Tragwerkes ab und kann
in komplizierten Fähen sehr groß werden.

Es ist aber ohne weiteres möghch, mit einem analogen Verfahren auf
Grund einer weit geringeren Anzahl von Festpunkten zum Ziel zu kommen,
wenn nämlich als Ausgangswert nicht die Funktion selber, sondern die höchste
in der Differentialgleichung auftretende Ableitung gewählt wird. Anstehe der
Berechnung der Ableitungen aus den Funktionswerten durch Differenzenbildung

tritt nunmehr die Berechnung der niedrigeren Ableitungen aus den
höheren durch Integration einer interpolierten Kurve. Damit gleicht das

Näherungsverfahren der bekannten Seilpolygongleichung von Stüßi.
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2. Linearer Fall

Ibl

Um das Verfahren im Detaü zu erläutern, gehen wir von einer Differentialgleichung

4. Ordnung aus, welche folgende Form besitzt:

Uix)ym'+/,(*)»"+fi{x)y"+fAx)y''+/0(*)y ?(*)• (l)

Dabei sind die Koeffizienten sowie die Störfunktion p(x) behebige bekannte
Funktionen.

Paraoei

Fig. 1.

Die höchste Ableitung der gesuchten Funktion y ist y"". Sie stellt somit die

Ausgangsfunktion für die numerische Integration dar. Tragen wir die
unbekannten Werte in einem Diagramm auf, so können wir, wie Fig. 1 zeigt, je
drei dieser Werte durch eine Parabel verbinden. Nach den Regeln der
Integration erhalten wir:

y"'(x)=y"'(0)+fy""dx,
(2)

y"(x)=y"(0)+$y"' dx.
o

Wird eine Parabel zwischen drei Werten mit den Indizes 0, 1 und 2 interpoliert,
so ergibt sich

y"i 2/0 +^f (5 v"+8 vT - y*). Pi)

Axtf 2/o +-T2 (4^'" + i6yr + *y.)- (3.)

Wh haben also die 3. Ableitungen im Punkt 1 und 2 aus den 4. Ableitungen
im Punkt 0, 1 und 2 sowie aus der 3. Ableitung im Punkt 0 berechnet. Analog
zu (32) gut für die weiteren Punkte durch Verschieben der Indizes

y'z 2/i'+4f (*s/r+i«y"+*y") etc. (33)

Die allgemeine Form der Funktion y"' (x) ist dabei eine Parabel 3. Grades,
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welche weiter integriert werden kann, wobei man die nächst tiefere Ableitung
erhält:

2/i =2/o+2/o ^ *+4r (7 y'o + 6 2/i'" - 2/2"), (*i)

2/2 2/o + 2/o" 2 A x +^ (16 yl' + 32 y'»') (42)

und durch Verschieben der Indizes:

y'^=y"1+y'^2Ax + ~(16y'xm + ^y2"') etc. (43)

Analog ergeben sich die tieferen Ableitungen sowie die Funktion selber:

2/i 2/i + 2/o A x + Vo ~Y + 2iö" (27 2/o" + !62/i'" - 3yf), (6J

2/2 ^ + 2/i'2Ja: + ^'2Ja:2 +^(92/;'" + 12i/f-y2'"), (52)

y^y{+yH12Ax+y'^2Ax2+^-{9y"x" + l2y2"'-y3m) etc. (53)

2/i 2/o + 2/o ^« + 2/S^- + 2/o-^- + 3^-(H^" + 52/r-2/n» (61)

y^yQ + y'02Ax + yl 2Ax^ +y1^-^- + — (16^'" + \%y"x"-2y"2"), (62)

±A x3 A :r*
2/3 2/i + 2/i2^x + 2/i'2Zl^ +^'-1- + -^-(162/r + 162/r-22/r) etc. (63)

Mit den Formeln (3)—(6) läßt sich in jedem Punkt (x 0, Ax, 2Ax
die Differentialgleichung so umwandeln, daß nur noch die 4. Ableitungen der
gesuchten Funktion y sowie die niedrigeren Ableitungen des Randpunktes
(x 0) auftreten. Dabei müssen z.B. die Werte i/x, yx, y'x etc., welche in den
Gleichungen (33), (43), (53) etc. auftreten, durch die aus den Formeln (3X), (ix),
(5X) erhaltenen Ausdrücke ersetzt werden.

Das so aufgestehte Gleichungssystem enthält für jeden Punkt der
untersuchten Strecke eine Unbekannte y"" sowie für den Punkt x 0 so viele
Unbekannte (y'g, yl, y'0, y0) als die Ordnungszahl der Differentialgleichung
beträgt. Zu ihrer Bestimmung dienen für jeden Punkt eine Gleichung (1) sowie die
Rand- resp. Anfangsbedingungen, deren Anzahl bekanntlich gleich der
Ordnungszahl sein muß. Die Zahl der Unbekannten und diejenige der Gleichungen
ist also identisch.

Zu den bisherigen Erläuterungen sind zwei Bemerkungen wichtig:

a) Ist die höchste Ableitung der Differentialgleichung eine andere als die im
vorigen Fall angenommene, so gelten die Formeln (3)—(6) in analoger
Weise. Nehmen wir als höchste Ableitung y", so gelten die Formeln (3) für
y', die Formeln (4) für y und die Formeln (5) und (6) sind überflüssig.
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b) Da bei der Berechnung der tieferen Ableitungen im Punkt x=i im allge¬
meinen sämtliche höchsten Ableitungen der Punkte x<i auftreten, muß

zur Vermeidung von komplizierten Formeln die Zahl der Teilstrecken
möghchst klein gehalten werden, z.B. 4—6. Symmetriebedingungen sind
als Randbedingungen einzuführen, so daß sich die Zahl der Unbekannten
auf die Hälfte reduziert.

3. Linearer Fall mit 2 simultanen Differentialgleichungen

Während bei einfacheren statischen Problemen im allgemeinen die Seil-

polygongleichung von Stüßi schneller zum Ziel führt, so eignet sich die
vorerwähnte Methode besonders auch für komplizierte Probleme, wie z.B. für
den in Fig. 2 skizzierten Kreisbogenträger unter radialer Belastung. Sein

Fig. 2.

Verhalten wird durch zwei simultane Differentialgleichungen für die mit dem
Elastizitätsmodul E multiplizierten Verschiebungen u(s) in tangentialer
Richtung und v (s) in radialer Richtung charakterisiert:

d?_

12

ü
12

Ev"" +
Ev"
R2

Ev'" + Ev'

+ -ß2Ev + -ßEu' -p(s)

d3

12 R2

(7)
¦dREu" 0.

d, R und p($) sind aus der Fig. 2 ersichtlich. Die Schnittgrößen M
(Biegemoment) und N (Normalkraft) gehorchen bekanntlich folgenden Ausdrücken:

M
12 W + Ev" N d Eu' +

Ev
~R~

Für einfache Belastungsfunktionen p{s) können die Gleichungen (7) streng
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gelöst werden, so daß die Genauigkeit der Näherungslösung bestimmt werden
kann.

Aus den beiden höchsten Ableitungen Ev"" und Eu" werden anhand der
Formeln (3)—(6) die tieferen Ableitungen berechnet und in die Gleichungen
(7) eingesetzt, wobei zusätzlich die unbekannten Randwerte Ev'", Ev", Ev',
Ev, Eu' und Eu für s 0 auftreten. Es müssen also 6 Randbedingungen
aufgesteht werden, d. h. für jedes Bogenende 3. Im Falle eines total
eingespannten Bogens sind dies die folgenden:

an jedem Rand: Eu Ev Ev' 0.

Bei symmetrischem Verlauf der Belastung können die 3 Randbedingungen
am Rand s=sM durch Symmetriebedingungen im Bogenscheitel (« ^«(0/)

ersetzt werden.
Zur Überprüfung der Genauigkeit wurde ein Träger mit einem Öffnungswinkel

von 120° und einer Schlankheit R/d 10 unter konstanter Belastung
berechnet. Es ergab sich für die Maximalverschiebung im Scheitel folgendes
Büd:

pR2
Strenge Lösung EvMax — 1,850

et

vR2
Einteilung zls=15° EvMax -1,858^-,

Einteilung A s 20° E vMax -1,868 ^j-.
Die Abweichungen der Werte für die Schnittgrößen halten sich in

denselben Proportionen. Eine Einteilung in 6 Abschnitte (im Symmetriefall nur 3!)
kann als genügend angesehen werden.

4. Dünne Platten als Fall einer partiellen Differentialgleichung 4. Ordnung

Für die dünnen Platten sind schon verschiedene Näherungsverfahren
beschrieben worden, so daß sich der Leser über die Nützlichkeit des hier zur
Diskussion stehenden selber ein Büd machen kann. In aüen folgenden Formeln
werden die Ableitungen durch Indizes angegeben, so z. B.

dw frw
J^ Wx' 8x2dy2 Wxxvv'

Die Plattengleichung lautet somit:
V jx, y)

D
Sie wird zur Vereinfachung der Berechnung umgeformt:

V ix, y)
D

Aw =wxx+wyu =M(x,y). (11)

AAw wxxxx + 2wxxyv+wvyuv ^—. (9)

AM M„+ M„ ^S1, (10)
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Wir beschreiben das Vorgehen für den Fall der Fig. 3 (quadratische Platte).

Als höchste Ableitungen in der Gleichung (10) treten M^ und Myy auf,
d.h. für jeden untersuchten Punkt 2 Werte. Da für jeden Punkt nur eine

Gleichung aufgesteht werden kann, muß eine weitere Bedingung gefunden
werden; es ist dies die Berechnung ein und desselben Funktionswertes M über
zwei verschiedene Strecken, z. B. für M7 aus Mxx in den Punkten 5, 6, 7 und

M^ in den Punkten 2, 7, 12.

L

w V 22 23 »

a
ü

'S IS 17 18 &

a
it

10 If 12 ts la

£

s 1 5 7 e 9

g

0 1 2 * * ft.

Fig. 3.

Natürlich müssen hier sämthche Symmetrie- und Antimetriebedingungen
von Anfang an ausgenützt werden. Für zweiseitig symmetrische Belastung
wurde wie folgt vorgegangen:

a) Berechnung von Mx, M2, M6, M1 und M12 aus den entsprechenden Mxx-
Werten der Punkte 0, 1, 2, 5, 6, 7, 10, 11, 12 unter Beachtung der Rand-
und Symmetriebedingungen: M0 0 und Mx 0 in Punkt 2, 7, 12. Es bleiben

die II Unbekannten Mxx in den Punkten 0, 1, 2, 5, 6, 7, 10, 11, 12,

Mh undüf10.
b) Formulierung der Differentialgleichung (10) in den Punkten 0, 1, 2, 6, 7,

12 unter Berücksichtigung der Symmetrie: Mxx Myy in den Punkten 0,

6, 12 und (M^^iM^, (Myy)2 (Mxx)x0, iMyy), {Mxx)xx; dies ergibt
6 Gleichungen.

c) Beachtung der Symmetriebedingungen Mx Ms, M2 M10 ergibt 2 zusätz¬
liche Gleichungen.

d) Berechnung von M7 über die Werte Myy der Punkte 2, 7, 12 (gleich den
Werten Mxx in 10, 11, 12); Gleichsetzen mit M^ aus a) ergibt eine weitere
Gleichung.

e) Zur Bestimmung der 11 Unbekannten brauchen wir noch 2 Gleichungen,
welche uns die Randbedingungen in den Punkten 1 und 2 hefern müssen.
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Im Faüe einer frei drehbar gelagerten Platte sind dies die Gleichungen
Mx M2 0, welche besagen, daß das Randmoment identisch verschwindet;
sie erlauben eine sofortige Berechnung der M-Werte der Differentialgleichung
(10) und damit der Schnittmomente; die Durchbiegungen w erhält man darauf
in analoger Weise mittelst der Differentialgleichung (11). Im Fähe einer
eingespannten Platte muß mit den Unbekannten M1 und M2 über die Gleichung (11)
weiter gerechnet werden, da die Randbedingungen sich nur auf w, wx und wy
beziehen.

Die Berechnung wurde für die quadratische Platte unter p konst.
durchgeführt und ergab bei der Einteilung der Fig. 3 für die maximale
Durchbiegung sowie für die maximalen Momente in Plattenmitte und längs der

Einspannung Abweichungen von 1—2%, was als genügend klein angesehen
werden kann.

5. Weitere Anwendungsmöglichkeiten

Die Methode der numerischen Integration läßt sich natürhch auch auf
komplizierte statische Gebilde wie Schalen und Staumauern anwenden, was
der Verfasser in einer späteren Arbeit näher erläutern wird. Das Vorgehen ist
immer dasselbe, nur gilt es zu beachten, daß bei einer komphzierten partiellen
Differentialgleichung sämthche höchsten Ableitungen (auch die gemischten)
als Ausgangswerte dienen müssen, wobei die innern KontroUen sich vermehren.

Bei der Gleichung (9) würde das z. B. folgendermaßen aussehen:

Basis -

werte

Wxxxx

U)Xxyy

1.

Integration

2.

Integration

(1. Kontrolle)
3.

Integration

4.

Integration

(2. Kontrolle)

cxy

Wxyy

+ Wyyy
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Zusammenfassung

Es wird eine Methode entwickelt, welche erlaubt, Differentialgleichungen
zu lösen, indem die höchste Ableitung als Basiswert angenommen wird und
durch sukzessive Integration die niedrigeren Ableitungen berechnet werden.
Zur Erläuterung der Methode werden einfache und partielle Differentialgleichungen

untersucht.

Summary

A new method is described for solving differential equations by starting
from the highest derivate and calculating the lower derivates through successive

integrations. In order to illustrate the method, a few examples of
calculation are then given applying to simple and partial differential equations.

Resume

La methode exposee permet de resoudre des equations differentiehes; en
admettant la derivee du plus haut degre comme valeur de base, on obtient
par integrations successives les derivees de degre inferieur. Afin d'ülustrer la
methode, on donne quelques exemples de calcul d'equations differentiehes
simples et partielles.
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