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Numerische Methode zur Berechnung statischer Probleme

Numerical Method for Solving Statical Problems

Methode numerique pour le calcul de problemes statiques

B. GILG
Dr. Ing., Elektro-Watt, Zürich

1. Einleitung

Die Aufstehung von Differentialgleichungen für statische Probleme bietet
im allgemeinen keine großen Schwierigkeiten, doch ist es bisweilen schon bei
linearen Fähen, viel öfters aber noch bei zwei- und mehrdimensionalen
Tragwerken sowie bei dynamischen und thermischen Problemen unmöghch, eine
geschlossene Lösung mit Befriedigung aller Randbedingungen zu finden.

Ein oft verwendetes Näherungsverfahren ist die von Markus in seiner
Theorie der elastischen Gewebe angewandte Differenzenrechnung, bei welcher
bekanntlich die Differentialquotienten durch endliche Differenzen approximiert

und die Differentialgleichungen in Gleichungssysteme umgewandelt
werden. Die Anzahl der zu wählenden Punkte hängt bei einer gewünschten
Genauigkeit von den Krümmungsverhältnissen des Tragwerkes ab und kann
in komplizierten Fähen sehr groß werden.

Es ist aber ohne weiteres möghch, mit einem analogen Verfahren auf
Grund einer weit geringeren Anzahl von Festpunkten zum Ziel zu kommen,
wenn nämlich als Ausgangswert nicht die Funktion selber, sondern die höchste
in der Differentialgleichung auftretende Ableitung gewählt wird. Anstehe der
Berechnung der Ableitungen aus den Funktionswerten durch Differenzenbildung

tritt nunmehr die Berechnung der niedrigeren Ableitungen aus den
höheren durch Integration einer interpolierten Kurve. Damit gleicht das

Näherungsverfahren der bekannten Seilpolygongleichung von Stüßi.
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2. Linearer Fall

Ibl

Um das Verfahren im Detaü zu erläutern, gehen wir von einer Differentialgleichung

4. Ordnung aus, welche folgende Form besitzt:

Uix)ym'+/,(*)»"+fi{x)y"+fAx)y''+/0(*)y ?(*)• (l)

Dabei sind die Koeffizienten sowie die Störfunktion p(x) behebige bekannte
Funktionen.

Paraoei

Fig. 1.

Die höchste Ableitung der gesuchten Funktion y ist y"". Sie stellt somit die

Ausgangsfunktion für die numerische Integration dar. Tragen wir die
unbekannten Werte in einem Diagramm auf, so können wir, wie Fig. 1 zeigt, je
drei dieser Werte durch eine Parabel verbinden. Nach den Regeln der
Integration erhalten wir:

y"'(x)=y"'(0)+fy""dx,
(2)

y"(x)=y"(0)+$y"' dx.
o

Wird eine Parabel zwischen drei Werten mit den Indizes 0, 1 und 2 interpoliert,
so ergibt sich

y"i 2/0 +^f (5 v"+8 vT - y*). Pi)

Axtf 2/o +-T2 (4^'" + i6yr + *y.)- (3.)

Wh haben also die 3. Ableitungen im Punkt 1 und 2 aus den 4. Ableitungen
im Punkt 0, 1 und 2 sowie aus der 3. Ableitung im Punkt 0 berechnet. Analog
zu (32) gut für die weiteren Punkte durch Verschieben der Indizes

y'z 2/i'+4f (*s/r+i«y"+*y") etc. (33)

Die allgemeine Form der Funktion y"' (x) ist dabei eine Parabel 3. Grades,
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welche weiter integriert werden kann, wobei man die nächst tiefere Ableitung
erhält:

2/i =2/o+2/o ^ *+4r (7 y'o + 6 2/i'" - 2/2"), (*i)

2/2 2/o + 2/o" 2 A x +^ (16 yl' + 32 y'»') (42)

und durch Verschieben der Indizes:

y'^=y"1+y'^2Ax + ~(16y'xm + ^y2"') etc. (43)

Analog ergeben sich die tieferen Ableitungen sowie die Funktion selber:

2/i 2/i + 2/o A x + Vo ~Y + 2iö" (27 2/o" + !62/i'" - 3yf), (6J

2/2 ^ + 2/i'2Ja: + ^'2Ja:2 +^(92/;'" + 12i/f-y2'"), (52)

y^y{+yH12Ax+y'^2Ax2+^-{9y"x" + l2y2"'-y3m) etc. (53)

2/i 2/o + 2/o ^« + 2/S^- + 2/o-^- + 3^-(H^" + 52/r-2/n» (61)

y^yQ + y'02Ax + yl 2Ax^ +y1^-^- + — (16^'" + \%y"x"-2y"2"), (62)

±A x3 A :r*
2/3 2/i + 2/i2^x + 2/i'2Zl^ +^'-1- + -^-(162/r + 162/r-22/r) etc. (63)

Mit den Formeln (3)—(6) läßt sich in jedem Punkt (x 0, Ax, 2Ax
die Differentialgleichung so umwandeln, daß nur noch die 4. Ableitungen der
gesuchten Funktion y sowie die niedrigeren Ableitungen des Randpunktes
(x 0) auftreten. Dabei müssen z.B. die Werte i/x, yx, y'x etc., welche in den
Gleichungen (33), (43), (53) etc. auftreten, durch die aus den Formeln (3X), (ix),
(5X) erhaltenen Ausdrücke ersetzt werden.

Das so aufgestehte Gleichungssystem enthält für jeden Punkt der
untersuchten Strecke eine Unbekannte y"" sowie für den Punkt x 0 so viele
Unbekannte (y'g, yl, y'0, y0) als die Ordnungszahl der Differentialgleichung
beträgt. Zu ihrer Bestimmung dienen für jeden Punkt eine Gleichung (1) sowie die
Rand- resp. Anfangsbedingungen, deren Anzahl bekanntlich gleich der
Ordnungszahl sein muß. Die Zahl der Unbekannten und diejenige der Gleichungen
ist also identisch.

Zu den bisherigen Erläuterungen sind zwei Bemerkungen wichtig:

a) Ist die höchste Ableitung der Differentialgleichung eine andere als die im
vorigen Fall angenommene, so gelten die Formeln (3)—(6) in analoger
Weise. Nehmen wir als höchste Ableitung y", so gelten die Formeln (3) für
y', die Formeln (4) für y und die Formeln (5) und (6) sind überflüssig.
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b) Da bei der Berechnung der tieferen Ableitungen im Punkt x=i im allge¬
meinen sämtliche höchsten Ableitungen der Punkte x<i auftreten, muß

zur Vermeidung von komplizierten Formeln die Zahl der Teilstrecken
möghchst klein gehalten werden, z.B. 4—6. Symmetriebedingungen sind
als Randbedingungen einzuführen, so daß sich die Zahl der Unbekannten
auf die Hälfte reduziert.

3. Linearer Fall mit 2 simultanen Differentialgleichungen

Während bei einfacheren statischen Problemen im allgemeinen die Seil-

polygongleichung von Stüßi schneller zum Ziel führt, so eignet sich die
vorerwähnte Methode besonders auch für komplizierte Probleme, wie z.B. für
den in Fig. 2 skizzierten Kreisbogenträger unter radialer Belastung. Sein

Fig. 2.

Verhalten wird durch zwei simultane Differentialgleichungen für die mit dem
Elastizitätsmodul E multiplizierten Verschiebungen u(s) in tangentialer
Richtung und v (s) in radialer Richtung charakterisiert:

d?_

12

ü
12

Ev"" +
Ev"
R2

Ev'" + Ev'

+ -ß2Ev + -ßEu' -p(s)

d3

12 R2

(7)
¦dREu" 0.

d, R und p($) sind aus der Fig. 2 ersichtlich. Die Schnittgrößen M
(Biegemoment) und N (Normalkraft) gehorchen bekanntlich folgenden Ausdrücken:

M
12 W + Ev" N d Eu' +

Ev
~R~

Für einfache Belastungsfunktionen p{s) können die Gleichungen (7) streng
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gelöst werden, so daß die Genauigkeit der Näherungslösung bestimmt werden
kann.

Aus den beiden höchsten Ableitungen Ev"" und Eu" werden anhand der
Formeln (3)—(6) die tieferen Ableitungen berechnet und in die Gleichungen
(7) eingesetzt, wobei zusätzlich die unbekannten Randwerte Ev'", Ev", Ev',
Ev, Eu' und Eu für s 0 auftreten. Es müssen also 6 Randbedingungen
aufgesteht werden, d. h. für jedes Bogenende 3. Im Falle eines total
eingespannten Bogens sind dies die folgenden:

an jedem Rand: Eu Ev Ev' 0.

Bei symmetrischem Verlauf der Belastung können die 3 Randbedingungen
am Rand s=sM durch Symmetriebedingungen im Bogenscheitel (« ^«(0/)

ersetzt werden.
Zur Überprüfung der Genauigkeit wurde ein Träger mit einem Öffnungswinkel

von 120° und einer Schlankheit R/d 10 unter konstanter Belastung
berechnet. Es ergab sich für die Maximalverschiebung im Scheitel folgendes
Büd:

pR2
Strenge Lösung EvMax — 1,850

et

vR2
Einteilung zls=15° EvMax -1,858^-,

Einteilung A s 20° E vMax -1,868 ^j-.
Die Abweichungen der Werte für die Schnittgrößen halten sich in

denselben Proportionen. Eine Einteilung in 6 Abschnitte (im Symmetriefall nur 3!)
kann als genügend angesehen werden.

4. Dünne Platten als Fall einer partiellen Differentialgleichung 4. Ordnung

Für die dünnen Platten sind schon verschiedene Näherungsverfahren
beschrieben worden, so daß sich der Leser über die Nützlichkeit des hier zur
Diskussion stehenden selber ein Büd machen kann. In aüen folgenden Formeln
werden die Ableitungen durch Indizes angegeben, so z. B.

dw frw
J^ Wx' 8x2dy2 Wxxvv'

Die Plattengleichung lautet somit:
V jx, y)

D
Sie wird zur Vereinfachung der Berechnung umgeformt:

V ix, y)
D

Aw =wxx+wyu =M(x,y). (11)

AAw wxxxx + 2wxxyv+wvyuv ^—. (9)

AM M„+ M„ ^S1, (10)
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Wir beschreiben das Vorgehen für den Fall der Fig. 3 (quadratische Platte).

Als höchste Ableitungen in der Gleichung (10) treten M^ und Myy auf,
d.h. für jeden untersuchten Punkt 2 Werte. Da für jeden Punkt nur eine

Gleichung aufgesteht werden kann, muß eine weitere Bedingung gefunden
werden; es ist dies die Berechnung ein und desselben Funktionswertes M über
zwei verschiedene Strecken, z. B. für M7 aus Mxx in den Punkten 5, 6, 7 und

M^ in den Punkten 2, 7, 12.

L

w V 22 23 »

a
ü

'S IS 17 18 &

a
it

10 If 12 ts la

£

s 1 5 7 e 9

g

0 1 2 * * ft.

Fig. 3.

Natürlich müssen hier sämthche Symmetrie- und Antimetriebedingungen
von Anfang an ausgenützt werden. Für zweiseitig symmetrische Belastung
wurde wie folgt vorgegangen:

a) Berechnung von Mx, M2, M6, M1 und M12 aus den entsprechenden Mxx-
Werten der Punkte 0, 1, 2, 5, 6, 7, 10, 11, 12 unter Beachtung der Rand-
und Symmetriebedingungen: M0 0 und Mx 0 in Punkt 2, 7, 12. Es bleiben

die II Unbekannten Mxx in den Punkten 0, 1, 2, 5, 6, 7, 10, 11, 12,

Mh undüf10.
b) Formulierung der Differentialgleichung (10) in den Punkten 0, 1, 2, 6, 7,

12 unter Berücksichtigung der Symmetrie: Mxx Myy in den Punkten 0,

6, 12 und (M^^iM^, (Myy)2 (Mxx)x0, iMyy), {Mxx)xx; dies ergibt
6 Gleichungen.

c) Beachtung der Symmetriebedingungen Mx Ms, M2 M10 ergibt 2 zusätz¬
liche Gleichungen.

d) Berechnung von M7 über die Werte Myy der Punkte 2, 7, 12 (gleich den
Werten Mxx in 10, 11, 12); Gleichsetzen mit M^ aus a) ergibt eine weitere
Gleichung.

e) Zur Bestimmung der 11 Unbekannten brauchen wir noch 2 Gleichungen,
welche uns die Randbedingungen in den Punkten 1 und 2 hefern müssen.
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Im Faüe einer frei drehbar gelagerten Platte sind dies die Gleichungen
Mx M2 0, welche besagen, daß das Randmoment identisch verschwindet;
sie erlauben eine sofortige Berechnung der M-Werte der Differentialgleichung
(10) und damit der Schnittmomente; die Durchbiegungen w erhält man darauf
in analoger Weise mittelst der Differentialgleichung (11). Im Fähe einer
eingespannten Platte muß mit den Unbekannten M1 und M2 über die Gleichung (11)
weiter gerechnet werden, da die Randbedingungen sich nur auf w, wx und wy
beziehen.

Die Berechnung wurde für die quadratische Platte unter p konst.
durchgeführt und ergab bei der Einteilung der Fig. 3 für die maximale
Durchbiegung sowie für die maximalen Momente in Plattenmitte und längs der

Einspannung Abweichungen von 1—2%, was als genügend klein angesehen
werden kann.

5. Weitere Anwendungsmöglichkeiten

Die Methode der numerischen Integration läßt sich natürhch auch auf
komplizierte statische Gebilde wie Schalen und Staumauern anwenden, was
der Verfasser in einer späteren Arbeit näher erläutern wird. Das Vorgehen ist
immer dasselbe, nur gilt es zu beachten, daß bei einer komphzierten partiellen
Differentialgleichung sämthche höchsten Ableitungen (auch die gemischten)
als Ausgangswerte dienen müssen, wobei die innern KontroUen sich vermehren.

Bei der Gleichung (9) würde das z. B. folgendermaßen aussehen:

Basis -

werte

Wxxxx

U)Xxyy

1.

Integration

2.

Integration

(1. Kontrolle)
3.

Integration

4.

Integration

(2. Kontrolle)

cxy

Wxyy

+ Wyyy
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Zusammenfassung

Es wird eine Methode entwickelt, welche erlaubt, Differentialgleichungen
zu lösen, indem die höchste Ableitung als Basiswert angenommen wird und
durch sukzessive Integration die niedrigeren Ableitungen berechnet werden.
Zur Erläuterung der Methode werden einfache und partielle Differentialgleichungen

untersucht.

Summary

A new method is described for solving differential equations by starting
from the highest derivate and calculating the lower derivates through successive

integrations. In order to illustrate the method, a few examples of
calculation are then given applying to simple and partial differential equations.

Resume

La methode exposee permet de resoudre des equations differentiehes; en
admettant la derivee du plus haut degre comme valeur de base, on obtient
par integrations successives les derivees de degre inferieur. Afin d'ülustrer la
methode, on donne quelques exemples de calcul d'equations differentiehes
simples et partielles.
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Finite Deflections of a Clamped Circular Plate on an
Elastic Foundation1)

Calcul des fleches finies d'une plaque circulaire encastree sur fondation dlastique

Endliche Durchbiegungen einer eingespannten Kreisplatte auf einer elastischen

Fundation

WILLIAM A. NASH F. H. HO
Professor of Engineering Mechanics, Uni- Graduate Assistant, Department of Engi-
versity of Florida, Gainesville, Florida, neering Mechanics, University of Florida,

U.S.A. Gainesville, Florida, U.S.A.

Notation

r, 9 Polar coordinates.

u, v, w Displacements in radial, tangential, and the direction of normal
vector of the undeformed middle surface of the plate, respectively.

er, eß Radial and tangential strain components.
Kr,Kg Changes of curvature.
Mr, Mg, Mrä Components of bending moments per unit length of middle sur¬

face of the plate.
Nr,Ng,Nrß Components of membrane forces per unit length of middle sur¬

face of the plate.
E Modulus of elasticity in tension and compression.
v Poisson's ratio.
h Plate thickness.

D tjtti—57 Flexural rigidity of the plate.

x) The results were obtained in the course of research sponsored by the Office of
Ordnance Research, U.S. Army, under Contract DA-01-009-ORD-671 with the
University of Florida.
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q Intensity of uniform load in direction normal to the plate
(lb. per sq. in.).

k Modulus ofthe elastic foundation (lb. per cu. in.).

Introduction

Although the Solution to many problems involving the infinitesimal deflections

of thin elastic plates on elastic foundations has been given by various
techniques [1,2], no analysis is avaüable for the case when the maximum
deflection is of the order of magnitude of the plate thickness. In the present
study we consider the axisymmetric finite deflection of a thin elastic circular
plate resting on an elastic foundation. The edges of the plate are clamped and
the face of the plate is loaded by uniform normal pressure.

Let us denote by r the distance of a point, in the middle surface of the
plate, from the geometric axis. Also, let u and w, respectively, denote radial
and normal components of displacement of this point. The intensity of normal
load is designated by q and the foundation modulus by k (force per unit
volume). It is assumed that the direction of the reaction of the foundation
upon the plate is normal to the plate and the magnitude of this reaction varies
hnearly with the normal deflection w. We denote the modulus of elasticity of
the plate by E, Poisson's ratio by v, the plate thickness by h, the radius by a,
and the flexural rigidity by D Eh3}\2 (1 —v2). Also, we denote by Nr and Ng
the membrane forces per unit length of the middle surface of the plate in the
radial and tangential directions, respectively.

Governing Equations

For deflections of the order of magnitude of the plate thickness we take
the strain-displacement relations to be [3]

du 1 (dw\2
dr 2

where er denotes the radial strain, and eg the tangential strain. The curvature
we take to be [3]

The finite deflections of the plate are described by the von Karman equa-
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tions [3]. If the foundation reaction is included these equations may be written
in the form

D
r dr

d il d

dr \r d r \ dr)
and

d
r*

dr
1Ä.
r dr [r2Nr)

l_d_
r dr
Eh/d

¦N dw
r17 q — kw

Vh/dw\2
2 \dr) ~°-

(5)

(6)

Also, we have the equation expressing equihbrium in the radial direction [3]

d

dr (rNr)-Ne 0. (7)

The radial displacement is found from (2) together with Hooke's Law to be

u Eh
d_

dr irNr)-vNT (8)

The boundary conditions at r a are

dw
w -=— 0,dr

(9)

or, Ä
dr (rNr)-vNr 0;

and at r 0 they are
1 dw
r dr Finite, Nr Finite. (10)

It is convenient to render the above equations non-dimensional. Accord-
higly, we introduce the fohowing relations:

W w
J'

N=™S,
a*

Ng -^-Sg, (11)

K

WEK ''
3(l-v2) ka*

Eh3

Also, a dimensionless variable v is so chosen such that

V l~rZi- (12)
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Thus, Eqs. (5) to (9) can be written in the following non-dimensional forms:

d

di] [»-"£{"-0] -3(l-v*)/-
at] 5,(1-^an \P-KW, (13)

.>->«4pw, (14)

*-s<i-->>|f-«.- (15)

The boundary conditions become

At T) o,
dW

W -5—dn
o,

At T) 1

Sg-vSr 0,

2(l-r,)/-(Är)-(l-v)Är=0.

0 dW _,.&.,^— Fmite.

(16)

(17)

Perturbation Procedure

Let us consider a perturbation procedure based upon the smallness of the
dimensionless central deflection of the plate. This technique has been used

successfuhy by Chien [4] in the analysis of finite deflections of a clamped edge
circular plate having no elastic foundation. We begin by denoting the
dimensionless central deflection by W0 (wjh)r=0, and then expanding in ascending

powers of W0 each of the quantities P, W, Sr, and Sg, viz:

|P= ccxW0 + *3W30 + «5Ws0+-- (18)

W QX(V) W0+Q3(t)) WI+Qb{t,) W>+ ¦ ¦ ¦ (19)

5r- h(v)Wl+fiiv)Wt+h(r,)Wl+--- (20)

S8 g%h) W20+gtiv) Wt+g6iv) W'0+ ¦ ¦ ¦ (21)

The choiee of even and odd powers is based upon obvious physical considerations.

The series (18) through (21) are next substituted into Eqs. (13) to (15),
and also into the boundary conditions (16) and (17). Thus, all equations will
be in the form of power series in W0. If we equate coefficients of like powers
of W0 we then obtain a set of linearized equations. These equations may be

solved successively to determine any desired number of coefficients in (18)

through (21).
Collecting coefficients of the W0 terms in Eq. (13) the following equation

is obtained
.dQx\£h^{< l-T,) d; ¦KQX. (22)
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The corresponding boundary conditions are

Qx (0) Q'x (0) 0 (23)

Q'X{1) Finite. (24)

It is also necessary that
ß1(l) l, (25)

and Q3(l) =ß4(l) ¦•• 0.

This first approximation is obviously the linear problem of small deflection
theory. A Solution of (22) may be assumed in the form of the truncated series

üx(v) v2[l+ax(l-r])+a2(l-r,)2 + a3(l-r,)3]
AV2 + B7,3 + C7]i+Dvs, '

where A 1 + ax + a2 + a3,

B — (ax + 2a2 + 3a3),
C =a2 + 3a3,

^ '
D -a3.

The values of ax, a2, a3 and <xx are found from the following system of linear
simultaneous algebraic equations

28a1 + 76a2+148a3 —ax -4,
3a1+18a2 + 55a3 + 0 0,

Kax + (lU+K)a2 + (9l2+K)a3 + 0 -K, ^
Za1 + 2Za2 + (3Z'-|-400)a3-|-0 0.

In the numerical example to be presented later it is shown that this first
approximation (26) yields results almost identical with those found by
Schleicher [1]. The present technique, however, involves considerably less

computational effort than does appheation of the Schleicher method.
Cohecting coefficients of the W2 terms in Eqs. (14) and (15) yields the

relations

^-V)hiv)]+l(^f 0, (29)dn

dv9*iri) hin)-2(\-n)^. (30)

The corresponding boundary conditions are

Sr2(0)-v/2(0) 0, /2(1) Finite. (31)

If the value of Qx (77) determined in the first approximation is introduced
in (29) and (30) the Solution to these equations may again be taken in the
form ofthe truncated series:

/i(ij)- h+ hV +b^ +h^ + brf+hv6 (32)

9a iv) 00 + cxr) + c2r)2 + c3r]3 + ci7]i + csr)6 (33)
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where

and

W. A. NASH - F. H. HO

b> ToBi+T5AC'

b^-AB + b,,

62 63.

bx 62 b3,

b =-^i-0 (1-v)
2bxv

Co (T^)=6o">
ci 361-462,
c2 562-663,
c3 763-864,
c4 964-10 65,

H 1165»

Ib2

(34)

(35)

in which A,B,C, are given by (27).

Collecting coefficients ofthe W% terms in Eq. (13) yields

£[<'-*>&{"-*>£ ¦3 (1-v«)Adv fail-v) dQx
dn <x3-KQ3. (36)

The corresponding boundary conditions are

Q3(0)
dQi
.dV\

Further, from (25) we have

0,
dQ„

Finite. (37)

ß3(l) 0.

Using the results obtained in (26), (32) and (33), the boundary value problem
described by (36) and (37) can be solved by means of the truncated series:

®AV) V*il-v)[d0 + dxr] + d2V2 + d!ir1*]

D2r,2 + D3r,3 + DiV* +Drf + D<!r1«,
'

where Di(i 2,3,.. .,6) satisfy the linear simultaneous algebraic equations:

4D2-24D3 + 24D8 + 24.D4 + 0-a3 6(l-v2)604,
0 + 36D3-144D4-r-120D5 + 0 6(l-v2) [3605-2(60-0!)^],

- (360-K) D2 - 360 D& - 216 D4 - 840 D5 + 0

9(l-v2)[460C-3(60-61)5-2(&1-62M],
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1200 D2+(1200+ Z)D3 +1200 Z>4+1600 D5 + 0

12(1 -v2) [5 60-0-4(60-6!) (7-3(61-62)£-2(62-63)^],

- 900 Z>2 - 900 Ds - (900 -K) D4 - 900 D5 + 0 (39)

-15(l-v2)[5(60-61)D + 4(61-62)C + 3(62-63)JB + 2(68-64)4],

D2+D8+D4+D6-|-D6 0.

CoUecting coefficients of the Wft terms in Eqs. (14) and (15) we get the
following equations:

£HI_,)/l{,n+p(*a)_..
/4(^)-2(l-r?)^ ?4(r?), (41)

as weh as the boundary conditions

M<>)-v/4(0) 0, /4(l) Finite. (42)

Again for the purpose of solving this hnear boundary value problem,
truncated series type Solutions for /4 (v) and gr4 (17) can be employed. We take

(43)

(44)
i=0

where

11

h9 =^[24CD6 + 25DD5] + A10,

K =^[l8DD6 + 20(CDs+DDi)] + h9,

h7 =A[12ADa + 15{BD5+DDa) + l6CDi\+h8,

*. =^[10(^D6+DD2) + 12(JBD4-rCD3)]-1-Ä7,

hiv)
10

i=0
v\

9*iv)
10

2 Pi
t 0

V*>

3
DDR,

h5 =^[8ADi + 9BD3 + 8CD2] + h,

ht =AiAD3 + BD2\+h5,

h3 =^AD2+ht,
h2 n3)

hx h2 h3
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and

Vr. A. NASH - F. H. HO

Po A0- 2hx,

Pl 3hx- 4A2,

Pa 5A2 — 6A8,

Pa 7A3- 8A4,

2\ 9A4- 10 A5,

Ph HÄ5- 12 A6,

Ps 13 Ag14 A7,

P. io A7- 16 A8,

Pa 17 A8- 18A9,

P» 19 A9- 20A10,

(46)

p10=2lA10.

From the boundary condition (42) we have

A0 2A1/(l-v), p0 2vA1/(l-v)=vA0. (47)

In the next section it is demonstrated that no more terms in the series (18)

through (21) are required for a satisfactory analysis of the problem under
consideration.

Experimental Verification

For the purpose of investigating the vahdity of the above Solution, an
aluminum alloy plate was supported on coil Springs and tested under normal

pressure with clamped edge conditions. The elastic and geometric parameters
of this system were

A 0.13 in.,
E 10xl06lb. per in.2,

a 7.5 in.,
v 0.3,
k 39 lb. per in.3.

The Solution of Eqs. (28), (34), (35), (39) and (45) to (47) leads to the
following relations

| P 6.53 W0 + 4.64 TP», (48)

Sr 0.95 W%-0.03 W%. (49)

As a prehminary verification of the experimental procedure several tests

were conducted with no elastic foundation present to stabilize the plate.
Measurements of central deflections as weh as outer fiber strains at the surface
of the plate were found to be in exceUent agreement with the predictions of
Chten's theory [4]. Then, the Springs were placed under the plate so as to
give the elastic foundation effect. The experimental results for the central



DEFLECTIONS OF A CLAMPED CIRCULAR PLATE ON ELASTIC FOUNDATION 69

deflection, shown in Fig. 1, are seen to be in very satisfactory agreement with
the predications of Eq. (48) based upon the present nonlinear analysis.

The outer fiber strain at the center of the plate, on the face subjeet to
normal pressure, was determined from the membrane strain corresponding to
(49) together with the bending strain as given by the usual thin plate moment-
curvature relations. The normal deflections in the latter are given by (48).
The strain thus predicted on the basis of the present nonlinear theory is shown
in Fig. 2. Also shown on that figure is the strain at this same point as deter-

\Prcposed Solution
K ¦ 39 lötin'Linear rheory

Expenmenral
resultsr

fk

H5

tp-ht-o*)U>EH

0 S IO '5

Fig. 1. Variation of central deflection with load (with elastic foundation)

ISO

Predictions or joresenl t-heory

Experimenral values

as

Fig. 2. Comparison of theoretical and experimental outer Aber radial strains at center
of plate (with elastic foundation).
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mined experimentahy by use of electric strain gages. The agreement, although
satisfactory is not, of course, as good as was the agreement of deflections.

Fig. 3 indicates a comparison of various significant stresses in the plate;
a) when the elastic foundation is present, and b) when it is absent. These
relations are ah based upon values given by the present nonlinear analysis.
From these curves it is evident that the elastic foundation is more effective
in reducing the central bending stress than in reducing the central membrane
stress.

/
Benatng stress
at- center \

aenamg stress
center

"X **j

0.5

with Foundation

Without foundation

03
hC- =£" h

Membrane stress
of center

f Membrane stress
< ot- center
\^M-39 tb/tn*

Fig. 3. Various stresses in a clamped edge circular plate (v 0.3) with and without elastic
foundation.

Conclusions

The validity of a perturbation type analysis for the nonlinear elastic
behavior of a clamped edge circular plate on an elastic foundation has been
established through experimental verification.

The present nonlinear analysis indicates that, for a given load intensity,
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the presence of the elastic foundation has httle effect on the membrane stress
at the center of the plate. However, the elastic foundation is extremely effective

in reducing the outer fiber bending stresses at the center of the plate.
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Summary

The problem of the nonhnear large deflections of a thin circular plate
supported on an elastic foundation is treated by the method of successive

approximations based upon the smahness of central deflections. The edges of
the plate are clamped and the face of the plate is subjeet to uniform normal
pressure. Results of the analysis are shown to be in satisfactory agreement
with experimental data obtained from tests of an aluminum plate.

Resume

La methode d'approximations successives, basee sur la petitesse des
deformations centrales, permet d'aborder le probleme des grandes deformations
non-lineaires des plaques minces, circulaires, sur fondation elastique. Les bords
de la plaque sont encastres et la plaque est soumise ä une charge uniformement

repartie. L'auteur montre que les resultats obtenus ä l'aide de cette
methode concordent de facon satisfaisante avec les resultats d'essais effectu6s

sur une plaque en aluminium.

Zusammenfassung

Das Problem der nichtlinearen großen Durchbiegungen einer dünnen

Kreisplatte auf einer elastischen Fundation wird durch die Methode der
sukzessiven Näherung, basierend auf der Kleinheit der Mittendurchbiegungen,
behandelt. Der Rand der Platte ist eingespannt und die Plattenfläche ist durch
gleichförmigen Druck belastet. Die Ergebnisse der Untersuchung ergeben eine
zufriedenstehende Übereinstimmung mit Werten, die bei Versuchen an einer
Aluminiumplatte gemessen wurden.



Leere Seite
Blank page
Page vide



Ib3

Dynamics of Continuous Structures with Repeated Elements

Vibrations des ouvrages Continus formes d'elements identiques

Dynamische Lösung der durchlaufenden Systeme mit sich wiederholenden
Elementen

V. KOLOUSEK
Prof. Dr. Ing., Praha

Introduction

Structural Systems with repeated elements are to be found in ah historical
periods. Bridges, continuous over several spans, may be regarded as a typical
example of this kind (Fig. 1). The arches were first made of stone, later we
find continuous structures of reinforced concrete, the structural Systems being
either continuous straight girders or continuous arches, and quite recently,
elements of prestressed concrete have been used on an extensive scale for

AÄAAAAAAAA
u o LJ LJ LJ u LJ LJ O

JP^ ^ÜC^ ^fl^~ ^1
U

u LS U U O
Fig. 1. Types of Continuous Bridge Strueture with Repeated Elements.
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continuous structures. In the structural Systems used in building houses there
are also many parts buht up of repeated elements. Generally, it may be said
that the increasing use of precast elements will naturahy result in still wider
appheation of Systems buht up of repeated elements, since these Systems offer
advantages from the point of view of economy.

In this paper some methods for investigating the vibrations of such Systems
are discussed, and it will be shown that both the theoretical and the numerical
work involved may be considerably simplified, if we make use of ah the advantages

which the appheation of Systems with repeated elements presents.

1. Continuous Beam of Uniform Section

A beam of uniform section, continuous over several equal spans, rigidly
fixed at the end-supports, may be regarded as the simplest possible example
of a system with repeated elements. In this case, the method of dynamical
Solution is weh known, and we shall give here only a brief review ofthe analysis.

e T T 1 1

A-331

o y \ 2 ^—^ i K""^!^v ZÄ1 • • * J'3A-3.70

1-2
h -11.16

X''

j'0A -11.75

Fig. 2. Continuous Five-Span Beam, Rigidly Fixed at End-Supports. First Five Natural
Modes of Vibration.
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From the equihbrium of the moments at any isolated Joint K we have

MK,K„x+MKiK+x mK, (i)

where MK K_x, MK K+x are the end-moments of the bars K, K — 1 and K, K +1
respectively, and WlK is the external moment loading at the Joint K. If we

express the end-moments by means of the end-rotations yE, we obtain from
Eq. (1)

byK_x + ayK + byK+x ySlK. (2)

Eq. (2) holds true for ah intermediate supports, and we thus obtain a set of
n — 1 algebraic equations for determining the rotations yK. For free oscillations
the external moment loading 3Jix equals zero, and the set of algebraic equations

in question is homogeneous.
As an ihustration the analysis of a five-span beam of uniform section,

shown in Fig. 2, will now be given.
The set of four equations, written down according to Eq. (2) is shown, in

general form, in Table I.
Table I

Yl Vi. ya Vi

a b 0

b a 6 0

b a b 0

b a 0

The coefficients a and b are functions ofthe natural frequency / «—, and

are defined as follows:
2Fi J t-, /XNa —r-F2(X), b ^Fx(X), (2 a)

where X l fJHD"

177

The functions F2 (X) and Fx (X) are tabulated in x) and 2).

The equations as given in Table I are cychcahy symmetrical, and may be

solved by expanding the unknowns yK into finite trigonometrical series, viz.

n-l
Yk 2 £öism:Jj-7-£,

7-1

TT

n
(3)

where n denotes the number of spans.

*) V. KoiiOUSEK: «Baudynamik der Durchlaufträger und Rahmen», Leipzig 1953.

2) V. Kolottsek: «Calcul des efforts dynamiques dans les ossatures rigides», Dunod,
Paris 1960.
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If the values of yK according to Eq. (3) are introduced into Table I, the set
of simultaneous equations reduces to four independent equations, which appear
in the general form,

IT
a + 26cos—j 0 j l,n—l (4)

and introducing for a and b the values from Eq. (2 a) we obtain

F2(X) + Fx(X)cos—7 0. (4b)

pn\-p,m-'p0tx\

pslxl -sMcoslilk*i I

,1x1- a Ixl sin (j Ik'f)

Slxi

A ixl

rxi ¦ vs-ixi* *a ix]

u -SixicosfjlK+il

Atxisinl iIK-j)

Fig. 3. Load and Deflections of a Five-Span Continuous Beam, for j 4.

tflJi-il
Ji-1

\Mi.i(ji'D

Fig. 4. End Moments.
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The values of A for which Eq. (4b) holds true determine, according to Eq. (2b),
the first four natural frequencies of the system. The numerical values
calculated for the system as shown in Fig. 2 are

Z TT

7 3 /(2)= 2,18a, i [ej
7 2 /(3)=2,75«, ~l2) n

•

7=1 /«« 3.30a.

The fifth natural frequency of our system is identical with the first natural
frequency of the single-span beams, of which the system is composed, if the
individual beams were rigidly fixed at both ends, so that we have

As) 3,56 a.

The shapes of the first five natural modes of Vibration are shown in Fig. 2. If
the end-supports 0 and 5 of the system are hinged, the analysis remains, in
principle, the same, but consideration must be given to the different end-
conditions.

2. Continuous Beam of Non-Uniform Section

The dynamical analysis becomes comphcated, if the section of the beam
varies within the individual spans. Eq. (2) still holds true, but the coefficients

a and 6, although they are again functions of the natural frequency /, are no
longer defined by Eq. (2 a), the value of J, in this case, not being a constant,
bo that the functions cannot be tabulated. Direct Solution would be thus

very tedious, as the amount of numerical work might increase considerably.
A convenient method of Solution, in this case, is a combination of the direct
method, described in the preceding paragraph, with the method of stepwise
approximation. This method of analysis will now be ülustrated for the case
of a five-span beam, as shown in Fig. 5.

soISO 15.0 >50150

Fig. 5. Continuous Beam of Non-Uniform Section.

2.1. The Deformations of a Single-Span Beam

a) We consider first a single-span beam, rigidly fixed at both ends (Fig. 6),
loaded by distributed statical weight q (x). The load may be resolved into a

symmetrical component six) and antimetrical component a(x), as shown in
Fig. 3a (left). Thus we have
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q(x) s{x)+a(x),
s(x) \[qix)+q{l-x)~\ s(Z—a;),

<*¦&) £ [?(*) — 2 (^—*)] — a(£ —x)

Ib3

The load component s(a;) causes symmetrica! deflections Vs(x) of the beam,
while the moments produced at the fixed supports are ± Ms. The antimetrical
component a(x) produces antimetrical deflections Va(x), and the fixed-end
moments in this case are Ma. The total deflection at the point x is thus

V(x) Vsi*) + Va(x).

10 '075- 7.50m

Fig. 6. Dimensions of Any Single Span for the Beam Shown in Fig. 5.

/ 2 5 * 5

.*
ii

ll
1 2 3 5 l 15.00m

b) We now assume the beam to be simply supported, and consider the
case where both ends are rotated simultaneously through a unit angle, in opposite
directions. These end-rotations produce a symmetrical curve of deflections
8M which is at the same time the influence line for the moment Ma produced
by symmetrical loading (Fig. 7 a). The ordinate of the hne 8^ at the point x
gives the value of the moment Ms which is produced (with both ends fixed)
at the left-hand support of the beam if two single loads P 1 are apphed to
the points x and l—x.

c) The end sections of the simple beam are now rotated simultaneously
through a unit angle in the same direction. These rotations produce an
antimetrical curve of deflection 8^ (Fig. 7b), the curve being again the influence
hne for the fixed-end moment Ma at the left-hand support, produced in this
case by two single unit loads, apphed antimetricahy at the abscissae x and
l—x.

2.2. The Deformations of the Continuous Beam

We shall now consider a continuous beam of n equal spans, as shown in
Fig. 5, where n 5. We assume the beam to be loaded by distributed statical
weight pix), the Variation of which at the span K,K+\ may be expressed
as fohows:

symmetrical component psix) — s(*)cos—j{K + \)

antimetrical component pa (x) a (x) sin—? (K+^).

(5)

(6)
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The letter j here denotes an arbitrary whole number between 0 and n — 1.

For the five-span beam we have n 5, and the case for 7 4 is shown in
Fig. 3.

If ah rotations at the supports were prevented, the deflection produced by
the load components as given by Eqs. (5) and (6) would be

Vs(x)cos?-j(K+$) + Va(x)sm?-j{K + $), (7)
ib lb

while the loading moment at the support K would have the value

SKir-if. cos—j (K +|) - cos — j {K - \)

+ M„

n

8in—j{K+i) + sm—j(K-i]n n
SfJiyjsin—jK,

where WuÜl M,
TT „, TT

sm 7r-1 -M„ cos —— 72n ° 2»

(8)

(9)

If the temporarily "locked" supports are released, the loading moments
9JlK produce the rotations

yK t>[j]am~jK)n

where
Wl

tyi ~~Z~'

aU] a + 2bcos^-j 2M2)Un=x)+2MXt2in=üoo8^-j

(10)

(11)

and the moments M are shown in Fig. 4.

The rotations yK may be again resolved into symmetrical and antimetrical
components, according to the following formulae:

symmetrical components

^iVK-YK+i) Kw • TT • TT • lt • I TT 1 \sin—1K — sm—1 (K +1)
n n

-C[jisin—jcoa~j{K + ^)
TT

n
antimetrical components

ÜYk + Yk+i) £ü]°os^7'shiJ/(Z + £)

(12)

(13)

The deflections produced at the span K, K+1 by the symmetrical components
of the end-rotations are

$iYK-YK+l)8M,>

while the antimetrical components of the end-rotations produce at the span
K,K+\ the deflections

$iYK + YK+l)8M •



Symmetrie vibrations
Table, // 4

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Point
i

Mass

in tm-1 s2

Influence co-ordinate Ist Approximation

for the Deflection 8j, k • IO5 inrnt"1 for the
Moment

at Support
Sit, in m

Si

[2]x[9] [8]x[10]
2m* Sn 8*jt-

•10»
in s2

t ¦ 2"
-fMjsin—.

• 10» 8m.
ins2

Point K mtSt
in tm-1 s2

mt Si Sm,

int s2
1 2 3 4 5

1

2
3
4
5

0,373
0,301
0,247
0,212
0,194

0,058
0,112
0,262
0,335
0,378

0,112
1,530
3,280
4,525
5 222

0,262
3,280
9,395

14,290
17,035

0,335
4,525

14,290
26,275
33,370

0,378
5,222

17,035
33,370
47,540

0,745
2,168
3,427
4,417
4,972

1

1,8
3,2
4,4
4,8

0,373
0,542
0,791
0,933
0,933

0,278
1,175
2,711
4,121
4,629

1,0
12,6
39,5
69,6
92,0

90,6
263,8
416,9
537,4
604,9

a 0

2
sin —

r3[4]

,454-10» t
^ 0,951,
~>

a + 2 6 cos

m, 6 0,162-10» tm

cos—^=0,309, cos-=^=-0,809
5 5

—^ [0,454+ 2-0,162 (-0,809)] 10»

0,192-105tm

2 12,914 M,

- 9R[4j= 2 M.sin -=^ 2-12,914- 0,951 2

f(4]=^= 24,56
127>9.10_sw au) 0,192-103 "'>ö 1U

- IO5 fojsin —-= 127,9-0,951 121,7 m-"

- IO» f[4]cos—^= 127,9- 0,309 39,5 m~i

4,56 ts2

m_1 s2

82

s2
Anti£ymmetric vibrations

[1] 12] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Point
i

Mass

in tm-1 s2

Influence co-ordinate 1 st Approximation

for the Deflection 8?.»-106 in mt"1 for the
Moment

at Support
Sm* in m

At

[2]X[9] [8]X[10]
^micAkStn-

• IO6
in s2

2*
&4JCOS-— •

5
•106-Sm„

in s2

Point K TTliAi
in tm-1 s2

miAi%Ma
in t s2

1 2 3 4 5

1

2
3
4
5

0,373
0,301
0,247
0,212
0,194

0
0,061
0,062
0,054
0,023

0,061
1,324
1,994
1,791
0,726

0,062
1,994
4,828
4,922
2,080

0,054
1,791
4,922
7,091
3,320

0,023
0,726
2,080
3,320
2,484

0,735
1,795
2,240
1,865
0,725

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

-29,1
-71,0
-88,5
-73,7
-28,7



[1] [14] [15] [16] [17] [18] [19] [20]

Point
i

2nd Approximation 3rd App.

[12]+ [13] [2]X[14] [8]X[16]
2m*S*8V

•IO8
in s4

2n
-frosin-g--

• IO8 SM,
in s4

Sr 108
in s4

[14]: [19]

Sr 10*
ins2

mt Si- IO3
in tm-1 s4

mt Si Sjw, ¦

•IO8
in t s4

°>ti)

1

2
3
4
5

91,6
276,4
456,4
607,0
696,9

0,342
0,832
1,128
1,287
1,352

0,255
1,803
3,865
5,684
6,722

1,4
17,9
54,9
99,0

131,2

131,6
382,9
605,2
780,1
878,1

133,0
400,8
660,1
879,1

1009,3

689
690
690
690
690

2= 18,329 ikf,-103

- 9K[4]= 2 [jlf,sin—^-Jfacos-^) 2(18,329-0,951 + 1,287-0,309)-10-3

35,66- IO"31 s4

2R[4) 35,66- IO-2 lor- ln a|[4]=—— ~ »iQO in« =-185,7- 10-8m-is^
0[4] 0,192- IO5

2w- IO8 £4)801 — 185,7- 0,951 176,6nv^s4
Ö

- IO8 A4]Cos—^= 185,7-0,309 57,4m-is"
5

[1] [14] [15] [16] [17] [18] [19] [20]

Point

2nd Approximation 3rd App.

[12] + [13] [2]X[14] [8]X[15]
J^rrikAic 8?,*

• IO8
in s4

2*
f[4]COS— •

• IO8 Sifa
in s4

Ar IO8
in s4

[14]: [19]

Av 10»

in s2
rmAt- IO8
in tm-1 s4

niiAt&Ma
•IO8

in t s4
°>ti)

1

2
3
4
5

-29,1
-71,0
-88,5
-73,7
-28,7

-0,109
-0,214
-0,219
-0,156
-0,056

- 0,079
-0,384
- 0,492
-0,292
-0,040

0,0
-1,0
-2,4
-2,8
-1,3

- 42,2
-103,0
- 128,5

- 107,0

- 41,6

- 42,2
-104,0
-130,9
-109,8
- 42,9

689
682
675
670
668

i 2 s i) s 5¦¦ *¦ r r i:
•7

NS

•20

-5.0

Fig. 7 a. Influence Lines for Symmetrical
Load. Scale: Line S\ 1 Grad. 10_4m/t,

Line 8m, 1 Grad. 5 m.

-— c

12 5 15 £^
/^~\

ao

as
V 3' r r

2.CH

2= -1,287

Fig. 7 b. Influence Lines for Non-Symmetrical
Load. Scale: Line 8? 1 Grad. 0,5- IO"4 m/t,

Line 8m„ 1 Grad. 2,5 m.
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The total deflections (see Kg. 3 b) produced by the load p (x) at any particular
span are then given as the sum of the symmetrical and antimetrical components,

and the variations of the symmetrical components va (x) and antimetrical

components va (x) are represented as follows

vs(x) S(x)coa^j(K + i), (14)

va(x) A(x)aia—j(K + l), (15)

where S (x) Vs ix) - 8Mi £ü3 sin^ ;, (16)

A(x) Va(x) + 8Ma^mcoa^j. (17)

The values of S (x) are thus obtained by superposition of

1. the deflection Vs(x), which is produced by the load-component s(x) acting
on a rigidly fixed single-span beam, and

2. the deflection of the single-span simple beam, the supports of which are

rotated symmetrically through the angle + ^sin^—j.

(The signs minus and plus are to be taken for the left-hand and the right-
hand supports respectively.)

The values of A (x) are obtained by superposition:

1. The deflection Va(x), which is produced by the load component a(x),
acting on a fixed single-span beam, with

2. the deflection of the single-span simple beam, the supports of which are

rotated antimetricahy through the angle ^coSg^-?".

If we compare Eqs. (14) and (15) with Eqs. (5) and (6) we see that the
deflections and the load components have a similar mathematical representation.

2.3. The Vianello Method of Stepurise Approximation

The results of the analysis as given in the preceding paragraph may be

used for calulating the frequencies and modes of Vibration of continuous beams,

by stepwise approximation. A suitable procedure will be briefly discussed in
this paragraph.

As a first approximation we assume an arbitrary curve of deflection xv (x)
which, however, must admit of being expanded into components according
to Eq. (5) and (6), and we calculate the corresponding symmetrical and
antimetrical components of the load intensity y. (x) xv {x). (By /x (x) we denote the
mass per unit length, as a function of the abscissa x of the beam.) These load
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components produce the deflections 2v(x), as a second approximation to the
true shape of the natural mode. The deflections 2v (x) are resolved into
symmetrical and antimetrical components according to Eqs. (14) and (15). It is
evident that only a single span of the strueture has to be considered, as the deflection

curve at any span may be readhy determined by means of the quantities
S (x) and A (x), which are defined by Eqs. (16) and (17).

The third approximation to the true shape of natural mode may be then
obtained by repeating the process, i. e. calculating the curve of deflection 3v (x)
produced by the load [i (x) 2v (x) etc. The process is repeated until concordance

of the deflections ^--^(x) and kV(x) has been reached with the
desired accuracy. In practical calculations we usuahy do not consider the
continuously distributed mass, but divide the beam up into a finite number
of strips, and then assume the mass to be concentrated at the centroids of the
strips.

A numerical example will ihustrate the practical procedure.

2.4. Numerical example

A five-span continuous beam, as shown in Figs. 5 and 6, will now be

analysed, applying the method outlined in the preceding paragraph. The centre-
hne of the beam has been assumed to be straight, the modulus of elasticity
has been taken to be i? 2,4- 106t/m2. For purposes of calculation the beam
has been divided up into ten strips; the masses concentrated at the centres
of the respective strips are tabulated in column 2 of Table II.

For symmetrical loading by two single unit loads the influence hnes 8| for
the deflections of the single span fixed-end beam are shown in Fig. 7 a, where
the influence hne 8Mt for the fixed-end moment is also given. The lines 8^ and
8M corresponding to antimetrical loading are given in Fig. 7 b. The influence
hne ordinates at the centres of the individual strips are given in Table II.
The coefficient a, which is also given in Table II, equals twice the value of the
moment M2 x, acting at the support 2 of the beam 1—2 when the end rotations
axe yx 0, y2 1. The coefficient b is the corresponding value of the moment
Mh2.

The numerical calculation by stepwise approximation has been carried out
for 7 4, j= 1, and j 0. In Table II the calculation for ?'= 4 is shown by way
of Illustration. For j 4 the natural frequency attains its lowest value. From
the ratio of the last two approximations we obtain the square of the natural
angular frequency.

„ 696,9- IO3 __

so that the first natural frequency is

/(1) 4,18 sec-1.
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The shape of the corresponding natural mode, at the span K,K+\, is given
by the last approximations of St, and Ai, according to the formula.

v (x{) vi 8i cos—j (K + £) + Ai sin—j(K + %), (18)

where j 4.

The fourth natural frequency f^= 10,73sec-1 was calculated in a similar
manner, but with j—1. The fifth natural frequency /(S)= 12,43sec-1 is identical
with the first natural frequency of a single span fixed-end beam. The shapes
of the first, fourth and fifth natural modes of Vibration are shown in Fig. 8.

j-i

j-'

J'O
o 1

Fig. 8. Natural Modes of Vibration for the Beam of Fig. 5.

a) First Natural Mode (/=4),
b) Fourth Natural Mode 0 1),
c) Fifth Natural Mode (; 0).

The above described method of analysis may also be apphed to the Solution

of continuous arch structures. In this case, however, the number of
unknowns is larger, because the intermediate supports undergo not only
rotations, but also vertical and horizontal translatory displacements. The
vertical displacements of the supports may usuahy.be neglected, and this
simplifies the calculations, but in exceptional cases these displacements may
also be taken into account. With continuous arch structures the basic equations

are again cychcahy symmetrical, and admit of a Solution which, in
principle, is the same as in the case of continuous beams. Continuous beams

having elastic intermediate supports may also be solved in a similar manner.
The method, as described in this paper, can be apphed not only to the

dynamical but also to the statical analysis of the Systems in question, and the
numerical work involved may thus be considerably reduced.
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Summary

In this paper some methods for investigating the vibrations of continuous
structures with repeated elements are discussed. The structures in question
are continuous beams with equal spans, and of either uniform or non-uniform
section, continuous arch structures, continuous rigid frames, etc.

Finite trigonometrical series and a combination of the slope-deflection
method with stepwise approximation enable the mathematical investigation
to take advantage of ah the specific simplifications which the repetition of
equal elements presents. The analysis is first given for a continuous beam of
uniform section, where a further simplification is possible if tabulated functions

are used. In addition the frequencies and modes of Vibration are
investigated for a five-span beam of non-uniform section. The procedure is ihustrated
by a numerical example and it is shown that the numerical work involved is

only shghtly greater than that which a Solution of a single-span beam requires.
The method may also be applied to continuous structures with elastic

supports, and not only the dynamical but also the statical analysis can be
thus considerably simplified.

Resume

L'auteur präsente des methodes permettant d'etudier les vibrations des

ouvrages Continus forme's d'elements successifs identiques. II s'agit de poutres
continues de portees egales avec une section constante ou variable, de voütes
multiples, de cadres Continus, etc.

Ce probleme apparemment fastidieux peut etre considerablement simplifie
si l'on tire parti, dans la resolution mathematique meme, de tous les avantages
que presente la repetition d'elehaents identiques; les equations des deformations
etant cychquement symetriques, l'introduction de series trigonometriques
finies permet de simplifier considerablement le probleme. L'auteur traite tout
d'abord les poutres continues de section constante, dont la resolution est
grandement simplifiee par l'utilisation de fonctions disposees en tables. L'etude
des poutres continues de section variable peut se faire en combinant la methode
des deformations avec celle des approximations successives. L'auteur donne
une appheation numerique de son procede en traitant une poutre continue
comportant cinq travees identiques de section variable.

Cette methode peut egalement etre utilisee pour les systemes Continus sur
appuis elastiques. De plus, ehe s'apphque au calcul statique des poutres et des

arcs Continus; ehe y apporte une importante simplification des Operations
numeriques.
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Zusammenfassung

In dieser Abhandlung sind Methoden der Berechnung der schwingenden
Systeme, deren Elemente sich wiederholen, behandelt. Es handelt sich um
Durchlaufträger mit gleichen Feldern mit konstantem oder veränderhchem
Querschnitt, durchlaufende Bogenreihen, durchlaufende Rahmen usw.

Die scheinbar mühsame Aufgabe wird wesenthch vereinfacht, wenn man
auch in der mathematischen Lösung alle Vorteüe ausnützt, welche die Wiederholung

von gleichen Elementen bietet. Die Formänderungsgleichungen sind

zyklisch symmetrisch und die Einführung der endlichen trigonometrischen
Reihen bringt deshalb eine äußerste Vereinfachung der Lösung. Es werden
zuerst Durchlaufträger mit konstantem Querschnitt untersucht, bei denen
die Benützung von tabelherten Funktionen eine weitere Vereinfachung ermöglicht.

Bei den Durchlaufträgern mit variabler Steifigkeit kann die Aufgabe so

gelöst werden, daß man die Deformationsmethode mit der Methode der schrittweisen

Näherung kombiniert. Das Verfahren wird an einem numerischen
Beispiel erläutert, in welchem ein Durchlaufträger mit fünf gleichen Elementen
mit variablem Querschnitt bearbeitet wird.

Die Methode kann auch zur Berechnung der durchlaufenden Systeme auf
elastischen Stützen benützt werden. Das Verfahren kann auch bei statischer

Lösung der durchlaufenden Träger und Bogen angewendet werden, denn auch
hier wird eine wesenthche Vereinfachung der numerischen Berechnungen
erzielt.
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Berechnung von Kreiszyhnder-Dachschalenkonstruktionen mit Hilfe
von elektronischen Rechenautomaten

Calculation of the Stresses and Deformations in a Thin Cylindrical Shell Roof
by Means of a Digital Computer

Calcul des contraintes et des deformations dans une voüte cylindrique mince, ä
l'aide d'une calculatrice digitale electronique

A. MEHMEL
o. Professor Dr.-Ing., Techn. Hochschule Darmstadt

Beiträge zur Klärung der mechanischen Zusammenhänge des Tragverhaltens

von Konstruktionen, die aus Kreiszylinderschalen mit Kämpferrandträgern

bestehen und Lasten in Richtung der Erzeugenden der Zyhnderflächen
abtragen, gehören seit Jahren zu den Forschungszielen an meinem Lehrstuhl
und Institut für Massivbau der Technischen Hochschule Darmstadt.

Als im Jahre 1957 an der TH Darmstadt ein elektronischer Rechenautomat
vom Typ IBM 650 aufgesteht wurde, begannen Programmierungsarbeiten mit
dem Ziel, den Formänderungs- und Beanspruchungszustand solcher Konstruktionen

auf der Grundlage der mathematisch strengen Lösung der Flüggeschen
Differentialgleichungen zu berechnen. Mit Hilfe der programmierten Rechnung
soll die Möglichkeit geschaffen werden, die Gültigkeitsbereiche der bekannten
Näherungsverfahren, insbesondere der Balkenmethode (Lundgren) abzugrenzen.

In den Jahren 1957 und 1958 wurde eine Serie von Rechenprogrammen
hergesteht, mit deren Hilfe die Formänderungen und Beanspruchungen von
isotropen Schalenkonstruktionen ohne Randgheder infolge Flächenlast und
infolge von Randangriffen auf der IBM 650 berechnet werden können.

Die Kapazität dieses Rechenautomaten reicht nicht aus, um die vorstehend
geschilderten Rechnungen in einem Durchlauf ausführen zu können. Durch
die Aufspaltung in Teüprogramme und die dadurch im Verlauf der Rechnung
erforderlich werdenden Zwischenaus- und Wiedereingaben von Rechenwerten
nimmt die benötigte Rechenzeit stark zu.

Als sich im Frühjahr 1959 die Möglichkeit bot, mit dem am Institut



88 A. ilEHMEL Ib4

Europeen de Calcul scientifique in Paris aufgestellten, wesentlich größeren
und schnelleren Rechenautomaten IBM 704 Berechnungen durchzuführen,
wurde die Programmierung deshalb auf diese Maschine umgestellt.

Im Sommer 1959 wurde in Paris ein Rechenprogramm ausgeprüft, mit dem
die Formänderungen und Schnittkräfte orthogonal anisotroper Kreiszylinderschalen

ohne Randgheder infolge einzelner harmonisch verlaufender
Kämpferrandangriffe berechnet werden können. Im Anschluß an die Prüfung wurde
eine Anzahl von Programmläufen durchgeführt, deren Ergebnisse auswertungs-
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bereit vorhegen. Der in Paris vorhandene Rechenautomat IBM 704 ist mit
einer Büclschirm-Registriereinheit ausgestattet, die es ermöglicht, die berechneten

Lösungsfunktionen in graphisch aufgetragener Form auszugeben. Fig. 1

zeigt eine Zusammenstehung der Durchbiegungsfunktion w normal zur
Schalenmittelfläche bei verschiedenen Schalentypen infolge eines am Rand
angreifenden, sinusförmig verteilten Quermoments. Insgesamt sind 32

derartige Zusammenstehungen vorhanden, von denen jede 125 Schnittgrößenfunktionen

enthält.
Das eben erwähnte Rechenprogramm wurde in der von der IBM

entwickelten FORTRAN-Schreibweise geschrieben und vom Rechenautomaten
selbst in seinen Befehlscode übersetzt. Es besteht aus zwei Programmteilen,
von denen der erste im wesenthchen die Lösung des Eigenwertproblems und
die Berechnung der Integrationskonstanten, der zweite die Berechnung der
Schnittgrößenfunktionen enthält. Diese Einteilung entspricht weitgehend der

von Booth und Morice verwendeten Einteilung in einen skalaren Rechnungsteil
und einen Rechnungsteil, in dem Matrizen verarbeitet werden. Jedoch ermöglicht

es das FORTRAN-Übersetzungsprogramm, im gleichen Programmteil
abwechselnd skalare und Matrizenoperationen durchzuführen, so daß eine

strenge Unterteilung in diese beiden Rechnungsabschnitte nicht erforderlich
ist, was sich für die Durchführung der Rechnung günstig auswirkt.

Die zu Beginn der Arbeiten mit der IBM 704 aufgestellte Programmplanung
sah vor, daß in einem zweiten Programmkomplex die Schnittgrößen von
Schalentragwerken mit beliebigen Kämpferrandbedingungen infolge von
Flächen- und Randlasten berechnet werden sohten, wobei die Ergebnisse des

ersten Programmteils als homogene Lösungsanteile fertig eingegeben werden
sohten. Inzwischen ist jedoch das FORTRAN-Übersetzungsprogramm mit
zusätzhchen Unterprogrammen ausgestattet worden, die eine behebige
Aneinanderreihung einzelner Programmteüe gestatten, ohne daß der Benutzer hierbei

manueh eingreifen müßte. Mit Hilfe dieser Ergänzung ist es möghch, ein
Rechenprogramm zusammenzustehen, mit dem auf Grund der Eingabe der
Schalen- und Belastungskennwerte ohne jede Zwischenaus- und Wiedereingabe

die endgültigen Schalenschnittgrößen und Randgliedbeanspruchungen
für Lastfähe eines Tragwerkes berechnet werden können, das aus einer orthogonal

anisotropen oder einer isotropen Schale mit berücksichtigter
Querdehnung und 2 Randgliedern behebiger Steifigkeitsverhältnisse besteht. Der
jeweils bearbeitete Lastfall kann sich aus einer Reihe von Teihastfähen
zusammensetzen, nämlich für die Schale aus Flächen-, Streifen- und Punktlasten
und für die Ränder aus strecken- und punktförmig angreifenden Querlasten,
Tangentialkräften (z. B. aus Vorspannung) und Quermomenten. Die
Schalenschnittgrößen können an maximal 21 gleichabständigen Umfangspunkten und
9 gleichabständigen Stehen der Erzeugenden, d.h. an maximal 189 Stellen
der Schalenfläche, über behebig viele Reihengheder der Lastentwicklung
superponiert, ausgegeben werden.
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Ein solches Programm wird zur Zeit aufgesteht und soll in diesem Sommer
in Paris ausgeprüft werden1). Anschließend kann mit den eingangs erwähnten
Untersuchungen zur Abgrenzung der Lundgrenschen Balkenmethode begonnen

werden. In einem ersten Schritt sollen diese Untersuchungen für Tonnenschalen

durchgeführt werden, die in Geometrie und Belastung symmetrisch
sind.

Die Gültigkeitsgrenze der Balkennäherung hängt von einer Anzahl von
Parametern ab. Als wichtigste davon wären zu nennen:

1. Die Abmessungsverhältnisse der Schale selbst.
2. Das Verhältnis der Biegesteifigkeit der Schale zu der der Randgheder.
3. Das Verhältnis der Flächenlast der Schale zur Randgliedbelastung.

Durch geeignete Wahl der Abmessungs- und Belastungsverhältnisse bei
den für die Abgrenzung verwendeten Vergleichsbeispielen soll versucht werden,

die Einflüsse der wesentlichen Parameter getrennt zu untersuchen.
Der Einfluß der Schalenabmessungs- und Steifigkeitsverhältnisse auf die

Querverformung der Schalen infolge von Randangriffen kann mit Hufe der
vorhin erwähnten Zusammenstehungen der Lösungsfunktionen der homogenen
Schalengleichungen verfolgt werden. Fig. 2 zeigt die Gegenüberstehung der
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Verformungen w normal zur Schalenmittelfläche infolge eines an einem Rand
angreifenden Quermoments bei zwei Gruppen von Schalen. Beide Gruppen
sind isotrope Schalen, ihre Schnittgrößen sind ohne Berücksichtigung der
Querdehnung berechnet. Sie haben gleichen Radius und gleiche Stützweite,
jedoch ist bei der linken Gruppe die Schalenstärke doppelt so groß wie bei der
rechten. Innerhalb der Gruppen unterscheiden sich die Schalen durch 5

verschiedene Offnungswinkel, wie man aus der Länge der über die Abwicklung
aufgetragenen Kurven erkennt.

Bei entsprechenden Schalen beider Gruppen ist, wie man sieht, der Verlauf
der Formänderungen nahezu affin.

An den seithch angetragenen Maßstäben sieht man, daß die Ordinaten der

l) Diese Arbeiten sind inzwischen durchgeführt worden.
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Kurven bei den Schalen mit der geringeren Schalenstärke etwa viermal so

groß sind wie die der dickeren Schalen. Man erkennt also, daß die Formänderungen

ihrer Größe nach etwa der Biegesteifigkeit der Schalenfläche proportional,

ihrem Verlauf nach jedoch von dieser fast unabhängig sind.
Auf Fig. 3 wird eine Abhängigkeit des Formänderungsverlaufs besonders

deuthch, die auch auf dem eben gezeigten bereits erkennbar war, nämlich die

050 __=£=
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Fig. 3.

vom Seitenverhältnis der Schalenfläche. Hier sind die Formänderungen w
zweier Gruppen von Schalen gleicher Dicke und Stützweite einander
gegenübergesteht, die sich bei gleichen öffhungswinkeln durch ihren Radius
unterscheiden. Die linke Gruppe ist die gleiche wie bei Fig. 2; sie umfaßt Schalen
mit dem Seitenverhältnis Bogenlänge : Stützweite 0,15—0,35, während bei
der rechten Gruppe dieses Verhältnis zwischen 1,35 und 3,15 variiert. Man
sieht deuthch, daß bis zu einer gewissen Breite die ganze Schale an der
Formänderung teilnimmt. Innerhalb gewisser Grenzen ändert sich dabei die
Querschnittsform nicht (geradliniger Formänderungsverlauf!); hier hegen also

Tragwerke vor, die sich wie Stäbe verhalten, für die daher die Balkennäherung
geradezu streng gilt.

Von einer gewissen Schalenbreite an entzieht sich der dem Angriff
abgelegene Rand der Formänderung; die Breite der «verbogenen» Zone bleibt
dann praktisch konstant. Die Größe der Formänderungen nimmt mit der
Breite der Schale ab und bleibt ebenfalls von einer gewissen Breite an konstant.

Als dritten Parameter wollen wir noch die Schalenkrümmung hinsichtlich
ihres Einflusses auf die Formänderung w infolge eines Randmoments betrachten.

Auf Fig. 4 möchte ich vor allem zwei der insgesamt 10 Kurven des Verlaufes
der Formänderung w miteinander vergleichen. Die untere Kurve des hnken
und die obere des rechten Budes gehören zu Schalen gleicher Dicke und
gleichen Seitenverhältnisses. Die Krümmungen dieser beiden Schalen unterscheiden

sich jedoch in der Weise, daß der Radius der hnken Schalen 0,6-, der der
rechten 1,4 mal so groß ist wie die Stützweite, d. h. die linke Schale ist wesentlich

stärker gekrümmt als die rechte.
An den angetragenen Maßstäben erkennt man, daß die Formänderung bei

der stärker gekrümmten Schale rascher abklingt, aber eine größere Rand-
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ordinate hat als bei der schwächer gekrümmten. Dies läßt sich wie folgt
erklären:

Je stärker die Schale gekrümmt ist, in desto höherem Maße werden
Randquermomente durch Schubkräfte nxq) abgetragen. Je geringer die Krümmung
ist, um so mehr müssen hierfür Drilhnomente mxq) herangezogen werden. Im
Grenzfall der Platte mit unendlich großem Krümmungsradius erfolgt die
gesamte Abtragung durch Drillmomente und die nx verschwinden bekannt-
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lieh völlig. Da die Schubsteifigkeit der Schalermäche wesentlich größer ist als
ihre Drihsteifigkeit, werden bei starker Krümmung die Formänderungen auf
einen engeren Bereich beschränkt, innerhalb dessen sie jedoch, wie eine
Energiebetrachtung plausibel zeigt, größer sein müssen.

Die gezeigten Beispiele sohten die Vorteile beleuchten, die die Verwendung

elektronischer Rechenautomaten mit ihren weitreichenden Möglichkeiten
der Produktion und übersichthehen Darstellung großer Zahlenmengen für

die Analyse des Tragverhaltens von Baukonstruktionen bieten. Solche
Analysen sind meines Erachtens für die Erweiterung unseres Wissensstandes
außerordentheh wertvoll.

Für die Förderung meiner Arbeiten bin ich der Deutschen
Forschungsgemeinschaft, dem Deutschen Ausschuß für Stahlbeton und der Firma IBM
zu großem Dank verpflichtet.

Die umfangreichen Programmierungsarbeiten, die meinen obigen
Überlegungen zu Grunde hegen, sind von einer Arbeitsgruppe meines Instituts
ausgeführt worden, bei deren Leitung sich Herr Dipl.-Ing. Schwarz besondere
Verdienste erworben hat.

Zusammenfassung

Am Institut für Massivbau der Technischen Hochschule Darmstadt (Prof.
Dr.-Ing. A. Mehmel) wird an der Programmierung der Berechnung von
Kreiszylinder-Dachschalen für elektronische Rechenautomaten gearbeitet. Es exi-
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stieren bereits Rechenprogramme für 2 verschiedene Rechenautomaten, mit
deren Hilfe Teilprobleme dieses Komplexes (insbesondere die homogene

Lösung) bearbeitet werden können.
Ein umfassendes Programm zur Berechnung orthogonal anisotroper Schalen

unter verschiedenen Arten von Belastungen mit behebigen Kämpferrandbedingungen

wird zur Zeit fertiggesteht.
Ziel der Arbeiten, bei denen der Programmierung die mathematisch

strenge Lösung der Flüggeschen Differentialgleichungen zu Grunde hegt, ist
die Abgrenzung der Gültigkeitsbereiche der gebräuchlichen Näherungsverfahren,

insbesondere der Balkenmethode (Lundgren).
Die Querverformung der Schale beeinflußt in hohem Maße ihr Tragverhalten.
An einigen Ergebnissen wird gezeigt, wie die einzelnen geometrischen

Parameter die Querverformung bei Randangriffen beeinflussen.

Summary

In Darmstadt, at the Institute for Concrete, Reinforced Concrete and
Prestressed Concrete Structures of the Polytechnic (Prof. Dr. Ing. Mehmel)
programming for the calculation of cylindrical shell roofs by means of
electronic Computers is being undertaken. Programmes for two types of Computer
have already been prepared and enable certain partial problems to be solved

(in particular the homogeneous Solution).
An extensive programme is nearing completion, which will enable orthotropic

shehs to be calculated for various cases of loading and for any marginal
conditions at the springings.

The purpose of these studies, for which the programmes are estabhshed

in aecordance with the exact Solution of Flügge's differential equations, is to
determine the limits of validity of the usual approximate methods of
calculation, in particular the procedure due to Lundgren.

The transverse deformations of a sheh have a marked effect on its behaviour.
A few results are employed to show how the various geometric parameters

affect the transverse deformations of a sheh subjected to marginal disturbances.

Resume

A Darmstadt, ä l'Institut pour les constructions en beton, beton arme et
beton precontraint de l'Ecole Polytechnique (Prof. Dr. Ing. A. Mehmel), on
s'occupe de la programmation pour le calcul electronique des couvertures en
voüe cylindrique. II existe dejä des programmes pour deux types de cal-

culatrices, programmes permettant de resoudre certains problemes partiels
(en particulier la Solution homogene).
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On est en train d'achever un vaste programme qui permettra de calculer
des voües orthotropes, pour differents cas de charge et des conditions marginales

quelconques aux retombees.
Ces etudes, pour lesquehes les programmes sont etablis d'apres la Solution

exacte des equations differentiehes de Flügge, ont pour but de fixer les limites
de validite des procedes de calcul approches usuels, en particulier de la
methode de Lundgren.

Les deformations transversales d'un voüe influencent fortement son
comportement.

A l'aide de quelques resultats, on montre comment les differents
parametres geometriques influencent les deformations transversales d'un voile
soumis ä des perturbations marginales.
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Application des machines ä calculer electroniques ä la Solution du

probleme aux tensions de l'elasticite plane

Verwendung von elektronischen Rechengeräten zur Lösung des ebenen Spannungs¬
problems der Elastizitätstheorie

Application of Electronic Computers to the Solution of the Stress-Problem of
Plane Elasticity

CH. MASSONNET
Professeur ä l'Universite' de Liege

G. MAZY
Assistant ä l'Universite de Liege

M. SAVE
Charge de cours ä la Faculte Polytech¬

nique de Mons

G. TIBAUX
Etudiant ä l'Universite de Liege

1. Rappel de la theorie

L'un des auteurs a presente au Congres de Liege de 1'A.I.P.C. [1] le resume
d'une methode theorique [2] permettant d'obtenir l'etat de tension dans une
piece elastique plane de forme quelconque solhcitee sur ses bords par des
forces en equilibre distribuees de facon arbitraire.

Cette methode consiste ä repartir (fig. 1) le long du contour de la piece des

singularites vectoriehes pds, dont chacune produit une distribution radiale
simple de tensions.

La distribution de ces singularites obeit ä. l'equation integrale vectoriehe
de seconde espece

Fig. 1.
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2 f — cos <p cos oc -*
t p <Kp(Q)_r_JC lrd«(G) (1)

77 J r
oü £ est l'intensite des forces superficiehes donnees au point Q du contour; r est
la distance entre le point courant Q du contour et le point R oü l'on calcule la
tension.

lr est le vecteur unitaire dirige suivant QR,
<p est l'angle fait par p avec Q R,
oc est l'angle fait par R Q avec la normale exterieure au contour en R.

En posant

Hp{Q)S21T^irdsQ^B(p) (2)

on peut mettre l'equation (1) sous la forme simple

T=p + B(p). (3)

Dans le memoire precite, on preconisait de determiner les p par iteration ä

partir d'une distribution initiale quelconque p®> selon le schema

p<0> ccT,

pd> «7+ (1 - oc) p<0> - oc B (p«»), (4)

rifa+l) oct + (l-ac)p<n'>-ocB(p<-n>

en faisant intervenir un parametre oc qui peut prendre une valeur fixe
quelconque entre 1 et 0. Rappeions en passant que la valeur 1 doit etre exclue

parce qu'ehe produit des oscillations indefinies du processus d'iteration.

2. Appropriation de la theorie aux calculatrices electroniques

2.1. Qeniralitls

Dans le memoire original [1], on a montre comment l'equation (3) pouvait
etre resolue pratiquement par approximations successives en remplacant les

distributions continues des t et des p par une serie de resultantes equivalentes
T et P appliquees k des troncons de contour de longueur finie A S et en utilisant

un appareü mecanique effectuant la somme vectoriehe qui prend la place
de l'integrale B (p). La Solution d'un probleme pratique k l'aide de cet appareü
absorbait 8 heures de travail pour un contour divise en 37 segments. De plus,
1'appareü 6tait deiicat, coüteux et parfois sujet ä des pannes.

La methode de calcul pouvait donc etre ameiioree au point de vue vitesse,
precision et securite. Or, ü se fait que le processus mathematique utilise
convient particulierement bien pour resoudre le probleme k l'aide d'une calcula-
trice electronique. En effet, tous les calculs sont la repetition d'une meme
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Operation elementaire simple; ä savoir: trouver le vecteur-tension produit sur
une facette fixe en un point fixe R par la distribution radiale simple de tensions
correspondant k la singularite P appliquee au point Q du contour de la piece
(fig. 1).

2.2. Ditermination des singularites vectorielles P

En remplacant les distributions continues t et p par leurs resultantes T et
P appliquees ä des troncons A S du contour, la relation (3) se met sous la forme

f~ P + B(p)

Si \ -2AS{R) „ cos9>cosa-^pgou Bip)=- -^2^(6)—j=f,— QR- (5)

n est clair qu'une calculatrice electronique doit travailler en coordormees
cartesiennes x, y. Dans ces coordormees, l'equation (5) se transforme en un
Systeme de deux equations integrales scalaires simultanees:

Tx Px + Bx(p),

Ty Py + By{p),

avec Bx(p) A(p)ßQR(QR)x,

By(p) A(p)ßQR(QR)y,

Aip) =Px(Q)(QR)x + PviQ)iQR)y

0 -2AS(R)nx(QR)x + ny(QR)„^ ßQR
(QR)2 + {QR)2

Comme on peut le voir, A (p) devra etre calcule k chaque iteration, tandis que
ßore peut etre calcule une fois pour toutes.

On calculera les composantes Px et Py par iteration suivant un schema

analogue aux relations (4) et on adoptera comme distribution des charges
fictives la premiere distribution P*71- qui d'une iteration k la suivante satis-
fera en tout point k la double inegahte

IPW-PJr-y^e et IPW-PS1-1'!«;

oü e, denomme indice de precision, est l'erreur absolue acceptable et fixee ä

l'avance.

2.3. Calcul des tensions au contour

Dans le memoire original [2], ü a ete indique que la tension sur une facette
normale au contour est donnee par:

P0(.R)
_

_2 Y1 P (^cosycosjg
Q&v ' AS TT £-> m?z
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oü PQ est le vecteur P auquel on donne une rotation de 90° dans le sens hor-

logique et oü ß et n sont definis par la fig. 2.

Les composantes normale et tangentiehe de d valent respectivement:

Pvny+Pxny
-ZA'B'[iQR)xnv+iQR)v'n>x}-.

Pu7h.-Pj.nx 2y ivy -*¦ x lbX

AS + -ZA'B,[{QR)xnx + {QR)y ny],

a> p tnit\ ±p tnm R' - iQR)xnu-iQR)vnx
ou A =Px'QR)x + Py(QR)y, B - [{QB)* + {QB)*?

•

Fig. 2.

Fig. 3.

2.4. Determination de la croix des tensions principales au point intirieur

On sait [1, 2] que le vecteur-tension sur une facette donnee vaut (fig. 1)I ^-^PiQf-^^Q^-
En apphquant cette relation aux facettes verticales et horizontales au point
etudie et en projetant sur les axes, on obtient pour les trois composantes
cartesiennes du tenseur-tension

I PxiQB)x+PviQR)v («¦»)!,*^ [iQR)l + iQZ)VJ2

2yPx(QR)x + Pv(QR)y
ff^ [iQR)x + iQP)l? w >v'

PXiQR)x + PyiQR)y
ff^ UQR)l + iQR)l]*¦E (QR)x(QR)y.
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3. Programmes realises

3.1. Oeneralitis

On a d'abord execute les calculs au moyen d'un programme pour
l'ordinateur IBM 650 dont disposait le Centre de Calcul de l'Universite de Liege.
Ce Centre utilisant actuellement une calculatrice electronique GAMMA ET
de la firme francaise Buh, ü a ete decide de recommencer la programmation
pour cette seconde machine.

Pour l'ordinateur IBM 650, le programme etait ecrit en language Fortran,
tandis que, sur la calculatrice Buh, la programmation a ete faite en langage
machine. D'autre part, la memoire de l'ordinateur IBM ne comportant que
2000 nombres, ü fallait calculer ä chaque iteration les noyaux des integrales.
Sur la machine Buh, au contraire, qui a une memoire de 8192 nombres, on
a pu mettre la quantite ßQß en memoire, ce qui a conduit k un gain de temps
appreciable. En contre-partie, cette quantite occupe un nombre de memoires
si grand qu'on ne peut definir le contour de la piece que par 50 points au heu
de 100 points comme dans le programme IBM. Enfin, alors que le programme
IBM etait construit pour la valeur a 0,5 de l'indice de convergence, on peut,
sur la machine Buh, le faire varier ä volonte.

Ceci etant, l'experience a montre que la duree en minutes d'une iteration,
qui est proportionnehe au nombre n de segments choisis sur le contour, etait
donnee approximativement par

Ordinateur IBM 650: temps 0,0275 n2.

Calculatrice electronique Buh: temps 0,0066 n2.

Notons que, pour un contour defini par 48 points, le temps utilise par iteration
vaut environ

Ordinateur IBM 650: 1 h 3' minutes.

Calculatrice electronique Buh: 15 minutes.

De plus, le programme IBM obhgeant ä prendre un facteur de convergence
cc 0,5, il fahait 15 iterations pour obtenir une precision determinee tandis

que 10 iterations suffisent si l'on adopte a 0,75 comme on peut le faire avec
le programme Buh, si bien que le probleme considere prenait environ 15h3/4
sur l'IBM 650 tandis que 2hx/2 suffisent sur la machine Buh.

3.2. Quelques renseignements sur le programme Bull

3.2.1. Prdparation des donnies. Les donnees du probleme se composent:

a) Du contour de la piece defini par les coordonnees des sommets du poly-
gone forme par les AS; le contour peut etre constitue de plusieurs courbes

fermees distinctes (5 au maximum) (cas de la piece percee de trous). Le total
des points donnes au contour ne peut exceder 50.
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b) Des forces appliquees au contour de la piece, definies par les composantes

cartesiennes de leurs resultantes sur les A S.

c) Des coordormees des points interieurs ä la piece, pour lesquels on desire
connaitre le tenseur-tension.

d) Des parametres generaux du probleme:

nombre de points au contour,
indice de precision €,

indice de convergence oc.

Les donnees sont mises en cartes dans une forme appropriee et communiquees
ä la machine k la suite du programme.

3.2.2. Calcul proprement dit. Le deroulement du programme de calcul
comporte quatre parties:

a) Calcul des grandeurs geometriques auxiliaires: A partir du contour
defini ci-dessus, la machine calcule

— les coordormees des points milieux des segments qui seront desormais
consideres comme seuls points au contour. C'est en ces points que l'on
applique les sollicitations reelles et fictives ainsi que les tensions du contour;

— les longueurs et les cosinus directeurs des normales aux segments A S.

b) Determination des forces fictives. On commence par determiner la
distribution de depart Pf> ocTi. Ensuite, la machine calcule les noyaux ßQR et
les met en memoire; U y a un noyau par couple de points au contour, soit donc

pour 50 points 2450 noyaux. Leur mise en memoire exige une machine de

grande capacite. Des que les noyaux sont calcules, la machine demarre le

processus iteratif. A chaque iteration, ehe imprime, en regard l'une de l'autre,
les composantes des charges fictives dans les deux distributions, ancienne et
nouvehe. Ceci permet ä l'operateur de surveüler la convergence au cours du
deroulement du programme. Le test de precision est pose, dans le programme,
k la fin de chaque iteration. Quand ü est satisfait, la machine cesse les iterations
et passe ä la suite du programme.

c) Calcul des tensions sur la facette normale au contour. Pour chaque point
du contour, la machine imprime les coordormees du point, la tension normale
et la tension tangentiehe sur la facette normale au contour.

d) Calcul des tensions ä l'intdrieur de la pik.ce. La machine procede comme
suit:

1. Lectures des coordormees d'un point interieur.
2. Calcul, en ce point, des composantes cartesiennes du tenseur puis des

tensions principales et de la tangente de leur angle par rapport k l'axe des
abcisses.



APPLICATION DES MACHINES A CALCULER ELECTRONIQUES 101

3. Impression des coordormees du point, des tensions principales ax et o-2

et de tgoc. Ensuite, retour en 1, ä la lecture des coordormees du point suivant,
et ainsi de suite jusqu'a epuisement des points interieurs donnes.

Comme ü n'y a pas ici de probleme de mise en memoire, le nombre de

points interieurs k traiter est ülimite.

4. Quelques resultats obtenus

4.1. Piece carree soumise au cisaillement (fig. 4)

Fig. 4.

Dimension de la piece 3x3 cm
Epaisseur 1 cm
Nombre de points: 24
Intensite des tensions de cisaillement:

1 kg/cm2
Parametre de convergence: oc 0,8
Indice de precision: e 0,01 kg
Duree d'une iteration: environ 4'
Nombre d'iterations: 14

Precision obtenue:

Facettes normales au contour sauf dans les
coins: t 0,25%, ct 3,8%

Facettes normales au contour, segments
adjacents aux coins: t et o 85 %

Tension points interieurs: t et o 0,7 %

4.2. Poutre soumise ä flexion pure (fig. 5)

-(

Ty

v
n -se \

-*\

Dimensions de la piece: 4 X 16 cm
Nombre de points: 38

Moment: 256 kg cm
Parametre de convergence: <x 0,8

Indice de precision: 1 kg
Duröe d'une iteration: 9' 30"
Nombre d'iterations: 12

Fig. 5.

Precision obtenue:

Facettes normales au contour

Tensions points interieurs

T 1 %
<r=20,8%

et ff 24,6 %
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4.3. Nceud en traction (fig. 6)

Nombre de points: 48
Traction: 1 kg/cm2
Parametre de convergence: 0,8
Indice de precision: 0,01 kg
Duree d'une iteration: environ 15'
Nombre d'iterations: 12

Precision obtenue:

Ib5

nrn

Facettes normales au contour, coins exceptes:
ct et r 2 %

Fig. 6.

5. Considerations propres ä la methode

5.1. Choix du paramHre de convergence oc

Dans le memoire original [1], ü a ete montre que, si l'on adopte oc= 1, on
a generalement une oscillation indefinie des P, mais que, pour 0 < a < 1, toutes
les distributions des P convergent. La valeur Optimum de a differe d'un
probleme k l'autre, mais l'experience a montre que la valeur optimum moyenne
se situait aux environs de a 0,8. C'est donc cette valeur qu'ü est conseüie

d'adopter pour tous les problemes. Nous donnons, k titre d'exemple, le cas
d'une piece carree soumise ä traction uniforme dans un sens, definie par 20

points au contour. Pour un facteur de precision de 1% sur les P, la precision
obtenue sur les tensions au contour est de
1'ordre de 0,25% sur les t et de 2,5% sur
les o- en negligeant toutefois les facettes
adjacentes aux coins sur lesquehes nous
reviendrons.

Les erreurs sur les tensions aux points
interieurs sont de l'ordre de 1,5%.

Pour a 0,5, il a fallu 12 iterations
a. 0,75 8 iterations
<x 0,8 7 iterations

duräe d'une iteration 2' 30" environ

Fig. 7.

y

n*2Q

Traction 1kg/cm

5*5'cm

X
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5.2. Points anguleux

Comme on l'a constate au par. 4, la presence de points anguleux dans le
contour provoque dans leur voisinage une perturbation dans la repartition
des charges fictives P et donc une erreur sur le tenseur-tension aux points
compris dans le triangle forme par les 2 ou 3 segments A S adjacents au point
anguleux (fig. 5). Cette perturbation est tout ä fait locale et n'entraine pas
d'erreur sur la distribution des P et des tenseurs-tensions dans le restant de

la piece. De plus cette erreur ne se cumule pas d'une iteration k la suivante,
ehe est meme decroissante avec le nombre d'iterations.

5.3. Erreur provenant du remplacement des pds par des A S et des P

Si on examine les resultats obtenus pour la poutre soumise ä flexion pure,
on constate que les resultats sont entaches d'une erreur importante, meme
dans les regions non voisines des coins. Comme on peut le voir, de telles erreurs
n'apparaissent pas dans le nceud en traction ni dans la piece en cisaülement

pur, ä cause de la symetrie de sollicitation par rapport aux deux axes. Ces

erreurs sont dues exclusivement au remplacement des ds par des A S, qui
conduit ä remplacer les pds par des P qui ne sont pas leur resultante

$pds
As

mais bien la valeur de p au milieu du segment multiphe par la longueur de

celui-ci. Cette erreur est cumulative d'une iteration ä la suivante; c'est eile

qui limite la possibilite d'utüisation du programme. L'experience a montre
que la derivee seconde de la distribution des p etait la plus grande au voisinage
des coins; c'est donc egalement dans cette region que l'erreur due au remplacement

des pds par les P est la plus grande.
On peut y remedier dans la hmite du nombre de points disponibles (50)

en multiphant le nombre de divisions au voisinage des coins.
Nous donnons ä cet effet l'exemple de la poutre soumise ä flexion pure.

Poutre soumise ä flexion pure (fig. 8)

Precision obtenue:

Facettes normales au contour t : 0,7 %
ct : 14 %

Points interieurs t et a: 17 %

Fig. 8.

WMw
y 1 Zone non valable

2 Zone Fortement perhurbee

3 Zone peu perturbee



104 CH. MASSONNET - M. SAVE - G. MAZY - G. TTBAUX

y

Ib5

n- 50

\ä
Fig. 9.

Le probleme traite est le meme qu'au par. 4.2 mais ici la piece est definie

par 50 points, les points supplementaires ayant ete introduits au voisinage
des coins.
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Resume

La methode de resolution des problemes elastiques plans presentee dans le
neuvieme volume des «Memoires» a ete transformee en vue de son exploitation
sur calculatrice electronique. Le memoire expose la methode ainsi modifiee et
donne les resultats obtenus sur des pieces planes de forme diverse.

Zusammenfassung

Die in den «Abhandlungen» Band IX dargelegte Auflösungsmethode für
ebene Spannungsprobleme wurde zum Zweck der Anwendung auf elektronischen

Rechengeräten umgearbeitet. Dieser Beitrag enthält das veränderte
Verfahren und die Ergebnisse für einige ebene Elemente verschiedener Form.

Summary

The method for the Solution of the general stress-problems of plane
elasticity, which was presented in the ninth volume of the "Publications", has

been transformed for the purpose of its use on electronic Computers. This

paper describes the adaptation of the method and gives the results for some
plane elements of various shape.
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La creation d'une retenue sur le Flumendosa, en Sardaigne, necessita la
construction d'un pont en amont du barrage. Cet ouvrage en beton arme
comprend une arche d'un peu moins de 110 m d'ouverture. II donne passage
ä une route nationale et k un chemin de fer ä voie etroite.

Dans une premiere phase des etudes, on projeta deux ouvrages independants:

un pont-route large de 7,75 m et un pont-rail large de 3,75 m. Pour
ce dernier, on avait donc un rapport plutöt eieve entre la portee et la largeur,
ce qui faisait raisonnablement craindre une instabilite par flambement lateral.

Toutefois, la determination theorique du coefficient de securite au flambage
de ce pont-raü, dont la section etait fortement variable, presentait des
difficultes serieuses. On decida alors d'avoir recours k un essai sur maquette, qui

JK¦^

^
1 1mi /Wä m

sm

Fig. 1. Fig. 2.
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fut confie ä 1'Institut de «Scienza dehe Costruzioni» (Resistance des Materiaux)
de l'Ecole Polytechnique de Caghari.

Le modele etait en perspex, echelle 1:100, et reproduisait (fig. 1) fidele-
ment le pont-raü, y compris les blocs de fondation qui furent encastres dans

un cadre de bois dur. L'essai au flambage s'effectua en chargeant la maquette
avec des ressorts plus ou moins tendus. On choisit une disposition permettant
de reduire autant que possible l'effet stabilisateur des ressorts par rapport au
flambement lateral qui faisait l'objet des essais (fig. 2). Ce procede
experimental permit de resoudre promptement les problemes poses: on put etablir
que la charge de flambement lateral atteignait 6 fois celle de service. Une fois
bloques les deplacements horizontaux ä la clef, la voüte ne donna aucun signe
de flambage dans le plan contenant son axe, tout au moins jusqu'a la charge
maximale qu'on put imposer ä la maquette et qui correspondait k 10 fois la
charge de service. Ce dernier resultat, quoique peut-etre approche par exces

k cause de la presence des ressorts, pouvait etre accepte; on estima par contre
insuffisant le coefficient de securite au flambement lateral.

TqqT

'5.70730 «»

B *

E£E

• comporal-eur

:•-. eitewomtlrc minniquc

" ettensont&tre ilectriqve

Fig. 3.

La methode experimentale a donne une reponse nette, conseülant de reunir
le pont-route et le pont-rail dans un meme ouvrage, ce qu'on fit dans le projet
definitif. Mais la maquette — qui n'avait pas ete endommagee dans ces essais

de flambage — permettait encore de mesurer les contraintes aux endroits les

plus interessants de la voüte. A cet effet, on coha une soixantaine de jauges
de contrainte au droit des sections B-C-D de 1'arc (fig. 3) et on mesura les

contraintes dues ä une force concentree de valeur constante qui se deplacait
le long de l'axe. Ces resultats experimentaux permirent — au moyen des lois
de simihtude mecanique — de tracer les lignes d'influence des contraintes
maximales, qui sont comparees dans la fig. 4 avec les lignes correspondantes
donnees par le calcul1).

x) Les resultats complets des essais ont 6t6 recueillis dans un rapport [1] paru il y a
quelques mois.
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L'examen de ces diagrammes met tout d'abord en evidence que, bien que
le calcul et les essais donnent des resultats d'allure semblable, les lignes deduites

des essais sur modele sont plus courbes pres de la clef de voüte et plus
aplaties aux naissances que les diagrammes calcules. Ce fait d6coule des

deformations, et surtout des rotations, que l'elasticite des blocs de fondation
permettait aux sections de naissance du modele, tandis que le calcul suppose
que ces sections sont totalement encastrees.

Une deuxieme remarque est justifiee par l'observation des contraintes

moyennes. On peut controler que l'ecart maximum — en valeur absolue —
entre les efforts les plus eleves de compression et ceux de traction de chaque
section de la voüte est moindre pour les diagrammes tires des mesures sur
modele que pour les resultats donnes par le calcul.

Les contraintes moyennes dans le pont sont donc plus faibles que ne le

prevoyait le calcul. Cela peut etre exphque par la cohaboration du tabher
ä la resistance de la voüte, cohaboration neghgee par les calculs ordinaires.

Stetig/» D tnotssances. SecrtonA Ick?)
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• mesures sur modele
ca/cvl ordinaire Iare 'Solei
calcul de /Irr etostiquemenr encosfre.

—~ calcul dir 1'arc Hashauemenr encQftrt oree
+ fraerien coltoborotron ou taillier
— compression.

Fig. 4.
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Une analyse plus poussee, qui tient partiellement compte de rinfluence de

tassements elastiques des fondations (suivant la methode proposee par Vogt
[2]) et de la cohaboration du tabher [3], a en effet permis de trouver des

ecarts plus petits (voir encore les diagrammes de la fig. 4).
Ceci montre que la maquette se comporte comme une machine ä calculer

parfaite, qui tient aisement compte de beaucoup de facteurs dont l'etude
analytique rigoureuse se heurterait ä bien des difficultes.

,-=J

SO — U

Oirecrion des etraroes

ro/ciV ordinaire lorc isale I
rtlw/ de l"are orec collodorot

frocHön.
compression

Fig. 5.

A ce point toutefois, U etait bien naturel de faire une comparaison entre
l'etat total de contraintes donne par le calcul et ce qu'on venait de deduire
des essais. La figure 5 A montre les resultats de cette comparaison faite pour
le poids propre: on peut constater que les contraintes experimentales maximales

sont de 20 ä 25 % plus elevees que Celles de calcul.
Ce fait s'explique aisement: dans les etudes prehminaires du pont on avait

d'abord choisi comme directrice un funiculaire des charges permanentes; cette
courbe avait ensuite ete corrigee afin de la rapprocher davantage du polygone
des pressions donne par le calcul et de diminuer ainsi les contraintes de flexion.
Mais ce procede suppose que la voüte est parfaitement encastree aux naissan-
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ces; cette condition n'est cependant remplie ni pour la maquette ni pour
l'ouvrage reel, les sollicitations reelles du materiau sont donc superieures.

Cette conclusion a pu etre verifiee dans l'ouvrage reel qui a ete, il y a peu
de temps, soumis ä des essais de charge (fig. 6). On avait noye, ä l'intrados et
ä l'extrados de la section de clef, des extensometres electriques [4] qui per-
mettaient de mesurer l'etat de contraintes lors du passage de charges mobiles.
Les essais de mise en charge furent effectues en faisant circuler sur le pont
un train type et des colonnes de camions. La figure 5B montre les contraintes
d'extrados donnees par les essais et reportees ä la tete des colonnes de charge;
le diagramme experimental, compare aux resultats du calcul ordinaire, con-
firme l'importance des tassements elastiques des naissances. Toutefois, on n'a
pas ä craindre d'aussi lourdes consequences, quant aux sollicitations du materiau,

que pour un pont tel que le prevoyait le premier projet. La directrice —
une fois les resultats des essais sur maquette connus — a en effet ete modifiee
de facon ä s'approcher de nouveau d'un funiculaire des charges permanentes.

Üfill
f

iÄÄr
St»

wsävta

Fig. 6.

On peut donc admettre les conclusions suivantes. Les procedes de correc-
tions des directrices, qui supposent un encastrement total de 1'arc ä ses

naissances, portent ä sous-estimer les contraintes de l'ouvrage. La reduction des

contraintes de calcul qu'on obtient par ces methodes doit etre consideree, en
bien des cas, comme absolument fictive. En outre, on ne doit pas oublier
que, s'ü devait se produire des tassements non elastiques et plastiques dus
ä des efforts imprevus, une directrice correspondant ä un funiculaire reduit
les sollicitations de 1'arc. Ceci n'est pas toujours vrai, specialement si la directrice

a ete corrigee pour obtenir une diminution des contraintes de calcul.
Enfin, nous voudrions qu'on considerät les avantages que l'etude

experimentale sur maquette permet d'obtenir dans les projets de ponts; eile donne
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rapidement une reponse exacte ä des questions que le calcul ordinaire ne peut
resoudre et pour lesquehes une analyse plus poussee serait trop onereuse.
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Resume

On expose les resultats les plus interessants d'une serie d'essais effectues
sur la maquette d'une voüte en beton arme. Ces essais ont permis d'evaluer
avec facilite le coefficient de securite de l'ouvrage au flambement ainsi que
l'influence des tassements elastiques aux naissances et de la cohaboration du
tabher; les resultats ont ete confirmes par des mesures effectuees sur l'ouvrage
termine.

Zusammenfassung

Es werden die Ergebnisse der Modeh-Untersuchungen einer eingespannten
Bogenbrücke in Stahlbeton behandelt.

Auf Grund der Versuchsergebnisse konnten der Knicksicherheitsfaktor des

Bauwerkes, die Wirkung von elastischen Setzungen der Bogenfundamente
und die Mitwirkung des Brückenaufbaues ohne Schwierigkeit bestimmt
werden.

Diese Ergebnisse wurden durch Messungen am ausgeführten Bauwerk
bestätigt.

Summary

In this paper the authors report the most interesting results of a series of
tests carried out on a model of a reinforced concrete arch bridge.

These tests made it possible to determine without difficulty the safety
factor against buckhng of the strueture and the effects of elastic Settlements
on the foundations and of the increase in strength due to the deck of bridge;
the results were confirmed by measurements carried out on the finished bridge.
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Elastic-Plastic and Limit Analysis of Non-Homogeneous Arched

Bridge Structures

Etats ilasto - plastiques et etat limite des constructions de ponts non-homogenes,
en particulier de ponts voütes

Elastisch-plastische Zustände und Grenztragvermögen von nichthomogenen
Brückenkonstruktionen, insbesondere Bogenscheibenhrücken

W. OLSZAK
Prof. Dr. Ing., Dr. techn., Member of the Polish Academy of Sciences, Warsaw

1. In the theory of bridges, arched bridge structures have often found
practical appheation (Fig. 1). In the present paper, a method is proposed
which enables the states of stress and strain in such structures to be determined.
The possibility of taking certain types of non-homogeneity of the material into
consideration is also provided. The non-homogeneity may be due, e. g., to a
variable amount of reinforcement.

The method consists in the appheation of an appropriate conformal mapp-
ing. By means of a suitable mapping function, the system under consideration
is transformed into a circular ring segment (Fig. 2) and the problem is analysed
in this auxihary system. This is comparatively easy with the boundary

tili 1«

EH"-Q

liliii

Fig. 1. Fig. 2.
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conditions — for the inner and outer edges — assumed, these being particularly
simple. The Solution is then retransformed into the original system (Fig. 1).

In this way both the purely elastic and the elastic-plastic states may be

analysed. It is also possible to determine the ultimate load-carrying capacity
of such structures.

Fig. 2 shows the system under consideration. The bridge is assumed to be

asymmetric; the Symmetrie form can, of course, be readüy obtained as a
particular, simpler case of the more general, asymmetric form. Such
Symmetrie Systems, which are theoretieahy somewhat easier to handle, are generally
met with in practice.

The load is assumed to be uniformly distributed over the upper and lower
edges. The load p on the lower edge may, of course, be assumed to be zero,
the only load being the load q acting on the upper surface (roadway). This
results in a further simplification of the computation procedure.

2. The analytic function
C2

Z X + iY f(z)=^K (2.1)

transforms the original plane 0 into the inverted plane I. In this transfor-
mation, circles in the O-plane are mapped into circles in the I-plane. The

following simple geometrical relations are valid

*!-?!, rx ±
(2.2)

1 ,/ n, -t-19 rsintp
—— \/r2 + 2hrcos<p + hi, <p, arete —.r.Rx T ri °rcoa<p + h

The stress function Q in the original system 0 corresponds to the stress
function ot in the inverted system I. These functions are related in the following

simple manner:

co ±ß(Rx,<Px) r2Q(±,<py (2.3)

From this equation, we know the relation between the stress field in the
original system O and that in the inverted system I.

This relation is particularly simple if the stresses in the original system
are expressed in a curvüinear system of coordinates (i?,<?) consisting of two
families of orthogonal circles (Fig. 1). Then we have

oR trr(r2 + 2hrcoscp + h2) + 2M',
oT ot (r2 + 2hrcoa<p + h2) + 2M', (2.4)

rRT —rH(r2 + 2hr coaep+h2),

3cur 7 dcu.l
where M co—— rr + Acos<p] + 7—A-sinm,dr Bcd r
with the notations of Figs. 1 and 2
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3. The elastic problem is solved in a simple manner. The stress function
assumes, in the inverted system I, under the conditions described, the form

ot a0+b0lnr + d0r2lnr. (3.1)

Hence, the stresses in the original system 0 are readüy obtained as

aB 2a0 +b0{2lnr-l+r-2) + d0{2lnr+l-r2),
aT 2a0 + b0(2lnr — 3 — 4kr~1coa<p—r~2) + d0(2lnr + S + 4:VCQB(p-rr2),

tB2,= 0. (3.2b)

There are three unknown constants in these expressions; these constants
should be so chosen as to satisfy the boundary conditions in question. The
strueture is considered to be elasticahy clamped along the lateral edges. This
type of support is characterized by a clamping moment M and a reaction
force P (Fig. 1). It is evident that the cuTvüinear net of coordinates eoineides
with the prineipal stress trajeetories.

4. The problem of ultimate load-carrying capacity. The set of equihbrium
equations and boundary conditions has to be completed with the yield
condition

(aR-aT)2 + ir2BT 4 [K(RX,$X)]2. (4.1)

The material ofthe bridge may be homogeneous or non-homogeneous. In the
general case of non-homogeneity, the Solution cannot be obtained in a closed
form and should be sought for by means of one of the numerical methods
(the method of characteristics, for instance).

There exists, however, the possibihty of making use of a certain circums-
tance, which was already pointed out in some of our previous papers. This
consists in the following:

We can introduce into the analysis a particular type of non-homogeneity
K-r, enabhng us to find the corresponding Solution in a closed form.

It is evident that such a non-homogeneity does not necessarily reflect the
actual conditions; however, it can be shown that there may exist more of such

types of non-homogeneity which lead to simple closed-form Solutions.
Let us denote them by the Symbols Kx, Kn, Kin,
If one of these types of non-homogeneity represented the actual mechanical

properties of the system considered, the problem could be considered to be
solved. However, such a case will, in general, be only exceptional.

Another approach is then possible. Since the curvilinear net of coordinates

eoineides with the prineipal stress trajeetories [cf. Eq. (3.2b)], the yield
condition (4.1), in such a particular case, is seen to be hnear. Then a hnear
combination of the possible types of non-homogeneity

K(r,<p) ZKKiir,<p), »- I.H,. (4.2)
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may be considered. The parameters Ax, An,..., can now be chosen in such a
manner as to approach the actual conditions to the best possible extent. These
conditions are, for example, those of a specific type of non-homogeneity or
those of homogeneous properties of the strueture, depending upon the manner
in which the original problem was stated.

Thus, for the particular problem studied in the present paper, Solutions
were found for four different types of non-homogeneity: KI,K1I,KIII,KIV.
It follows that a linear combination may be used which can be expressed in
the following symbohe manner:

Ky ±k2K1± A2 Kn ± (t2 K1U ± v2 KIY. (4.3)

The above method was used to solve the problem under consideration.
The state of stress i<rR,oT,TRT) was found at every point of the strueture in
such a manner as to satisfy the boundary conditions required.

The moment M characterizing the elastic clamping and the reaction force
P were also found.

The critical load intensity for which the load-carrying capacity of the
strueture is exhausted was also determined.

5. The question now arises what type of non-homogeneity best describes
the actual conditions. In reinforced concrete bridges, the amount of reinforcement

will — in general — increase when the crown is approached (the maximum

being attained at the crown itself). Then the mechameal properties will
exhibit a corresponding increase of elastic and plastic moduli.

This corresponds, in a relatively satisfactory manner, to one of the types
of non-homogeneity considered in the present paper (ürra).

The other type corresponds, approximately, to homogeneous structures
(*n).

Between these two hmiting types, other types may be introduced by
selecting appropriate values for the parameters k, A, //., v.

This choiee of Solutions enables the non-homogeneity function KY to be

adapted to various possible practical cases, in a relatively satisfactory manner.
A method for the determination of the upper and lower bounds of the

Solutions thus obtained will be demonstrated in a separate paper. This is of
considerable importance as a means for estimating the accuracy of the Solution
and formulating variational problems.

It seems that the method proposed may be useful for solving actual practical

problems. It should be mentioned that it may also be extended to other
problems of elastic-plastic equüibrium and plastic flow.
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Summary

In the theory ofbridges, two-dimensional vaulted Systems are often analysed,
arched bridge structures being one ofthe possible and frequently used practical
applications. In this contribution, a method of analysis is suggested which
enables the states of stress and strain of such structures to be assessed, and
at the same time it is demonstrated that certain types of non-homogeneity
of the material may be taken into account.

The method consists in transforming the system under consideration into
a concentric ring by means of a simple mapping function. The Solution is
first found in this auxihary system and then retransformed into the original
system.

The analysis deals both with purely elastic and with elastic-plastic states.
In addition, a method is indicated for determining the ultimate load-carrying
capacity of such structures.

Resume

Dans la theorie des ponts on etudie souvent des systemes voütes bidimen-
sionnels, les ponts en are etant une des applications les plus usuehes. Cette
contribution propose une methode de calcul qui permet de determiner l'etat
de tension et l'etat de deformation de tels ouvrages, tout en offrant la possibilite

de tenir compte de la non-homogeneite du materiau du Systeme.
Cette methode consiste a transformer le Systeme considere en un segment

circulaire concentrique, a l'aide d'une simple fonetion de transformation con-
forme. La Solution est rechercb.ee dans ce Systeme auxiliaire.

L'etude traite aussi bien d'etats purement elastiques que d'etats eiasto-
plastiques. De plus, on peut determiner l'etat hmite et la capacite portante
de tehes constructions.

Zusammenfassung

In der Brückenstatik werden oft scheibenartige Tragsysteme untersucht,
wobei insbesondere Bogenscheibenbrücken schon vielfach praktische Anwendung

gefunden haben. Es wird eine Methode vorgeschlagen, die es erlaubt,
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den Spannungs- und Formänderungszustand derartiger Tragkonstruktionen
zu ermitteln, wobei gleichzeitig die Möglichkeit gegeben wird, deren Nicht-
homogenität in Betracht zu ziehen.

Die Methode besteht darin, durch Ehiführung einer einfachen Abhüdungs-
funktion das untersuchte System auf ein konzentrisches Kreissegment
konform abzubüden und in diesem Hilfssystem die Lösung zu suchen.

Es werden sowohl rein elastische als auch elastisch-plastische Zustände
untersucht. Außerdem wird gezeigt, wie das Grenztragvermögen (die Grenzlast)

derartiger Konstruktionen ermittelt wird.
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Complements relatifs aux poutres armees d'aeiers ecrouis

Ergänzungen betreffend Träger mit einer Bewehrung aus gerecktem Stahl

Further Information Relating to Girders Reinforced with Cold-Rolled Steel

CH. MASSONNET P. MOENAERT
Professeur ä l'Universite de Liege Charge de Cours ä l'Universite libre de

Bruxelles

Le Comite europeen du beton a mis au point ä Vienne, en avril 1959, des

regles qui permettent de dimensionner les pieces en beton arme soumises a
flexion simple ou composee en tenant compte du comportement reel du beton
comprime dans le stade de rupture. Ces regles sont tres simples pour les poutres
armees d'acier doux, oü l'on sait que l'acier tendu travaille au paher d'etirage
Re, si l'on a contröle prealablement que le pourcentage d'acier tendu est
inferieur au pourcentage critique. L'effort dans l'armature tendue de section
Qa vaut alors Fa=Qa Re et la section ä donner k cette armature decoule
directement de l'equation d'equüibre des moments M=Faz, sans qu'on doive
faire intervemr la condition de compatibüite elastique representee ici par la
loi de conservation des sections planes de Bernoulh.

A l'heure actuehe, on utilise de plus en plus des armatures en acier ecroui
qui ne presentent pas de paher et dont la tension depend par consequent de la
deformation subie. Pour des poutres armees de tels aciers, on doit faire intervenir

la loi de Bernoulh et la methode de calcul devient complexe.
En vue de conserver, pour les poutres armees d'acier ecroui, les regles

simples de dimensionnement obtenues pour les poutres armees d'acier doux,
le C.E.B. a recommande de calculer la tension dans l'armature tendue par la
formule empirique

'0,2 i1'28-^-0'45^) ^Cm2> <*>

proposee par la deiegation francaise. Dans cette formule, a02 est la limite
elastique conventionnelle de l'acier k 0,2 %; cr6' est la resistance ä la rupture
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du beton sur cyAndres et b, h, sont les dimensions utiles de la poutre
rectangulaire.

II nous a semble utüe d'etudier la valeur de cette formule en effectuant,
en complement de notre etude statistique anterieure, une comparaison statistique

des resultats d'essai sur 203 poutres armees d'acier ecroui avec deux
methodes de calcul du moment de rupture.

La premi&re de ces mithodes, dite mithode generale est basee sur les quatre
hypotheses suivantes:

a) le diagramme des tensions de compression dans le beton est parabohque
et son ordonnee maximum est egale a la resistance ä la compression sur
cylindres;

b) les sections transversales restent planes pendant la deformation;
c) le beton se rompt en compression quand son raccourcissement proportionnel

atteint 3,5°/00;
d) l'acier ecroui tendu suit la loi tensions-deformations simplifiee definie par

leC.E.B.

La deuxieme methode, dite methode simplifiee, utilise la formule (1)
recommandee par le C.E.B. et admet un diagramme rectangulaire des tensions de

compression dans le beton d'ordonnee egale ä la resistance ä la compression
sur cylindres.

Les calculs relatifs ä la premiere methode sont repris parmi ceux qui ont
ete executes a l'ordinateur IBM 650 de la maniere decrite dans la Publication
Preliminaire (cf. pp. 105—127).

Ceux relatifs ä la deuxieme methode ont ete executes ä la main.
Pour chacune des methodes, on a calcule la moyenne r des rapports

moment de rupture calcule
moment de rupture observe'

On a ensuite calcule l'ecart moyen lineaire

E|r-r|
n

et l'ecart moyen quadratique

VZir-r)2
n

Enfin, on a calcule les memes ecarts, non plus par rapport k la moyenne generale

r, mais par rapport aux moyennes individuelles correspondant aux diverses
series d'essais. De l'avis du professeur Torroja, ces ecarts moyens ponderes
ehminent les erreurs dues ä des differences de technique operatoire pour ne
laisser subsister que les ecarts dus ä la dispersion propre des essais.
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Les resultats obtenus sont consignes dans le tableau ci-dessous:

Moyenne du rapport:
M rupture calcule

Dispersion moyenne
Ecart moyen

Dispersion pondöree
Ecart moyen

M. rupture observö lineaire quadratique lineaire quadratique

1. methode
2. methode

0,958
0,989

0,078
0,086

0,12
0,12

0,055 0,074
0,056 0,080

On constate:

1. que la methode simplifiee serre la reahte de plus pres que la methode
generale, puisque la moyenne r correspondante est plus proche de l'unite;

2. qu'ehe donne des ecarts egaux ou tres legerement superieurs ä ceux de la
methode generale.

En conclusion, les deux methodes donnent des resultats ä peu präs equi-
valents, mais la methode simplifiee est beaucoup plus interessante, parce que
plus rapide d'emploi.

Resume

Les auteurs comparent, dans le cas de 203 poutres en beton armees d'acier
ecroui, les valeurs des moments de rupture experimentaux avec cehes cacul-
lees par la methode generale du C.E.B. et avec cehes calculees par la methode
simplifiee de ce Comite, dans laquehe la tension dans l'armature tendue est
calculee par la formule empirique (1) dite «formule francaise». Les calculs
statistiques montrent que la methode simplifiee est equivalente ä la methode
generale au point de vue precision, donc beaucoup plus interessante, parce
que plus rapide d'emploi.

Zusammenfassung

Die Autoren vergleichen bei 203 Eisenbetonträgern mit einer Bewehrung
aus gerecktem Stahl die experimentell gemessenen Bruchmomente mit
denjenigen, die sich aus den Berechnungen nach dem allgemeinen Verfahren des

CEB und nach dem vereinfachten Verfahren dieses Komitees ergeben. Bei
letzterem wird die Spannung in der Zugarmierung nach der empirischen,
sogenannt «französischen», Gleichung bestimmt. Die statistischen Berechnungen

zeigen, daß das vereinfachte Verfahren dem allgemeinen gleichwertig ist
was die Genauigkeit betrifft, aber viel interessanter in bezug auf den
Zeitaufwand.
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Summary

The authors compare, in the case of 203 girders made of concrete reinforced
with cold rohed steel, the experimental values for the rupture moments with
those calculated by the general method of the C.E.B. and with those
calculated by the simphfied method described by this Committee, in which the
stress in the reinforcement bar under tension is calculated by the empirical
formula (1) known as the "French formula". Statistical calculations show that
the simphfied method is equivalent to the general method from the point of
view of accuracy, and consequently is of far greater interest, because more
rapid in use.
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Application of the Semi-probabüistic Method to Reinforced Concrete

Structures

Application de la methode semi-probabiliste aux constructions en biton arme

Bemerkung zur Anwendung einer teilweise auf Wahrscheinlichkeitsrechnung
beruhenden Methode auf die Berechnung von Eisenbetonkonstruktionen

W. WIERZBICKI
Prof. Dr., Dr. h. c, Member of the Polish Academy of Sciences, Warsaw

The starting point for our discussion of the safety of reinforced concrete
structures will be the statement that by the term "collapse" of such a strueture

(a column or a bar, in particular), we understand the phenomenon of the
crushing of the concrete portion and the attainment of the yield point in the
reinforcement bars. According to numerous observations of the coüapse of
reinforced concrete structures these two phenomena may be considered to
appear simultaneously.

Under these conditions the load carrying capacity of a reinforced concrete
strueture is governed by the value of the ultimate compressive stress of the
concrete and the yield point of the reinforcement steel which form the basis
for its determination. Both quantities should be regarded as random quantities.

Fig. 1 represents a scheme of the probability curve for the compressive

-moKlfa

Fig. 1.
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strength of the concrete Rb. The shaded area expresses the probabihty Qb

that the values of Rb are contained between the limit value Rbg and the maximum

value max Rb. In other words Rbg is the value of the strength of the
concrete, below which the strength of concrete of a given quahty will not faü.

y

\ *
m ¦ maaR- H

Fig. 2.

Fig. 2 represents the scheme of a probabihty curve for the yield point of
the reinforcement steel. It is assumed that the same curve characterises the
yield point of the steel in tension and in compression. The shaded area expresses,

in this case, the probabihty Qz that the values R are contained between
the hmit value Rg and the maximum value max R or, in other words, that it
can be stated with the probabihty Qz that the yield point of the reinforcement
steel will not faü below Rg.

In order that the coüapse of a reinforced concrete column or beam should
not take place it is necessary that the following two independent circumstances

should coincide:

A. The ultimate strength of the concrete must be greater than the hmit
value Rbg, Qb denoting the probabihty of this fact.

B. The yield point of the reinforcement steel must be greater than the hmit
value Rg, Qz denoting the probabihty of this fact.

In this connection, by virtue of the rule of multiphcation of probabihties,
we can state, with the probabihty QbQz, that if the compressive strength of
the concrete is not less than Rbg and the yield point of the steel is not less

than Rg, cohapse of the strueture wiü not take place.

If, therefore, the safety index or, in other words, the probabihty that the
cohapse of a reinforced concrete strueture wül not take place, is denoted by p,
we shaü obtain the equation

ß6ßs p. (1)

Since the coüapse of a reinforced concrete strueture takes place at the
moment when the ultimate compressive stress in the concrete and the yield
point in the steel are simultaneously exceeded there is no reason for assuming
different values for the probabihties Qb and Qz, ah the more since their equahty
ensures the greatest accuracy in the readings of the probability curves.
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Therefore, we find that

Qb-Q,-Vj. (2)

In the case of the axial compression of a column the safety index p that is
assumed corresponds to the value Rbg of the ultimate stress of the concrete
and the value Rg of the yield point of the steel and the axial force causing
the coüapse of the column is expressed, in this connection, by the equation

Nn K(AbRbg+AzRg), (3)

where Ab is the area of the concrete portion of the cross-section of the column
Ae — the area of the cross-section of the reinforcement and k — the reduction
coefficient for buckhng.

The compressive force acting on the column Nd, the action of which on
the strueture is admissible, is not equal to Nn, because there are certain
circumstances reducing the force Nn. Thus, the force Nd should be compared
with the force Nn reduced in an appropriate manner, that is to say it should
be assumed that

Nd Nn(l-Z«!,), (4)

where the-coefficients a/ denote the limiting relative reduetions of the force
Nn causing coüapse, due to an incomplete satisfaction of each particular
condition, for which Eq. (3) was derived and 2ai denotes the relative reduction
of Nn due to incomplete satisfaction of all these conditions. The coefficients
oc'i are not, in general, of a random character.

A reasoning analogous to that given in Ref. [1] and [2] for the quantities p
and a wül now be foüowed for the safety index p and the coefficients oc', the
foüowing values for oJ being used:

oc'x 0,04 the coefficient of reduction of the force causing coüapse, due to the
errors in the dimensions of the concrete portion of the cross-section
of the column;

cx2 0,03 the coefficient of reduction of the force causing coüapse, due to the
errors in the transverse dimensions of the reinforcement bars;

<xj 0,10 the coefficient of reduction of the force causing cohapse, due to the

eccentricity of the compressive force caused by the errors in the
dimensions of the cross-section of the column;

0C4 0,20 the coefficient of reduction of the force causing coüapse, due to the
eccentricity caused by the difference in the temperatures at
different points on the surface of the column;

ag 0,10 the coefficient of reduction of the force causing coüapse, due to the
deviation of the column from a straight hne.

We have 2X 0,47.

Thus, for example, in order to determine the coefficient 0^ two columns
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are considered: a column 30x30 cm, reinforced with 4 bars of 12,57 cm2

total cross-sectional area, and a column 45 X 45 cm, reinforced with 8 bars of
32 cm2 total cross-section. For the first column we assume that i?6ff =140 kg/cm2
and i2 2500 kg/cm2; for the second column that Rbg 170 kg/cm2 and J?

3600 kg/cm2. Then, from Eq. (3) we obtain #„=127 kg and #„ 360 kg,
respectively.

Assuming, according to the usual Standards, that the admissible deviations
are +10 mm we again compute #„ for a column 29 X 29 cm and a column
44x44 cm, and we obtain #„=122 kg and #„ 357 kg, values which give
oc'x — 0,05 and oc'x 0,03, respectively, or an average value of a'x 0,04.

The same reasoning is used for the determination of the other coefficients
»' for the compression and for the bending of reinforced concrete beams.

On the basis of the method of plastic deformations, it is justifiable to
consider the cohapse of a reinforced concrete column (which consists in simul-
taneous crushing of the concrete and attainment of the yield point in the
reinforcement) to be identical, as far as the practical effect is concerned, with
the phenomenon occuring in a compressed steel bar when the yield point is
exceeded over the entire cross-section. Since in the latter case the safety
factor was assumed to be p 0,S, this value may also be considered to be

justified in the case of a reinforced concrete column.
In the case of bending, the fact that the beam is broken when the ultimate

compressive stress in the concrete and the yield point in the steel are exceeded

simultaneously, leads to the foüowing formula for the coüapse moment of
the beam:

Mn=Q,Z15bh2Rbg. (5)

This corresponds to the stress diagram in Fig. 3.

b ¦
t
X
1 Itfl
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Fig. 3.

The admissible moment in a reinforced concrete beam cannot be considered

to be equal to the cohapse moment and is expressed by the equation

Jf„ 2fn(l-2X) (6)

analogous to Eq. (4) for the admissible force in a compressed column.
Bearing in mind the circumstances similar to those enumerated above for

the problem of compressed columns, we determine the foüowing coefficients oc'f
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ax 0,06 the coefficient of reduction of the cohapse moment due to the errors
in the dimensions of the concrete portion of the cross-section of
the beam;

ct2 — 0,04 the coefficient of reduction of the coüapse moment due to the errors
in the transverse dimensions of the reinforcement bars;

oL 0,06 the coefficient of reduction of the cohapse moment due to the
eccentricity and obliqueness of the load;

ai 0,12 the coefficient of reduction of the cohapse moment due to the
difference between the temperatures on the upper and the lower
surface of the beam and the shrinkage of the concrete.

We have 2X 0,28.

If a reinforced concrete column or beam is subjeet to better conditions
than those used for the determination of the coefficients oci' some of them may
be assumed to be zero, which will increase Nd or Md. Thus we proeeed in a
simüar manner to that described for steel structures in Ref. [1], where we
were concerned with an increase in the admissible stress under favourable
conditions. This is discussed in greater detaü in Ref. [3].
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Summary

The load carrying capacity of a reinforced concrete strueture is
determined by the ultimate compressive stress of the concrete and the yield point
of the reinforcement steel. Both quantities should be regarded as random
quantities.

If the compressive strength of the concrete is not less than Rbg (the probabihty

Qb) and the yield point of the reinforcement steel is not less than Rg (the
probabihty Qz) then according to the rule of multipheation of probabihties it
can be stated that coüapse wül not take place, with the probabihty QbQz.

If p is the safety factor (that is the probabihty that coüapse of the strueture

wül not occur) then, from the equation QbQs p, we can determine the
admissible force in the column or the admissible bending moment in the beam.
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Resume

La contrainte du beton ä la limite de resistance ä la compression et la
contrainte ä la limite d'ecoulement de l'acier d'armature ont une importance
decisive pour la capacite portante d'une construction en beton arme. Ces deux
grandeurs doivent etre considerees comme des grandeurs aleatoires.

Si la resistance du beton ä la compression n'est pas inferieure ä Rbg (proba-
büite Qb) et la contrainte ä la limite d'ecoulement de l'acier d'armature n'est

pas inferieure ä Rg (probabilite iiz), alors conformement au theoreme sur la
multiphcation de probabilites, on peut soutenir avec la probabihte QbQz que
la construction ne s'effondrera pas. Si p est l'indice de securite (c. ä. d. la
probabihte que la construction ne s'effondre pas), on aura l'equation

QbQz p

qui permet de calculer la force admissible dans le pilier ou le moment admissible

pour la poutre.

Zusammenfassung

Für die Tragfähigkeit einer Eisenbetonkonstruktion sind die Betonspannung

beim Erreichen der Bruchgrenze und die Eisenspannung beim Erreichen
der Fheßgrenze von maßgebender Bedeutung. Diese Werte müssen als zufällige
Größen betrachtet werden.

Faüs die Bruchfestigkeit des Betons kleiner als der Wert Rbg (Wahrscheinlichkeit

ß6) und die Fheßgrenze der Bewehrungseisen kleiner als der Wert Rg
ist (Wahrscheinlichkeit iiz), dann wird, nach dem Satz der Multiplikation von
Wahrscheinlichkeiten, die Wahrschehihchkeit, daß keine Katastrophe eintritt,
SibQz sein. Bezeichnen wir den Sicherheitsindex mit p (d. h. die Wahrscheinlichkeit,

daß die Konstruktion hält), so gut

p=QbQz,

was uns erlaubt, die zulässige Kraft in einer Stütze oder das zulässige Moment
in einem Balken zu bestimmen.
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