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Ibl

Numerische Methode zur Berechnung statischer Probleme
Numerical Method for Solving Statical Problems

Méthode numérique pour le calcul de problémes statiques

B. GILG
Dr. Ing., Elektro-Watt, Ziirich

1. Einleitung

Die Aufstellung von Differentialgleichungen fiir statische Probleme bietet
im allgemeinen keine groBlen Schwierigkeiten, doch ist es bisweilen schon bei
linearen Fillen, viel 6fters aber noch bei zwei- und mehrdimensionalen Trag-
werken sowie bei dynamischen und thermischen Problemen unmdglich, eine
geschlossene Losung mit Befriedigung aller Randbedingungen zu finden.

Ein oft verwendetes Néaherungsverfahren ist die von Markus in seiner
Theorie der elastischen Gewebe angewandte Differenzenrechnung, bei welcher
bekanntlich die Differentialquotienten durch endliche Differenzen approxi-
miert und die Differentialgleichungen in Gleichungssysteme umgewandelt
werden. Die Anzahl der zu wihlenden Punkte hingt bei einer gewiinschten
Genauigkeit von den Kriimmungsverhéltnissen des Tragwerkes ab und kann
in komplizierten Fillen sehr grol3 werden.

Es ist aber ohne weiteres moglich, mit einem analogen Verfahren auf
Grund einer weit geringeren Anzahl von Festpunkten zum Ziel zu kommen,
wenn namlich als Ausgangswert nicht die Funktion selber, sondern die hichste
in der Differentialgleichung auftretende Ableitung gewihlt wird. Anstelle der
Berechnung der Ableitungen aus den Funktionswerten durch Differenzen-
bildung tritt nunmehr die Berechnung der niedrigeren Ableitungen aus den
héheren durch Integration einer interpolierten Kurve. Damit gleicht das
Niherungsverfahren der bekannten Seilpolygongleichung von StiifBi.
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2. Linearer Fall
Um das Verfahren im Detail zu erliutern, gehen wir von einer Differential-
gleichung 4. Ordnung aus, welche folgende Form besitzt:
fo@)y" + @) y" +f @)y +H @)y +fo @)y = p@). (1)

Dabei sind die Koeffizienten sowie die Stérfunktion p(z) beliebige bekannte
Funktionen.

g
A Parabel —,

//-

a x a x

Fig. 1.

Die hochste Ableitung der gesuchten Funktion y ist y™. Sie stellt somit die
Ausgangsfunktion fir die numerische Integration dar. Tragen wir die unbe-
kannten Werte in einem Diagramm auf, so kénnen wir, wie Fig. 1 zeigt, je
drei dieser Werte durch eine Parabel verbinden. Nach den Regeln der Inte-

gration erhalten wir:

ytll ( _) — Jl/l +J er d x
y// (x) — yn (O)+-“ym dfl,
0

Wird eine Parabel zwischen drei Werten mit den Indizes 0, 1 und 2 interpoliert,
so ergibt sich

" I/I A m nr nr
s =¥k (C’Ju +8y1 —¥s ), (31)
" nr A mn ne nrr
Y2 = Yo+ (4y0 +16y" +4yy7). (32)
Wir haben also die 3. Ableitungen im Punkt 1 und 2 aus den 4. Ableitungen
im Punkt 0, 1 und 2 sowie aus der 3. Ableitung im Punkt 0 berechnet. Analog
zu (3,) gilt fiir die weiteren Punkte durch Verschieben der Indizes

" n A mnr nm mr
Ys =Y + (‘“Jl +16y, +4y;) ete. (33)

Die allgemeine Form der Funktion y” (z) ist dabei eine Parabel 3. Grades,
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welche weiter integriert werden kann, wobel man die néchst tiefere Ableitung
erhilt:

" A " mr "
Y1 = Yo + Yo Ax+—(7y +6y" —y3"), (4;)

" ” m A mr nn
Y2 = Yo +Y 2Ax+—4(16yo +32y1) (45)

und durch Verschieben der Indizes:

" A m mr
Y3 = Y1 +?/1-A$+—“(1691 +32y,") ete. (43)

Analog ergeben sich die tieferen Ableitungen sowie die Funktion selber:

! r " " A xz A x3 ol M "n mnr s
y1=Y%+% drty) ——+ 55 @7y 163" =37, (51)
r) m 2 A " ’) " " -
Yo = Yo+Yo 2dax+yy 24z +»~(9yo + 129" —y5"), (55)

Az
Ys y1+y12Ax+J'1"ZA$2+1—(991'”+1’J”" ys')  ete.  (5y)

A 14 A xs A ’1:4 m ne "
Y1 ="YotY 4dx+yq +yo & T3go (Mw +551" —w"), (6,)
” nr A x3 A x4 mne nn mne
Yo = Yo+ Yo2dx+ys 2422+ + = (16yg" +16y;," = 2yy"), (65)
! " I 4 A 3 A 4 " nr nn
Ys =Y +y; 2dx+y; 2422+ 3x +—45 (16y7 +16y," —2y3") ete. (63)

Mit den Formeln (3)—(6) laf3t sich in jedem Punkt (x=0, da, 242 ...)
die Differentialgleichung so umwandeln, dafl nur noch die 4. Ableitungen der
gesuchten Funktion y sowie die niedrigeren Ableitungen des Randpunktes
(x=0) auftreten. Dabei miissen z. B. die Werte 7, 7, y; etc., welche in den
Gleichungen (3,), (45), (5,) etc. auftreten, durch die aus den Formeln (3,), (4,),
(5;) erhaltenen Ausdriicke ersetzt werden.

Das so aufgestellte Gleichungssystem enthalt fiir jeden Punkt der unter-
suchten Strecke eine Unbekannte " sowie fiir den Punkt =0 so viele Unbe-
kannte (yy, %o, %o, ¥o) als die Ordnungszahl der Differentialgleichung be-
trigt. Zu ihrer Bestimmung dienen fiir jeden Punkt eine Gleichung (1) sowie die
Rand- resp. Anfangsbedingungen, deren Anzahl bekanntlich gleich der Ord-
nungszahl sein muf}. Die Zahl der Unbekannten und diejenige der Gleichungen
ist also identisch.

Zu den bisherigen Erliuterungen sind zwei Bemerkungen wichtig:

a) Ist die hochste Ableitung der Differentialgleichung eine andere als die im
vorigen Fall angenommene, so gelten die Formeln (3)—(6) in analoger
Weise. Nehmen wir als hochste Ableitung #%”, so gelten die Formeln (3) fiir
y', die Formeln (4) fiir y und die Formeln (5) und (6) sind tberfliissig.
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b) Da bei der Berechnung der tieferen Ableitungen im Punkt x=: im allge-
meinen simtliche hichsten Ableitungen der Punkte x <: auftreten, mul
zur Vermeidung von komplizierten Formeln die Zahl der Teilstrecken
moglichst klein gehalten werden, z.B. 4—6. Symmetriebedingungen sind
als Randbedingungen einzufiihren, so daf} sich die Zahl der Unbekannten
auf die Halfte reduziert.

3. Linearer Fall mit 2 simultanen Differentialgleichungen

Wihrend bei einfacheren statischen Problemen im allgemeinen die Seil-
polygongleichung von Stii schneller zum Ziel fiihrt, so eignet sich die vor-
erwihnte Methode besonders auch fir komplizierte Probleme, wie z.B. fir
den in Fig. 2 skizzierten Kreisbogentriger unter radialer Belastung. Sein

Verhalten wird durch zwei simultane Differentialgleichungen fiir die mit dem
Elastizitditsmodul £ multiplizierten Verschiebungen wu(s) in tangentialer
Richtung und » (s) in radialer Richtung charakterisiert:

a3 E v”} d

13 72 +—Ev+£E’u'=—p(s),

[E 'l)”” + R2 R

—
~1
~

d3 " ’ d3 ”
EEv +Ev [I:ZR?_d] —dREW =0.

d, R und p(s) sind aus der Fig. 2 ersichtlich. Die Schnittgroflen M (Biege-
moment) und N (Normalkraft) gehorchen bekanntlich folgenden Ausdriicken:

BrEy . , Ev ,

Fiir einfache Belastungsfunktionen p(s) konnen die Gleichungen (7) streng
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gelost werden, so dall die Genauigkeit der Niaherungslosung bestimmt werden
kann.

Aus den beiden hichsten Ableitungen E»™ und Eu” werden anhand der
Formeln (3)—(6) die tieferen Ableitungen berechnet und in die Gleichungen
(7) eingesetzt, wobei zusitzlich die unbekannten Randwerte £ ", Ev", K,
Ev, Ew' und Eu fir s=0 auftreten. Es miissen also 6 Randbedingungen
aufgestellt werden, d.h. fiir jedes Bogenende 3. Im Falle eines total einge-
spannten Bogens sind dies die folgenden:

an jedem Rand: Eu=Ev=Ev =0.

Bei symmetrischem Verlauf der Belastung konnen die 3 Randbedingungen
am Rand s=s,, durch Symmetriebedingungen im Bogenscheitel (s=1s,,)
ersetzt werden.

Zur Uberpriifung der Genauigkeit wurde ein Triger mit einem Offnungs-
winkel von 120° und einer Schlankheit E/d =10 unter konstanter Belastung
berechnet. Es ergab sich fiir die Maximalverschiebung im Scheitel folgendes
Bild:

R2

Strenge Losung Evyp, = — 1,8502D g
R2

Einteilung 4s=15° Evy,, = — 1,858pd :
2

Einteilung 4s=20° Ev,;,, = — 1,868 pf ’

Die Abweichungen der Werte fiir die SchnittgroBen halten sich in den-
selben Proportionen. Eine Einteilung in 6 Abschnitte (im Symmetriefall nur 3!)
kann als geniigend angesehen werden.

4. Diinne Platten als Fall einer partiellen Differentialgleichung 4. Ordnung

Fiir die diinnen Platten sind schon verschiedene Naherungsverfahren be-
schrieben worden, so dal} sich der Leser iiber die Nitzlichkeit des hier zur
Diskussion stehenden selber ein Bild machen kann. In allen folgenden Formeln
werden die Ableitungen durch Indizes angegeben, so z. B.

dw _ w _Fw w
ox ¥ dgoy: W
Die Plattengleichung lautet somit:
: p(@,y)
44w = wzxrz+2wxzyy+wyyyy = —D— (9)

Sie wird zur Vereinfachung der Berechnung umgeformt:

AM:MMJFM_I,!,:@, (10)

dw =w,, +w,, = M(z,y). (11)
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Wir beschreiben das Vorgehen fiir den Fall der Fig. 3 (quadratische Platte).

Als hochste Ableitungen in der Gleichung (10) treten M,, und M, auf,
d.h. fir jeden untersuchten Punkt 2 Werte. Da fiir jeden Punkt nur eine
Gleichung aufgestellt werden kann, mul3 eine weitere Bedingung gefunden
werden; es ist dies die Berechnung ein und desselben Funktionswertes M iiber
zwei verschiedene Strecken, z.B. fir M, aus M, in den Punkten 5, 6, 7 und
M,, in den Punkten 2, 7, 12.

¥
|20 2 22 2 2%
2
&
5 5 17 8 %
2
“
10 1" 12 123 X
2
&
5 & 7 8 9
2
&
0 ; 2 5 ‘.,

o 2 2
- <

clq

Fig. 3.

Natiirlich miissen hier simtliche Symmetrie- und Antimetriebedingungen
von Anfang an ausgeniitzt werden. Fiir zweiseitig symmetrische Belastung
wurde wie folgt vorgegangen:

a) Berechnung von M,, M,, M,, M, und M,, aus den entsprechenden M-
Werten der Punkte 0, 1, 2, 5, 6, 7, 10, 11, 12 unter Beachtung der Rand-
und Symmetriebedingungen: M,=0 und M, =0 in Punkt 2, 7, 12. Es blei-
ben die 11 Unbekannten M ,, in den Punkten 0, 1, 2, 5, 6, 7, 10, 11, 12,
M. und M,,.

b) Formulierung der Differentialgleichung (10) in den Punkten 0, 1, 2, 6, 7,
12 unter Beriicksichtigung der Symmetrie: M, =M, in den Punkten 0,
6: 12 und (Myy)l = (M:c;c)sa (Myy)z = (ﬂ/‘[m:)lo ’ (*M’yy)'i = (Ma:.t:)ll ) dies ergibt
6 Gleichungen.

¢) Beachtung der Symmetriebedingungen M, =M., M,=M,, ergibt 2 zusitz-
liche Gleichungen.

d) Berechnung von M, iiber die Werte M ,, der Punkte 2, 7, 12 (gleich den
Werten M, in 10, 11, 12); Gleichsetzen mit M, aus a) ergibt eine weitere
Gleichung.

e) Zur Bestimmung der 11 Unbekannten brauchen wir noch 2 Gleichungen,
welche uns die Randbedingungen in den Punkten 1 und 2 liefern miissen.
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Im Falle einer frei drehbar gelagerten Platte sind dies die Gleichungen
M,=M,=0, welche besagen, dal} das Randmoment identisch verschwindet;
sie erlauben eine sofortige Berechnung der M-Werte der Differentialgleichung
(10) und damit der Schnittmomente; die Durchbiegungen w erhélt man darauf
in analoger Weise mittelst der Differentialgleichung (11). Im Falle einer einge-
spannten Platte mufl mit den Unbekannten M, und M, tiber die Gleichung (11)
weiter gerechnet werden, da die Randbedingungen sich nur auf w, w, und w,
beziehen.

Die Berechnung wurde fiir die quadratische Platte unter p =lkonst. durch-
gefithrt und ergab bei der Einteilung der Fig. 3 fiir die maximale Durch-
biegung sowie fiir die maximalen Momente in Plattenmitte und lings der
Einspannung Abweichungen von 1—29%,, was als geniigend klein angesehen
werden kann.

5. Weitere Anwendungsmoglichkeiten

Die Methode der numerischen Integration laBt sich natiirlich auch auf
komplizierte statische Gebilde wie Schalen und Staumauern anwenden, was
der Verfasser in einer spiteren Arbeit ndher erliutern wird. Das Vorgehen ist
immer dasselbe, nur gilt es zu beachten, dafl bei einer komplizierten partiellen
Differentialgleichung sémtliche héchsten Ableitungen (auch die gemischten)
als Ausgangswerte dienen miissen, wobei die innern Kontrollen sich vermeh-
ren. Bei der Gleichung (9) wiirde das z. B. folgendermaflen aussehen:

2. Inte- 4. Inte-
Basis- 1. Inte- gration 3. Inte- gration
werte gration (1. Kontrolle) gration (2. Kontrolle)
Wrzzz Wazx Wzz Wy

e \

Ty //

Wazyy

Wyyyy Wyyy Wyy Wy
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Zusammenfassung

Es wird eine Methode entwickelt, welche erlaubt, Differentialgleichungen
zu losen, indem die hochste Ableitung als Basiswert angenommen wird und
durch sukzessive Integration die niedrigeren Ableitungen berechnet werden.
Zur Erlauterung der Methode werden einfache und partielle Differential-
gleichungen untersucht.

Summary

A new method is described for solving differential equations by starting
from the highest derivate and calculating the lower derivates through succes-
sive integrations. In order to illustrate the method, a few examples of cal-
culation are then given applying to simple and partial differential equations.

Résumé

La méthode exposée permet de résoudre des équations différentielles; en
admettant la dérivée du plus haut degré comme valeur de base, on obtient
par intégrations successives les dérivées de degré inférieur. Afin d’illustrer la
méthode, on donne quelques exemples de calcul d’équations différentielles
simples et partielles.
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Finite Deflections of a Clamped Circular Plate on an
Elastic Foundation?)

Calcul des fleches finies d’une plaque circulaire encastrée sur fondation élastique

Endliche Durchbieqgungen einer eingespannten Kreisplatte auf einer elastischen

Fundation
WILLIAM A. NASH F. H. HO
Professor of Engineering Mechanics, Uni- Graduate Assistant, Department of Engi-
versity of Florida, Gainesville, Florida, neering Mechanics, University of Florida,
U.S.A. Gainesville, Florida, U.S.A.
Notation

r,0 Polar coordinates.

u, v, W Displacements in radial, tangential, and the direction of normal
vector of the undeformed middle surface of the plate, respec-
tively.

€€ Radial and tangential strain components.

K, , K, Changes of curvature.

M,, My, M,, Components of bending moments per unit length of middle sur-
face of the plate.

N,,Ny,N,s Components of membrane forces per unit length of middle sur-
face of the plate.

E Modulus of elasticity in tension and compression.
v Poisson’s ratio.
h Plate thickness.
Eh3 T
D Y Flexural rigidity of the plate.

1) The results were obtained in the course of research sponsored by the Office of
Ordnance Research, U.S. Army, under Contract DA-01-009-ORD-671 with the Uni-
versity of Florida.
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q Intensity of uniform load in direction normal to the plate
(Ib. per sq. in.).
k Modulus of the elastic foundation (Ib. per cu. in.).
Introduction

Although the solution to many problems involving the infinitesimal deflec-
tions of thin elastic plates on elastic foundations has been given by various
techniques [1,2], no analysis is available for the case when the maximum
deflection is of the order of magnitude of the plate thickness. In the present
study we consider the axisymmetric finite deflection of a thin elastic circular
plate resting on an elastic foundation. The edges of the plate are clamped and
the face of the plate is loaded by uniform normal pressure.

Let us denote by » the distance of a point, in the middle surface of the
plate, from the geometric axis. Also, let » and w, respectively, denote radial
and normal components of displacement of this point. The intensity of normal
load is designated by ¢ and the foundation modulus by & (force per unit
volume). It is assumed that the direction of the reaction of the foundation
upon the plate is normal to the plate and the magnitude of this reaction varies
linearly with the normal deflection w. We denote the modulus of elasticity of
the plate by #, Poisson’s ratio by v, the plate thickness by %, the radius by «,
and the flexural rigidity by D= £ 73/12 (1 —»?). Also, we denote by N, and Ny
the membrane forces per unit length of the middle surface of the plate in the
radial and tangential directions, respectively.

Governing Equations

For deflections of the order of magnitude of the plate thickness we take
the strain-displacement relations to be [3]

du 1 [(dw\?

€’=W+§(W) : (1)
u

€@="> (2)

where €, denotes the radial strain, and ¢j the tangential strain. The curvature
we take to be [3]

d?w

Kr=W, (3)
1 dw

K9=,,_. dr (4)

The finite deflections of the plate are described by the vox KarRMAN equa-
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tions [3]. If the foundation reaction is included these equations may be written
in the form

Ld[ dfl d [ dw 1d[ o dw] .
D;ﬁ[fﬂ{;d—;(ﬁﬁ)}]‘?ﬂ[mrﬂ] =g (5)
da L d Eh(dw\®*
Also, we have the equation expressing equilibrium in the radial direction [3]
d
The radial displacement is found from (2) together with Hooke’s Law to be
r [d
—— |2 (v N)—
u—Eh[d’)’(?AT) VNT:I. (8)
The boundary conditions at r =a are
dw
w = —C—l",;—* = 0,
U 1
= = 57 Wy—vN,) =0 (9)
a N,)—vN,=0;
or, CW(qr A—vN. =0;
and at =0 they are
%—d—f — Finite, N, = Finite. (10)

It is convenient to render the above equations non-dimensional. Accord-
ingly, we introduce the following relations:

w
W=,
3
v, =2k,
a
Eh3
Ny=" 8, (11)
a*q
P_h4E(1_V2):
_ 3(1-1?) ka
K= 4 Eh3’

Also, a dimensionless variable % is so chosen such that

n=1——. (12)
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Thus, Egs. (5) to (9) can be written in the following non-dimensional forms:

d d* | dW\] . d [w dWw — .
— = N okl | . 1y R |G S [ 5 - . (1
d? L L d W\

d‘—;g[(l”ﬂ)*gr]""E(d—n) =0, (14)
ds
-2 — I'=§,. D
S, —2(1 n)dn Sp (15)
The boundary conditions become
dw
;XtT’)ZO, w=ﬂ=0,
Sy—v8, =0, (16)
d
") — - — S— =
2(1—n) 7 (8)= (=), = 0.
A
At n =1, S,,%:Finite. (17)

Perturbation Procedure

Let us consider a perturbation procedure based upon the smallness of the
dimensionless central deflection of the plate. This technique has been used
successfully by CHIEN [4] in the analysis of finite deflections of a clamped edge
circular plate having no elastic foundation. We begin by denoting the dimen-
sionless central deflection by W,=(w/h),_,, and then expanding in ascending
powers of W, each of the quantities P, W, S,, and Sy, viz:

$P=oa,Wotoay Wi+oay W3+ --- (1
W = Q) (n) Wo+82;(n) Wi+Q5(n) WS+ - - (1
S, = fo(n) Wi+ 1y (n) Wi+ /e (n) Wi+ - - (20
So = g2 (1) Wi+94(n) Wa+ge(n) Wi+ - - (2

The choice of even and odd powers is based upon obvious physical considera-
tions. The series (18) through (21) are next substituted into Eqgs. (13) to (15),
and also into the boundary conditions (16) and (17). Thus, all equations will
be in the form of power series in W,. If we equate coefficients of like powers
of W, we then obtain a set of linearized equations. These equations may be
solved successively to determine any desired number of coefficients in (18)
through (21).

Collecting coefficients of the W, terms in Eq. (13) the following equation
is obtained

d d? ds2
d—n[(l—"])d—nz{(l—'f])ﬁ}] =°‘1—K-Ql- (22)
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The corresponding boundary conditions are

Q,(0) = 9,(0)=0 (23)
£ (1) = Finite. (24)
It is also necessary that
.= 1, (25)
and 2;,(1)=02,(1)=---=0.

This first approximation is obviously the linear problem of small deflection
theory. A solution of (22) may be assumed in the form of the truncated series

Q1 (n) = ?[14+ay (1 —7)+ay (1 —7)*+az (1 —n)°]

2 34 ()t 5 (26)
=A7*+ B3+ Cypt4+ D,
where A=1+4a,+a,+a,,
B=—(a;+2a,+3a,),
(@ 2 3 (27)
C =ay+3a,,
D:-ala.

The values of a,, a,, a; and «; are found from the following system of linear
simultaneous algebraic equations
28a,+76a,+148a; —a; = — 4,
3a,+18a,+55a,+0=0,
Ka;+(144+ K)a,+(9124+ K)a;+0 = — K,
Ka,+2Ka,+(3K+400)a;+0=0.

(28)

In the numerical example to be presented later it is shown that this first
approximation (26) yields results almost identical with those found by
ScHLEICHER [1]. The present technique, however, involves considerably less
computational effort than does application of the SCHLEICHER method.

Collecting coefficients of the W32 terms in Eqgs. (14) and (15) yields the
relations

d? 1 (d0Q,\?
d—n—z[(l—’])fz(”fl)]'f‘:z‘(?l-nl) =0, (29)
d
() = fi(m)-2(1- ). (30)

The corresponding boundary conditions are
92 (0)—vf,(0) = 0, f2 (1) = Finite. (31)
If the value of £, (n) determined in the first approximation is introduced

in (29) and (30) the solution to these equations may again be taken in the
form of the truncated series:

fa(n) = bo+byn+byn?+bgn®+byn*+b57° (32)
ga(n) = cog+cyn+can?+ca P +cynt+c57° (33)
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where bs = 20B2+ AC‘
b4=mAB+bs,
1
by = gA+by, (34)
by =0,
by = by, = bg,
26,
be = 11
and co=(?b_1:) = byv,
Cy = Hby—6by, (35)
c3 = Tby—8b,,
¢y =90,—10b;,

in which 4, B,C, ... are given by (27).
Collecting coefficients of the W§ terms in Eq. (13) yields

=il -so-mtso-v82] <.

The corresponding boundary conditions are

q0-[2 o 2] e 5
N ln=0 N 1n=1

Further, from (25) we have

Q,(1) = 0.

Using the results obtained in (26), (32) and (33), the boundary value problem
described by (36) and (37) can be solved by means of the truncated series:

-Qs(’?) = 772(1—"7)[d0+d1’7+d2772+d3773]

— Dyn?+Dym?+Dynt + Dynd + Dy b, (38)
where D;(1=2,3,...,6) satisfy the linear simultaneous algebraic equations:
4D, —24D;+24D;+24D;+0—a3 =6(1—v2) by 4,
0+36D;—144 D, +120 Dy+0 = 6 (1—v2) [3b, B—2 (by—b,) 4], 39)

— (360 — K) D, — 360 Dy — 216 D, — 840 D, + 0
= 9(1—v2)[4b,C —3 (by—by) B—2 (b, —b,) 4],
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1200 D, + (1200 + K) D;+ 1200 D, + 1600 D5+ 0
=12(1—v?)[6by D —4(by—b;) C—3(by—by) B—2(by—b,) 4],
—900D,—900D,—(900—-K)D,—900D;+0 (39)
= —15(1—v?)[5(by—by) D+ 4 (by —by) C+ 3 (by—bs) B+2(by—b,) 4],
Dy+D;+D;+Ds+Dg =0.

Collecting coefficients of the W§ terms in Eqgs. (14) and (15) we get the
following equations:

d? dQ.\ [dS2
E?[(l—’])f4(’7))+(d—nl) (ﬁ) =0, (40)
d
fum =2 (1= 52 = ., (41)

as well as the boundary conditions
94(0)—=vf,(0) =0,  f4(1) = Finite. (42)

Again for the purpose of solving this linear boundary value problem,
truncated series type solutions for f,(n) and g, (n) can be employed. We take

10 _
fa(n) = _=ZO hi ' (43)
10 ,
9s(n) = ZO P (44)
where
3
hao = 77D D5,

1
hy = 5524 C D+ 25D Ds]+ Iy,

1
by = ﬁ[18D1)6+20(C’D5+DD4)]+h9,
1
h, = %[12AD6+ 15(B D5+ D D;)+ 16 C D]+ hg,

1

h =3—10[8AD4+9BD3+80D2]+h6,

(5]

3
hy =1_0[AD3+BD2]+h5,
hy =1 AD,+h,,
hg = hg,
By =ty =y
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and Po = hy— 2k,

P = 3hy— 4h,,

Py = Hhy— 6hy,

Py = Thy— 8hy,

Py = 9hy,—10h,,

ps = 11h;—12hg, (46)

ps = 13hg—14h-,

Py =15k, — 16 hg,

pg = 1Thg—18hy,

Py = 19hg—20h,,,

Pro= 21hyq.
From the boundary condition (42) we have

ho = 2hy/(1—v), Po = 2vhi[(1—v) =vh,. (47)

In the next section it is demonstrated that no more terms in the series (18)

through (21) are required for a satisfactory analysis of the problem under
consideration.

Experimental Verification

For the purpose of investigating the validity of the above solution, an
aluminum alloy plate was supported on coil springs and tested under normal
pressure with clamped edge conditions. The elastic and geometric parameters
of this system were

h = 0.18 1n.,

E = 10x 106 Ib. per in.2,
a = 7.51n.,

v = 0.3,

k = 39 1b. perin.?.

The solution of Egs. (28), (34), (35), (39) and (45) to (47) leads to the
following relations
3P = 6.53W, +4.64 W3, (48)

S, =0.95W3—0.03 Wi. (49)

As a preliminary verification of the experimental procedure several tests
were conducted with no elastic foundation present to stabilize the plate.
Measurements of central deflections as well as outer fiber strains at the surface
of the plate were found to be in excellent agreement with the predictions of
CuIeN’s theory [4]. Then, the springs were placed under the plate so as to
give the elastic foundation effect. The experimental results for the central
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deflection, shown in Fig. 1, are seen to be in very satisfactory agreement with
the predications of Eq. (48) based upon the present nonlinear analysis.

The outer fiber strain at the center of the plate, on the face subject to
normal pressure, was determined from the membrane strain corresponding to
(49) together with the bending strain as given by the usual thin plate moment-
curvature relations. The normal deflections in the latter are given by (48).
The strain thus predicted on the basis of the present nonlinear theory is shown
in Fig. 2. Also shown on that figure is the strain at this same point as deter-

> .
Linear theor a Proposed solution
w L g e k <39 16/in%
A // J - 0,5
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N //{ result
N 7~
= ‘4
" v
N 7
a5 -

E 3. 2, o
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Fig. 1. Variation of central deflection with load (with elastic foundation).
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Fig. 2. Comparison of theoretical and experimental outer fiber radial strains at center
of plate (with elastic foundation).
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mined experimentally by use of electric strain gages. The agreement, although
satisfactory is not, of course, as good as was the agreement of deflections.

Fig. 3 indicates a comparison of various significant stresses in the plate;
a) when the elastic foundation is present, and b) when it is absent. These
relations are all based upon values given by the present nonlinear analysis.
From these curves it is evident that the elastic foundation is more effective
in reducing the central bending stress than in reducing the central membrane
stress.

20 [ /

I Benaging stress /
ot center £

af center /
ko= 39 16/in° /

15 / {Bendm_p stress

10 / //

Nembrone s/ress
~ i / o center
S}
kr': /
olv /

/
| i 7 Membrane stress
/ o/ center
/ / b« 39 160007
o5 /
] /
| /
/
/ 74
L / Fd
/
i
- S
// With Foundation
L ,// ———— Without Foundation
//
L N 5 | L s L 1 1 L 1
o a5 10
Wor B

Fig. 3. Various stresses in a clamped edge circular plate (v =0.3) with and without elastic
foundation.

Conclusions

The validity of a perturbation type analysis for the nonlinear elastic
behavior of a clamped edge circular plate on an elastic foundation has been
established through experimental verification.

The present nonlinear analysis indicates that, for a given load intensity,
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the presence of the elastic foundation has little effect on the membrane stress
at the center of the plate. However, the elastic foundation is extremely effec-
tive in reducing the outer fiber bending stresses at the center of the plate.
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Summary

The problem of the nonlinear large deflections of a thin circular plate
supported on an elastic foundation is treated by the method of successive
approximations based upon the smallness of central deflections. The edges of
the plate are clamped and the face of the plate is subject to uniform normal
pressure. Results of the analysis are shown to be in satisfactory agreement
with experimental data obtained from tests of an aluminum plate.

Résumé

La méthode d’approximations successives, basée sur la petitesse des défor-
mations centrales, permet d’aborder le probléeme des grandes déformations
non-linéaires des plaques minces, circulaires, sur fondation élastique. Les bords
de la plaque sont encastrés et la plaque est soumise & une charge uniformé-
ment répartie. L’auteur montre que les résultats obtenus a l'aide de cette
méthode concordent de facon satisfaisante avec les résultats d’essais effectués
sur une plaque en aluminium.

Zusammenfassung

Das Problem der nichtlinearen groBlen Durchbiegungen einer diinnen
Kreisplatte auf einer elastischen Fundation wird durch die Methode der suk-
zessiven Niherung, basierend auf der Kleinheit der Mittendurchbiegungen,
behandelt. Der Rand der Platte ist eingespannt und die Plattenfliche ist durch
gleichformigen Druck belastet. Die Ergebnisse der Untersuchung ergeben eine
zufriedenstellende Ubereinstimmung mit Werten, die bei Versuchen an einer
Aluminiumplatte gemessen wurden.
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Dynamics of Continuous Structures with Repeated Elements
Vibrations des ouvrages continus formés d’éléments identiques

Dynamische Losung der durchlaufenden Systeme mat sich wiederholenden
Elementen

V. KOLOUSEK
Prof. Dr. Ing., Praha

Introduction

Structural systems with repeated elements are to be found in all historical
periods. Bridges, continuous over several spans, may be regarded as a typical
example of this kind (Fig. 1). The arches were first made of stone, later we
find continuous structures of reinforced concrete, the structural systems being
either continuous straight girders or continuous arches, and quite recently,
elements of prestressed concrete have been used on an extensive scale for

aAkAARAARA
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| jj—
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Fig. 1. Types of Continuous Bridge Structure with Repeated Elements.
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continuous structures. In the structural systems used in building houses there
are also many parts built up of repeated elements. Generally, it may be said
that the increasing use of precast elements will naturally result in still wider
application of systems built up of repeated elements, since these systems offer
advantages from the point of view of economy.

In this paper some methods for investigating the vibrations of such systems
are discussed, and it will be shown that both the theoretical and the numerical
work involved may be considerably simplified, if we make use of all the advan-
tages which the application of systems with repeated elements presents.

1. Continuous Beam of Uniform Section
A beam of uniform section, continuous over several equal spans, rigidly
fixed at the end-supports, may be regarded as the simplest possible example

of a system with repeated elements. In this case, the method of dynamical
solution is well known, and we shall give here only a brief review of the analysis.

SR S B B .
? ’-OK/}’/\I’Z\_/P l‘b\‘/_{jj.zz

A <331

3
N =R s

=455

<
Q
(

Fig. 2. Continuous Five-Span Beam, Rigidly Fixed at End-Supports. First Five Natural
Modes of Vibration.
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From the equilibrium of the moments at any isolated joint K we have
Mg gt Mg g =Mk, (1)

where M i 1, Mg g, are the end-moments of the bars K, K —1 and K, K +1
respectively, and M is the external moment loading at the joint K. If we
express the end-moments by means of the end-rotations yz, we obtain from
Eq. (1)

byg1tayg+bygyn = M. (2)

Eq. (2) holds true for all intermediate supports, and we thus obtain a set of
n — 1 algebraic equations for determining the rotations yx . For free oscillations
the external moment loading M equals zero, and the set of algebraic equa-
tions in question is homogeneous.

As an illustration the analysis of a five-span beam of uniform section,
shown in Fig. 2, will now be given.

The set of four equations, written down according to Eq. (2) is shown, in
general form, in Table I.

Table I
71 Y2 73 Y4
a b =0
a b =0
a b =
a b—

The coefficients @ and b are functions of the natural frequency f:%, and

are defined as follows:
_2EJ EJ

4 [.L(.U2
where /\=l1/EJ.

The functions F, (A) and F) (A) are tabulated in !) and 2).
The equations as given in Table I are cyclically symmetrical, and may be
solved by expanding the unknowns y into finite trigonometrical series, viz.

Bt o
yr = 2 fsin—j K, (3)
i=1 n
where n denotes the number of spans.
1) V. KoLoUSEK : «(Baudynamik der Durchlauftriger und Rahmen», Leipzig 1953.

2) V. KoLousexk : «Calcul des efforts dynamiques dans les ossatures rigides», Dunod,
Paris 1960.
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If the values of y, according to Eq. (3) are introduced into Table I, the set

of simultaneous equations reduces to four independent equations, which appear
in the general form,

a+2bcos%j:0 j=1,n-1 (4)

and introducing for @ and b the values from Eq. (2a) we obtain

1?’2(/\)+F1()\)cos%j= 0. (4D)

PIX) = Ps(XI* D, ix)
{
=X 0 7 2 3 4 |5

o 1 [ S~~~ | | — N |
P (X1~ € (X1 Sin ,;Tj (hk+#)
a

\/ VIX] = Ve (X)+ Vg iX)

Vs () -.S‘mco:}"j//f*;’)

)
)

Six)

1
(
<
(

Arx)
Vo 141 = A‘m.svb;,—’j tK*$)

b

Fig. 3. Load and Deflections of a Five-Span Continuous Beam, for j =4.
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DYNAMICS OF CONTINUOUS STRUCTURES WITH REPEATED ELEMENTS

The values of A for which Eq. (4b) holds true determine, according to Eq. (2b),
the first four natural frequencies of the system. The numerical values cal-
culated for the system as shown in Fig. 2 are

. w -
7-: 42—:]:=f(1)= ].:/4:d,
j=4 for = 2,184, _l]/EJ
] =2 fy = 2,75, AT
j= fo = 3,30a.

The fifth natural frequency of our system is identical with the first natural
frequency of the single-span beams, of which the system is composed, if the
individual beams were rigidly fixed at both ends, so that we have

f(5) = 3,56 .

The shapes of the first five natural modes of vibration are shown in Fig. 2. If
the end-supports 0 and 5 of the system are hinged, the analysis remains, in
principle, the same, but consideration must be given to the different end-
conditions.

2. Continuous Beam of Non-Uniform Section

The dynamical analysis becomes complicated, if the section of the beam
varies within the individual spans. Eq. (2) still holds true, but the coefficients
a and b, although they are again functions of the natural frequency f, are no
longer defined by Eq. (2a), the value of J, in this case, not being a constant,
so that the functions cannot be tabulated. Direct solution would be thus
very tedious, as the amount of numerical work might increase considerably.
A convenient method of solution, in this case, is a combination of the direct
method, described in the preceding paragraph, with the method of stepwise
approximation. This method of analysis will now be illustrated for the case
of a five-span beam, as shown in Fig. 5.

r\;rk 2 3 4 .;
| o | wo | wo | w0 | mo*]

Fig. 5. Continuous Beam of Non-Uniform Section.

2.1. The Deformations of a Single-Span Beam

a) We consider first a single-span beam, rigidly fixed at both ends (Fig. 6),
loaded by distributed statical weight ¢ (x). The load may be resolved into a
symmetrical component s(z) and antimetrical component a (x), as shown in
Fig. 3a (left). Thus we have
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q(x) = s(x)+a(2),

s(x) = $[g(x)+q(—2)] =s(i—2),

a() = 3[g@)—ql-2)] =—a(l—2).
The load component s(z) causes symmetrical deflections V,(x) of the beam,
while the moments produced at the fixed supports are + M . The antimetrical

component @ (x) produces antimetrical deflections V,(x), and the fixed-end
moments in this case are M,. The total deflection at the point x is thus

Vi(x) =V, () +V,(2).

10 < Q75 750m 750m

R O Cpee

Fig. 6. Dimensions of Any Single Span for the Beam Shown in Fig. 5.

1080 m

b) We now assume the beam to be simply supported, and consider the
case where both ends are rotated simultaneously through a unit angle, in opposite
directions. These end-rotations produce a symmetrical curve of deflections
8y7,» which is at the same time the influence line for the moment M produced
by symmetrical loading (Fig. 7a). The ordinate of the line 3, at the point x
gives the value of the moment M which is produced (with both ends fixed)
at the left-hand support of the beam if two single loads P=1 are applied to
the points z and [ —z.

¢) The end sections of the simple beam are now rotated simultaneously
through a unit angle in the same direction. These rotations produce an anti-
metrical curve of deflection &,, (Fig. 7b), the curve being again the influence
line for the fixed-end moment M, at the left-hand support, produced in this
case by two single unit loads, applied antimetrically at the abscissae x and

l—x.
2.2. The Deformations of the Continuous Beam

We shall now consider a continuous beam of n equal spans, as shown in
Fig. 5, where n=5. We assume the beam to be loaded by distributed statical
weight p (z), the variation of which at the span K, K +1 may be expressed
as follows:

symmetrical component p,(x) = s(x)cos % 7 (K+3%) (5)

antimetrical component p,(z) = a(x) sin%j (K+1). (6)
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The letter 7 here denotes an arbitrary whole number between 0 and n —1.
For the five-span beam we have n =35, and the case for j=4 is shown in
Fig. 3.
If all rotations at the supports were prevented, the deflection produced by
the load components as given by Egs. (5) and (6) would be

-1
~

V. () cos - (K +3)+V, (@) sin - (K +1), (
while the loading moment at the support K would have the value

Me =M, [cos%j([f+%)—cos Zj(K—%)]
(8)
+M, [sin%j (K+%)+sin%j(K—7})] = Em[_,-]sin%jK,

m .

where M) = —2 [Mssinﬂy -M, cos%j] . (9)

If the temporarily “locked’’ supports are released, the loading moments
M x produce the rotations

YK = stin%jlf, (10)
where {jy = %2—”-],
(71 (1 1)

T . w .
Ay = a+2bcos_j =2 My peny+2 My 5,108

and the moments M are shown in Fig. 4.
The rotations yx may be again resolved into symmetrical and antimetrical

components, according to the following formulze :

symmetrical components
LT o
b —vicn) = bl [sinT K —sin 7§ (K+1)] =
™ T
Crsin T ieos i (K 41
L BlN5 - J 608 -] (K+3)
antimetrical components
Mmoo, . T
3 (ve+vra) = Gpeosggsin_j (K +4). (13)

The deflections produced at the span K, K + 1 by the symmetrical components
of the end-rotations are

% (vx— YK+1) 3.11, )
while the antimetrical components of the end-rotations produce at the span

K, K +1 the deflections
S (ve +vrs1) O -



Table 11

Symmetric vibrations | j=4
[1] 2] 31 | 4 | &1 | (6 | (7 [8] (o1 | oy | pmo | o2 |3
Influence co-ordinate 1st Approximation
Point| Mass for the Deflection 8 ;- 105 in mt-1 for the [21x[9] | [8]x[10] , . 2w
. m; . — = Ding Sk 8- [~ sin—— -
t in tm-1 s2 Point K Moment S - 100 #
at Support b maSe | i Sidar, g 105 8,
1 9 3 4 5 Sy, In M in tm-1 s? ints? I 8§ in s2
1 0,373 0,058 0,112 0,262 0,335 0,378 0,745 1 0,373 0,278 1,0 90,6
2 0,301 0,112 1,530 3,280 4,525 5,222 2,168 1,8 0,542 1,175 12,6 263,8
3 0,247 0,262 3,280 9,395 14,290 17,035 3,427 3,2 0,791 2,711 39,5 416,9
+ 0,212 0,335 4,525 14,290 26,275 33,370 4,417 4,4 0,933 4,121 69,6 537.,4
5 0,194 0,378 5,222 | 17,035 | 33,370 | 47,540 4,972 4,8 0,933 4,629 92,0 604,9
3 =12,914 = M,
a=0,454-105 tm, 6=0,162- 105 tm 9
2 9. 4n — Meay= 2 Mysin =" =2-12,914- 0,951 = 24,56 t 52
sin—=0,951, cos—=10,309, cos— = — 0,809 N
5 5 5 M4 24,56
4= = — — = - ]27,9 10-5 m-1 g2
4 arq) 0,192 103
am=a-+2bcos " =[0,454+2-0,162 (—0,809)] 105 = .
105 in—-"_-127.9.0.951 = 12 -1 g2
—0,192- 105 tm 105 £1481n 5 127,9-0,951=121,7m's
2
] . . — 105 —= ,9-0,309=39,5 m-1 g2
Antisymmetric vibrations | 10% £ cos 5 127,9-0,309 = 39,6 m™1 s
[1] 2] 31 | 141 | 1517 | (61 | (7] (8] 91 | (o1 | [y |2 | [
Influence co-ordinate 1st Approximation
Point| Mass for the Deflection 87 ;- 10> in mt-1 for the _[21x[9] | [8)x[10] | st | emoos 27
N Tt Point K Moment. ¥, el
‘ o at Support t mi A | omiAidu, i 105 8y,
1 2 3 4 5 S in M in tm-1!s? n t s® : in s2
1 0,373 0 0,061 0,062 0,054 0,023 0,735 0 0 0 0 —29,1
2 0,301 0,061 1,324 1,994 1,791 0,726 1,795 0 0 0 0 —-171,0
3 0,247 0,062 1,994 4,828 4,922 2,080 2,240 0 0 0 0 — 88,56
-+ 0,212 0,054 1,791 4,922 7,091 3,320 1,865 0 0 0 0 —173,7
5 0,194 0,023 0,726 2,080 3,320 2,484 0,725 0 0 0 0 — 28,7

e8]
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(| (4 | (s | (e | 1M | 18] [19] [20]
2nd Approximation 3rd App.
[ [1214-[13] | [2]x[14] | [8]x[15] 9 [14]:[19]
Point Som S8, - —5[413111_"- g —_—
¢ mi S ary- 8 ' 5 S+ 108
S 105 mq Si- 103 b 4 10 L1088 i 5
in s2 i -1 g4 - 103 n s4 ol ms @1
n s mtm-!s i t.a in g4
1 91,6 0,342 0,255 1,4 131,6 133,0 689
2 276,4 0,832 1,803 17,9 382,9 400,8 690
3 456,4 1,128 3,865 54,9 605,2 660,1 690
4 607,0 1,287 5,684 99,0 780,1 879,1 690
5 696,9 1,352 6,722 131,2 878,1 1009,3 690
2=18,329 = M,- 108
2
— Myay=2 (Ms sin%— M cos ?’T) =2(18,329-0,951 + 1,287 0,309)- 10-3 =
=35,66-10-3ts*
_ My 35,66-10-3 " o ek
5[4]— P = Gm:ﬁ— 18:),7 10-8m-1s
2
— 108 ¢aysin ,5,’1= 185,7- 0,951 = 176,6 m~1 ¢
— 108 gajeos " = 185,7- 0,300 = 57,4 m 1 s
S L L R R A B L4 I e € [19] [20]
2nd Approximation 3rd App.
I [12]4[13] | [2)x[14] | [8]x[15] 2 [14]:[19]
Point ¥ e A 88| Euarcos— - R
? mi A dnr 8 5 A+ 108
4i,105 ?nlArlO" :.11034 a ‘ 104 - 108 331, in st o
in s? intm-tst| . g . & in gt b
1 —29,1 —0,109 —0,079 0,0 — 42,2 — 42,2 689
2 —171,0 —0,214 — 0,384 - 1,0 —103,0 —104,0 682
3 — 88,5 —-0,219 — 0,492 —2,4 —128,5 —130,9 675
4 — 73,7 — 0,156 — 0,292 —-2,8 —107,0 —109,8 670
5 — 28,7 —0,056 — 0,040 -1,3 — 41,6 — 42,9 668

> =-1,287

]

1 ? 5 4
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Fig. 7a. Influence Lines for Symmetrical
Load. Scale: Line & 1 Grad. = 10-1 m/t,
Line 837, 1 Grad. =5 m.

Fig. 7b. Influence Lines for Non-Symmetrical
Load. Scale: Line 8¢ 1 Grad. = 0,5-10-1 m/t,
Line 8y, 1 Grad. = 2,56 m.
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The total deflections (see Fig. 3b) produced by the load p (z) at any particular
span are then given as the sum of the symmetrical and antimetrical compo-
nents, and the variations of the symmetrical components », () and antimetri-
cal components v, (x) are represented as follows

v, (@) = 8 (x) cos 5 (K +1), (14)
va(x)zA(x)sin%j(K-t—%), (15)

where S (@) = V, (x) — 8y, Ly sin;’—n i, (16)
A (@) = V(@) + 8y, Ly cos 5. (17)

The values of S (x) are thus obtained by superposition of

1. the deflection V, (x), which is produced by the load-component s (x) acting
on a rigidly fixed single-span beam, and
the deflection of the single-span simple beam, the supports of which are

v

rotated symmetrically through the angle F { sini% 7

(The signs minus and plus are to be taken for the left-hand and the right-
hand supports respectively.)
The values of 4 (z) are obtained by superposition :

1. The deflection V,(x), which is produced by the load component a (x),
acting on a fixed single-span beam, with
2. the deflection of the single-span simple beam, the supports of which are

rotated antimetrically through the angle {; cos 2%7' .

If we compare Eqgs. (14) and (15) with Eqgs. (5) and (6) we see that the
deflections and the load components have a similar mathematical represen-
tation.

2.3. The Vianello Method of Stepwise Approximation

The results of the analysis as given in the preceding paragraph may be
used for calulating the frequencies and modes of vibration of continuous beams,
by stepwise approximation. A suitable procedure will be briefly discussed in
this paragraph.

As a first approximation we assume an arbitrary curve of deflection ;v (x)
which, however, must admit of being expanded into components according
to Eq. (5) and (6), and we calculate the corresponding symmetrical and anti-
metrical components of the load intensity p (x),v (x). (By p(x) we denote the
mass per unit length, as a function of the abscissa « of the beam.) These load
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components produce the deflections ,v(x), as a second approximation to the
true shape of the natural mode. The deflections ,v(x) are resolved into sym-
metrical and antimetrical components according to KEqgs. (14) and (15). It is
evident that only a single span of the structure has to be considered, as the deflec-
tion curve at any span may be readily determined by means of the quantities
S (z) and A4 («), which are defined by Eqgs. (16) and (17).

The third approximation to the true shape of natural mode may be then
obtained by repeating the process, i.e. calculating the curve of deflection v (x)
produced by the load w(z),v(z) ete. The process is repeated until concor-
dance of the deflections (_pv(x) and ,v(x) has been reached with the
desired accuracy. In practical calculations we usually do not consider the
continuously distributed mass, but divide the beam up into a finite number
of strips, and then assume the mass to be concentrated at the centroids of the
strips.

A numerical example will illustrate the practical procedure.

2.4. Numerical example

A five-span continuous beam, as shown in Figs. 5 and 6, will now be
analysed, applying the method outlined in the preceding paragraph. The centre-
line of the beam has been assumed to be straight, the modulus of elasticity
has been taken to be E=2,4-10%t/m2 For purposes of calculation the beam
has been divided up into ten strips; the masses concentrated at the centres
of the respective strips are tabulated in column 2 of Table II.

For symmetrical loading by two single unit loads the influence lines & for
the deflections of the single span fixed-end beam are shown in Fig. 7a, where
the influence line §,, for the fixed-end moment is also given. The lines 3¢ and
8,7, corresponding to antimetrical loading are given in Fig. 7b. The influence
line ordinates at the centres of the individual strips are given in Table II.
The coefficient a, which is also given in Table II, equals twice the value of the
moment M, , acting at the support 2 of the beam 1—2 when the end rotations
are y; =0, y,=1. The coefficient b is the corresponding value of the moment
M,,.

The numerical calculation by stepwise approximation has been carried out
for j=4, =1, and j=0. In Table II the calculation for j=4 is shown by way
of illustration. For j=4 the natural frequency attains its lowest value. From
the ratio of the last two approximations we obtain the square of the natural
angular frequency.

696,9-103

o —2
1009.3 690 sec

waq) =

so that the first natural frequency is

f = 4,18sec™L.
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The shape of the corresponding natural mode, at the span K, K +1, is given
by the last approximations of S;, and 4,, according to the formula.

v(xi)=vi=Sicosgj(]{+%)+Aisin%j(K—l—%), (18)

where j=4

The fourth natural frequency f,=10,73sec™! was calculated in a similar
manner, but with j=1. The fifth natural frequency f =12,43sec™! is identical
with the first natural frequency of a single span fixed-end beam. The shapes
of the first, fourth and fifth natural modes of vibration are shown in Fig. 8.

r\/

Fig. 8. Natural Modes of Vibration for the Beam of Fig. 5.

a) First Natural Mode (j=4),
b) Fourth Natural Mode (j=1),
c) Fifth Natural Mode (7=0).

The above described method of analysis may also be applied to the solu-
tion of continuous arch structures. In this case, however, the number of
unknowns is larger, because the intermediate supports undergo not only
rotations, but also vertical and horizontal translatory displacements. The
vertical displacements of the supports may usually be neglected, and this
simplifies the calculations, but in exceptional cases these displacements may
also be taken into account. With continuous arch structures the basic equa-
tions are again cyclically symmetrical, and admit of a solution which, in
principle, is the same as in the case of continuous beams. Continuous beams
having elastic intermediate supports may also be solved in a similar manner.

The method, as described in this paper, can be applied not only to the
dynamical but also to the statical analysis of the systems in question, and the
numerical work involved may thus be considerably reduced.
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Summary

In this paper some methods for investigating the vibrations of continuous
structures with repeated elements are discussed. The structures in question
are continuous beams with equal spans, and of either uniform or non-uniform
section, continuous arch structures, continuous rigid frames, ete.

Finite trigonometrical series and a combination of the slope-deflection
method with stepwise approximation enable the mathematical investigation
to take advantage of all the specific simplifications which the repetition of
equal elements presents. The analysis is first given for a continuous beam of
uniform section, where a further simplification is possible if tabulated func-
tions are used. In addition the frequencies and modes of vibration are inves-
tigated for a five-span beam of non-uniform section. The procedure is illustrated
by a numerical example and it is shown that the numerical work involved is
only slightly greater than that which a solution of a single-span beam requires.

The method may also be applied to continuous structures with elastic
supports, and not only the dynamical but also the statical analysis can be
thus considerably simplified.

Résumé

L’auteur présente des méthodes permettant d’étudier les vibrations des
ouvrages continus formés d’éléments successifs identiques. Il s’agit de poutres
continues de portées égales avec une section constante ou variable, de voiites
multiples, de cadres continus, etc.

Ce probléme apparemment fastidieux peut étre considérablement simplifié
si 'on tire parti, dans la résolution mathématique méme, de tous les avantages
que présente la répétition d’éléments identiques: les équations des déformations
étant cycliquement symétriques, l'introduction de séries trigonométriques
finies permet de simplifier considérablement le probléme. L’auteur traite tout
d’abord les poutres continues de section constante, dont la résolution est
grandement simplifiée par 1'utilisation de fonctions disposées en tables. L’étude
des poutres continues de section variable peut se faire en combinant la méthode
des déformations avec celle des approximations successives. L’auteur donne
une application numérique de son procédé en traitant une poutre continue
comportant cinq travées identiques de section variable.

Cette méthode peut également étre utilisée pour les systémes continus sur
appuis élastiques. De plus, elle s’applique au calcul statique des poutres et des
arcs continus; elle y apporte une importante simplification des opérations
numeériques.
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Zusammenfassung

In dieser Abhandlung sind Methoden der Berechnung der schwingenden
Systeme, deren Elemente sich wiederholen, behandelt. Es handelt sich um
Durchlauftriager mit gleichen Feldern mit konstantem oder verdnderlichem
Querschnitt, durchlaufende Bogenreihen, durchlaufende Rahmen usw.

Die scheinbar miihsame Aufgabe wird wesentlich vereinfacht, wenn man
auch in der mathematischen Losung alle Vorteile ausniitzt, welche die Wieder-
holung von gleichen Elementen bietet. Die Forméinderungsgleichungen sind
zyklisch symmetrisch und die Einfiihrung der endlichen trigonometrischen
Reihen bringt deshalb eine dullerste Vereinfachung der Losung. Es werden
zuerst Durchlauftriger mit konstantem Querschnitt untersucht, bei denen
die Beniitzung von tabellierten Funktionen eine weitere Vereinfachung ermog-
licht. Bei den Durchlauftrigern mit variabler Steifigkeit kann die Aufgabe so
gelost werden, dafl man die Deformationsmethode mit der Methode der schritt-
weisen Niherung kombiniert. Das Verfahren wird an einem numerischen Bei-
spiel erldutert, in welchem ein Durchlauftriager mit fiinf gleichen Elementen
mit variablem Querschnitt bearbeitet wird.

Die Methode kann auch zur Berechnung der durchlaufenden Systeme auf
elastischen Stiitzen beniitzt werden. Das Verfahren kann auch bei statischer
Losung der durchlaufenden Triger und Bogen angewendet werden, denn auch
hier wird eine wesentliche Vereinfachung der numerischen Berechnungen
erzielt.
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Berechnung von Kreiszylinder-Dachschalenkonstruktionen mit Hilfe
von elektronischen Rechenautomaten

Calculation of the Stresses and Deformations in a Thin Cylindrical Shell Roof
by Means of a Digital Computer

Calcul des contraintes et des déformations dans une voiite cylindrigue mince, a
Uaide d’une calculatrice digitale électronique

A. MEHMEL
o. Professor Dr.-Ing., Techn. Hochschule Darmstadt

Beitrige zur Klirung der mechanischen Zusammenhinge des Tragverhal-
tens von Konstruktionen, die aus Kreiszylinderschalen mit Kampferrand-
trigern bestehen und Lasten in Richtung der Erzeugenden der Zylinderflichen
abtragen, gehoren seit Jahren zu den Forschungszielen an meinem Lehrstuhl
und Institut fiir Massivbau der Technischen Hochschule Darmstadt.

Als im Jahre 1957 an der TH Darmstadt ein elektronischer Rechenautomat
vom Typ IBM 650 aufgestellt wurde, begannen Programmierungsarbeiten mit
dem Ziel, den Forménderungs- und Beanspruchungszustand solcher Konstruk-
tionen auf der Grundlage der mathematisch strengen Losung der Fliggeschen
Differentialgleichungen zu berechnen. Mit Hilfe der programmierten Rechnung
soll die Moglichkeit geschaffen werden, die Giiltigkeitsbereiche der bekannten
Niaherungsverfahren, insbesondere der Balkenmethode (Lundgren) abzugrenzen.

In den Jahren 1957 und 1958 wurde eine Serie von Rechenprogrammen
hergestellt, mit deren Hilfe die Forménderungen und Beanspruchungen von
isotropen Schalenkonstruktionen ohne Randglieder infolge Flichenlast und
infolge von Randangriffen auf der IBM 650 berechnet werden kénnen.

Die Kapazitit dieses Rechenautomaten reicht nicht aus, um die vorstehend
geschilderten Rechnungen in einem Durchlauf ausfithren zu kénnen. Durch
die Aufspaltung in Teilprogramme und die dadurch im Verlauf der Rechnung
erforderlich werdenden Zwischenaus- und Wiedereingaben von Rechenwerten
nimmt die bendtigte Rechenzeit stark zu.

Als sich im Friihjahr 1959 die Moglichkeit bot, mit dem am Institut
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Européen de Calcul scientifique in Paris aufgestellten, wesentlich groBeren
und schnelleren Rechenautomaten IBM 704 Berechnungen durchzufiihren,
wurde die Programmierung deshalb auf diese Maschine umgestellt.

Im Sommer 1959 wurde in Paris ein Rechenprogramm ausgepriift, mit dem
die Forménderungen und Schnittkrifte orthogonal anisotroper Kreiszylinder-
schalen ohne Randglieder infolge einzelner harmonisch verlaufender Kampfer-
randangriffe berechnet werden koénnen. Im Anschlufl an die Prifung wurde
eine Anzahl von Programmlédufen durchgefiihrt, deren Ergebnisse auswertungs-
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bereit vorliegen. Der in Paris vorhandene Rechenautomat IBM 704 ist mit
einer Bildschirm-Registriereinheit ausgestattet, die es ermoglicht, die berech-
neten Losungsfunktionen in graphisch aufgetragener Form auszugeben. Fig. 1
zeigt eine Zusammenstellung der Durchbiegungsfunktion w normal zur
Schalenmittelfliche bei verschiedenen Schalentypen infolge eines am Rand
angreifenden, sinusformig verteilten Quermoments. Insgesamt sind 32 der-
artige Zusammenstellungen vorhanden, von denen jede 125 Schnittgrofen-
funktionen enthilt.

Das eben erwiahnte Rechenprogramm wurde in der von der IBM ent-
wickelten FORTRAN-Schreibweise geschrieben und vom Rechenautomaten
selbst in seinen Befehlscode tibersetzt. Es besteht aus zwei Programmteilen,
von denen der erste im wesentlichen die Losung des Eigenwertproblems und
die Berechnung der Integrationskonstanten, der zweite die Berechnung der
Schnittgrofenfunktionen enthélt. Diese Einteilung entspricht weitgehend der
von Booth und Morice verwendeten Einteilung in einen skalaren Rechnungsteil
und einen Rechnungsteil, in dem Matrizen verarbeitet werden. Jedoch ermag-
licht es das FORTRAN-Ubersetzungsprogramm, im gleichen Programmteil
abwechselnd skalare und Matrizenoperationen durchzufiihren, so dal} eine
strenge Unterteilung in diese beiden Rechnungsabschnitte nicht erforderlich
ist, was sich fiir die Durchfithrung der Rechnung giinstig auswirkt.

Die zu Beginn der Arbeiten mit der IBM 704 aufgestellte Programmplanung
sah vor, dal in einem zweiten Programmkomplex die Schnittgréen von
Schalentragwerken mit beliebigen Kiampferrandbedingungen infolge von
Flachen- und Randlasten berechnet werden sollten, wobei die Ergebnisse des
ersten Programmteils als homogene Losungsanteile fertig eingegeben werden
sollten. Inzwischen ist jedoch das FORTRAN-Ubersetzungsprogramm mit
zusitzlichen Unterprogrammen ausgestattet worden, die eine beliebige Anein-
anderreihung einzelner Programmteile gestatten, ohne dafl der Benutzer hier-
bei manuell eingreifen miifite. Mit Hilfe dieser Erginzung ist es moglich, ein
Rechenprogramm zusammenzustellen, mit dem auf Grund der Eingabe der
Schalen- und Belastungskennwerte ohne jede Zwischenaus- und Wiederein-
gabe die endgiiltigen Schalenschnittgréen und Randgliedbeanspruchungen
fir Lastfille eines Tragwerkes berechnet werden konnen, das aus einer ortho-
gonal anisotropen oder einer isotropen Schale mit beriicksichtigter Quer-
dehnung und 2 Randgliedern beliebiger Steifigkeitsverhéltnisse besteht. Der
jeweils bearbeitete Lastfall kann sich aus einer Reihe von Teillastfillen zusam-
mensetzen, niamlich fiir die Schale aus Flachen-, Streifen- und Punktlasten
und fiir die Rdnder aus strecken- und punktformig angreifenden Querlasten,
Tangentialkriften (z. B. aus Vorspannung) und Quermomenten. Die Schalen-
schnittgrofen konnen an maximal 21 gleichabstédndigen Umfangspunkten und
9 gleichabstindigen Stellen der Erzeugenden, d.h. an maximal 189 Stellen
der Schalenfliche, iiber beliebig viele Reihenglieder der Lastentwicklung
superponiert, ausgegeben werden.
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Ein solches Programm wird zur Zeit aufgestellt und soll in diesem Sommer
in Paris ausgeprift werden!). Anschlielend kann mit den eingangs erwihnten
Untersuchungen zur Abgrenzung der Lundgrenschen Balkenmethode begon-
nen werden. In einem ersten Schritt sollen diese Untersuchungen fir Tonnen-
schalen durchgefiihrt werden, die in Geometrie und Belastung symmetrisch
sind.

Die Giiltigkeitsgrenze der Balkenndherung héngt von einer Anzahl von
Parametern ab. Als wichtigste davon wéren zu nennen:

1. Die Abmessungsverhéltnisse der Schale selbst.
2. Das Verhiltnis der Biegesteifigkeit der Schale zu der der Randglieder.
3. Das Verhiltnis der Flichenlast der Schale zur Randgliedbelastung.

Durch geeignete Wahl der Abmessungs- und Belastungsverhéltnisse bei
den fiir die Abgrenzung verwendeten Vergleichsbeispielen soll versucht wer-
den, die Einfliissse der wesentlichen Parameter getrennt zu untersuchen.

Der EinfluB der Schalenabmessungs- und Steifigkeitsverhaltnisse auf die
Querverformung der Schalen infolge von Randangriffen kann mit Hilfe der
vorhin erwihnten Zusammenstellungen der Losungsfunktionen der homogenen
Schalengleichungen verfolgt werden. Fig. 2 zeigt die Gegeniiberstellung der
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Verformungen w normal zur Schalenmittelfliche infolge eines an einem Rand
angreifenden Quermoments bei zwei Gruppen von Schalen. Beide Gruppen
sind isotrope Schalen, ihre Schnittgroflen sind ohne Beriicksichtigung der
Querdehnung berechnet. Sie haben gleichen Radius und gleiche Stiitzweite,
jedoch ist bei der linken Gruppe die Schalenstirke doppelt so grofl wie bei der
rechten. Innerhalb der Gruppen unterscheiden sich die Schalen durch 5 ver-
schiedene Offnungswinkel, wie man aus der Linge der iiber die Abwicklung
aufgetragenen Kurven erkennt.

Bei entsprechenden Schalen beider Gruppen ist, wie man sieht, der Verlauf
der Forménderungen nahezu affin.

An den seitlich angetragenen Mal3stiiben sieht man, dal} die Ordinaten der

1) Diese Arbeiten sind inzwischen durchgefiihrt worden.
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Kurven bei den Schalen mit der geringeren Schalenstirke etwa viermal so
grof3 sind wie die der dickeren Schalen. Man erkennt also, dafl die Forménde-
rungen ihrer Groe nach etwa der Biegesteifigkeit der Schalenfliche propor-
tional, ihrem Verlauf nach jedoch von dieser fast unabhingig sind.

Auf Fig. 3 wird eine Abhédngigkeit des Formédnderungsverlaufs besonders
deutlich, die auch auf dem eben gezeigten bereits erkennbar war, namlich die
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vom Seitenverhiltnis der Schalenfliche. Hier sind die Forminderungen w
zweier Gruppen von Schalen gleicher Dicke und Stiitzweite einander gegen-
iibergestellt, die sich bei gleichen Offnungswinkeln durch ihren Radius unter-
scheiden. Die linke Gruppe ist die gleiche wie bei Fig. 2; sie umfallt Schalen
mit dem Seitenverhaltnis Bogenlidnge : Stiitzweite = 0,15—0,35, wihrend bei
der rechten Gruppe dieses Verhiltnis zwischen 1,35 und 3,15 variiert. Man
sieht deutlich, daf3 bis zu einer gewissen Breite die ganze Schale an der Form-
anderung teilnimmt. Innerhalb gewisser Grenzen éndert sich dabei die Quer-
schnittsform nicht (geradliniger Forminderungsverlauf!); hier liegen also
Tragwerke vor, die sich wie Stibe verhalten, fiir die daher die Balkenniherung
geradezu streng gilt.

Von einer gewissen Schalenbreite an entzieht sich der dem Angriff abge-
legene Rand der Forminderung; die Breite der «verbogenen» Zone bleibt
dann praktisch konstant. Die Grofle der Formédnderungen nimmt mit der
Breite der Schale ab und bleibt ebenfalls von einer gewissen Breite an konstant.

Als dritten Parameter wollen wir noch die Schalenkriimmung hinsichtlich
ihres Einflusses auf die Forménderung w infolge eines Randmoments betrach-
ten.

Auf Fig. 4 mochte ich vor allem zwei der insgesamt 10 Kurven des Verlaufes
der Forméanderung w miteinander vergleichen. Die untere Kurve des linken
und die obere des rechten Bildes gehoren zu Schalen gleicher Dicke und glei-
chen Seitenverhaltnisses. Die Kriimmungen dieser beiden Schalen unterschei-
den sich jedoch in der Weise, dafl der Radius der linken Schalen 0,6-, der der
rechten 1,4mal so grof} ist wie die Stiitzweite, d. h. die linke Schale ist wesent-
lich starker gekriimmt als die rechte.

An den angetragenen Malstiben erkennt man, dal} die Forméanderung bei
der stirker gekriimmten Schale rascher abklingt, aber eine gréflere Rand-
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ordinate hat als bei der schwicher gekriimmten. Dies lift sich wie folgt
erkldren:

Je stiarker die Schale gekriimmt ist, in desto hoherem Malle werden Rand-
quermomente durch Schubkriifte n, , abgetragen. Je geringer die Kriimmung
ist, um so mehr miissen hierfiir Drillmomente m, , herangezogen werden. Im
Grenzfall der Platte mit unendlich grofem Kriimmungsradius erfolgt die
gesamte Abtragung durch Drillmomente und die »n,, verschwinden bekannt-
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lich vollig. Da die Schubsteifigkeit der Schalenfliche wesentlich grofler ist als
ihre Drillsteifigkeit, werden bei starker Krimmung die Forménderungen auf
einen engeren Bereich beschrinkt, innerhalb dessen sie jedoch, wie eine
Energiebetrachtung plausibel zeigt, grofler sein miissen.

Die gezeigten Beispiele sollten die Vorteile beleuchten, die die Verwen-
dung elektronischer Rechenautomaten mit ihren weitreichenden Maglichkei-
ten der Produktion und iibersichtlichen Darstellung groBer Zahlenmengen fiir
die Analyse des Tragverhaltens von Baukonstruktionen bieten. Solche Ana-
lysen sind meines Erachtens fiir die Erweiterung unseres Wissensstandes
aullerordentlich wertvoll.

Fir die Forderung meiner Arbeiten bin ich der Deutschen Forschungs-
gemeinschaft, dem Deutschen Ausschuf} fiir Stahlbeton und der Firma IBM
zu grollem Dank verpflichtet.

Die umfangreichen Programmierungsarbeiten, die meinen obigen Uber-
legungen zu Grunde liegen, sind von einer Arbeitsgruppe meines Instituts
ausgefiihrt worden, bei deren Leitung sich Herr Dipl.-Ing. Schwarz besondere
Verdienste erworben hat.

Zusammenfassung
Am Institut fiir Massivbau der Technischen Hochschule Darmstadt (Prof.

Dr.-Ing. A. Mehmel) wird an der Programmierung der Berechnung von Kreis-
zylinder-Dachschalen fiir elektronische Rechenautomaten gearbeitet. Es exi-
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stieren bereits Rechenprogramme fiir 2 verschiedene Rechenautomaten, mit
deren Hilfe Teilprobleme dieses Komplexes (insbesondere die homogene
Losung) bearbeitet werden konnen.

Ein umfassendes Programm zur Berechnung orthogonal anisotroper Scha-
len unter verschiedenen Arten von Belastungen mit beliebigen Kdmpferrand-
bedingungen wird zur Zeit fertiggestellt.

Ziel der Arbeiten, bei denen der Programmierung die mathematisch
strenge Losung der Fliggeschen Differentialgleichungen zu Grunde liegt, ist
die Abgrenzung der Giiltigkeitsbereiche der gebrduchlichen Niherungsver-
fahren, insbesondere der Balkenmethode (Lundgren).

Die Querverformung der Schale beeinflufit in hohem Mafle ihr Tragverhalten.

An einigen Ergebnissen wird gezeigt, wie die einzelnen geometrischen
Parameter die Querverformung bei Randangriffen beeinflussen.

Summary

In Darmstadt, at the Institute for Concrete, Reinforced Concrete and
Prestressed Concrete Structures of the Polytechnic (Prof. Dr. Ing. Mehmel)
programming for the calculation of cylindrical shell roofs by means of elec-
tronic computers is being undertaken. Programmes for two types of computer
have already been prepared and enable certain partial problems to be solved
(in particular the homogeneous solution).

An extensive programme is nearing completion, which will enable ortho-
tropic shells to be calculated for various cases of loading and for any marginal
conditions at the springings.

The purpose of these studies, for which the programmes are established
in accordance with the exact solution of Fliigge’s differential equations, is to
determine the limits of validity of the usual approximate methods of calcu-
lation, in particular the procedure due to Lundgren.

The transverse deformations of a shell have a marked effect on its behaviour.

A few results are employed to show how the various geometric parameters
affect the transverse deformations of a shell subjected to marginal disturbances.

Résumé

A Darmstadt, & 1’Institut pour les constructions en béton, béton armé et
béton précontraint de 1’Ecole Polytechnique (Prof. Dr. Ing. A. Mehmel), on
s’occupe de la programmation pour le calcul électronique des couvertures en
voile cylindrique. Il existe déja des programmes pour deux types de cal-
culatrices, programmes permettant de résoudre certains problémes partiels
(en particulier la solution homogene).
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On est en train d’achever un vaste programme qui permettra de calculer
des voiles orthotropes, pour différents cas de charge et des conditions margi-
nales quelconques aux retombées.

Ces études, pour lesquelles les programmes sont établis d’apres la solution
exacte des équations différentielles de Fliigge, ont pour but de fixer les limites
de validité des procédés de calcul approchés usuels, en particulier de la
méthode de Lundgren.

Les déformations transversales d’un voile influencent fortement son com-
portement.

A laide de quelques résultats, on montre comment les différents para-
metres géométriques influencent les déformations transversales d’un voile
soumis a des perturbations marginales.
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Application des machines a calculer électroniques a la solution du
PP q
probléme aux tensions de I’élasticité plane

Verwendung von elektronischen Rechengerdten zur Lisung des ebenen Spannungs-
problems der Elastizitéitstheorie

Application of Electronic Computers to the Solution of the Stress-Problem of
Plane Elasticity

CH. MASSONNET M. SAVE
Professeur & I’Université de Liege Chargé de cours a la Faculté Polytech-
nique de Mons
G. MAZY G. TIBAUX
Assistant a I'Université de Liége Etudiant & I'Université de Liége

1. Rappel de la théorie

L’un des auteurs a présenté au Congres de Liege de I’A.I.P.C. [1] le résumé
d’une méthode théorique [2] permettant d’obtenir 1’état de tension dans une
piece élastique plane de forme quelconque sollicitée sur ses bords par des
forces en équilibre distribuées de fagon arbitraire.

Cette méthode consiste a répartir (fig. 1) le long du contour de la piéce des
singularités vectorielles pds, dont chacune produit une distribution radiale
simple de tensions.

La distribution de ces singularités obéit a I’équation intégrale vectorielle

de seconde espece

Fig. 1.
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. = 9 — o —
t = p—;fﬁp(@)m 1,ds(Q) (1)

¥

olt ¢ est I'intensité des forces superficielles données au point ¢ du contour; » est
la distance entre le point courant ¢ du contour et le point R ou l'on calcule la
tension.

1, est le vecteur unitaire dirigé suivant Q R,
@ est 1’angle fait par p avec @ R,
« est I’angle fait par R avec la normale extérieure au contour en R.

En posant
__fj)(; cos¢cosa1rd89=§(2j) 2)

on peut mettre 1’équation (1) sous la forme simple
{=p+B(p). (3)

Dans le mémoire précité, on préconisait de déterminer les p par itération a
p d 1
partir d’une distribution initiale quelconque p® selon le schéma

PO =at,
PV =att(1-a)p®—x B (pO), (4)

j,_;(n-{—l) — a—{_*_ (1 _ Gt) ];?n) iy E(p(n))

en faisant intervenir un parametre « qui peut prendre une valeur fixe quel-
conque entre 1 et 0. Rappelons en passant que la valeur 1 doit étre exclue
parce qu’elle produit des oscillations indéfinies du processus d’itération.

2. Appropriation de la théorie aux calculatrices électroniques

2.1. Généralités

Dans le mémoire original [1], on a montré comment 1’équation (3) pouvait
étre résolue pratiquement par appro*clma,tlons successives en remplagant les
distributions continues des ¢ et des p par une série de résultantes équivalentes
T et P appliquées & des troncons de contour de longueur finie 4 S et en utili-
sant un appareil mécanique effectuant la somme vectorielle qui prend la place
de l'intégrale B (p). La solution d’un probléme pratique & ’aide de cet appareil
absorbait 8 heures de travail pour un contour divisé en 37 segments. De plus,
P’appareil était délicat, cotiteux et parfois sujet & des pannes.

La méthode de calcul pouvait donc étre améliorée au point de vue vitesse,
précision et sécurité. Or, il se fait que le processus mathématique utilisé con-
vient particuliérement bien pour résoudre le probleme & 1’aide d’une calcula-
trice électronique. En effet, tous les calculs sont la répétition d’une méme



APPLICATION DES MACHINES A CALCULER ELECTRONIQUES 97

opération élémentaire simple; a savoir: trouver le vecteur-tension produit sur
une facette fixe en un point fixe R par la distribution radiale simple de tensions
correspondant a la singularité P appliquée au point ¢ du contour de la piéce

(fig. 1).
2.2. Détermination des singularités vectorielles P

En remplacant les distributions continues ¢ et P par leurs résultantes 7' et
P appliquées a des trongons 4 S du contour, la relation (3) se met sous la forme

T = F+.§(p)
= —-248

5 (R)
ou B(p) = —‘—'T‘_—“Z P (@) QTEZ

COS @ COS a ==

QR. (5)

Il est clair qu’une calculatrice électronique doit travailler en coordonnées
cartésiennes xz, y. Dans ces coordonnées, 1’équation (5) se transforme en un
systeme de deux équations intégrales scalaires simultanées:

T, =P+ B,(p),
T,=PF,+B,(p),
avec B, (p) = A(p)Bor (& R),,
By (p) =4 (YJ)BQR(QR)U-,
4 (p) = P (Q)(QR),+F,(Q)(QR),
" by = ~2AS(R) e (@R)tny (@R),
7 (@ R); + (@ R)j

Comme on peut le voir, 4 (p) devra étre calculé a chaque itération, tandis que
Bor peut étre calculé une fois pour toutes.

On calculera les composantes P, et P, par itération suivant un schéma
analogue aux relations (4) et on adoptera comme distribution des charges
fictives la premiére distribution P qui d’une itération a la suivante satis-
fera en tout point a la double inégalité

|PW— Pe-D<e et |PW—Pn-D|<e

ou e, dénommé indice de précision, est 1'erreur absolue acceptable et fixée a
I’avance.

2.3. Calcul des tensions aw contour

Dans le mémoire original [2], il a été indiqué que la tension sur une facette
normale au contour est donnée par:

G(R) = F(R) 2 ZP(Q)CQi%fCOSﬁQ_E




98 CH. MASSONNET - M. SAVE - G. MAZY - G. TIBAUX Ib 5

ou F, est le vecteur P auquel on donne une rotation de 90° dans le sens hor-

logique et ou B et n sont définis par la fig. 2
Les composantes normale et tangentlelle de 6§ valent respectivement:

'

er P S
On —‘%@_ ZA B [(QR)xny'i'(QR)an]'

P _PJ‘ H 2 ’ ’
Thn = L 4 = S A B (Q R, +(Q By,

(@ R).m,—(QR)yn

ol A =P, (QR).+P,(QR),, B =
‘ =T 2 [(Q B): + (Q R);J?
/o
’/
@,,/
§
-2
’00/)-: /
// 2 /
Fig. 2. // £ R
/f
/
aoco //
Flg. 3. ."oﬂ ’00///
~ y
\\ /
~y

2.4. Détermination de la croix des tensions principales aw point intériewr
On sait [1, 2] que le vecteur-tension sur une facette donnée vaut (fig. 1)

= 2 COS @ COS ot ~=

En appliquant cette relation aux facettes verticales et horizontales au point
étudié et en projetant sur les axes, on obtient pour les trois composantes

cartésiennes du tenseur-tension

2y Ll e ey,

+ (@R P

+P (QR), 5
Z [ R (@B

_E PI(QR):C‘*'Py(QR)II
o= LleRE s @REF @R @0
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3. Programmes réalisés

3.1. Généralités

On a d’abord exécuté les calculs au moyen d’un programme pour 1'ordi-
nateur IBM 650 dont disposait le Centre de Calcul de I'Université de Liege.
Ce Centre utilisant actuellement une calculatrice électronique GAMMA ET
de la firme francaise Bull, il a été décidé de recommencer la programmation
pour cette seconde machine.

Pour I'ordinateur IBM 650, le programme était écrit en language Fortran,
tandis que, sur la calculatrice Bull, la programmation a été faite en langage
machine. D’autre part, la mémoire de 1’ordinateur IBM ne comportant que
2000 nombres, il fallait calculer & chaque itération les noyaux des intégrales.
Sur la machine Bull, au contraire, qui a une mémoire de 8192 nombres. on
a pu mettre la quantité 8, en mémoire, ce qui a conduit & un gain de temps
appréciable. En contre-partie, cette quantité occupe un nombre de mémoires
si grand qu’on ne peut définir le contour de la piece que par 50 points au lieu
de 100 points comme dans le programme IBM. Enfin, alors que le programme
IBM était construit pour la valeur «=0.5 de I'indice de convergence, on peut,
sur la machine Bull, le faire varier a volonté.

Ceci étant, I’expérience a montré que la durée en minutes d’ une itération,
qui est proportionnelle au nombre » de segments choisis sur le contour, était
donnée approximativement par

Ordinateur IBM 650: temps 0,0275 n2.
Calculatrice électronique Bull: temps 0,0066 n?2.

Notons que, pour un contour défini par 48 points, le temps utilisé par itération
vaut environ
Ordinateur IBM 650: 1 h 3’ minutes.

Calculatrice électronique Bull: 15 minutes.

De plus, le programme IBM obligeant a prendre un facteur de convergence
x=0,5, il fallait 15 itérations pour obtenir une précision déterminée tandis
que 10 itérations suffisent si I’on adopte «=0,75 comme on peut le faire avec
le programme Bull, si bien que le probléme considéré prenait environ 15h3/,
sur I'IBM 650 tandis que 2 h1/, suffisent sur la machine Bull.

3.2. Quelques renseignements sur le programme Bull

3.2.1. Préparation des données. Les données du probléeme se composent:

a) Du contour de la piéce défini par les coordonnées des sommets du poly-
gone formé par les 4.5; le contour peut étre constitué de plusieurs courbes
fermées distinctes (5 au maximum) (cas de la piéce percée de trous). Le total
des points donnés au contour ne peut excéder 50.
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b) Des forces appliquées au contour de la piece. définies par les compo-
santes cartésiennes de leurs résultantes sur les 4 S.

¢) Des coordonnées des points intérieurs a la piéce, pour lesquels on désire
connaitre le tenseur-tension.

d) Des parameétres généraux du probleme:

nombre de points au contour,
indice de précision e,

indice de convergence «.

Les données sont mises en cartes dans une forme appropriée et communiquées
a la machine a la suite du programme.

3.2.2. Calcul proprement dit. Le déroulement du programme de calcul
comporte quatre parties:

a) Calcul des grandeurs géométriques auxiliaires: A partir du contour
défini ci-dessus, la machine calcule

— les coordonnées des points milieux des segments qui seront désormais
considérés comme seuls points au contour. C’est en ces points que l'on
applique les sollicitations réelles et fictives ainsi que les tensions du contour;

— les longueurs et les cosinus directeurs des normales aux segments 4 S.

b) Détermination des forces fictives. On commence par déterminer la dis-
tribution de départ P® =« T,. Ensuite, la machine calcule les noyaux B,y et
les met en mémoire; il y a un noyau par couple de points au contour, soit donc
pour 50 points 2450 noyaux. Leur mise en mémoire exige une machine de
grande capacité. Dés que les noyaux sont calculés, la machine démarre le
processus itératif. A chaque itération, elle imprime, en regard 1’'une de ’autre,
les composantes des charges fictives dans les deux distributions, ancienne et
nouvelle. Ceci permet a 1'opérateur de surveiller la convergence au cours du
déroulement du programme. Le test de précision est posé, dans le programme,
a la fin de chaque itération. Quand il est satisfait, la machine cesse les itérations
et passe a la suite du programme.

c) Calcul des tensions sur la facette normale aw contour. Pour chaque point
du contour, la machine imprime les coordonnées du point, la tension normale
et la tension tangentielle sur la facette normale au contour.

d) Calcul des tensions a Uintérieur de la préce. La machine procéde comme
suit:

1. Lectures des coordonnées d’un point intérieur.

2. Caleul, en ce point, des composantes cartésiennes du tenseur puis des
tensions principales et de la tangente de leur angle par rapport a 1’axe des
abcisses.
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3. Impression des coordonnées du point, des tensions principales o; et o,
et de tg «. Ensuite, retour en 1, a la lecture des coordonnées du point suivant,
et ainsi de suite jusqu’a épuisement des points intérieurs donnés.

Comme il n’y a pas ici de probléeme de mise en mémoire, le nombre de
points intérieurs a traiter est illimité.

4. Quelques résultats obtenus

4.1. Picce carrée soumise au cisaillement (fig. 4)

Y i .y
Dimension de la piéce 3 X 3 cm

Epaisseur 1 em
Nombre de points: 24
Intensité des tensions de cisaillement:
1 kg/cm?
Parametre de convergence: « = 0,8
Indice de précision: ¢ = 0,01 kg
f % Durée d’une itération: environ 4’
‘ Nombre d’itérations: 14

Précision obtenue:
Facettes normales au contour sauf dans les
coins: r = 0,259,, ¢ = 3,89%

Facettes normales au contour, segments

‘ adjacents aux coins: 7 et o = 859
x

Fig. 4.

Tension points intérieurs: r et o = 0,79,

4.2. Poutre soumise a flexion pure (fig. 5)

A
n =38

[T

Fig. 5.
Dimensions de la piéce: 4 X 16 cm Précision obtenue:
Nombre de points: 38 Facettes normales au contour
Moment: 256 kg cm =19
- #
Paramétre de convergence: « = 0,8 o= 20,89
N A — «U,0
Inilicg d,e PROGISLONG 1 kg’ . Tensions points intérieurs
Durée d une 1tér§t10n: 9’ 30 r ot o= 24,6
Nombre d’itérations: 12
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4.3. Neeud en traction (fig. 6)

Nombre de points: 48

Traction: 1 kg/ecm?

Parameétre de convergence: 0,8
Indice de précision: 0,01 kg
Durée d’une itération: environ 15’
Nombre d’itérations: 12

Précision obtenue:
Points intérieurs: 3,79, sur o et 7

Facettes normales au contour, coins exceptés:
cetr=29

. Fig. 6.

IREER)

5. Considérations propres a la méthode

5.1. Chowx du parametre de convergence o

Dans le mémoire original [1], il a été montré que, si 1’'on adopte =1, on
a généralement une oscillation indéfinie des ﬁ, mais que, pour 0 <« <1, toutes
les distributions des P convergent. La valeur optimum de o« différe d’un
probléme a I’autre, mais ’expérience a montré que la valeur optimum moyenne
se situait aux environs de «=0,8. C’est donc cette valeur qu’il est conseillé
d’adopter pour tous les problémes. Nous donnons, & titre d’exemple, le cas
d’une piece carrée soumise a traction uniforme dans un sens, définie par 20
points au contour. Pour un facteur de précision de 19, sur les P, la précision
¥ obtenue sur les tensions au contour est de
’ordre de 0,25%, sur les 7 et de 2,59, sur
[ I ] ] [ les o en négligeant toutefois les facettes
adjacentes aux coins sur lesquelles nous
reviendrons.

Les erreurs sur les tensions aux points

intérieurs sont de I’ordre de 1,59.

n=20
Traction 1hg/erm

5x5cm Pour « = 0,5, il a fallu 12 itérations
o= 0,75 S itérations
x=10,8 7 1térations

» durée d’une itération 2’ 30” environ

RN
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59.2. Points anguleux

Comme on 1’a constaté au par. 4, la présence de points anguleux dans le
contour provoque dans leur voisinage une perturbation dans la répartition
des charges fictives P et donc une erreur sur le tenseur-tension aux points
compris dans le triangle formé par les 2 ou 3 segments 4 S adjacents au point
anguleux (fig. 5). Cette perturbation est tout a fait locale et n’entraine pas
d’erreur sur la distribution des P et des tenseurs-tensions dans le restant de
la piéce. De plus cette erreur ne se cumule pas d’une itération a la suivante,
elle est méme décroissante avec le nombre d’itérations.

5.3. Erreur provenant du remplacement des pds par des AS et des P

Si on examine les résultats obtenus pour la poutre soumise a flexion pure,
on constate que les résultats sont entachés d’une erreur importante, méme
dans les régions non voisines des coins. Comme on peut le voir, de telles erreurs
n’apparaissent pas dans le nceud en traction ni dans la piéce en cisaillement
pur, a cause de la symétrie de sollicitation par rapport aux deux axes. Ces
erreurs sont dues exclusivement au remplacement des ds par des 4S. qui
conduit & remplacer les pds par des P qui ne sont pas leur résultante

nd s
A7

mais bien la valeur de p au milieu du segment multiplié par la longueur de
celui-ci. Cette erreur est cumulative d’une itération a la suivante; c’est elle
qui limite la possibilité d’utilisation du programme. L’expérience a montré
que la dérivée seconde de la distribution des p était la plus grande au voisinage
des coins; ¢’est donc également dans cette région que 1’erreur due au remplace-
ment des pd s par les Pest la plus grande.

On peut y remédier dans la limite du nombre de points disponibles (50)
en multipliant le nombre de divisions au voisinage des coins.

Nous donnons a cet effet 1’exemple de la poutre soumise a flexion pure.

Poutre sowmise a flexion pure (fig. 8)

Précision obtenue:

~

Facettes normales au contour 7 : 0,79
. 0,
a: 14 9

Points intérieurs et o: 179,

1 Jone non valable
2 Zone Fortement perturbée

3 Zone peu perturbée .
Fig. 8.
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J

0F 1
£ =

Fig. 9.

Le probléeme traité est le méme qu’au par. 4.2 mais ici la piece est définie
par 50 points, les points supplémentaires ayant été introduits au voisinage
des coins.
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Monsieur G. DEPREZ, assistant & I’Université de Liege, qui, en traitant plusieurs
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Résumé

La méthode de résolution des probléemes élastiques plans présentée dans le
neuvieme volume des «Mémoires» a été transformée en vue de son exploitation
sur calculatrice électronique. L.e mémoire expose la méthode ainsi modifiée et
donne les résultats obtenus sur des piéces planes de forme diverse.

Zusammenfassung

Die in den «Abhandlungen» Band IX dargelegte Auflosungsmethode fiir
ebene Spannungsprobleme wurde zum Zweck der Anwendung auf elektroni-
schen Rechengeriten umgearbeitet. Dieser Beitrag enthilt das verdnderte
Verfahren und die Ergebnisse fiir einige ebene Elemente verschiedener Form.

Summary

The method for the solution of the general stress-problems of plane elas-
ticity, which was presented in the ninth volume of the ““Publications’’, has
been transformed for the purpose of its use on electronic computers. This
paper describes the adaptation of the method and gives the results for some
plane elements of various shape.
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Résultats des essais sur maquette d'un pont en arc encastré
Ergebnisse der Modelluntersuchungen evner eingespannten Bogenbriicke

Results of Tests on a Model of a Clamped Arch Bridge

ANGELO BERIO MARIO BROZZU CARLO VIVANET
Prof. Ing. Dr. Ing. Dr. Ing.

Universita di Cagliari (Italie)

La création d’une retenue sur le Flumendosa, en Sardaigne, nécessita la
construction d’un pont en amont du barrage. Cet ouvrage en béton armé
comprend une arche d’un peu moins de 110 m d’ouverture. Il donne passage
a une route nationale et a un chemin de fer a voie étroite.

Dans une premiere phase des études, on projeta deux ouvrages indépen-
dants: un pont-route large de 7,75 m et un pont-rail large de 3,75 m. Pour
ce dernier, on avait donc un rapport plutot élevé entre la portée et la largeur,
ce qui faisait raisonnablement craindre une instabilité par flambement latéral.

Toutefois, la détermination théorique du coefficient de sécurité au flambage
de ce pont-rail, dont la section était fortement variable, présentait des diffi-
cultés sérieuses. On décida alors d’avoir recours & un essai sur maquette, qui

millﬂiilil Illll
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fut confié a 1’'Institut de «Scienza delle Costruzioni» (Résistance des Matériaux)
de I’Ecole Polytechnique de Cagliari.

Le modeéle était en perspex, échelle 1:100, et reproduisait (fig. 1) fidele-
ment le pont-rail, y compris les blocs de fondation qui furent encastrés dans
un cadre de bois dur. L’essai au lambage s’effectua en chargeant la maquette
avec des ressorts plus ou moins tendus. On choisit une disposition permettant
de réduire autant que possible 1’effet stabilisateur des ressorts par rapport au
flambement latéral qui faisait 1’objet des essais (fig. 2). Ce procédé expéri-
mental permit de résoudre promptement les problemes posés: on put établir
que la charge de flambement latéral atteignait 6 fois celle de service. Une fois
bloqués les déplacements horizontaux a la clef, la voite ne donna aucun signe
de flambage dans le plan contenant son axe, tout au moins jusqu’a la charge
maximale qu’on put imposer & la maquette et qui correspondait & 10 fois la
charge de service. Ce dernier résultat, quoique peut-étre approché par exces
a cause de la présence des ressorts, pouvait étre accepté; on estima par contre
insuffisant le coefficient de sécurité au flambement latéral.

& comparoteur
3 O erensaméire mécangue
2 wv ertensoméire élecrrigue

Fig. 3.

La méthode expérimentale a donné une réponse nette, conseillant de réunir
le pont-route et le pont-rail dans un méme ouvrage, ce qu’on fit dans le projet
définitif. Mais la maquette — qui n’avait pas été endommagée dans ces essais
de flambage — permettait encore de mesurer les contraintes aux endroits les
plus intéressants de la votite. A cet effet, on colla une soixantaine de jauges
de contrainte au droit des sections B-C-D de I’arc (fig. 3) et on mesura les
contraintes dues a une force concentrée de valeur constante qui se déplacait
le long de 'axe. Ces résultats expérimentaux permirent — au moyen des lois
de similitude mécanique — de tracer les lignes d’influence des contraintes
maximales, qui sont comparées dans la fig. 4 avec les lignes correspondantes
données par le calcull).

1) Les résultats complets des essais ont été recueillis dans un rapport [1] paru il y a
quelques mois.
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L’examen de ces diagrammes met tout d’abord en évidence que, bien que
le calcul et les essais donnent des résultats d’allure semblable, les lignes dédui-
tes des essais sur modéle sont plus courbes prés de la clef de votite et plus
aplaties aux naissances que les diagrammes calculés. Ce fait découle des
déformations, et surtout des rotations, que 1’élasticité des blocs de fondation
permettait aux sections de naissance du modele, tandis que le calcul suppose
que ces sections sont totalement encastrées.

Une deuxiéeme remarque est justifiée par l'observation des contraintes
moyennes. On peut contrdler que I’écart maximum — en valeur absolue —
entre les efforts les plus élevés de compression et ceux de traction de chaque
section de la volte est moindre pour les diagrammes tirés des mesures sur
modeéle que pour les résultats donnés par le calcul.

Les contraintes moyennes dans le pont sont donc plus faibles que ne le
prévoyait le calcul. Cela peut étre expliqué par la collaboration du tablier
a la résistance de la volte, collaboration négligée par les calculs ordinaires.

Sectidn .0/ Inoissonces) Section A lcleF)
1 |
=
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T 25 A I - =
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o] | | |
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Timg 20— as | :
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0 5 |
85: 9 20— I
10 25 |
i o4
I ————— mesures sur modéle
————— mesures surmodlle.  emeeeeee cateul ardinaire [orc isolé]
memmmeeeee  cokul ordinaire lare isolé) —==—==-— coleul o lorc élostiguement encastré.
— - cokl de l'arc avec colloboration du lobiier s cofeul de fore éloshiguernent encastré avec
4+ trockion +  troction collaborotion du tablier
—  compression —  compression.

Fig. 4.
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Une analyse plus poussée, qui tient partiellement compte de l'influence de
tassements élastiques des fondations (suivant la méthode proposée par VoGt
[2]) et de la collaboration du tablier [3], a en effet permis de trouver des
écarts plus petits (voir encore les diagrammes de la fig. 4).

Ceci montre que la maquette se comporte comme une machine a calculer
parfaite, qui tient aisément compte de beaucoup de facteurs dont 1'étude
analytique rigoureuse se heurterait a bien des difficultés.

Introdos

N
N

F o umn+ WO

——  mesures
------ colewd ardingure lore isole ).
— colcul de fare avec collaboration o roblier

= ~  colewl de larc élostiquement encastré avec
4 troction. calkebaration du foblrer
— compression.

Fig. 5.

A ce point toutefois, il était bien naturel de faire une comparaison entre
I’état total de contraintes donné par le calcul et ce qu’on venait de déduire
des essais. La figure 5A montre les résultats de cette comparaison faite pour
le poids propre: on peut constater que les contraintes expérimentales maxi-
males sont de 20 a 25 9, plus élevées que celles de calcul.

Ce fait s’explique aisément: dans les études préliminaires du pont on avait
d’abord choisi comme directrice un funiculaire des charges permanentes: cette
courbe avait ensuite été corrigée afin de la rapprocher davantage du polygone
des pressions donné par le calcul et de diminuer ainsi les contraintes de flexion.
Mais ce procédé suppose que la votite est parfaitement encastrée aux naissan-
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ces; cette condition n’est cependant remplie ni pour la maquette ni pour
I'ouvrage réel, les sollicitations réelles du matériau sont donc supérieures.
Cette conclusion a pu étre vérifiée dans 'ouvrage réel qui a été. il y a peu
de temps, soumis a des essais de charge (fig. 6). On avait noyé. a l'intrados et
a l'extrados de la section de clef, des extensometres électriques [4] qui per-
mettaient de mesurer I’état de contraintes lors du passage de charges mobiles.
Les essais de mise en charge furent effectués en faisant circuler sur le pont
un train type et des colonnes de camions. La figure 5B montre les contraintes
d’extrados données par les essais et reportées a la téte des colonnes de charge;
le diagramme expérimental, comparé aux résultats du calcul ordinaire, con-
firme 'importance des tassements élastiques des naissances. Toutefois, on n’a
pas a craindre d’aussi lourdes conséquences, quant aux sollicitations du maté-
riau, que pour un pont tel que le prévoyait le premier projet. La directrice —
une fois les résultats des essais sur maquette connus — a en effet été modifiée
de fagon & s’approcher de nouveau d’un funiculaire des charges permanentes.

Fig. 6.

On peut donc admettre les conclusions suivantes. Les procédés de correc-
tions des directrices, qui supposent un encastrement total de I’arc a ses nais-
sances, portent a sous-estimer les contraintes de l'ouvrage. La réduction des
contraintes de calcul qu’on obtient par ces méthodes doit étre considérée, en
bien des cas, comme absolument fictive. En outre, on ne doit pas oublier
que, s’il devait se produire des tassements non élastiques et plastiques dus
a des efforts imprévus, une directrice correspondant a un funiculaire réduit
les sollicitations de 1’arc. Ceci n’est pas toujours vrai, spécialement si la direc-
trice a été corrigée pour obtenir une diminution des contraintes de calcul.

Enfin, nous voudrions qu’on considérat les avantages que I'étude expéri-
mentale sur maquette permet d’obtenir dans les projets de ponts: elle donne
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rapidement une réponse exacte a des questions que le calcul ordinaire ne peut
résoudre et pour lesquelles une analyse plus poussée serait trop onéreuse.
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Résumé

On expose les résultats les plus intéressants d’une série d’essais effectués
sur la maquette d’une voite en béton armé. Ces essais ont permis d’évaluer
avec facilité le coefficient de sécurité de l'ouvrage au flambement ainsi que
I'influence des tassements élastiques aux naissances et de la collaboration du
tablier; les résultats ont été confirmés par des mesures effectuées sur I’'ouvrage
terminé.

Zusammenfassung

Es werden die Ergebnisse der Modell-Untersuchungen einer eingespannten

Bogenbriicke in Stahlbeton behandelt.

Auf Grund der Versuchsergebnisse konnten der Knicksicherheitsfaktor des
Bauwerkes, die Wirkung von elastischen Setzungen der Bogenfundamente
und die Mitwirkung des Briickenaufbaues ohne Schwierigkeit bestimmt
werden.

Diese Ergebnisse wurden durch Messungen am ausgefithrten Bauwerk
bestétigt.

Summary

In this paper the authors report the most interesting results of a series of
tests carried out on a model of a reinforced concrete arch bridge.

These tests made it possible to determine without difficulty the safety
factor against buckling of the structure and the effects of elastic settlements
on the foundations and of the increase in strength due to the deck of bridge;
the results were confirmed by measurements carried out on the finished bridge.
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Elastic-Plastic and Limit Analysis of Non-Homogeneous Arched
Bridge Structures

Etats élasto-plastiques et état limate des constructions de ponts non-homogeénes,
en particulier de ponts voiltés

Elastisch-plastische Zustinde und Grenztragvermogen von nichthomogenen
Briickenkonstruktionen, insbesondere Bogenscheibenbriicken

W. OLSZAK
Prof. Dr. Ing., Dr. techn., Member of the Polish Academy of Sciences, Warsaw

1. In the theory of bridges, arched bridge structures have often found
practical application (Fig. 1). In the present paper, a method is proposed
which enables the states of stress and strain in such structures to be determined.
The possibility of taking certain types of non-homogeneity of the material into
consideration is also provided. The non-homogeneity may be due, e.g., to a
variable amount of reinforcement.

The method consists in the application of an appropriate conformal mapp-
ing. By means of a suitable mapping function, the system under consideration
is transformed into a circular ring segment (Fig. 2) and the problem is analysed
in this auxiliary system. This is comparatively easy with the boundary

J -
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conditions — for the inner and outer edges — assumed, these being particularly
simple. The solution is then retransformed into the original system (Fig. I).

In this way both the purely elastic and the elastic-plastic states may be
analysed. It is also possible to determine the ultimate load-carrying capacity
of such structures.

Fig. 2 shows the system under consideration. The bridge is assumed to be
asymmetric; the symmetric form can, of course, be readily obtained as a
particular, simpler case of the more general, asymmetric form. Such sym-
metric systems, which are theoretically somewhat easier to handle, are generally
met with in practice.

The load is assumed to be uniformly distributed over the upper and lower
edges. The load p on the lower edge may, of course, be assumed to be zero,
the only load being the load ¢ acting on the upper surface (roadway). This
results in a further simplification of the computation procedure.

2. The analytic function

Z=X+i¥ =)=

z+h

(2.1)

transforms the original plane O into the inverted plane I. In this transfor-
mation, circles in the O-plane are mapped into circles in the I-plane. The
following simple geometrical relations are valid

1
D, = @1, 7'1=§1‘:
; ‘ (2.2)
rsing
—_— 2 2h' hz. == Ct’ ———— .
R, Y78+ 2hr cos @+ 4%, P1 = o g+ A

The stress function £ in the original system O corresponds to the stress
function w in the inverted system I. These functions are related in the follow-

ing simple manner:
1 (1
0= gz QB - )'i.Q(E,(p).
From this equation, we know the relation between the stress field in the
original system O and that in the inverted system I.
This relation is particularly simple if the stresses in the original system
are expressed in a curvilinear system of coordinates (R,®) consisting of two

families of orthogonal circles (Fig. 1). Then we have
= o, (r*+2hrcose+h*)+2M',

(2.3)

Or
op = o, (r*+2hrcose+h?)+2M, (2.4)
Ty = — Ty (12 +2hrcosp+h?),
0 o 1.
where M = w—,—w[’l‘+hCOS(p]+7(£}L~Sln(p,
ar ‘o r

with the notations of Figs. 1 and 2.
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3. The elastic problem is solved in a simple manner. The stress function
assumes, in the inverted system I, under the conditions described, the form

w=ay+bylnr+dyrtlnr. (3.1)
Hence, the stresses in the original system O are readily obtained as
op = 2ay+by(2lnr—14+r2)+d,(2lnr+1—r?),
o = 2a,+by(2Inr—3—4rlcosp—r)+dy (2lnr+3+4veosg+r),
Trr= 0. (3.2b)

There are three unknown constants in these expressions; these constants
should be so chosen as to satisfy the boundary conditions in question. The
structure is considered to be elastically clamped along the lateral edges. This
type of support is characterized by a clamping moment M and a reaction
force P (Fig. 1). It is evident that the curvilinear net of coordinates coincides
with the principal stress trajectories.

4. The problem of ultimate load-carrying capacity. The set of equilibrium
equations and boundary conditions has to be completed with the yield con-
dition

(o —op)*+ 4715y = 4[K (R, P,) > (4.1)

The material of the bridge may be homogeneous or non-homogeneous. In the
general case of non-homogeneity, the solution cannot be obtained in a closed
form and should be sought for by means of one of the numerical methods
(the method of characteristics, for instance).

There exists, however, the possibility of making use of a certain circums-
tance, which was already pointed out in some of our previous papers. This
consists in the following:

We can introduce into the analysis a particular type of non-homogeneity
K, enabling us to find the corresponding solution in a closed form.

It is evident that such a non-homogeneity does not necessarily reflect the
actual conditions; however, it can be shown that there may exist more of such
types of non-homogeneity which lead to simple closed-form solutions.

Let us denote them by the symbols K, K. Ky, - - .

If one of these types of non-homogeneity represented the actual mechanical
properties of the system considered, the problem could be considered to be
solved. However, such a case will, in general, be only exceptional.

Another approach is then possible. Since the curvilinear net of coordin-
ates coincides with the principal stress trajectories [cf. Eq. (3.2b)], the yield
condition (4.1), in such a particular case, is seen to be linear. Then a linear
combination of the possible types of non-homogeneity

K(r,p) = Z/\iffi(r, ®), p=LJIL ... (4.2)
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may be considered. The parameters A;, A, ..., can now be chosen in such a
manner as to approach the actual conditions to the best possible extent. These
conditions are, for example, those of a specific type of non-homogeneity or
those of homogeneous properties of the structure, depending upon the manner
in which the original problem was stated.

Thus, for the particular problem studied in the present paper, solutions
were found for four different types of non-homogeneity: K, Ky, Ky, Kiv.
It follows that a linear combination may be used which can be expressed in
the following symbolic manner:

Ky=+x®K s NP K+ p? Ky £v2 Ky (4.3)

The above method was used to solve the problem under consideration.
The state of stress (op,0p,7rp) Was found at every point of the structure in
such a manner as to satisfy the boundary conditions required.

The moment M characterizing the elastic clamping and the reaction force
P were also found.

The critical load intensity for which the load-carrying capacity of the
structure is exhausted was also determined.

5. The question now arises what type of non-homogeneity best describes
the actual conditions. In reinforced concrete bridges, the amount of reinforce-
ment will — in general — increase when the crown is approached (the maxi-
mum being attained at the crown itself). Then the mechanical properties will
exhibit a corresponding increase of elastic and plastic moduli.

This corresponds, in a relatively satisfactory manner, to one of the types
of non-homogeneity considered in the present paper (K;).

The other type corresponds, approximately, to homogeneous structures
(K11)-

Between these two limiting types, other types may be introduced by
selecting appropriate values for the parameters «, A, u, v.

This choice of solutions enables the non-homogeneity function Ky to be
adapted to various possible practical cases, in a relatively satisfactory manner.

A method for the determination of the upper and lower bounds of the
solutions thus obtained will be demonstrated in a separate paper. This is of
considerable importance as a means for estimating the accuracy of the solution
and formulating variational problems.

It seems that the method proposed may be useful for solving actual prac-
tical problems. It should be mentioned that it may also be extended to other
problems of elastic-plastic equilibrium and plastic flow.
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Summary

Inthe theory of bridges, two-dimensional vaulted systems are often analysed,
arched bridge structures being one of the possible and frequently used practical
applications. In this contribution, a method of analysis is suggested which
enables the states of stress and strain of such structures to be assessed, and
at the same time it is demonstrated that certain types of non-homogeneity
of the material may be taken into account.

The method consists in transforming the system under consideration into
a concentric ring by means of a simple mapping function. The solution is
first found in this auxiliary system and then retransformed into the original
system.

The analysis deals both with purely elastic and with elastic-plastic states.
In addition, a method is indicated for determining the ultimate load-carrying
capacity of such structures.

Résumé

Dans la théorie des ponts on étudie souvent des systémes votlités bidimen-
sionnels, les ponts en arc étant une des applications les plus usuelles. Cette
contribution propose une méthode de calcul qui permet de déterminer 1'état
de tension et 1’état de déformation de tels ouvrages, tout en offrant la possi-
bilité de tenir compte de la non-homogénéité du matériau du systeme.

Cette méthode consiste a transformer le systéme considéré en un segment
circulaire concentrique, a 1’aide d’une simple fonction de transformation con-
forme. La solution est recherchée dans ce systéme auxiliaire.

L’étude traite aussi bien d’états purement élastiques que d’états élasto-
plastiques. De plus, on peut déterminer 1’état limite et la capacité portante
de telles constructions.

Zusammenfassung

In der Briickenstatik werden oft scheibenartige Tragsysteme untersucht,
wobei insbesondere Bogenscheibenbriicken schon vielfach praktische Anwen-
dung gefunden haben. Es wird eine Methode vorgeschlagen, die es erlaubt,
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den Spannungs- und Forménderungszustand derartiger Tragkonstruktionen
zu ermitteln, wobei gleichzeitig die Moglichkeit gegeben wird, deren Nicht-
homogenitit in Betracht zu ziehen.

Die Methode besteht darin, durch Einfithrung einer einfachen Abbildungs-
funktion das untersuchte System auf ein konzentrisches Kreissegment kon-
form abzubilden und in diesem Hilfssystem die Losung zu suchen.

Es werden sowohl rein elastische als auch elastisch-plastische Zustdnde
untersucht. Aullerdem wird gezeigt, wie das Grenztragvermogen (die Grenz-
last) derartiger Konstruktionen ermittelt wird.
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Compléments relatifs aux poutres armées d’aciers écrouis
Erginzungen betreffend Triger mit einer Bewehrung aus gerecktem Stahl

Further Information Relating to Girders Reinforced with Cold-Rolled Steel

CH. MASSONNET P. MOENAERT
Professeur & I'Université de Liége Chargé de Cours & 1'Université libre de
Bruxelles

Le Comité européen du béton a mis au point & Vienne, en avril 1959, des
regles qui permettent de dimensionner les piéces en béton armé soumises a
flexion simple ou composée en tenant compte du comportement réel du béton
comprimé dans le stade de rupture. Ces regles sont trés simples pour les poutres
armées d’acier doux, ou I’on sait que I’acier tendu travaille au palier d’étirage
R,, si 'on a contr6lé préalablement que le pourcentage d’acier tendu est
inférieur au pourcentage critique. L’effort dans I’armature tendue de section
Q, vaut alors F, =8, R, et la section a donner & cette armature découle direc-
tement de 1’équation d’équilibre des moments M =F,z, sans qu'on doive
faire intervenir la condition de compatibilité élastique représentée ici par la
loi de conservation des sections planes de Bernoulli.

A T’heure actuelle, on utilise de plus en plus des armatures en acier écroui
qui ne présentent pas de palier et dont la tension dépend par conséquent de la
déformation subie. Pour des poutres armées de tels aciers, on doit faire inter-
venir la loi de Bernoulli et la méthode de calcul devient complexe.

En vue de conserver, pour les poutres armées d’acier écroui, les regles
simples de dimensionnement obtenues pour les poutres armées d’acier doux,
le C.E.B. a recommandé de calculer la tension dans I’armature tendue par la

formule empirique

Q
Gy = To2 (1,28 —5(;’% - 0,45‘;0;2 b—h) (kg/em?) (1)

proposée par la délégation frangaise. Dans cette formule, oy, est la limite
élastique conventionnelle de 1’acier & 0,2 %,; o,” est la résistance a la rupture
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du béton sur cylindres et b, %, sont les dimensions utiles de la poutre rectan-
gulaire.

Il nous a semblé utile d’étudier la valeur de cette formule en effectuant,
en complément de notre étude statistique antérieure, une comparaison statis-
tique des résultats d’essai sur 203 poutres armées d’acier écroui avec deux
méthodes de calcul du moment de rupture.

La premiére de ces méthodes, dite méthode générale est basée sur les quatre

hypothéses suivantes:

a) le diagramme des tensions de compression dans le béton est parabolique
et son ordonnée maximum est égale a la résistance & la compression sur
cylindres;

b) les sections transversales restent planes pendant la déformation;

¢) le béton se rompt en compression quand son raccourcissement proportion-
nel atteint 3,59/, ;

d) 1'acier écroui tendu suit la loi tensions-déformations simplifiée définie par
le C.E.B.

La deuxiéme méthode, dite méthode simplifiée, utilise la formule (1) recom-
mandée par le C.E.B. et admet un diagramme rectangulaire des tensions de
compression dans le béton d’ordonnée égale a la résistance a la compression
sur cylindres.

Les calculs relatifs & la premiére méthode sont repris parmi ceux qui ont
été exécutés a 'ordinateur IBM 650 de la maniere décrite dans la Publication
Préliminaire (cf. pp. 105—127).

Ceux relatifs & la deuxiéme méthode ont été exécutés a la main.

Pour chacune des méthodes, on a calculé la moyenne » des rapports

moment de rupture calculé
= .
moment de rupture observé

On a ensuite calculé 1’écart moyen linéaire

Zlr—#

n

et 1’écart moyen quadratique

n

Enfin, on a calculé les mémes écarts, non plus par rapport a la moyenne géné-
rale r, mais par rapport aux moyennes individuelles correspondant aux diverses
séries d’essais. De I’avis du professeur TorRROJA, ces écarts moyens pondérés
éliminent les erreurs dues a des différences de technique opératoire pour ne
laisser subsister que les écarts dus & la dispersion propre des essais.
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Les résultats obtenus sont consignés dans le tableau ci-dessous:

Moyenne du rapport : Dispersion moyenne Dispersion pondérée
M rupture calculd Ecart moyen Ecart moyen
M rupture observé linéaire quadratique‘ linéaire | quadratique
1. méthode 0,958 0,078 0,12 ‘ 0,055 0,074
2. méthode 0,989 0,086 0,12 0,056 | 0,080

On constate :

1. que la méthode simplifiée serre la réalité de plus prés que la méthode
générale, puisque la moyenne » correspondante est plus proche de 1'unité;

2. qu’elle donne des écarts égaux ou tres légerement supérieurs a ceux de la
méthode générale.

En conclusion, les deux méthodes donnent des résultats a peu pres équi-
valents, mais la méthode simplifiée est beaucoup plus intéressante, parce que
plus rapide d’emploi.

Résumé

Les auteurs comparent, dans le cas de 203 poutres en béton armées dacier
écroui, les valeurs des moments de rupture expérimentaux avec celles cacul-
lées par la méthode générale du C.E.B. et avec celles calculées par la méthode
simplifiée de ce Comité, dans laquelle la tension dans I’armature tendue est
calculée par la formule empirique (1) dite «formule frangaise». Les calculs
statistiques montrent que la méthode simplifiée est équivalente a la méthode
générale au point de vue précision, donc beaucoup plus intéressante, parce
que plus rapide d’emploi.

Zusammenfassung

Die Autoren vergleichen bei 203 Eisenbetontriigern mit einer Bewehrung
aus gerecktem Stahl die experimentell gemessenen Bruchmomente mit den-
jenigen, die sich aus den Berechnungen nach dem allgemeinen Verfahren des
CEB und nach dem vereinfachten Verfahren dieses Komitees ergeben. Bei
letzterem wird die Spannung in der Zugarmierung nach der empirischen,
sogenannt «franzosischen», Gleichung bestimmt. Die statistischen Berechnun-
gen zeigen, dafl das vereinfachte Verfahren dem allgemeinen gleichwertig ist
was die Genauigkeit betrifft, aber viel interessanter in bezug auf den Zeit-
aufwand.
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Summary

The authors compare, in the case of 203 girders made of concrete reinforced
with cold rolled steel, the experimental values for the rupture moments with
those calculated by the general method of the C.E.B. and with those cal-
culated by the simplified method described by this Committee, in which the
stress in the reinforcement bar under tension is calculated by the empirical
formula (1) known as the “French formula”. Statistical calculations show that
the simplified method is equivalent to the general method from the point of
view of accuracy, and consequently is of far greater interest, because more

rapid in use.
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Application of the Semi-probabilistic Method to Reinforced Concrete
Structures

Application de la méthode semi-probabiliste aux constructions en béton armé

Bemerkung zur Anwendung einer teilweise auf Wahrscheinlichkeitsrechnung
beruhenden Methode auf die Berechnung wvon Eisenbetonkonstruktionen

W. WIERZBICKI
Prof. Dr., Dr. h. c., Member of the Polish Academy of Sciences, Warsaw

The starting point for our discussion of the safety of reinforced concrete
structures will be the statement that by the term “‘collapse’ of such a struc-
ture (a column or a bar, in particular), we understand the phenomenon of the
crushing of the concrete portion and the attainment of the yield point in the
reinforcement bars. According to numerous observations of the collapse of
reinforced concrete structures these two phenomena may be considered to
appear simultaneously.

Under these conditions the load carrying capacity of a reinforced concrete
structure is governed by the value of the ultimate compressive stress of the
concrete and the yield point of the reinforcement steel which form the basis
for its determination. Both quantities should be regarded as random quantities.

Fig. 1 represents a scheme of the probability curve for the compressive

o
K-
o)

9

Max. Rb 1

Fig. 1.
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strength of the concrete R,. The shaded area expresses the probability £,
that the values of R, are contained between the limit value R,, and the maxi-
mum value max R,. In other words R,, is the value of the strength of the
concrete, below which the strength of concrete of a given quality will not fall.

4
K,
0
max R {
Fig. 2.

Fig. 2 represents the scheme of a probability curve for the yield point of
the reinforcement steel. It is assumed that the same curve characterises the
yield point of the steel in tension and in compression. The shaded area expres-
ses, in this case, the probability 2, that the values R are contained between
the limit value Ey and the maximum value max R or, in other words, that it
can be stated with the probability 2, that the yield point of the reinforcement
steel will not fall below R, .

In order that the collapse of a reinforced concrete column or beam should
not take place it is necessary that the following two independent circumstan-
ces should coincide:

A. The ultimate strength of the concrete must be greater than the limit
value R,,, 2, denoting the probability of this fact.

B. The yield point of the reinforcement steel must be greater than the limit
value R,, 2, denoting the probability of this fact.

In this connection, by virtue of the rule of multiplication of probabilities,
we can state, with the probability 2,2, that if the compressive strength of
the concrete is not less than R,, and the yield point of the steel is not less
than R, collapse of the structure will not take place.

If, therefore, the safety index or, in other words, the probability that the
collapse of a reinforced concrete structure will not take place, is denoted by p,
we shall obtain the equation

2,80, =p. (1)

Since the collapse of a reinforced concrete structure takes place at the
moment when the ultimate compressive stress in the concrete and the yield
point in the steel are simultaneously exceeded there is no reason for assuming
different values for the probabilities 2, and 2., all the more since their equality
ensures the greatest accuracy in the readings of the probability curves.
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Therefore, we find that
Q,=09,=Vp. (2)

In the case of the axial compression of a column the safety index p that is
assumed corresponds to the value R,, of the ultimate stress of the concrete
and the value R, of the yield point of the steel and the axial force causing
the collapse of the column is expressed, in this connection, by the equation

N, =«(4,R,+A4, R), (3)

where A, is the area of the concrete portion of the cross-section of the column
A, — the area of the cross-section of the reinforcement and « — the reduction
coefficient for buckling.

The compressive force acting on the column N,, the action of which on
the structure is admissible, is not equal to N,, because there are certain
circumstances reducing the force N, . Thus, the force N; should be compared
with the force N, reduced in an appropriate manner, that is to say it should
be assumed that

Ny=N,(1-2«), (4)

where the-coefficients «,” denote the limiting relative reductions of the force
N, causing collapse, due to an incomplete satisfaction of each particular con-
dition, for which Eq. (3) was derived and  «; denotes the relative reduction
of N, due to incomplete satisfaction of all these conditions. The coefficients
«; are not, in general, of a random character.

A reasoning analogous to that given in Ref. [1] and [2] for the quantities p
and « will now be followed for the safety index p and the coefficients «’, the
following values for «; being used:

«; = 0,04 the coefficient of reduction of the force causing collapse, due to the
errors in the dimensions of the concrete portion of the cross-section
of the column;

ay = 0,03 the coefficient of reduction of the force causing collapse, due to the
errors in the transverse dimensions of the reinforcement bars;

ay = 0,10 the coefficient of reduction of the force causing collapse, due to the
eccentricity of the compressive force caused by the errors in the
dimensions of the cross-section of the column;

oy = 0,20 the coefficient of reduction of the force causing collapse, due to the
eccentricity caused by the difference in the temperatures at dif-
ferent points on the surface of the column;

as = 0,10 the coefficient of reduction of the force causing collapse, due to the
deviation of the column from a straight line.

We have > o;=0,47.

Thus, for example, in order to determine the coefficient «; two columns
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are considered: a column 303x 30 c¢m, reinforced with 4 bars of 12,57 c¢m?
total cross-sectional area, and a column 45 x 45 cm, reinforced with 8 bars of
32 cm? total cross-section. For the first column we assume that R,, =140 kg/cm?
and R=2500 kg/cm?; for the second column that R, =170 kg/cm? and R=
3600 kg/cm?. Then, from Eq. (3) we obtain N,=127 kg and N, =360 kg,
respectively.

Assuming, according to the usual standards, that the admissible deviations
are +10 mm we again compute N, for a column 29X 29 ecm and a column
44 % 44 cm, and we obtain N,=122 kg and N, =357 kg, values which give
a; =0,05 and «] =0,03, respectively, or an average value of o; =0,04.

The same reasoning is used for the determination of the other coefficients
«’ for the compression and for the bending of reinforced concrete beams.

On the basis of the method of plastic deformations, it is justifiable to
consider the collapse of a reinforced concrete column (which consists in simul-
taneous crushing of the concrete and attainment of the yield point in the
reinforcement) to be identical, as far as the practical effect is concerned, with
the phenomenon occuring in a compressed steel bar when the yield point is
exceeded over the entire cross-section. Since in the latter case the safety
factor was assumed to be p=0,8, this value may also be considered to be
justified in the case of a reinforced concrete column.

In the case of bending, the fact that the beam is broken when the ultimate
compressive stress in the concrete and the yield point in the steel are exceeded
simultaneously, leads to the following formula for the collapse moment of

the beam:
M, = 037502 R,,. (5)

This corresponds to the stress diagram in Fig. 3.

- — A
1
17| E:
{ _J
l N
The admissible moment in a reinforced concrete beam cannot be considered
to be equal to the collapse moment and is expressed by the equation

My=M,(1-3 o)) (6)

<
Fig. 3.

analogous to Eq. (4) for the admissible force in a compressed column.
Bearing in mind the circumstances similar to those enumerated above for
the problem of compressed columns, we determine the following coefficients «;:
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oy = 0,06 the coefficient of reduction of the collapse moment due to the errors
in the dimensions of the concrete portion of the cross-section of
the beam;

ay = 0,04 the coefficient of reduction of the collapse moment due to the errors
in the transverse dimensions of the reinforcement bars;

ay = 0,06 the coefficient of reduction of the collapse moment due to the
eccentricity and obliqueness of the load;

ay = 0,12 the coefficient of reduction of the collapse moment due to the
difference between the temperatures on the upper and the lower
surface of the beam and the shrinkage of the concrete.

We have ») o;=0,28.

If a reinforced concrete column or beam is subject to better conditions
than those used for the determination of the coefficients «;" some of them may
be assumed to be zero, which will increase N; or M,. Thus we proceed in a
similar manner to that described for steel structures in Ref. [1], where we
were concerned with an increase in the admissible stress under favourable
conditions. This is discussed in greater detail in Ref. [3].
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Summary

The load carrying capacity of a reinforced concrete structure is deter-
mined by the ultimate compressive stress of the concrete and the yield point
of the reinforcement steel. Both quantities should be regarded as random
quantities.

If the compressive strength of the concrete is not less than R, (the proba-

bility 2,) and the yield point of the reinforcement steel is not less than R, (the
probability £2,) then according to the rule of multiplication of probabilities it
can be stated that collapse will not take place, with the probability £, ..

If p is the safety factor (that is the probability that collapse of the struc-
ture will not occur) then, from the equation £,£,=p, we can determine the
admissible force in the column or the admissible bending moment in the beam.
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Résumé

La contrainte du béton a la limite de résistance a la compression et la
contrainte & la limite d’écoulement de I’acier d’armature ont une importance
décisive pour la capacité portante d une construction en béton armé. Ces deux
grandeurs doivent étre considérées comme des grandeurs aléatoires.

Si la résistance du béton a la compression n’est pas inférieure a R,, (proba-
bilité 2,) et la contrainte a la limite d’écoulement de 1’acier d’armature n’est

pas inférieure & R, (probabilité £2,). alors conformément au théoreme sur la
multiplication de probabilités, on peut soutenir avec la probabilité 2,2, que
la construction ne s’effondrera pas. Si p est l'indice de sécurité (c.a.d. la
probabilité que la construction ne s’effondre pas), on aura 1’équation

Q.82 =

qui permet de calculer la force admissible dans le pilier ou le moment admis-
sible pour la poutre.

Zusammenfassung

Fiir die Tragfihigkeit einer Eisenbetonkonstruktion sind die Betonspan-
nung beim Erreichen der Bruchgrenze und die Eisenspannung beim Erreichen
der Flielgrenze von mallgebender Bedeutung. Diese Werte miissen als zufillige
Groflen betrachtet werden.

Falls die Bruchfestigkeit des Betons kleiner als der Wert R,, (Wahrschein-
lichkeit £2,) und die FlieBgrenze der Bewehrungseisen kleiner als der Wert R,
ist (Wahrscheinlichkeit £2,), dann wird, nach dem Satz der Multiplikation von
Wahrscheinlichkeiten, die Wahrscheinlichkeit, dall keine Katastrophe eintritt,
2,8, sein. Bezeichnen wir den Sicherheitsindex mit p (d.h. die Wahrschein-
lichkeit, dafl die Konstruktion hilt), so gilt

= 'Qb'Qz’

was uns erlaubt, die zuldssige Kraft in einer Stiitze oder das zuldssige Moment
in einem Balken zu bestimmen.
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