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L’exploitation des séries de petite taille en résistance des matériaux
Die Interpretation der kleinen Serien in der Festigheitslehre

The Interpretation of Small-sized Serves in Strength of Materials

M. DAVIN

Laboratoire Central des Ponts et Chaussées, Paris

Parmi les problémes fondamentaux qui conditionnent le dimensionnement
des constructions, celui du «risque de défaillance locale», ¢c’est-a-dire d’abaisse-
ment local de la résistance au-dessous du taux de contrainte subi en service,
est un des plus importants.

Pour déterminer la forme des courbes de répartition en probabilité des
résistances & la rupture, et rechercher les meilleures formules d’ajustement,
nous avons, au Laboratoire Central des Ponts et Chaussées, réalisé des popu-
lations de forte taille (plusieurs centaines, méme plusieurs milliers) aussi
homogénes que possible, d’éprouvettes de mortier. Nous avons trouvé que la
«loi de valeurs extrémes»

Hlah=1 —e_(%)x

(ou z est la variable aléatoire représentant la résistance a la rupture et F ()
sa fonction de répartition, z, et K des parameétres dépendant de la population
considérée), permet pour les essais de compression ou de traction directe, des
ajustements trés satisfaisants de la partie inférieure de la courbe (v <z,) la
seule qui intéresse la sécurité des constructions. Pour la partie supérieure
(x> x,), cette formule représente moins bien la réalité, les courbes expérimen-
tales étant plus étalées que les courbes théoriques. Ainsi, pour un écart qua-
dratique moyen d’environ 89, correspondant a K =15, une valeur supérieure
de plus de 309, & la moyenne n’est pas, en fait, extrémement exceptionnelle,
alors que la formule lui attribue une probabilité inférieure a 10-13, done tres
inférieure & l'inverse du nombre total d’éprouvettes essayées dans tous les
temps et dans tous les laboratoires du monde.

La série de forte taille a toutefois I'inconvénient de nécessiter une étude
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spéciale, faite dans des conditions aussi particuliéres que possible, et il subsiste
un doute quant a la possibilité d’en tirer des conclusions générales. C’est
pourquoi nous avons recherché une méthode permettant d’exploiter les archives
de notre Laboratoire, principalement composées de séries de taille 6 relatives
a des essais de mortiers et bétons, notamment I’essai de compression sur cubes
et 1’essai de traction de Michaélis.

I1faut bien comprendre que ces séries ne peuvent pas étre considérées comme
formant, par leur réunion, un échantillon de grande taille d’une «population
mere» commune. En effet, les changements qui interviennent, d’une série a
I’autre, sont principalement sous la dépendance de facteurs humains, & varia-
tions discontinues, le plus souvent rebelles aux lois statistiques: changement de
I'opérateur ou perfectionnement de la technique d’essai en ce qui concerne
le laboratoire; variations dans la provenance et la qualité du ciment, les spéci-
fications officielles, progres de l'industrie des liants hydrauliques; et méme,
transformation de la mentalité des ingénieurs qui demandent les essais, cer-
tains d’entre eux s’adressant systématiquement aux Laboratoires, d’autres
n’y faisant appel que s’ils ont subi des mécomptes.

Nous les avons donc considérées comme appartenant a des populations
toutes différentes, mais en raison de leur communauté de nature, nous avons
admis que ces populations obéissent a des lois que 'on peut ramener & une
formulation mathématique du type défini ci-dessous.

La fonction de répartition de la résistance pouvant toujours étre repré-
sentée pour l’ensemble des populations considérées par:

F(x, A p,v...)

A, p,v ... étant des parametres qui varient d’'une population a ’autre, nous
admettons que cette fonction peut se mettre sous la forme:

F A pv) =D [f(x, A, u,v),q(x, A pw,v)...]

les f,g étant trés pew nombreux et trés simples comme expression mathématique.
On aura par exemple:
F(x,Ap)=d¢@Ax+pu)

(deux parametres, une seule fonction auxiliaire introduisant les paramétres
sous forme linéaire).

Cette hypotheése est suggérée par l'examen des principales lois usuelles
admises en statistique. La loi de Gauss, dans toute sa généralité, la lere loi de
Pearson, quand on fixe les exposants p et ¢, la loi de valeurs extrémes & variable

T—x,

non bornée inférieurement (dont lafonctionde répartitionest ' (z)=1—e"¢", '),
admettent précisément la formulation de 1’exemple particulier ci-dessus. La
loi de Galton, la loi de valeurs extrémes du type défini plus haut comme
meilleure loi d’ajustement des séries de grande taille (type & variable essen-
tiellement positive) ont des fonctions de répartition du type

F (A1) = ¢ A L(x)+p)
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ou encore, si I’on fait le changement de fonction ¢ (L () =% (¢) et le change-
& =M
ment de parametre v =e#. F ) =),

Si nous nous bornons au cas ou il n’y a qu'une fonction auxiliaire, nous
avons
F A psv o) =P[f (@A s v)];

f est supposée connue mais la fonction ¢ a une seule variable est supposée
inconnue.

Sila taille n des échantillons est supérieure au nombre m des parametres,
la répartition, dans l'espace a n dimensions, des points /> dont chacun figure
un échantillon, nous donne une information sur la fonction @; mais cette
information est plus facilement exploitable s7il est possible de trouver une
famille de multiplicités (courbes, surfaces ou hypersurfaces) telle que la
probabilité de présence du point P dans chaque portion d’espace délimitée
par une ou plusieurs de ces multiplicités soit indépendante des parametres.

Soit en particulier f (z,A,u) = Axz+pu. Nous considérons des échantillons
de taille 3 et nous les représentons, dans I’espace a 3 dimensions, chacun par
le point P dont les 3 coordonnées w;x,2; sont les 3 nombres constituant le
résultat d’épreuve de 1’échantillon. Si nous passons d’une population a une
autre en changeant A et p, la figure de I’espace représentant la densité de
probabilité de présence du point P subit, pour un changement de A, une homo-
thétie par rapport a l'origine, et pour un changement de p une translation
suivant la droite D (x; =2,=2,).

Done si nous considérons un diédre 4 formé par deux demi-plans passant
par D, la probabilité de présence de P a l'intérieur de ce diedre est la méme
pour tous les échantillons, et quand le nombre des échantillons croit indéfini-
ment, la proportion de points P a l'intérieur du diedre converge en probabilité
vers une valeur certaine égale a cette probabilité commune.

Si la loi étudiée est normale (loi de Laplace-Gauss) la «figure représentant
la densité de probabilité de présence de P» pour un échantillon, est formée de
sphéres concentriques. En effet, cette densité est:

1 _(;J:l—m)ﬂ'f(.’.t'g—)rz)’;(;l'g—m)2

Done la répartition entre les diédres 4 est uniforme: si 6 est la mesure en
radians d’un tel diédre, la proportion de points P a I'intérieur de 4 converge

en probabilité vers %

En fait, des 3000 échantillons de taille 6 trouvés dans nos archives, nous
avons tiré 60000 échantillons de taille 3, en divisant chacun en deux parts
des 10 maniéres possibles, et sur chacun des 60000 nous avons considéré la
quantité:

20, —To—X
f = + Arc cos e W

2V 4+ 2%+ 22 — 2, Ty — To Ty — X3 2,
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(le signe devant Arccos étant celul de x, —a;) qui représente 1’angle diédre du
plan passant par D et P avec le plan passant par D et I'axe des 2,. D’apres
ce qui précede, la répartition de ¢ tendrait vers I'uniformité entre —= et + =,
pour un nombre indéfiniment croissant d’échantillons, si les populations sui-
vaient une loi normale.

Toutefois l'ordre des indices affectés & chacun des nombres formant
I’échantillon doit étre vraiment aldatoire, sans corrélation avec l'ordre de
grandeur croissante ou décroissante. Or certains de nos résultats d’essais
avaient été classés par ordre de grandeur; d’autres d’apres l'ordre d’exé-
cution des essais.

Nous avons donc commencé par opérer la permutation aléatoire systé-
matique de nos échantillons, commandée par un procédé de randomisation.

Les nombres mis en ceuvre, étant des résultats expérimentaux, étaient
arrondis & la division du cadran la plus voisine de 'aiguille; d’ou le risque
d’un «biais» d’autant plus grave que les écarts entre z,, x, et a; sont souvent
de quelques divisions seulement. Nous avons corrigé ce biais, en ajoutant, a
chacun des résultats bruts, une partie décimale définie elle aussi par un pro-
cédé de randomisation.

En définitive, c’était la répartition de @ entre des tranches égales (0 & 10°,
107 a 20°...) qui nous intéressait. Pour économiser le temps de travail de la
machine, nous n’avons pas, en réalité, calculé §, mais seulement cosf, c’est-
a-dire la fraction algébrique en z, z,x,, et nous avons étudié la répartition des
valeurs trouvées entre les intervalles cos 0°—cos 10°, cos 10° —cos 20°, ete.

Le choix de tranches de 10° pour 6 réalise un bon compromis entre deux
exigences contraires: avoir assez de tranches pour obtenir une connaissance
suffisante de la fonction représentant la distribution des points P par rapport
a @; avoir assez de points P dans chaque tranche pour réduire suffisamment
les écarts relatifs accidentels.

Conformément & la théorie, notre courbe de fréquence admet, aux dits

” N o 27 pps " . ;
écarts pres, la période R Les tranches ont des différences significatives qui

prouvent l’existence d’écarts entre les lois des populations étudiédes et la loi
de Gauss. Les moins chargées sont celles voisines de +30°, +90°, +150°. Les
plus chargées sont celles voisines de +60° et de 180°; mais des maxima moins
accusés existent au voisinage de 0° et +120°.

Est-il possible de remonter de la fonction densité de probabilité en 6
(supposée connue suffisamment par ces résultats) a la fonction ¢ (z) telle que
¢ (Ax+pu) soit la forme générale de la fonction de répartition des populations
étudiées? Ce probleme comporte la résolution d’une équation intégrale non
linéaire, qui peut en principe étre obtenue, au moins numériquement, par une
méthode de «cheminement fonctionnel». Considérons une «fonction de départ»
¢, et la fonction yx,(f) qui lui correspond (on la détermine par de simples
quadratures). Etablissons alors entre y, et y un «trajet fonctionnel» c¢’est-a-
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dire une famille de fonctions dépendant continiment d’un paramétre m et
telle que pour m =0 on ait la fonction x, et pour m =1 la fonction y (le trajet
sera «rectiligne» si la famille considérée est:

Xo+ 7 (X — Xo) -

Déterminons de proche en proche les variations infiniment petites que doit
subir @ pour que les variations infiniment petites correspondantes de y se
situent sur le trajet fonctionnel: c’est un probléeme de Fredholm, et les cal-
culatrices électroniques, qui opérent facilement les inversions de matrices
d’ordre élevé, peuvent généralement le résoudre numériquement avec une
bonne approximation. Le cheminement permet donc d’arriver a une fonction
@ telle que la fonction qui lui corresponde soit x (s’il n’est pas interrompu par
des singularités). La principale difficulté parait étre le choix de la fonction de
départ et la solution des indéterminations; le probleme posé peut en effet
admettre une infinité de solutions dont une seule est la bonne, il faut que la
fonction de départ en soit assez voisine. Les études préalablement faites sur
des séries de grande taille pourront guider ce choix.

Nos prétentions seront plus modestes car le travail mathématique serait
trop considérable et la fonction yx (f) encore insuffisamment bien connue. Nous
commencons par rechercher quelle serait la fonction x (6) si I'on pose ¢ (§) =

{.‘ K
=1l—e (f_o) (loi de valeurs extrémes).

La densité de probabilité dans le cas £ =x est

K-1 x \K
@) =K xTK e_(Z) (en remplacant &, par )
0

et dans l’espace x; z, z; la densité de probabilité relative au point P

_ K3 (zy 2amg) B e—(ﬂ)x—(ﬂ K”(%)K.

Pr (Cl?) - 3K To To
&

Dans chaque tranche 6 & 6+ d 6 nous commencons par intégrer entre les
cones r=sz et r=(s+ds)z avec

1/3 /2 2 P 2

2 = T(xl+x2+x3) et r=Vadi+ad+ai—22.
Le volume élémentaire d’intégration est alors z2sdsdzd 6. Si nous posons

g P

x,;=m;z avec m-:E 1+sV2cos 9—1-&(7;—1)] (t =1,20u3) lintégrale
1 k2 (4 3 3 g

dans la tranche d @ est:

St @
K3 (m ms ma)E—1 _(nr{{*:mf{+mf)s’{
dI:de ( 1x3]2£ 3) sdsz"K—le oK dz,
0
0 0
> o |
My Moy M) E—
- szKZJ oy ey M) ™" .
; (mi* +mz +mg")

(s; étant la plus petite valeur positive de s qui annule 1'un des m;)
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cette intégrale peut se calculer numériquement, en fonction de . On trouve,
par exemple pour K =15:

x (30°) X (60°)
x (0°) x (0°)

Aux lois de valeurs extrémes correspondent des fonctions y (¢) qui pré-
sentent bien les maxima trouvés expérimentalement pour +60° et 180°, mais
non ceux trouvés pour 0° et + 120°. Cela tient a leur fort «étalement» du coté
des faibles valeurs et & leur trés faible étalement du coté des grandes valeurs.

Mais si on considére une loi symétrique qui se confond & peu pres avec
une loi de valeurs extrémes pour les faibles valeurs de la variable, la fonction
x (0) correspondante a des maxima, tous égaux, pour 0°, +60°, +120°, +180°,
En diminuant I’étalement du c6té des grandes valeurs, on peut obtenir une
fonction x () conforme & notre répartition expérimentale (maxima principaux
pour +60° et 180°, et maxima moins accusés pour 0 et + 120°) tandis que la
fonction ¢ (€) se rapproche des fonctions de répartition trouvées expérimen-
talement dans les séries de forte taille.

Pour tester I’application de lois de ce genre il eut été plus rationnel de
considérer que les parameétres s’introduisent par l'intermédiaire de A L (z) + p
ou de v2?, et, en conséquence, de remplacer, dans le calcul de 6, nos quantités
x, &, x5 par leurs logarithmes; mais cela représentait une augmentation impor-
tante du temps-machine, et comme les parametres de dispersion de nos popu-
lations n’étaient pas eux-mémes excessivement dispersés, cela n’aurait pas
modifié beaucoup nos résultats: de plus il était intéressant de tester la loi
normale.

- 1,172, = 1,5075.

Tableaw du nombre de valeurs de 6 tombant dans chaque classe

0 a 4+ 10° et 0 a — 10° 3615
+ 10° a4 + 20° et — 10° a — 20° 3440
+ 20° a 4+ 30° et — 20° a -— 30° 3475
+ 30° a + 40° et — 30° a — 40° 3430
+ 40° a 4+ 50° et — 40° a — 50° 3500
+ 50° a 4+ 60° et — 50° a4 — 60° 3715
+ 60° a + 70° et — 60° a — 70° 3610
+ 70° a4 4 80° et — 70° a — 80° 3510
+ 80° a + 90° et — 80° a — 90° 3540
+ 90° a4 4+100° et — 90° & -—100° 3320
+100° & +110° et —100° & —110° 3385
+110° & +120° et —110° & —120° 3485
+120° a +130° et —120° & —130° 3570
+130° a +140° et —130° & —140° 3450
+140° a +4150° et —140° & —150° 3440
+150° a +4+160° et —150° a —160° 3375
+160° a +170° et —160° a —170° 3580
+170° & 4+180° et —170° & —180° 3680

63120
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Résumé

La fonction de distribution des résistances a la rupture d’une éprouvette
d’un type donné, se détermine de préférence au moyen de séries de forte
taille, mais les laboratoires disposent surtout, dans leurs archives, de séries
de petite taille appartenant & des populations différentes mais de méme nature.

Nous avons admis que la facon dont s’introduisent les parametres dans la
forme générale de la fonction est connue a priori et nous avons montré par un
exemple tiré de 60000 séries de taille 3 provenant du Laboratoire Central des
Ponts et Chaussées, comment il est possible d’obtenir dans ces conditions
une information sur cette forme générale.

Zusammenfassung

Die Verteilungsfunktion der Bruchfestigkeiten einer gegebenen Art von
Probekorper bestimmt sich vorzugsweise mit Hilfe von groflen Serien; leider
verfiigen die Laboratorien in ihren Archiven vor allen Dingen iiber kleine
Serien, die verschiedenen Grundgesamtheiten gleicher Art angehoren.

Wir haben angenommen, dafl die Art, mit der sich die Parameter in die
allgemeine Form der Funktion einfiihren, a priori bekannt sei und haben
durch ein Beispiel mit 60 000 Serien der Griofle 3 des « Laboratoire Central des
Ponts et Chaussées» gezeigt, wie es moglich ist, unter diesen Umstéinden eine
Auskunft iber diese allgemeine Form zu erhalten.

Summary

The function of distribution of ultimate strength of a given pattern of
test piece, is determined in preference by means of great sized series; but
laboratories dispose especially in their files of small-sized series belonging to
different populations of the same kind.

We have assumed that the way, by which parameters are introduced in
the general form of the function, is known a priori, and we have shown, with
an example from 60000 series of size 3 from the “‘Laboratoire Central des
Ponts et Chaussées’’, how it is possible under these conditions to obtain an
information about that general form.
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