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F. STUSSI
Prof. Dr., Priasident der IVBH, Ziirich

Ia. Die maligebenden Festigkeitseigenschaften der Baustoffe

Wenn wir an einem Kongrel} der Internationalen Vereinigung fiir Briicken-
bau und Hochbau die Frage der ma3gebenden Festigkeits- und Verformungs-
eigenschaften unserer Baustoffe diskutieren, so diirfte es niitzlich sein, unseren
Standpunkt und damit das Ziel dieser Diskussion festzulegen. Ich erlaube mir
hier eine Feststellung von Prof. W. WriBvLL?), Stockholm, zu zitieren, die
auch uns als Richtlinie dienen kann:

“There are two quite different lines of attacking fatigue problems: the
phenomenological and the metallographical. The first one is the line of the
designer, who wants to know what happens; the second one, that of the metallo-
grapher, who wants to know why it happens. As a link between the two, you
will find the third man, the tester of materials.

1) W. WeisurL: The Statistical Aspect of Fatigue Failures and its Consequences.
Fatigue and fracture of metals, edited by W. M. Murray, Mass. Inst. Techn., 1952.
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All these categories have different opinions as to the way of designing the
experiments and of conducting the testing. The metallographer, for instance,
may think — I have met this statement quite recently — that the basic physi-
cal facts of fatigue should be clarified before the organization of any large
scale testing. The designer, on the other hand, wants urgently many more
facts about fundamental questions than are available today, and it is defi-
nitely impossible for him to wait for the many years that it will certainly take
to obtain well-founded theories which will be of any use to him. There is no
need, I think, to point out that both of the ways have to be trod and that
progress in one field may have quite important influences on the proceedings
in the other.”

Soweit Professor WEIBULL, dessen grofle Verdienste um die statistische Beur-
teilung und Auswertung von Ermudungsversuchen ich an dieser Stelle aus-
driicklich anerkennen machte.

Unser Standpunkt ist damit eindeutig festgelegt; die Kenntnis des Material-
verhaltens ist fiir uns als Grundlage der Tragwerksbemessung notwendig und
wir sind gezwungen, uns diese Grundlagen auf phédnomenologischem Weg zu
beschaffen, wenn eine ursichliche physikalische Begriindung der maf3gebenden
Vorginge noch nicht vorliegt. Dal wir aber eine Zusammenarbeit mit der
Physik und der Materialpriifung begriilen, sei hier ebenfalls ausdriicklich
festgehalten.

Um diese Uberlegungen zu veranschaulichen, sei der Zusammenhang zwi-
schen der Wechselfestigkeit oy eines metallischen Werkstoffes und der Last-
wechselzahl n, die den Bruch des Probestabes oder des Werkstiickes verursacht,
beigezogen. Fiir diese Wohlerkurve der Wechselfestigkeit sind grundsitzlich,
wie ich schon im « Vorbericht» festgestellt habe, verschiedene Ansétze denkbar.
Ich habe fir diesen Zusammenhang den Ansatz

_%Z‘*’fﬂ’aul[ (1)

=" Lify

vorgeschlagen, bei dem der gesuchte Festigkeitswert als gewogenes Mittel
zwischen den beiden Grenzwerten, der statischen Zugfestigkeit ¢,, und dem
asymptotischen Endwert o, erscheint; der «Gewichtsfaktor» oder die Er-
miidungsfunktion f;- (n).

Coz — O
fwr =— 4 (1a)
O — Oamr

liBt sich durch Logarithmieren linearisieren oder es ist

a, — O %
0Z W _ Pr+Ay,
O = Oair

A = log fy = log

wobei 7=logn, und es ist damit

for = a* = fopn?. (Ib)
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Einen anderen Ansatz hat W. WeiBuLL?) auf Grund eines Vorschlages von
E. EprEMIAN und ausgehend von der GaulBschen Fehlerfunktion vorgeschla-
gen, den wir in der Form

O = O+ (0pz — Ogr) €707 (2)

anschreiben konnen; dieser Ansatz wird durch doppeltes Logarithmieren
linearisiert:

ag — O 7

0Z all

loglog —=—*=

= rlogi + .
O — Ou

Die beiden Ansitze seien am Beispiel einer Versuchsreihe an einem geloch-
ten Stab (Loch §=4mm bei 30 mm Stabbreite) aus einem Stahl der Giite
St. 44 (Stahl von Roll) nach Fig. 1 miteinander verglichen; dieser Vergleich
ist in Fig. 2 dargestellt. Beide Ansétze stimmen im Versuchsbereich von etwa
n=30-10% bis tiber n=10-10% gut iiberein; die unvermeidlichen Streuungen,
die besonders bei kleinen Spannungswerten grol3 werden, erlauben keinen
Entscheid dariiber, welcher der beiden Ansitze den Verlauf der Wohlerkurve

tlem' %

o3

\’ Lochstao Stakl von Roll, 6y - 4764/em*
Wechsellestigheit

10g g =piedy (ES0ssi)
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Fig. 1.
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besser wiedergibt. Wenn ich dem Ansatz nach GI. (1) den Vorzug gebe, so
deshalb, weil er auch andere Langzeitvorginge zutreffend erfallt und weil er
einfacher aufgebaut und leichter zu handhaben ist als der Ansatz nach Gl. (2).

Es ist denkbar, dall nicht nur zukiinftige Versuchsreihen mit grolen Zahlen
von Einzelversuchen und ihre statistische Auswertung, sondern auch der «Zwei-
stufenversuch» und seine Ausdeutung im Sinne der Schadenshiufung uns die
Bestitigung des richtigen Ermiidungsgesetzes bringen konnen. Es ist bekannt,
daB3 das Theorem von Palmgren-Miner nicht giiltig ist fiir den Zweistufen-
versuch, bei dem in einer ersten Laststufe o, (Bruch fiir #, Lastwechsel), 4 n,
Lastwechsel und anschlieBend in einer zweiten Laststufe o, (n,) weitere 4 n,
Lastwechsel bis zum Bruch durchgefiihrt werden. Sind die beiden Laststufen
gleichartig (z. B. Wechselbeanspruchung oder konstante Mittelspannung o,,)

und setzen wir

¢ = dn, £ = Any
17 g, T om,
so wird
fir 0y <05 ny>ng: £+ &> 1
und fiir gy > 0y, ny<ng: &+ & <1

im Gegensatz zum Theorem Palmgren-Miner mit & +&,=1. Dies bedeutet
aber, dal} die Schadenslinie S — ¢ keine Gerade sein kann?).

Zur Form der Schadenslinie kénnen wir etwa auf Grund folgender Uber-
legungen gelangen: nehmen wir an, dafl die Schéidigung e des Materials durch
Ermiidung proportional zur Lastwechselzahl zunimmt3),

e=a§,

sich aber auf einem zunehmend geschiadigten Stab mit linear abnehmenden
Arbeitsvermogen w,

w=1-¢,
auswirkt, so ist der relative Schaden
e o€
S= o= 0 (3)

Fiir £ =1 tritt der Bruch ein oder es ist
o

1—
und damit a+f =1.

S=1=

™

2) N. M. NewMARK: A Review of Cumulative Damage in Fatigue. Fatigue and frac-
ture of metals, edited by W. M. Murray, Mass. Inst. Techn., 1952.

3) Diese Annahme erscheint dadurch gerechtfertigt, daB bei konstanter Spannung
die RiBausbreitung proportional mit der Lastwechselzahl vor sich geht; s. W. WEIBULL:
Size effects on fatigue crack initiation and propagation in Aluminium sheet specimens
subjected to stresses of nearly constant amplitude. F. F. A., Flygtekniska Foérsoksanstal-
ten, Meddelande 86, Stockholm 1960.
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Dividieren wir in Gl. (3) Zéhler und Nenner durch «, so kénnen wir mit

a = 1’ b — é’
04 o4
auch schreiben S = _‘g;_
a—>b¢
oder wegen a=1+5b S = _ & . (3a)
T16(1-9)

Es ist nun allerdings aus dem Zweistufenversuch nicht moglich, die Schadens-
funktion & direkt zu bestimmen, da wir daraus nur relative Schadenslinien im
Vergleich zu einer willkiirlich angenommenen Schadenslinie fiir die erste Last-
stufe o, erhalten konnen. Aus einigen ersten Versuchen mit Wechselbean-
spruchung zeigt sich nun aber gute Ubereinstimmung zwischen Versuch und
Rechnung, wenn die Schadensfunktion & der Ermiidungsfunktion f;;- nach
(Gleichung (1a) gleichgesetzt wird:

G0z — 9w
=f =< W 4
’ fﬂ O — Oam ( )
: _ ¢ ,
Odel STV = l—m‘_—f). (-_La)

Wird nun im Zweistufenversuch zuerst die Laststufe o, mit 4n,=§&, n, Last-
wechseln und anschliefend die Laststufe o, aufgebracht, so steht fiir diese
noch die dem Schadensbereich von S =S, bis § =1 entsprechende Lastwechsel-
zahl 4 n, =&, n, zur Verfugung oder es ist

I e 1 -

52 - 1 +(P§1’ (D)

wobel Q= jlz-l-;ffl (5a)
1

bedeutet (Fig. 3). In Fig. 4 sind zwei Versuchsreihen mit diesen rechnerischen
Werten verglichen; in den Versuchen von E. W. C. WiLkiNs?) ist o, <0,,

s Schadenshiulung, &<6;, n>n; % Zweistyfenversuch
Lo 0
/! N
RN
£, 173 —-f—’f/
/
[ (6-63)

as as

S S
1+ (1-¢)
Fig. 3.

4) E. W. C. WiLkins: Cumulative damage in fatigue. Colloquium on fatigue, Stock-
holm 1955, Berlin-Géttingen-Heidelberg 1956.
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f1>fas €, +&>1, wihrend in der eigenen Versuchsreihe mit Lochstiaben aus
Stahl von Roll die entgegengesetzten Verhéltnisse mit &, + &, <1 vorliegen. Es
sei ausdriicklich bemerkt, dal der Zusammenhang b =f;;- nach Gl. (4) nur fir
Wechselbeanspruchungen (o,,,. = — 0in > 0, = 0) gilt; fiir andere Beanspruchun-
gen mit o, +0 ist der Zusammenhang zwischen b und f;- noch durch ent-
sprechende Versuche zu bestimmen.

versuche E.W.C. Wilkins Lochstab Stahl van Roll

- 0!

A (Coll Fatigue, Stockholm 1955)
&, -2 280%%, €.-z360" g - 2205t/em’, 6, - 2 1483 l/om?
&m0’ "" & -4XUe, G- tislem’ [+ G
.0} <= 1000,

n,-850.10° £ =287
-
7, =1000.0° 4o=i2n
§\ @ -239
s0 500 Y
}an,-m.n‘
£, - 638 |
4= 262 :
[ \g\ !l )
|
2N
y

0 - 0
o s00 wog-0' 0 25 oo

Fig. 4.

Neben Laboratoriumsversuchen an Probestdben, die uns die grundlegen-
den Zusammenhinge im Langzeitverhalten der Bau- und Werkstoffe liefern
miissen, sind auch Grofversuche an Bauteilen oder an ganzen Tragwerken
erwiinscht, um die Ubertragung der im Laboratoriumsversuch gefundenen
Ergebnisse auf die Bemessung von Tragwerken zu iiberpriifen und ihre Zuver-
lassigkeit zu gewihrleisten. Darin liegt die Bedeutung des von Prof. JAMES
Micuaros und Mitarbeitern vorgelegten Beitrages.

Der Beitrag von A. M. FREUDENTHAL, als Erginzung zu seinem Aufsatz
im «Vorbericht» und als Stellungnahme zu meinem Generalbericht, zeigt, dall
noch keine Angleichung der beiden Standpunkte eingetreten ist. Das von Prof.
FrEUDENTHAL aufgerollte Problem bleibt weiter von grundlegender Aktualitét;
ich bin iiberzeugt, dafl es eine auch fiir das Bauwesen befriedigende Losung
finden wird, auch wenn die versuchstechnische Abkldrung noch geraume Zeit
erfordern diirfte.

Die Schwierigkeit bei der Durchfithrung von Versuchen liegt darin begriin-
det, dall Streuungen unvermeidbar sind. Zuverldssige Mittelwerte und die
GroBe der zu erwartenden Abweichungen kénnen somit nur von Versuchs-
reihen mit einer groBen Zahl von Einzelversuchen geliefert werden, was oft
mehr Zeit in Anspruch nimmt als im gegebenen Einzelfall zur Verfiigung
steht. Es ist deshalb wertvoll, dal} uns die mathematische Statistik die Wege
aufzeigt, wie auch aus kleineren Versuchszahlen giiltige Aussagen zu finden
sind. Der Diskussionsbeitrag von Mr. Davin zeigt grundsitzliche Aspekte
dieses Problems.



~1

GENERALBERICHT

Ib. Entwicklung der Berechnungsmethoden

Bei der Aufstellung numerischer Berechnungsmethoden zur Bemessung von
Tragwerken sind grundsétzlich zwei Wege denkbar; fiir beide liegen Diskus-
sionsbeitrige als Beispiele vor.

Ein erster Weg beruht darauf, daf3 Differentialgleichungen durch Beziehun-
gen iiber numerische Integration (Flachenberechnung mit Simpsonscher Regel.
Seilpolygongleichung, Einfiihrung von Reihenentwicklungen) oder Differen-
tiation in Gleichungssysteme fiir bestimmte Intervallpunkte des Integrations-
bereiches umgesetzt werden. Den Weg der wiederholten Integration (Flachen-
berechnung mit der Simpsonschen Regel) zeigt B. GiLc, indem er von der
hochsten in der Differentialgleichung vorkommenden Ableitung ausgeht und
die niedrigeren Ableitungen daraus berechnet. Zu beachten ist jedoch, dafl bei
einer groflen Zahl von Teilpunkten die Bestimmungsgleichungen recht schwer-
fallig werden konnen.

Den Weg der Reihenentwicklung zur Aufstellung eines Gleichungssystems
zeigen W. A. NasH und F. H. Ho bei der Berechnung einer eingespannten
Kreisplatte auf elastischer Unterlage.

Entscheidend fiur die Leistungsfahigkeit solcher numerischer Verfahren
wird immer sein, ob es gelingt, mit einer moglichst kleinen Zahl von Bestim-
mungsgleichungen eine moglichst gute Genauigkeit zu erreichen.

Ein zweiter Weg beruht darauf, fiir die Untersuchung eines Tragwerks ein
einfach zu iberblickendes «Ersatzsystem» einzufithren. So liegt ja der
graphischen Berechnung eines einfachen Balkens in der elementaren Baustatik
die Analogie zwischen den Biegungsmomenten des Balkens mit den Durch-
biegungen eines belasteten Seiles zu Grunde; O. Monr hat diese Analogie
auch auf die Berechnung der Biegungslinie ausgedehnt. S. O. ASPLUND zeigt
in seinem Beitrag (wird spéiter in den «Abhandlungen» verdffentlicht) eine
solche Analogie zwischen der Berechnung von Schalen und von Raumfach-
werken.

V. KOLOUSEK erweitert seine fritheren Beitrige zur Schwingungsberechnung
um eine Untersuchung iiber die Schwingungen durchlaufender Tragwerke mit
wiederholten oder gleichartigen Elementen. Dabei wird mit einer Losung durch
fortgesetzte Anndherung ein weiteres Mittel numerischer Berechnungsmetho-
den aufgezeigt. ,

Durch die Einfithrung elektronischer Rechenautomaten bei den Berech-
nungen des Bauwesens, wozu die Referate von A. MEEMEL und Ch. MASSONNET
mit Mitarbeitern illustrative Beitrige darstellen, wird die Bedeutung leistungs-
fahiger und zuverldssiger Rechnungsmethoden noch gesteigert; als weitere
Forderung tritt nun noch diejenige der Moglichkeit einer einfachen Program-
mierung hinzu.

Der Beitrag von A. BERIO zeigt ein Beispiel fiir jene Fille, in denen Modell-
versuche die statische Berechnung ersetzen oder erginzen kénnen; dieses Vor-
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gehen ist vor allem zweckmillig bei komplizierten Tragwerksformen, bei denen
eine verhiltnismaflig einfache und doch zuverlissige Berechnung nicht maog-
lich ist.

Mit Grenzlastzustinden beschéftigen sich die Beitrige von W. OrLszax und
D. C. DruckERr (letzterer in Band 21 der «Abhandlungen» verdffentlicht).
Diese Berechnungsverfahren, so interessant sie auch theoretisch sein magen.
sind im Bauwesen, d.h. als Bemessungsgrundlage fiir Bauwerke, umstritten.

Sowohl W. WigrzBick1 wie CH. MassoXNET und P. MOENAERT erginzen
ihre im « Vorbericht» veroffentlichten Beitrige.

SchluBfolgerungen

1. Die KongreB3beitrige zur ersten Arbeitssitzung haben deutlich die heute
schon weit verbreitete und sich stédndig verstirkende Tendenz aufgezeigt. der
Bemessung von Tragwerken nicht nur die Ergebnisse von kurzfristigen Labo-
ratoriumsversuchen, sondern das wirkliche Verhalten der Baustoffe im lang-
dauernden Betrieb unter verdnderlichen Belastungen zu Grunde zu legen. Es
handelt sich hier um Langzeitvorginge, bei denen besonders die Fragen der
Ermiidung, der Zeitstandfestigkeit, der Relaxation und des Schwindens und
Kriechens im Vordergrund stehen.

Eine abschlieBende Beantwortung dieser Fragen auf Grund einer physi-
kalischen Erklirung dieser Vorginge ist nach dem heutigen Stand der Erkennt-
nisse noch nicht méglich. Das Bauwesen ist deshalb vorldaufig auf ein phiano-
menologisches Vorgehen angewiesen, wobei jedoch nach wie vor eine Zusam-
menarbeit mit Physik und Materialpriifung erwiinscht ist.

Die Aussprache am Kongrel hat jedoch einige grundsitzliche Hinweise
fiir das weitere Vorgehen und Anordnung und Auswertung der notwendigen
zukiinftigen Versuche ergeben, mit denen die heute vorliegenden Ansitze
iiberpriift, wenn notig berichtigt und weiter ausgebaut werden sollen.

2. Bei der Entwicklung der Berechnungsmethoden steht der Ausbau der
numerischen Methoden im Vordergrund, denn die Bemessung von Tragwerken
ist eine eindeutig numerisch orientierte Aufgabe. Dabei besteht die Moglich-
keit, die Gleichgewichts- und Forménderungsbedingungen, die das Kriftespiel
in Tragwerken beherrschen und die héufig auf Differentialgleichungen fiihren,
durch moglichst einfach aufgebaute Gleichungssysteme zu erfassen und diese
numerisch zu losen. Entscheidend fiir die Zweckmifigkeit eines Berechnungs-
verfahrens ist immer, da die gestellte Aufgabe mit minimalem Aufwand
zuverlissig, d.h. mit geniigender Genauigkeit gelost werden kann. Eine ana-
lytische Losung in geschlossener Form ist nur dann anwendbar, wenn die bei
ihrer Aufstellung getroffenen Voraussetzungen auch in Wirklichkeit erfiillt
sind. Die Einfithrung elektronischer Rechenautomaten verstirkt das Bediirf-
nis nach leistungsfihigen numerischen Methoden.
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Die Berechnung eines Tragwerks kann auch etwa durch Einfiihrung eines
leichter zu iiberblickenden Ersatztragwerks erleichtert werden. Ferner sei fest-
gehalten, dafl in Sonderfillen auch der Modellversuch die eigentliche Berech-
nung ersetzen oder erginzen kann.

3. Bei der Ausfithrung unserer Tragwerke hat der Konstrukteur immer
daran zu denken, daB normalerweise die Bauten. die wir heute herstellen,
auch spiteren Generationen noch ihre Dienste leisten miissen und deshalb
einem langdauernden Betrieb unter verdnderlichen Bedingungen unterworfen
sein werden. Je besser wir diese wirklichen Arbeitsbedingungen in bezug auf
statische und dynamische Belastungen, auf rdumliche Zusammenhinge und
riumliche Kraftwirkungen, aber auch in bezug auf das Langzeitverhalten der
Baustoffe beim Entwurf und bei der Berechnung der Tragwerke beriicksichtigen,
um so zuverlissiger erfiillen wir unsere Aufgabe als konstruierende Ingenieure.

General Report

Theme Ia. The properties of Materials

When the subject of discussion at a Congress of the International Associa-
tion for Bridge and Structural Engineering is the determinant mechanical
properties of materials, it seems advisable to state, first of all, the point of
view we have adopted and hence the purpose of the discussion.

In this connection, I would venture to quote the remarks made by Pro-
fessor WerBuLL!), of Stockholm, which may also serve as a directive for us:

“There are two quite different lines of attacking fatigue problems: the
phenomenological and the metallographical. The first one is the line of the
designer who wants to know what happens; the second one, that of the metallo-
grapher, who wants to know why it happens. As a link between the two, you
will find the third man, the tester of materials.

All these categories have different opinions as to the way of designing the
experiments and of conducting the testing. The metallographer, for instance,
may think — I have met this statement quite recently — that the basic
physical facts of fatigue should be clarified before the organisation of any
large scale testing. The designer, on the other hand, wants urgently many
more facts about fundamental questions than are available today, and it is
definitely impossible for him to wait for the many years that it will certainly

1) W. WerBuLL: The Statistical Aspect of Fatigue Failures and its Consequences.
Fatigue and fracture of metals, edited by W. M. Murray, Mass. Inst. Techn., 1952.
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by a double logarithm, we obtain the linear relationship

0Z " Taw

loglog0 = rloge+ .
ag

W Ta

Let us compare these two expressions by considering, for example, the
results of a series of tests carried out on test-pieces, in which a hole was bored
(diameter of hole 4 mm, total width 30 mm) made of 44 steel manufactured by
the Société de Roll (Fig. 1) *). As is evident from Fig. 2 *), the two expressions
show good agreement in the range studied from 7n=30-10% to more than
n=10-10°%; the unavoidable scatter, which is particularly high in the case of
small stresses, made it impossible to determine which of the expressions gave the
best reproduction of the trend of the Wohler curve. If I give preference to
expression 1, it is because it can be accurately applied to other phenomena
of long duration and is simpler in its form and in its application than expres-
sion 2.

It is not only by conducting and developing further series comprising a
large number of tests, it is also, in all probability, by means of a “‘two-stage
test””, understood in the sense of the cumulation of partial damage in each
stage, that it will be found possible to decide which is the true law of fatigue.
It is known that the Palmgren-Miner theorem does not hold good for the two
stage test; this test comprises, in a first loading stage o, (rupture after n;
cycles), 4 n, cycles followed, in the second stage o, (n,), by 4 n, cycles to failure.
When the stresses are of the same kind in both stages (for example, alternating
stresses or a constant mean stress o,,), we obtain, by putting

1 ny s 2 o s
for 0, <0y, ny>ne: §+E>1
and for 01> 0y, ny<ny: E3+&<1

whereas the Palmgren-Miner theorem indicates that &, +¢,=1. Consequently,
the damage curve S —¢ cannot be a straight line 2).

We can form an idea of the trend of this curve by means of the following
considerations; let us suppose that the damage e of the material increases in
proportion to the number of cycles?),

e=af.

*) See Figures in German text.

2) N. M. NEwMARK: A Review of Cumulative Damage in Fatigue. Fatigue and frac-
ture of metals, edited by W. M. Murray, Mass. Inst. Techn., 1952.

3) This hypotheses seems to be justified since, under constant stress, the cracks are
propagated in proportion to the number of cycles; see W. WEIBULL: Size effects on fatigue
crack initiation and propagation in aluminium sheet specimens subjected to stresses of
nearly constant amplitude. F.F.A., Flygtekniska Forsoksanstalten, Meddelande 86,
Stockholm 1960.
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take to obtain well-founded theories which will be of any use to him. There is
no need, I think, to point out that both of the ways have to be trod and
that progress in one field may have quite important influences on the pro-
ceedings in the other.”

Such are the reflections of Mr. WEiBuLL and I should like to draw the
attention to the great value of his work concerning the critical consideration
and the interpretation of the results of fatigue tests.

Our point of view is thus clearly determined; we are obliged to ascertain
the behaviour of materials because it governs the dimensioning of structures
and we are compelled to acquire this basic knowledge by proceeding in a
phenomenological manner as long as the underlying physical causes of the
fundamental phenomena remain concealed from us. We would like to point
out that co-operation between the physicist and the expert in testing materials
will, of course, always be welcome.

In order to illustrate these reflections, let us consider the relationship
which connects the resistance of a metal to alternating stresses oy, with the
number of cycles n which causes rupture of the test-piece or of the part. This
curve, known as Wohler’s curve, describing the resistance to alternating
stresses, may, in principle, be expressed in various ways, as I have already
pointed out in the “Preliminary Publication’. I suggested a relationship
having the form

oozt fw o

O = Tdfr (1)

The resistance sought appears in this expression as the weighted average
of two limiting values: the static breaking strength o,, and the asymptotic
fatigue limit o, .

The “weight” is given by the endurance function /- (n)

ag — O
_ %z %% ,
fw = (la)
Ow = Camr
the logarithm of which varies linearly with the value i =logn; and we there-
fore have

A = log fy = log ;‘:%:—U"% = pi+l

and fop = Gt = fon®. (1b)
On the basis of a suggestion made by Mr. EPREMIAN and using the Gaussian

curve of errors, Mr. WEIBULL?) derived another expression which may be written
in the form

o
N—

Oy = Oy + (097 = 0gyp) €707 (¢
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Since it concerns an increasingly damaged test-piece, for which we assume
that the capacity of resistance w decreases linearly,

w=1-B¢,
the relative damage may be written
e o€
= — = : 3
S=% = T1pe (3)
Failure occurs for £ =1 and we have
o4
S=1= i—p
and hence at+B=1.

Let us divide the numerator and the denominator in Eq. (3) by « and put

a = 1, D == §
o o 4
We can then write 8=
or since a=1+b, N = m (3&)

In actual fact, the two-stage test does not enable us to determine the damage
function b directly; we can only obtain relative damage curves, with reference
to an arbitrarily assumed curve for the first loading stage o;. However, the
results of a few preliminary tests with alternating stresses are in good agree-
ment with the calculated values if we take as the damage function b, the
fatigue function f;;; expressed by Eq. (1a), namely

_ _ Ooz — O
b=lw= 9w — Caw 4)
_ ¢
or S S T e a=g o

Let us apply, in a two-stage test, the loading stage o, comprising 4 n, =§, n,
cycles followed by the stage o,; we shall have at our disposal in this last-
mentioned stage 4 n, = £, n, cycles corresponding to the field of damage extend-
ing from S=.S; to S=1 and hence

1-¢, i
& e (5)
with (Fig. 3) *) @ =f127"f"11 (5a)

In Fig. 4%*), the results of two series of tests are compared with these

*) See Figures in German text.
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calculated values; in the experiments conducted by Mr. WiLkixs?*) we have
0, <0y, [1> s, €4+ &> 1, whereas in my own tests, carried out on de Roll steel
test-pieces with a hole drilled in them, we have the opposite case, namely
&, +&,<1. We should point out explicitly that the relationship b=/, (Eq. (4))
only holds good for alternating stresses (¢,,,,= —0,,;,. 0, =0) and that for
other types of stress, with o,, &0, the correlation between & and f,;- would have
to be determined by means of similar tests.

Tests on specimens should reveal the basic relationships which govern the
behaviour of materials subjected to stresses of long duration. It would be
desirable that these laboratory researches should be complemented by large-
scale tests on structural members or on complete structures; this would make
it possible to control the application, to the dimensioning of structures, of the
results obtained in the laboratory and ensure their accuracy. It is in this
connection that the importance of the paper by Prof. Micmaros and his
collaborators is to be found.

Mr. FREUDENTHAL supplemented his paper in the ‘“‘Preliminary Publi-
cation” and replied to the comments I had made in my general report; it will
be observed that our respective points of view have not yet been reconciled.
The problem raised by Mr. FREUDENTHAL is fundamental and it remains very
much a matter of current interest; I feel sure that a solution will be found,
which will also be satisfactory for the civil engineer, even though it may
require a lengthy and exacting experimental investigation.

When tests are undertaken, the difficulty lies in the unavoidable scatter of
the results. It is only by means of series comprising a large number of tests
that it becomes possible to obtain thoroughly reliable average values and to
determine the magnitude of the probable deviations; this often require more
time than is available for the particular case in question. It is consequently
of considerable interest for mathematical statistics to show us how to make
valid use of limited series of tests. The paper by Mr. Davix deals with certain
basic aspects of this problem.

Theme Ib. Development of Methods of Calculation

In order to establish numerical methods of calculation for the purpose of
structural design, it is possible, in principle, to adopt one or other of two
procedures, both of which are illustrated by contributions to the discussion.

In the first place, we may transform — by means of relationships making
it possible to integrate numerically (calculation of a surface area by means of
Simpson’s rule, equation of the funicular polygon, introduction of develop-

4y E. W. C. WiLkiNs: Cumulative damage in fatigue. Colloquium on fatigue, Stock-
holm 1955, Berlin-Gottingen-Heidelberg 1956.
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ments in series) or to differentiate — differential equations into systems of
equations written at a finite number of points in the field of integration. It is
a process of successive integration (calculation of a surface area by means of
Simpson’s rule) that is employed by Mr. GiLc: he starts from the derived
function of the highest order occurring in the differential equation in order to
evaluate the derived functions of a lower order. It should be noted, however,
that the equations may become unmanageable when there are a large number
of intervals.

MM. NasH and Ho employed a development in series in order to establish
a system of equations; they studied a fixed circular plate on an elastic founda-
tion.

The efficacy of numerical procedures of this kind should be determined in
accordance with the following criterion: the obtaining of the greatest possible
accuracy with the least possible number of equations.

A second method of procedure consists in introducing, when studying a
structure, a ‘“‘system of replacement’ which is easy to examine. It is in this
manner that, in elementary statics, the graphical calculation of a simple beam
rests on the analogy between the bending moment of the beam and the equi-
librium figure of a loaded wire. MoHR extended this analogy by applying to
the study of an elastic line. In his paper (to be published in ““Publications™).
Mr. AspLuND describes another analogy, namely that which exists between
the calculation of thin shells and the calculation of spatial lattices.

Mr. KoLoUSEK, whose studies on vibrations are well known, considers the
vibrations in continuous structures, formed of successive or identical elements.
For this purpose he employs another process of numerical investigation.
namely that of successive approximations.

The application of electronic computers to the study of civil engineering
structures, an application illustrated by the paper given by Mr. MEaMEL and
by that of Mr. MassoNNET and his co-workers, only increases the importance
of efficient and accurate methods of calculation: an additional requirement
must be satisfied; the programming must be easy.

In certain cases, tests on a model may be used to replace or supplement
calculation; the paper by Mr. BErio showed an application of this procedure,
which is mainly suitable for complicated structures that are not amenable to a
method of calculation which is both simple and sufficiently accurate.

Mr. Ouszax and Mr. DrRUCKER (for the latter, see volume 21 of “Publi-
cations’), in their papers, considered limiting states. These methods of inves-
tigation, however attractive they may be from the theoretical point of view,
are not yet generally accepted as a basis for structural design.

Mr. WigrzBickl and MM. MassoNNET and MOENAERT supplemented their
papers published in the “Preliminary Publication™.
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Conclusions

1. The contributions to the first working session of the Congress clearly
emphasised the tendency, already widespread at the present time and cons-
tantly increasing, towards basing structural design, not only on the results of
laboratory tests of short duration,but also on the actual behaviour of the
materials subjected to variable stresses, during prolonged periods of service.
The phenomena in question are of long duration and relate mainly to problems of
fatigue, of resistance to prolonged stresses, and of relaxation, shrinkage and creep.

In the present state of our knowledge, it is not yet possible to provide a
final solution to these problems on the basis of a physical interpretation of the
phenomena. Consequently, the civil engineer is obliged, for the moment, to
proceed in a phenomenological manner, while at the same time hoping that
co-operation between the physicists and those concerned with the testing of
materials will continue.

The discussion during the Congress indicated, however, in principle, the
course to be followed, as well as the general tendency and the interpretation
of the tests to be carried out in the future; these researches, which are urgently
necessary, will make it possible to verify existing laws, to correct them where
necessary, and to extent them.

2. The development of methods of calculation will be mainly characterised
by the extension of numerical procedures; structural design is, in fact, a
problem of an essentially numerical character. The conditions of equilibrium
and of deformation, which govern play of forces in structures and often lead
to differential equations, can be expressed by means of systems of simple
equations which can be solved numerically. A method of investigation is
suitable when it enables the problem raised to be solved without much trouble,
but in a reliable manner, that is to say, with sufficient accuracy. A rigorous
analytical solution is only applicable provided the basic hypotheses are really
satisfied. With the introduction of electronic computers, it is more necessary
than ever to have reliable numerical methods.

The introduction of a system of replacement, which is easier to consider,
may also facilitate structural design. In certain special cases, a test on a model
may replace or complement the actual study.

3. The engineer responsible for the design and execution of a structure
must never lose sight of the fact that structures built at the present time
should normally last for several generations and will consequently be subjected,
during a prolonged period of service, to variable conditions. We shall always
fulfil our tasks as engineers and constructors more amply by taking into
account, to an increasing extent, in the design and study of structures, these
conditions of actual service, concerning both static and dynamic loads, spatial
effects and the play of forces in space, as well as the behaviour of materials in
course of time.
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Rapport général

Théme Ia: Les propriétés des matériaux

Lorsque la discussion, a un congres de 1’Association Internationale des
Ponts et Charpentes, a pour sujet les propriétés mécaniques déterminantes
des matériaux, il parait utile de fixer d’abord notre point de vue et, par la,
le but de la discussion. Qu’il me soit permis de citer a ce propos les constata-
tions émises par M. le prof. WEIBULL?), Stockholm, qui peuvent, & nous aussi.
servir de directive:

“There are two quite different lines of attacking fatigue problems: the
phenomenological and the metallographical. The first one is the line of the
designer, who wants to know what happens: the second one, that of the
metallographer, who wants to know why it happens. As a link between the
two, you will find the third man, the tester of materials.

All these categories have different opinions as to the way of designing the
experiments and of conducting the testing. The metallographer, for instance,
may think — I have met this statement quite recently —that the basic physical
facts of fatigue should be clarified before the organization of any large scale
testing. The designer, on the other hand, wants urgently many more facts
about fundamental questions than are available today, and it is definitely
impossible for him to wait for the many years that it will certainly take to
obtain well-founded theories which will be of any use to him. There is no
need, I think, to point out that both of the ways have to be trod and that
progress in one field may have quite important influences on the proceedings
in the other.”

Telles sont les réflexions de M. WEIBULL, dont je ne voudrais pas manquer
de relever ici les grands mérites en ce qui concerne l’examen statistique et 'inter-
prétation des essais de fatigue.

Notre point de vue est ainsi clairement fixé; nous devons connaitre le
comportement des matériaux parce qu’il conditionne le dimensionnement des
ouvrages et nous sommes forcés d’acquérir ces bases en recourant a un procédé
phénoménologique tant que les causes physiques profondes des phénomenes
essentiels nous sont cachées. Bien entendu, la coopération du physicien et du
spécialiste en essais des matériaux sera toujours bienvenue, nous tenons a le
relever ici.

Pour illustrer ces réflexions, considérons la relation qui lie la résistance
aux efforts alternés o;;; d’un métal au nombre de cycles n qui produit la rupture

1) W. WeisBurL: The Statistical Aspect of Fatigue Failures and its Consequences.
Fatigue and fracture of metals, edited by W. M. Murray, Mass. Inst. Techn., 1952.
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de I’éprouvette ou de la piéce. Cette courbe dite de Wohler, décrivant la
résistance aux efforts alternés, peut en principe s’exprimer de différentes
fagons, comme je 1’'ai déja relevé dans la «Publication Préliminaire». J’ai
proposé une relation de la forme

_ Uoz+fn“7mr. (1)

W 1+ fpr

La résistance cherchée y apparait comme la moyenne pondérée de deux valeurs
limites: la résistance a la rupture statique o,, et la limite asymptotique de
fatigue o,y Le «poids» est donné par la fonction d’endurance fyy- (1)

Goz — O
fwr = ———, (la)
O — Oqr

dont le logarithme varie linéairement avec la valeur ¢ =logn; on a donc

A =logfy =log 22" TW _ i,
O — Oary
et fw = ot = oy nP. (Ib)

Se fondant sur une proposition de M. EprEMIAX et utilisant la courbe des
erreurs de Gauss, M. WEIBULL!) a présenté une autre expression que I'on peut
écrire sous la forme

—
(89
~—

i ir .
o = Oup + (0o z —oun) €Y
par un double logarithme, on obtient la relation linéaire:

Opz — Our
log log —2&— el

= rlogs + Mo -
S 0
Ow — Cauy

Comparons les deux expressions en considérant, par exemple, les résultats
d'une série d’essais effectués sur des éprouvettes forées (@ du trou 4 mm,
largeur totale 30 mm), en acier 44 de la Société de Roll (fig. 1) *). Comme cela
ressort de la fig. 2 %), les deux expressions concordent bien dans le domaine
étudié, de n=30-103 a plus de n=10-105; la dispersion inévitable, spéciale-
ment élevée pour les faibles efforts, ne permet pas de décider laquelle des deux
expressions reproduit mieux l'allure de la courbe de Wohler. Si je donne la
préférence a l'expression (1), c’est parce qu’elle s’applique correctement &
d’autres phénomenes de longue durée et qu’elle est plus simple dans sa forme
et son application que I’expression (2).

Ce n’est pas seulement en effectuant et en exploitant de nouvelles séries
comprenant de nombreux essais, ce sera aussi probablement grice & «l’essai
a deux degrés», interprété dans le sens de la sommation des dommages partiels,
que 1’on pourra décider quelle est la véritable loi de fatigue. On sait que le
théoréeme de Palmgren-Miner n’est pas valable pour 1’essai & deux degrés; cet

*) Voir les figures dans le texte allemand.
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essal comporte, dans un premier palier de charge o, (rupture a n, alternances),
4 n, alternances suivies, au second palier o, (n,), de 4 n, alternances jusqu’a la
rupture. Lorsque les sollicitations sont de méme nature aux deux degrés (par
exemple des sollicitations alternées ou une contrainte moyenne o,, constante),
on obtient, en posant

¢ _dny ¢ _ dn,
1= y 92 = s
Ty Ny
pour 0, <0y, Ny >Ny & +E>1
et pour o,> 0y, Ny <y Ext+és<1,

alors que le théoréme de Palmgren-Miner indique que &, +§,=1. La courbe
d’endommagement S — ¢ ne saurait donc étre une droite 2).

Nous pouvons nous représenter I’allure de cette courbe a l’aide des réfle-
xions suivantes: supposons que la détérioration e du matériau augmente
proportionnellement au nombre d’alternances ?),

e=af.

Comme elle touche un barreau de plus en plus endommagé, dont nous admet-
tons que la capacité de résistance w diminue linéairement,

w = 1_B§=

I’endommagement relatif s’écrira

€ af
S=—=——.
w 1-B¢ (%)
La rupture se produit pour £=1 et 1’on a
(04
— ]_ —
S =3
et par conséquence atf=1.

Divisons le numérateur et le dénominateur de I’équation (3) par « et posons

o o
= .. 13
1 i D = ——
nous pouvons alors écrire ) ™y
ou, puisque a=1+b 8 = —g— (3a)
’ ’ 1+b(1-¢)

2) N. M. NEwMARK: A Review of Cumulative Damage in Fatigue. Fatigue and frac-
ture of metals, edited by W. M. Murray, Mass. Inst. Techn., 1952.

3) Cette hypothése parait justifiée puisque, sous contrainte constante, les fissures se
propagent proportionnellement au nombre d’alternances; voir W. WEIBULL: Size effects
on fatigue crack initiation and propagation in Aluminium sheet specimens subjected to
stresses of nearly constant amplitude. F.F.A., Flygtekniska Forsoksanstalten, Medde-
lande 86, Stockholm 1960.
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A vrai dire, I’essai & deux degrés ne nous permet pas de déterminer directe-
ment la fonction d’endommagement b: nous ne pouvons obtenir que des
courbes d’endommagement relatives, par rapport a une courbe admise arbi-
trairement pour le premier palier de charge o,. Cependant, les résultats de
quelques premiers essais de sollicitations alternées concordent bien avec les
valeurs calculées si 1’on prend comme fonction d’endommagement 4 la fonction
de fatigue f;;; exprimée par 1’équation (1a), soit

_ _ Ooz— 0w
b= fﬂ' B Oy — Oaw (4)
ou Sy = —~§— (4a)
1+ frp (1 =€)

Appliquons, dans un essai a deux degrés, le palier de charge o, comportant
An,=¢ n, alternances suivies du palier o,; on disposera, a ce dernier palier,
des Adn,=§¢,m, alternances correspondant au domaine d’endommagement
s’étendant de S=.5; & S=1 et il vient

_ l_gl =
= Tipd )
avec (fig. 3) *) ® = ff;’f‘fll (5a)

A la fig. 4 *), les résultats de deux séries d’essais sont comparés avec ces valeurs
calculées; dans les expériences de M. WILKINS?) on a o, <0,. [;> /s, £+ &> 1
tandis que dans nos essais, effectués sur des éprouvettes forées en acier de
Roll, on a le cas inverse, soit & +&,<1. Remarquons expressément que la
relation b= f,;- (équation 4) n’est valable que pour des sollicitations alternées
minsOm="0); pour d’autres genres de sollicitations, avec o, +0, la
corrélation entre b et f;;, devra étre déterminée par des essais analogues.

Les essais sur éprouvettes doivent nous révéler les relations fondamentales
qui régissent le comportement des matériaux soumis a des efforts de longue
durée. 1l serait souhaitable que ces recherches de laboratoire soient complétées
par des essais & grande échelle sur des éléments de construction ou des ouvrages
complets; on peut ainsi contrdler 1’application, au dimensionnement des
ouvrages, des résultats obtenus en laboratoire et en garantir I'exactitude.
(’est 1a que réside I'importance de la communication de M. le prof. MicHALOS
et de ses collaborateurs.

M. FREUDENTHAL compléte sa contribution parue dans la «Publication
Préliminaire» et répond aux réflexions émises dans mon rapport général: on
constatera que les deux points de vue ne se sont pas encore rapprochés. Le

(Uma:t: = -0

*) Voir les figures dans le texte allemand.
4) E. W. C. WrLkins: Cumulative damage in fatigue. Colloquium on fatigue, Stock-
holm 1955, Berlin-Gottingen-Heidelberg 1956.
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probléeme soulevé par M. FREUDENTHAL est fondamental et il reste tres actuel:
je suis persuadé qu’il se trouvera, pour 'ingénieur civil également, une solution
satisfaisante, méme si cela demande une recherche expérimentale de longue
haleine.

Lorsque I’on entreprend des essais, la difficulté réside dans la dispersion
inévitable. Seules des séries comportant de nombreux essais permettent
d’obtenir des moyennes bien assurées et de connaitre la grandeur des écarts
probables; cela exige souvent plus de temps que I'on n’en dispose dans le cas
particulier. Il est donc utile que la statistique mathématique nous montre
comment exploiter valablement des séries de petite taille. La communication
de M. Davix présente quelques aspects fondamentaux de ce probleme.

Théme Ib: Développement des méthodes de calcul

Pour établir des méthodes de calcul numériques, destinées a permettre le
dimensionnement des ouvrages, on peut en principe procéder de deux maniéres,
illustrées toutes deux par des contributions a la discussion.

En premier lieu on peut transformer — a l'aide de relations permettant
d’intégrer numériquement (calcul d’une aire a l’aide de la régle de Simpson,
équation du polygone funiculaire, introduction de développements en série)
ou de différentier — des équations différentielles en des systémes d’équations
écrites en un nombre fini de points du domaine d’intégration. C’est un procédé
par intégration successive (calcul d’une aire a 1’aide de la régle de Simpson)
qu’utilise M. Girc ; il part de la dérivée de I’ordre le plus élevé intervenant dans
I’équation différentielle pour évaluer les dérivées d’ordre inférieur. Notons
cependant que les équations pourront étre peu maniables lorsque 'on a un
grand nombre d’intervalles.

(C’est un développement en série qu’utilisent MM. Nasz et Ho pour
établir un systéeme d’équations; ils étudient une plaque circulaire encastrée,
sur fondation élastique.

L’efficacité des procédés numériques de cette sorte s’évaluera d’apres le
critére suivant: obtenir la meilleure précision possible avec le moins d’équa-
tions possible.

Une seconde maniére de procéder consiste a introduire, lors de I'étude d'un
ouvrage, un ¢«systéme de remplacement» facile a examiner. C’est ainsi que,
en statique élémentaire, le calcul graphique d’une poutre simple repose sur
I’analogie du moment fléchissant de la poutre avec la figure d’équilibre d’un
fil chargé; MoHnr a étendu cette analogie en I'appliquant a I’étude de la ligne
élastique. Dans sa communication (a paraitre dans les «Mémoires»), M.
ASPLUND expose une autre analogie, celle existant entre le calcul des voiles
minces et celui des treillis spatiaux.

M. KorousEk, dont on connait les études sur les vibrations, examine les
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vibrations des ouvrages continus. formés d’éléments successifs ou identiques.
Il utilise & cet effet un autre procédé d’investigation numérique, celui des
approximations successives.

L’application des calculatrices électroniques a 1'étude des ouvrages du
génie civil, application illustrée par l'exposé de M. MEHMEL et celui de M.
MassONNET et de ses collaborateurs, ne fait qu’accroitre l'importance des
méthodes de calcul efficaces et précises; une exigence supplémentaire doit
étre satisfaite: il faut que la programmation soit aisée.

Dans certains cas, les essals sur modele peuvent remplacer ou compléter
le calcul; la contribution de M. BEr1o montre une application de ce procédé.
surtout indiqué pour des structures compliquées, rebelles a un calcul a la fois
simple et suffisamment précis.

M. OLszak et M. DRUCKER (pour ce dernier, voir le volume 21 des «Mé-
moires») envisagent dans leurs contributions des états limites. Ces méthodes
d’investigation, si séduisantes soient-elles du point de vue théorique. ne sont
pas encore admises sans autre comme base du dimensionnement des ouvrages.

M. WiEgrzBIcKI ainsi que MM. MassONNET et MOENAERT complétent leurs
contributions parues dans la « Publication Préliminaire».

Conclusions

1. Les contributions & la premiere séance de travail du congres font claire-
ment ressortir la tendance, déja fort répandue actuellement et qui ne fait que
s’étendre, de fonder le dimensionnement des ouvrages, non seulement sur les
résultats d’essais de courte durée en laboratoire, mais aussi sur le comporte-
ment réel des matériaux soumis a des efforts variables, au cours d’un service
prolongé. Il s’agit la de phénomenes de longue durée et tout d’abord des
problemes de la fatigue, de la résistance aux efforts prolongés, de la relaxation
ainsi que du retrait et du fluage.

Dans 1'état actuel de nos connaissances, il n’est pas encore possible de
résoudre définitivement ces problemes en s’appuyant sur une interprétation
physique de ces phénomenes. Pour l'instant, I'ingénieur civil doit donc re-
courir & un procédé phénoménologique, tout en souhaitant que se poursuive la
coopération du physicien et du spécialiste en essais des matériaux.

Lors du congres, la discussion a toutefois indiqué en principe la marche a
suivre ainsi que la disposition générale et I'interprétation des essais a effectuer
dans I’avenir; ces recherches sont nécessaires, elles permettront de controler
les lois existantes, de les corriger en cas de besoin et de les développer.

2. L’évolution des méthodes de calcul sera principalement caractérisée par
le développement des procédés numériques; le dimensionnement des ouvrages
est en effet un probleme de caractere essentiellement numérique. Les conditions
d’équilibre et de déformation, qui régissent le jeu des forces dans les ouvrages
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o
(8]

et conduisent souvent a des équations différentielles, peuvent s’exprimer a
I’aide de systémes d’équations simples, solubles numériquement. Une méthode
d’investigation est appropriée lorsqu’elle permet de résoudre le probléme posé
a peu de frais mais de facon stre, c’est-a-dire avec une précision suffisante.
Une solution analytique rigoureuse n’est applicable que si les hypotheses de
base sont réellement satisfaites. Avec l'introduction des calculatrices électro-
niques, il est d’autant plus nécessaire de posséder des méthodes numériques
efficaces.

L’introduction d’un systeme de remplacement, plus aisé & examiner, peut
également faciliter le calcul d'un ouvrage. Enfin, dans certains cas parti-
culiers, 1'essai sur modele peut remplacer ou compléter 1’étude proprement
dite.

3. L’ingénieur chargé de réaliser une construction n’oubliera jamais que
les ouvrages exécutés actuellement devront normalement durer plusieurs
générations et qu’ils seront done soumis, au cours d’un service prolongé, a des
conditions variables. Nous remplirons toujours plus pleinement notre tache
d’ingénieur et de constructeur en tenant toujours mieux compte, lors de la
conception et de 1’étude des ouvrages, de ces conditions de service réelles,
touchant aussi bien les charges statiques et dynamiques, les effets spatiaux
et le jeu des forces dans ’espace que le comportement des matériaux dans le

temps.
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Laboratory Testing of Full-size Aluminum Bridge
Essais de laboratoire en vraie grandeur sur un pont en aluminium

Laboratoriuwmuversuche an einer Aluminiumbriicke in voller Grifle

JAMES MICHALOS GERALD G. KUBO CHARLES BIRNSTIEL
Ph. D., Prof. and Chairman Ph. D., Associate Professor M. C. E., Instructor

Department of Civil Engineering, New York University. New York, N. Y., U.S.A.

Introduction

Under sponsorship of the Reynolds Metals Company, two general types
of tests were performed at New York University on a 60-ft. prototype alu-
minum bridge with concrete floor slab, as follows:

1. Static-load tests with loads producing maximum shears and moments equal
to 1 and 2 times design values for the H 20 loading of the American Associa-

tion of State Highway Officials (AASHO).

Repeated-load tests with loads producing maximum moments equal to 1
and 11/, times design values for H 20 loading.

8]

In addition, the natural frequency of the bridge was determined experi-
mentally.

The purpose of the tests was to investigate the structural suitability of the
bridge for the service for which it was designed. This was accomplished by
visual observation as well as by strain and deflection measurements. These
tests were a first step in a long-range development program, and the results
are being used for improving highway bridge designs on which the Reynolds
Metals Co. is working.

Description of Test Bridge

The test bridge (see Fig. 1 and Fig. 2) had three prefabricated, aluminum
modular units supported on commercial type (Lubrite) bearings which rested
on concrete piers founded on rock. The reinforced concrete slab was, on the
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average, slightly over 61/,-in. thick. It was joined to the aluminum modules
by means of extruded aluminum shear transfer devices in order to insure
composite action. The Z-shape shear devices are shown in place during erection
in Fig. 3. All aluminum components were fabricated from a non heat-treatable

Fig. 1. Static Load Test.
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Fig. 2. Half-Section Through Bridge.

aluminum-magnesium alloy designated as 5083. The shear devices and the
extrusions which formed the bottom flanges were cold work-hardened to H 112
temper. All other components were made from annealed metal (0 temper).

Each modular unit consisted of curved, !/¢-in. thick, side sheets welded to
the bottom extrusions and to a 12-in. wide by !/,-in. thick plate at the top.
A unit had nine inside diaphragms, of 1/,-in. thick plate, connected to it by
Huck fasteners. Two of these were over each end bearing and five at inter-
mediate points. Other 1/,-in. diaphragms, more closely spaced, were installed
between adjoining units and on the outer side of the exterior units. Adjoining
bottom extrusions were bolted together by means of !/,-in. high strength bolts
spaced at 10-in. centers.
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Loads were applied to the test bridge by hydraulic rams reacting against
structural steel yokes which transferred the ram reactions to anchor rods
embedded in rock. Fig. 1 shows the loading yokes in place for a static load test.

Instrumentation

The instrumentation was planned in accordance with the stated purpose,
which was to conduct static and repeated-load tests, and to record a limited
number of strain and deflection measurements. Vertical deflections of the test

Fig. 3. View During Erection.

bridge were determined by means of a Wild N 2 Level, and longitudinal move-
ments at the expansion end of the test bridge were observed by means of dial
gages. Transverse horizontal movements of the bottom extrusions were deter-
mined by using plumb bobs hung from the extrusions; but, as maximum
transverse movements during the first static tests were on the order of one
millimeter, these measurements were discontinued for all subsequent tests.
Strains produced in the test structure by the weight of the conerete slab
and by static and repeated loads were measured at selected points by means
of Baldwin SR-4 electrical resistance strain gages placed in both uniaxial and
rosette patterns. The leads from the gages were wired to switching units, and
Baldwin Strain Indicators were used to determine the change in strain cor-
responding to an increment of load. When the variation of strain with respect
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to time was desired, as during the monitoring of the repeated-load tests, a
strain gage was connected to a Brush Universal Analyzer and the data plotted
on a Brush Paper Strip Recorder.

Static Load Tests

The following four types of static load tests were made:

1. Concrete slab on the aluminum modular units.

o

Two symmetrically applied loads on the composite structure, resulting in

simultaneous design values, or multiples thereof, of bending moment and
shear.

3. Eccentrically applied loads on the composite structure.
4. Single applied load at mid-span of the composite structure.

Concerete Slab on Aluminum Modular Units

To observe the behavior of the aluminum structure as the concrete was
placed, selected gages and scales were monitored. The difference between the
final and original sets of readings was considered as the effect of the weight
of the concrete slab on the aluminum structure. A comparison between
measured and computed deflections, and between measured and computed
strains showed good correlation.

Two Symmetrically Applied Loads

The live loads were applied, as shown in Fig. 1, by means of hydraulic rams
symmetrically positioned on transverse distribution beams. Thus the force
was distributed essentially as a line load across the width of the deck. The
loads were placed 12 ft. 2 in. from each end bearing so as to produce vertical
shear and bending moment values which would be proportional to the design
shear and design moment respectively. As used herein, design shear and design
moment are the maximum values produced in a one-lane, simply-supported
bridge by a 20-ton truck, together with impact effect, as defined by the current
AASHO specifications.

Computed theoretical values of deflections, stresses, and longitudinal move-
ments were based on the following assumptions:

1. There was complete composite action between the concrete slab and the
aluminum structure (the ratio of modulus of elasticity of aluminum to
that of concrete was taken as 3.5).

2. The load applied through the distribution beam was shared equally by the
three modular units.
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Fig. 4 shows the vertical deflection at the centerline of the span as the
load was increased to 2 times design value and then removed. The plotted
values, obtained by averaging the measured deflections at the four lines of
extrusions, define reasonably smooth curves during the loading and unloading
stages. Up to approximately 1.5 times design load the measured deflections
varied almost linearly with load but lagged in comparison to the computed
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values. At loads above 1.5 times design value, the deflections increased non-
linearly with load so that at the maximum of 2.0 times design value the
measured vertical deflection was slightly larger than the computed value. As
reported subsequently, the lag in measured deflections was due principally
to end bearing friction.

Comparison of measured with computed values of longitudinal movement
showed good correlation, but with a lag of almost 10 percent in the measured
values throughout the loading range. During the unloading stage the lag of
measured movement was still more pronounced. As in the case of vertical
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deflections, this was due principally to the frictional restraint of the sliding
detail at the expansion end.

Computed bending stresses and those deduced from measured strains, in
kips per sq.in., are shown in Fig. 5. In the bottom extrusion the measured
values are consistently lower than the theoretical values, with a maximum
difference of approximately 10 percent. The strain gage readings on the under-
side of the top plate, although somewhat erratic because of the very low level
of stress, are consistent with the anticipated position of the neutral axis.

Some evidence of structural distress was observed as the applied load was
increased from 17/4 to 2.0 times design moment and shear. There was some
local yielding and buckling in the !/¢-in. sheet over the supports. The buckles
were of limited size (1/;4-in.) and probably represented a readjustment of an
unfavorable local condition.

Eccentrically Applied Loads

To make this test, only the hydraulic ram on the west portion of each of
the two distribution beams was used to apply load. The measured deflections
and stresses varied almost exactly linearly across the structure from a mini-
mum value at the most easterly extrusion to a maximum value at the most
westerly extrusion.

The primary objective of the static load tests was to study the over-all
behavior of the test structure as reflected in changes in deflection and strains.
The possibility of buckling of the curved sheets under load was recognized;
however, due to the large number and variety of buckles in the structure as
erected, no serious attempt was made to monitor all of the panels for new or
modified buckles under applied load.

The three modular units, as received, contained a small number of large
buckles in the curved sheets. After the erection of the modular units and the
installation of the external diaphragms which divided the structure into 23
panels, additional buckles of varying size, shape and orientation were formed.
A survey revealed that the six curved sheets contained as few as 3 buckles of
noticeable size per sheet and as many as 22 per sheet. Although it was difficult
to measure the size and amplitude of these distortions with any degree of
accuracy, there were some which dished in or out as much as 1/, in.

Later, during the repeated-load program, it was noted that some of the
buckled areas were ““breathing’’. Apparently these buckles were straightening
out elastically, under the effect of the diagonal tension stresses introduced by
the applied load, moving back to their dead load configuration upon release
of the load.

During the eccentric load test there occurred an incident that raised some
questions regarding the stability of the panels under high shear loading. While
readings were being taken under an eccentric load of 7/ of the design value,
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an observer, leaning with his hand on a curved panel, produced a depression
of approximately !/, in. Apparently the buckled shape was stable. since no
further change was detected as the load was increased to 1.0 times design load
and then released.

Special Studies with Single Load at Muid-Span

During the repeated-load tests (discussed later), there were periods when
cycling was suspended, and it was decided to utilize the loading set-up (single
line-load at centerline) to investigate the effect of sliding friction at the bearing
and the effect of using a line load rather than a simulated wheel concentration.

To study the effect of type of expansion bearing on deflection and on
longitudinal movement, steel rollers on suitable bearing plates were substituted
for the Lubrite plates. With roller supports the lag of measured values was
eliminated. In addition, noises and jerky movements due to end restraint were
essentially eliminated.

In all previous load tests a distribution beam, which rested on the roadway
slab for its full width, had been placed under the ram. To simulate a wheel
concentration, it was decided to use a steel plate. As it was inconvenient to
remove the distribution beam, it was raised and the plate was placed between
the beam and the roadway. There was no appreciable difference in behavior
with the plate from what had been observed with the distribution beam.

Strains in the concrete slab were determined by means of suitably moisture-
proofed SR-4 strain gages. Measured values were approximately 25 percent
lower than computed values.

Repeated-Load Tests

After consultation with Mr. E. L. Erickson of the Bureau of Public Roads,
the following program of repeated-load tests was adopted:
1. 50,000 cycles at 1.0 times design moment.

2. 750,000 cycles at 1.5 times design moment.

In all cases the load variation during cycling was from dead load to dead
load plus live load. Load was applied by a single hydraulic ram acting on a
distribution beam at mid-span.

Test Procedure

The hydraulic loading system was designed and built to apply a pre-
determined maximum force at the ram irrespective of any vertical movement
of the bridge due to temperature change. Periodic checks and adjustments
were made.
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To provide a continuing check of the response of the structure, the opera-
tors monitored a selected group of strain gages, dial gages. and level targets.
The readings were taken once each hour, and were followed immediately by a
visual examination of the aluminum structure and the concrete deck for any
signs of distress. After it became evident that fatigue was causing damage,
greater emphasis was given to the visual inspection, and critical areas were
kept under careful surveillance in order to detect cracks at an early stage of
development.

Tests with Original Extrusions

The 50,000 cycles at 1.0 times design moment were completed without
incident. After 360,595 cycles at 1.5 times design moment a crack was dis-
covered. It had progressed through an interior bottom extrusion at mid-span
and gone upward into the !/g-in. curved sheet for a distance of approxi-
mately 16 in., almost to the mid-height of the aluminum module. Fig. 6 is a
photograph, with the interior diaphragm removed, showing the full extent of
the crack. Note its progression through three holes in a vertical line, starting
at the 1/,-in. hole in the bottom extrusion.

A 6-in. wide section of the bottom extrusion and a 4-in. wide by 71!/,-in.
high portion of the curved sheet was cut out to remove the bulk of the crack.
The balance of the crack in the sheet was enlarged with a saw after a hole

EXISTING HOLES
FOR DIAPHRAGMS P
AT CENTERLINE
QF SPAN

Fig. 6. Crack No. 1.
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had been drilled at its upper extremity. Matching patch plates were prepared,
positioned, and then welded using the inert gas shielded consumable-electrode
process. The completed repair, with additional reinforcing plates for the bottom
extrusion, is shown in Fig. 7. In order to replace the interior diaphragm that
had been removed, portions of the weld seam were ground down.

Two other cracks. located within 20 in. of mid-span, were discovered before
the sponsor decided to replace the bottom extrusions. The second crack occurred
47,045 cycles after the first and originated at a hole in another interior bottom

Fig. 7. Repair of Crack No. 1.

extrusion. It was repaired in a manner similar to that used for the first crack.
In addition, 53 holes in the central portion of each extrusion were drilled to
1/,-in. diameter and reamed. Of these holes, the 21 closest to mid-span were
then plug welded. Due to the limited size of opening in proportion to depth,
it was difficult to obtain full weld penetration. The third crack, working its
way through a plug-welded hole in still another interior extrusion, forced a
shut-down after an additional 39,760 cycles.

Tests with New Extrusions

After the third crack, the sponsor decided to discontinue the practice of
making repairs as they became necessary and instead remove the central
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49 ft. 6 in. of the bottom extrusions and replace them with others of a new
design in which all holes were eliminated. Extrusions on interior lines were
to be single units rather than pairs.

It was recognized that the test structure would then consist of two groups
of parts with different loading histories. The new extrusions would have no
history of repeated loads. while the remainder of the structure would have
sustained 50,000 cycles at 1.0 times design moment and 447,000 cycles at 1.5
times design moment. In addition, there would be various difficulties involved
in making such a major repair, but nonetheless the sponsor considered it
preferable to replace the extrusions. A new extrusion is shown in Fig. 8 adjacent
to the pair of extrusions it replaced.

Fig. 8. New and Original Extrusions.

The plan was to raise the structure so as to relieve a designated portion of
the dead load bending stresses in the structure, make the repair, and then
restore essentially the same dead load stress conditions into the modified
structure by removing the lifting force. The particular scheme devised incor-
porated an arrangement which, in order to keep the working area under the
bridge as clear as possible, would permit lifting from above rather than pushing
from below. Six 11!/,-in. holes, three on each of two transverse lines, were
drilled through the concrete slab and the top aluminum plates in order to
insert hanger rods. Two banks of three hydraulic rams each were arranged so
that lifting loads could be applied gradually to the structure along the two
transverse lines.

The edges of the curved sheets took an irregular sinusoidal shape in the
transverse direction when the extrusions were removed by sawing. They were
eventually straightened out when the replacement section was fitted up and
welded. Attention is called to the fact that the sawed edges were not ground
smooth.
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On the exterior lines, the lapped joint between the sheet and the extrusion
was exposed so that both seams were accessible. A continuous fillet weld was
made along the top of the extrusion. Later, to eliminate the possibility of
cracks starting at the cut edge of the sheet, it was decided to join the lower
edge of the plate to the side of the new extrusion by means of a similar weld.
Along the interior lines, the rough edges of the sheets were inaccessible and
could not be welded. Furthermore, since these edges were behind the stems
of the new extrusions, they were hidden from view.

The junctions between new and existing extrusions were spliced using a
combination of butt welds and strap plates. Rather large distortions were
observed on the curved sheets of the panels in which the splices were made.
However, except for some minor crater cracks in the welds, the splices and
the affected sheets showed no signs of distress during the balance of the
repeated load tests.

Before the additional 302,600 cycles required to complete the program
were applied, it was necessary to stop testing six more times in order to repair
cracks which developed. These were all located on one line near mid-span, in
the vicinity of the longitudinal weld seam.

Analysis of the cracks indicates that they can be classified into two types.
The first type is a crack in the weld seam of a previous repair and is due to a
variety of reasons, including lack of penetration, removal of weld section,
and locked-in stresses. The second type is a vertical crack which appeared at
the longitudinal weld seam, apparently isolated, but which is essentially an
extension of a crack in the sheet due to a stress raiser in the form of an
existing hole.

The repairs made can be classified into three types. The first type, similar
to the repairs made when the old extrusion was in place, consisted of cutting
out the crack, welding the seam, and adding reinforcing plates. The second
type involved cutting out the crack and rewelding the seam with a butt weld.
In the third type a patch plate was inserted and butt welded after the area
around the crack was removed. No repair of the first type was involved in a
subsequent failure, whereas cracks did reappear in both of the other types of
repair.

General Assessment of Cracks

All of the serious cracks that developed in the structure involved some
sort of stress raiser which eventually led to distress under repeated load. The
original stress raisers were the holes in the bottom extrusions. As the result
of unsatisfactory repair of the cracks induced by these holes, new stress raisers
were introduced, and these, coupled with poor weld penetration in some
instances, resulted in the formation of still other cracks. In no case was a
crack observed that was not due to one of these causes.
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Fatigue Tests on Tension Specvmens

Fig. 9 shows three laboratory specimens that were subjected to repeated
load from approximately 9,000 psi to approximately 18,000 psi. This stress
range corresponds roughly to dead load and dead load plus 2 times live load.
The left-hand specimen, containing a !/,-in. drilled hole., underwent 380,000
cycles before it cracked. The results compare well with the history of crack
number 1 although the cycling of the specimen was at a higher stress level.
The middle specimen, which had a drilled hole reamed to !/, in., underwent
890.000 cycles before cracking. The hole was then enlarged to !/, in. and filled
by welding, and the specimen underwent an additional 645,000 cycles before

/

cracking. The specimen on the extreme right was drilled and reamed to 1/, in.
After more than 2,000,000 cycles no crack was observed.
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Fig. 9. Fatigue Specimens.

Experimental Determination of the Natural F requency

A sack of sand, weighing approximately 75 lbs., was lifted 11 ft. above the
center point of the bridge deck by a rope and pulley arrangement and then
dropped. The resulting vertical vibrations were converted into electrical signals,
amplified, and recorded on a paper strip recorder.

Based on the average of measured wave lengths and the known paper
speed, it was found that the value of the natural frequency was 4.5 cycles per
second, or 270 cycles per minute. For an idealized beam structure with flexural
properties corresponding to those assumed for the bridge structure, the theo-
retical natural frequency is 5.1 cycles per second. The difference of approxi-
mately 12 percent is considered reasonable in view of the presence of damping,
including the effect of restraint at the expansion end.
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Summary

A welded aluminum prototype bridge was subjected to static and repeated
load tests in order to determine its structural suitability for use on highways.
No signs of distress, except for some local yielding and local buckling over the
supports, were observed under static loads. The measured strains and deflec-
tions were in general what would be expected on the basis of theory.

The program of repeated-load tests included the application of 50,000
cycles at 1.0 times design moment, and 750.000 cycles at 1.5 times design
moment. Before 448,000 cycles at 1.5 times design moment were completed,
three cracks were discovered. All three cracks appeared to be due to the
presence of holes drilled in the bottom extrusions to accommodate bolts which
joined adjacent modules at their lower edges.

The first two cracks were repaired, but after the third crack the bottom
extrusions were removed and replaced with others of a new design with all
holes eliminated. Before the prescribed program of repeated-load tests was
completed, six additional shutdowns were made in order to repair cracks. All
of these cracks can be traced to the unsatisfactory repair of a previous crack
or to holes that were present in the structure as erected.

Résumé

Un prototype de pont soudé en aluminium a été soumis & des essais de
charge statiques et répétés, essais destinés a montrer si I’on pouvait utiliser
de tels ouvrages sur les autoroutes. Aucun signe d’épuisement ne se montra
lors des essais statiques, a part de légeres déformations plastiques locales et
un voilement local au droit des appuis. En général, les allongements et les
fleches concordaient avec celles données par le calcul.

Le programme des essais a I’endurance comprenait 50000 cycles pour la
sollicitation de service réglementaire puis 750000 cycles pour une sollicitation
de 509, supérieure. Prés du 448000e cycle de la seconde série, on découvrit
trois fissures. Toutes ces fissures semblaient dues aux trous percés dans les
profilés extrudés inférieurs, trous qui servaient a l'assemblage des éléments
contigus a 'aide de boulons.

Les deux premiéres fissures furent réparées. A I'apparition de la troisiéme,
on enleva les profilés inférieurs et on les remplaca par un nouveau profil sans
trous. Avant d’atteindre le nombre de cycles prévu par le programme, les
essais durent étre interrompus six fois pour effectuer des réparations. Toutes
ces fissures provenaient d’une réparation insuffisante des dommages précédents
ou de trous percés dans 'ouvrage primitif.
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Zusammenfassung

Um die bauliche Eignung einer geschweillten Aluminiumbriicke als Stra-
Benbriicke zu analysieren, wurde diese statischer und wiederholter Belastung
unterworfen. Abgesehen von leichten lokalen plastischen Forméanderungen
und ortlichem Ausknicken iiber den Auflagern, wurde unter ruhender Be-
lastung kein Erschopfungszeichen beobachtet. Im allgemeinen entsprachen
die Forménderungen und die Durchbiegungen den theoretisch berechneten
Werten.

Das Programm der Priifung auf wiederholte Belastung umfalite 50000
Lastwechsel unter dem 1,0-fachen Bemessungsmoment und 750000 Lastwech-
sel unter dem 1,5-fachen Bemessungsmoment. Vor dem Erreichen von 448000
Lastwechseln unter dem 1,5-fachen Bemessungsmoment wurden drei Risse
entdeckt. Alle drei Spriinge schienen ihre Entstehung den Lochern in den
unteren StrangpreBprofilen zu verdanken. In diesen Lochern waren die Bolzen
eingesetzt, die die nebeneinanderliegenden Elemente verbanden.

Die ersten beiden Risse wurden repariert. Nach dem dritten Rifl wurden
die unteren StrangpreBgurte abgetrennt und durch ein neues Profil ohne
Locher ersetzt. Ehe das vorgesehene Lastwechselprogramm erfiillt war, mufite
der Versuch noch 6mal zur Vornahme von Reparaturen unterbrochen werden.
All diese neuen Risse konnten auf ungeniigende Reparaturen der vorangegan-
genen Schiden oder auf Locher in der urspriinglichen Konstruktion zuriick-
gefiihrt werden.
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Fatigue Design and Endurance of Metal Structures
Calcul de la résistance a la fatigue des ouvrages métalliques

Ermiidungsberechnung und Dauerfestigheit von Metallbauten

A. M. FREUDENTHAL

Columbia University, New York, N, Y.

In his General Report Professor Stiissi discusses the problem of the reduc-
tion of the endurance limit under random sequences of variable stress-ampli-
tudes of a stress-spectrum including amplitudes below as well as above the
conventional constant-amplitude endurance limit. On the basis of preliminary
test-results performed to check the conclusion reached in my paper in the
“Preliminary Publication” [1]that the stress-amplitudes below the conventional
endurance limit produce significant damage because of their interaction with
the stress-amplitudes above this limit, he attempts to show that this con-
clusion is not confirmed. He also suggests that the strain-hardening effect
produced by high stress-amplitudes might be responsible for the specific and,
as he says, “unexpected’’ test results reported in my paper. This latter sug-
gestion is not convincing, as according to all evidence strain-hardening should
be expected to raise the endurance limit rather than to lower it.

However, before discussing the points raised, particularly the discrepancy
between Professor Stiissi’s and my own test results, I should like to present
new results of random-fatigue tests performed on a much more widely used
metal than the SAE 4340 high-strength steel used in the first test series. The
purpose of these tests was the same as that of the previously reported tests:
to demonstrate that stress-amplitudes below the conventional endurance limit
produce significant damage if mixed with a small number of stress-amplitudes
above this limit, so that the design-significance of the endurance limit obtained
in constant-amplitude tests is, at least, problematic.

The material used was ASTM-A-285 weldable mild carbon steel with nomi-
nal ultimate tensile strength o, = 53,000 psi, estimated conventional endurance
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limit in bending S = 28,000 psi = 0.53 ¢, and yield limit in tension of 34,000
psi. The testing procedure is similar to that described in my paper in the
“Preliminary Publication’; the stress-spectrum applied is exponential with re-
spectively 0, 1, and 2 stress-amplitudes below the conventional endurance limit.
Table I shows the actual test results in ascending order for the three stress-
spectra applied; S; denotes the lowest, S;. Sg and §; the highest stress-ampli-
tudes in terms of o, of the spectrum, p indicates the ratio of the lowest and
of the highest stress-amplitude cycles in the total number of cycles applied.
It should be noted that the nominal ultimate strength o, and the yield stress
refer to uni-axial tension tests while the fatigue tests were performed in
rotating bending; thus the maximum stress-amplitude applied of 0.95 ¢, is,
in fact, only slightly above the expected yield stress in bending which for
round specimens is at least 40 percent above the yield stress in tension.

Table I. Number of Cycles to Failure in Thousands for ASTM-A-285 Steel Specimens
under Randomized Exponential Load Distributions of Slope h=17.3

SpectrumNo.1  p 2 P 3 P
Spec. S1=0.55 0.82218 S1=0.45 0.82200 S1=0.35 0.822000
No. S5=0.95 0.00100 S;=0.95 0.00018 S57=0.95 0.000026

1 622.5 2,408.5 2,068.7
2 646.3 2,743.0 3,879.7
3 696.4 3,166.2 5,937.1
4 816.5 4,356.9 6,497.4
5 877.6 5,145.7 6,914.4
6 971.4 5,747.0 7,076.0
i 1,453.0 6,625.1 7,230.3
8 1,705.4 7.606.4 8,055.1
9 1,966.6 8.615.8 9,020.3
10 2,019.5 9,342.3
11 9,648.4
12 9,871.9
13 : 11,411.7
14 20,111.0
15 22,257.8
Vor 1,294.0 5,827.7 10,561.0
Nok 350.0 1,000.0 1,000.0

The applied load spectra have identical slopes of 17.3 and identical highest
stress-amplitudes 0.95 ¢,. They are therefore practically identical with Spec-
trum A (most severe) applied in the tests on SAE 4340 steel. They differ by
their relation of the lowest stress amplitude S; to the conventional endurance
limit S,=0.53 ¢,. Vp and Ny, denote, respectively, the “‘characteristic’’ life
(probability level of failure P=1-—1/¢) and the “minimum’ life (P=0)
obtained by extreme value theory interpretation of test results [2].
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The test results are evaluated in Table 11 which, in the last column, shows
the effect, on the random fatigue life under the given stress-amplitude spec-
trum, of including or of not including stress-amplitudes below the conven-
tional endurance limit. Thus the inclusion of two stress-levels below this limit
reduces the fatigue life by a factor of almost four, which is of the same order
of magnitude as that observed for the same spectrum on SAE 4340 steel.

Table 11. Compensated Fatigue Life for ASTM-A-285 Steel Specimens jor Tests with and
without Inclusion of Stress Levels below the Endurance Limit Sg=0.53 o,

Spec- No. of stress Vi (mode) Com- Compensated
trum L levels below S in pensating life (mode)
No. Sk thousands factor in thousands
1 17.3 0 0.55 04 1,294 1/(1=p1—p2) 39,932
=30.36
2 7. 1 0.45 5,828 1/(1—py) =5.62 32,757
3 17.3 2 0.35 10,561 1.00 10,561

The results on ASTM-A-285 Steel therefore confirm the conclusions reached
previously for SAE 4340 Steel: application of stress-levels below the con-
ventional endurance limit produces significant fatigue damage. The damage is
the more pronounced the larger the proportion of stress-amplitudes below
this limit.

The key to the discrepancy between Professor Stiissi’s and my own test-
results is in this last conclusion, which confirms the trend established by the
results on SAE 4340 Steel (there is a misplaced decimal point in the last figure
of Spectrum C 1; the number should be 330.0instead of 33.0). Damage at stress-
amplitudes below the conventional endurance limit resulting from interaction
with high stress-amplitudes becomes pronounced only when the damage
directly produced by the latter is very small. When the variable-amplitude
fatigue life is essentially determined by stress-amplitudes above the endurance
limit, interaction effects become insignificant.

None of Professor Stiissi’s test programs contains stress-amplitudes below
the conventional endurance limit; the lowest amplitude of program I of
0.546 t/cm? is practically at rather than below the endurance limit (0.55t/cm?).
Thus the tests are not designed to discover possible damage below the endurance
limit and are, in this respect, not really comparable to my own test. With
respect to damage at the endurance limit by stress-amplitudes exceeding it,
comparison of the mean values 47 for programs I and I1I seems to support
Professor Stiissi’s implied conclusion that no damage is produced at this
limit: the sum of 4n for program I is 1684,1 103, while the sum of 4= for
program II plus the (non-applied) number of cycles at 0.546 t/cm?® would be
1630.9 < 10% and thus clearly within the scatter-range of program I.
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It should, however, be noted that in Professor Stiissi’s tests the percentage
of high stress-amplitudes is very high in comparison with my own tests: almost
18 percent of the stress-cycles are at the highest two amplitudes, producing
directly roughly 86 percent of the total damage according to the linear damage
law, compared to much less than 3 percent of stress cycles at these two ampli-
tudes producing directly less than 2 to 5 percent of the total damage in my
tests. Whatever damaging interaction effects between the high stress-ampli-
tudes and the endurance limit might exist, they can hardly be noticeable
when the fatigue life is essentially determined by the highest two stress-levels
alone. The fact that the linear damage law is applicable in the interpretation
of Professor Stiissi’s tests shows, in fact, that stress-interaction effects are
unobservable; this does not necessarily mean that they are non-existent, but
only that Professor Stiissi’s test programs have not been designed to bring these
effects out. In all random fatigue tests performed at Columbia University in
recent years it could be clearly shown that the linear damage law X' (4 n;/n;) =1
is approximately valid only when all stress-amplitudes are relatively high
and fatigue lives relatively short (<108 cycles); the wider the range between
the highest and lowest stress amplitudes and the smaller the percentage of
the former, the larger the deviation from the linear law and the stronger the
stress-interaction effect [3].

Professor Stiissi’s statement in his General Report that my test results
are not confirmed by his preliminary tests could therefore only be understood
to mean that his specific test programs are not quite relevant to the purpose
of my tests, and that therefore our results are not comparable. His results
show as clearly that there are conditions under which the stress-interaction
effect in fatigue is irrelevant, as mine show that there are other conditions
under which this effect is highly significant. Our results are thus neither
incompatible, nor does any difference between them prove anything beyond
the fact that test-conditions have been sufficiently different to produce diffe-
rent results.

With respect to the test conditions it appears, however, that the exponen-
tial stress-amplitude spectra underlying my tests with their very small per-
centages of high amplitude stress cycles are closer to real conditions of struc-
tures under variable loads than the stress-programs selected by Professor
Stiissi. In fact they have been derived from load records of airplane wings in
operational flight. Therefore my conclusion that the constant-amplitude
endurance limit is a fatigue design and performance characteristic of dubious
value is not affected by the results of Professor Stiissi’s tests.
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Summary

On the basis of preliminary test-results performed to check the conclusion
reached in the author’s paper in the “Preliminary Publication™ that the stress
amplitudes below the conventional endurance limit produce significant damage
because of their interaction with the stress-amplitudes above this limit, Pro-
fessor Stiissi attempts to show that this conclusion is not confirmed. New
results of random-fatigue tests performed on ASTM-A-285 weldable mild
carbon steel confirm the conclusions reached previously for SAE 4340 Steel:
Application of stress-levels below the conventional endurance limit produces
significant fatigue damage.

The author states that his own tests and those of Professor Stiissi based
on different specific test programs are not comparable.

Résumé

Se fondant sur les résultats d’essais préliminaires, effectués dans le but de
controler les conclusions que 'auteur a avancées dans la «Publication Pré-
liminaire» (conclusions indiquant que des contraintes d’amplitude inférieure a la
résistance classique a la fatigue peuvent causer d’importants dommages, a
cause de leur interaction avec des contraintes d’amplitude supérieure a cette
limite) le Prof. Stiissi essaie de prouver que ces conclusions ne sont pas con-
firmées. Des nouveaux essais effectués sur l'acier doux, soudable ASTM-
A-285 confirment les conclusions tirées des résultats obtenus pour ['acier
SAE 4340 et qui sont: I'application de contraintes d’amplitude inférieure a la
résistance classique a la fatigue cause d’importantes dégradations par fatigue.

L’auteur constate que ses résultats d’essais et ceux du professeur Stiissi
ne peuvent pas étre comparés par ce qu’ils se fondent sur des programmes
spécifiques différents.

Zusammenfassung

Auf Grund von ersten Versuchsergebnissen zur Uberpriifung der Schluf3-
folgerung, zu der der Autor in seinem Beitrag im «Vorbericht» gekommen ist,
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daf ndamlich Spannungsamplituden unterhalb der herkommlichen Ermiidungs-
grenze betrichtlichen Schaden anrichten wegen ihrer Wechselwirkung mit den
Spannungsamplituden iiber dieser Grenze, versucht Prof. Stii}i zu zeigen, dal}
diese SchluBfolgerung nicht bestitigt wird. Neue Ergebnisse von Ermiidungs-
versuchen unter verdnderlichen Spannungswerten, ausgefiihrt an schweil3-
barem, normalem Baustahl ASTM-A-285, sollen aber die frither gezogenen
SchluBfolgerungen fir SAE 4340-Stahl bestétigen: Anwendung von Spannungs-
stufen unter der konventionellen Dauerfestigkeitsgrenze ergeben einen bemer-
kenswerten Ermiidungsschaden.

Der Autor stellt fest, dall seine Versuchsresultate und diejenigen von Prof.
Stiili, die von verschiedenen spezifischen Versuchsprogrammen ausgehen,
nicht vergleichbar sind.
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L’exploitation des séries de petite taille en résistance des matériaux
Die Interpretation der kleinen Serien in der Festigheitslehre

The Interpretation of Small-sized Serves in Strength of Materials

M. DAVIN

Laboratoire Central des Ponts et Chaussées, Paris

Parmi les problémes fondamentaux qui conditionnent le dimensionnement
des constructions, celui du «risque de défaillance locale», ¢c’est-a-dire d’abaisse-
ment local de la résistance au-dessous du taux de contrainte subi en service,
est un des plus importants.

Pour déterminer la forme des courbes de répartition en probabilité des
résistances & la rupture, et rechercher les meilleures formules d’ajustement,
nous avons, au Laboratoire Central des Ponts et Chaussées, réalisé des popu-
lations de forte taille (plusieurs centaines, méme plusieurs milliers) aussi
homogénes que possible, d’éprouvettes de mortier. Nous avons trouvé que la
«loi de valeurs extrémes»

Hlah=1 —e_(%)x

(ou z est la variable aléatoire représentant la résistance a la rupture et F ()
sa fonction de répartition, z, et K des parameétres dépendant de la population
considérée), permet pour les essais de compression ou de traction directe, des
ajustements trés satisfaisants de la partie inférieure de la courbe (v <z,) la
seule qui intéresse la sécurité des constructions. Pour la partie supérieure
(x> x,), cette formule représente moins bien la réalité, les courbes expérimen-
tales étant plus étalées que les courbes théoriques. Ainsi, pour un écart qua-
dratique moyen d’environ 89, correspondant a K =15, une valeur supérieure
de plus de 309, & la moyenne n’est pas, en fait, extrémement exceptionnelle,
alors que la formule lui attribue une probabilité inférieure a 10-13, done tres
inférieure & l'inverse du nombre total d’éprouvettes essayées dans tous les
temps et dans tous les laboratoires du monde.

La série de forte taille a toutefois I'inconvénient de nécessiter une étude
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spéciale, faite dans des conditions aussi particuliéres que possible, et il subsiste
un doute quant a la possibilité d’en tirer des conclusions générales. C’est
pourquoi nous avons recherché une méthode permettant d’exploiter les archives
de notre Laboratoire, principalement composées de séries de taille 6 relatives
a des essais de mortiers et bétons, notamment I’essai de compression sur cubes
et 1’essai de traction de Michaélis.

I1faut bien comprendre que ces séries ne peuvent pas étre considérées comme
formant, par leur réunion, un échantillon de grande taille d’une «population
mere» commune. En effet, les changements qui interviennent, d’une série a
I’autre, sont principalement sous la dépendance de facteurs humains, & varia-
tions discontinues, le plus souvent rebelles aux lois statistiques: changement de
I'opérateur ou perfectionnement de la technique d’essai en ce qui concerne
le laboratoire; variations dans la provenance et la qualité du ciment, les spéci-
fications officielles, progres de l'industrie des liants hydrauliques; et méme,
transformation de la mentalité des ingénieurs qui demandent les essais, cer-
tains d’entre eux s’adressant systématiquement aux Laboratoires, d’autres
n’y faisant appel que s’ils ont subi des mécomptes.

Nous les avons donc considérées comme appartenant a des populations
toutes différentes, mais en raison de leur communauté de nature, nous avons
admis que ces populations obéissent a des lois que 'on peut ramener & une
formulation mathématique du type défini ci-dessous.

La fonction de répartition de la résistance pouvant toujours étre repré-
sentée pour l’ensemble des populations considérées par:

F(x, A p,v...)

A, p,v ... étant des parametres qui varient d’'une population a ’autre, nous
admettons que cette fonction peut se mettre sous la forme:

F A pv) =D [f(x, A, u,v),q(x, A pw,v)...]

les f,g étant trés pew nombreux et trés simples comme expression mathématique.
On aura par exemple:
F(x,Ap)=d¢@Ax+pu)

(deux parametres, une seule fonction auxiliaire introduisant les paramétres
sous forme linéaire).

Cette hypotheése est suggérée par l'examen des principales lois usuelles
admises en statistique. La loi de Gauss, dans toute sa généralité, la lere loi de
Pearson, quand on fixe les exposants p et ¢, la loi de valeurs extrémes & variable

T—x,

non bornée inférieurement (dont lafonctionde répartitionest ' (z)=1—e"¢", '),
admettent précisément la formulation de 1’exemple particulier ci-dessus. La
loi de Galton, la loi de valeurs extrémes du type défini plus haut comme
meilleure loi d’ajustement des séries de grande taille (type & variable essen-
tiellement positive) ont des fonctions de répartition du type

F (A1) = ¢ A L(x)+p)
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ou encore, si I’on fait le changement de fonction ¢ (L () =% (¢) et le change-
& =M
ment de parametre v =e#. F ) =),

Si nous nous bornons au cas ou il n’y a qu'une fonction auxiliaire, nous
avons
F A psv o) =P[f (@A s v)];

f est supposée connue mais la fonction ¢ a une seule variable est supposée
inconnue.

Sila taille n des échantillons est supérieure au nombre m des parametres,
la répartition, dans l'espace a n dimensions, des points /> dont chacun figure
un échantillon, nous donne une information sur la fonction @; mais cette
information est plus facilement exploitable s7il est possible de trouver une
famille de multiplicités (courbes, surfaces ou hypersurfaces) telle que la
probabilité de présence du point P dans chaque portion d’espace délimitée
par une ou plusieurs de ces multiplicités soit indépendante des parametres.

Soit en particulier f (z,A,u) = Axz+pu. Nous considérons des échantillons
de taille 3 et nous les représentons, dans I’espace a 3 dimensions, chacun par
le point P dont les 3 coordonnées w;x,2; sont les 3 nombres constituant le
résultat d’épreuve de 1’échantillon. Si nous passons d’une population a une
autre en changeant A et p, la figure de I’espace représentant la densité de
probabilité de présence du point P subit, pour un changement de A, une homo-
thétie par rapport a l'origine, et pour un changement de p une translation
suivant la droite D (x; =2,=2,).

Done si nous considérons un diédre 4 formé par deux demi-plans passant
par D, la probabilité de présence de P a l'intérieur de ce diedre est la méme
pour tous les échantillons, et quand le nombre des échantillons croit indéfini-
ment, la proportion de points P a l'intérieur du diedre converge en probabilité
vers une valeur certaine égale a cette probabilité commune.

Si la loi étudiée est normale (loi de Laplace-Gauss) la «figure représentant
la densité de probabilité de présence de P» pour un échantillon, est formée de
sphéres concentriques. En effet, cette densité est:

1 _(;J:l—m)ﬂ'f(.’.t'g—)rz)’;(;l'g—m)2

Done la répartition entre les diédres 4 est uniforme: si 6 est la mesure en
radians d’un tel diédre, la proportion de points P a I'intérieur de 4 converge

en probabilité vers %

En fait, des 3000 échantillons de taille 6 trouvés dans nos archives, nous
avons tiré 60000 échantillons de taille 3, en divisant chacun en deux parts
des 10 maniéres possibles, et sur chacun des 60000 nous avons considéré la
quantité:

20, —To—X
f = + Arc cos e W

2V 4+ 2%+ 22 — 2, Ty — To Ty — X3 2,
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(le signe devant Arccos étant celul de x, —a;) qui représente 1’angle diédre du
plan passant par D et P avec le plan passant par D et I'axe des 2,. D’apres
ce qui précede, la répartition de ¢ tendrait vers I'uniformité entre —= et + =,
pour un nombre indéfiniment croissant d’échantillons, si les populations sui-
vaient une loi normale.

Toutefois l'ordre des indices affectés & chacun des nombres formant
I’échantillon doit étre vraiment aldatoire, sans corrélation avec l'ordre de
grandeur croissante ou décroissante. Or certains de nos résultats d’essais
avaient été classés par ordre de grandeur; d’autres d’apres l'ordre d’exé-
cution des essais.

Nous avons donc commencé par opérer la permutation aléatoire systé-
matique de nos échantillons, commandée par un procédé de randomisation.

Les nombres mis en ceuvre, étant des résultats expérimentaux, étaient
arrondis & la division du cadran la plus voisine de 'aiguille; d’ou le risque
d’un «biais» d’autant plus grave que les écarts entre z,, x, et a; sont souvent
de quelques divisions seulement. Nous avons corrigé ce biais, en ajoutant, a
chacun des résultats bruts, une partie décimale définie elle aussi par un pro-
cédé de randomisation.

En définitive, c’était la répartition de @ entre des tranches égales (0 & 10°,
107 a 20°...) qui nous intéressait. Pour économiser le temps de travail de la
machine, nous n’avons pas, en réalité, calculé §, mais seulement cosf, c’est-
a-dire la fraction algébrique en z, z,x,, et nous avons étudié la répartition des
valeurs trouvées entre les intervalles cos 0°—cos 10°, cos 10° —cos 20°, ete.

Le choix de tranches de 10° pour 6 réalise un bon compromis entre deux
exigences contraires: avoir assez de tranches pour obtenir une connaissance
suffisante de la fonction représentant la distribution des points P par rapport
a @; avoir assez de points P dans chaque tranche pour réduire suffisamment
les écarts relatifs accidentels.

Conformément & la théorie, notre courbe de fréquence admet, aux dits

” N o 27 pps " . ;
écarts pres, la période R Les tranches ont des différences significatives qui

prouvent l’existence d’écarts entre les lois des populations étudiédes et la loi
de Gauss. Les moins chargées sont celles voisines de +30°, +90°, +150°. Les
plus chargées sont celles voisines de +60° et de 180°; mais des maxima moins
accusés existent au voisinage de 0° et +120°.

Est-il possible de remonter de la fonction densité de probabilité en 6
(supposée connue suffisamment par ces résultats) a la fonction ¢ (z) telle que
¢ (Ax+pu) soit la forme générale de la fonction de répartition des populations
étudiées? Ce probleme comporte la résolution d’une équation intégrale non
linéaire, qui peut en principe étre obtenue, au moins numériquement, par une
méthode de «cheminement fonctionnel». Considérons une «fonction de départ»
¢, et la fonction yx,(f) qui lui correspond (on la détermine par de simples
quadratures). Etablissons alors entre y, et y un «trajet fonctionnel» c¢’est-a-
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dire une famille de fonctions dépendant continiment d’un paramétre m et
telle que pour m =0 on ait la fonction x, et pour m =1 la fonction y (le trajet
sera «rectiligne» si la famille considérée est:

Xo+ 7 (X — Xo) -

Déterminons de proche en proche les variations infiniment petites que doit
subir @ pour que les variations infiniment petites correspondantes de y se
situent sur le trajet fonctionnel: c’est un probléeme de Fredholm, et les cal-
culatrices électroniques, qui opérent facilement les inversions de matrices
d’ordre élevé, peuvent généralement le résoudre numériquement avec une
bonne approximation. Le cheminement permet donc d’arriver a une fonction
@ telle que la fonction qui lui corresponde soit x (s’il n’est pas interrompu par
des singularités). La principale difficulté parait étre le choix de la fonction de
départ et la solution des indéterminations; le probleme posé peut en effet
admettre une infinité de solutions dont une seule est la bonne, il faut que la
fonction de départ en soit assez voisine. Les études préalablement faites sur
des séries de grande taille pourront guider ce choix.

Nos prétentions seront plus modestes car le travail mathématique serait
trop considérable et la fonction yx (f) encore insuffisamment bien connue. Nous
commencons par rechercher quelle serait la fonction x (6) si I'on pose ¢ (§) =

{.‘ K
=1l—e (f_o) (loi de valeurs extrémes).

La densité de probabilité dans le cas £ =x est

K-1 x \K
@) =K xTK e_(Z) (en remplacant &, par )
0

et dans l’espace x; z, z; la densité de probabilité relative au point P

_ K3 (zy 2amg) B e—(ﬂ)x—(ﬂ K”(%)K.

Pr (Cl?) - 3K To To
&

Dans chaque tranche 6 & 6+ d 6 nous commencons par intégrer entre les
cones r=sz et r=(s+ds)z avec

1/3 /2 2 P 2

2 = T(xl+x2+x3) et r=Vadi+ad+ai—22.
Le volume élémentaire d’intégration est alors z2sdsdzd 6. Si nous posons

g P

x,;=m;z avec m-:E 1+sV2cos 9—1-&(7;—1)] (t =1,20u3) lintégrale
1 k2 (4 3 3 g

dans la tranche d @ est:

St @
K3 (m ms ma)E—1 _(nr{{*:mf{+mf)s’{
dI:de ( 1x3]2£ 3) sdsz"K—le oK dz,
0
0 0
> o |
My Moy M) E—
- szKZJ oy ey M) ™" .
; (mi* +mz +mg")

(s; étant la plus petite valeur positive de s qui annule 1'un des m;)
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cette intégrale peut se calculer numériquement, en fonction de . On trouve,
par exemple pour K =15:

x (30°) X (60°)
x (0°) x (0°)

Aux lois de valeurs extrémes correspondent des fonctions y (¢) qui pré-
sentent bien les maxima trouvés expérimentalement pour +60° et 180°, mais
non ceux trouvés pour 0° et + 120°. Cela tient a leur fort «étalement» du coté
des faibles valeurs et & leur trés faible étalement du coté des grandes valeurs.

Mais si on considére une loi symétrique qui se confond & peu pres avec
une loi de valeurs extrémes pour les faibles valeurs de la variable, la fonction
x (0) correspondante a des maxima, tous égaux, pour 0°, +60°, +120°, +180°,
En diminuant I’étalement du c6té des grandes valeurs, on peut obtenir une
fonction x () conforme & notre répartition expérimentale (maxima principaux
pour +60° et 180°, et maxima moins accusés pour 0 et + 120°) tandis que la
fonction ¢ (€) se rapproche des fonctions de répartition trouvées expérimen-
talement dans les séries de forte taille.

Pour tester I’application de lois de ce genre il eut été plus rationnel de
considérer que les parameétres s’introduisent par l'intermédiaire de A L (z) + p
ou de v2?, et, en conséquence, de remplacer, dans le calcul de 6, nos quantités
x, &, x5 par leurs logarithmes; mais cela représentait une augmentation impor-
tante du temps-machine, et comme les parametres de dispersion de nos popu-
lations n’étaient pas eux-mémes excessivement dispersés, cela n’aurait pas
modifié beaucoup nos résultats: de plus il était intéressant de tester la loi
normale.

- 1,172, = 1,5075.

Tableaw du nombre de valeurs de 6 tombant dans chaque classe

0 a 4+ 10° et 0 a — 10° 3615
+ 10° a4 + 20° et — 10° a — 20° 3440
+ 20° a 4+ 30° et — 20° a -— 30° 3475
+ 30° a + 40° et — 30° a — 40° 3430
+ 40° a 4+ 50° et — 40° a — 50° 3500
+ 50° a 4+ 60° et — 50° a4 — 60° 3715
+ 60° a + 70° et — 60° a — 70° 3610
+ 70° a4 4 80° et — 70° a — 80° 3510
+ 80° a + 90° et — 80° a — 90° 3540
+ 90° a4 4+100° et — 90° & -—100° 3320
+100° & +110° et —100° & —110° 3385
+110° & +120° et —110° & —120° 3485
+120° a +130° et —120° & —130° 3570
+130° a +140° et —130° & —140° 3450
+140° a +4150° et —140° & —150° 3440
+150° a +4+160° et —150° a —160° 3375
+160° a +170° et —160° a —170° 3580
+170° & 4+180° et —170° & —180° 3680

63120
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Résumé

La fonction de distribution des résistances a la rupture d’une éprouvette
d’un type donné, se détermine de préférence au moyen de séries de forte
taille, mais les laboratoires disposent surtout, dans leurs archives, de séries
de petite taille appartenant & des populations différentes mais de méme nature.

Nous avons admis que la facon dont s’introduisent les parametres dans la
forme générale de la fonction est connue a priori et nous avons montré par un
exemple tiré de 60000 séries de taille 3 provenant du Laboratoire Central des
Ponts et Chaussées, comment il est possible d’obtenir dans ces conditions
une information sur cette forme générale.

Zusammenfassung

Die Verteilungsfunktion der Bruchfestigkeiten einer gegebenen Art von
Probekorper bestimmt sich vorzugsweise mit Hilfe von groflen Serien; leider
verfiigen die Laboratorien in ihren Archiven vor allen Dingen iiber kleine
Serien, die verschiedenen Grundgesamtheiten gleicher Art angehoren.

Wir haben angenommen, dafl die Art, mit der sich die Parameter in die
allgemeine Form der Funktion einfiihren, a priori bekannt sei und haben
durch ein Beispiel mit 60 000 Serien der Griofle 3 des « Laboratoire Central des
Ponts et Chaussées» gezeigt, wie es moglich ist, unter diesen Umstéinden eine
Auskunft iber diese allgemeine Form zu erhalten.

Summary

The function of distribution of ultimate strength of a given pattern of
test piece, is determined in preference by means of great sized series; but
laboratories dispose especially in their files of small-sized series belonging to
different populations of the same kind.

We have assumed that the way, by which parameters are introduced in
the general form of the function, is known a priori, and we have shown, with
an example from 60000 series of size 3 from the “‘Laboratoire Central des
Ponts et Chaussées’’, how it is possible under these conditions to obtain an
information about that general form.
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Discussion - Discussion - Diskussion

Shear Strength of Reinforced Concrete Beams Loaded Through Framed-in Cross-
Beams (J. Taub, A. M. Neville, I1a6)?)

Résistance a Ueffort tranchant des poutres en béton armé chargées par Uinter-
médiaire de traverses (J. Taub, A. M. Newille, Ia6)?)

Die Schubfestigkeit von Stahlbetonbalken mit Lastibertragung mittels Querbalken
(J. Taub, A. M. Neville, Ia6)?")

DONOVAN H. LEE
London

The shear strength of reinforced concrete beams covered by the tests
described in the paper by Messrs. TAus and NEvILLE should be considered as a
rather special case because the beam has full moment at approximately the
same point as nearly the full shear stress. High bond strength of the reinforce-
ment in the main beam is therefore more advantageous than usual.

Another point on which the authors will no doubt agree is that tests of
shear strength of isolated parts of a reinforced concrete structure must give
optimistic results as compared with those same members in the complete
structure. It seems to have been generally overlooked that beams forming
part of a completed concrete framework will often be prevented from shrinkage
by the rest of the structure and accordingly develop shrinkage stress corres-
ponding to a fixed length condition. THOMAS %) gave long ago deduced shrinkage
stress at early ages and the decay of stress for constant deformation was
estimated by Building Research Station?®) and also by Whitney in America
some time ago. The maximum shear stress permitted on the concrete must

1) See ‘‘Preliminary Publication” — voir «Publication Préliminaire» — siehe «Vor-
bericht», p. 77.

2) Journ. Inst. Struct. Engrs. July 1936.

3) Journ. Inst. Struct. Engrs. Feb. 1933.
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include allowance for the reduced strength caused by this shrinkage stress
and not be based on tests of isolated beams.

By inference precast beams are largely unaffected. Also it is an interesting
reflection that just as prestressing so greatly increases the shear strength rapid
concreting of ordinary reinforced beams with inadequate freedom to shrink
seriously reduces the resistance of the concrete to shear as one well known
failure in North America seemed to confirm.

Of course many structures can shrink freely but for those that cannot
sequences for the construction can easily be arranged so that the shear strength
is not needlessly reduced by restraint to shrinkage.

Summary

The author discusses the shear strength tests described in the paper Ia6.
He points out that the case considered is a rather special one because of
maximum shear and bending stresses occurring nearly at the same section.
Another point one must not overlook is that in effective structure the shear
strength will often be reduced by shrinkage stresses and therefore these tests
of isolated elements must give optimistic results.

Résumé

L’auteur discute les essais sur la résistance au cisaillement, dont traite la
contribution Ia6. Il fait remarquer que le cas traité est plutot une exception
vu que les efforts tranchants et les tensions dues a la flexion sont maxima
presque dans la méme section.

De plus il ne faut pas oublier que la résistance au cisaillement d’ouvrages
exécutés est souvent diminuée par les tensions dues au retrait. Il est donc
clair qu’on obtiendra des résultats trop favorables lorsque les essais sont
effectués sur des éléments isolés.

Zusammenfassung

Der Autor bespricht die Versuche iiber die Scherfestigkeit, die im Beitrag
Ia6 enthalten sind. Er macht darauf aufmerksam, dafl der behandelte Fall
eher eine Ausnahme ist, da maximale Schub- und Biegespannungen fast im
gleichen Schnitt auftreten.

Ein anderer Punkt, der nicht vergessen werden sollte, besteht darin, daf3
bei tatsidchlichen Tragwerken die Scherfestigkeit oft durch Schwinden redu-
ziert ist, so dafl diese Versuche an isolierten Elementen eher optimistische
Ergebnisse zeigen.
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Numerische Methode zur Berechnung statischer Probleme
Numerical Method for Solving Statical Problems

Méthode numérique pour le calcul de problémes statiques

B. GILG
Dr. Ing., Elektro-Watt, Ziirich

1. Einleitung

Die Aufstellung von Differentialgleichungen fiir statische Probleme bietet
im allgemeinen keine groBlen Schwierigkeiten, doch ist es bisweilen schon bei
linearen Fillen, viel 6fters aber noch bei zwei- und mehrdimensionalen Trag-
werken sowie bei dynamischen und thermischen Problemen unmdglich, eine
geschlossene Losung mit Befriedigung aller Randbedingungen zu finden.

Ein oft verwendetes Néaherungsverfahren ist die von Markus in seiner
Theorie der elastischen Gewebe angewandte Differenzenrechnung, bei welcher
bekanntlich die Differentialquotienten durch endliche Differenzen approxi-
miert und die Differentialgleichungen in Gleichungssysteme umgewandelt
werden. Die Anzahl der zu wihlenden Punkte hingt bei einer gewiinschten
Genauigkeit von den Kriimmungsverhéltnissen des Tragwerkes ab und kann
in komplizierten Fillen sehr grol3 werden.

Es ist aber ohne weiteres moglich, mit einem analogen Verfahren auf
Grund einer weit geringeren Anzahl von Festpunkten zum Ziel zu kommen,
wenn namlich als Ausgangswert nicht die Funktion selber, sondern die hichste
in der Differentialgleichung auftretende Ableitung gewihlt wird. Anstelle der
Berechnung der Ableitungen aus den Funktionswerten durch Differenzen-
bildung tritt nunmehr die Berechnung der niedrigeren Ableitungen aus den
héheren durch Integration einer interpolierten Kurve. Damit gleicht das
Niherungsverfahren der bekannten Seilpolygongleichung von StiifBi.
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2. Linearer Fall
Um das Verfahren im Detail zu erliutern, gehen wir von einer Differential-
gleichung 4. Ordnung aus, welche folgende Form besitzt:
fo@)y" + @) y" +f @)y +H @)y +fo @)y = p@). (1)

Dabei sind die Koeffizienten sowie die Stérfunktion p(z) beliebige bekannte
Funktionen.

g
A Parabel —,

//-

a x a x

Fig. 1.

Die hochste Ableitung der gesuchten Funktion y ist y™. Sie stellt somit die
Ausgangsfunktion fir die numerische Integration dar. Tragen wir die unbe-
kannten Werte in einem Diagramm auf, so kénnen wir, wie Fig. 1 zeigt, je
drei dieser Werte durch eine Parabel verbinden. Nach den Regeln der Inte-

gration erhalten wir:

ytll ( _) — Jl/l +J er d x
y// (x) — yn (O)+-“ym dfl,
0

Wird eine Parabel zwischen drei Werten mit den Indizes 0, 1 und 2 interpoliert,
so ergibt sich

" I/I A m nr nr
s =¥k (C’Ju +8y1 —¥s ), (31)
" nr A mn ne nrr
Y2 = Yo+ (4y0 +16y" +4yy7). (32)
Wir haben also die 3. Ableitungen im Punkt 1 und 2 aus den 4. Ableitungen
im Punkt 0, 1 und 2 sowie aus der 3. Ableitung im Punkt 0 berechnet. Analog
zu (3,) gilt fiir die weiteren Punkte durch Verschieben der Indizes

" n A mnr nm mr
Ys =Y + (‘“Jl +16y, +4y;) ete. (33)

Die allgemeine Form der Funktion y” (z) ist dabei eine Parabel 3. Grades,
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welche weiter integriert werden kann, wobel man die néchst tiefere Ableitung
erhilt:

" A " mr "
Y1 = Yo + Yo Ax+—(7y +6y" —y3"), (4;)

" ” m A mr nn
Y2 = Yo +Y 2Ax+—4(16yo +32y1) (45)

und durch Verschieben der Indizes:

" A m mr
Y3 = Y1 +?/1-A$+—“(1691 +32y,") ete. (43)

Analog ergeben sich die tieferen Ableitungen sowie die Funktion selber:

! r " " A xz A x3 ol M "n mnr s
y1=Y%+% drty) ——+ 55 @7y 163" =37, (51)
r) m 2 A " ’) " " -
Yo = Yo+Yo 2dax+yy 24z +»~(9yo + 129" —y5"), (55)

Az
Ys y1+y12Ax+J'1"ZA$2+1—(991'”+1’J”" ys')  ete.  (5y)

A 14 A xs A ’1:4 m ne "
Y1 ="YotY 4dx+yq +yo & T3go (Mw +551" —w"), (6,)
” nr A x3 A x4 mne nn mne
Yo = Yo+ Yo2dx+ys 2422+ + = (16yg" +16y;," = 2yy"), (65)
! " I 4 A 3 A 4 " nr nn
Ys =Y +y; 2dx+y; 2422+ 3x +—45 (16y7 +16y," —2y3") ete. (63)

Mit den Formeln (3)—(6) laf3t sich in jedem Punkt (x=0, da, 242 ...)
die Differentialgleichung so umwandeln, dafl nur noch die 4. Ableitungen der
gesuchten Funktion y sowie die niedrigeren Ableitungen des Randpunktes
(x=0) auftreten. Dabei miissen z. B. die Werte 7, 7, y; etc., welche in den
Gleichungen (3,), (45), (5,) etc. auftreten, durch die aus den Formeln (3,), (4,),
(5;) erhaltenen Ausdriicke ersetzt werden.

Das so aufgestellte Gleichungssystem enthalt fiir jeden Punkt der unter-
suchten Strecke eine Unbekannte " sowie fiir den Punkt =0 so viele Unbe-
kannte (yy, %o, %o, ¥o) als die Ordnungszahl der Differentialgleichung be-
trigt. Zu ihrer Bestimmung dienen fiir jeden Punkt eine Gleichung (1) sowie die
Rand- resp. Anfangsbedingungen, deren Anzahl bekanntlich gleich der Ord-
nungszahl sein muf}. Die Zahl der Unbekannten und diejenige der Gleichungen
ist also identisch.

Zu den bisherigen Erliuterungen sind zwei Bemerkungen wichtig:

a) Ist die hochste Ableitung der Differentialgleichung eine andere als die im
vorigen Fall angenommene, so gelten die Formeln (3)—(6) in analoger
Weise. Nehmen wir als hochste Ableitung #%”, so gelten die Formeln (3) fiir
y', die Formeln (4) fiir y und die Formeln (5) und (6) sind tberfliissig.
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b) Da bei der Berechnung der tieferen Ableitungen im Punkt x=: im allge-
meinen simtliche hichsten Ableitungen der Punkte x <: auftreten, mul
zur Vermeidung von komplizierten Formeln die Zahl der Teilstrecken
moglichst klein gehalten werden, z.B. 4—6. Symmetriebedingungen sind
als Randbedingungen einzufiihren, so daf} sich die Zahl der Unbekannten
auf die Halfte reduziert.

3. Linearer Fall mit 2 simultanen Differentialgleichungen

Wihrend bei einfacheren statischen Problemen im allgemeinen die Seil-
polygongleichung von Stii schneller zum Ziel fiihrt, so eignet sich die vor-
erwihnte Methode besonders auch fir komplizierte Probleme, wie z.B. fir
den in Fig. 2 skizzierten Kreisbogentriger unter radialer Belastung. Sein

Verhalten wird durch zwei simultane Differentialgleichungen fiir die mit dem
Elastizitditsmodul £ multiplizierten Verschiebungen wu(s) in tangentialer
Richtung und » (s) in radialer Richtung charakterisiert:

a3 E v”} d

13 72 +—Ev+£E’u'=—p(s),

[E 'l)”” + R2 R

—
~1
~

d3 " ’ d3 ”
EEv +Ev [I:ZR?_d] —dREW =0.

d, R und p(s) sind aus der Fig. 2 ersichtlich. Die Schnittgroflen M (Biege-
moment) und N (Normalkraft) gehorchen bekanntlich folgenden Ausdriicken:

BrEy . , Ev ,

Fiir einfache Belastungsfunktionen p(s) konnen die Gleichungen (7) streng
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gelost werden, so dall die Genauigkeit der Niaherungslosung bestimmt werden
kann.

Aus den beiden hichsten Ableitungen E»™ und Eu” werden anhand der
Formeln (3)—(6) die tieferen Ableitungen berechnet und in die Gleichungen
(7) eingesetzt, wobei zusitzlich die unbekannten Randwerte £ ", Ev", K,
Ev, Ew' und Eu fir s=0 auftreten. Es miissen also 6 Randbedingungen
aufgestellt werden, d.h. fiir jedes Bogenende 3. Im Falle eines total einge-
spannten Bogens sind dies die folgenden:

an jedem Rand: Eu=Ev=Ev =0.

Bei symmetrischem Verlauf der Belastung konnen die 3 Randbedingungen
am Rand s=s,, durch Symmetriebedingungen im Bogenscheitel (s=1s,,)
ersetzt werden.

Zur Uberpriifung der Genauigkeit wurde ein Triger mit einem Offnungs-
winkel von 120° und einer Schlankheit E/d =10 unter konstanter Belastung
berechnet. Es ergab sich fiir die Maximalverschiebung im Scheitel folgendes
Bild:

R2

Strenge Losung Evyp, = — 1,8502D g
R2

Einteilung 4s=15° Evy,, = — 1,858pd :
2

Einteilung 4s=20° Ev,;,, = — 1,868 pf ’

Die Abweichungen der Werte fiir die SchnittgroBen halten sich in den-
selben Proportionen. Eine Einteilung in 6 Abschnitte (im Symmetriefall nur 3!)
kann als geniigend angesehen werden.

4. Diinne Platten als Fall einer partiellen Differentialgleichung 4. Ordnung

Fiir die diinnen Platten sind schon verschiedene Naherungsverfahren be-
schrieben worden, so dal} sich der Leser iiber die Nitzlichkeit des hier zur
Diskussion stehenden selber ein Bild machen kann. In allen folgenden Formeln
werden die Ableitungen durch Indizes angegeben, so z. B.

dw _ w _Fw w
ox ¥ dgoy: W
Die Plattengleichung lautet somit:
: p(@,y)
44w = wzxrz+2wxzyy+wyyyy = —D— (9)

Sie wird zur Vereinfachung der Berechnung umgeformt:

AM:MMJFM_I,!,:@, (10)

dw =w,, +w,, = M(z,y). (11)
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Wir beschreiben das Vorgehen fiir den Fall der Fig. 3 (quadratische Platte).

Als hochste Ableitungen in der Gleichung (10) treten M,, und M, auf,
d.h. fir jeden untersuchten Punkt 2 Werte. Da fiir jeden Punkt nur eine
Gleichung aufgestellt werden kann, mul3 eine weitere Bedingung gefunden
werden; es ist dies die Berechnung ein und desselben Funktionswertes M iiber
zwei verschiedene Strecken, z.B. fir M, aus M, in den Punkten 5, 6, 7 und
M,, in den Punkten 2, 7, 12.

¥
|20 2 22 2 2%
2
&
5 5 17 8 %
2
“
10 1" 12 123 X
2
&
5 & 7 8 9
2
&
0 ; 2 5 ‘.,

o 2 2
- <

clq

Fig. 3.

Natiirlich miissen hier simtliche Symmetrie- und Antimetriebedingungen
von Anfang an ausgeniitzt werden. Fiir zweiseitig symmetrische Belastung
wurde wie folgt vorgegangen:

a) Berechnung von M,, M,, M,, M, und M,, aus den entsprechenden M-
Werten der Punkte 0, 1, 2, 5, 6, 7, 10, 11, 12 unter Beachtung der Rand-
und Symmetriebedingungen: M,=0 und M, =0 in Punkt 2, 7, 12. Es blei-
ben die 11 Unbekannten M ,, in den Punkten 0, 1, 2, 5, 6, 7, 10, 11, 12,
M. und M,,.

b) Formulierung der Differentialgleichung (10) in den Punkten 0, 1, 2, 6, 7,
12 unter Beriicksichtigung der Symmetrie: M, =M, in den Punkten 0,
6: 12 und (Myy)l = (M:c;c)sa (Myy)z = (ﬂ/‘[m:)lo ’ (*M’yy)'i = (Ma:.t:)ll ) dies ergibt
6 Gleichungen.

¢) Beachtung der Symmetriebedingungen M, =M., M,=M,, ergibt 2 zusitz-
liche Gleichungen.

d) Berechnung von M, iiber die Werte M ,, der Punkte 2, 7, 12 (gleich den
Werten M, in 10, 11, 12); Gleichsetzen mit M, aus a) ergibt eine weitere
Gleichung.

e) Zur Bestimmung der 11 Unbekannten brauchen wir noch 2 Gleichungen,
welche uns die Randbedingungen in den Punkten 1 und 2 liefern miissen.
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Im Falle einer frei drehbar gelagerten Platte sind dies die Gleichungen
M,=M,=0, welche besagen, dal} das Randmoment identisch verschwindet;
sie erlauben eine sofortige Berechnung der M-Werte der Differentialgleichung
(10) und damit der Schnittmomente; die Durchbiegungen w erhélt man darauf
in analoger Weise mittelst der Differentialgleichung (11). Im Falle einer einge-
spannten Platte mufl mit den Unbekannten M, und M, tiber die Gleichung (11)
weiter gerechnet werden, da die Randbedingungen sich nur auf w, w, und w,
beziehen.

Die Berechnung wurde fiir die quadratische Platte unter p =lkonst. durch-
gefithrt und ergab bei der Einteilung der Fig. 3 fiir die maximale Durch-
biegung sowie fiir die maximalen Momente in Plattenmitte und lings der
Einspannung Abweichungen von 1—29%,, was als geniigend klein angesehen
werden kann.

5. Weitere Anwendungsmoglichkeiten

Die Methode der numerischen Integration laBt sich natiirlich auch auf
komplizierte statische Gebilde wie Schalen und Staumauern anwenden, was
der Verfasser in einer spiteren Arbeit ndher erliutern wird. Das Vorgehen ist
immer dasselbe, nur gilt es zu beachten, dafl bei einer komplizierten partiellen
Differentialgleichung sémtliche héchsten Ableitungen (auch die gemischten)
als Ausgangswerte dienen miissen, wobei die innern Kontrollen sich vermeh-
ren. Bei der Gleichung (9) wiirde das z. B. folgendermaflen aussehen:

2. Inte- 4. Inte-
Basis- 1. Inte- gration 3. Inte- gration
werte gration (1. Kontrolle) gration (2. Kontrolle)
Wrzzz Wazx Wzz Wy

e \

Ty //

Wazyy

Wyyyy Wyyy Wyy Wy
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Zusammenfassung

Es wird eine Methode entwickelt, welche erlaubt, Differentialgleichungen
zu losen, indem die hochste Ableitung als Basiswert angenommen wird und
durch sukzessive Integration die niedrigeren Ableitungen berechnet werden.
Zur Erlauterung der Methode werden einfache und partielle Differential-
gleichungen untersucht.

Summary

A new method is described for solving differential equations by starting
from the highest derivate and calculating the lower derivates through succes-
sive integrations. In order to illustrate the method, a few examples of cal-
culation are then given applying to simple and partial differential equations.

Résumé

La méthode exposée permet de résoudre des équations différentielles; en
admettant la dérivée du plus haut degré comme valeur de base, on obtient
par intégrations successives les dérivées de degré inférieur. Afin d’illustrer la
méthode, on donne quelques exemples de calcul d’équations différentielles
simples et partielles.
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Finite Deflections of a Clamped Circular Plate on an
Elastic Foundation?)

Calcul des fleches finies d’une plaque circulaire encastrée sur fondation élastique

Endliche Durchbieqgungen einer eingespannten Kreisplatte auf einer elastischen

Fundation
WILLIAM A. NASH F. H. HO
Professor of Engineering Mechanics, Uni- Graduate Assistant, Department of Engi-
versity of Florida, Gainesville, Florida, neering Mechanics, University of Florida,
U.S.A. Gainesville, Florida, U.S.A.
Notation

r,0 Polar coordinates.

u, v, W Displacements in radial, tangential, and the direction of normal
vector of the undeformed middle surface of the plate, respec-
tively.

€€ Radial and tangential strain components.

K, , K, Changes of curvature.

M,, My, M,, Components of bending moments per unit length of middle sur-
face of the plate.

N,,Ny,N,s Components of membrane forces per unit length of middle sur-
face of the plate.

E Modulus of elasticity in tension and compression.
v Poisson’s ratio.
h Plate thickness.
Eh3 T
D Y Flexural rigidity of the plate.

1) The results were obtained in the course of research sponsored by the Office of
Ordnance Research, U.S. Army, under Contract DA-01-009-ORD-671 with the Uni-
versity of Florida.



62 W. A. NASH - F. H. HO Ib 2

q Intensity of uniform load in direction normal to the plate
(Ib. per sq. in.).
k Modulus of the elastic foundation (Ib. per cu. in.).
Introduction

Although the solution to many problems involving the infinitesimal deflec-
tions of thin elastic plates on elastic foundations has been given by various
techniques [1,2], no analysis is available for the case when the maximum
deflection is of the order of magnitude of the plate thickness. In the present
study we consider the axisymmetric finite deflection of a thin elastic circular
plate resting on an elastic foundation. The edges of the plate are clamped and
the face of the plate is loaded by uniform normal pressure.

Let us denote by » the distance of a point, in the middle surface of the
plate, from the geometric axis. Also, let » and w, respectively, denote radial
and normal components of displacement of this point. The intensity of normal
load is designated by ¢ and the foundation modulus by & (force per unit
volume). It is assumed that the direction of the reaction of the foundation
upon the plate is normal to the plate and the magnitude of this reaction varies
linearly with the normal deflection w. We denote the modulus of elasticity of
the plate by #, Poisson’s ratio by v, the plate thickness by %, the radius by «,
and the flexural rigidity by D= £ 73/12 (1 —»?). Also, we denote by N, and Ny
the membrane forces per unit length of the middle surface of the plate in the
radial and tangential directions, respectively.

Governing Equations

For deflections of the order of magnitude of the plate thickness we take
the strain-displacement relations to be [3]

du 1 [(dw\?

€’=W+§(W) : (1)
u

€@="> (2)

where €, denotes the radial strain, and ¢j the tangential strain. The curvature
we take to be [3]

d?w

Kr=W, (3)
1 dw

K9=,,_. dr (4)

The finite deflections of the plate are described by the vox KarRMAN equa-
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tions [3]. If the foundation reaction is included these equations may be written
in the form

Ld[ dfl d [ dw 1d[ o dw] .
D;ﬁ[fﬂ{;d—;(ﬁﬁ)}]‘?ﬂ[mrﬂ] =g (5)
da L d Eh(dw\®*
Also, we have the equation expressing equilibrium in the radial direction [3]
d
The radial displacement is found from (2) together with Hooke’s Law to be
r [d
—— |2 (v N)—
u—Eh[d’)’(?AT) VNT:I. (8)
The boundary conditions at r =a are
dw
w = —C—l",;—* = 0,
U 1
= = 57 Wy—vN,) =0 (9)
a N,)—vN,=0;
or, CW(qr A—vN. =0;
and at =0 they are
%—d—f — Finite, N, = Finite. (10)

It is convenient to render the above equations non-dimensional. Accord-
ingly, we introduce the following relations:

w
W=,
3
v, =2k,
a
Eh3
Ny=" 8, (11)
a*q
P_h4E(1_V2):
_ 3(1-1?) ka
K= 4 Eh3’

Also, a dimensionless variable % is so chosen such that

n=1——. (12)
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Thus, Egs. (5) to (9) can be written in the following non-dimensional forms:

d d* | dW\] . d [w dWw — .
— = N okl | . 1y R |G S [ 5 - . (1
d? L L d W\

d‘—;g[(l”ﬂ)*gr]""E(d—n) =0, (14)
ds
-2 — I'=§,. D
S, —2(1 n)dn Sp (15)
The boundary conditions become
dw
;XtT’)ZO, w=ﬂ=0,
Sy—v8, =0, (16)
d
") — - — S— =
2(1—n) 7 (8)= (=), = 0.
A
At n =1, S,,%:Finite. (17)

Perturbation Procedure

Let us consider a perturbation procedure based upon the smallness of the
dimensionless central deflection of the plate. This technique has been used
successfully by CHIEN [4] in the analysis of finite deflections of a clamped edge
circular plate having no elastic foundation. We begin by denoting the dimen-
sionless central deflection by W,=(w/h),_,, and then expanding in ascending
powers of W, each of the quantities P, W, S,, and Sy, viz:

$P=oa,Wotoay Wi+oay W3+ --- (1
W = Q) (n) Wo+82;(n) Wi+Q5(n) WS+ - - (1
S, = fo(n) Wi+ 1y (n) Wi+ /e (n) Wi+ - - (20
So = g2 (1) Wi+94(n) Wa+ge(n) Wi+ - - (2

The choice of even and odd powers is based upon obvious physical considera-
tions. The series (18) through (21) are next substituted into Eqgs. (13) to (15),
and also into the boundary conditions (16) and (17). Thus, all equations will
be in the form of power series in W,. If we equate coefficients of like powers
of W, we then obtain a set of linearized equations. These equations may be
solved successively to determine any desired number of coefficients in (18)
through (21).

Collecting coefficients of the W, terms in Eq. (13) the following equation
is obtained

d d? ds2
d—n[(l—"])d—nz{(l—'f])ﬁ}] =°‘1—K-Ql- (22)
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The corresponding boundary conditions are

Q,(0) = 9,(0)=0 (23)
£ (1) = Finite. (24)
It is also necessary that
.= 1, (25)
and 2;,(1)=02,(1)=---=0.

This first approximation is obviously the linear problem of small deflection
theory. A solution of (22) may be assumed in the form of the truncated series

Q1 (n) = ?[14+ay (1 —7)+ay (1 —7)*+az (1 —n)°]

2 34 ()t 5 (26)
=A7*+ B3+ Cypt4+ D,
where A=1+4a,+a,+a,,
B=—(a;+2a,+3a,),
(@ 2 3 (27)
C =ay+3a,,
D:-ala.

The values of a,, a,, a; and «; are found from the following system of linear
simultaneous algebraic equations
28a,+76a,+148a; —a; = — 4,
3a,+18a,+55a,+0=0,
Ka;+(144+ K)a,+(9124+ K)a;+0 = — K,
Ka,+2Ka,+(3K+400)a;+0=0.

(28)

In the numerical example to be presented later it is shown that this first
approximation (26) yields results almost identical with those found by
ScHLEICHER [1]. The present technique, however, involves considerably less
computational effort than does application of the SCHLEICHER method.

Collecting coefficients of the W32 terms in Eqgs. (14) and (15) yields the
relations

d? 1 (d0Q,\?
d—n—z[(l—’])fz(”fl)]'f‘:z‘(?l-nl) =0, (29)
d
() = fi(m)-2(1- ). (30)

The corresponding boundary conditions are
92 (0)—vf,(0) = 0, f2 (1) = Finite. (31)
If the value of £, (n) determined in the first approximation is introduced

in (29) and (30) the solution to these equations may again be taken in the
form of the truncated series:

fa(n) = bo+byn+byn?+bgn®+byn*+b57° (32)
ga(n) = cog+cyn+can?+ca P +cynt+c57° (33)
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where bs = 20B2+ AC‘
b4=mAB+bs,
1
by = gA+by, (34)
by =0,
by = by, = bg,
26,
be = 11
and co=(?b_1:) = byv,
Cy = Hby—6by, (35)
c3 = Tby—8b,,
¢y =90,—10b;,

in which 4, B,C, ... are given by (27).
Collecting coefficients of the W§ terms in Eq. (13) yields

=il -so-mtso-v82] <.

The corresponding boundary conditions are

q0-[2 o 2] e 5
N ln=0 N 1n=1

Further, from (25) we have

Q,(1) = 0.

Using the results obtained in (26), (32) and (33), the boundary value problem
described by (36) and (37) can be solved by means of the truncated series:

-Qs(’?) = 772(1—"7)[d0+d1’7+d2772+d3773]

— Dyn?+Dym?+Dynt + Dynd + Dy b, (38)
where D;(1=2,3,...,6) satisfy the linear simultaneous algebraic equations:
4D, —24D;+24D;+24D;+0—a3 =6(1—v2) by 4,
0+36D;—144 D, +120 Dy+0 = 6 (1—v2) [3b, B—2 (by—b,) 4], 39)

— (360 — K) D, — 360 Dy — 216 D, — 840 D, + 0
= 9(1—v2)[4b,C —3 (by—by) B—2 (b, —b,) 4],
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1200 D, + (1200 + K) D;+ 1200 D, + 1600 D5+ 0
=12(1—v?)[6by D —4(by—b;) C—3(by—by) B—2(by—b,) 4],
—900D,—900D,—(900—-K)D,—900D;+0 (39)
= —15(1—v?)[5(by—by) D+ 4 (by —by) C+ 3 (by—bs) B+2(by—b,) 4],
Dy+D;+D;+Ds+Dg =0.

Collecting coefficients of the W§ terms in Eqgs. (14) and (15) we get the
following equations:

d? dQ.\ [dS2
E?[(l—’])f4(’7))+(d—nl) (ﬁ) =0, (40)
d
fum =2 (1= 52 = ., (41)

as well as the boundary conditions
94(0)—=vf,(0) =0,  f4(1) = Finite. (42)

Again for the purpose of solving this linear boundary value problem,
truncated series type solutions for f,(n) and g, (n) can be employed. We take

10 _
fa(n) = _=ZO hi ' (43)
10 ,
9s(n) = ZO P (44)
where
3
hao = 77D D5,

1
hy = 5524 C D+ 25D Ds]+ Iy,

1
by = ﬁ[18D1)6+20(C’D5+DD4)]+h9,
1
h, = %[12AD6+ 15(B D5+ D D;)+ 16 C D]+ hg,

1

h =3—10[8AD4+9BD3+80D2]+h6,

(5]

3
hy =1_0[AD3+BD2]+h5,
hy =1 AD,+h,,
hg = hg,
By =ty =y
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and Po = hy— 2k,

P = 3hy— 4h,,

Py = Hhy— 6hy,

Py = Thy— 8hy,

Py = 9hy,—10h,,

ps = 11h;—12hg, (46)

ps = 13hg—14h-,

Py =15k, — 16 hg,

pg = 1Thg—18hy,

Py = 19hg—20h,,,

Pro= 21hyq.
From the boundary condition (42) we have

ho = 2hy/(1—v), Po = 2vhi[(1—v) =vh,. (47)

In the next section it is demonstrated that no more terms in the series (18)

through (21) are required for a satisfactory analysis of the problem under
consideration.

Experimental Verification

For the purpose of investigating the validity of the above solution, an
aluminum alloy plate was supported on coil springs and tested under normal
pressure with clamped edge conditions. The elastic and geometric parameters
of this system were

h = 0.18 1n.,

E = 10x 106 Ib. per in.2,
a = 7.51n.,

v = 0.3,

k = 39 1b. perin.?.

The solution of Egs. (28), (34), (35), (39) and (45) to (47) leads to the
following relations
3P = 6.53W, +4.64 W3, (48)

S, =0.95W3—0.03 Wi. (49)

As a preliminary verification of the experimental procedure several tests
were conducted with no elastic foundation present to stabilize the plate.
Measurements of central deflections as well as outer fiber strains at the surface
of the plate were found to be in excellent agreement with the predictions of
CuIeN’s theory [4]. Then, the springs were placed under the plate so as to
give the elastic foundation effect. The experimental results for the central
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deflection, shown in Fig. 1, are seen to be in very satisfactory agreement with
the predications of Eq. (48) based upon the present nonlinear analysis.

The outer fiber strain at the center of the plate, on the face subject to
normal pressure, was determined from the membrane strain corresponding to
(49) together with the bending strain as given by the usual thin plate moment-
curvature relations. The normal deflections in the latter are given by (48).
The strain thus predicted on the basis of the present nonlinear theory is shown
in Fig. 2. Also shown on that figure is the strain at this same point as deter-

> .
Linear theor a Proposed solution
w L g e k <39 16/in%
A // J - 0,5
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Fig. 1. Variation of central deflection with load (with elastic foundation).
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Fig. 2. Comparison of theoretical and experimental outer fiber radial strains at center
of plate (with elastic foundation).
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mined experimentally by use of electric strain gages. The agreement, although
satisfactory is not, of course, as good as was the agreement of deflections.

Fig. 3 indicates a comparison of various significant stresses in the plate;
a) when the elastic foundation is present, and b) when it is absent. These
relations are all based upon values given by the present nonlinear analysis.
From these curves it is evident that the elastic foundation is more effective
in reducing the central bending stress than in reducing the central membrane
stress.

20 [ /

I Benaging stress /
ot center £

af center /
ko= 39 16/in° /

15 / {Bendm_p stress

10 / //

Nembrone s/ress
~ i / o center
S}
kr': /
olv /

/
| i 7 Membrane stress
/ o/ center
/ / b« 39 160007
o5 /
] /
| /
/
/ 74
L / Fd
/
i
- S
// With Foundation
L ,// ———— Without Foundation
//
L N 5 | L s L 1 1 L 1
o a5 10
Wor B

Fig. 3. Various stresses in a clamped edge circular plate (v =0.3) with and without elastic
foundation.

Conclusions

The validity of a perturbation type analysis for the nonlinear elastic
behavior of a clamped edge circular plate on an elastic foundation has been
established through experimental verification.

The present nonlinear analysis indicates that, for a given load intensity,
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the presence of the elastic foundation has little effect on the membrane stress
at the center of the plate. However, the elastic foundation is extremely effec-
tive in reducing the outer fiber bending stresses at the center of the plate.
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Summary

The problem of the nonlinear large deflections of a thin circular plate
supported on an elastic foundation is treated by the method of successive
approximations based upon the smallness of central deflections. The edges of
the plate are clamped and the face of the plate is subject to uniform normal
pressure. Results of the analysis are shown to be in satisfactory agreement
with experimental data obtained from tests of an aluminum plate.

Résumé

La méthode d’approximations successives, basée sur la petitesse des défor-
mations centrales, permet d’aborder le probléeme des grandes déformations
non-linéaires des plaques minces, circulaires, sur fondation élastique. Les bords
de la plaque sont encastrés et la plaque est soumise & une charge uniformé-
ment répartie. L’auteur montre que les résultats obtenus a l'aide de cette
méthode concordent de facon satisfaisante avec les résultats d’essais effectués
sur une plaque en aluminium.

Zusammenfassung

Das Problem der nichtlinearen groBlen Durchbiegungen einer diinnen
Kreisplatte auf einer elastischen Fundation wird durch die Methode der suk-
zessiven Niherung, basierend auf der Kleinheit der Mittendurchbiegungen,
behandelt. Der Rand der Platte ist eingespannt und die Plattenfliche ist durch
gleichformigen Druck belastet. Die Ergebnisse der Untersuchung ergeben eine
zufriedenstellende Ubereinstimmung mit Werten, die bei Versuchen an einer
Aluminiumplatte gemessen wurden.
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Dynamics of Continuous Structures with Repeated Elements
Vibrations des ouvrages continus formés d’éléments identiques

Dynamische Losung der durchlaufenden Systeme mat sich wiederholenden
Elementen

V. KOLOUSEK
Prof. Dr. Ing., Praha

Introduction

Structural systems with repeated elements are to be found in all historical
periods. Bridges, continuous over several spans, may be regarded as a typical
example of this kind (Fig. 1). The arches were first made of stone, later we
find continuous structures of reinforced concrete, the structural systems being
either continuous straight girders or continuous arches, and quite recently,
elements of prestressed concrete have been used on an extensive scale for

aAkAARAARA
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= AT i ] = SN
| jj—
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Fig. 1. Types of Continuous Bridge Structure with Repeated Elements.
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continuous structures. In the structural systems used in building houses there
are also many parts built up of repeated elements. Generally, it may be said
that the increasing use of precast elements will naturally result in still wider
application of systems built up of repeated elements, since these systems offer
advantages from the point of view of economy.

In this paper some methods for investigating the vibrations of such systems
are discussed, and it will be shown that both the theoretical and the numerical
work involved may be considerably simplified, if we make use of all the advan-
tages which the application of systems with repeated elements presents.

1. Continuous Beam of Uniform Section
A beam of uniform section, continuous over several equal spans, rigidly
fixed at the end-supports, may be regarded as the simplest possible example

of a system with repeated elements. In this case, the method of dynamical
solution is well known, and we shall give here only a brief review of the analysis.

SR S B B .
? ’-OK/}’/\I’Z\_/P l‘b\‘/_{jj.zz

A <331

3
N =R s

=455

<
Q
(

Fig. 2. Continuous Five-Span Beam, Rigidly Fixed at End-Supports. First Five Natural
Modes of Vibration.
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From the equilibrium of the moments at any isolated joint K we have
Mg gt Mg g =Mk, (1)

where M i 1, Mg g, are the end-moments of the bars K, K —1 and K, K +1
respectively, and M is the external moment loading at the joint K. If we
express the end-moments by means of the end-rotations yz, we obtain from
Eq. (1)

byg1tayg+bygyn = M. (2)

Eq. (2) holds true for all intermediate supports, and we thus obtain a set of
n — 1 algebraic equations for determining the rotations yx . For free oscillations
the external moment loading M equals zero, and the set of algebraic equa-
tions in question is homogeneous.

As an illustration the analysis of a five-span beam of uniform section,
shown in Fig. 2, will now be given.

The set of four equations, written down according to Eq. (2) is shown, in
general form, in Table I.

Table I
71 Y2 73 Y4
a b =0
a b =0
a b =
a b—

The coefficients @ and b are functions of the natural frequency f:%, and

are defined as follows:
_2EJ EJ

4 [.L(.U2
where /\=l1/EJ.

The functions F, (A) and F) (A) are tabulated in !) and 2).
The equations as given in Table I are cyclically symmetrical, and may be
solved by expanding the unknowns y into finite trigonometrical series, viz.

Bt o
yr = 2 fsin—j K, (3)
i=1 n
where n denotes the number of spans.
1) V. KoLoUSEK : «(Baudynamik der Durchlauftriger und Rahmen», Leipzig 1953.

2) V. KoLousexk : «Calcul des efforts dynamiques dans les ossatures rigides», Dunod,
Paris 1960.
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If the values of y, according to Eq. (3) are introduced into Table I, the set

of simultaneous equations reduces to four independent equations, which appear
in the general form,

a+2bcos%j:0 j=1,n-1 (4)

and introducing for @ and b the values from Eq. (2a) we obtain

1?’2(/\)+F1()\)cos%j= 0. (4D)

PIX) = Ps(XI* D, ix)
{
=X 0 7 2 3 4 |5

o 1 [ S~~~ | | — N |
P (X1~ € (X1 Sin ,;Tj (hk+#)
a

\/ VIX] = Ve (X)+ Vg iX)

Vs () -.S‘mco:}"j//f*;’)

)
)

Six)

1
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Arx)
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Fig. 3. Load and Deflections of a Five-Span Continuous Beam, for j =4.
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The values of A for which Eq. (4b) holds true determine, according to Eq. (2b),
the first four natural frequencies of the system. The numerical values cal-
culated for the system as shown in Fig. 2 are

. w -
7-: 42—:]:=f(1)= ].:/4:d,
j=4 for = 2,184, _l]/EJ
] =2 fy = 2,75, AT
j= fo = 3,30a.

The fifth natural frequency of our system is identical with the first natural
frequency of the single-span beams, of which the system is composed, if the
individual beams were rigidly fixed at both ends, so that we have

f(5) = 3,56 .

The shapes of the first five natural modes of vibration are shown in Fig. 2. If
the end-supports 0 and 5 of the system are hinged, the analysis remains, in
principle, the same, but consideration must be given to the different end-
conditions.

2. Continuous Beam of Non-Uniform Section

The dynamical analysis becomes complicated, if the section of the beam
varies within the individual spans. Eq. (2) still holds true, but the coefficients
a and b, although they are again functions of the natural frequency f, are no
longer defined by Eq. (2a), the value of J, in this case, not being a constant,
so that the functions cannot be tabulated. Direct solution would be thus
very tedious, as the amount of numerical work might increase considerably.
A convenient method of solution, in this case, is a combination of the direct
method, described in the preceding paragraph, with the method of stepwise
approximation. This method of analysis will now be illustrated for the case
of a five-span beam, as shown in Fig. 5.

r\;rk 2 3 4 .;
| o | wo | wo | w0 | mo*]

Fig. 5. Continuous Beam of Non-Uniform Section.

2.1. The Deformations of a Single-Span Beam

a) We consider first a single-span beam, rigidly fixed at both ends (Fig. 6),
loaded by distributed statical weight ¢ (x). The load may be resolved into a
symmetrical component s(z) and antimetrical component a (x), as shown in
Fig. 3a (left). Thus we have
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q(x) = s(x)+a(2),

s(x) = $[g(x)+q(—2)] =s(i—2),

a() = 3[g@)—ql-2)] =—a(l—2).
The load component s(z) causes symmetrical deflections V,(x) of the beam,
while the moments produced at the fixed supports are + M . The antimetrical

component @ (x) produces antimetrical deflections V,(x), and the fixed-end
moments in this case are M,. The total deflection at the point x is thus

Vi(x) =V, () +V,(2).

10 < Q75 750m 750m

R O Cpee

Fig. 6. Dimensions of Any Single Span for the Beam Shown in Fig. 5.

1080 m

b) We now assume the beam to be simply supported, and consider the
case where both ends are rotated simultaneously through a unit angle, in opposite
directions. These end-rotations produce a symmetrical curve of deflections
8y7,» which is at the same time the influence line for the moment M produced
by symmetrical loading (Fig. 7a). The ordinate of the line 3, at the point x
gives the value of the moment M which is produced (with both ends fixed)
at the left-hand support of the beam if two single loads P=1 are applied to
the points z and [ —z.

¢) The end sections of the simple beam are now rotated simultaneously
through a unit angle in the same direction. These rotations produce an anti-
metrical curve of deflection &,, (Fig. 7b), the curve being again the influence
line for the fixed-end moment M, at the left-hand support, produced in this
case by two single unit loads, applied antimetrically at the abscissae x and

l—x.
2.2. The Deformations of the Continuous Beam

We shall now consider a continuous beam of n equal spans, as shown in
Fig. 5, where n=5. We assume the beam to be loaded by distributed statical
weight p (z), the variation of which at the span K, K +1 may be expressed
as follows:

symmetrical component p,(x) = s(x)cos % 7 (K+3%) (5)

antimetrical component p,(z) = a(x) sin%j (K+1). (6)
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The letter 7 here denotes an arbitrary whole number between 0 and n —1.
For the five-span beam we have n =35, and the case for j=4 is shown in
Fig. 3.
If all rotations at the supports were prevented, the deflection produced by
the load components as given by Egs. (5) and (6) would be

-1
~

V. () cos - (K +3)+V, (@) sin - (K +1), (
while the loading moment at the support K would have the value

Me =M, [cos%j([f+%)—cos Zj(K—%)]
(8)
+M, [sin%j (K+%)+sin%j(K—7})] = Em[_,-]sin%jK,

m .

where M) = —2 [Mssinﬂy -M, cos%j] . (9)

If the temporarily “locked’’ supports are released, the loading moments
M x produce the rotations

YK = stin%jlf, (10)
where {jy = %2—”-],
(71 (1 1)

T . w .
Ay = a+2bcos_j =2 My peny+2 My 5,108

and the moments M are shown in Fig. 4.
The rotations yx may be again resolved into symmetrical and antimetrical

components, according to the following formulze :

symmetrical components
LT o
b —vicn) = bl [sinT K —sin 7§ (K+1)] =
™ T
Crsin T ieos i (K 41
L BlN5 - J 608 -] (K+3)
antimetrical components
Mmoo, . T
3 (ve+vra) = Gpeosggsin_j (K +4). (13)

The deflections produced at the span K, K + 1 by the symmetrical components
of the end-rotations are

% (vx— YK+1) 3.11, )
while the antimetrical components of the end-rotations produce at the span

K, K +1 the deflections
S (ve +vrs1) O -



Table 11

Symmetric vibrations | j=4
[1] 2] 31 | 4 | &1 | (6 | (7 [8] (o1 | oy | pmo | o2 |3
Influence co-ordinate 1st Approximation
Point| Mass for the Deflection 8 ;- 105 in mt-1 for the [21x[9] | [8]x[10] , . 2w
. m; . — = Ding Sk 8- [~ sin—— -
t in tm-1 s2 Point K Moment S - 100 #
at Support b maSe | i Sidar, g 105 8,
1 9 3 4 5 Sy, In M in tm-1 s? ints? I 8§ in s2
1 0,373 0,058 0,112 0,262 0,335 0,378 0,745 1 0,373 0,278 1,0 90,6
2 0,301 0,112 1,530 3,280 4,525 5,222 2,168 1,8 0,542 1,175 12,6 263,8
3 0,247 0,262 3,280 9,395 14,290 17,035 3,427 3,2 0,791 2,711 39,5 416,9
+ 0,212 0,335 4,525 14,290 26,275 33,370 4,417 4,4 0,933 4,121 69,6 537.,4
5 0,194 0,378 5,222 | 17,035 | 33,370 | 47,540 4,972 4,8 0,933 4,629 92,0 604,9
3 =12,914 = M,
a=0,454-105 tm, 6=0,162- 105 tm 9
2 9. 4n — Meay= 2 Mysin =" =2-12,914- 0,951 = 24,56 t 52
sin—=0,951, cos—=10,309, cos— = — 0,809 N
5 5 5 M4 24,56
4= = — — = - ]27,9 10-5 m-1 g2
4 arq) 0,192 103
am=a-+2bcos " =[0,454+2-0,162 (—0,809)] 105 = .
105 in—-"_-127.9.0.951 = 12 -1 g2
—0,192- 105 tm 105 £1481n 5 127,9-0,951=121,7m's
2
] . . — 105 —= ,9-0,309=39,5 m-1 g2
Antisymmetric vibrations | 10% £ cos 5 127,9-0,309 = 39,6 m™1 s
[1] 2] 31 | 141 | 1517 | (61 | (7] (8] 91 | (o1 | [y |2 | [
Influence co-ordinate 1st Approximation
Point| Mass for the Deflection 87 ;- 10> in mt-1 for the _[21x[9] | [8)x[10] | st | emoos 27
N Tt Point K Moment. ¥, el
‘ o at Support t mi A | omiAidu, i 105 8y,
1 2 3 4 5 S in M in tm-1!s? n t s® : in s2
1 0,373 0 0,061 0,062 0,054 0,023 0,735 0 0 0 0 —29,1
2 0,301 0,061 1,324 1,994 1,791 0,726 1,795 0 0 0 0 —-171,0
3 0,247 0,062 1,994 4,828 4,922 2,080 2,240 0 0 0 0 — 88,56
-+ 0,212 0,054 1,791 4,922 7,091 3,320 1,865 0 0 0 0 —173,7
5 0,194 0,023 0,726 2,080 3,320 2,484 0,725 0 0 0 0 — 28,7

e8]
o
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(| (4 | (s | (e | 1M | 18] [19] [20]
2nd Approximation 3rd App.
[ [1214-[13] | [2]x[14] | [8]x[15] 9 [14]:[19]
Point Som S8, - —5[413111_"- g —_—
¢ mi S ary- 8 ' 5 S+ 108
S 105 mq Si- 103 b 4 10 L1088 i 5
in s2 i -1 g4 - 103 n s4 ol ms @1
n s mtm-!s i t.a in g4
1 91,6 0,342 0,255 1,4 131,6 133,0 689
2 276,4 0,832 1,803 17,9 382,9 400,8 690
3 456,4 1,128 3,865 54,9 605,2 660,1 690
4 607,0 1,287 5,684 99,0 780,1 879,1 690
5 696,9 1,352 6,722 131,2 878,1 1009,3 690
2=18,329 = M,- 108
2
— Myay=2 (Ms sin%— M cos ?’T) =2(18,329-0,951 + 1,287 0,309)- 10-3 =
=35,66-10-3ts*
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Fig. 7a. Influence Lines for Symmetrical
Load. Scale: Line & 1 Grad. = 10-1 m/t,
Line 837, 1 Grad. =5 m.

Fig. 7b. Influence Lines for Non-Symmetrical
Load. Scale: Line 8¢ 1 Grad. = 0,5-10-1 m/t,
Line 8y, 1 Grad. = 2,56 m.
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The total deflections (see Fig. 3b) produced by the load p (z) at any particular
span are then given as the sum of the symmetrical and antimetrical compo-
nents, and the variations of the symmetrical components », () and antimetri-
cal components v, (x) are represented as follows

v, (@) = 8 (x) cos 5 (K +1), (14)
va(x)zA(x)sin%j(K-t—%), (15)

where S (@) = V, (x) — 8y, Ly sin;’—n i, (16)
A (@) = V(@) + 8y, Ly cos 5. (17)

The values of S (x) are thus obtained by superposition of

1. the deflection V, (x), which is produced by the load-component s (x) acting
on a rigidly fixed single-span beam, and
the deflection of the single-span simple beam, the supports of which are

v

rotated symmetrically through the angle F { sini% 7

(The signs minus and plus are to be taken for the left-hand and the right-
hand supports respectively.)
The values of 4 (z) are obtained by superposition :

1. The deflection V,(x), which is produced by the load component a (x),
acting on a fixed single-span beam, with
2. the deflection of the single-span simple beam, the supports of which are

rotated antimetrically through the angle {; cos 2%7' .

If we compare Eqgs. (14) and (15) with Eqgs. (5) and (6) we see that the
deflections and the load components have a similar mathematical represen-
tation.

2.3. The Vianello Method of Stepwise Approximation

The results of the analysis as given in the preceding paragraph may be
used for calulating the frequencies and modes of vibration of continuous beams,
by stepwise approximation. A suitable procedure will be briefly discussed in
this paragraph.

As a first approximation we assume an arbitrary curve of deflection ;v (x)
which, however, must admit of being expanded into components according
to Eq. (5) and (6), and we calculate the corresponding symmetrical and anti-
metrical components of the load intensity p (x),v (x). (By p(x) we denote the
mass per unit length, as a function of the abscissa « of the beam.) These load
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components produce the deflections ,v(x), as a second approximation to the
true shape of the natural mode. The deflections ,v(x) are resolved into sym-
metrical and antimetrical components according to KEqgs. (14) and (15). It is
evident that only a single span of the structure has to be considered, as the deflec-
tion curve at any span may be readily determined by means of the quantities
S (z) and A4 («), which are defined by Eqgs. (16) and (17).

The third approximation to the true shape of natural mode may be then
obtained by repeating the process, i.e. calculating the curve of deflection v (x)
produced by the load w(z),v(z) ete. The process is repeated until concor-
dance of the deflections (_pv(x) and ,v(x) has been reached with the
desired accuracy. In practical calculations we usually do not consider the
continuously distributed mass, but divide the beam up into a finite number
of strips, and then assume the mass to be concentrated at the centroids of the
strips.

A numerical example will illustrate the practical procedure.

2.4. Numerical example

A five-span continuous beam, as shown in Figs. 5 and 6, will now be
analysed, applying the method outlined in the preceding paragraph. The centre-
line of the beam has been assumed to be straight, the modulus of elasticity
has been taken to be E=2,4-10%t/m2 For purposes of calculation the beam
has been divided up into ten strips; the masses concentrated at the centres
of the respective strips are tabulated in column 2 of Table II.

For symmetrical loading by two single unit loads the influence lines & for
the deflections of the single span fixed-end beam are shown in Fig. 7a, where
the influence line §,, for the fixed-end moment is also given. The lines 3¢ and
8,7, corresponding to antimetrical loading are given in Fig. 7b. The influence
line ordinates at the centres of the individual strips are given in Table II.
The coefficient a, which is also given in Table II, equals twice the value of the
moment M, , acting at the support 2 of the beam 1—2 when the end rotations
are y; =0, y,=1. The coefficient b is the corresponding value of the moment
M,,.

The numerical calculation by stepwise approximation has been carried out
for j=4, =1, and j=0. In Table II the calculation for j=4 is shown by way
of illustration. For j=4 the natural frequency attains its lowest value. From
the ratio of the last two approximations we obtain the square of the natural
angular frequency.

696,9-103

o —2
1009.3 690 sec

waq) =

so that the first natural frequency is

f = 4,18sec™L.
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The shape of the corresponding natural mode, at the span K, K +1, is given
by the last approximations of S;, and 4,, according to the formula.

v(xi)=vi=Sicosgj(]{+%)+Aisin%j(K—l—%), (18)

where j=4

The fourth natural frequency f,=10,73sec™! was calculated in a similar
manner, but with j=1. The fifth natural frequency f =12,43sec™! is identical
with the first natural frequency of a single span fixed-end beam. The shapes
of the first, fourth and fifth natural modes of vibration are shown in Fig. 8.

r\/

Fig. 8. Natural Modes of Vibration for the Beam of Fig. 5.

a) First Natural Mode (j=4),
b) Fourth Natural Mode (j=1),
c) Fifth Natural Mode (7=0).

The above described method of analysis may also be applied to the solu-
tion of continuous arch structures. In this case, however, the number of
unknowns is larger, because the intermediate supports undergo not only
rotations, but also vertical and horizontal translatory displacements. The
vertical displacements of the supports may usually be neglected, and this
simplifies the calculations, but in exceptional cases these displacements may
also be taken into account. With continuous arch structures the basic equa-
tions are again cyclically symmetrical, and admit of a solution which, in
principle, is the same as in the case of continuous beams. Continuous beams
having elastic intermediate supports may also be solved in a similar manner.

The method, as described in this paper, can be applied not only to the
dynamical but also to the statical analysis of the systems in question, and the
numerical work involved may thus be considerably reduced.



DYNAMICS OF CONTINUOUS STRUCTURES WITH REPEATED ELEMENTS 85
Summary

In this paper some methods for investigating the vibrations of continuous
structures with repeated elements are discussed. The structures in question
are continuous beams with equal spans, and of either uniform or non-uniform
section, continuous arch structures, continuous rigid frames, ete.

Finite trigonometrical series and a combination of the slope-deflection
method with stepwise approximation enable the mathematical investigation
to take advantage of all the specific simplifications which the repetition of
equal elements presents. The analysis is first given for a continuous beam of
uniform section, where a further simplification is possible if tabulated func-
tions are used. In addition the frequencies and modes of vibration are inves-
tigated for a five-span beam of non-uniform section. The procedure is illustrated
by a numerical example and it is shown that the numerical work involved is
only slightly greater than that which a solution of a single-span beam requires.

The method may also be applied to continuous structures with elastic
supports, and not only the dynamical but also the statical analysis can be
thus considerably simplified.

Résumé

L’auteur présente des méthodes permettant d’étudier les vibrations des
ouvrages continus formés d’éléments successifs identiques. Il s’agit de poutres
continues de portées égales avec une section constante ou variable, de voiites
multiples, de cadres continus, etc.

Ce probléme apparemment fastidieux peut étre considérablement simplifié
si 'on tire parti, dans la résolution mathématique méme, de tous les avantages
que présente la répétition d’éléments identiques: les équations des déformations
étant cycliquement symétriques, l'introduction de séries trigonométriques
finies permet de simplifier considérablement le probléme. L’auteur traite tout
d’abord les poutres continues de section constante, dont la résolution est
grandement simplifiée par 1'utilisation de fonctions disposées en tables. L’étude
des poutres continues de section variable peut se faire en combinant la méthode
des déformations avec celle des approximations successives. L’auteur donne
une application numérique de son procédé en traitant une poutre continue
comportant cinq travées identiques de section variable.

Cette méthode peut également étre utilisée pour les systémes continus sur
appuis élastiques. De plus, elle s’applique au calcul statique des poutres et des
arcs continus; elle y apporte une importante simplification des opérations
numeériques.
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Zusammenfassung

In dieser Abhandlung sind Methoden der Berechnung der schwingenden
Systeme, deren Elemente sich wiederholen, behandelt. Es handelt sich um
Durchlauftriager mit gleichen Feldern mit konstantem oder verdnderlichem
Querschnitt, durchlaufende Bogenreihen, durchlaufende Rahmen usw.

Die scheinbar miihsame Aufgabe wird wesentlich vereinfacht, wenn man
auch in der mathematischen Losung alle Vorteile ausniitzt, welche die Wieder-
holung von gleichen Elementen bietet. Die Forméinderungsgleichungen sind
zyklisch symmetrisch und die Einfiihrung der endlichen trigonometrischen
Reihen bringt deshalb eine dullerste Vereinfachung der Losung. Es werden
zuerst Durchlauftriger mit konstantem Querschnitt untersucht, bei denen
die Beniitzung von tabellierten Funktionen eine weitere Vereinfachung ermog-
licht. Bei den Durchlauftrigern mit variabler Steifigkeit kann die Aufgabe so
gelost werden, dafl man die Deformationsmethode mit der Methode der schritt-
weisen Niherung kombiniert. Das Verfahren wird an einem numerischen Bei-
spiel erldutert, in welchem ein Durchlauftriager mit fiinf gleichen Elementen
mit variablem Querschnitt bearbeitet wird.

Die Methode kann auch zur Berechnung der durchlaufenden Systeme auf
elastischen Stiitzen beniitzt werden. Das Verfahren kann auch bei statischer
Losung der durchlaufenden Triger und Bogen angewendet werden, denn auch
hier wird eine wesentliche Vereinfachung der numerischen Berechnungen
erzielt.
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Berechnung von Kreiszylinder-Dachschalenkonstruktionen mit Hilfe
von elektronischen Rechenautomaten

Calculation of the Stresses and Deformations in a Thin Cylindrical Shell Roof
by Means of a Digital Computer

Calcul des contraintes et des déformations dans une voiite cylindrigue mince, a
Uaide d’une calculatrice digitale électronique

A. MEHMEL
o. Professor Dr.-Ing., Techn. Hochschule Darmstadt

Beitrige zur Klirung der mechanischen Zusammenhinge des Tragverhal-
tens von Konstruktionen, die aus Kreiszylinderschalen mit Kampferrand-
trigern bestehen und Lasten in Richtung der Erzeugenden der Zylinderflichen
abtragen, gehoren seit Jahren zu den Forschungszielen an meinem Lehrstuhl
und Institut fiir Massivbau der Technischen Hochschule Darmstadt.

Als im Jahre 1957 an der TH Darmstadt ein elektronischer Rechenautomat
vom Typ IBM 650 aufgestellt wurde, begannen Programmierungsarbeiten mit
dem Ziel, den Forménderungs- und Beanspruchungszustand solcher Konstruk-
tionen auf der Grundlage der mathematisch strengen Losung der Fliggeschen
Differentialgleichungen zu berechnen. Mit Hilfe der programmierten Rechnung
soll die Moglichkeit geschaffen werden, die Giiltigkeitsbereiche der bekannten
Niaherungsverfahren, insbesondere der Balkenmethode (Lundgren) abzugrenzen.

In den Jahren 1957 und 1958 wurde eine Serie von Rechenprogrammen
hergestellt, mit deren Hilfe die Forménderungen und Beanspruchungen von
isotropen Schalenkonstruktionen ohne Randglieder infolge Flichenlast und
infolge von Randangriffen auf der IBM 650 berechnet werden kénnen.

Die Kapazitit dieses Rechenautomaten reicht nicht aus, um die vorstehend
geschilderten Rechnungen in einem Durchlauf ausfithren zu kénnen. Durch
die Aufspaltung in Teilprogramme und die dadurch im Verlauf der Rechnung
erforderlich werdenden Zwischenaus- und Wiedereingaben von Rechenwerten
nimmt die bendtigte Rechenzeit stark zu.

Als sich im Friihjahr 1959 die Moglichkeit bot, mit dem am Institut
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Européen de Calcul scientifique in Paris aufgestellten, wesentlich groBeren
und schnelleren Rechenautomaten IBM 704 Berechnungen durchzufiihren,
wurde die Programmierung deshalb auf diese Maschine umgestellt.

Im Sommer 1959 wurde in Paris ein Rechenprogramm ausgepriift, mit dem
die Forménderungen und Schnittkrifte orthogonal anisotroper Kreiszylinder-
schalen ohne Randglieder infolge einzelner harmonisch verlaufender Kampfer-
randangriffe berechnet werden koénnen. Im Anschlufl an die Prifung wurde
eine Anzahl von Programmlédufen durchgefiihrt, deren Ergebnisse auswertungs-
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bereit vorliegen. Der in Paris vorhandene Rechenautomat IBM 704 ist mit
einer Bildschirm-Registriereinheit ausgestattet, die es ermoglicht, die berech-
neten Losungsfunktionen in graphisch aufgetragener Form auszugeben. Fig. 1
zeigt eine Zusammenstellung der Durchbiegungsfunktion w normal zur
Schalenmittelfliche bei verschiedenen Schalentypen infolge eines am Rand
angreifenden, sinusformig verteilten Quermoments. Insgesamt sind 32 der-
artige Zusammenstellungen vorhanden, von denen jede 125 Schnittgrofen-
funktionen enthilt.

Das eben erwiahnte Rechenprogramm wurde in der von der IBM ent-
wickelten FORTRAN-Schreibweise geschrieben und vom Rechenautomaten
selbst in seinen Befehlscode tibersetzt. Es besteht aus zwei Programmteilen,
von denen der erste im wesentlichen die Losung des Eigenwertproblems und
die Berechnung der Integrationskonstanten, der zweite die Berechnung der
Schnittgrofenfunktionen enthélt. Diese Einteilung entspricht weitgehend der
von Booth und Morice verwendeten Einteilung in einen skalaren Rechnungsteil
und einen Rechnungsteil, in dem Matrizen verarbeitet werden. Jedoch ermag-
licht es das FORTRAN-Ubersetzungsprogramm, im gleichen Programmteil
abwechselnd skalare und Matrizenoperationen durchzufiihren, so dal} eine
strenge Unterteilung in diese beiden Rechnungsabschnitte nicht erforderlich
ist, was sich fiir die Durchfithrung der Rechnung giinstig auswirkt.

Die zu Beginn der Arbeiten mit der IBM 704 aufgestellte Programmplanung
sah vor, dal in einem zweiten Programmkomplex die Schnittgréen von
Schalentragwerken mit beliebigen Kiampferrandbedingungen infolge von
Flachen- und Randlasten berechnet werden sollten, wobei die Ergebnisse des
ersten Programmteils als homogene Losungsanteile fertig eingegeben werden
sollten. Inzwischen ist jedoch das FORTRAN-Ubersetzungsprogramm mit
zusitzlichen Unterprogrammen ausgestattet worden, die eine beliebige Anein-
anderreihung einzelner Programmteile gestatten, ohne dafl der Benutzer hier-
bei manuell eingreifen miifite. Mit Hilfe dieser Erginzung ist es moglich, ein
Rechenprogramm zusammenzustellen, mit dem auf Grund der Eingabe der
Schalen- und Belastungskennwerte ohne jede Zwischenaus- und Wiederein-
gabe die endgiiltigen Schalenschnittgréen und Randgliedbeanspruchungen
fir Lastfille eines Tragwerkes berechnet werden konnen, das aus einer ortho-
gonal anisotropen oder einer isotropen Schale mit beriicksichtigter Quer-
dehnung und 2 Randgliedern beliebiger Steifigkeitsverhéltnisse besteht. Der
jeweils bearbeitete Lastfall kann sich aus einer Reihe von Teillastfillen zusam-
mensetzen, niamlich fiir die Schale aus Flachen-, Streifen- und Punktlasten
und fiir die Rdnder aus strecken- und punktformig angreifenden Querlasten,
Tangentialkriften (z. B. aus Vorspannung) und Quermomenten. Die Schalen-
schnittgrofen konnen an maximal 21 gleichabstédndigen Umfangspunkten und
9 gleichabstindigen Stellen der Erzeugenden, d.h. an maximal 189 Stellen
der Schalenfliche, iiber beliebig viele Reihenglieder der Lastentwicklung
superponiert, ausgegeben werden.
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Ein solches Programm wird zur Zeit aufgestellt und soll in diesem Sommer
in Paris ausgeprift werden!). Anschlielend kann mit den eingangs erwihnten
Untersuchungen zur Abgrenzung der Lundgrenschen Balkenmethode begon-
nen werden. In einem ersten Schritt sollen diese Untersuchungen fir Tonnen-
schalen durchgefiihrt werden, die in Geometrie und Belastung symmetrisch
sind.

Die Giiltigkeitsgrenze der Balkenndherung héngt von einer Anzahl von
Parametern ab. Als wichtigste davon wéren zu nennen:

1. Die Abmessungsverhéltnisse der Schale selbst.
2. Das Verhiltnis der Biegesteifigkeit der Schale zu der der Randglieder.
3. Das Verhiltnis der Flichenlast der Schale zur Randgliedbelastung.

Durch geeignete Wahl der Abmessungs- und Belastungsverhéltnisse bei
den fiir die Abgrenzung verwendeten Vergleichsbeispielen soll versucht wer-
den, die Einfliissse der wesentlichen Parameter getrennt zu untersuchen.

Der EinfluB der Schalenabmessungs- und Steifigkeitsverhaltnisse auf die
Querverformung der Schalen infolge von Randangriffen kann mit Hilfe der
vorhin erwihnten Zusammenstellungen der Losungsfunktionen der homogenen
Schalengleichungen verfolgt werden. Fig. 2 zeigt die Gegeniiberstellung der
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Verformungen w normal zur Schalenmittelfliche infolge eines an einem Rand
angreifenden Quermoments bei zwei Gruppen von Schalen. Beide Gruppen
sind isotrope Schalen, ihre Schnittgroflen sind ohne Beriicksichtigung der
Querdehnung berechnet. Sie haben gleichen Radius und gleiche Stiitzweite,
jedoch ist bei der linken Gruppe die Schalenstirke doppelt so grofl wie bei der
rechten. Innerhalb der Gruppen unterscheiden sich die Schalen durch 5 ver-
schiedene Offnungswinkel, wie man aus der Linge der iiber die Abwicklung
aufgetragenen Kurven erkennt.

Bei entsprechenden Schalen beider Gruppen ist, wie man sieht, der Verlauf
der Forménderungen nahezu affin.

An den seitlich angetragenen Mal3stiiben sieht man, dal} die Ordinaten der

1) Diese Arbeiten sind inzwischen durchgefiihrt worden.
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Kurven bei den Schalen mit der geringeren Schalenstirke etwa viermal so
grof3 sind wie die der dickeren Schalen. Man erkennt also, dafl die Forménde-
rungen ihrer Groe nach etwa der Biegesteifigkeit der Schalenfliche propor-
tional, ihrem Verlauf nach jedoch von dieser fast unabhingig sind.

Auf Fig. 3 wird eine Abhédngigkeit des Formédnderungsverlaufs besonders
deutlich, die auch auf dem eben gezeigten bereits erkennbar war, namlich die
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vom Seitenverhiltnis der Schalenfliche. Hier sind die Forminderungen w
zweier Gruppen von Schalen gleicher Dicke und Stiitzweite einander gegen-
iibergestellt, die sich bei gleichen Offnungswinkeln durch ihren Radius unter-
scheiden. Die linke Gruppe ist die gleiche wie bei Fig. 2; sie umfallt Schalen
mit dem Seitenverhaltnis Bogenlidnge : Stiitzweite = 0,15—0,35, wihrend bei
der rechten Gruppe dieses Verhiltnis zwischen 1,35 und 3,15 variiert. Man
sieht deutlich, daf3 bis zu einer gewissen Breite die ganze Schale an der Form-
anderung teilnimmt. Innerhalb gewisser Grenzen éndert sich dabei die Quer-
schnittsform nicht (geradliniger Forminderungsverlauf!); hier liegen also
Tragwerke vor, die sich wie Stibe verhalten, fiir die daher die Balkenniherung
geradezu streng gilt.

Von einer gewissen Schalenbreite an entzieht sich der dem Angriff abge-
legene Rand der Forminderung; die Breite der «verbogenen» Zone bleibt
dann praktisch konstant. Die Grofle der Formédnderungen nimmt mit der
Breite der Schale ab und bleibt ebenfalls von einer gewissen Breite an konstant.

Als dritten Parameter wollen wir noch die Schalenkriimmung hinsichtlich
ihres Einflusses auf die Forménderung w infolge eines Randmoments betrach-
ten.

Auf Fig. 4 mochte ich vor allem zwei der insgesamt 10 Kurven des Verlaufes
der Forméanderung w miteinander vergleichen. Die untere Kurve des linken
und die obere des rechten Bildes gehoren zu Schalen gleicher Dicke und glei-
chen Seitenverhaltnisses. Die Kriimmungen dieser beiden Schalen unterschei-
den sich jedoch in der Weise, dafl der Radius der linken Schalen 0,6-, der der
rechten 1,4mal so grof} ist wie die Stiitzweite, d. h. die linke Schale ist wesent-
lich starker gekriimmt als die rechte.

An den angetragenen Malstiben erkennt man, dal} die Forméanderung bei
der stirker gekriimmten Schale rascher abklingt, aber eine gréflere Rand-
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ordinate hat als bei der schwicher gekriimmten. Dies lift sich wie folgt
erkldren:

Je stiarker die Schale gekriimmt ist, in desto hoherem Malle werden Rand-
quermomente durch Schubkriifte n, , abgetragen. Je geringer die Kriimmung
ist, um so mehr miissen hierfiir Drillmomente m, , herangezogen werden. Im
Grenzfall der Platte mit unendlich grofem Kriimmungsradius erfolgt die
gesamte Abtragung durch Drillmomente und die »n,, verschwinden bekannt-
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lich vollig. Da die Schubsteifigkeit der Schalenfliche wesentlich grofler ist als
ihre Drillsteifigkeit, werden bei starker Krimmung die Forménderungen auf
einen engeren Bereich beschrinkt, innerhalb dessen sie jedoch, wie eine
Energiebetrachtung plausibel zeigt, grofler sein miissen.

Die gezeigten Beispiele sollten die Vorteile beleuchten, die die Verwen-
dung elektronischer Rechenautomaten mit ihren weitreichenden Maglichkei-
ten der Produktion und iibersichtlichen Darstellung groBer Zahlenmengen fiir
die Analyse des Tragverhaltens von Baukonstruktionen bieten. Solche Ana-
lysen sind meines Erachtens fiir die Erweiterung unseres Wissensstandes
aullerordentlich wertvoll.

Fir die Forderung meiner Arbeiten bin ich der Deutschen Forschungs-
gemeinschaft, dem Deutschen Ausschuf} fiir Stahlbeton und der Firma IBM
zu grollem Dank verpflichtet.

Die umfangreichen Programmierungsarbeiten, die meinen obigen Uber-
legungen zu Grunde liegen, sind von einer Arbeitsgruppe meines Instituts
ausgefiihrt worden, bei deren Leitung sich Herr Dipl.-Ing. Schwarz besondere
Verdienste erworben hat.

Zusammenfassung
Am Institut fiir Massivbau der Technischen Hochschule Darmstadt (Prof.

Dr.-Ing. A. Mehmel) wird an der Programmierung der Berechnung von Kreis-
zylinder-Dachschalen fiir elektronische Rechenautomaten gearbeitet. Es exi-
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stieren bereits Rechenprogramme fiir 2 verschiedene Rechenautomaten, mit
deren Hilfe Teilprobleme dieses Komplexes (insbesondere die homogene
Losung) bearbeitet werden konnen.

Ein umfassendes Programm zur Berechnung orthogonal anisotroper Scha-
len unter verschiedenen Arten von Belastungen mit beliebigen Kdmpferrand-
bedingungen wird zur Zeit fertiggestellt.

Ziel der Arbeiten, bei denen der Programmierung die mathematisch
strenge Losung der Fliggeschen Differentialgleichungen zu Grunde liegt, ist
die Abgrenzung der Giiltigkeitsbereiche der gebrduchlichen Niherungsver-
fahren, insbesondere der Balkenmethode (Lundgren).

Die Querverformung der Schale beeinflufit in hohem Mafle ihr Tragverhalten.

An einigen Ergebnissen wird gezeigt, wie die einzelnen geometrischen
Parameter die Querverformung bei Randangriffen beeinflussen.

Summary

In Darmstadt, at the Institute for Concrete, Reinforced Concrete and
Prestressed Concrete Structures of the Polytechnic (Prof. Dr. Ing. Mehmel)
programming for the calculation of cylindrical shell roofs by means of elec-
tronic computers is being undertaken. Programmes for two types of computer
have already been prepared and enable certain partial problems to be solved
(in particular the homogeneous solution).

An extensive programme is nearing completion, which will enable ortho-
tropic shells to be calculated for various cases of loading and for any marginal
conditions at the springings.

The purpose of these studies, for which the programmes are established
in accordance with the exact solution of Fliigge’s differential equations, is to
determine the limits of validity of the usual approximate methods of calcu-
lation, in particular the procedure due to Lundgren.

The transverse deformations of a shell have a marked effect on its behaviour.

A few results are employed to show how the various geometric parameters
affect the transverse deformations of a shell subjected to marginal disturbances.

Résumé

A Darmstadt, & 1’Institut pour les constructions en béton, béton armé et
béton précontraint de 1’Ecole Polytechnique (Prof. Dr. Ing. A. Mehmel), on
s’occupe de la programmation pour le calcul électronique des couvertures en
voile cylindrique. Il existe déja des programmes pour deux types de cal-
culatrices, programmes permettant de résoudre certains problémes partiels
(en particulier la solution homogene).
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On est en train d’achever un vaste programme qui permettra de calculer
des voiles orthotropes, pour différents cas de charge et des conditions margi-
nales quelconques aux retombées.

Ces études, pour lesquelles les programmes sont établis d’apres la solution
exacte des équations différentielles de Fliigge, ont pour but de fixer les limites
de validité des procédés de calcul approchés usuels, en particulier de la
méthode de Lundgren.

Les déformations transversales d’un voile influencent fortement son com-
portement.

A laide de quelques résultats, on montre comment les différents para-
metres géométriques influencent les déformations transversales d’un voile
soumis a des perturbations marginales.
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Application des machines a calculer électroniques a la solution du
PP q
probléme aux tensions de I’élasticité plane

Verwendung von elektronischen Rechengerdten zur Lisung des ebenen Spannungs-
problems der Elastizitéitstheorie

Application of Electronic Computers to the Solution of the Stress-Problem of
Plane Elasticity

CH. MASSONNET M. SAVE
Professeur & I’Université de Liege Chargé de cours a la Faculté Polytech-
nique de Mons
G. MAZY G. TIBAUX
Assistant a I'Université de Liége Etudiant & I'Université de Liége

1. Rappel de la théorie

L’un des auteurs a présenté au Congres de Liege de I’A.I.P.C. [1] le résumé
d’une méthode théorique [2] permettant d’obtenir 1’état de tension dans une
piece élastique plane de forme quelconque sollicitée sur ses bords par des
forces en équilibre distribuées de fagon arbitraire.

Cette méthode consiste a répartir (fig. 1) le long du contour de la piéce des
singularités vectorielles pds, dont chacune produit une distribution radiale
simple de tensions.

La distribution de ces singularités obéit a I’équation intégrale vectorielle

de seconde espece

Fig. 1.
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. = 9 — o —
t = p—;fﬁp(@)m 1,ds(Q) (1)

¥

olt ¢ est I'intensité des forces superficielles données au point ¢ du contour; » est
la distance entre le point courant ¢ du contour et le point R ou l'on calcule la
tension.

1, est le vecteur unitaire dirigé suivant Q R,
@ est 1’angle fait par p avec @ R,
« est I’angle fait par R avec la normale extérieure au contour en R.

En posant
__fj)(; cos¢cosa1rd89=§(2j) 2)

on peut mettre 1’équation (1) sous la forme simple
{=p+B(p). (3)

Dans le mémoire précité, on préconisait de déterminer les p par itération a
p d 1
partir d’une distribution initiale quelconque p® selon le schéma

PO =at,
PV =att(1-a)p®—x B (pO), (4)

j,_;(n-{—l) — a—{_*_ (1 _ Gt) ];?n) iy E(p(n))

en faisant intervenir un parametre « qui peut prendre une valeur fixe quel-
conque entre 1 et 0. Rappelons en passant que la valeur 1 doit étre exclue
parce qu’elle produit des oscillations indéfinies du processus d’itération.

2. Appropriation de la théorie aux calculatrices électroniques

2.1. Généralités

Dans le mémoire original [1], on a montré comment 1’équation (3) pouvait
étre résolue pratiquement par appro*clma,tlons successives en remplagant les
distributions continues des ¢ et des p par une série de résultantes équivalentes
T et P appliquées & des troncons de contour de longueur finie 4 S et en utili-
sant un appareil mécanique effectuant la somme vectorielle qui prend la place
de l'intégrale B (p). La solution d’un probléme pratique & ’aide de cet appareil
absorbait 8 heures de travail pour un contour divisé en 37 segments. De plus,
P’appareil était délicat, cotiteux et parfois sujet & des pannes.

La méthode de calcul pouvait donc étre améliorée au point de vue vitesse,
précision et sécurité. Or, il se fait que le processus mathématique utilisé con-
vient particuliérement bien pour résoudre le probleme & 1’aide d’une calcula-
trice électronique. En effet, tous les calculs sont la répétition d’une méme
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opération élémentaire simple; a savoir: trouver le vecteur-tension produit sur
une facette fixe en un point fixe R par la distribution radiale simple de tensions
correspondant a la singularité P appliquée au point ¢ du contour de la piéce

(fig. 1).
2.2. Détermination des singularités vectorielles P

En remplacant les distributions continues ¢ et P par leurs résultantes 7' et
P appliquées a des trongons 4 S du contour, la relation (3) se met sous la forme

T = F+.§(p)
= —-248

5 (R)
ou B(p) = —‘—'T‘_—“Z P (@) QTEZ

COS @ COS a ==

QR. (5)

Il est clair qu’une calculatrice électronique doit travailler en coordonnées
cartésiennes xz, y. Dans ces coordonnées, 1’équation (5) se transforme en un
systeme de deux équations intégrales scalaires simultanées:

T, =P+ B,(p),
T,=PF,+B,(p),
avec B, (p) = A(p)Bor (& R),,
By (p) =4 (YJ)BQR(QR)U-,
4 (p) = P (Q)(QR),+F,(Q)(QR),
" by = ~2AS(R) e (@R)tny (@R),
7 (@ R); + (@ R)j

Comme on peut le voir, 4 (p) devra étre calculé a chaque itération, tandis que
Bor peut étre calculé une fois pour toutes.

On calculera les composantes P, et P, par itération suivant un schéma
analogue aux relations (4) et on adoptera comme distribution des charges
fictives la premiére distribution P qui d’une itération a la suivante satis-
fera en tout point a la double inégalité

|PW— Pe-D<e et |PW—Pn-D|<e

ou e, dénommé indice de précision, est 1'erreur absolue acceptable et fixée a
I’avance.

2.3. Calcul des tensions aw contour

Dans le mémoire original [2], il a été indiqué que la tension sur une facette
normale au contour est donnée par:

G(R) = F(R) 2 ZP(Q)CQi%fCOSﬁQ_E
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ou F, est le vecteur P auquel on donne une rotation de 90° dans le sens hor-

logique et ou B et n sont définis par la fig. 2
Les composantes normale et tangentlelle de 6§ valent respectivement:

'

er P S
On —‘%@_ ZA B [(QR)xny'i'(QR)an]'

P _PJ‘ H 2 ’ ’
Thn = L 4 = S A B (Q R, +(Q By,

(@ R).m,—(QR)yn

ol A =P, (QR).+P,(QR),, B =
‘ =T 2 [(Q B): + (Q R);J?
/o
’/
@,,/
§
-2
’00/)-: /
// 2 /
Fig. 2. // £ R
/f
/
aoco //
Flg. 3. ."oﬂ ’00///
~ y
\\ /
~y

2.4. Détermination de la croix des tensions principales aw point intériewr
On sait [1, 2] que le vecteur-tension sur une facette donnée vaut (fig. 1)

= 2 COS @ COS ot ~=

En appliquant cette relation aux facettes verticales et horizontales au point
étudié et en projetant sur les axes, on obtient pour les trois composantes

cartésiennes du tenseur-tension

2y Ll e ey,

+ (@R P

+P (QR), 5
Z [ R (@B

_E PI(QR):C‘*'Py(QR)II
o= LleRE s @REF @R @0
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3. Programmes réalisés

3.1. Généralités

On a d’abord exécuté les calculs au moyen d’un programme pour 1'ordi-
nateur IBM 650 dont disposait le Centre de Calcul de I'Université de Liege.
Ce Centre utilisant actuellement une calculatrice électronique GAMMA ET
de la firme francaise Bull, il a été décidé de recommencer la programmation
pour cette seconde machine.

Pour I'ordinateur IBM 650, le programme était écrit en language Fortran,
tandis que, sur la calculatrice Bull, la programmation a été faite en langage
machine. D’autre part, la mémoire de 1’ordinateur IBM ne comportant que
2000 nombres, il fallait calculer & chaque itération les noyaux des intégrales.
Sur la machine Bull, au contraire, qui a une mémoire de 8192 nombres. on
a pu mettre la quantité 8, en mémoire, ce qui a conduit & un gain de temps
appréciable. En contre-partie, cette quantité occupe un nombre de mémoires
si grand qu’on ne peut définir le contour de la piece que par 50 points au lieu
de 100 points comme dans le programme IBM. Enfin, alors que le programme
IBM était construit pour la valeur «=0.5 de I'indice de convergence, on peut,
sur la machine Bull, le faire varier a volonté.

Ceci étant, I’expérience a montré que la durée en minutes d’ une itération,
qui est proportionnelle au nombre » de segments choisis sur le contour, était
donnée approximativement par

Ordinateur IBM 650: temps 0,0275 n2.
Calculatrice électronique Bull: temps 0,0066 n?2.

Notons que, pour un contour défini par 48 points, le temps utilisé par itération
vaut environ
Ordinateur IBM 650: 1 h 3’ minutes.

Calculatrice électronique Bull: 15 minutes.

De plus, le programme IBM obligeant a prendre un facteur de convergence
x=0,5, il fallait 15 itérations pour obtenir une précision déterminée tandis
que 10 itérations suffisent si I’on adopte «=0,75 comme on peut le faire avec
le programme Bull, si bien que le probléme considéré prenait environ 15h3/,
sur I'IBM 650 tandis que 2 h1/, suffisent sur la machine Bull.

3.2. Quelques renseignements sur le programme Bull

3.2.1. Préparation des données. Les données du probléeme se composent:

a) Du contour de la piéce défini par les coordonnées des sommets du poly-
gone formé par les 4.5; le contour peut étre constitué de plusieurs courbes
fermées distinctes (5 au maximum) (cas de la piéce percée de trous). Le total
des points donnés au contour ne peut excéder 50.
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b) Des forces appliquées au contour de la piece. définies par les compo-
santes cartésiennes de leurs résultantes sur les 4 S.

¢) Des coordonnées des points intérieurs a la piéce, pour lesquels on désire
connaitre le tenseur-tension.

d) Des parameétres généraux du probleme:

nombre de points au contour,
indice de précision e,

indice de convergence «.

Les données sont mises en cartes dans une forme appropriée et communiquées
a la machine a la suite du programme.

3.2.2. Calcul proprement dit. Le déroulement du programme de calcul
comporte quatre parties:

a) Calcul des grandeurs géométriques auxiliaires: A partir du contour
défini ci-dessus, la machine calcule

— les coordonnées des points milieux des segments qui seront désormais
considérés comme seuls points au contour. C’est en ces points que l'on
applique les sollicitations réelles et fictives ainsi que les tensions du contour;

— les longueurs et les cosinus directeurs des normales aux segments 4 S.

b) Détermination des forces fictives. On commence par déterminer la dis-
tribution de départ P® =« T,. Ensuite, la machine calcule les noyaux B,y et
les met en mémoire; il y a un noyau par couple de points au contour, soit donc
pour 50 points 2450 noyaux. Leur mise en mémoire exige une machine de
grande capacité. Dés que les noyaux sont calculés, la machine démarre le
processus itératif. A chaque itération, elle imprime, en regard 1’'une de ’autre,
les composantes des charges fictives dans les deux distributions, ancienne et
nouvelle. Ceci permet a 1'opérateur de surveiller la convergence au cours du
déroulement du programme. Le test de précision est posé, dans le programme,
a la fin de chaque itération. Quand il est satisfait, la machine cesse les itérations
et passe a la suite du programme.

c) Calcul des tensions sur la facette normale aw contour. Pour chaque point
du contour, la machine imprime les coordonnées du point, la tension normale
et la tension tangentielle sur la facette normale au contour.

d) Calcul des tensions a Uintérieur de la préce. La machine procéde comme
suit:

1. Lectures des coordonnées d’un point intérieur.

2. Caleul, en ce point, des composantes cartésiennes du tenseur puis des
tensions principales et de la tangente de leur angle par rapport a 1’axe des
abcisses.
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3. Impression des coordonnées du point, des tensions principales o; et o,
et de tg «. Ensuite, retour en 1, a la lecture des coordonnées du point suivant,
et ainsi de suite jusqu’a épuisement des points intérieurs donnés.

Comme il n’y a pas ici de probléeme de mise en mémoire, le nombre de
points intérieurs a traiter est illimité.

4. Quelques résultats obtenus

4.1. Picce carrée soumise au cisaillement (fig. 4)

Y i .y
Dimension de la piéce 3 X 3 cm

Epaisseur 1 em
Nombre de points: 24
Intensité des tensions de cisaillement:
1 kg/cm?
Parametre de convergence: « = 0,8
Indice de précision: ¢ = 0,01 kg
f % Durée d’une itération: environ 4’
‘ Nombre d’itérations: 14

Précision obtenue:
Facettes normales au contour sauf dans les
coins: r = 0,259,, ¢ = 3,89%

Facettes normales au contour, segments

‘ adjacents aux coins: 7 et o = 859
x

Fig. 4.

Tension points intérieurs: r et o = 0,79,

4.2. Poutre soumise a flexion pure (fig. 5)

A
n =38

[T

Fig. 5.
Dimensions de la piéce: 4 X 16 cm Précision obtenue:
Nombre de points: 38 Facettes normales au contour
Moment: 256 kg cm =19
- #
Paramétre de convergence: « = 0,8 o= 20,89
N A — «U,0
Inilicg d,e PROGISLONG 1 kg’ . Tensions points intérieurs
Durée d une 1tér§t10n: 9’ 30 r ot o= 24,6
Nombre d’itérations: 12
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4.3. Neeud en traction (fig. 6)

Nombre de points: 48

Traction: 1 kg/ecm?

Parameétre de convergence: 0,8
Indice de précision: 0,01 kg
Durée d’une itération: environ 15’
Nombre d’itérations: 12

Précision obtenue:
Points intérieurs: 3,79, sur o et 7

Facettes normales au contour, coins exceptés:
cetr=29

. Fig. 6.

IREER)

5. Considérations propres a la méthode

5.1. Chowx du parametre de convergence o

Dans le mémoire original [1], il a été montré que, si 1’'on adopte =1, on
a généralement une oscillation indéfinie des ﬁ, mais que, pour 0 <« <1, toutes
les distributions des P convergent. La valeur optimum de o« différe d’un
probléme a I’autre, mais ’expérience a montré que la valeur optimum moyenne
se situait aux environs de «=0,8. C’est donc cette valeur qu’il est conseillé
d’adopter pour tous les problémes. Nous donnons, & titre d’exemple, le cas
d’une piece carrée soumise a traction uniforme dans un sens, définie par 20
points au contour. Pour un facteur de précision de 19, sur les P, la précision
¥ obtenue sur les tensions au contour est de
’ordre de 0,25%, sur les 7 et de 2,59, sur
[ I ] ] [ les o en négligeant toutefois les facettes
adjacentes aux coins sur lesquelles nous
reviendrons.

Les erreurs sur les tensions aux points

intérieurs sont de I’ordre de 1,59.

n=20
Traction 1hg/erm

5x5cm Pour « = 0,5, il a fallu 12 itérations
o= 0,75 S itérations
x=10,8 7 1térations

» durée d’une itération 2’ 30” environ

RN
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59.2. Points anguleux

Comme on 1’a constaté au par. 4, la présence de points anguleux dans le
contour provoque dans leur voisinage une perturbation dans la répartition
des charges fictives P et donc une erreur sur le tenseur-tension aux points
compris dans le triangle formé par les 2 ou 3 segments 4 S adjacents au point
anguleux (fig. 5). Cette perturbation est tout a fait locale et n’entraine pas
d’erreur sur la distribution des P et des tenseurs-tensions dans le restant de
la piéce. De plus cette erreur ne se cumule pas d’une itération a la suivante,
elle est méme décroissante avec le nombre d’itérations.

5.3. Erreur provenant du remplacement des pds par des AS et des P

Si on examine les résultats obtenus pour la poutre soumise a flexion pure,
on constate que les résultats sont entachés d’une erreur importante, méme
dans les régions non voisines des coins. Comme on peut le voir, de telles erreurs
n’apparaissent pas dans le nceud en traction ni dans la piéce en cisaillement
pur, a cause de la symétrie de sollicitation par rapport aux deux axes. Ces
erreurs sont dues exclusivement au remplacement des ds par des 4S. qui
conduit & remplacer les pds par des P qui ne sont pas leur résultante

nd s
A7

mais bien la valeur de p au milieu du segment multiplié par la longueur de
celui-ci. Cette erreur est cumulative d’une itération a la suivante; c’est elle
qui limite la possibilité d’utilisation du programme. L’expérience a montré
que la dérivée seconde de la distribution des p était la plus grande au voisinage
des coins; ¢’est donc également dans cette région que 1’erreur due au remplace-
ment des pd s par les Pest la plus grande.

On peut y remédier dans la limite du nombre de points disponibles (50)
en multipliant le nombre de divisions au voisinage des coins.

Nous donnons a cet effet 1’exemple de la poutre soumise a flexion pure.

Poutre sowmise a flexion pure (fig. 8)

Précision obtenue:

~

Facettes normales au contour 7 : 0,79
. 0,
a: 14 9

Points intérieurs et o: 179,

1 Jone non valable
2 Zone Fortement perturbée

3 Zone peu perturbée .
Fig. 8.
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J

0F 1
£ =

Fig. 9.

Le probléeme traité est le méme qu’au par. 4.2 mais ici la piece est définie
par 50 points, les points supplémentaires ayant été introduits au voisinage
des coins.

Remerciements: Les auteurs désirent exprimer leurs vifs remerciements a
Monsieur G. DEPREZ, assistant & I’Université de Liege, qui, en traitant plusieurs
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Résumé

La méthode de résolution des probléemes élastiques plans présentée dans le
neuvieme volume des «Mémoires» a été transformée en vue de son exploitation
sur calculatrice électronique. L.e mémoire expose la méthode ainsi modifiée et
donne les résultats obtenus sur des piéces planes de forme diverse.

Zusammenfassung

Die in den «Abhandlungen» Band IX dargelegte Auflosungsmethode fiir
ebene Spannungsprobleme wurde zum Zweck der Anwendung auf elektroni-
schen Rechengeriten umgearbeitet. Dieser Beitrag enthilt das verdnderte
Verfahren und die Ergebnisse fiir einige ebene Elemente verschiedener Form.

Summary

The method for the solution of the general stress-problems of plane elas-
ticity, which was presented in the ninth volume of the ““Publications’’, has
been transformed for the purpose of its use on electronic computers. This
paper describes the adaptation of the method and gives the results for some
plane elements of various shape.
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Résultats des essais sur maquette d'un pont en arc encastré
Ergebnisse der Modelluntersuchungen evner eingespannten Bogenbriicke

Results of Tests on a Model of a Clamped Arch Bridge

ANGELO BERIO MARIO BROZZU CARLO VIVANET
Prof. Ing. Dr. Ing. Dr. Ing.

Universita di Cagliari (Italie)

La création d’une retenue sur le Flumendosa, en Sardaigne, nécessita la
construction d’un pont en amont du barrage. Cet ouvrage en béton armé
comprend une arche d’un peu moins de 110 m d’ouverture. Il donne passage
a une route nationale et a un chemin de fer a voie étroite.

Dans une premiere phase des études, on projeta deux ouvrages indépen-
dants: un pont-route large de 7,75 m et un pont-rail large de 3,75 m. Pour
ce dernier, on avait donc un rapport plutot élevé entre la portée et la largeur,
ce qui faisait raisonnablement craindre une instabilité par flambement latéral.

Toutefois, la détermination théorique du coefficient de sécurité au flambage
de ce pont-rail, dont la section était fortement variable, présentait des diffi-
cultés sérieuses. On décida alors d’avoir recours & un essai sur maquette, qui

millﬂiilil Illll
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fut confié a 1’'Institut de «Scienza delle Costruzioni» (Résistance des Matériaux)
de I’Ecole Polytechnique de Cagliari.

Le modeéle était en perspex, échelle 1:100, et reproduisait (fig. 1) fidele-
ment le pont-rail, y compris les blocs de fondation qui furent encastrés dans
un cadre de bois dur. L’essai au lambage s’effectua en chargeant la maquette
avec des ressorts plus ou moins tendus. On choisit une disposition permettant
de réduire autant que possible 1’effet stabilisateur des ressorts par rapport au
flambement latéral qui faisait 1’objet des essais (fig. 2). Ce procédé expéri-
mental permit de résoudre promptement les problemes posés: on put établir
que la charge de flambement latéral atteignait 6 fois celle de service. Une fois
bloqués les déplacements horizontaux a la clef, la voite ne donna aucun signe
de flambage dans le plan contenant son axe, tout au moins jusqu’a la charge
maximale qu’on put imposer & la maquette et qui correspondait & 10 fois la
charge de service. Ce dernier résultat, quoique peut-étre approché par exces
a cause de la présence des ressorts, pouvait étre accepté; on estima par contre
insuffisant le coefficient de sécurité au flambement latéral.

& comparoteur
3 O erensaméire mécangue
2 wv ertensoméire élecrrigue

Fig. 3.

La méthode expérimentale a donné une réponse nette, conseillant de réunir
le pont-route et le pont-rail dans un méme ouvrage, ce qu’on fit dans le projet
définitif. Mais la maquette — qui n’avait pas été endommagée dans ces essais
de flambage — permettait encore de mesurer les contraintes aux endroits les
plus intéressants de la votite. A cet effet, on colla une soixantaine de jauges
de contrainte au droit des sections B-C-D de I’arc (fig. 3) et on mesura les
contraintes dues a une force concentrée de valeur constante qui se déplacait
le long de 'axe. Ces résultats expérimentaux permirent — au moyen des lois
de similitude mécanique — de tracer les lignes d’influence des contraintes
maximales, qui sont comparées dans la fig. 4 avec les lignes correspondantes
données par le calcull).

1) Les résultats complets des essais ont été recueillis dans un rapport [1] paru il y a
quelques mois.
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L’examen de ces diagrammes met tout d’abord en évidence que, bien que
le calcul et les essais donnent des résultats d’allure semblable, les lignes dédui-
tes des essais sur modéle sont plus courbes prés de la clef de votite et plus
aplaties aux naissances que les diagrammes calculés. Ce fait découle des
déformations, et surtout des rotations, que 1’élasticité des blocs de fondation
permettait aux sections de naissance du modele, tandis que le calcul suppose
que ces sections sont totalement encastrées.

Une deuxiéeme remarque est justifiée par l'observation des contraintes
moyennes. On peut contrdler que I’écart maximum — en valeur absolue —
entre les efforts les plus élevés de compression et ceux de traction de chaque
section de la volte est moindre pour les diagrammes tirés des mesures sur
modeéle que pour les résultats donnés par le calcul.

Les contraintes moyennes dans le pont sont donc plus faibles que ne le
prévoyait le calcul. Cela peut étre expliqué par la collaboration du tablier
a la résistance de la volte, collaboration négligée par les calculs ordinaires.
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Fig. 4.



108 A. BERIO - M. BROZZU - C. VIVANET Ib 6

Une analyse plus poussée, qui tient partiellement compte de l'influence de
tassements élastiques des fondations (suivant la méthode proposée par VoGt
[2]) et de la collaboration du tablier [3], a en effet permis de trouver des
écarts plus petits (voir encore les diagrammes de la fig. 4).

Ceci montre que la maquette se comporte comme une machine a calculer
parfaite, qui tient aisément compte de beaucoup de facteurs dont 1'étude
analytique rigoureuse se heurterait a bien des difficultés.

Introdos

N
N

F o umn+ WO

——  mesures
------ colewd ardingure lore isole ).
— colcul de fare avec collaboration o roblier

= ~  colewl de larc élostiquement encastré avec
4 troction. calkebaration du foblrer
— compression.

Fig. 5.

A ce point toutefois, il était bien naturel de faire une comparaison entre
I’état total de contraintes donné par le calcul et ce qu’on venait de déduire
des essais. La figure 5A montre les résultats de cette comparaison faite pour
le poids propre: on peut constater que les contraintes expérimentales maxi-
males sont de 20 a 25 9, plus élevées que celles de calcul.

Ce fait s’explique aisément: dans les études préliminaires du pont on avait
d’abord choisi comme directrice un funiculaire des charges permanentes: cette
courbe avait ensuite été corrigée afin de la rapprocher davantage du polygone
des pressions donné par le calcul et de diminuer ainsi les contraintes de flexion.
Mais ce procédé suppose que la votite est parfaitement encastrée aux naissan-
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ces; cette condition n’est cependant remplie ni pour la maquette ni pour
I'ouvrage réel, les sollicitations réelles du matériau sont donc supérieures.
Cette conclusion a pu étre vérifiée dans 'ouvrage réel qui a été. il y a peu
de temps, soumis a des essais de charge (fig. 6). On avait noyé. a l'intrados et
a l'extrados de la section de clef, des extensometres électriques [4] qui per-
mettaient de mesurer I’état de contraintes lors du passage de charges mobiles.
Les essais de mise en charge furent effectués en faisant circuler sur le pont
un train type et des colonnes de camions. La figure 5B montre les contraintes
d’extrados données par les essais et reportées a la téte des colonnes de charge;
le diagramme expérimental, comparé aux résultats du calcul ordinaire, con-
firme 'importance des tassements élastiques des naissances. Toutefois, on n’a
pas a craindre d’aussi lourdes conséquences, quant aux sollicitations du maté-
riau, que pour un pont tel que le prévoyait le premier projet. La directrice —
une fois les résultats des essais sur maquette connus — a en effet été modifiée
de fagon & s’approcher de nouveau d’un funiculaire des charges permanentes.

Fig. 6.

On peut donc admettre les conclusions suivantes. Les procédés de correc-
tions des directrices, qui supposent un encastrement total de I’arc a ses nais-
sances, portent a sous-estimer les contraintes de l'ouvrage. La réduction des
contraintes de calcul qu’on obtient par ces méthodes doit étre considérée, en
bien des cas, comme absolument fictive. En outre, on ne doit pas oublier
que, s’il devait se produire des tassements non élastiques et plastiques dus
a des efforts imprévus, une directrice correspondant a un funiculaire réduit
les sollicitations de 1’arc. Ceci n’est pas toujours vrai, spécialement si la direc-
trice a été corrigée pour obtenir une diminution des contraintes de calcul.

Enfin, nous voudrions qu’on considérat les avantages que I'étude expéri-
mentale sur maquette permet d’obtenir dans les projets de ponts: elle donne
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rapidement une réponse exacte a des questions que le calcul ordinaire ne peut
résoudre et pour lesquelles une analyse plus poussée serait trop onéreuse.
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Résumé

On expose les résultats les plus intéressants d’une série d’essais effectués
sur la maquette d’une voite en béton armé. Ces essais ont permis d’évaluer
avec facilité le coefficient de sécurité de l'ouvrage au flambement ainsi que
I'influence des tassements élastiques aux naissances et de la collaboration du
tablier; les résultats ont été confirmés par des mesures effectuées sur I’'ouvrage
terminé.

Zusammenfassung

Es werden die Ergebnisse der Modell-Untersuchungen einer eingespannten

Bogenbriicke in Stahlbeton behandelt.

Auf Grund der Versuchsergebnisse konnten der Knicksicherheitsfaktor des
Bauwerkes, die Wirkung von elastischen Setzungen der Bogenfundamente
und die Mitwirkung des Briickenaufbaues ohne Schwierigkeit bestimmt
werden.

Diese Ergebnisse wurden durch Messungen am ausgefithrten Bauwerk
bestétigt.

Summary

In this paper the authors report the most interesting results of a series of
tests carried out on a model of a reinforced concrete arch bridge.

These tests made it possible to determine without difficulty the safety
factor against buckling of the structure and the effects of elastic settlements
on the foundations and of the increase in strength due to the deck of bridge;
the results were confirmed by measurements carried out on the finished bridge.
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Elastic-Plastic and Limit Analysis of Non-Homogeneous Arched
Bridge Structures

Etats élasto-plastiques et état limate des constructions de ponts non-homogeénes,
en particulier de ponts voiltés

Elastisch-plastische Zustinde und Grenztragvermogen von nichthomogenen
Briickenkonstruktionen, insbesondere Bogenscheibenbriicken

W. OLSZAK
Prof. Dr. Ing., Dr. techn., Member of the Polish Academy of Sciences, Warsaw

1. In the theory of bridges, arched bridge structures have often found
practical application (Fig. 1). In the present paper, a method is proposed
which enables the states of stress and strain in such structures to be determined.
The possibility of taking certain types of non-homogeneity of the material into
consideration is also provided. The non-homogeneity may be due, e.g., to a
variable amount of reinforcement.

The method consists in the application of an appropriate conformal mapp-
ing. By means of a suitable mapping function, the system under consideration
is transformed into a circular ring segment (Fig. 2) and the problem is analysed
in this auxiliary system. This is comparatively easy with the boundary

J -
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conditions — for the inner and outer edges — assumed, these being particularly
simple. The solution is then retransformed into the original system (Fig. I).

In this way both the purely elastic and the elastic-plastic states may be
analysed. It is also possible to determine the ultimate load-carrying capacity
of such structures.

Fig. 2 shows the system under consideration. The bridge is assumed to be
asymmetric; the symmetric form can, of course, be readily obtained as a
particular, simpler case of the more general, asymmetric form. Such sym-
metric systems, which are theoretically somewhat easier to handle, are generally
met with in practice.

The load is assumed to be uniformly distributed over the upper and lower
edges. The load p on the lower edge may, of course, be assumed to be zero,
the only load being the load ¢ acting on the upper surface (roadway). This
results in a further simplification of the computation procedure.

2. The analytic function

Z=X+i¥ =)=

z+h

(2.1)

transforms the original plane O into the inverted plane I. In this transfor-
mation, circles in the O-plane are mapped into circles in the I-plane. The
following simple geometrical relations are valid

1
D, = @1, 7'1=§1‘:
; ‘ (2.2)
rsing
—_— 2 2h' hz. == Ct’ ———— .
R, Y78+ 2hr cos @+ 4%, P1 = o g+ A

The stress function £ in the original system O corresponds to the stress
function w in the inverted system I. These functions are related in the follow-

ing simple manner:
1 (1
0= gz QB - )'i.Q(E,(p).
From this equation, we know the relation between the stress field in the
original system O and that in the inverted system I.
This relation is particularly simple if the stresses in the original system
are expressed in a curvilinear system of coordinates (R,®) consisting of two

families of orthogonal circles (Fig. 1). Then we have
= o, (r*+2hrcose+h*)+2M',

(2.3)

Or
op = o, (r*+2hrcose+h?)+2M, (2.4)
Ty = — Ty (12 +2hrcosp+h?),
0 o 1.
where M = w—,—w[’l‘+hCOS(p]+7(£}L~Sln(p,
ar ‘o r

with the notations of Figs. 1 and 2.
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3. The elastic problem is solved in a simple manner. The stress function
assumes, in the inverted system I, under the conditions described, the form

w=ay+bylnr+dyrtlnr. (3.1)
Hence, the stresses in the original system O are readily obtained as
op = 2ay+by(2lnr—14+r2)+d,(2lnr+1—r?),
o = 2a,+by(2Inr—3—4rlcosp—r)+dy (2lnr+3+4veosg+r),
Trr= 0. (3.2b)

There are three unknown constants in these expressions; these constants
should be so chosen as to satisfy the boundary conditions in question. The
structure is considered to be elastically clamped along the lateral edges. This
type of support is characterized by a clamping moment M and a reaction
force P (Fig. 1). It is evident that the curvilinear net of coordinates coincides
with the principal stress trajectories.

4. The problem of ultimate load-carrying capacity. The set of equilibrium
equations and boundary conditions has to be completed with the yield con-
dition

(o —op)*+ 4715y = 4[K (R, P,) > (4.1)

The material of the bridge may be homogeneous or non-homogeneous. In the
general case of non-homogeneity, the solution cannot be obtained in a closed
form and should be sought for by means of one of the numerical methods
(the method of characteristics, for instance).

There exists, however, the possibility of making use of a certain circums-
tance, which was already pointed out in some of our previous papers. This
consists in the following:

We can introduce into the analysis a particular type of non-homogeneity
K, enabling us to find the corresponding solution in a closed form.

It is evident that such a non-homogeneity does not necessarily reflect the
actual conditions; however, it can be shown that there may exist more of such
types of non-homogeneity which lead to simple closed-form solutions.

Let us denote them by the symbols K, K. Ky, - - .

If one of these types of non-homogeneity represented the actual mechanical
properties of the system considered, the problem could be considered to be
solved. However, such a case will, in general, be only exceptional.

Another approach is then possible. Since the curvilinear net of coordin-
ates coincides with the principal stress trajectories [cf. Eq. (3.2b)], the yield
condition (4.1), in such a particular case, is seen to be linear. Then a linear
combination of the possible types of non-homogeneity

K(r,p) = Z/\iffi(r, ®), p=LJIL ... (4.2)
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may be considered. The parameters A;, A, ..., can now be chosen in such a
manner as to approach the actual conditions to the best possible extent. These
conditions are, for example, those of a specific type of non-homogeneity or
those of homogeneous properties of the structure, depending upon the manner
in which the original problem was stated.

Thus, for the particular problem studied in the present paper, solutions
were found for four different types of non-homogeneity: K, Ky, Ky, Kiv.
It follows that a linear combination may be used which can be expressed in
the following symbolic manner:

Ky=+x®K s NP K+ p? Ky £v2 Ky (4.3)

The above method was used to solve the problem under consideration.
The state of stress (op,0p,7rp) Was found at every point of the structure in
such a manner as to satisfy the boundary conditions required.

The moment M characterizing the elastic clamping and the reaction force
P were also found.

The critical load intensity for which the load-carrying capacity of the
structure is exhausted was also determined.

5. The question now arises what type of non-homogeneity best describes
the actual conditions. In reinforced concrete bridges, the amount of reinforce-
ment will — in general — increase when the crown is approached (the maxi-
mum being attained at the crown itself). Then the mechanical properties will
exhibit a corresponding increase of elastic and plastic moduli.

This corresponds, in a relatively satisfactory manner, to one of the types
of non-homogeneity considered in the present paper (K;).

The other type corresponds, approximately, to homogeneous structures
(K11)-

Between these two limiting types, other types may be introduced by
selecting appropriate values for the parameters «, A, u, v.

This choice of solutions enables the non-homogeneity function Ky to be
adapted to various possible practical cases, in a relatively satisfactory manner.

A method for the determination of the upper and lower bounds of the
solutions thus obtained will be demonstrated in a separate paper. This is of
considerable importance as a means for estimating the accuracy of the solution
and formulating variational problems.

It seems that the method proposed may be useful for solving actual prac-
tical problems. It should be mentioned that it may also be extended to other
problems of elastic-plastic equilibrium and plastic flow.
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Summary

Inthe theory of bridges, two-dimensional vaulted systems are often analysed,
arched bridge structures being one of the possible and frequently used practical
applications. In this contribution, a method of analysis is suggested which
enables the states of stress and strain of such structures to be assessed, and
at the same time it is demonstrated that certain types of non-homogeneity
of the material may be taken into account.

The method consists in transforming the system under consideration into
a concentric ring by means of a simple mapping function. The solution is
first found in this auxiliary system and then retransformed into the original
system.

The analysis deals both with purely elastic and with elastic-plastic states.
In addition, a method is indicated for determining the ultimate load-carrying
capacity of such structures.

Résumé

Dans la théorie des ponts on étudie souvent des systémes votlités bidimen-
sionnels, les ponts en arc étant une des applications les plus usuelles. Cette
contribution propose une méthode de calcul qui permet de déterminer 1'état
de tension et 1’état de déformation de tels ouvrages, tout en offrant la possi-
bilité de tenir compte de la non-homogénéité du matériau du systeme.

Cette méthode consiste a transformer le systéme considéré en un segment
circulaire concentrique, a 1’aide d’une simple fonction de transformation con-
forme. La solution est recherchée dans ce systéme auxiliaire.

L’étude traite aussi bien d’états purement élastiques que d’états élasto-
plastiques. De plus, on peut déterminer 1’état limite et la capacité portante
de telles constructions.

Zusammenfassung

In der Briickenstatik werden oft scheibenartige Tragsysteme untersucht,
wobei insbesondere Bogenscheibenbriicken schon vielfach praktische Anwen-
dung gefunden haben. Es wird eine Methode vorgeschlagen, die es erlaubt,
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den Spannungs- und Forménderungszustand derartiger Tragkonstruktionen
zu ermitteln, wobei gleichzeitig die Moglichkeit gegeben wird, deren Nicht-
homogenitit in Betracht zu ziehen.

Die Methode besteht darin, durch Einfithrung einer einfachen Abbildungs-
funktion das untersuchte System auf ein konzentrisches Kreissegment kon-
form abzubilden und in diesem Hilfssystem die Losung zu suchen.

Es werden sowohl rein elastische als auch elastisch-plastische Zustdnde
untersucht. Aullerdem wird gezeigt, wie das Grenztragvermogen (die Grenz-
last) derartiger Konstruktionen ermittelt wird.
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Compléments relatifs aux poutres armées d’aciers écrouis
Erginzungen betreffend Triger mit einer Bewehrung aus gerecktem Stahl

Further Information Relating to Girders Reinforced with Cold-Rolled Steel

CH. MASSONNET P. MOENAERT
Professeur & I'Université de Liége Chargé de Cours & 1'Université libre de
Bruxelles

Le Comité européen du béton a mis au point & Vienne, en avril 1959, des
regles qui permettent de dimensionner les piéces en béton armé soumises a
flexion simple ou composée en tenant compte du comportement réel du béton
comprimé dans le stade de rupture. Ces regles sont trés simples pour les poutres
armées d’acier doux, ou I’on sait que I’acier tendu travaille au palier d’étirage
R,, si 'on a contr6lé préalablement que le pourcentage d’acier tendu est
inférieur au pourcentage critique. L’effort dans I’armature tendue de section
Q, vaut alors F, =8, R, et la section a donner & cette armature découle direc-
tement de 1’équation d’équilibre des moments M =F,z, sans qu'on doive
faire intervenir la condition de compatibilité élastique représentée ici par la
loi de conservation des sections planes de Bernoulli.

A T’heure actuelle, on utilise de plus en plus des armatures en acier écroui
qui ne présentent pas de palier et dont la tension dépend par conséquent de la
déformation subie. Pour des poutres armées de tels aciers, on doit faire inter-
venir la loi de Bernoulli et la méthode de calcul devient complexe.

En vue de conserver, pour les poutres armées d’acier écroui, les regles
simples de dimensionnement obtenues pour les poutres armées d’acier doux,
le C.E.B. a recommandé de calculer la tension dans I’armature tendue par la

formule empirique

Q
Gy = To2 (1,28 —5(;’% - 0,45‘;0;2 b—h) (kg/em?) (1)

proposée par la délégation frangaise. Dans cette formule, oy, est la limite
élastique conventionnelle de 1’acier & 0,2 %,; o,” est la résistance a la rupture



118 CH. MASSONNET - P. MOENAERT Ib8

du béton sur cylindres et b, %, sont les dimensions utiles de la poutre rectan-
gulaire.

Il nous a semblé utile d’étudier la valeur de cette formule en effectuant,
en complément de notre étude statistique antérieure, une comparaison statis-
tique des résultats d’essai sur 203 poutres armées d’acier écroui avec deux
méthodes de calcul du moment de rupture.

La premiére de ces méthodes, dite méthode générale est basée sur les quatre

hypothéses suivantes:

a) le diagramme des tensions de compression dans le béton est parabolique
et son ordonnée maximum est égale a la résistance & la compression sur
cylindres;

b) les sections transversales restent planes pendant la déformation;

¢) le béton se rompt en compression quand son raccourcissement proportion-
nel atteint 3,59/, ;

d) 1'acier écroui tendu suit la loi tensions-déformations simplifiée définie par
le C.E.B.

La deuxiéme méthode, dite méthode simplifiée, utilise la formule (1) recom-
mandée par le C.E.B. et admet un diagramme rectangulaire des tensions de
compression dans le béton d’ordonnée égale a la résistance a la compression
sur cylindres.

Les calculs relatifs & la premiére méthode sont repris parmi ceux qui ont
été exécutés a 'ordinateur IBM 650 de la maniere décrite dans la Publication
Préliminaire (cf. pp. 105—127).

Ceux relatifs & la deuxiéme méthode ont été exécutés a la main.

Pour chacune des méthodes, on a calculé la moyenne » des rapports

moment de rupture calculé
= .
moment de rupture observé

On a ensuite calculé 1’écart moyen linéaire

Zlr—#

n

et 1’écart moyen quadratique

n

Enfin, on a calculé les mémes écarts, non plus par rapport a la moyenne géné-
rale r, mais par rapport aux moyennes individuelles correspondant aux diverses
séries d’essais. De I’avis du professeur TorRROJA, ces écarts moyens pondérés
éliminent les erreurs dues a des différences de technique opératoire pour ne
laisser subsister que les écarts dus & la dispersion propre des essais.
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Les résultats obtenus sont consignés dans le tableau ci-dessous:

Moyenne du rapport : Dispersion moyenne Dispersion pondérée
M rupture calculd Ecart moyen Ecart moyen
M rupture observé linéaire quadratique‘ linéaire | quadratique
1. méthode 0,958 0,078 0,12 ‘ 0,055 0,074
2. méthode 0,989 0,086 0,12 0,056 | 0,080

On constate :

1. que la méthode simplifiée serre la réalité de plus prés que la méthode
générale, puisque la moyenne » correspondante est plus proche de 1'unité;

2. qu’elle donne des écarts égaux ou tres légerement supérieurs a ceux de la
méthode générale.

En conclusion, les deux méthodes donnent des résultats a peu pres équi-
valents, mais la méthode simplifiée est beaucoup plus intéressante, parce que
plus rapide d’emploi.

Résumé

Les auteurs comparent, dans le cas de 203 poutres en béton armées dacier
écroui, les valeurs des moments de rupture expérimentaux avec celles cacul-
lées par la méthode générale du C.E.B. et avec celles calculées par la méthode
simplifiée de ce Comité, dans laquelle la tension dans I’armature tendue est
calculée par la formule empirique (1) dite «formule frangaise». Les calculs
statistiques montrent que la méthode simplifiée est équivalente a la méthode
générale au point de vue précision, donc beaucoup plus intéressante, parce
que plus rapide d’emploi.

Zusammenfassung

Die Autoren vergleichen bei 203 Eisenbetontriigern mit einer Bewehrung
aus gerecktem Stahl die experimentell gemessenen Bruchmomente mit den-
jenigen, die sich aus den Berechnungen nach dem allgemeinen Verfahren des
CEB und nach dem vereinfachten Verfahren dieses Komitees ergeben. Bei
letzterem wird die Spannung in der Zugarmierung nach der empirischen,
sogenannt «franzosischen», Gleichung bestimmt. Die statistischen Berechnun-
gen zeigen, dafl das vereinfachte Verfahren dem allgemeinen gleichwertig ist
was die Genauigkeit betrifft, aber viel interessanter in bezug auf den Zeit-
aufwand.
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Summary

The authors compare, in the case of 203 girders made of concrete reinforced
with cold rolled steel, the experimental values for the rupture moments with
those calculated by the general method of the C.E.B. and with those cal-
culated by the simplified method described by this Committee, in which the
stress in the reinforcement bar under tension is calculated by the empirical
formula (1) known as the “French formula”. Statistical calculations show that
the simplified method is equivalent to the general method from the point of
view of accuracy, and consequently is of far greater interest, because more

rapid in use.
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Application of the Semi-probabilistic Method to Reinforced Concrete
Structures

Application de la méthode semi-probabiliste aux constructions en béton armé

Bemerkung zur Anwendung einer teilweise auf Wahrscheinlichkeitsrechnung
beruhenden Methode auf die Berechnung wvon Eisenbetonkonstruktionen

W. WIERZBICKI
Prof. Dr., Dr. h. c., Member of the Polish Academy of Sciences, Warsaw

The starting point for our discussion of the safety of reinforced concrete
structures will be the statement that by the term “‘collapse’ of such a struc-
ture (a column or a bar, in particular), we understand the phenomenon of the
crushing of the concrete portion and the attainment of the yield point in the
reinforcement bars. According to numerous observations of the collapse of
reinforced concrete structures these two phenomena may be considered to
appear simultaneously.

Under these conditions the load carrying capacity of a reinforced concrete
structure is governed by the value of the ultimate compressive stress of the
concrete and the yield point of the reinforcement steel which form the basis
for its determination. Both quantities should be regarded as random quantities.

Fig. 1 represents a scheme of the probability curve for the compressive

o
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o)

9

Max. Rb 1

Fig. 1.
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strength of the concrete R,. The shaded area expresses the probability £,
that the values of R, are contained between the limit value R,, and the maxi-
mum value max R,. In other words R,, is the value of the strength of the
concrete, below which the strength of concrete of a given quality will not fall.

4
K,
0
max R {
Fig. 2.

Fig. 2 represents the scheme of a probability curve for the yield point of
the reinforcement steel. It is assumed that the same curve characterises the
yield point of the steel in tension and in compression. The shaded area expres-
ses, in this case, the probability 2, that the values R are contained between
the limit value Ey and the maximum value max R or, in other words, that it
can be stated with the probability 2, that the yield point of the reinforcement
steel will not fall below R, .

In order that the collapse of a reinforced concrete column or beam should
not take place it is necessary that the following two independent circumstan-
ces should coincide:

A. The ultimate strength of the concrete must be greater than the limit
value R,,, 2, denoting the probability of this fact.

B. The yield point of the reinforcement steel must be greater than the limit
value R,, 2, denoting the probability of this fact.

In this connection, by virtue of the rule of multiplication of probabilities,
we can state, with the probability 2,2, that if the compressive strength of
the concrete is not less than R,, and the yield point of the steel is not less
than R, collapse of the structure will not take place.

If, therefore, the safety index or, in other words, the probability that the
collapse of a reinforced concrete structure will not take place, is denoted by p,
we shall obtain the equation

2,80, =p. (1)

Since the collapse of a reinforced concrete structure takes place at the
moment when the ultimate compressive stress in the concrete and the yield
point in the steel are simultaneously exceeded there is no reason for assuming
different values for the probabilities 2, and 2., all the more since their equality
ensures the greatest accuracy in the readings of the probability curves.
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Therefore, we find that
Q,=09,=Vp. (2)

In the case of the axial compression of a column the safety index p that is
assumed corresponds to the value R,, of the ultimate stress of the concrete
and the value R, of the yield point of the steel and the axial force causing
the collapse of the column is expressed, in this connection, by the equation

N, =«(4,R,+A4, R), (3)

where A, is the area of the concrete portion of the cross-section of the column
A, — the area of the cross-section of the reinforcement and « — the reduction
coefficient for buckling.

The compressive force acting on the column N,, the action of which on
the structure is admissible, is not equal to N,, because there are certain
circumstances reducing the force N, . Thus, the force N; should be compared
with the force N, reduced in an appropriate manner, that is to say it should
be assumed that

Ny=N,(1-2«), (4)

where the-coefficients «,” denote the limiting relative reductions of the force
N, causing collapse, due to an incomplete satisfaction of each particular con-
dition, for which Eq. (3) was derived and  «; denotes the relative reduction
of N, due to incomplete satisfaction of all these conditions. The coefficients
«; are not, in general, of a random character.

A reasoning analogous to that given in Ref. [1] and [2] for the quantities p
and « will now be followed for the safety index p and the coefficients «’, the
following values for «; being used:

«; = 0,04 the coefficient of reduction of the force causing collapse, due to the
errors in the dimensions of the concrete portion of the cross-section
of the column;

ay = 0,03 the coefficient of reduction of the force causing collapse, due to the
errors in the transverse dimensions of the reinforcement bars;

ay = 0,10 the coefficient of reduction of the force causing collapse, due to the
eccentricity of the compressive force caused by the errors in the
dimensions of the cross-section of the column;

oy = 0,20 the coefficient of reduction of the force causing collapse, due to the
eccentricity caused by the difference in the temperatures at dif-
ferent points on the surface of the column;

as = 0,10 the coefficient of reduction of the force causing collapse, due to the
deviation of the column from a straight line.

We have > o;=0,47.

Thus, for example, in order to determine the coefficient «; two columns
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are considered: a column 303x 30 c¢m, reinforced with 4 bars of 12,57 c¢m?
total cross-sectional area, and a column 45 x 45 cm, reinforced with 8 bars of
32 cm? total cross-section. For the first column we assume that R,, =140 kg/cm?
and R=2500 kg/cm?; for the second column that R, =170 kg/cm? and R=
3600 kg/cm?. Then, from Eq. (3) we obtain N,=127 kg and N, =360 kg,
respectively.

Assuming, according to the usual standards, that the admissible deviations
are +10 mm we again compute N, for a column 29X 29 ecm and a column
44 % 44 cm, and we obtain N,=122 kg and N, =357 kg, values which give
a; =0,05 and «] =0,03, respectively, or an average value of o; =0,04.

The same reasoning is used for the determination of the other coefficients
«’ for the compression and for the bending of reinforced concrete beams.

On the basis of the method of plastic deformations, it is justifiable to
consider the collapse of a reinforced concrete column (which consists in simul-
taneous crushing of the concrete and attainment of the yield point in the
reinforcement) to be identical, as far as the practical effect is concerned, with
the phenomenon occuring in a compressed steel bar when the yield point is
exceeded over the entire cross-section. Since in the latter case the safety
factor was assumed to be p=0,8, this value may also be considered to be
justified in the case of a reinforced concrete column.

In the case of bending, the fact that the beam is broken when the ultimate
compressive stress in the concrete and the yield point in the steel are exceeded
simultaneously, leads to the following formula for the collapse moment of

the beam:
M, = 037502 R,,. (5)

This corresponds to the stress diagram in Fig. 3.

- — A
1
17| E:
{ _J
l N
The admissible moment in a reinforced concrete beam cannot be considered
to be equal to the collapse moment and is expressed by the equation

My=M,(1-3 o)) (6)

<
Fig. 3.

analogous to Eq. (4) for the admissible force in a compressed column.
Bearing in mind the circumstances similar to those enumerated above for
the problem of compressed columns, we determine the following coefficients «;:
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oy = 0,06 the coefficient of reduction of the collapse moment due to the errors
in the dimensions of the concrete portion of the cross-section of
the beam;

ay = 0,04 the coefficient of reduction of the collapse moment due to the errors
in the transverse dimensions of the reinforcement bars;

ay = 0,06 the coefficient of reduction of the collapse moment due to the
eccentricity and obliqueness of the load;

ay = 0,12 the coefficient of reduction of the collapse moment due to the
difference between the temperatures on the upper and the lower
surface of the beam and the shrinkage of the concrete.

We have ») o;=0,28.

If a reinforced concrete column or beam is subject to better conditions
than those used for the determination of the coefficients «;" some of them may
be assumed to be zero, which will increase N; or M,. Thus we proceed in a
similar manner to that described for steel structures in Ref. [1], where we
were concerned with an increase in the admissible stress under favourable
conditions. This is discussed in greater detail in Ref. [3].
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Summary

The load carrying capacity of a reinforced concrete structure is deter-
mined by the ultimate compressive stress of the concrete and the yield point
of the reinforcement steel. Both quantities should be regarded as random
quantities.

If the compressive strength of the concrete is not less than R, (the proba-

bility 2,) and the yield point of the reinforcement steel is not less than R, (the
probability £2,) then according to the rule of multiplication of probabilities it
can be stated that collapse will not take place, with the probability £, ..

If p is the safety factor (that is the probability that collapse of the struc-
ture will not occur) then, from the equation £,£,=p, we can determine the
admissible force in the column or the admissible bending moment in the beam.
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Résumé

La contrainte du béton a la limite de résistance a la compression et la
contrainte & la limite d’écoulement de I’acier d’armature ont une importance
décisive pour la capacité portante d une construction en béton armé. Ces deux
grandeurs doivent étre considérées comme des grandeurs aléatoires.

Si la résistance du béton a la compression n’est pas inférieure a R,, (proba-
bilité 2,) et la contrainte a la limite d’écoulement de 1’acier d’armature n’est

pas inférieure & R, (probabilité £2,). alors conformément au théoreme sur la
multiplication de probabilités, on peut soutenir avec la probabilité 2,2, que
la construction ne s’effondrera pas. Si p est l'indice de sécurité (c.a.d. la
probabilité que la construction ne s’effondre pas), on aura 1’équation

Q.82 =

qui permet de calculer la force admissible dans le pilier ou le moment admis-
sible pour la poutre.

Zusammenfassung

Fiir die Tragfihigkeit einer Eisenbetonkonstruktion sind die Betonspan-
nung beim Erreichen der Bruchgrenze und die Eisenspannung beim Erreichen
der Flielgrenze von mallgebender Bedeutung. Diese Werte miissen als zufillige
Groflen betrachtet werden.

Falls die Bruchfestigkeit des Betons kleiner als der Wert R,, (Wahrschein-
lichkeit £2,) und die FlieBgrenze der Bewehrungseisen kleiner als der Wert R,
ist (Wahrscheinlichkeit £2,), dann wird, nach dem Satz der Multiplikation von
Wahrscheinlichkeiten, die Wahrscheinlichkeit, dall keine Katastrophe eintritt,
2,8, sein. Bezeichnen wir den Sicherheitsindex mit p (d.h. die Wahrschein-
lichkeit, dafl die Konstruktion hilt), so gilt

= 'Qb'Qz’

was uns erlaubt, die zuldssige Kraft in einer Stiitze oder das zuldssige Moment
in einem Balken zu bestimmen.



	I. Basis of structural design
	Generalbericht
	General report
	Rapport général
	Ia. Properties of materials
	Laboratory testing of full-size aluminium bridge
	Fatigue design and endurance of metal stuctures
	L'exploitation des séries de petite taille en résistance des matériaux
	Discussion: shear strength of reinforced concrete beams loaded through framed-in cross-beams (J. Taub, A.M. Neville, Ia 6)

	Ib. Development of methods of calculation
	Numerische Methode zur Berechnung statischer Probleme
	Finite deflections of a clamped circular plate on an elastic foundation
	Dynamics of continuous structures with repeated elements
	Berechnung von Kreiszylinder-Dachschalenkonstruktionen mit Hilfe von elektronischen Rechenautomaten
	Application des machines à calculer électroniques à la solution du problème aux tensions de l'élasticité plane
	Résultats des essais sur maquette d'un pont arc encastré
	Elastic-plastic and limit analysis of non-homogeneous arched bridge structures
	Compléments relatifs aux poutres armées d'aciers écrouis
	Application of the semi-probabilistic method to reinforced concrete structures



