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Hcl
Load distribution in right higway bridges

Lastverteilung bei geraden Brücken

Distribuigäo das cargas nas pontes-estrada rectas

Repartition des charges dans les ponts-route droits

G. LITTLE, M. Sc. R. E. ROWE, B. A.
P. B. MORICE, B. Sc, Ph. D.

Cement and Concrete Association
London

1. Introduction.

Aecurate assessments of the effects of concentrated loads on medium
span highway bridges have seldom been necessary in the past in Great
Britain. This has been due to the fact that all practical loading conditions
bridge loading which is a distributed loading. Recently, however, concentrated

loads have been much heavier and more numerous necessitating
have been catered for by the Ministry of Transport Standard equivalent
aecurate assesments of their effects on existing bridges and on new
bridges at the design stage. A new loading, the Ministry of Transport
abnormal load, has therefore been proposed for trunk road bridge design
in Great Britain which has the form shown in Figure 1 with a total
weight of 180 tons. In certain icases the weight may be reduced to 120 tons,
or even 80 itons, although the wheel positions remain the same.

The general distortion of a bridge deck carrying the abnormal load
is a problem chiefly associated with short or medium spans because it is
only on such bridges that the effects of a single vehicle, even of abnormal
weight, can be greater than those of general traffic which is covered by
the distribuited design loading.

The analysis with which the experimental results given in this paper,
have been compared is based upon linear elastic theory and is thus
particularly applicable to prestressed concrete structures. The experimental

work described is concerned with füll scale and model prestressed
bridges and perspex modeis of prestressed concrete type bridges.
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2. Methods of analysis.

The short span wide slab bridge deck has been extensively studied
in the United States of America between 1930 and 1940 by a number of
people and this work has been reported in several excellent papers
[1, 2, 3, 4].

Experimental work has been carried out chiefly on reinforced concrete
slabs with good »results iand it is therefore reasonable to suppose that
the theory applies also to prestressed concrete which more nearly satisfies
the assumptions of isotropy.

Whilst short span bridges will, almost always, consist effeatively
of slabs, medium span bridges may appear in a variety of forms such

CD
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CD -i
3/r

CD -
3/r

CD cn -
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Cd Cd -J

s/t. 20 ft I 6ft
Fig. 1. Form of abnormal load

H

as slabs, grillages, Tee-beam and box-beam structures. It is not surprising
that many methods have been advanced for their analysis when subjected
to concentrated loading. These methods of analysis may be placed into
three groups. The first separates the strueture into a finite number
of members in each direction, each with its own stiffness. The Solution
of the behaviour of the strueture as a whole is then determined by solving
the equations of compatibility which ensure continuity at the joints of
the members.

The technique of Solution of such Systems of equations is well
established in Southwell's relaxation technique. Janssonius [5] has
developed this method for the study of transversely loaded grillages
including the bridge deck case.

The second group of theories separates the main or primary members
from the remainder of the strueture and considers the effect of secondary
cross^connexion between the main members. Hetenyi's [6] Solution
involving Fourier series is particularly elegant whilst there exist
alternatives due to Pippart [7] and Leonhardt [8]. In the latter analysis the
whole of the cross-connexion is replaced by a single centre span diaphragm
of equivalent stiffness.

The third group of theories is that which reduces the actual strueture
to an equivalent distributed system in the two prineipal directions; a
quasi orthotropic plate. The deflection of such a plate is governed by
the generalized Lagrange equation

r <)x4 <)x2 <)y2 dy*
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This method has been proposed by Guyon [9, 10], for torsionless
grillages and for slabs and has been generalized by Massonet [11]. The
quasi orthotropic plate analysis has the advantage that almost any
structural form may be analysed in the same general terms. The method
has become known as the «distribution coefficient method» due to the
way in which it is convenient to apply the method to practical design.

A large number of the bridges which have ito be built in practice are
to provide a skew crossing. The analysis of skew bridges is a rather
difficult problem and is not at present amenable to the same techniques
as have been successfully used for right bridges. Some work has been
reported [12, 13] on this problem and further work is in progress at the
time of writing. Although no overall Solution can be given it appears
that the analysis of right bridges may be safely applied to bridges with
up to about 15° skew.

3. Theoretical analysis of the bridges under test.

The analyses of Guyon and Massonnet have been considered to obtain
the theoretical results for deflections and moments. The distribution
coefficients, K, for deflections and longitudinal moments, were obtained
from curves prepared by Guyon for a no-torsion grillage, and from curves
prepared by the authors from Massonnet's tabulated values for a füll
torsion slab. The effect of ignoring Poisson's ratio in the analysis has
been shown [14] to be negligible in the case of the coefficients K.

For the transverse bending moments, the equation
CO

M} b 2 fxn H„ sin
2a

was used. Hn is the amplitude of the nth term in the Fourier series
for the load, and |in is a distribution coefficient. Values of \i for
a no-torsion grillage and a full-torsion slab were tabulated by Guyon
and Massomnet respectively; additional values have been calculated by
the authors and from these values curves have been prepared. The
discrepancies between theoretical and experimental values for the transverse

moments were found to be considerable and led to a consideration
of the effect of Poisson's ratio in Guyon's analysis for a slab. The
complete analysis is given elsewhere [14] but the analysis gives the
following equation for f^:

__
1 |[(1—v)(Tchg—(l+v)shff1ch9^ —(1—v)shqr e^shö^ r

Pi~~~~4<7sh2cri (3 + v)shexchff —(1—v) er l
{ [(1— v)<7ch<7—(l + v)sh<7]ch9ß — (l-v)sh<7. 6ßbh6ß } +

f(l -v)<7chG- + 2 shalshGA — (1 - v) shcr ObchOb r/i *
4- - - I - I \ (l — v) <7Ch<7 +

(3 + v)shrch<j+(l—v)<7 lL

+ 2sh<7]sh6ß— (l—v)sh<j. Gßcheß } + [(1 — v)crcho- — (1 +v)sh<7lch0x —

— (l-v)shc- öxshO/
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where 0 —
2a b

+

/. ß — <h/-y and v Poisson's ratio.

This equation was used to determine values of [x for a Poisson's ratio
of 0.15, that assumed for prestressed concrete, and curves for the value
of this coefficient have been prepared [14]. In the tests on bridge slabs
the curves have been used to determine the theoretical transverse moments
for this particular value of Poisson's ratio.

4. Details of, and presentation of results from, the experimental investigations.

(a) Bridge slabs.

A concrete slab, 57.8 X 46.25 X 1 in., post-tensioned to a residual
stress of 850 lb/in-. in both the longitudinal and transverse directions,
was simply supported as a bridge slab and tests carried out for three
different spans. The spans were taken to give values of the ratio
'/, X breadth

denoted by 6, of 0.4, 0.5 and 0.6.
span

Loading consisting of one, two or four equal loads was applied to
the slab and deflexions and strain measurements obtained. Electrical

¦ .:¦: : ¦¦

Fig. 2. General arrangement for testing bridge slabs
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resistance foil gauges, of 1 in. gauge length, were used to obtain the
strain readings. Figure 2 shows the test specimen, the loading device
and the strain recorder. The modulusr-time curve for the slab was
determined by applying a line load over the complete width of the slab
and observing deflections.

The experimental «mean» deflection and longitudinal moments were
derived by applying Simpson's rule to the transverse profiles for
deflections and moments; the experimental values of the distribution
coefficients K, were then found from the measured «mean» and actual
values. Table 1 gives the experimental values of K for deflections
for a single concentrated load applied to eadi slab and the percentage
discrepancies from the theoretical values. Each set of values of K shows
symmetry about the marked diagonals illustrating that the reciprocal
theorem held for the slabs. The discrepancy of the actual from the
theoretical values is of the order of 2 per cent under the load, for zero
eccentricity, increasing to 9 per cent for an eccentricity of 3b/4.

Table 2 gives some typical experimental values of K for longitudinal
moments and the percentage discrepancies from the theoretical values for
both single and double loads. These discrepancies are greater than
those found for deflections but decrease as the number of loads increases.
The local effects inherent in this type of loading cause a disturbance
of the true distribution properties; the «mean» moment is invariable for
any given load and hence the local effects cause an increase in the values
of K in the region of the load and a consequent decrease in the values
away from the load. This is clearly shown in Figure 3 where the
theoretical and experimental transverse profiles for the values are given
for both a single and two equal loads. Table 3 compares theoretical and
experimental values K for longitudinal moments in the loaded zone for
four equal applied loads applied to the third slab. The discrepancy between
theoretical and experimental values is of the order of 10 per cent and
is thus in agreement with Guyon's Suggestion that, for practical loadings,
it is necessary to increase the theoretical values by 10 to 15 per cent
to obtain the actual.

In all the tests from which the above results were derived, the
theoretical and experimental «mean» effects were in excellent agreement.

For the transverse moments Table 4 compares the theoretical and
experimental moments at various points on the second slab for various
load positions. Similar tables were obtained for the other slabs but
are not given here. The experimental moments were derived from
the measured strains and modulus on the assumption that Poisson's
ratio, v, was 0.15. This assumption was justified in that the experimental
moments at the edges of the slabs were then zero. From the table it can
be seen that considerable errors arise if no account is taken of Poisson's
ratio in the theoretical analysis but, if allowance is made for this effect,
greater accuracy is attained in estimating the actual moments for any
disposition of the loads. This is also shown in Table 5 which compares
theoretical and experimenital moments at various points on the third slab
when four equal loads were applied. This type of loading is analogous
to that of the Ministry of Transport abnormal load.
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Table 2

Experimental distribution coefficients, K, for longitudinal moments on
the section under the load and discrepancies from the theoretical values

Single load

Position Experimental Values of K Discrepancies from theoretical
values (%)

slab Load Position Load Position

0 b/4 b/2 3b/4 0 b/4 b/2 3b/4

b
3b/4
b/2
b/4

0
-b/4
-b/2
-3b/4

-b

0.754
0.767
0.949
1.134
1.743
1.134
0.949
0.767
0.754

0.940
0.952
1.220
1.608
1.207
0.850
0.739
0.611
0.596

1.333
1.359
1.824
1.190
0.979
0.719
0.651
0.536
0.536

1.943
1.935
1.388
0.972
0.840
0.619
0.558
0.474
0.476

- 12.4
- 17.3
- 5.1

5.3
56.3
5.3

- 5.1
- 17.3
- 12.4

- 14.1
- 15.7

5.2
39.1
12.1

- 11.8
- 13.5
- 19.8
- 27.2

- 4.0
0.4

41.7
2.6

- 2.3
- 15.9
- 11.0
- 15.3
- 2.9

11.6
23.3
2.5

- 13.9
- 9.5
- 18.8
- 11.8
- 11.2

4.8

Slab No. 2: 6 0.5

Two equal loads

Loads at b -b

8,' 8

b
0. —

4

b b

4* 2

b 3b

2' 4

b -b

8' 8

b
0, —

4

b b

4' 2

b 3b

2' 4

b
3b/4
b/2
b/4

0
-b/4
-b/2
-3b/4

-b

0.753
0.775
0.945
1.194
1.486
1.194
0.945
0.775
0.753

0.860
0.883
1.097
1.416
1.426
0.976
0.819
0.676
0.664

1.121
1.130
1.481
1.422
1.095
0.796
0.700
0.583
0.556

1.654
1.713
1.574
1.067
0.894
0.662
0.598
0.507
0.486

- 2.5
- 8.3

1.7
13.0
35.0
13.0
1.7

- 8.3
- 2.5

- 12.1
- 14.2

1.5
26.8
30.1

- 5.5
- 11.8
- 19.9
- 14.0

- 9.7
- 8.9

20.7
24.0
5.3

- 12.8
- 11.8
- 16.5
- 11.3

5.8
17.5
18.9

- 6.8
- 7.3
- 18.2
- 12.3
- 13.2
- 3.3

Slab No. 2: 6 0.5

Table 3

Slab No. 3: Theoretical and experimental distribution coefficients, K, for
longitudinal moments in the region of the loads for four equal applied loads

Position on section b/2 b/4 0 -b/4

Equal loads at
Z. b/8, - 3b/8

Theoretical
Experimental

1.012
1.006

1.081
1.080

1.107
1.227

1.081
1 080

Equal loads at
b/2, b/4, 0, -b/4

Theoretical
Experimental

1.106
1.160

1.133
1.174

1.107
1.249

1.028
0.990
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For the slabs with values of 6 of 0.5 and 0.6, the enveloping curves
for ithe ratio of the maximum transverse moment at any point to the
maximum longitudinal moment at the centre of the slab for a load
traversing the central transverse section are given in Figures 4 (a)
and (b). The maximum itransverse moment is appreciably constant

-k>, -b

Z
ü

oo
zo

os

2 0

0-25

s^n^
/4*"

load at D/2

1-5

20

/4>*
*s^ ^ "

^_,l^*A

V^
^ f

05
b 3V, b^

loads at b2, 3b/4
b/. " T -b A -3b/^

1 5

20

I

--" ~~{

o*

load at 0 loads at ± b/8

£*per/menfa/
— P/ifarp//co/ (v - O

— r/teor*t/'ca/ Cv ^O /S)

Fig. 3. Slab No. 3 - Comparison of theoretical and experimental
profiles for coefficient, K
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between b/2 and -b/2 and is always overestimated by the theoretical
analysis assuming a Poisson's ratio of 0.15. In the case of four equal
applied loads, ithe maximum transverse moment at the centre of the
slab was 31.6 per cent of the corresponding longitudinal moment and the
Variation in the percentage as the load traversed the span is as shown
in Figure 4 (c). Again the theoretical analysis assuming a Poisson's ratio
of 0.15 accurately assesses the spanwise Variation in the transverse
moments.

From the tests it is apparent that the load distribution analysis,
assuming a Poisson's ratio of zero, gives aecurate assessments of ithe
deflections and longitudinal moments for bridge slabs in prestressed
concrete. For deflections the accuracy is of the order of 5 per cent for
values of 6 of 0.4 and 0.5 and 9 per cent for a value of 0 of 0.6. These
figures apply in the loaded region and increase to the maximum values
given with increasing eccentricity. For practical forms of loading it is
necessary to increase the theoretical values for the longitudinal moments
by 10 per cenit to obtain the actual.
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Fig. 4. Enveloping curves for distribution of transverse bending
moment, M>
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Table 5

Slab No. 3 — Comparison of theoretical and experimental transverse
bending moments (in. lb/in.) for four equal loads giving

unit total applied load

sverse

section

at

03

Load
Positions

Transverse
Moment at

Theoretical
V =0 Experimental

Theoretical
V 0.15

± b/8, - äb/8 b/2
b4
0

- b4

0.0430
0.0456
0.0430

0.0659
0.0697
0.0659

0.0673
0.0757
0.0673

and

moments

on

trar

b/2, -»- b/4
and 0

b/2
b/4
0

- b4

0.0423
0.0569
0.0572
0 0426

0.0762
0.0860
0.0858
0.0653

0.0652
0.0869
0.0868
0.0638

cd

m
CN

o
©

-^b/8, + 3<b/8
b/2, ± b/4, 0

0
0

0.0393
0.0507

0.0612
0.0715

0.0671
0.0788

Loads

m
CN

©

+ b/8, + Sfb/8
b/2, - b/4, 0

0
0

0.0127
0.0236

0.0143
0.0248

0.0261
0.0373

Table 6

Prototype. Comparison of distribution coefficients for load less
than the transverse working load

6 0.684 and \/~k 0.78

Distribution coefficients at mid-span

Position of
load -b

-3b

4

-b

2

-b

4
0

b

4

b

2

3b

4
b

Mid-span

Y 0

Experimental
Theoretical

0.62
0.63

0.81
0.82

1.02
1.02

1.22
1.20

1.26
1.27

1.22
1.20

1.02
1.02

0.81
0.82

0.62
0.63

Y 0.39b

Experimental
Theoretical

0.36
0.27

0.45
0.42

0.61
0.61

0.83
0.85

1.08
1.10

1.32
1.32

1.41
1.43

1.43
1.41

1.41
1.37



434 IIcl. G. LITTLE, P. B. MORICE and R. E. ROWE

In the case of the transverse moments considerable errors occur
if Poisson's ratio is assumed to be zero. However thd introduction of a
Poisson's ratio in the theoretical analysis enables an aecurate assessment
of the moments for any configuration of loads. The maximum transverse
moment occurring in a slab is greater than that normally allowed for.
For four equal applied loads the maximum transverse moment was
31.6 per cent of ithe corresponding longitudinal moment. This case may
be considered as analogous to one axle of the Ministry of Transport
abnormal load. In practice it will always be possible to place one bogie,
i. e. two axles, of this load on any bridge and it is estimated that the
maximum transverse moment will then lie between 25 and 30 per cent
of the corresponding longitudinal moment at the centre of the slab.
The disposition of loads to give the maximum transverse moment will
be such that one internal line of wheels of the abnormal load is on the
longitudinal centreline.

The theoretical analysis for transverse moments assuming v 0.15
can be accurately used to determine the required amount of transverse
prestressing necessary and its distribution along the span.

(b) Tests for the distribution of load in a prestressed concrete highway
bridge and in a model of the bridge.

The deck of the bridge consisted of twenty precast prestressed beams
placed side by side. These were stressed together transversely to form
a slab with a skew of 15 degrees. The span was 33 ft 6 in. and the width
25 ft 0 in. A uniform transverse prestress of 70 lb/sq. in. was applied
only over the central 20 ft 0 in. of ithe span. The initial prestress »plus
dead load stresses in the beams were 0 lb/sq. in and 1,615 lb/sq. in. at
the extreme fibres. The Ministry of Transport abnormal load itrailer
was used for loading the bridge. Only one bogie could be on the bridge
at one time and the load on it could be varied in fixed increments between
26.7 tons and 90 tons.

The distribution of deflection and of strain was measured along the
transverse sections y4 and 1/2 - span using 0.0001 in. deflection gauges
and demountable mechanical strain gauges.

The centroid of the loading bogie was positioned successively at
V4 and y2 - span at eccentricities of 0 and 4 ft 10 1/2 in. or 0.39b and
new zero values were recorded ait each increment of load.

The test was discontinued at a load of 72 tons when a sudden
reduction in the edge coeficient and corresponding increases in the
coefficients for the adjacent beams showed a radical change in ithe
distribution properties. A subsequent analysis of transverse moments
by the jj. -coefficient method showed, in fact. that the transverse strength
of the bridge was equivalent only to 17 tons and 20 tons for the two
eccentricities. Cracks had, therefore, occurred between the beams from
the beginning and the disitribution properties had deteriorated conti-
nuously. If this cracking had not occurred the corresponding longitudinal
workinjg loads would have been 96 tons and 85 tons respectively. The
comparison between the practical and theoretical results is made after
the description of further tests on a model of the bridge.
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The model was eonstrueted to 1/4 - scale, Figure 5, details such as
surfacing and footpaths being omitted since neither had much effect
on the distribution behaviour in the actual bridge. The initial stress
conditions were reproduced in the model though with a slight reduction
in the transverse prestress because of anchorage and friction losses.
Ultimate conditions could not be reproduced as neither cable size and
Position nor dead weight stresses could be sealed down effectively.

-.;

'/ ** *,?

Vi

;

Fig. 5. Model bridge under test

Initial tests were made with a single concentrated load placed at
mid-span with an eccentricity of either 0 or 3b/4. Figure 6 shows
that the efficiency of distribution is controlled by the transverse strength
of the bridge. The transverse working load for zero eccentricity as
calculated from the f* -coefficient analysis is indicated in Figure 6 and
gives a good estimate of ithe actual value. The transverse working loads
were 1 ton and 1.35 tons. The corresponding longitudinal working loads
if no cracking had occurred between the beams were 5.25 and 2.60 tons
for e 0 and e 3b/4 respectively. Aotually at these loads the most
heavily loaded beams were over stressed by 22 per cent and 8 per cent
respectively equivalent to tensile stresses of 350 lb/sq. in. and 130 lb/sq. in.
This comparison confirms that the greatest transverse moment and the
least maximum longitudinal moment occur for the minimum eccentricity
of load. The comparison has been made for ithe values of ö and * found
by experiment and given later.
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Fig. 6. Deflection curves for central concentrated load on model bridge

The bogie of the Ministry of Transport abnormal load trailer was
reproduced to 1/4-scale and further itests were made for mid-span
loading at resultant eccentricities of e 0 and e 1 ft 2 5/8 in. or 0.39b.
Again ithe transverse working loads controlled the distribution and
were 1.10 tons and 1.25 tons for the two eccentricities. If no cracks had
developed between the beams the corresponding longitudinal working
loads would have been 5.75 tons and 5.35 tons respectively. The extent
of the transverse cracking is indicated in Figure 7 where a cormparison
is made with the equivalent maximum longitudinal strains.

The measured strains were converted into bending moments by the
use of moment-rotation curves found from a control test on a single
beam. The working load of this beam was found to be equal to 650 lb
and the value of Young's modulus E 5.76 X 106 lb/sq. in. As an
accuracy of 15 per cent was assumed in assessing bending moments,
and allowing for this, the comparison between the distribution of
deflections and of moment was acceptable.

An elastic theory could only be expected to be valid if transverse
cracking did not occur as an undefinable deterioration in distribution
takes place under loads greater than the transverse working load. The
following comparison with theory has, therefore, been made only for the
initial linear part of the load and deflection curves as indicated in
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Figure 6. In this ränge 6 is constant since i j. It had to be assumed
that a would have a value less than unity if the total transverse prestress
were insufficient to induce (the same torsional and shear properties as
an equivalent monolithic slab.

In determing 6, which is equal to b/2a in the linear ränge, 2a was
taken as the length of span over which the transverse prestressing force
was applied. The value of 6 was thus 0.684 for the bridge and the model.
From the interpolation expression Ka K0 + (Ki — K0) V * it was seen
that a was, in fact, less than
unity and that a value of 0.72
for a satisfied all conditions
of loading in the model whilst
a value of 0.78 described the
behaviour of the bridge. The
comparisons are made in
Tables 6 and 7 which show the
excellent agreement. The common

value of 6 showed that
the bridge had been faithfully
reproduced in the model whilst
the higher value of a for the
bridge was explained by the
smaller transverse prestress in
the model.

If the amount of transverse

prestress in the bridge
had been greater then the
effective value of a would have
been extended.

An ultimate load test on
the model with the load at an
eccentricity of 0.39b showed
an ultimate load of 9 tons
when fourteen of the beams
failed at mid-span. The load
factor was thus, 1.68 on a
working load based on an
uncracked transverse section.
The better grouting and higher
effective value of * would
cause a higher load factor for
the bridge.

20
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Fig. 7. Tiansverse strain profiles in model

bridge

(c) The distribution of load in a multi-webbed box-section bridge.

The load distribution properties of a multi-webbed box-section bridge
were found from the behaviour of a small xylonite model having the
dimensions «shown in Table 8 and illustrated in Figure 8. Transverse
deflection profiles were recorded at each line of diaphragms for different
positions of a single load concentrated on an area 2 y2 in. X 1 in. The
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Table 7

Model. Comparison of distribution coefficients for load less
than the transverse working load.

6 0.684 and V7^ 0.72

Dist ribution coefficients at mid-span
Position of

load -b
-3b

4

-b

2

-b

4
0

b

4

b

2

3b

4
b

Mid-span

a) Concentrated
load

Y 0

Experimental
Theoretical

0.59
0.51

0.77
0.77

0.99
1.00

1.23
1.25

1.43
1.37

1.23
1.25

0.99
1.00

0.77
0.77

0.59
0.51

3b

Experimental
Theoretical

0.09
0.02

0.16
0.13

0.26
0.27

0.44
0.47

0.70
0.76

1.10
1.17

1.72
1.69

2.27
2.20

2.63
2.62

b) M. 0. T. load

Experimental
Theoretical

0.57
0.56

0.81
0.79

1.03
1.02

1.20
1.23

1.34
1.31

1.20
1.23

1.03
1.02

0.81
0.79

0.57
0.56

Y 0.39b

Experimental
Theoretical

0.27
0.22

0.42
0.41

0.62
0.62

0.87
0.89

1.07
1.15

1.27
1.36

1.44
1.42

1.49
1.38

1.32
1.28

Distri bution cotjfficients at quartei -span

Mid-span

a) Concentrated
load

Y 0

Experimental
Theoretical

0.53
0.51

0.80
0.77

1.02
1.00

1.25
1.25

1.37
1.37

1.25
1.25

1.02
1.00

0.80
0.77

0.53
0.51

3b

Experimental
Theoretical

-0.11
0.02

0.04
0.13

0.22
0.27

0.47
0.47

0.75
0.76

1.16
1.17

1.71
1.69

2.32
2.20

2.94
2.62

b) M. 0. T. load

Y 0

Experimental
Theoretical

0.58
0.56

0.81
0.79

1.03
1.02

1.22
1.23

1.29
1.31

1.22
1.23

1.03
1.02

0.81
0.79

0.58
0.56

v 0.39b

Experimental
Theoretical

0.09
0.22

0.31
0.41

0.60
0.62

0.90
0.89

1.14
1.15

1.32
1.36

1.43
1.42

1.50
1.38

1.54
1.28
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Table 8

Dimensions of box-section bridge model

Span...
Width

18 in.
9 in.

Number of webs:

Longitudinal
Transverse

Thickness of webs

Thickness of slabs 1/16 in.

corresponding longitudinal and transverse strains were measured by
electrical resistance strain gauges.

The modulus of elasticity E was determined by applying equal loads
at the third points of a xylonite beam with the same span as the model
and measuring the resulting mid-span strains. The total strain after
four equal increments of load, with three minutes allowed between

f

...—

M
-

Fig. 8. Box-section bridge in test, position
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each increment for creep, was equal to the total strain after an interval
of twelve minutes when the total load was applied insitantaneously. The
modulus E was calculated ias the ratio of the maximum stress and the
maximum strain recorded and its value was 33.33 X 104 lb/sq. in.

The shear modulus, G, was found by applying a known torque at the
ends of the beam which was now supported vertically to obviate the effects
of seif bending. The angle of twist was measured by deflectometer
readings at two sections, six inches apart. All significant creep had
occurred after 15 minuites. The value of G was then equal to 11.7 X IO4

lb/sq. in.
The value of Poisson's ratio was 0.42. The makers of the material

gave an average value of 0.40.
The comparison between the theoretical and the experimental

coefficients, K, for deflection is made in Table 9. Small Variation was caused

Table 9

Comparison between the "mean" experimental distribution coefficients,
K, for deflection and the theoretical coefficients

Sect.on

Load Position

Position
1 2 3 4 5 6 7

4

(Central
Beam)

2 (1/6 span)
31 (1/3- span)
4 (1/2 span)
5 (2/3> span)

0.96
0.96
1.00
0.95

1.00
1.00
1.00
0.96

1.01
1.01
1.02
1.00

1.03
1.04
1.03
1.02

— —

Average
Theoretical

0.97
0.95

0.99
0.98

1.01
1.02

1.03
1.05

— — —

2

2
3
4
5

1.41
1.39
1.41
1.42

1.29
1.29
1.30
1.31

1.18
1.16
1.18
1.14

1.03
0.99
0.98
1.01

0.86
0.89
0.86
0.88

0.73
0.73
0.74
0.72

0.64
0.65
0.64
0.63

Average
Theoretical

1.41
1.42

1.30
1.28

1.16
1.13

0.98
1.00

0.87
0.84

0.73
0.70

0.64
0.60

1

(Edge
Beam)

2
3
4
5

1.70
1.70
1.75
1.68

1.40
1.39
1.42
1.41

1.18
1.21
1.21
1.21

0.94
0.99
0.98
0.91

0.80
0.84
0.84
0.85

0.63
0.71
0.68
0.73

0.46
0.51
0.49
0.54

Average
Theoretical

1.71
1.72

1.40
1.42

1.20
1.17

0.96
0.95

0.84
0.77

0.69
0.60

0.50
0 43
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by a change in the longitudinal position of the load and the distribution
at all sections was* virtually identical for a given position of the load.
This confirmed the assumption of the distribution coefficient analysis
that the distribution coefficients are identical for all transverse sections.
It is important to note that the value of a used in the analysis of the
bridge contained values of i0 and jG which were calculated for a single

4 A2
cell in each direction from the membrane formula iG where p

is the spacing of the webs. If the actual torsional stiffness per unit
length of the multi-webbed box had been used a value of a exceeding
unity would. have been obtained which is noit admissible.

The comparison between the theoretical and the experimental
coefficients K for ithe longitudinal beniding moment is made in Table 10, a
satisfactory agreement being obtained.

The transverse moments were too small and too greatly affected by
Poisson's ratio for a comparison to be made with theory. A füll investigation

of transverse moments was made subsequently on a slab bridge.
The results of these tests are discussed elsewhere in the paper.

(d) The distribution of deflection in a continuous grillage.

The distribution of deflection was investigated for various conditions
of loading on the two-span continuous grillage shown in Figure 9. The

Table 10

Comparison between the theoretical and the experimental distribution
coefficients, K, for longitudinal bending moments with load at mild-span

Beam Position

1 2 3 4 5 6 7

1 Experimental 1.61 1.38 1.11 1.01 0.80 0.78 0.61

Theoretical 1.72 1.43 1.17 0.95 0.77 0.59 0.43

2 Experimental 1.46 1.32 1.15 1.00 0.89 0.77 0.67

Theoretical 1.43 1.28 1.13 0.98 0 84 0.70 0.59

3 Experimental 1.18 1.13 1.05 1.00 0.95 0.89 0.84

Theoretical 1.16 1.12 1.09 1.02 0.93 0.85 0.76

4 Experimental 0.98 1.00 1.03 1.04 1.03 0.99 0.97

Theoretical 0.95 0.98 1.02 1.05 1.02 0.98 0.95
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grillage consisted of four equal precast beams 13 ft 4 in. in leagth with
a cross-section 4 in. X 2 in. and prestressed to a uniform stress of 1,000
lb/sq. in. The beams were connected by a series of diaphragms at the
supports and at the 1/4, V2 and 3/4 - sections of each span. The transverse
prestress was 800 lb/sq. in. The joints between the beams and diaphragms
were carefully made so that the form of distribution was influenced by
the torsional properties of the members. The load was invariably applied
at the centre of a span, one or two spans being loaded. The use of a

tJm

—JB.

3»*
4\»*#&

Fig. 9. Continuous grillage shovving testing arrangement

lever device increased the sensitivity of loading in the ratio 5:1, whilst
by mcorporating knife edge connexions in the loading device equal loads
were ensured in each beam.

By loading all the beams in one span equally the «mean» deflection
profile was found for various loads. Allowing for measured settlement
at the mid-support the value of Young's modulus E was 5.76 X 106

lb/sq. in.
A comparison between the theoretical deflections and the experimental

values in the loaded span when only one span was loaded is made in the
Figures 10 and 11. The itheoretical lines were obtained from the analytical
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coefficients, Ka found from the interpolation Ka KQ + (Kx — K0) yj^ and
the measured «mean» deflections. An average accuracy of 2 per cent
was obtained, the distribution at the 1/4, V2 and 8/4 - span sections being
virtually equal.

~t~g y© jr^ ^^^cr

J*>f/ex/on - m x /o '

Fig. 10. Deflections along section X for Single span loading

I

*
Ca

Otf/txfon - t'/i. x to~

Fig. 11. Deflections along section X for Single span loading
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The distribution in the unloaded span is shown in Figures 12 and 13.
This distribution was much more efficient than the analytical distribution
and seemed to be independent of the eccentricity of the load. The deflection
of each beam tended to be equal and the average of the these deflections
was equal to the «measured» mean deflection.

^ C A

Ac/ua/ c/ef/exioAs u/t/for/»
Over transverse seef/o/r X

Meon Vo/ves of
theort/i'co/ c/ef/eAi'onj

7/ieoret'Co/ dts/r/öu/ion currei

&e//ex>'on - tn X /o'3

Fig. 12. Deflections along section Y for Single span loading
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Mean 0/

theorelica/ a/e/'/tfM/ons

/ y 2

/ /
1*

1

/ / y// /^jS - 0 -¦*¦

Load

- / /
Jack / .4/A ff)"'+

C A

4£^<Z^> 3

I / /s' ^ ^cT^^^S?^^^^^/ s^ --""

Mean 0/ Tn.asurec/ c/ef/tMicns (9\

0 x'a
_ r

£>e//ex*on - tn x /o~

Fig. 13. Deflections along section Y for single span loading



LOAD DISTRIBUTION IN RIGHT HIGHWAY BRIDGES 445

This behaviour occurred because the torsional properties of the
support diaphragms were active in redistribuiting the unequal bending
moments at the support. Naturally differential deflections were not
possible there and the result was that the deflection of the beams in the
unloaded span were almost equal. It follows that by sufficiently increasing
the torsional stiffness of the internal support diaphragms the deflections
of all beams in the unloaded span will be equal to the «mean» deflection
irrespeotive of the load eccentricity in the loaded span whilst if these
diaphragms were omitted the distribution would be equal to the analytical
disitribution and would be equal in both spans.

The distribution in any span when both spans were loaded was found
by superposing the distribution due to the load on that span on to the
distribution as an unloaded span caused by the other load. The comparison
between some of these results and the experimental values is made in
Figure 14, which shows the high degree of accuracy obtained.

30 40 5020

Def/ex/on ~ //> x /o J

Fig. 14. Deflections along section X and Y for two span loading

In none of the previous tests was the working load of either the
beams or the diaphragms exceeded.

A test to failure was made using the load of Figure 14. The working
load for each span was calculated <to be 960 lb. Visible cracking of the
edge beams occurred at a load of 1,500 lb. The strueture failed in
combined bending and torsion at mid-span and at the mid-support at
a load of 3,400 lb. The load factor was therefore, 3.49 and the factor of
safety against cracking was 1.52. The diaphragms suffered no damage
whatsoever. A subsequent analysis using the fj. -coefficient Solution
showed, in fact, that ithe bridge was highly over-prestressed transversely
for working conditions and that the prestress ithat was required for a
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balanced design under the worst conditions of loading for transverse
bending, i. e. the two inner beams loaded, was only 300 lb/sq. in.

It is noted that in the calculation of 6 the actual length of span was
used and not the effective length.

(e) Beam and slab bridges in perspex.

This series of tests was primarily directed at finding the correct
interpolation to be given to a, the torsional parameter, to be consistent
with 'the assumptions of analysis in bridge structures intermediate
between a no-torsion grillage and a füll torsion slab, and to establish
the validity of the interpolation formula Ka K0 + (Kx — K0) V? where
Ki are the Massonnet coefficients for a slab and K0 are the Guyon
coefficients for a no-torsion grillage.

A small model Tee-beam bridge, of 18 in. span and 12 in. width,
was eonstrueted in perspex and the number of transverse diaphragms
was varied from zero to three equally spaced in the span. For each case
the load distribution characteristics for deflections were obtained by
applying a single concentrated load on ithe mid-span section (Figure 15).

To carry out the theoretical analysis of the bridge, it was necessary
to determine the value of Young's modulus and the shear modulus of the
material. Separate tests on a beam of perspex subjected to flexure and
torsion yielded the results E 3.884 X IO5 lb/in2.; G 1.556 X 105 lb/in2.
and hence Poisson's ratio, v, 0.248. The method of determining the
torsional parameter, a, in the theoretical analysis was to obtain the
torsional rigidiities in the longitudinal and transverse directions by taking
the true torsional rigidity for the webs diaphragms and one-half the true

Gh3 Gh5
value for the slab or flange, i. e. instead of to allow for the

6 3
effect of continuity. Füll details of the dimensions of each model and
the theoretical flexural and itorsional parameters are given in Table 11.
In the case of a single central diaphragm, 6 and * were determined for
assumptions of the complete span and distance between diaphragms
(central and end) as the flauge width in the transverse direction. A
comparison of ithe theoretical and experimental distribution factors is
also given in Table 11.

The agreement between the theoretical and experimental values is
very good, especially since the negative values at the edges of the bridge
are in aecord. In previous tests on bridge modeis the discrepancy at the
edges was found to be more marked. The greater number of load positions
considered for bridge deck No. 2 was to determine the correct assumption
regarding the transverse flange width to be used in the theoretical
analysis. Very little difference exists between the two sets of theoretical
values though the assumption of diaphragm spacing as the flange width
appears to give slightly better estimates of the values of K. However
to ensure the validity of the fundamental assumptions on which Masson-
net's analysis is based, namely, that the bridge deck system is reduced to
an equivalent continuous pseudo-slab, it is necessary to consider the



Table 11

Main dimensions and properties of the tee-beam modeis
Rib thickness 0.167 in. Longitudinal rib spacing=2 in. Slab thickness 0.182 in.

Slab width 12 in. Rib depth 1.313 in.
Transverse diaphragms at supports in all cases

Bridge deck No. l. 2. 3.

Span 2a 17.8108 17.8108 17.8108
Width 2b 12 / 12 12
No. of longitudinal beams 6 6 6
No. of transverse diaphragms 0 1 3
Flexural stiffness/unit width

Ei 0.05448E 0.05448E 0.05448E
Flexural stiffness/unit width (a) (b)

Ej 0.000502E 0.008714E 0.0141714E 0.02923 E
1.0» 0.53 0.48 0.39

Torsional stiffness/unit width
Gio 0.0O2O24G 0.002024G 0.002024G 0.002024G

Torsional stiffness/unit length —
Gjo 0.0010084G O.0OM192G 0.001O620G 0.0014625G

0.1173 0.029 0.0232 0.0176

Theoretical and experimental distribution factors

Position on section -b -3b/4 -b/2 -b/4 0 b/4 b/2 3b/4 b

Bridge deck No. 1 Theoretical - 0.33 0.16 0.53 1.23 1.92 2.09 1.49 0.66 - 0.14
Load at b/6 Experimental - 0.18 0.08 0.54 1.23 1.99 2.01 1.34 0.72 0.23

Bridge deck No. 2 Theoretical (a) 0.24 0.50 0.77 1.05 1.26 1.32 1.25 1.14 0.99
Load at b/6 Theoretical (b) 0.30 0.53 0.78 1.03 1.22 1.27 1.23 1.19 1.13

Experimental 0.33 0.57 0.77 0.98 1.20 1 29 1.27 1.18 • 1.07
Loat at b/2 Theoretical <a) - 0.35 - 0.04 0.30 0.66 1.01 1.39 1.74 1.96 2.12

Theoretical (b) - 0.35 - 0.04 0.31 0.67 1.00 1.39 1.72 1.97 2.18
Experimental - 0.21 0.09 0.38 0.67 0.99 1.33 1.72 1.93 2.05

Load at 5 b/6 Theoretical (a) - 0.81 - 0.47 - 0.14 0 24 0.70 1.31 2.02 2.86 3.65
Theoretical (b) - 0.69 - 0.43 - 0.15 0.28 0.75 1.34 2.04 2.86 3.54
Experimental - 0.87 - 0.52 - 0.14 0.28 0.81 1.37 2.04 2.93 3.55

Bridge deck No. 3 Theoretical 0.41 0.57 0.77 0.98 1.13 1.20 1.21 1.25 1.26
Load at b/6 Experimental 0.51 0.61 0 76 0.96 1.12 1.19 1.20 1.20 1.18

(b) Distance between diaphrasrms considered as flange width
(a) Span considered as transverse flange width

O

Ul
H
W
*—i

td
ci
H
O

»—<

2
B
x

3
s
x
>

td
25
ow
w

4>



448 IIcl. G. LITTLE, P. B. KORICE and ß. E. ROWE

diaphragm spacing as the transverse flange width. The value of *
determined by the process outlined above yields theoretical values of
K which are in excellent agreement with the experimental values.

The investigations have shown that the interpolation formula
Ka K0 + (K] — K„) y a. can be used to determine the distribution of
load in a uniform bridge strueture which is neither a slab nor a simple
grillage.

Fig. 15. Tee-beam bridge under test

The value of a for a beam and slab bridge is determined correctly
if the torsional quantities Gi0 and Gj0 are equal to the sums of the true
torsional stiffnesses of beams or diaphragms and one-half the true
torsional stiffness of the slab.

In determining 6 and a for a beam and slab bridge the actual flange
width between the main beams, in the longitudinal direction, and the
diaphragms, in the transverse direction, should be used and not the effective

flange widths laid down by various codes of practice.
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SUMMARY

After a short discussion of the bridge loading problem in Great
Britain a brief survey is given of the methods available for the elastifc
analysis of right bridges subjected to concentrated loads. Mention is
made of the determination of transverse moments in the distribution
coefficient method, originally due to Guyon, and the expression is given
for the calculation of the transverse moment coefficients in slabs in
which the value of Poisson's ratio has been included.

The main portion of the paper is devoted to the description of a
number of tests on bridges and bridge modeis and a discussion of the
results and their comparison with the distribution coefficient calculations.
The bridges tested were two-way prestressed concrete slab modeis, a
small prestressed concrete highway bridge and a one-quarter scale model,
a multi-webbed box model in xylonite, a two-span prestressed concrete
beam grillage and a beam and slab bridge model in perspex.

ZUSAMMENFASSUNG

Nach einem kurzen Hinweis auf das Problem der Brückenbelastung
in Grossbritannien geben die Verfasser einen Ueberblick über die
verschiedenen Verfahren, welche für die Bestimmung der Elastizitätsgleichungen

bei geraden Brücken unter punktförmigen Einzellasten
zur Anwendung kommen. Die Bestimmung der Momente in der
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Querrichtung folgt der ursprünglich von Guyon entwickelten Methode
mit den Verteilkoeffizienten, wobei zur Berechnung dieser Koeffizienten
die Poisson'sche Zahl berücksichtigt ist.

Der Hauptteil dieser Arbeit ist der Besprechung einer Anzahl
Versuche, welche an Brücken und Modellen vorgenommen wurden und dem
Vergleich dieser Versuchsergebnisse mit den rechnerisch bestimmten
Verteilungswerten gewidmet. Bei den untersuchten Brücken handelte
es sich um 3 in Längs- und Querrichtung vorgespannte Beton-platten-
-Modelle, eine kleine vorgespannte Strassenbrücke und ein Modell im
Masstab 1:4, ein Modell eines mehrgurtigen Kastenträgers aus Xylonit,
einen über zwei Spannwerten vorgespannten Trägerrost aus Eisenbeton
und ein Plattenbalken-Brückenmodell aus Perspex.

RESUMO

Depois de uma breve discussäo do problema das cargas sobre as
pontes na Grä-Bretanha, o autor examina räpidamente os metodos dispo-
niveis para o calculo elästico de pontes rectas submetidas a cargas concen-
tradas. Menciona-se a determinagäo dos momentos transversais pelo
metodo dos coeficientes de distribuigäo de Guyon, e indica-se a expressäo
que permite calcular os coeficientes dos momentos transversais em lages
entrando em conta com o valor do coeficiente de Poisson.

A parte prineipal da contribuigäo trata da descrigäo de uma serie
de ensaios efectuados em pontes e em modelos de pontes e da discussäo
dos resultados e sua comparagäo com os obtidos pelo metodo dos
coeficientes de distribuigäo. Os ensaios efectuaram-se sobre modelos de pontes
com läge em betäo preesforgado em dois sentidos, uma pequena ponte-
-estrada de betäo preesforgado e um modelo da mesma ponte ä escala
de 1/4, um modelo de viga-caixäo de alma mültipla de xilonite, um
reticulado de vigas sobre tres apoios de betäo preesforgado e um modelo
de ponte com viga e läge de perspex.

RESUME

Apres une courte discussion du probleme des charges sur les ponts
en Grande-Bretagne, l'auteur donne un bref apergu des methodes disponibles

pour le calcul elastique de ponts droits soumis ä des charges con-
centrees. II mentionne la determination des moments transversaux par la
methode des coefficients de distribution düe ä Guyon et donne l'expression
permettant de calculer les coefficients des moments transversaux dans
les dalles en tenant compte du coefficient de Poisson.

La partie principale du memoire s'oecupe de la description d'une
serie d'essais effectues sur des ponts et des modeles de ponts et de la
discussion des resultats et de leur comparaison avec ceux obtenus par
la methode des coefficients de distribution. Les essais ont porte sur des
modeles de dalles en beton precontraint dans les deux directions, un
petit pont-route en beton precontraint et son modele ä l'echelle 1/4,
un modele de poutre en caisson ä äme multiple en xilonite, un reticule
de poutres sur trois appuis en beton precontraint et un modele de pont
ä poutre et dalle en perspex.
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