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Load distribution in right higway bridges
Lastverteilung bei geraden Briicken
Distribuicao das cargas nas pontes-estrada rectas

Répartition des charges dans les ponts-route droits

G. LITTLE, M. Sc. R. E. ROWE, B. A.
P. B. MORICE, B. Sc., Ph. D.

Cement and Concrete Association
London

1. Introduction.

Accurate assessments of the effects of concentrated loads on medium
span highway bridges have seldom been mnecessary in the past in Great
Britain. This has been due to the fact that all practical loading conditions
bridge loading which is a distributed loading. Recently, however, concen-
trated loads have been much heavier and more numerous necessitating
have been catered for by the Ministry of Transport standard equivalent
accurate assesments of their effects on existing bridges and on new
bridges at the design stage. A new loading, the Ministry of Transport
abnormal load, has therefore been proposed for trunk road bridge design
in Great Britain which has the form shown in Figure 1 with a total
weight of 180 tons. In certain icases the weight may be reduced to 120 tons,
or even 80 itons, although the wheel positions remain the same.

The general distortion of a bridge deck carrying the abnormal load
is a problem chiefly associated with short or medium spans because it is
only on such bridges that the effects of a single vehicle, even of abnormal
weight, can be greater than those of general traffic which is covered by
the distributed design loading.

The analysis with which the experimental results given in this paper,
have been compared is based upon linear elastic theory and is thus
particularly applicable to prestressed concrete structures. The experi-
mental work described is concerned with full scale and model prestressed
bridges and perspex models of prestressed concrete type bridges.
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2. Methods af analysis.

The short span wide slab bridge deck has been extensively studied
in the United States of America between 1930 and 1940 by a number of
1[)e0:p1e fand] this work has been reported in several excellent papers

1, 2, 3, 4].

Experimental work has been carried out chiefly on reinforced concrete
slabs with good results and it is therefore reasonable to suppose that
the theory applies also to prestressed concrete which more nearly satisfies
the assumptions of isotropy.

Whilst short span bridges will, almost always, consist effectively
of slabs, medium span bridges may appear in a variety of forms such
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Fi1g. 1. Form of abnormal load

as slabs, grillages, Tee-beam and box-beam structures. It is not surprising
that many methods have been advanced for their analysis when subjected
to concentrated loading. These methods of analysis may be placed into
three groups. The first separates the structure into a finite number
of members in each direction, each with its own stiffness. The solution
of the behaviour of the structure as a whole is then determined by solving
the equations of compatibility which ensure continuity at the joints of
the members.

The technique of solution of such systems of equations is well
established in Southwell’s relaxation technique. Janssonius [5] has
developed this method for the study of transversely loaded grillages
including the bridge deck case.

The second group of theories separates the main or primary members
from the remainder of the structure and considers the effect of secondary
cross-connexion between ‘the main members. Hetenyi’s [6] solution
involving Fourier series is particularly elegant whilst there exist alter-
natives due to Pippart [7] and Leonhardt [8]. In the latter analysis the
whole of the cross-connexion is replaced by a single centre span diaphragm
of equivalent stiffness.

The third group of theories is that which reduces the actual structure
to an equivalent distributed system in the two principal directions; a
quasi orthotropic plate. The deflection of such a plate is governed by
the generalized Lagrange equation '

0w otw 0w
P, —— 0 —— — X,y)
96x4+ ax2ay2+ ‘anb p( M
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This method has been proposed by Guyon [9, 10], for torsionless
grillages and for slabs and has been generalized by Massonet [11]. The
quasi onthotropic plate analysis has the advantage that almost any
structural form may be analysed in the same general terms. The method
has become known as the «distribution coefficient method» due to the
way in which it is convenient to apply the method to practical design.

A large number of the bridges which have tto be built in practice are
to provide a skew crossing. The analysis of skew bridges is a rather
difficult problem and is not at present amenable to ithe same techniques
as have been successfully used for right bridges. Some work has been
reported [12, 13] on this problem and further work is in progress at the
time of writing. Although no overall solution can be given it appears
that the analysis of right bridges may be safely applied to bridges with
up to about 15° skew.

3. Theoretical analysis of the bridges under test.

The analyses of Guyon and Massonnet have been considered to obtain
the theoretical results for deflections and moments. The distribution
coefficients, K, for deflections and longitudinal moments, were obtained
from curves prepared by Guyon for a no-torsion grillage, and from curves
prepared by the authors from Massonnet’s tabulated values for a full
torsion slab. The effect of ignoring Poisson’s ratio in the analysis has
been shown [14] to be negligible in the case of the coefficients K.

For the iransverse bending moments, the equation

M;=b 2 p, H, sin 12X
n==1 28.

was used. H, is the amplitude of the nth term in the Fourier series
for the load, and p, is a distribution coefficient. Values of p for
a no-torsion grillage and a full-torsion slab were tabulated by Guyon
and Massonnet respectively; additional values have been calculated by
the authors and from these values curves have been prepared. The
discrepancies between theoretical and experimental values for the trans-
verse moments were found to be considerable and led to a consideration
of the effect of Poisson’s ratio in Guyon’s analysis for a slab. The
complete analysis is given elsewhere [14] but the analysis gives the
following equation for p,:

. 1 {{(1 —v)ocho—(14+v)sholch6y— (1 —v)sho . 6¢shb} {
=

" 4ssh2s (3-+v)shache — (1—v) o
{ [(1—v)schs—(1+v)shs] ch8B — (1 —v) sho . 68s hop | +
[(1 —v)ocho+2 sho]shéd—(1 —v) sha . 0)chb) { [(1 —3) schs +
(3 +v) shoche+ (1 —v) ¢
+ 2sho]shép — (1—v)sho . 6Cchbf } + [(1 —v)sche — (1 +v)shao]chby —
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b Ty e
where 0—,2_; g=>0n; p—:F‘, = ~
a
y=%—/f—14¢/; and v = Poisson’s ratio.

This equation was used to determine values of p for a Poisson’s ratio
of 0.15, that assumed for prestressed concrete, and curves for the value
of this coefficient have been prepared [14]. In the tests on bridge slabs
the curves have been used to determine the theoretical transverse moments
for this particular value of Poisson’s ratio.

4. Details of, and presentation of results from, the experimental investigations.
(a) Bridge slabs.

A concrete slab, 57.8 X 46.25 X 1 in., post-tensioned to a residual
stress of 850 lb/in®*. in both the longitudinal and transverse directions,
was simply supported as a bridge slab and tests carried out for three
different spans. The spans were taken to give values of the ratio

'/, X breadth
van? denoted by 0, of 0.4, 0.5 and 0.6.

Loading consisting of one, two or four equal loads was applied to
the slab and deflexions and strain measurements obtained. Electrical

Fi1Gc. 2. General arrangement for testing bridge slabs
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TABLE 1

Experimental distribution coefficients, K for deflections on the section
under the load and discrepancies from the theoretical values

I
. Discrepancies from theoretical
Experimental Values of K
Position vatued (76!

on

slab Load Position Load Position
0 b/4 b/2 3b/4 0 b/4 b/2 3b/4

b 0.924 1.106 1.280 1.556 1.2 2.9 - 1.3 0.4
3b/4 0.952 1.004 1.226 1.369 - 0.6 0.5 -2.2 1 -2.9
b/2 0.984 1.005 1.185 1.213 | - 1.8 | - 1.3 -2.0 | -3.3
b/4 1.046 1.074 1.095 1.083 | - 0.2 | - 2.6 -1.3 | -0.6

0 1.084 1.055 1.004 | 0.956 0.8 0.7 -4,2 | -0.2
-b/4 1.046 0.989 0.910 | 0.850 -0.2 1.4 1.0 1.4
-b/2 0.984 0.913 0.826 | 0.752 -1.8 1.3 1.4 2.7
—-3b/4 0.952 | 0.862 0.773 | 0.677 | - 0.6 2.9 5.6 5.8
-b 0.924 | 0.819 | 0.728 | 0.639 1.2 5.0 9.5 9.2

Slab No. 1: §=—0.4
[

b 0.902 1.047 1.346 1.673 4.8 | - 3.4 -3.1 - 3.6
3b/4 0.934 1.077 1.300 | 1.498 0.6 | -4.6 | -3.3 ~ 4.6
b/2 1.001 1.125 1.249 1.275 - 0.1 -30 | -33]| -5.8
b/4 1.062 | 4.139 1.115 1.058 | - 1.3 | - 1.5 - 3.9 6.2

0 1.115 1.068 | 0.985 | 0.906 0 -0.8 | -1.5| -2.4
-b/4 1.062 0.967 0.870 | 0.783 - 1.3 03 1.8 2.8
-b/2 1.001 0.885 0.776 | 0.710 | - 0.1 3.5 6.1 12.2
-3b/4 0.934 | 0.824 | 0.720 | 0.648 0.6 8.1 15.1 21.3
-b 0.902 | 0.790 | 0.690 | 0.603 4.8 15,7 25.0 32.9

Slab No. 2: §=0.5
|

b 0.831 | 1.044 | 1.362 | 1.760 5.2 | -3.8|-6.6|-09.3
3b/4 0.894 1.101 1.359 1.597 0.8 | -4.2 | -6.3 | - 8.7
b/2 1.004 1.178 1.339 1.331 0.4 | - 3.4 -4.4 -7.8
b/4 1.105 1.210 1.158 1.078 -1.3 - 2.0 - 5.3 - 6.6

0 1.179 1.085 | 0.963 | 0.848 | - 0.7 | -3.0 | - 3.7 | - 4.5
-b/4 1.105 0.951 0.827 0.740 | - 1.3 | - 0.4 3.2 8.4
-b/2 1.004 | 0.837 | 0.733 | 0.654 0.4 4.5 12.5 21.4
-3b/4 0.894 | 0.742 | 0.648 0.585 0.8 9.2 20.2 40.0
-b 0 831 0.676 | 0.584 | 0.528 5.2 22.2 33.1 59.0

Slab No. 3: §=0.6
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resistance foil gauges, of 1 in. gauge length, were used to obtain the
strain readings. Figure 2 shows the test specimen, the loading device
and the strain recorder. The modulus-time curve for the slab was
determined by applying a line load over the complete width of the slab
and observing deflections.

The experimental «<mean» deflection and longitudinal moments were
derived by applying Simpson’s rule to the transverse profiles for de-
flections and moments; the experimental values of the distribution
coefficients K, were then found from the measured «means and actual
values. Table 1 gives the experimental values of K for deflections
for a single concentrated load applied to each slab and the percentage
discrepancies from the theoretical values. Each set of values of K shows
symmetry about the marked diagonals illustrating that the reciprocal
theorem held for the slabs. The discrepancy of the actual from the
theoretical values is of the order of 2 per cent under the load, for zero
eccentricity, increasing to 9 per cent for an eccentricity of 3b/4.

Table 2 gives some typical experimental values of K for longitudinal
moments and the percentage discrepancies from the theoretical values for
both single and double loads. These discrepancies are greater than
those found for deflections but decrease as the number of loads increases.
The local effects inherent in this type of loading cause a disturbance
of the true distribution properties; the «<mean» moment is invariable for
any given load and hence the local effects cause an increase in the values
of K in the region of the load and a consequent decrease in the values
away from the load. This is clearly shown in Figure 3 where the
theoretical and experimental transverse profiles for the values are given
for both a single and two equal loads. Table 3 compares theoretical and
experimental values K for longitudinal moments in the loaded zone for
four equal applied loads applied to the third slab. The discrepancy between
theoretical and experimental values is of the order of 10 per cent and
is thus in agreement with Guyon’s suggestion that, for practical loadings,
it is necessary to increase the theoretical values by 10 to 15 per cent
to obtain the actual.

In all the tests from which the above results were derived, the
theoretical and experimental «means effects were in excellent agreement.

For the transverse moments Table 4 compares the theoretical and
experimental moments at various points on the second slab for various
load positions. Similar tables were obtained for the other slabs but
are not given here. The experimental moments were derived from
the measured strains and modulus on the assumption that Poisson’s
ratio, v, was 0.15. This assumption was justified in that the experimental
moments at the edges of the slabs were then zero. From the table it can
be seen that considerable errors arise if no account is taken of Poisson’s
ratio in the theoretical analysis but, if allowance is made for this effect,
greater accuracy is attained in estimating the actual moments for any
disposition of the loads. This is also shown in Table 5 which comipares
theoretical and experimental moments at various points on the third slab
when four equal loads were applied. This type of loading is analogous
to that of the Ministry of Transport abnormal load.
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TABLE 2

Experimental distribution coefficients, K, for longitudinal moments on
the section under the load and discrepancies from the theoretical values

Single load
Position Experimental Values of K Discrepan‘?;izegrrzr%)theoretica]
on
slab Load Position Load Position
0 b/4 b/2 3b/4 0 b/4 b/2 3b/4
b 0.754 0.940 1.333 1.043 | - 12.4 | - 14.1 | - 4.0 11.6
3b/4 0.767 0.952 1.359 1.935 | - 17.3 | - 15.7 0.4 23.3
b/2 0.949 1.220 1.824 1.388 | - 5.1 5.2 41.7 2.5
b/4 1.134 1.608 1.190 0.972 5.3 39.1 2.6 | - 13.9
0 1.743 1.207 0.979 | 0.840 56.3 121 |- 2.3|- 9.5
-b/4 1.134 0.850 | 0.719 | 0.619 53| ~-11.8]-15.9 |- 18.8
-b/2 0.949 0.739 0.651 0.558 | - 5.1 |-13.5]-11.0( - 11.8
-3b/4 0.767 | 0.611 0.536 | 0.474 | -17.3|~-19.8|-15.3|-11.2
-b 0.754 | 0.596 | 0.536 | 0.476 | - 12,4 { - 27.2 (- 2.9 4.8
Slab No. 2: §—0.5
Two equal loads
Loads at b -b . b b b b 3 | b -b . b b b | b 3b
B s | 4 |4 2|2 4| 8| "4 |4 2|2 4
b 0.753 | 0.860 1.121 1.654 | - 2.5 | ~-12.1 |- 9.7 5.8
3b/4 0.775 0.883 1.130 1.713 | - 8.3 | - 14.2 8.9 17.5
b/2 0.945 1.097 1.481 1.574 1.7 1.5 20.7 18.9
b/4 1.104 1.416 1.422 1.067 13.0 26.8 24.0 - 6.8
0 1.486 1.426 1.095 0.894 35.0 30.1 53|- 7.3
-b/4 1.104 0.976 0.796 0.662 13.0| - 5.5 | -12.8 | - 18.2
-b/2 0.945 0.819 0.700 0.598 1.7 -1.8]-11.8]~-12.3
-3b/4 0.775 0.676 0.583 0.507 |- 8.3 -19.9 | -16.5 | - 13.2
-b 0.753 0.664 0.556 | 0.486 | - 2.5 14.0 | -11.3 | - 3.3
Slab No. 2: 6=0.5

TABLE 3

Slab No. 3: Theoretical and experimental distribution coefficients, K, for
longitudinal moments in the region of the loads for four equal applied loads

Position on section b/2 b/4 0 -b/4
Equal loads at ... ... Theoretical 1.012 1.081 1.107 1.081
=~ b/8, = 3b/8 ... ... Experimental 1.006 1.080 1.227 1.080
Equal loads at ... ... Theoretical 1.106 1.133 1.107 1.028
b/2, b/4, 0, -b/4 ... ... Experimental 1.160 1.174 1.249 0.990

28



TABLE 4

Slab No. 2: 6 = 0.5 — Comparison of theoretical and experimental transverse bending
moments (in.lb/in.) at various points for unit applied load.

Transverse ‘Moment at

0.688a

0.376a

on longitudinal @

Txgaerz?:zse PcI:s(;:i‘}) n ’I‘:uzr(t)l.cl:;] Experimental Thveo;t 10cal T;:r;ﬁ:l Experimental Thvm;t l; al Th:o;n;al Experimental T:l:rgf;:l
a 0 0.2175 0.2174 0.2583 0.1029 0.0974 0.1238 0.0300 0.0338 0.0395
b/4 0.0377 0.0557 0.0698 0.0349 0.0532 0.0595 0.0250 0.0243 0.0353
b/2 - 0.0219 — 0.0049 | - 0.0139 0.0227 0.0078 | - 0.0015 0.0123 0.0095
3b/4 - 0.0534 | - 0.0260 - 0.0318 - 0.0432 | - 0.0172 - 0.0253 | - 0.0221 - 0.0105 | - 0.0126
b/8, —-b/8 0.1100 0.1450 0.1380 0.0665 0.0926 0.0900 0.0285 0.0368 0.0385
0, b/4 0.1273 0.1481 0.1640 0.0689 0.0827 0.0917 0.0275 0.0362 0.0374
b/4, b/2 0.0076 0.0367 0.0374 0.0105 0.0431 0.0337 0.0118 0.0180 0.0224
b/2, 3b/4| - 0.0377 | - 0.0136 - 0.0135 - 0.0286 | - 0.0047 - 0.0088 | - 0.0118 — - 0.0016
Transverse Moment at b/4 b/2 3b/4 on central transverse section
a 3b/4 - 0.0633 | - 0.0428 | - 0.0168 | - 0.0023 0.0115 0.0286 0.1658 0.1560 0.2005
b/2 0.0266 0.0490 0.0590 0.2071 0.2155 0.2391 0.0306 0.0396 0.0520
b/4 0.2017 0.2298 0.2566 0.0376 0.0542 0.0683 | - 0.0063 0.0076 0.0129
0 0.0366 0.0594 0.0723 - 0.0094 0.0109 0.0158 | - 0.0169 | - 0.0028 - 0.0033
-b/4 - 0.0089 0.0104 0.0133 | - 0.0249 | - 0.0055 | - 0.0080 | - 0.0215 | - 0.0067 | - 0.0133
-b/2 - 0.0359 | - 0.0114 | - 0.0157 | - 0.0365 - 0.0125 | - 0.0206 | - 0.0250 | - 0.0105 - 0.0153
-3b/4 - 0.0490 | - 0.0240 | - 0.0338 | - 0.0404 - 0.0173 | - 0.0287 | - 0.0235 - 0.0118 | - 0.0177
0, b/4 0.1101 0.1741 0.1645 0.0141 0.0432 0.0421 - 0.0192 0.0063 0.0048
b/2, b/4 0.1141 0.1652 0.1578 0.1224 0.1394 0.1587 0.0122 0.0246 0.0325
b/2, 3b/4 | - 0.0184 0.0159 0.0211 0.1024 0.1185 0.1339 0.0782 0.1209 0.1263
b/8, -b/8 0.0665 0.0926 0.1036 | - 0.0015 0.0195 0.0230 — — —

Sign convention: Positive denotes a sagging moment.
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For the slabs with values of 6 of 0.5 and 0.6, the enveloping curves
for ithe ratio of the maximum transverse moment at any point to the
maximum longitudinal moment at the centre of the slab for a load
traversing the central transverse section are given in Figures 4 (a)
and (b). The maximum transverse moment is appreciably constant
-3
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Fic. 3. Slab No. 3 — Comparison of theoretical and experimental
profiles for coefficient, K
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between ®/, and —-?/, and is always overestimated by the theoretical
analysis assuming a Poisson’s ratio of 0.15. In the case of four equal
applied loads, the maximum transverse moment at the centre of the
slab was 31.6 per cent of the corresponding longitudinal moment and the
variation in the percentage as the load traversed the span is as shown
in Figure 4 (¢). Again the theoretical analysis assuming a Poisson’s ratio
of 0.15 accurately assesses the spanwise variation in the transverse
moments. '

From the tests it is apparent that the load distribution analysis,
assuming a Poisson’s ratio of zero, gives accurate assessments of the
deflections and longitudinal moments for bridge slabs in prestressed
concrete. For deflections the accuracy is of the order of 5 per cent for
values of 6 of 0.4 and 0.5 and 9 per cent for a value of 6 of 0.6. These
figures apply in the loaded region and increase to the maximum values
given with increasing eccentricity. For practical forms of loading it is
necessary to increase the theoretical values for the longitudinal moments
by 10 per cent to obtain the actual.
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Slab No. 3 — Comparison of theoretical and experimental transverse
bending moments (in.lb/in.) for four equal loads giving
unit total applied load

Load Transverse Theoretical Experimental Theoretical
*3 Positions Moment at v=20 P vy = 0.15
=}
S
2 + b/8, = 3b/8 b2 — _ _
w b4 0.0430 0.0659 0.0673
§ 0 0.0456 0.0697 0.0757
5] @ - b4 0.0430 0.0659 0.0673
8 b/2, = b/4 b/2 0.0423 0.0762 0.0652
5 and 0 b/4 0.0569 0.0860 0.0869
it 0 0.0572 0.0858 0.0868
+ - b4 0 0426 0.0653 0.0638
3]
g
[
5 0 +~b/8, + 2b/8 0 0.0393 0.0612 0.0671
E | S b/2, ~ b/4, 0 0 0.0507 0.0715 0.0788
o
wmn
S o
21 8| £/ b8 0 0.0127 0.0143 0.0261
g- b/2, — b/4, 0 0 0.0236 0.0248 0.0373
TABLE 6

Prototype. Comparison of distribution coefficients for load less
than the transverse working load

6 = 0.684 andy » = 0.78

Distribution coefficients at mid-span

Position of
load b s = i " A i il b
4 2 4 4 2 4
Mid-span
y=0
Experimental 0.62 | 0.81 1.02 | 1.22 | 1,26 | 1.22 | 1.02 | 0.81 | 0.62
Theoretical 0.63 | 0.82 | 1.02 | 1.20 | 1.27 | 1.20 | 1.02 | 0.82 | 0.63
v=0.39b
Experimental | 0.36 | 0.45 | 0.61 | 0.83 | 1.06 | 1.32 | 1.41 | 1.43 | 1.4l
Theoretical 0.27 | 0.42 | 0.61 | 0.85 | 1.10 | 1.32 | 1.43 | 1.41 | 1.37
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In the case of the transverse moments considerable errors occur
if Poisson’s ratio is assumed to be zero. However the introduction of a
Poisson’s ratio in the theoretical analysis enables an accurate assessment
of the moments for any configuration of loads. The maximum transverse
moment occurring in a slab is greater than that normally allowed for.
For four equal applied loads the maximum transverse moment was
31.6 per cent of ithe corresponding longitudinal moment. This case may
be considered as analogous to one axle of the Ministry of Transport
abnormal load. In practice it will always be possible to place one bogie,
i. e. two axles, of this load on any bridge and it is estimated that the
maximum transverse moment will then lie between 25 and 30 per cent
of the corresponding longitudinal moment at the centre of the slab.
The disposition of loads to give the maximum transverse moment will
be such that one internal line of wheels of the abnormal load is on the
longitudinal centreline.

The theoretical analysis for transverse moments assuming v = 0.15
can be accurately used to determine the required amount of transverse
prestressing necessary and its distribution along the span.

(b) Tests for the distribution of load in a prestressed concrete highway
bridge and in a model of the bridge.

The deck of the bridge consisted of twenty precast prestressed beams
placed side by side. These were stressed together transversely to form
a slab with a skew of 15 degrees. The span was 33 ft 6 in. and the width
25 ft 0 in. A uniform transverse prestress of 70 lb/sq.in. was applied
only over the central 20 ft 0 in. of the span. The initial prestress plus
dead load stresses in the beams were 0 lb/sq.in and 1,615 1b/sq.in. at
the extreme fibres. The Ministry of Transport abnormal load trailer
was used for loading the bridge. Only one bogie could be on the bridge
at one time and the load on it could be varied in fixed increments between
26.7 tons and 90 tons.

The distribution of deflection and of strain was measured along the
transverse sections '/, and '/,-span using 0.0001 in. deflection gauges
and demountable mechanical strain gauges.

The centroid of the loading bogie was positioned successively at
1/, and !/,-span at eccentricities of 0 and 4 ft 10!/, in. or 0.39b and
new zero values were recorded at each increment of load.

The test was discontinued at a load of 72 tons when a sudden
reduction in the edge coeficient and corresponding increases in the
coefficients for the adjacent beams showed a radical change in the
distribution properties. A subsequent analysis of transverse moments
by the p -coefficient method showed, in fact. that the transverse strength
of the bridge was equivalent only to 17 tons and 20 tons for the two
eccentricities. Cracks had, therefore, occurred between the beams from
the beginning and the distribution properties had deteriorated conti-
nuously. If this cracking had not occurred the corresponding longitudinal
working loads would have been 96 tons and 85 tons respectively. The
comparison between the practical and theoretical results is made after
the description of further tests on a model of the bridge.



LOAD DISTRIBUTION IN RIGHT HIGHWAY BRIDGES 435

The model was constructed to '/, -scale, Figure 5, details such as
surfacing and footpaths being omitted since neither had much effect
on the distribution behaviour in the actual bridge. The initial stress
conditions were reproduced in the model though with a slight reduction
in the transverse prestress because of anchorage and friction losses.
Ultimate conditions could not be reproduced as neither cable size and
position nor dead weight stresses could be scaled down effectively.

F1G6. 5. Model bridge under test

Initial tests were made with a single concentrated load placed at
mid-span with an eccentricity of either 0 or 3b/4. Figure 6 shows
that the efficiency of distribution is controlled by the transverse strength
of the bridge. The transverse working load for zero eccentricity as
calculated from the o -coefficient analysis is indicated in Figure 6 and
gives a good estimate of ithe actual value. The transverse working loads
were 1 ton and 1.35 tons. The corresponding longitudinal working loads
if no cracking had occurred between the beams were 5.25 and 2.60 tons
for e = 0 and e = 3b/4 respectively. Actually at these loads the most
heavily loaded beams were over stressed by 22 per cent and 8 per cent
respectively equivalent to tensile stresses of 350 Ib/sq. in. and 130 1b/sq. in.
This comparison confirms that the greatest transverse moment and the
least maximum longitudinal moment occur for the minimum eccentricity
of load. The comparison has been made for the values of 6 and = found
by experiment and given later.
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F1G. 6. Deflection curves for central concentrated load on model bridge

The bogie of the Ministry of Transport abnormal load trailer was
reproduced to !/,-scale and further tests were made for mid-span
loading at resultant eccentricities of e = 0 and e =1 ft 2%/5 in. or 0.39b.
Again ithe transverse working loads controlled the distribution and
were 1.10 tons and 1.25 tons for the two eccentricities. If no cracks had
developed between the beams the corresponding longitudinal working
loads would have been 5.75 tons and 5.35 tons respectively. The extent
of the transverse cracking is indicated in Figure 7 where a comparison
is made with the equivalent maximum longitudinal strains.

The measured strains were converted into bending moments by the
use of moment-rotation curves found from a control test on a single
beam. The working load of this beam was found to be equal to 650 1b
and the value of Young’s modulus E =5.76 X 10¢ lb/sq.in. As an
accuracy of 15 per cent was assumed in assessing bending moments,
and allowing for this, the comparison between the distribution of
deflections and of moment was acceptable. _

An elastic theory could only be expected to be valid if transverse
cracking did not occur as an undefinable deterioration in distribution
takes place under loads greater than the transverse working load. The
following comparison with theory has, therefore, been made only for the
initial linear part of the load and deflection curves as indicated in
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Figure 6. In this range 6 is constant since i = j. It had to be assumed
that « would have a value less than unity if the total transverse prestress
were insufficient to induce the same torsional and shear properties as
an equivalent monolithic slab.

In determing 6, which is equal to b/2a in the linear range, 2a was
taken as the length of span over which the transverse prestressing force
was applied. The value of 6 was thus 0.684 for the bridge and the model.
From the interpolation expression K, = K, + (K,—K,) V« it was seen
that « was, in fact, less than
unity and that a value of 0.72 Ty T e
for « satisfied all conditions ’ b
of loading in the model whilst -0 — I
a value of 0.78 described the / ~ l ]
behaviour of the bridge. The a i
comparisons are made in Ta- PN [\
bles 6 and 7 which show the “ A W S
excellent agreement. The com- : i \ L
mon value of 6 showed that ,,\\\ \-\ Y / / ﬁ”’”’
the bridge had been faithfully \ / L 5 \con
reproduced in the model whilst o \\
the higher value of « for the ‘\‘\\
S0

9 4

L%
N
o —

bridge was explained by the
smaller transverse prestress in
the model.

If the amount of trans-
verse prestress in the bridge .‘;\
had been greater then the i i IR {

3

Lransverse Sromns x 10°

effective value of « would have \ | -
been extended. 7 U

An ultimate load test on \ /
the model with the load at an ke T
eccentricity of 0.39b showed \ /
an ultimate load of 9 tons %0 ——
when fourteen of the beams || s
failed at mid-span. The load 100 = |
factor was thus, 1.68 on a L1
working load based on an o \
uncracked transverse section. \/
The better grouting and higher 120
effective value of » would Fi6. 7. Transverse strain profiles in model
cause a higher load factor for bridge
the bridge.

(¢) The distribution of load in a multi-webbed box-section bridge.

The load distribution properties of a multi-webbed box-section bridge
were found from the behaviour of a small xylonite model having the
dimensions shown in Table 8 and illustrated in Figure 8. Transverse
deflection profiles were recorded at each line of diaphragms for different
positions of a single load concentrated on an area 2!/; in. X 1 in. The
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TABLE 7

Model. Comparison of distribution coefficients for load less
than the transverse working load.

6 = 0.684 andy « = 0.72

G. LITTLE, P. B. MORICE and R. E. ROWE

Distribution coefficients at mid-span

P.sition of ab b b b b b
load b . —_ — 0 — — —— b
4 2 4 4 2 4
Mid-span
a) Concentrated
load
Yy=0
Experimental 0.59 | 0.77 0.99 1.23 1.43 1.23 | 0.99 | 0.77 | 0.59
Theoretical 0.51 0.77 1.00 1.25 1.37 1.25 1.00 | 0.77 | 0.51
__3b
Y 3 |
Experimental 0.00 | 0.16 | 0.26 0.44 | 0.70 1.10 1.72 | 2.27 | 2.63
Theoretical 0.02 | 0.13 | 0.27 | 0.47 0.76 1.17 1.69 2.20 | 2.62
b) M.O.T. load
y=20
Experimental 0.57 | 0.81 1.03 1.20 1.34 1.20 1.03 | 0.81 0.57
Theoretical 0.56 | 0.79 1.02 1.23 1.31 1.23 1.02 | 0.79 | 0.56
v==0.39b
Experimental 0.27 | 0.42 | 0.62 | 0.87 1.07 1.27 1.44 1.49 1.32
Theoretical 0.22 | 0.41 0.62 | 0.89 1.15 1.36 1.42 1.38 1.28
Distribution coefficients at quarter-span
Mid-span
a) Concentrated
load
y=20
Experimental 0.53 | 0.80 1.02 1.25 1.37 1.25 1.02 | 0.80 | 0.53
Theoretical 0.51 0.77 1.00 1.25 1.37 1.25 1.00 | 0.77 0.51
_3b
T
Experimental |-0.11 0.04 | 0.22 0.47 | 0.75 1.16 1.71 2.32 2.94
Theoretical 0.02 | 0.13 | 0.27 0.47 | 0.76 1.17 1.69 2.20 2.62
b) M.O.T. load
y=0
Experimental 0.58 | 0.81 1.03 1.22 1.20 1.22 1.03 | 0.81 0.58
Theoretical 0.56 | 0.79 1.02 1.23 1.31 1.23 1.02 | 0.79 | 0.56
v=—=0.39b
Experimental | 0.09 | 0.31 | 0.60 | 0.90 | 1.14 | 1.32 | 1.43 | 1.50 | 1.54
Theoretical 0.22 | 0.41 0.62 0.89 1.15 1.36 1.42 1.38 1.28
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TABLE 8

Dimensions of box-section bridge model

Span... ... e e e e ‘ 18 in,
Width ... ... TR ‘ 9 in.
Number of webs: |
Longitudinal ... ... e e | T
Transverse ... ... ... ' 7
Thickness of webs . % — in.
Thickness of slabs ... ... ... ... 1/16 in.

corresponding longitudinal and ftransverse strains were measured by
electrical resistance strain gauges.

The modulus of elasticity E was determined by applying equal loads
at the third points of a xylonite beam with the same span as the model
and measuring the resulting mid-span strains. The total strain after
four equal increments of load, with three minutes allowed between

F1G. 8. Box-section bridge in test position
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each increment for creep, was equal to the total strain after an interval
of twelve minutes when the total load was applied instantaneously. The
modulus E was calculated as the ratio of the maximum stress and the
maximum strain recorded and its value was 33.33 X 10¢ 1b/sq. in.

The shear modulus, G, was found by applying a known torque at the
ends of the beam which was now supported vertically to obviate the effects
of self bending. The angle of twist was measured by deflectometer
readings at two sections, six inches apart. All significant creep had
occurred after 15 minutes. The value of G was then equal to 11.7 X 10#
1b/sq. in.

The value of Poisson’s ratio was 0.42. The makers of the material
gave an average value of 0.40.

The comparison between the theoretical and the experimental coef-
ficients, K, for deflection is made in Table 9. Small variation was caused

TABLE 9

Comparison between the "mean” experimental distribution coefficients,
: K, for deflection and the theoretical coefficients

Load Position

Beam Sect’or;
Position . 9 g i g 6 .
4 2 (1/6 span) 0.98 1.08 1.81 ]'83 _ _ _
3 (1/3 span) | 0.9 1.0 1.01 | 1. _ — _
(Central | 4 179 gpan) | 1.00 | 1.00 | 1.02 | 1.03 _ _ .
Beam) |5 (2/3 span) | 0.95 | 0.96 | 1.00 | 1.02 — _ _

Average 0.97 0.99 1.01 1.03 —_ —
Theoretical 0.95 0.98 1.02 1.05 — — —

2 1.41 1.29 1.18 1.03 | 0.86 | 0.73 | 0.64

9 3 1.39 1.20 1.16 | 0.99 | 0.80 | 0.73 | 0.65
4 1.41 1.30 1.18 | 0.98 | 0.86 | 0.74 | 0.64

5 1.42 1.31 1.14 1.01 0.88 | 0.72 | 0.63

Average 1.41 1.390 1.16 | 0.98 | 0.87 | 0.73 | 0.64
Theoretical 1.42 1.28 1.13 1.00 0.84 0.70 0.60

1 .2 1.70 1.40 1.18 | 0.94 | 0.80 | 0.63 | 0.46
(Ed 3 1.70 1.39 1.21 0.09 | 0.84 | 0.71 0.51
ge 4 1.75 1.42 1.21 0.98 0.84 | 0.68 0.49
Beam) 5 1.68 1.41 1.21 0.91 0.85 | 0.73 | 0.54

Average 1.71 1.40 1.20 0.96 0.84 0.69 0.50
Theoretical 1.72 1.42 1.17 0.95 0.77 0.60 0.43
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by a change in the longitudinal position of the load and the distribution
at all sections was- virtually identical for a given position of the load.
This confirmed the assumption of the distribution coefficient analysis
that the distribution coefficients are identical for all transverse sections.
It is important to note that the value of =« used in the analysis of the

bridge contained values of i, and j, which were calculated for a single
. 2

cell in each direction from the membrane formula i, = where p

pf <
is the spacing of the webs. If the actual torsional stiffness per unit
length of the multi-webbed box had been used a value of « exceeding
unity would have been obtained which is not admissible.

The comparison between the theoretical and the experimental coef-
ficients K for the longitudinal bending moment is made in Table 10, a
satisfactory agreement being obtained.

The transverse moments were too small and too greatly affected by
Poisson’s ratio for a comparison to be made with theory. A full investi-
gation of transverse moments was made subsequently on a slab bridge.
The results of these tests are discussed elsewhere in the paper.

(d) The distribution of deflection in a continuous grillage.

The distribution of deflection was investigated for various conditions
of loading on the two-span continuous grillage shown in Figure 9. The

TABLE 10

Comparison between the theoretical and the experimental distribution
coefficients, K, for longitudinal bending moments with load at mild-span

Load Psition Beam Position
1 2 3 4 5 6 7
1 Experimental ... ... 1.61 1.38 1.11 1.01 0.80 0.78 0.61
Theoretical ... ... ... 1.72 1.43 1.17 0.95 0.77 | 0.59 0.43
2 Experimental ... ... 1.46 1.32 1.15 1.00 0.89 0.77 0.67
Theoretical ... ... ... 1.43 1.28 1.13 0.98 0 84 0.70 0.59
3 Experimental ... ... 1.18 1.13 1.05 1.00 0.95 0.89 0.84
Theoretical ... ... ... 1.16 1.12 1.09 1.02 0.93 0.85 0.76
4 Experimental ... ... 0.98 1.00 1.03 1.04 1.03 0.99 0.97
Theoretical ... ... ... 0.95 | 0.98 | 1.02 | 1.05 | 1.02 | 0.98 | 0.95
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grillage consisted of four equal precast beams 13 ft 4 in. in length with
a cross-section 4 in. X 2 in. and prestressed to a uniform stress of 1,000
Ib/sq.in. The beams were connected by a series of diaphragms at the
supports and at the */,, '/, and ?/, - sections of each span. The transverse
prestress was 800 1b/sq. in. The joints between the beams and diaphragms
were carefully made so that the form of distribution was influenced by
the torsional properties of the members. The load was invariably applied
at the centre of a span, one or two spans being loaded. The use of a

Fi1c. 9. Continuous grillage showing testing arrangement

lever device increased the sensitivity of loading in the ratio 5:1, whilst
by incorporating knife edge connexions in the loading device equal loads
were ensured in each beam.

By loading all the beams in one span equally the «mean» deflection
profile was found for various loads. Allowing for measured settlement
at the mid-support the wvalue of Young’s modulus E was 5.76 X 10°
Ib/sq. in.

A comparison between the theoretical deflections and the experimental
values in the loaded span when only one span was loaded is made in the
Figures 10 and 11. The theoretical lines were obtained from the analytical
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coefficients, K found from the interpolation K, = K, + (K; — K;) /.~ and
the measured «mean» deflections. An average accuracy of 2 per cent
was obtained, the distribution at the */,, */, and 3/, - span sections being
virtually equal.

load - ton

Jack

20 Jo
Detlexion - i xr077

F1c. 10. Deflections along section X for single span loading

, //
7

s

G~

Jock loao'-Fon

70 20 30 40
Deflexion - in.x 1073

Fi6. 11. Deflections along section X for single span loading
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The distribution in the unloaded span is shown in Figures 12 and 13.
This distribution was much more efficient than the analytical distribution
and seemed to be independent of the eccentricity of the load. The deflection
of each beam tended to be equal and the average of the these deflections
was equal to the «measured» mean deflection.
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F1Gc. 12. Deflections along section Y for single span loading
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Fi1c. 13. Deflections along section Y for single span loading
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This behaviour occurred because the torsional properties of the
support diaphragms were active in redistributing the unequal bending
moments at the support. Naturally differential deflections were mnot
possible there and the result was that the deflection of the beams in the
unloaded span were almost equal. It follows that by sufficiently increasing
the torsional stiffness of the internal support diaphragms the deflections
of all beams in the unloaded span will be equal to the «<mean» ideflection
irrespective of the load eccentricity in the loaded span whilst if these
diaphragms were omitted the distribution would be equal to the analytical
distribution and would be equal in both spans.

The distribution in any span when both spans were loaded was found
by superposing the distribution due to the load on that span on to the
distribution as an unloaded span caused by the other load. The comparison
between some of these results and the experimental values is made in
Figure 14, which shows the high degree of accuracy obtained.

Jack (load -ton

-d

Deflexron - n  xr10

Fi1G. 14. Deflections along section X and Y for two span loading

In none of the previous tests was the working load of either the
beams or the diaphragms exceeded.

A test to failure was made using the load of Figure 14. The working
load for each span was calculated to be 960 1b. Visible cracking of the
edge beams occurred at a load of 1,500 Ib. The structure failed in
combined bending and torsion at mid-span and at the mid-support at
a load of 3,400 1b. The load factor was therefore, 3.49 and the factor of
safety against cracking was 1.52. The diaphragms suffered no damage
whatsoever. A subsequent analysis using the p -coefficient solution
showed, in fact, that the bridge was highly over-prestressed transversely
for working conditions and that the prestress that was required for a

29



446 ITcl. G. LITTLE, P. B. MORICE and R. E. ROWE

balanced design under the worst conditions of loading for transverse
bending, i. e. the two inner beams loaded, was only 300 lb/sq. in.

It is noted that in the calculation of 6 the actual length of span was
used and mot the effective length.

(e) Beam and slab bridges in perspex.

This series of tests was primarily directed at finding the correct
interpolation to be given to «, the torsional parameter, to be consistent
with ithe assumptions of analysis in bridge structures intermediate
between a mno-torsion grillage and a full torsion slab, and to establish
the validity of the interpolation formula K, = K, + (K, — K,) Vo where
K, are the Massonnet coefficients for a slab and K, are the Guyon
coefficients for a no-torsion grillage.

A small model Tee-beam bridge, of 18 in. span and 12 in. width,
was constructed in perspex and the number of transverse diaphragms
was varied from zero to three equally spaced in the span. For each case
the load distribution characteristics for deflections were obtained by
applying a single concentrated load on the mid-span section (Figure 15).

To carry out the theoretical analysis of the bridge, it was necessary
to determine the value of Young’s modulus and the shear modulus of the
material. Separate tests on a beam of perspex subjected to flexure and
torsion yielded the results E = 3.884 X 10° 1b/in%.; G = 1.556 X 105 lb/in>.
and hence Poisson’s ratio, v, = 0.248. The method of determining the
torsional parameter, =, in the theoretical analysis was to obtain the
torsional rigidities in the longitudinal and transverse directions by taking
the true torsional rigidity for the webs diaphragms and one-half the true

3 3

value for the slab or flange, i. e. G—;— instead of 931 , to allow for the

effect of continuity. Full details of the dimensions of each model and
the theoretical flexural and torsional parameters are given in Table 11.
In the case of a single central diaphragm, 6 and = were determined for
assumptions of the complete span and distance between diaphragms
(central and end) as the flange width in the transverse direction. A
comparison of the theoretical and experimental distribution factors is
also given in Table 11.

The agreement between the theoretical and experimental values is
very good, especially since the negative values at the edges of the bridge
are in accord. In previous tests on bridge models the discrepancy at the
edges was found to be more marked. The greater number of load positions
considered for bridge deck No. 2 was to determine the correct assumption
regarding the transverse flange width to be used in the theoretical
analysis. Very little difference exists between the two sets of theoretical
values though the assumption of diaphragm spacing as the flange width
appears to give slightly better estimates of the values of K. However
to ensure the validity of the fundamental assumptions on which Masson-
net’s analysis is based, namely, that the bridge deck system is reduced to
an equivalent continuous pseudo-slab, it is necessary to consider the



TABLE 11

Main dimensions and properties of the tee-beam models

Rib thickness=0.167 in. Longitudinal rib spacing=2 in, Slab thickness=0.182 in.
Slab width = 12 in.

Rib depth = 1.213 in.

Transverse diaphragms at supports in all cases

Bridge deck No. 1. 2. 3.
Span—2a ... 17.8108 17.8108 17.8108
Width = 2b.. 12 ! 12 12
No. of longltudmal beams ...... 6 6 6
No. of transverse diaphragms ... 0 1 3
Flexural stiffness/unit width—
=Fi... ... 0.05448E 0.05448E 0.05448E
Flexural stlffness/umt w1dth—— (a) (b)
=Ej e e eee e 0.000502E 0.008714E 0.0141714E 0.02923E
1.09 0.54 0.48 0.39
Torsional stiffness/unit width —
=Gi, ... 0.002024G 0.002024G 0.002024G 0.002024G
Torsional stlftness/umt length =
= Gjo e e ee e 0.0010084G 0.0011192G 0.0010620G 0.0014625G
0.1173 0.029 0.0232 0.0176
Theoretical and experimental distribution factors
Position on section -b -3b/4 -b/2 -b/4 0 b/4 b/2 3b/4 b
Bridge deck No. 1 Theoretical -0.33 0.16 0.53 1.23 1.92 2.09 1.49 0.66 0.14
Load at b/6 Experimental ~-0.18 0.08 0.54 1.23 1.99 2.01 1.34 0.72 0.23
Bridge deck No. 2 Theoretical (a) 0.24 0.50 0.77 1.05 1.26 1.32 1.25 1.14 0.99
Load at b/6 Theoretical (b) 0.30 0.53 0.78 1.03 1.22 1.27 1.23 1.19 1.13
Experimental 0.33 0.57 0.77 0.98 1.20 1.20 1.27 1.18 1.07
Loat at b/2 Theoretical (a)| - 0.35 - 0.04 0.30 0.66 1.01 1.39 1.74 1.66 2.12
Theoretical (b)| - 0.35 - 0.04 G.31 0.67 1.00 1.39 1.72 1.97 2.18
Experimental -0.21 0.09 0.38 0.67 0.99 1.33 1.72 1.95 2.05
Load at 5 b/6 Theoretical (a)| - 0.81 - 0.47 -0.14 024 0.70 1.31 2.02 2.86 3.65
Theoretical (b)| - 0.69 - 0.43 -0.15 0.28 0.75 1.34 o 2.04 2.86 3.54
Experimental - 0.87 - 0.52 -0.14 0.28 0.81 1.37 2.04 2.93 3.55
Bridge deck No. 3 Theoretical 0.41 0.57 0.77 0.68 1.13 1.20 1.21 1.25 1.26
Load at b/6 Experimental 0.51 0.61 0.76 0.96 1.12 1.19 1.20 1.20 1.18

SADAIYd AVMHODIH LHODIY NI NOLLNFIYISIa avoTl

(b) Distance between diaphragms considered as flange width
(a) Span considered as transverse flange width

L%y
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diaphragm spacing as the transverse flange width. The wvalue of =
determined by the process outlined above yields theoretical values of
K which are in excellent agreement with the experimental values.

The investigations have shown that the interpolation formula

K, =K, + (K,—K) Vo can be used to determine the distribution of

load in a uniform bridge structure which is neither a slab nor a simple
grillage.

Fi1Gg. 15. Tee-beam bridge under test

The value of = for a beam and slab bridge is determined correctly
if the torsional quantities Gi, and Gj, are equal to the sums of the true
torsional stiffnesses of beams or diaphragms and one-half the true
torsional stiffness of the slab.

In determining 6 and = for a beam and slab bridge the actual flange
width between the main beams, in the longitudinal direction, and the
diaphragms, in the transverse direction, should be used and not the effec-
tive flange widths laid down by various codes of practice.
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SUMMARY

After a short discussion of the bridge loading problem in Great
Britain a brief survey is given of the methods available for the elastic
analysis of right bridges subjected to concentrated loads. Mention is
made of the determination of transverse moments in the distribution
coefficient method, originally due to Guyon, and the expression is given
for the calculation of the transverse moment coefficients in slabs in
which the value of Poisson’s ratio has been included.

The main portion of the paper is devoted to the description of a
number of tests on bridges and bridge models and a discussion of the
results and their comparison with the distribution coefficient calculations.
The bridges tested were two-way prestressed concrete slab models, a
small prestressed concrete highway bridge and a one-quarter scale model,
a multi-webbed box model in xylonite, a two-span prestressed concrete
beam grillage and a beam and slab bridge model in perspex.

ZUSAMMENFASSUNG

Nach einem kurzen Hinweis auf das Problem der Briickenbelastung
in Grossbritannien geben die Verfasser einen Ueberblick iiber die
verschiedenen Verfahren, welche fiir die Bestimmung der Elastizitits-
gleichungen bei geraden Briicken unter punktformigen Einzellasten
zur Anwendung kommen. Die Bestimmung der Momente in der
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Querrichtung folgt der urspriinglich von Guyon entwickelten Methode
mit den Verteilkoeffizienten, wobei zur Berechnung dieser Koeffizienten
die Poisson’sche Zahl beriicksichtigt ist. -

Der Hauptteil dieser Arbeit ist der Besprechung einer Anzahl Ver-
suche, welche an Briicken und Modellen vorgenommen wurden und dem
Vergleich dieser Versuchsergebnisse mit den rechnerisch bestimmten
Verteilungswerten gewidmet. Bei den untersuchten Briicken handelte
es sich um 3 in Lings- und Querrichtung vorgespannte Beton-platten-
-Modelle, eine kleine vorgespannte Strassenbriicke und ein Modell im
Masstab 1:4, ein Modell eines mehrgurtigen Kastentriagers aus Xylonit,
einen iiber zwei Spannwerten vorgespannten Trigerrost aus Eisenbeton
und ein Plattenbalken-Briickenmodell aus Perspex.

RESUMO

Depois de uma breve discussao do problema das cargas sobre as
pontes na Gra-Bretanha, o autor examina rapidamente os métodos dispo-
niveis para o calculo elastico de pontes rectas submetidas a cargas concen-
tradas. Menciona-se a determinagio dos momentos transversais pelo
método dos coeficientes de distribuicdo de Guyon, e indica-se a expressao
que permite calcular os coeficientes dos momentos transversais em lages
entrando em conta com o valor do coeficiente de Poisson.

A parte principal da contribuicdo trata da descricdo de uma série
de ensaios efectuados em pontes e em modelos de pontes e da discussido
dos resultados e sua comparacio com os obtidos pelo método dos coefi-
cientes de distribuicdo. Os ensaios efectuaram-se sobre modelos de pontes
com lage em betdo preesforcado em dois sentidos, uma pequena ponte-
-estrada de betdo preesforcado e um modelo da mesma ponte a escala
de 1/4, um modelo de viga-caixdo de alma miiltipla de xilonite, um
reticulado de vigas sobre trés apoios de betdo preesforcado e um modelo
de ponte com viga e lage de perspex.

RESUME

Aprés une courte discussion du probléme des charges sur les ponts
en Grande-Bretagne, 'auteur donne un bref apercu des méthodes dispo-
nibles pour le calcul élastique de ponts droits soumis & des charges con-
centrées. Il mentionne la détermination des moments transversaux par la
méthode des coefficients de distribution diie & Guyon et donne I’expression
permettant de calculer les coefficients des moments ‘fransversaux dans
les dalles en tenant compte du coefficient de Poisson.

La partie principale du mémoire s’occupe de la description d’une
série d’essais effectués sur des ponts et des modeles de ponts et de la
discussion des résultats et de leur comparaison avec ceux obtenus par
la méthode des coefficients de distribution. Les essais ont porté sur des
modeles de dalles en béton précontraint dans les deux directions, un
petit pont-route en béton précontraint et son modele a 1’échelle 1/4,
un modele de poutre en caisson a dme multiple en Xilonite, un réticule
de poutres sur trois appuis en béton précontraint et un modele de pont
a poutre et dalle en perspex.
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