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Voiles minces cylindriques formés par une maille triangulaire
Metallic cylindrical shells made of a triangular network
Kreis-Zylinderschalen mit Metallischem Dreiecks-Gitter

Coberturas delgadas cilindricas metalicas formadas
por malha triangular

FLORENCIO DEL POZO
Ingeniero de Caminos, Canaless y Puertos
Madrid

Généralités

L’idée d’aboutir a une solution en voile mince adaptée aux charpentes
métalliques provient, d’une part, de la considération simultanée des avan-
tages économiques et esthétiques des voiles pleins en béton armé, et,
d’autre part, de la légereté des structures en acier.

Les couvertures & voiles minces en béton permettent, en général,
une économie de matiere notable; économie qui est souvent annulée par
le prix relativement élevé du cintre et du coffrage, qui ne peuvent étre
utilisés qu’une seule fois dans la plupart des cas.

D’autre part, dans ce type de structure et spécialement dans les
couvertures a grande portée, le poids propre entre pour une part importante
dans 1’ensemble des surcharges totales que la structure doit supporter
et il convient, par conséquent, de le réduire au minimum. Parmi les
différentes solutions de couvertures continues en béton, celle du voile
mince offre les avantages correspondant & son poids propre minimum;
cependant, celui-ci est beaucoup plus grand que celui d’une charpente
métallique a toiture en fibrociment ou matériau similaire et protégée a
I'intérieur, le cas échéant, par un revétement en matiéres isolantes.

Or, les structures métalliques ordinaires, fermes, portiques ete., ont
souvent besoin d’éléments résistants, disposés a l'intérieur de la mef,
causant une obstruction, et qui sont presque toujours & deconseiller du point
de vue de l'esthétique. Ces considérations suggerent 1’idée d’appliquer
aux structures métalliques les méthodes de caleul des voiles continus, mais
en remplacant le voile par un treillis triangulaire léger, inscrit sur la
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surface théorique de ce voile. L’étude de quelques projets de ce type
de structure, et les essais en modele réduit qui sont en cours, permettent
de confirmer les grandes possibilités et I’'intérét qu'offrent ces couvertures.

Le réseau triangulaire, équilatéral ou non, est facilement adaptable
aux surfaces reglées, et parmi celles-ci, aux cylindriques. Dans ce cas,
le réseau est formé par des génératrices continues et deux systémes
diagonaux avec inclinaisons symétriques par rapport a la directrice.
L’état actuel de la technique de la soudure permet I'emploi exclusif de
profilés commerciaux courants, sans avoir recours & des usinages.

Des couvertures cylindriques de ce type ont été construites, les unes
utilisant des profilés spéciaux brevetés, en tole pliée, les autres utilisant
des profilés laminés ordinaires; jusqu’ici cependant, la capacité portante
de la charpente était confiée a I’effet de volite, et non pas a 1'effet de voile.

Dans ce qui suit nous exposons les grandes lignes d’'une théorie des
voiles cylindriques réticulés, fondée sur la solution classique des voiles
pleins en régime élastique. Cette théorie, dont la validité semble acceptable
pour le voile reticulé infinitésimal doit étre confirmée par l'expérience,
et, peut étre simplifiée en I’extrapollant, pour le cas pratique de réticulés
non élémentaires.

Théorie du voile cylindrique réticule a directrice circulaire.

La théorie des voiles pleins en régime élastique est bien connue et
a été amplement verifiée au cours d’une trentaine d’années d’application.
Nous fonderons sur elle le calcul des voiles réticulés, object de la présente
étude.

Nous supposerons par la suite que la transmission des charges
superficielles se fait au moyen d’efforts du type membrane; hypothese
parfaitement admissible quand il s’agit de charges continues, les erreurs
introduites étant mégligeables. _

Conformément & ce qui précede, nous développerons le calcul en
deux parties: la premiére traitera de 1’étude générale du voile, abstraction
faite des charges extérieures superficielles, et des charges linéaires aux
bords longitudinauxj; la deuxieme traitera de I’étude de I’état membrane
pour la transmission des charges superficielles. La superposition des
deux états antérieurs et les conditions aux cotés que nous imposerons,
nous donnera les efforts définitifs dans le voile dans les conditions admises.

1. — Notations.

Sur le voile, I'origine des x sera l'appui dorsal, et celle des o le
bord droit.

L’effort longitudinal par unité de longueur Ny, ainsi que I'effort
transversal N, seront positifs lorsqu’ils produisent un effort de traction
dans I'élément considéré. L’effort tangentiel No, ou N,v¢ sera positif
quand il représente une traction selon les valeurs croissantes de x et o.
Le moment fléchissant longitudinal M, et le moment fléchissant trans-
versal M, seront positifs lorsqu’ils produisent des efforts de traction
a l'intrados du voile. Les efforts tranchants normaux au voile Q. et Q o
et la réaction normale R¢ du bord, seront positifs lorsqu’ils sont dirigés
vers le haut sur faces les plus proches de 'axe des ¢ ou des x respective-
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ment. Le moment de torsion My« ou My est positif lorsqu’il produit un
effort tangentiel positif & I'intrados.

Les déplacements longitudinal et tangentiel u et v seront positifs
lorsqu’ils ont le sens des X ou ¢ positifs, respectivement, et le déplacement
normal au voile w sera considéré positif lorsqu’il est dirigé vers le haut.
La rotation du voile 6 sera positive lorsque la section tourne dans le sens
des aiguilles d’une montre.

2. — Théorie gémérale.

Comme simplification de la théorie générale, nous supposerons par la
suite que les efforts tangentiels au plan du voile N¢, et Ny sont égaux,
ce qui implique que la composante tangentielle du moment de torsion est
nulle. Par analogie, mnous supposons égaux les moments de torsion
M@ x et Mxtg .

Ces simplifications offrent une approximation plus grande que celles
qui correspondent aux hypotheses de Finsterwalder.

Ayant suivi la théorie classique des voiles pleins, il nous faudra
résoudre le systéme formé par les équations d’équilibre de 1'élément de
voile et par les rapports qui lient les efforts aux déplacements. Le
systéme formé par les équations d’équilibre de I'élément de voile n’est
aucunement affecté par la constitution interne de cet élément; il sera
par conséquent le méme que celui obtenu pour les voiles pleins. Au
moment d’établir les rapports qui lient les efforts avec les déformations
et déplacements, il faudra au contraire tenir compte des caractéristiques
élastiques de I’élément de voile.

Nous supposons que le voile est constitué par une maille infinitésimale
de triangles équilatéraux (Fig. 1), et nous considérerons comme élément
différentiel I'un quelconque des losanges
formés par deux triangles adjacents dont
le c6té commun est disposé selon la géné-
ratrice: ABCD, par exemple. Un probléeme
d’élasticité se pose alors, dans lequel le
corps considéré est homogéne, mais non
isotrope; il a, cependant, dans son aniso-
tropie, trois plans de symétrie élastique.
Ce probléme général renferme nécessaire-
ment douze constantes élastiques, quoique
I'on puisse les reduire a cing en considérant
les hypothéses fondamentales des voiles;
par conséquent, le systéme qui lie les contraintes aux déformations, peut
s’écriré sous la forme suivante:

Ex

Ox = ———— (& + ¥y )
1—7,‘114?
E,
Gy = : ex + Vx 2x
¥ 1—'JxV(?( + ) (1)

Txo=G.7xy
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Dans ces expressions il apparait deux modules d’élasticité E. et E¢, un
module de rigidité G et deux coefficients de Poisson v« et v, desquels
vx représente le rapport ¢ : & pour s. = 0; et v le rapport e« : % pour
ox = 0.

Soit S la section de la barre élémentaire, I son moment d’inertie
par rapport a la surface moyenne du voile, 1 le c6té du triangle élémen-

taire et E le module d’élasticité du matériau qui

p constitue les éléments du réticule profilés en acier

* ordinaire.

A L’on admet que les barres qui composent le
réticule sont des profilés symétriques par rapport
a son intersection avec la surface moyenne.

Si nous considéronsg le losange élémentaire
ABCD (Fig. 2) et supposons un effort de com-
" pression P appliqué dans la direction de la diago-
nale AC, en déterminant les efforts et les défor-
mations que présente 1’élément, nous obtenons:

‘_Uf:?_‘ﬁ P . 5P __3
s S.V3 3V3. ES 5

(2)

€x L P . 5P o 3 (3)
& V3.ES 3V3ES 5

V,:D:__—

Cette valeur, plus grande que 0,5, pour un coefficient de Poisson
peut mous surprendre, & premiere vue; pour l'expliquer. il suffit de
tenir compte des caractéristiques d’anisotropie du corps étudié, et vérifier
que le module d’expansion de volume obtenu est positif.

Si, dans la méme fig. 2, nous supposons le losange élémentaire
ABCD soumis & une compression P dirigée selon la diagonale BD, nous
avons:

= _P.P g @)
€x S ES

5? P . P o 1
Ex 3ES " ES 3

(5)

V¢ ==

Pour calculer la valeur du module de rigidité G nous considérerons
le losange élémentaire ABCD soumis a I’action de deux couples en équi-
libre de valeur P.1? \f’/§,—fi;g. 3; a l'aide de cette figure et de la fig. 4,
nous obtenons:

p— /_
G Tx2 _ _Txo =P.l:iA;: Pl: 4_P1 :V3E ©6)
Txo ¥ +7, S 1V3 S V3ES 4
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Etant donné que les constantes E,, Eo, vi, v» et G, sont connues,
nous avons les rapports qui lient les contraintes aux déformations (1) et,
par conséquent les rapports contraintes-déplacements qui seront:

5E [ 3 z 3 | \
Gy=—|u'+—(v +w ——(w”%— W w J
41‘[ 5( ) r 5( ))
cwzﬁ[w%—v'—klu'—i(wicw“ntlw")J
' 4r 3 r 3
Txo == Ev3 {u'+v’——i(u'——v’+2w")l
' 4r | r -

r étant le rayon de la directrice. Dans les expressions antérieures et dans
ce qui suit, nous emploierons la notation suivante:

. 0% ,
;o ... ;o T—=1"; r2—=1{";
09 092 0xX 0X>

Il nous reste a relier les contraintes aux efforts et aux moments
unitaires, et pour cela il faut déterminer les sections et moments d’inertie
correspondant a la longueur unité, pour les divers efforts et moments.

Y
FiG. 3

Par la fig. 5, nous voyons qu’ils sont obtenus au moyen de calculs simples;

les sections unitaires cherchées sont: %; S—l‘—?i, % pour les efforts N,
. e 21  Lv3
N, et Nox respectivement; et les moments d’inertie unitaires: r?; ]
v

—i— pour les moments M,, M, et Mo, respectivement.

Une fois connus les efforts et moments unitaires en fonction des
déplacements, avec les équations d’équilibre, on arrive par élimination,



410 IIb2. FLORENCIO DEL POZO

analogiquement comme 1’on fait dans la théorie générale des voiles pleins,
a un systéme de trois équations différentielles. Les déplacements u, v
et w, sont liés dans notre cas, par les relations suivantes:

Ne

\, t 10u"+3u” +9v '+ 6w'=0

—

u'(2-6)+3v+v'1+E£)+3w —BEBw- +
+3w "+3w")=0 0h)

60°
609

-
G —
;

! |

¥
xl 1=

6fu’' —6Lv "+3u'+9v + 9w+ LOw  +
Fic, b +21w " +10w"" + 9w +6w") =0

La valeur de B est I:Srz. Par élimination de u et v dans le systéme
antérieur on obtient ’équation différentielle suivante, du huitiéme degré,
en 'w:

— % (3-8) W'+ 2w % (55-68) w " —;)—(21-4@) Wi wi

10 1 . 100
- 12_5 s il 49-2 s 3 Bl 1+ P rn
+ 57 (1250w " - (492w 3w o (1w

20 8
TaA4wm a2 e __

Cette équation est vérifiée en faisant:

5 . X nrwTr . .
W=2e™.sin « = | avec o« = T; L étant la longueur du voile et n
'r

un nombre entier dont la valeur sera fixée par le terme du développement
en série des charges extérieures. L’équation caractéristique qui résoud
ce probléme sera:

4 ' ) a2 at
m8 - <2— —§— (3-5) o2 ) m6 +| 1— ? (21-4p) —}—?(55-6@ ] mé -+

+ [-3a2+—“i 49-25) — 0o 12+ 56) [m2+ o (1 4+ ) [—8— 0. O
| 0 27 | e 21
100 |
ErTR

Une fois cette équation résolue et, d’une maniére analogue aux
développements de la théorie classique des voiles pleins, on obtient les
efforts, les moments et les déplacements du systéme homogeéne auquel
on devra superposer les effets des charges extérieures, obtenus, comme
on I'a indiqué en étudiant I’état membrane.
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I1 faut remarquer que l’équation (9) a une forme semblable a celle
que l'on obtient pour le voile plein, quoique les coefficients soient plus
compliqués dans ce cas. Dans l’équation (9) interviennent seulement
les dimensions du voile, r et L; et les caractéristiques du profilé adopté,
S et I, indépendamment des dimensions du réticule. Cette circonstance
simplifie beaucoup le travail de tatonnement, car un profilé déterminé
ayant été fixé «i priorix, elle permet de varier les dimensions du réticule
s’adapter aux efforts obtenus, sans avoir besoin de refaire les calculs sauf
dans ce qui a trait & 1’étude des équations aux cotés et a 1'obtention des
efforts définitifs.

Formules pratiques.

Toutes les formules données dans cette partie seront applicables aux
cas de réticules équilatéraux, pour lesquels nous avons déja obtenu les
sections et les moments d’inertie fictifs ainsi que les constantes élastiques.
N’oublions pas que les expressions obtenues ne sont valables que pour
ce type de réticule; toutefois en suivant une marche analogue a celle
déja exposée, nous pourrions obtenir les expressions correspondant a
une inclinaison différente des barres diagonales. De toutes facons les
formules que 'on obtiendrait seraient plus compliquées car il intervient
alors un nouveau parametre, la grandeur 1 ne suffisant pas pour définir
le réticule.

Dans les expressions trouvées seuls les cinq parameétres suivants
interviennent :

S et I, section et moment d’inertie du profil laminé, exprimés en
m? et m*, grandeurs qui, dans certaines limites, peuvent étre considérées
comme coefficients numériques, compte tenu de la discontinuité des jauges
de lamination. '

1, coté du réticule en m, qui d’apres ce qui a été indiqué, interviendra
seulement, a la fin du calcul, dans le développement des équations aux
cotés et dans I'obtention des efforts qui agissent sur les barres du réticule.

L et r, dimensions fondamentales du voile qui au cours des dévelop-
pements en série trigonométrique, interviennent dans tout le procédé
de calcul. Ces grandeurs sont exprimées en m.

Ce type de voile s’applique principalement aux grandes couvertures
de caractére industriel et, en général, se présenteront comme voiles isolées
ou en voiles multiples réunits par les bords ou ¢ = const.

La charge principale a considérer sera celle due a4 son poids propre,
a laquelle on atribuera par la suite I'intégrale particuliére representée par
I’état ‘membrane. Nous pouvons réduire aux charges de ce type non
seulement le poids de la charpente métallique, mais aussi celui des élements
ou des couches de couverture. En plus de ces charges il faudra tenir
compte des surcharges de neige et de vent.

La surcharge de neige et considérée d’habitude dans tous les regle-
ments comme étant uniformément répartie sur la projection horizontale
de la couverture. Cependant, dans le cas des voiles polilobulés, cette
hypothése n’est pas applicable, puisqu’il se produirait des accumulations
sur les rives. Ceci nous autorise a utiliser une loi de distribution uniforme
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tout le long de la directrice qui équivaut & une loi de la forme __ Pn

cos (Px-9)
par unité le longueur en plan. ®x est 'angle d’ouverture du voile mesuré
depuis le bord jusqu’a la verticale. Finstenwalder et Jakobsen, entre
autres, emploient cette hypothése de répartition de neige dans leurs
études sur les voiles cylindriques.

Dans le cas des voiles isolés, cette hypothése de distribution est treés
défavorable, et il convient d’utiliser celle de la répartition uniforme en
plan dont I'intégrale particuliére correspondante sera indiquée ci-dessous.

En ce qui concerne la surcharge due au vent, on peut négliger son
action pour des voiles dont le demi-angle d’ouverture est égal a, ou plus
petit que 50°, ce qui est le plus souvent le cas. Les reglements modernes
admettent que dans une couverture cylindrique a directrice circulaire,
le vent provoque des suctions dans toute la zone sous le vent, et dans un
secteur d’a peu prés 50° compté a partir de la clef, de la zone au vent.
Il y aura lieu de prévoir des pressions dans le reste de la zone au vent
lorsque le demi-angle d’ouverture du voile est supérieur a 50°; c’est un cas
rare en pratique.

Les suctions produisent un allégement dans le régime général de
contraintes du voile et pour cette raison on ne les prendra pas en
considération. Par contre, il faudra les considérer au moment de projeter
I’ancrage du voile, pour tenir compte de soulévements diis & des pressions
intérieures éventuelles du vent.

Ces raisonnements se rapportent aux batiments isolés; dans ces cas
on peut supposer le vent pratiquement horizontal. Lorsqu’il s’agit de
toitures entourées par d’autres batiments, ’action du vent peut devenir
plus complexe & cause des déviations et tourbillons produits par les
obstacles. Ces cas doivent étre étudiés tout particuliérement afin d’aboutir
a une loi de répartition de pressions qui, comprenant avec une approxi-
mation suffisante les actions les plus défavorables, permette un calcul
facile de l'intégrale particuliére correspondante. Pour ces cas, comme
nous le verrons plus tard, la solution du systéme homogene est étudiée
pour une charge symétrique et une autre antimétrique. Il sera possible,
en superposant les deux, d’obtenir la solution correspondant & une charge
quelconque.

3. — Ftat membrane.

En général, les charges extérieures sont réparties d’'une maniére uni-
forme tout le long du voile, ce qui fait que 'on peut supposer la charge
développée en série de Fourier:

pxzilR ‘sinﬂvjrlsin dwx Jrl sin SrX

T | L 3 L 5 L

et, comme il est d’usage dans la théorie générale des voiles pleins, on peut
trouver la solution en additionant les divers termes, et, comme il arrive
dans le cas de ces voiles, il ne sera pas nécessaire, en général, de considérer
plus des deux termes. Cependant, les formules que nous donnons ci-dessous
sont obtenues pour un terme général de la série.
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Dans le cas du poids propre nous avons:

N¢ = (Pk-9) sin a%
Nox =
Ni = (-9) sin a;:— (10)
u= % Lr—:Q (%-1‘) cos (Pgr-7) cos x%
=— V%I)I:'.S ::3 (7 -i—%) sin (Px-9) sin a-f—
= \/43p};5 IrA K— — —) cos (Px-9) sin a—?—

Ces expressions donnent les efforts et les déplacements de l'état
membrane pour une forme général du développement d’'une charge due au
poids propre p (Kg par m?).

Dans le cas d’une charge uniformément répartie en projection hori-
zontale nous avons:

r2 . X
No=—4q — cos? (Px — ) sin « —
L r
Noo = — 4q 5 cos (Px — ») sin (@K—?)COSa—}(—
X

iy

2
Be= 5 {COSQ((DK_?)_SiUQ(q’K——?) sin «
L3 » r
24 (“'_2 ) cos? (P —3) — gSiﬂQ(q’K——?)r cos x =
\3ES Lac2 ‘ 22 7 v
—8q.1 1 0 N . X
_ — +hHY)sin (Pgy — 9) cos (Pgx — ) sin « —
V3ES Lo3 ( 2 )S n (% 7) (Px — o) o -
- 3
we =24 T (19 +—ng‘B’O*)‘:052(‘1)K—<?)— (11)
Vv3ES Lz 3 22 ak .
- ( 17 I 36 ) sin? ((I)[\ — y) sin « }-
o2 i i :

27
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Ces expressions donnent les efforts et les déplacements de 1’état
membrane pour un terme général du développement d’une charge unifor-
mément répartie en projection horizontale q (Kg par m? de projection
en plan).

Toutes les expressions indiquées ont été obtenues en supposant que
le voile s’appuie sur les supports frontaux, c’est-a-dire, en x =0 et
x — L. .

4. — Résolution de Uéquation caractéristique.

Dans les pages précédentes nous sommes arrivés a une équation de
huitiéme degré de la forme

mé+cembt+cy,mt+c2m24¢c, =0 (12)

dans laquelle les valeurs des coefficients sont celles portées dans ’expres-
sion (9). Si nous faisons m*> = t, nous obtenons une équation du quatriéme
degré:

t4+cst3+c4t2+C2t$C0=0 (13)

Etant donné la grande importance du terme indépendant par rapport
aux autres coefficients, une premiére approximation consisterait & prendre

8, —
les valeurs de m =s\/ C, , ¢ étant les huit racines huitiémes de 1'unité
négative, car ¢, est toujours négatif. Cependant, cette approximation
conduit & des erreurs appréciables dans presque tous les cas; elle devient

inadmissible pour des valeurs de ]i < 0,3.

La méthode que nous indiquons ci-dessous, quoiqu’approximative,
introduit des erreurs moindres que celles commises en remplacant dans
B =1 :Sr? les valeurs S et I tirées des manuels qui, d’ailleurs, n’admettent
pas une approximation plus grande.

Cette méthode consiste, dans ses grandes lignes, & égaler le polynéme
(13) & un autre polyndme qui aurait les mémes coefficients c., ¢, et ¢, et
qui serait le produit de deux polynomes de second degré. Ceci se fait,
compte tenu de ce que le terme qui n’est pas commum dans les deux,
c’est-a-dire celui en t, premier degré, est celui de moindre importance.
En faisant quelques développements simples les racines approximatives
de I’équation (13) deviennent:

3 o G4 . c2 2

= 4 6 _
16°° 2i\/(~2 8) .

et en extrayant la racine carrée on obtiendra les huit racines de 1’équation
(12) qui seront de la forme: + a + bi; + ¢ + di.

Pour le premier terme de la série (n = 1) nous obtenons, pour les
cas les plus défavorables des erreurs relatives pour la valeur du polyndome
inférieures au 4:1000 et en général beaucoup plus petites; pour le second
terme de la série (n = 3) et dans le cas le plus défavorable l'erreur

t=—lbt
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augmente légérement, mais on peut continuer a utiliser cette méthode car
I'influence sur les racines et 'influence de celles-ci dans le développement
général, est faible:

5. — Systeme homogeéne.

Les expressions des déplacements, efforts et moments, correspondant

au systéme homogene, et qui se déduisent apres avoir effectué les déve-
loppements de la maniere indiquée précédemment, ont la forme suivante:

W :|/81¢1+B2(D2+B5(D5+B4(D4’] Sindi(—
. . r

=[<K1 B, + Kj By) @, + (K, B,— K, B,) &, + (K5 B; + K, By) &5+

+(K5 B_}—K;l B5) ¢)4l COS « 1

r

= [(Kg B, + Ky Bo) @5+ (Kg By, — Ky By) @6+ (Kyy B+ Ky By) @, +

_:_(K“ B;—KIQ Bs) (DS_ sin o —X—
r
2ES )
N, =————| (K13 B1 +Kyy By) 1+ (K3 By — Ky By) 9 + (K 5B+ K By) 95+
A%(Klﬁ B4'—“K16 B5)¢4| Sin o 4 —X—
, r
3ES
N —“—————| (K47 B+ K5 By) 9 + (K7 By — Ky g By) @5 + (K19 Bs + Koy By) @5+
+" (KIQB4—K20B5)(D4 l Sin o4 i
. r
3ES | | o
S = 31r l (Kgy By -+ Koo Bo) @5+ (Kgy By — Koy By) @6+ (Kos Bs + Koy By) @7
+(K25B4 K)4 Ba) J COS « ——X—
r
2E1 ‘ ‘ ‘
TV 3l (Kys By -+ Kog Ba) @+ (Kgs Bo—KogB1) @9+ (Koy Bs + Kog By) 5+
+ (Ko7 By—Kog st)¢’4] sin « —
_ r
3EI | | | \
M, =iv3l r9| (Kog By +Kjzo Bg) @ +(Kgg By—Kjo By) Po-+ (K31 Bs K3 By) @5+

+ (K51 By —K3z Bj) ¢4J sin « %
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3EI
Mox = EIRE [(Kss B, 4Ky Bo) @51 (K55 Ba— K34 By) @6+ (K35 Bs + Kz By) @7+
+ (K55 B4 - K56 Bg,) (I)SJ COS « -—X—-
r
3EI ‘
¢= V31D [(st B, 4K Bo) @5+ (K57 Bo—Kig By) @6+ (K9 B+ Ky By) @71

+(K59 B4'—K40 Bg,) (I)S] sin « i
R Tr

1r , '
O — T| (K41 Bl + K42 BQ) (I)5 e (K41 BQ - K42 Bl) (I)G + (K45 BS I K44 B4) (I)7 —|_
+(Kys By = Kyy By) @ | sin « =
_ r

3EI |
&=131e [(K‘*S B, +Kis Ba) 95+ (Kys By — Ky By) @6+ (K7 Bs+Kyg By) 01+
+ (K47 B-} - K48 Bs) (I)S -] sin a _;.
3EI | -
Qx - m l (K49 Bl +K50 BQ) q)l+(K49 BQ— K5O Bl) (I)2+(K51 B5+ K52 B4) ¢5+

+(K51 By — Ks50 B5) 94 I cos o« —
_ r

R étant la réaction normale au bord longitudinal, ¢ la rotation
d’une section, et B,, B, B; et B, des constantes d’intégration qu’il faudra
déterminer conformément aux conditions aux cotés longitudinaux.

Les fonctions @,; ®,; @3, """, @ s’expriment de la maniére suivante:
¢, —e " #cosbot+e—3@Wcosbn ; Ps=e~“®cosby e—89cos bw
P)— e~ % sin by e —29sin bw ; Py=e "% sin by F e—23»sin bw

P3—e~%cosdote—c®cosdo ; P, =e " cosdy T e—3%cos dw
P,—e—~%sindy +e—C®cosdn ; Pg=e " “sindyFe—3®cosdw

=2 Py — 9, c’est-a-dire que o est I’angle mesuré au bord gauche du
voile. Les signes supérieurs correspondent a des charges symétriques
aux deux bords longitudinaux et les signes inférieurs a des charges anti-
métriques, c’est-a-dire a4 des charges linéaires sur un bord longitudinal
égales et du méme signe, ou de signe contraire, & I"autre bord, respecti-
vement.

Les constantes K s’expriment de la maniére suivante:

Pour le déplacement longitudinal u:

=P1ml:—q1n1
n12+ m12

K _ Pymy—qny
57 The? 4+ my2
9“ T Mg

K,
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. P1n1+q1ml . ~ P2n9+q2m2
2 — n12+ mlg ’ 1= n22+m22

Avec:

m;=6ab (3+83+2)

ny =22 (21--20602)- 3 (a2-b?) (3-+85 )

pi=108%zab (a2 +b2)-126ab+*+545abx

q=9Y2+275=z(a*+b*-6a2b?)-635*(a2-b2)+3052 +
+2752(a2-b2)-305

my=06cd(3+8 {22

ng — 22(21 +20 6 22)- 3 (c2-d2) (3 +8 5 »2)

pe=10825cd(c2-d?)-126cd*+54fLcd =«

qe=021+27Lx(c*+d*-6c2d?2)-6333(c2-d2)+30054+
+2762(c2-d?)-3051

Par le déplacement transversal v:

ngaha-bkﬁ : K, = c K;-dKg
a2+ b2 c2 +d2
Klozal\6+bl\5 : K12:C I\S—T_dl\-‘v
2t bo ¢ + a2
K5=61—— K, (3(a2b?)-1022)+62abK,+ 6=
- -
KSZ 51— Kg 3(3 (ag-bg)-IOQQ)-ﬁabKl I
o 1.
K7:51— Ky (3(c2-d2)-1042) + 6 cd K, + 6 =
o L -
1 1. o )
KS:T 1\4 (3<C2'd2)'101')'6CdK5J
AL

Pour l'effort longitudinal Ni:

411

K13=—'51 K]'33K9'3bk10+3 N K15:—52K5'30K11-3dK]2+3

Kiy=—52K,-3aK;+3bKy, ; K;z=—532K,-3cK;p+3dKk;,
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Pour l'effort transversal Ny :
K;;=—aK;-3aKy-3bK,;+3 ; Kjy=—=K;-3cK;;-3dK;p+3
Kig=-—2K,-3aK;,+3bK, ; Kog=—aK;-3cKp+3dK,

Pour l'effort tangentiel Ny :
Koy=+a2Ky-aK;-bK, ; Kys=aKj1-cK;5-dK,
Koo = +aKy-aKy+bK; ; Koy =aKpp-cKy+d Ky

Pour le moment fléchissant longitudinal M,:
Ky;=3-542+3(a2-b2) ; Ko. =3-252+3(c2-d?)

Pour le moment fléchissant transversal Mo:
K29=3-a2+3(32-b2) , K51=3-d9'+3((‘,2-d2)
K50=_"6ab' , K5«_):—6Cd

Pour le moment de torsion My, ;

K55=——(aK1+bK2+aK9+2aa) ; K55—'=—(CK5+dK4+OCK“+20CC)
Kz, = —aKy+bK;-aKjg+2ab  ; Kg=—cK,+dKz-2Kp+22d

Pour la réaction longitudinale R¢ :

K57=—‘aK29‘bK50'2“K55 ; K5J:—CK51'dK52-2xK53
Kz =—a Kz +bKy-2xKj, ; Ky = — cKsptdKs -22Ks

Pour la rotation 6:
Ky=—Ky—a ) Kiy=—K;—c¢

Kjp=—Kj,+Db ) Ky=—Kj+d

Pour l'effort tranchant Q.:
K45=—3K29-bK5J-06K55 3 K47=—CK51'dK52'aK55
K= —aKjs,+bKg-2Kj ; Kig=-—cKz+dKs -=Ks
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Pour Teffort tranchant Q.:

Km:—;—le'aKaa'me ; Kg,]——%iKgy‘CKss-szs
2 , 2
K50:~3“1K25'3K5ﬁb1<55 ) Kso = 3 % Kog- ¢ Kgs+d Ky

a et ¢ les parties réelles des racines de I’équation du huitieme degré

. . nEr .
et b et d les parties imaginaires, « = L ; n = 1 pour le premier terme

de la série de Fourier, n — 3 pour le 2éme, etc. Les efforts et les
moments sont indiqués par unité de longueur, c’est-a-dire Kg par m et m.
Kg. respectivement.

Nous avons déja indiqué que cette théorie est actuellement en cours
de verification au «Laboratorio Central de Ensayo de Materiales de
Construccion» de Madrid, au moyen d’essais sur modeéle réduit; les
premiers résultats obtenus sont satisfaisants. On a, d’autre part construit
quelques couvertures de
ce type; parmi celles-ci,
on peut en citer une
formée par une série
de huit éléments égaux
de 12,70 m de portée,
6,50 m de rayon et un
angle au centre de 90°
avec une maille triangu-
laire équilatérale de
1,27 m de coté avec sec-
tion double T de & cm
projetée pour couvrir
la halle des «Ateliers de
I'Institut Technique de
la Construction et du Ciments de Madrid, dont le résultat a été pleinement
satisfaisant. La photographie ci-jointe montre cette couverture.

Afin de faciliter 'étude de ce type de couverture et d’éviter le
calcul pénible mais nécessaire pour déterminer les efforts. nous mnous
occupons actuellement du calcul d’une premiére série de 36 exemples
différents. Nous avons I'intention de terminer cette premiere série, avec
les résultats obtenus puis de faire des tables qui faciliteraient les travaux
de tatonmement et projet. Nous espérons pouvoir donner au prochain
Congrés de Lisbonne une idée de ces études.

L’auteur remercie MM. les Professeurs E. Torroja et J. Batanero,
de I'Ecole de «Ingenieros de Caminos, Canales y Puertos» de Madrid
pour leurs renseignements et leurs idées qui ont été d’une grande utilité
pour le développement de la théorie exposée dans cette étude.
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RESUME

L’auteur présente une théorie des voiles minces cylindriques 2a
directrice circulaire, formés par une maille composée de triangles équilaté-
raux dont les cotés sont constitués par des profils laminés symétriques.
Le développement de cette théorie est analogue a celui de Ia théorie
des voiles pleins dans le domaine élastique. Dans ce cas le corps bien
qu’homogeéne est anisotrope. Il présente trois plans de symétrie élastique,
ce qui conduit aux cinq constantes €élastiques suivantes: deux modules
d’élasticité, deux coefficients de Poisson et un module de rigidité.

On a considéré dans le calcul, les deux efforts normaux et 1'effort
tangentiel dans le plan du voile, les moments fléchissants longitudinaux
et transversaux, le moment de torsion et les deux efforts tranchants,
normaux au voile.

Dans une premiére partie l'auteur expose les grandes lignes de la
théorie, et dans une deuxiéme il donne ley formules d’application avec les
solutions du type membrane pour les cas du poids propre et de la charge
uniformément répartie en projection horizontale. Une solution approxi-
mative de I’équation caractéristique est indiquée et la solution générale
du systéme homogéne pour une charge symétrique et antimétrique aux
bords longitudinaux est donnée.

Les premiers résultats obtenus au cours des essais en modéle réduit
réalisés au «Laboratoire Central d’Essais de Matériaux de Construction»
de Madrid, et sur quelques couvertures déja construites et calculées d’aprés
cette théorie, en confirment jusqu’ici la validité.

SUMMARY

The author presents a theory for circular directrix shells, made of
equilateral triangular metwork, the sides of which are composed of
symmetrical laminated sections. The development of this theory is similar
to the elastic theory for mormal shells, though in this case the shell is
homogeneous but not isotropic; it presents three plans of elastic symme-
try, and thus introduces the following five elastic constants, two elasticity
moduli, two Poisson coefficients and one rigidity modulus.

The calculation considers two normal and one tangential stresses
in the shell plan, the longitudinal and transversal bending moments,
the torsion moment and the two shearing efforts perpendicular to the
shell.

In the first part a concise idea of the theory’s essential features is
givenj in the second part, the applied formulae, are given together with
the membrane solutions for the case of the dead load and for that of an
uniform overload ; an approximate solution of the characteristical equation
and the general solution of the homogeneous system for a symmetric and
an antimetric load on the longitudinal edges is also given.

The wvalidity of this theory has been confirmed by the first results
obtained from the tests on scale models at the «Central Laboratory for
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Testing Building Materials» of Madrid, and also from roofs already
built and calculated according to this theory.

ZUSAMMENFASSUNG

Der Verfasser entwickelt in diesem Aufsatz eine Theorie der Zylin-
derschalen mit kreisformiger Leitkurve; die Schalen sind aus einem
Gitterwerk mit gleichseitigen Dreiecken gebildet, deren Seiten aus symme-
trischen, gewalzten Profilen bestehen. Die Theorie iiber dieses Gitterwerk
ist der Elastizitdtstheorie der kontinuierlichen Schalen &hnlich. Dabei
ist der Baukorper in diesem Falle homogen, abtr anisotrop und besitzt
drei Elastizitits-Symmetrie-Ebenen. Daraus ergeben sich fiinf elastische
Konstanten: zwei Elastizitatsmoduli, zwei Poissonzahlen und ein Steifig-
keitsmodul.

Fiir die Berechnung wurden in Betracht gezogen: zwei Normalkrifte
und eine Schubkraft in der Schalenebene, die Léings- und Querbiege-
momente, das Torsionsmoment und die beiden senkrecht zur Schale.
wirkenden Schubkrifte.

Im ersten Teil des Aufsatzes werden die wichtigsten Punkte der
Theorie erlautert und im zweiten Teil die Anwendungsformeln fiir gleich-
maissig verteilte Belastung und Eigengewicht nach der Membrantheorie
entwickelt. Dann folgt eine Niaherungslosung der charakteristischen
Gleichung sowie die allgemeine Losung des homogenen Systems fiir
symmetrische und antimetrische Belastung der Langsriander.

RESUMO

O autor apresenta uma teoria de coberturas delgadas cilindricas
de directriz circular, formadas por uma malha de tridngulos equilateros
cujos lados sdo constituidos por perfis laminados simétricos. O desenvol-
vimento desta teoria € semelhante ao da teoria em regime elastico das
estruturas delgadas continuas, com a diferenca de que, neste caso, o
corpo é homogéneo mas nio isétropo, apresentando trés planos de simetria
elastica, o que da origem ao aparecimento de cinco constantes elasticas:
dois médulos de elasticidade, dois coeficientes de Poisson e um moédulo de
rigidez.

Consideram-se, no calculo, os dois esforcos normais e o esforco
tangencial ao plano da estrutura, os momentos flectores longitudinal e
transversal, o momento de torsdo e os dois esforcos cortantes normais a
superficie. Na primeira parte da-se uma ideia muito resumida dos pontos
essenciais da teoria, e na segunda parte dao-se as fé6rmulas de aplicagdo
com as solugbes do tipo membrana para os casos do peso proprio e carga
uniformemente distribuida em planta, uma solucao aproximada da equacio
caracteristica e solucdo geral do sistema homogéneo para uma carga
simétrica e antimétrica, nos bordos longitudinais.

Os primeiros resultados obtidos em ensaios em modelo reduzido, que
se estdo a realizar no Laboratério Central de Ensaio de Materiais de
Construcdo de Madrid, e em algumas coberturas ja construidas e calcula-
das segundo esta teoria, confirmam, até agora, a sua validade.
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