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A Research on the application of the theory of orthotropic
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Recherches sur l'application de la theorie des plaques
orthotropiques aux ponts-route metalliques

MASAO NARUOKA HIROSHI YONEZAWA
Professor at Kyoto University Assistant Professor at Yamaguchi University

Kyoto Kyoto

1. Introduction.

In the design of steel highway bridges, the main girder, floor beam,
stringer and slab are calculated individually as independent members in
the conventional design method, but actually these members resist the
load as co-operating members and operate together. Therefore, the stress
calculated by the conventional method differs considerably from the stress
measured from the loading test. On the other hand, the calculation by
the theory of continuous plate or grillage beam contains the co-operation.
action between each beam and slab and has been discussed in various
ways as an effective method. The theory of the orthotropic plate is one
of these methods and is very effective. In this paper the results of the
application of the theory of the orthotropic plate to existing bridges are
compared with those obtained by stress measurement and conventional
calculation.

2. Strain measurement, discussion of results and notations.

The strain was picked up by electric resistance wire strain gages
and measured by the Baldwin SR-4 Strain Indicator and SR-4 Switching
and Balancing Unit. In the calculation of the stress, Young's modulus
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of steel and reinforced concrete were assumed as 2,100,000 kg/cm2 and
210,000 kg/cm2 respectively. The theoretical stress was calculated by
the conventional method (briefly, method A), by the theory of orthotropic
plate introduced by M. T. Huber (briefly, method B), by the theory
of isotropic continuous plate supported by elastic beam (briefly, method C)
and by the theory of grillage beam (briefly, method D).

The result of the measured value is given in the form of stress ratio
and deflection ratio. These ratios are obtained by (measured value)/
(calculated value).

Ratio oo means that the calculated value corresponding to the
measured value is zero.

In discussing the result of the measurement in the case of the stringer
of the floor system of truss bridges and the result in the case of the main
beam of composite beam bridges, the ratio of the load on each stringer
or main beam to the total load (brieflyy load ratio) was adopted besides
the stress ratio. This ratio was calculated as follows:

stress of a stringer or main beam
load ratio —

total of the stress of each stringer or main beam

In this calculation, the measured stresses and calculated stresses by
methods A, B, and C were used as the stress in the denominator and
numerator.

The following notations are used.
EIS: The flexural rigidity of the stringer whose effective width

of the compression flange is as.

EIf: The flexural rigidity of the floor beam only in the case of
through plate girder bridges.

EIC: The flexural rigidity of the load distributing cross beam whose
effective width of the compression flange is X in the case of model
composite grillage beam bridge.

Kr

The interval of the stringers.
The interval of the floor beams.
The interval of the main beams.

DT: The flexural rigidity of the orthotropic plate in the direction
of x, that is, the bridge axis.

Dy\ The flexural rigidity of the orthotropic plate in the direction
of y, that is, perpendicular to the bridge axis.

In the calculation by the theory of the orthotropic plate, H2 Dx Dy
and v 0 were assumed.

3. Application to the through plate girder bridge.

The Otanigawa bridge is a through girder bridge as shown in Fig. 1.

In the design of such a through girder bridge, the slab, stringer, floor
beam and main girder have been calculated individually as independent
members. One method of analysing the stringer is to assume the slab
as a one direction «continuous rectangular plate simply supported by two
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opposite floor beams and elastically supported by stringers. Now, if
this bridge is regarded as an orthotropic rectangular plate with two
opposite edges simply supported at the abutements and the other two
edges elastically supported by the main girders, a rational calculation
will be carried out at once for all members.

In this case, EIsfks is adopted for Dx. Next, the question is how
to determine Dy. Once more, EIf/\f is adopted for Dy. As a matter of
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Fig. 1. Plan and cross section of the
Otanigawa Bridge
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Fig. 2. State of loading on the floor system
of the Otanigawa Bridge
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fact, the change of value Dy produces no remarkable changes in the
bending moment. Thus, Dx/Dy for the orthotropic plate is 0.71.

Both test loads were placed at different positions as shown in Fig. 2
and the stress ratio at sections A, B, C, E, F and G are shown in
Table 1. The theory of the orthotropic plate gives better results than
the conventional method, particularly so in the case of the stringer.

Furthermore, the following facts appear:
1) When there is a load on the floor beam or on the neighbouring

stringer, the bending moment in the observed stringer is positive by
method B, and is negative or zero by method A.
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TABLE 1

Stress Ratio of Each Member of the Otanigawa Bridge (%)

State of Loading 1 2 3 4

Method of calculation A B A B A B A B

Main Beam, section A

Main Beam, section B

52 62

58 68

60 71

60 71

54 58

50 54

60 71

51 64

Stringer, section C

Stringer, section E

Stringer, section F

37 107

60 103

38 102

38 95

63 104

42 109

oo 112

oo 127

47 105

52 107

2Q0 118

Cross Beam, section G 40 52 46 65 27 64 48 71

2) By method A, the stress varies according to loading state 2 or 3
in Fig. 2, while it is almost constant by method B.

The measured values show that the theory of the orthotropic plate
is more rational. From this theoretical and experimental analysis, it
becomes clear that the theory of the orthotropic plate is available to the
calculation of through plate girder highway bridges.

Furthermore, the method for the determination of Dy and the
boundary condition about the main girder is a problem to be studied,
and by an aecurate research of this problem, better results will be obtained.

4. Application to the floor system of truss bridges.

The design of the stringer is one of the important problems in the
design of the floor system of a truss bridge. In the conventional
calculation, the stringer being considered as a beam (simple or continuous)
and the cooperative action between the flexible stringer and slab not
taken into account accurately, the measured stress is considerably smaller
than the conventionally calculated value. Furthermore, because the
composite action between the stringer and the slab by the slab connector
and the co-operation between the stringer and the members of the truss
are disregarded, this tendency becomes more remarkable. In this paper,
the result observed on the stringer of the floor system of the pony-truss
of Ryogoku bridge is discussed and compared with the calculated result.
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This bridige is shown in Fig. 3, and a 14.8 t truck is used as the
test load. The loading line of the rear wheel is at the center of the span
of the stringer and the states of loading are shown in Fig. 4. It is
most ideal, but difficult, to analyse the slab, stringer and floor beams as
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Fig. 3. Pony truss bridge, the floor system of which wTas under test
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Fig. 4. State of loading of the stringer of the floor system

one body in the calculation of this floor system and the determination of
the boundary condition is not as easy as in the above mentioned through
plate girder bridge, Here, the theory of the orthotropic plate with two
opposite edges simply supported by floor beams and the other two
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opposite edges free or elastically supported by outside stringers is applied.
As the bending moment of the stringer is almost equal whether the
edges are free or elastically supported, the analysis for the case of
the free edge is mentioned here. Dx is determined in the same way as in
the case of Otanigawa bridge and the flexural rigidity of the slab is
adopted as Dy, and Dx/Dy 5.9 is obtained.

Table 2

Stress Ratio of the Stringer of the Pony-Truss of the Ryogoku Bridge (%)

State of Loading l 2 3 4

Method of calculation A B A B A B A B

Stringer 1 at its midspan-section 23 64 31 65 00 70 00 75

Stringer 2 » » >• » 34 55 31 55 22 59 33 66

Stringer 3 » » » » 42 73 23 56 36 60 33 57

Stringer 4 » » » » oo 62 00 78 31 58 23 66

Table 3

Load Ratio of the Stringer of the Truss of the Ryogoku Bridge

State of Loading l 2 3 4

Method of
calculation M A B C M A B C M A B C M ABC

Stringer 1

Stringer 2

Stringer 3

Stringer 4

42
30
22

6

56 40
26 33
18 19
0 8

48
30
17

5

27
29
30
14

31 27
29 29
40 30

0 14

28
30
29
13

17
29
30
24

0
47
29
24

15
31
30
24

17
36
33
14

10
20
29
41

0 9 7
22 22 20
27 31 26
51 38 47

Total 100

Note: Method of calculation M mens that the measured stresses are used as the stresses in the
denominator and numerator of the load ratio.

The stress ratio by methods A and B for the loading state shown
in Fig. 4 is shown in Table 2. The load ratio of each stringer is shown
in Table 3. In these cases the stress ratio obtained by method A is
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extremely small, its mean value being about 30 %, but the stress ratio
obtained by method B is about 60 %, and the ratio of 40 % remains
unknown. One of the reasons is that the co-operation between the slab,
stringer and lower chord is disregarded. Next, the load ratio calculated
by method B agrees very well with the load ratio obtained from the
measured stress and its results are better than the results of method C.

5. Application to composite beam bridges.

The application to the side span of Ryogoku bridge is described
hereunder. This bridge is formed by three composite beams (l — 18.0 m)
as shown in Fig. 5. A 14.5 t truck is used as test load and the state of
loading is shown in Fig. 6. The center of the span is loaded by the rear
wheels. Dx and Dy are calculated as in the previous case and Dx/Dy was
130 in this composite beam bridge. The stress ratio and load ratio of
each main beam! are show in Tables 4 and 5.
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\

Fig. 5. Cross section of composite
beam bridge

h^ :

/so

Fig. 6. State of loading on composite
beam bridge at mid-span

In the most important case, when one wheel is placed on the side
main girder, the stress ratio by method A is not uniform, and the results
of method B are better. Next, the stress ratio of the span bending moment
of the slab My under one of the rear wheels in the case of loading state
2 in Fig. 6 (rear wheel is at the center of the span of the slab), is 92 %
by method B and 42 % by the theory of the continuous plate which is
provided by the Japanese Specification of Steel Highway Bridges.

6. Application to model composite grillage beam bridge.

The application of the grillage beam theory to bridges has been
studied recently, but this Solution becomes very complicated when the
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Table 4

Stress Ratio of the Composite Beam of the Ryogoku Bridge (%)

State of Loading l 2 3

Method of Calculation A B A B A B

Beam 1 at its midspan-section
Beam 2 » » » »
Beam 3 » » » »

64
53

340

81
65
72

69
46
69

53
57
62

00
50
69

73
68
85

Table 5

Load Ratio of the Composite Beam of the Ryogoku Bridge (%)

State of Load ng 1 2 3

Method of calculation M A B M A B M A B

Main Beam 1

Main Beam 2
Main Beam 3<

42
31
27

50
44

6

38
35
27

29
35
36

25
44
31

31
35
34

24
32
44

0
50
50

26
35
39

Total 100

Note: The meaning of M is the same as in the case of Table 3

grid and slab are composed and the effect of the continuity of the slab
or of the torsion of the girder is contained in the theory of the grillage
beam or when the inumber of main girders and load distributing cross
beams increases greatly. On the contrary, by the theory of the orthotropic
plate all cases are dealt with as plates. A model of the grillage beam
bridge as shown in Fig. 7 was tested. Dx is determined as before, but
for this model in which there is only one cross beam, the determination
of Dy in the direction of the cross beam is not easy. In this case,
Dy — Elf/l was adopted. Thus Dx/Dy 2.15 was obtained. The deflection

ratio and stress ratio at mid-span and quarter-span points of each
beam when loads of 4.9 t are placed simultaneously at the center of
main girders B and D, are shown in Table 6 which also contains the values
obtained by method D. In short, the value obtained by method B agrees
with the result of method D, and even in the case of a single cross beam,
a satisfactory result is obtained by the application of the orthotropic plate.
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Furthermore, the more aecurate the determination of Dy, Hy v, etc.,
the better the result obtained will be.
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Fig. 7 Model composite grillage beam bridge

Table 6

Stress Ratio and Deflection Ratio of Model Composite Grillage
Beam Bridge (%)

Stress Ratio Deflection Ratio

Measured Section y2 % y2 V±

Method of calculation B I) B D B D B D

Main Beam A
Main Beam B
Main Beam C

81
80
85

r-

r-

in

00

00

00

70
68
81

95
70
82

88 96
95 93
96 92

83 89
91 87
91 86

7. Conclusion.

By comparing the results measured in various kinds of bridges
with the theoretical value obtained by the application of the theory of
the orthotropic plate, it becomes obvious that this theory is a suitable
method for the calculation of bridges. It is one of the merits of this
method that this analysis of a plate is applied simultaneously to the
calculation of the main girder, floor beam, stringer, slab, etc.

The method for the determination of Dx, DVy H, v and the boundary
condition stated in this paper is believed to be a proper practical method,
but there are many problems to be studied in detail. If the determination
of these values and the boundary conditions improves, better results will
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be obtained. This will be done by a model test of the beam and girder
bridge.

In the analysis by the theory of the orthotropic plate, the differential
equation of he 4th order of M. T. Huber was used, but this equation is
only effective in the case of the orthotropic plate itself, and can not be
applied accurately to the beam and girder bridge strueture with slab.
Strictly speaking, thö differential equation of the 8th order of K. Trenks
must be used. However, the result of the application of the differential
equation by M. T. Huber shows that the theory is very effective in the
analysis of girders and floor Systems.

This experimental research was done in the elastic ränge of small
stress, but it can be extended to the whole elastic ränge. Whether the
theory of the orthotropic plate can be applied to the co-operation of each
member beyond the elastic ränge or not must be studied in the future.
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SUMMARY

The results of the stress measurement of a through plate girder
bridge, stringers of the floor system of a truss bridge, main beams of a
composite beam bridge and main beams of a model composite grillage
beam bridge are compared with those obtained by the conventional method
and by the theory of the orthotropic plate introduced by M. T. Huber.
In conclusion, it becomes obvious that this theory is very effective in the
analysis of girder and floor system of bridge1 structures.

ZUSAMMENFASSUNG

Die Ergebnisse von Spannungsmessungen an einfache Balkenbrücken
mit unterliegende Fahrbahn, an den Längsträgern der Fahrbahnroste
von einfache Fachwerkbrücken, an Hauptträgern von Brücken mit
Verbundträgern und an Hauptträgern bei Modellbrücken mit Trägerrost
wurden mit denjenigen Werten verglichen, welche man in üblicher Weise
und mit Hilfe der Theorie der orthotropen Platte erhält, wie sie von
M. T. Huber entwickelt wurd. Es zeigt sich dabei in eindeutiger Weise,
dass diese Theorie für die Berechnung von Trägern und Platten bei
Biückenbauten sehr wertvoll ist.
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RESUMO

Comparam-se os resultados obtidos medindo as tensöes numa ponte
de alma cheia, nas longarinas do tabuleiro de uma ponte triangulada,
nas vigas principais de uma ponte mixta betäo/aQo e nas vigas principais
de um modelo reduzido de ponte mixta com viga reticulada, com os
resultados obtidos pelo calculo convencional e pela teoria da placa orto-
tröpica da autoria de M. T. Huber.

Em conclusäo, torna-se evidente que a referida teoria permite obter
resultados muito satisfatörios quando do estudo das vigas e dos tabuleiros
das pontes.

RESUME

L'auteur compare les resultats obtenus par la mesure des contraintes
dans les ponts-poutre ä äme pleine, dans les longerons du tablier d'un
pont triangule, dans les poutres principales d'un pont mixte beton/acier
et dans les poutres principales d'un modele reduit de pont mixte ä poutre
en treillis avec ceux obtenus par le calcul conventionnel et par la theorie de
la plaque orthotropique düe ä M. T. Huber.

En conclusion, il semble evident que cette theorie permet d'obtenir
des resultats tres satisfaisants lors de l'etude des poutres et des tabliers
des ponts.
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Voiles minces cylindriques formes par une maille triangulaire

Metallic cylindrical shells made of a triangulär network

Kreis-Zylinderschalen mit Metallischem Dreiecks-Gitter

Coberturas delgadas cilindricas metalicas formadas
por malha triangulär

FLORENCIO DEL POZO

Ingeniero de Caminos, Canalesi y Puertos

Madrid

Generalites

L'idee d'aboutir ä une Solution en voile mince adaptee aux charpentes
metalliques provient, d'une part, de la consideration simultanee des avantages

ecoinomiques et esthetiques des voiles pleins en beton arme, et,
d'autre part, de la legerete des structures en acier.

Les couvertures ä voiles minces en beton permettent, en general,
une economie de matiere notable; economie qui est souvent annulee par
le prix relativement eleve du cintre et du coffrage, qui ne peuvent etre
utilises qu'une seule fois dans la plupart des cas.

D'autre part, dans ce type de strueture et specialement dans les
couvertures ä grande portee, le poids propre entre pour une part importante
dans l'ensemble des surcharges totales que la strueture doit supporter
et il convient, par coinsequent, de le reduire au minimum. Parmi les
differentes Solutions de couvertures continues en beton, celle du voile
mince offre les avantages correspondant ä son poids propre minimum;
cependant, celui-ci est beaucoup plus grand que celui d'une charpente
metallique ä toiture en fibroeiment ou materiau similaire et protegee ä
Finterieur, le cas echeant, par un revetement en matieres isolantes.

Or, les structures metalliques ordinaires, fermes, portiques etc., ont
souvent besoin d'elements resistants, disposes ä Finterieur de la nef,
causant une obstruetion, et qui sont presque toujours ä deconseiller du point
de vue de l'esthetique. Ces considerations suggerent l'idee d'appliquer
aux structures metalliques les methodes de calcul des voiles Continus, mais
en remplagant le voile par un treillis triangulaire leger, inscrit sur la
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surface theorique de ce voile. L'etude de quelques projets de ce type
de strueture, et les essais en modele reduit qui sont en cours, permettent
de confirmer les grandes possibilites et l'interet qu'offrent ces couvertures.

Le reseau triangulaire, equilateral ou non, est facilement adaptable
aux surfaces reglees, et parmi celles-ci, aux cylindriques. Dans ce cas,
le reseau est forme par des generatrices continues et deux systemes
diagonaux avec inclinaisons symetriques par rapport ä la directrice.
L'etat actuel de la technique de la soudure permet l'emploi exclusif de
profiles commerciaux courants, sans avoir recours ä des usinages.

Des couvertures cylindriques de ce type ont ete construites, les unes
utilisant des profiles speciaux brevetes, en tole pliee, les autres utilisant
des profiles lamines ordinaires; jusqu'ici cependant, la capacite portante
de la charpente etait confiee ä l'effet de voüte, et non pas ä l'effet de voile.

Dans ce qui suit nous exposons les grandes lignes d'une theorie des
voiles cylindriques reticules, fondee sur la Solution classique des voiles
pleins en regime elastique. Cette theorie, dont la validite semble acceptable
pour le voile reticule infinitesimal, doit etre confirmee par l'experience,
et, peut etre simplifiee en l'extrapollant, pour le cas pratique de reticules
non elementaires.

Theorie flu voile cylindrique reticule a directrice circulaire.

La theorie des voiles pleins en regime elastique est bien connue et
a ete amplement verifiee au cours d'une trentaine d'annees d'application.
Nous fonderons sur eile le calcul des voiles reticules, objeet de la presente
etude.

Nous supposerons par la suite que la transmission des charges
superficielles se fait au moyen d'efforts du type membrane; hypothese
parfaitement admissible quand il s'agit de charges continues, les erreurs
introduites etant negligeables.

Conformement ä ce qui precede, nous developperons le calcul en
deux parties: la premiere traitera de l'etude generale du voile, abstraction
faite des charges exterieures superficielles, et des charges lineaires aux
bords longitudinaux 3 la deuxieme traitera de l'etude de l'etat membrane
pour la transmission des charges superficielles. La superposition des
deux etats anterieurs et les conditions aux cotes que nous imposerons,
nous donnera les efforts definitifs dans le voile dans les conditions admises.

1.-Notations.

Sur le voile, l'origine des x sera l'appui dorsal, et celle des 9 le
bord droit.

L'effort longitudinal par unite de longueur Nx, ainsi que l'effort
transversal N© seront positifs lorsqu'ils produisent un effort de traction
dans l'element considere. L'effort tangentiel N o x ou Nx<? sera positif
quand il represente une traction selon les valeurs croissantes de x et 9.
Le moment flechissant longitudinal Mx et le moment flechissant transversal

Mcp seront positifs lorsqu'ils produisent des efforts de traction
ä l'intrados du voile. Les efforts tranchants normaux au voile Qx et Q cp

et la reaction normale R$ du bord, seront positifs lorsqu'ils sont diriges
vers le haut sur faces les plus proches de l'axe des 9 ou des x respective-



VOILES MINCES CYLINDRIQUES 407

ment. Le moment de torsion Mcpx ou Mxü est positif lorsqu'il produit un
effort tangentiel positif ä l'intrados.

Les deplacements longitudinal et tangentiel u et v seront positifs
lorsqu'ils ont le sens des x ou 9 positifs, respectivement, et le deplacement
normal au voile w sera considere positif lorsqu'il est dirige vers le haut.
La rotation du voile 6 sera positive lorsque la section toume dans le sens
des aiguilles d'une montre.

2. - Theorie generale.

Comme simplification de la theorie generale, nous supposerons par la
suite que les efforts tangentiels au plan du voile NCx et Nxo sont egaux,
ce qui implique que la composante tangentielle du moment de torsion est
nulle. Par analogie, nous supposons egaux les moments de torsion
Mcox et MxCp.

Ces simplifications offrent une approximation plus grande que celles
qui correspondent aux hypotheses de Finsterwalder.

Ayant suivi la theorie classique des voiles pleins, il nous faudra
resoudre le Systeme forme par les equations d'equilibre de l'element de
voile et par les rapports qui lient les efforts aux deplacements. Le
Systeme forme par les equations d'equilibre de l'element de voile n'est
aucunement affecte par la Constitution interne de cet element; il sera
par consequent le meme que celui obtenu pour les voiles pleins. Au
moment d'etablir les rapports qui lient les efforts avec les deformations
et deplacements, il faudra au contraire tenir compte des caracteristiques
elastiques de l'element de voile.

Nous supposons que le voile est constitue par une maille infinitesimale
de triangles equilateraux (Fig. 1), et nous considererons comme element
differentiel l'un quelconque des losanges
formes par deux triangles adjacents dont
le cote commun est dispose selon la gene-
ratrice: ABCD, par exemple. Un probleme
d'elasticite se pose alors, dans lequel le
corps considere est homogene, mais non
isotrope; il a, cependant, dans son aniso-
tropie, trois plans de symetrie elastique.
Ce probleme general renferme necessaire-
ment douze constantes elastiques, quoique
l'on puisse les reduire ä cinq en considerant \s FlG# 1

les hypotheses fondamentales des voiles;
par consequent, le Systeme qui lie les contraintes aux deformations, peut
s'ecrire sous la forme suivante:

{ £x -r v9 £9;

(e* + vx£x)

vx —
1 Vx Vcp

(7(Q

E0

1 Vx V<p

TXQ G. y xö
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Dans ces expressions il apparait deux modules d'elasticite Ex et E<p, un
module de rigidite G et deux coefficients de Poisson vx et v^ desquels
vx represente le rapport e<p : s* pour g0 0; et v? le rapport sx: s© pour
*x 0.

Soit S la section de la barre elementaire, I son moment d'inertie
par rapport ä la surface moyenne du voile, 1 le cote du triangle elemen¬

taire et E le module d'elasticite du materiau qui
constitue les elements du reticule profiles en acier
ordinaire.

L'on admet que les barres qui composent le
reticule sont des profiles symetriques par rapport
ä son intersection avec la surface moyenne.

Si nous considerons le losange elementaire
ABCD (Fig. 2) et supposons un effort de
compression P applique dans la direction de la diagonale

AC, en determinant les efforts et les
deformations que presente l'element, nous obtenons:

\

%

CT Jb

t
Ec>

Ob

Fig. 2

S.V^ '
3 VZ. ES

5P

5P 3 _.E

V/3.ES 3v'3ES
_3_

5

(2)

(3)

Cette valeur, plus grande que 0,5, ipour un coefficient de Poisson
peut nous surprendre, ä premiere vue; pour l'expliquer. il suffit de
tenir compte des caracteristiques d'anisotropie du corps etudie, et verifier
que le module d'expansion de volume obtenu est positif.

Si, dans la meme fig. 2, nous supposons le losange elementaire
ABCD soumis ä une compression P dirigee selon la diagonale BD, nous
avons:

_P_

S

P

ES
(4)

3 ES

P

ES 3
(5)

Pour calculer la valeur du module de rigidite G nous considererons
le losange elementaire ABCD soumis ä l'action de deux couples en equilibre

de valeur P. P \37fig. 3; ä l'aide de cette figure et de la fig. 4,

nous obtenons:

h +h
P.l,
S lt/t IL

s
4 PI

V'TES
)/3

(6)
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Etant donne que les constantes Ex, Ecp, vx, v? et G, sont connues,
nous avons les rapports qui lient les contraintes aux deformations (1) et,
par consequent les rapports contraintes-deplacements qui seront:

ffx — f u' + — (v ¦ + w) — — fw" + — (w -t- w"))
4r I 5 r \ 5 ;

1 z
w + v' + — u' (w -I w" +

3 r
._3Er

4r L

E^3 r z
-*<?= —— u +v' (u

4r I r

±„,j
v'-f 2w') I

r etant le rayon de la directrice. Dans les expressions anterieures et dans
ce qui suit, nous emploierons la notation suivante:

dH

^v:ifi
{•;.

^x ()X2

II nous reste ä relier les contraintes aux efforts et aux moments
unitaires, et pour cela il faut determiner les sections et moments d'inertie
correspondant ä la longueur unite, pour les divers efforts et moments.

POVPtt

Fig. 3

p.&ß

,-"\*v

*;";A'JRC

/ v

\>J

5^.»,
I \ l

\ /

_* _y\^ C

Fig. 4

Par la fig. 5, nous voyons qu'ils sont obtenus au moyen de calculs simples;

les sections unitaires cherchees sont: —=; —-—; — pour les efforts Nx,
11/3 11

Nep et Ncpx respectivement; et les moments d'inertie unitaires: —=; ——;
I 1 V3 1

— pour les moments Mx, Mc? et M?x respectivement.

Une fois connus les efforts et moments unitaires en fonetion des
deplacements, avec les equations d'equilibre, on arrive par elimination,
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analogiquement comme l'on fait dans la theorie generale des voiles pleins,
ä un Systeme de trois equations differentielles. Les deplacements u, v
et w, sont lies dans notre cas, par les relations suivantes:

10u" + 3u"+9v' + 6w' 0

Nv

t t. f
f

* 1 ^y /6o\/
M

2

i

\60^gV

L- «
¦ ß * _J

»

Fig. 5

u • '(2-ß) + 3v + v"(l + ß) + 3w • — ß(3w:- +

+ 3w" + 3W)=0 (7)

ößu"' —6ßv" + 3u' + 9v + 9w + ß(9w:: +

+ 21 w:" +10w"" + 9w : + 6w") 0

La valeur de ß est I:Sr2. Par elimination de u et v dans le sysiteme
anterieur on obtient l'equation differentielle suivante, du huitieme degre,
en w:

w:::: + — (3-ß) w:-:" + 2vt + — (55-6,6) w::"" + — (21-4ß) w::" + w:: +

+ — (12 - 5ß)w:""" + — (49-2ß) w:"" + 3w " +— (1 + ß) w"""' +
27 9 81

+ ^(l+ß)w""" + -^(l + ß)w"" 0
ai y p

Cette equation est verifiee en faisant:

(8)

W= 1 em(?. sin a — avec ä —*—; L etant la longueur du voile et n
r L

un nombre entier dont la valeur sera fixee par le terme du developpement
en serie des charges exterieures. L'equation caracteristique qui resoud
ce probleme sera:

m* + (2— — (3-ß) **) mö + | 1 — — (21-4ß) + — (55-6ß) 1 m* +

+ ["-3a2 + ü!.(4g.2ß)— 1-°a6(12+5ß) Im2 + a* (1 + ß) \— — 20-?2 +
I Q ' 27 I l tß 27

(9)

100

81

Une fois cette equation resolue et, d'une maniere analogue aux
developpements de la theorie classique des voiles pleins, on obtient les
efforts, les moments et les deplacements du Systeme homogene auquel
on devra superposer les effets des charges exterieures, obtenus, comme
on l'a indique en etudiant l'etat membrane.
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II faut remarquer que l'equation (9) a une forme semblable ä celle
que l'on obtient pour le voile plein, quoique les coefficients soient plus
compliques dans ce cas. Dans l'equation (9) interviennent seulernent
les dimensions du voile, r et L; et les caracteristiques du profile adopte,
S et I, independamment des dimensions du reticule. Cette circonstance
simplifie beaucoup le travail de tätonnement, car un profile determine
ayant ete fixe «ä priori», eile permet de varier les dimensions du reticule
s'adapter aux efforts obtenus, sans avoir besoin de refaire les calculs sauf
dans ce qui a trait ä l'etude des equations aux cötes et ä l'obtention des
efforts definitifs.

Formules pratiques.

Toutes les formules donnees dans cettö partie seront applicables aux
cas de reticules equilateraux, pour lesquels nous avons dejä obtenu les
sections et les moments d'inertie fictifs ainsi que les constantes elastiques.
N'oublions pas que les expressions obtenues ne sont valables que pour
ce type de reticule; toutefois en suivant une marehe analogue ä celle
dejä exposee, nous pourrions obtenir les expressions correspondant ä
une inclinaison differente des barres diagonales. De toutes fagons les
formules que l'on obtiendrait seraient plus compliquees car il intervient
alors un nouveau parametre, la grandeur 1 ne süffisant pas pour definir
le reticule.

Dans les expressions trouvees seuls les cinq parametres suivants
interviennent:

S et I, section et moment d'inertie du profil lamine, exprimes en
m2 et m4, grandeurs qui, dans certaines limites, peuvent etre considerees
comme coefficients numeriques, compte tenu de la discontinuite des jauges
de lamination.

1, cote du reticule en m, qui d'apres ce qui a ete indique, interviendra
seulernent, ä la fin du calcul, dans le developpement des equations aux
cotes et dans l'obtention des efforts qui agissent sur les barres du reticule.

L et r, dimensions fondamentales du voile qui au cours des developpements

en serie trigonometrique, interviennent dans tout le procede
de calcul. Ces grandeurs sont exprimees en m.

Ce type de voile s'applique principalement aux grandes couvertures
de caractere industriel et, en general, se presenteront comme voiles isolees
ou en voiles multiples reunits par les bords oü 9 const.

La charge principale ä considerer sera celle due ä son poids propre,
ä laquelle on atribuera par la suite l'integrale particuliere representee par
l'etat membrane. Nous pouvons reduire aux charges de ce type non
seulernent le poids de la charpente metallique, mais aussi celui des elements
ou des couches de couverture. En plus de ces charges il faudra tenir
compte des surcharges de neige et de vent.

La surcharge de neige et consideree d'habitude dans tous les
reglements comme etant uniformement repartie sur la projeetion horizontale
de la couverture. Cependant, dans le cas des voiles polilobules, cette
hypothese n'est pas applicable, puisqu'il se produirait des aecumulations
sur les rives. Ceci nous autorise ä utiliser une loi de distribution uniforme
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tout le long de la directrice qui equivaut ä une loi de la forme i_ü
cos(<S>k-cp)

par unite le longueur en plan. <I>k est l'angle d'ouverture du voile mesure
depuis le »bord jusqu'a la verticale. Finstenwalder et Jakobsen, entre
autres, emploient cette hypothese de repartition de neige dans leurs
etudes sur les voiles cylindriques.

Dans le cas des voiles isoles, cette hypothese de distribution est tres
defavorable, et il convient d'utiliser celle de la repartition uniforme en
plan dont l'integrale particuliere correspondante sera indiquee ci-dessous»

En ce qui concerne la surcharge due au vent, on peut negliger son
action pour des voiles dont le deminangle d'ouverture est egal ä, ou plus
petit que 50°, ce qui est le plus souvent le cas. Les reglements modernes
admettent que dans une couverture cylindrique ä directrice circulaire,
le vent provoque des suctions dans toute la zone sous le vent, et dans un
secteur d'ä peu pres 50° compte ä partir de la clef, de la zone au vent.
II y aura lieu de prevoir des pressions dans le reste de la zone au vent
lorsque le demi-angle d'ouverture du voile est superieur ä 50°; c'est un cas
rare en pratique.

Les suctions produisent un allegement dans le regime general de
contraintes du voile et pour cette raison on ne les prendra pas en
consideration. Par contre, il faudra les considerer au moment de projeter
l'ancrage du voile, pour tenir compte de soulevements düs ä des pressions
interieures eventuelles du vent.

Ces raisonnements se rapportent aux bätiments isoles; dans ces cas
on peut supposer le vent pratiquement horizontal. Lorsqu'il s'agit de
toitures entourees par d'autres bätiments, l'action du vent peut devenir
plus complexe ä cause des deviations et tourbillons produits par les
obstacles. Ces cas doivent etre etudies tout particulierement afin d'aboutir
ä une loi de repartition de pressions qui, comprenant avec une approximation

süffisante les actions les plus defavorables, permette un calcul
facile de l'integrale particuliere correspondante. Pour ces cas, comme
nous le verrons plus tard, la Solution du Systeme homogene est etudiee
pour une charge symetrique et une autre antimetrique. II sera possible,
en superposant les deux, d'obtenir la Solution correspondant ä une charge
quelconque.

3. - Etat membrane.

En general, les charges exterieures sont reparties d'une maniere
uniforme tout le long du voile, ce qui fait que l'on peut supposer la charge
developpee en serie de Fourier:

4p
P*=- — ttx 1 3t:x 1 5t:x

sin ^ — sin f-— sin
L 3 L 5 L

et, comme il est d'usage dans la theorie generale des voiles pleins, on peut
trouver la Solution en additionant les divers termes, et, comme il arrive
dans le cas de ces voiles, il ne sera pas necessaire, en general, de considerer
plus des deux termes. Cependant, les formules que nous donnons ci-dessous
sont obtenues pour un terme general de la serie.
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Dans le cas du poids propre nous avons:

413

r2 x
Ncp —4p cos ($k-?) sin a —

La. r

Ncex — 8p sin (4>k-$) cos a—
La2 ' r

Nx — 8p cos ($k-?) sin a—
La3 r (10)

4pl r3 /3
^3 ES La2 W

3 / 3 \
— 1) cos (4>r-t) COS OL

i.2 \ ^2

4p 1 r3 _ 3 \ ,- x-& 7+— sin (*k-®) sin
V3 ES La3 \ a2

4pl r3 / 5 6 3 v
xw =?- — -f — + — cos (<l>K-a>) sin ol

\/3ES La \3 a2 «*
'

Ces expressions donnent les efforts et les deplacements de l'etat
membrane pour une forme general du developpement d'une charge due au
poids propre p (Kg par m2).

Dans le cas d'une charge uniformement repartie en projection
horizontale nous avons:

r2 x
Nco — 4q cos2 $k — sin ol —

La ' r

3r2 x
N?x — 4q cos ($k — cp) sin (<I>k — COSa —

La2 ' ' r

3i2 r ixNx — 4q cos2 (<&k — y) — sin2 (*k — '*) sin a —
La3 I ' I r

9 a 1 r3 i Q Q
_±=±±_ _L_ | Z_ _ 2 v C0S2 (4, _ ^) _ Z. sin2 (4>K — cp)

V3ES L«2 M «2 «2

X
COS ol —

r

— 8 q. 1 r3 ,9 r * • / * » / ^ n • x
_ ^ — ; 5 sin Ok — ^) cos (<Pk — cu) sin ä —

V3ES La3 l a2
' V iJ i} r

w= —=¦
— 2q.l r3

V3ES La

10 17 36
— {- — + --) cos2 (<DK — — (11)
X 0»2 /y4a^ x

sin a
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Ces expressions donnent les efforts et les deplacements de l'etat
membrane pour un terme general du developpement d'une charge
uniformement repartie en projection horizontale q (Kg par m2 de projection
en plan).

Toutes les expressions indiquees ont ete obtenues en supposant que
le voile s'appuie sur les supports frontaux, c'est-ä-dire, en x 0 et
x L.

4. - Resolution de Vequation caracteristique,

Dans les pages precedentes nous sommes arrives ä une equation de
huitieme degre de la forme

m» + c6 ni6 + c4 m4 + c2 m2 + c0 0 (12)

dans laquelle les valeurs des coefficients sont celles portees dans l'expression

(9). Si nous faisons m2 t, nous obtenons une equation du quatrieme
degre:

t4 + c6t3 + c4t2 + c2t + c0 0 (13)

Etant donne la grande importance du terme independant par rapport
aux autres coefficients, une premiere approximation consisterait ä prendre

les valeurs de m =:y C0 e etant les huit racines huitiemes de l'unite
negative, car c0 est toujours negatif. Cependant, cette approximation
conduit ä des erreurs appreciables dans presque tous les cas; eile devient

rinadmissible pour des valeurs de - < 0,3.

La methode que nous indiquons ci-dessous, quoiqu'approximative,
introduit des erreurs moindres que celles commises en remplagant dans
ß I : Sr2, les valeurs S et I tirees des manuels qui, d'ailleurs, n'admettent
pas une approximation plus grande.

Cette methode consiste, dans ses grandes lignes, ä egaler le polynöme
(13) ä un autre polynöme qui aurait les memes coefficients c6, c4 et c0 et
qui serait le produit de deux polynömes de second degre. Ceci se fait,
compte tenu de ce que le terme qui n'est pas commum dans les deux,
c'est-ä-dire celui en t, premier degre, est celui de moindre importance.
En faisant quelques developpements simples les racines approximatives
de l'equation (13) deviennent:

4±Vl6C6 2±Vl2 8

et en extrayant la racine carree on obtiendra les huit racines de l'equation
(12) qui seront de la forme; +a^ bi; f_ c + di.

Pour le premier terme de la serie (n 1), nous obtenons, pour les
cas les plus defavorables des erreurs relatives pour la valeur du polynöme
inferieures au 4:1000 et en general beaucoup plus petites; pour le second
terme de la serie (n 3) et dans le cas le plus defavorable l'erreur
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augmente legerement, mais on peut continuer ä utiliser cette methode car
l'influence sur les racines et l'influence de celles-ci dans le developpement
general, est faible:

5. - Systeme homogene.

Les expressions des deplacements, efforts et moments, correspondant
au Systeme homogene, et qui se deduisent apres avoir effectue les
developpements de la maniere indiquee precedemment, ont la forme suivante:

w f Bj $! + B2 <J>2 + B3 03 + B4 $4
1 sin a —

I. I r

u |~ (K, B, + K2 B2) *, + (K, B2- K2 BO 4>2 + (K3 B3 + K4 B4) d>3 +

+ (K3 B4— K4 B3) 04 I cos ol —
I r

v I" (K9 B, + K10 B2) «D5 + (K9 B2 - K10 B,) <I>6 + (K„ B3 + KI2 B4) <J>7 +

+ (KnB4-K12B3)<D8 sin a

2ES
4v31r

3ES

(K15B1 + K14B2)$, + (K13B2-KHB,)*2 + (K15BsfKieB4)*5+

f(K15B4-K16B3)<D4 sin o.

N,==-^^|(KI7B1+ K18B2)*I + (K17B8-KI8BI)*2-t-(KI9B5+KaoB4)*5 +
4 V 31 r I

N<^
3ES

MN

MS:

4\ 31r

2EI
4 V 3 1 r2

3EI
4 V'3 1 f2

+ (K19B4-K20B3)<1>4 sin*-
I r

(K21B, ^K2oBo)<J»5+(K21B2-K22B,)«I>6+(K23B3+K24B4)<I>7

+ (K23B4-K24B3)<D8 I cos * —

(K25B, * K26B2)<t»1+(K25B2-K26B,)<I>2 + (K27B34 K28B4)4v

(K27B4-K28B3)<J>4 sin ql

(K29 B, + K30 B2) *, +(K29 B2- K30 B,)<D2 -r (K31B3 + K32 B4) <I>3 +

+ (K31B4-K32B3)04 Isina^
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Mox -
3EI

*9x 4V3— [(K33B1+K34B2)$5+(K33B2-K34B1)^6 + (K3gB3+K36B4)«I>7+

3EI
+ (K35B4-K56B3)4>8Jcosa-

R0 717TTLlRK"Bi+K38B2)<I,5+(K3TB2-K38B1)«I>6^(K39B3+K4OB4)«i>7+
4 V3lrL

+ (K39B4-K40B3)«l>8jsina^

0 "7 \{Ku Bl + Ki2 Bi) $5 + (K41 B' ~ Ki2 Bl) *e + (I<43 B'+ K44 B4) °7 +

3EI
+ (K43 B4- K44 B3) % sin « —

I r
Q* T^TTl ftK«B'+K*« B2)<I»5^(K45B2-K46B,)*6+(K47 B3+K48B4)<*7

4 v 3 1 r3 L

+ (K47B4-K48B3)<I>8 sin ol

Qx
3EI

4v31r3
(K49B1 + K50B2)<D1+(K49B2-K5oB1)<J>2+(K5iB3+K52B4)<l>5+

+(K5i B4 - K52 B3) $4 I cos ol —

R<j> etant la reaction normale au bord longitudinal, ö la rotation
d'une section, et Bi, B2, B3 et B4 des constantes d'integration qu'il faudra
determiner conformement aux conditions aux cötes longitudinaux.

Les fonctions G^; $2; $s] ; <S>8 s'expriment de la maniere suivante:

<!>! e a<? cos bv + e — a w cos b<>

% e ~ ac? sin b? + e — a w sin bc

$3 e ~~ c? cos d o + e — c w cos da

$4=e_ • Ca sin dv + e — cwcos de

<D5 e-cc?

3>ß

$7

cos bep +e— awcos b&>

Cc? sin bep ip e— awsinb&>

¦ Cco cos dy-f e~ awcos d&

$8= e — C(? sin dy -f e — awcos d&

w 2 $k — c'est-ä-dire que co est l'angle mesure au bord gauche du
voile. Les signes superieurs correspondent ä des charges symetriques
aux deux bords longitudinaux et les signes inferieurs ä des charges anti-
metriques, c'est-ä-dire ä des charges lineaires sur un bord longitudinal
egales et du meme signe, ou de signe contraire, ä l'autre bord, respectivement.

Les constantes K s'expriment de la maniere suivante:
Pour le deplacement longitudinal u:

_P1m1 — q^t
1 n^+m,2 K,= P2m2—q2n2

n22 + m22
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P2n2+q2m2
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|L+— n22 + m22

Avec:

m1 6ab(3 + 8ßa2)

n1 *2(21+20ßa2)-3(a2-b2)(3 + 8ß*2)

p1 108ßzab(a2i-b2)-126ßabz:, + 54ßab*

q, 9 * -f 27 ß * (a4 -r b4-6a2 b2) - 63 3 y? (a2 - b2) + 30 ß o? +
+ 27ß*(a2-b2)-30ß*:<

m2 6cd(3 + 8ßa2)

n2 s* (21 + 20 ß *2) - 3 (c2 - d2) (3 + 8 ß *2)

p2 108 * ß c d (c2 - d2) - 126 ß c d a:' + 54 ß c d x

q2 0 * + 27 ß a (c4 -f- d* - 6 c2 d2) - 63 ß *3 (c2 - d2) + 30 ß y? +
+ 27ßa(c2-d2)-30ßx'

Par le deplacement transversal v:

a K=-bKR

K10

a2 + b2

a K6 + b K5

a2 + b2

c K7-dK8
Kn

c2 + d2

c Ko + d K7
K12

c2 + d2

K3=-=- K, (3(.a2-b2)-10a2) + 6abK2 + 6a

K'a 3 (3 (a2-b2, -10 **) - 6 a b K,

K7 K3 (3 (c2-d2) - 10 a2) + 6 c d K4 + 6 *
9 y. I

Kft
1

9a
K4(3(c2-d2)-10«2)-6cdK3J

Pour l'effort longitudinal Nx:

K13 — 5y- Ki-3aKg-3bK1()+3 ; K15= — 5ÄK3-3cKn.3dKi2+3

K14== — 5*K2-3aK10+3bK9 ; K16 — 52K4-3cK12+3dKn
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Pour l'effort transversal Nep :

K11=—oLK1'3RKd'3bKlQ+3 ; K19 =—aK3-3cKu-3dK12 + 3

K18 =—*K2-3aK10+3bK9 ; K20 —aK4-3cK12 + 3dKn

Pour l'effort tangentiel N9x:

K^^ + aKjj-aKj-bKa ; K23 «Kn -cK3- dK4

K22 + ocKl^?iK2 + bKl ; K24 aK12-cK4 + dK3

Pour le moment flechissant longitudinal Mx:

K2j 3-5*2 + 3(a2-b2) ; K27 3-a52 + 3(c2* d2)

K2ö — 6ab ; K2S — 6cd

Pour le moment flechissant transversal M9:

K29 3 - a2 + 3 (a2 - b2) ; K31 3 - a2 4- 3 (c2 - d2)

K3ü — 6 a b ; K32 — 6 c d

Pour le moment de torsion M?x;

K33=- — (aK1+bK2+aK9+2aa) ; K35=-(cK3+dK4+aKn+2ac)

K3i=-aK2+bKraK10+2ab ; K3J= — cK4+dK3-*K12+2*d

Pour la reaction longitudinale R<j):

K37 — aK29-bK3o-2«K33 ; K3J - cK31 -dK32-2*K33

K38 — aK30 + bK29-2«K34 ; K40 - cK32+dK31-2*K36

Pour la rotation 0:

K41 —K9 —a ; k43 —Kn —c

K42 -K10 + b ; K44 -K12 + d

Pour l'effort tranchant Qv:

K45= — a K29 - b K3j - cx K33 ; K47 — c K31 - d K32 - a K35

K46 — a K3j + b K29 - ol K34 ; K48 — c K32 + d K31 - a K36
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Pour l'effort tranchant Qx:

2 2
K49 =--*K23-aK33-bK34 ; K31 — *K27-cK35-dK3s

2 2
K5o y*K23-aK31-bK33 ; K52 —*K23-cK36 + d K35

a et c les parties reelles des racines de l'equation du huitieme degre
n t ret b et d les parties imaginaires. « ; n 1 pour le premier terme

de la serie de Fourier, n 3 pour le 2eme, etc. Les efforts et les
moments sont indiques par unite de longueur, c'est-ä-dire Kg par m et m.
Kg. respectivement.

Nous avons dejä indique que cette theorie est actuellement en cours
de verification au «Laboratörio Central de Ensayo de Materiales de
Construccion» de Madrid, au moyen d'essais sur modele reduit; les
premiers resultats obtenus sont satisfaisants. On a, d'autre part construit
quelques couvertures de
ce type; parmi celles-ci,
on peut en citer une
formee par une serie
de huit elements egaux
de 12,70 m de portee,
6,50 m de rayon et un
angle au centre de 90"
avec une maille triangulaire

equilaterale de
1,27 m de cote avec
section double T de 8 cm
projetee pour couvrir
la halle des «Ateliers de
l'Institut Technique de
la Construction et du Ciment» de Madrid, dont le resultat a ete pleinement
satisfaisant. La Photographie ci-jointe montre cette couverture.

Afin de faciliter l'etude de ce type de couverture et d'eviter le
calcul penible mais necessaire pour determiner les efforts. nous nous
occupons actuellement du calcul d'une premiere serie de 36 exemples
differents. Nous avons l'intention de terminer cette premiere serie, avec
les resultats obtenus puis de faire des tables qui faciliteraient les travaux
de tätonnement et projet. Nous esperons pouvoir donner au prochain
Congres de Lisbonne une idee de ces etudes.

L'auteur remercie MM. les Professeurs E. Torroja et J. Batanero,
de l'Ecole de «Ingenieros de Caminos, Canales y Puertos» de Madrid
pour leurs renseignements et leurs idees qui ont ete d'une grande utilite
pour le developpement de la theorie exposee dans cette etude.

-V-

"

"
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RESUME

L'auteur presente une theorie des voiles minces cylindriques ä
directrice circulaire, formes par une maille composee de triangles equilate-
raux dont les cötes sont constitues par des profils lamines symetriques.
Le developpement de cette theorie est analogue ä celui de la theorie
des voiles pleins dans le domaine elastique. Dans ce cas le corps bien
qu'homogene est anisotrope. II presente trois plans de symetrie elastique,
ce qui conduit aux cinq constantes elastiques suivantes: deux modules
d'elasticite, deux coefficients de Poisson et un module de rigidite.

On a considere dans le calcul, les deux efforts normaux et l'effort
tangentiel dans le plan du voile, les moments flechissants longitudinaux
et transversaux, le moment de torsion et les deux efforts tranchants,
normaux au voile.

Dans une premiere partie l'auteur expose les grandes lignes de la
theorie, et dans une dfcuxieme il donne les formules d'application avec les
Solutions du type membrane pour les cas du poids propre et de la charge
uniformement repartie en projection horizontale. Une Solution approximative

de l'equation caracteristique est indiquee et la Solution generale
du Systeme homogene pour une charge symetrique et antimetrique aux
bords longitudinaux est donnee.

Les premiers resultats obtenus au cours des essais en modele reduit
realises au «Laboratoire Central d'Essais de Materiaux de Construction»
de Madrid, et sur quelques couvertures dejä construites et calculees d'apres
cette theorie, en confirment jusqu'ici la validite.

SUMMARY

The author presents a theory for circular directrix shells, made of
equilateral triangulär network, the sides of which are composed of
symmetrical laminated sections. The development of this theory is similar
to the elastic theory for normal shells, though in this case the shell is
homogeneous but not isotropic ;x it presents three plans of elastic symmetry,

and thus introduces the following five elastic constants, two elasticity
moduli, two Poisson coefficients and one rigidity modulus.

The calculation considers two normal and one tangential stresses
in the shell plan, the longitudinal and transversal bending moments,
the torsion moment and the two shearing efforts perpendicular to the
shell.

In the first part a concise idea of the theory's essential features is
given i m the second part, the applied formulae, are given together with
the membrane Solutions for the case of the dead load and for that of an
uniform overload; an approximate Solution of the characteristical equation
and the general Solution of the homogeneous system for a Symmetrie and
an antimetric load on the longitudinal edges is also given.

The validity of this theory has been confirmed by the first results
obtained from the tests on scale modeis at the «Central Laboratory for
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Testing Building Materials» of Madrid, and also from roofs already
built and calculated according to this theory.

ZUSAMMENFASSUNG

Der Verfasser entwickelt in diesem Aufsatz eine Theorie der
Zylinderschalen mit kreisförmiger Leitkurve; die Schalen sind aus einem
Gitterwerk mit gleichseitigen Dreiecken gebildet, deren Seiten aus
symmetrischen, gewalzten Profilen bestehen. Die Theorie über dieses Gitterwerk
ist der Elastizitätstheorie der kontinuierlichen Schalen ähnlich. Dabei
ist der Baukörper in diesem Falle homogen, abfer anisotrop und besitzt
drei Elastizitäts-Symmetrie-Ebenen. Daraus ergeben sich fünf elastische
Konstanten: zwei Elastizitätsmoduli, zwei Poissonzahlen und ein Steifig-
keitsmodul.

Für die Berechnung wurden in Betracht gezogen: zwei Normalkräfte
und eine Schubkraft in der Schalenebene, die Längs- und Querbiege-
momente, das Torsionsmoment und die beiden senkrecht zur Schale
wirkenden Schubkräfte.

Im ersten Teil des Aufsatzes werden die wichtigsten Punkte der
Theorie erläutert und im zweiten Teil die Anwendungsformeln für
gleichmässig verteilte Belastung und Eigengewicht nach der Membrantheorie
entwickelt. Dann folgt eine Näherungslösung der charakteristischen
Gleichung sowie die allgemeine Lösung des homogenen Systems für
symmetrische und antimetrische Belastung der Längsränder.

RESUMO

0 autor apresenta uma teoria de coberturas delgadas cilindricas
de directriz circular, formadas por uma malha de triängulos equiläteros
cujos lados säo constituidos por perfis laminados simetricos. Ol desenvol-
vimento desta teoria e semelhante ao da teoria em regime elästico das
estruturas delgadas continuas, com a diferenga de que, neste caso, o

corpo e homogeneo mas näo isötropo, apresentando tres planos de simetria
elästica, o que da origem ao aparecimento de cinco constantes elästicas:
dois mödulos de elasticidade, dois coeficientes de Poisson e um mödulo de
rigidez.

ConsiderarrHse, no calculo, os dois esforgos normais e o esforgo
tangencial ao piano da estrutura, os momentos flectores longitudinal e
transversal, o momento de torsäo e os dois esforgos cortantes normais ä
superficie. Na primeira parte dä-se uma ideia muito resumida dos pontos
essenciais da teoria, e na segunda parte däo-se as förmulas de aplicagäo
com as solugöes do tipo membrana para os casos do peso proprio e carga
uniformemente distribuida em planta, uma solugäo aproximada da equagäo
caracteristica e solugäo geral do sistema homogeneo para uma carga
simetrica e antimetrica, nos bordos longitudinais.

Os primeiros resultados obtidos em ensaios em modelo reduzido, que
se estäo a realizar no Laboratörio Central de Ensaio de Materiais de
Construgäo de Madrid, e em algumas coberturas ja construidas e calculadas

segundo esta teoria, confirmam, ate agora, a sua validade.
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