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A Research on the application of the theory of orthotropic
plates to steel highway bridges

Untersuchung iiber die Anwendung der Theorie der orthotropen
Platte auf Stahlbriicken

Estudo da aplicacao da teoria das placas ortotropicas
as pontes de estrada metalicas

Recherches sur ’application de la théorie des plaques
orthotropiques aux ponts-route métalliques

MASAO NARUOKA HIROSHI YONEZAWA
Professor at Kyoto University Assistant Professor at Yamaguchi University
Kyoto Kyoto

1. Introduction.

In the design of steel highway bridges, the main girder, floor beam,
stringer and slab are calculated individually as independent members in
the conventional design method, but actually these members resist the
load as co-operating members and operate together. Therefore, the stress
calculated by the conventional method differs considerably from the stress
measured from the loading test. On the other hand, the calculation by
the theory of continuous plate or grillage beam contains the co-operation
action between each beam and slab and has been discussed in wvarious
ways as an effective method. The theory of the orthotropic plate is one
of these methods and is very effective. In this paper the results of the
application of the theory of the orthotropic plate to existing bridges are
compared with those obtained by stress measurement and conventional
calculation.

2. Strain measurement, discussion of results and notations.
The strain was picked up by electric resistance wire strain gages

and measured by the Baldwin SR-4 Strain Indicator and SR-4 Switching
and Balancing Unit. In the calculation of the stress, Young’s modulus



394 1Ib1l. M. NARUOKA and H. YONEZAWA

of steel and reinforced concrete were assumed as 2,100,000 kg/cm? and
210,000 kg/cm? respectively. The theoretical stress was calculated by
the conventional method (briefly, method A), by the theory of orthotropic
plate introduced by M. T. Huber (briefly, method B), by the theory
of isotropic continuous plate supported by elastic beam (briefly, method C)
and by the theory of grillage beam (briefly, method D).

The result of the measured value is given in the form of stress ratio
and deflection ratio. These ratios are obtained by (measured value)/
(calculated value).

Ratio « means that the calculated value corresponding to the
measured value is zero.

In discussing the result of the measurement in the case of the stringer
of the floor system of truss bridges and the result in the case of the main
beam of composite beam bridges, the ratio of the load on each stringer
or main beam to the total load (briefly, load ratio) was adopted besides
the stress ratio. This ratio was calculated as follows:

stress of a stringer or main beam

load ratio = -
total of the stress of each stringer or main beam

In this calculation, the measured stresses and calculated stresses by
methods A, B, and C were used as the stress in the denominator and
numerator.

The following mnotations are used.

EI,: The flexural r1g1d1ty of the stringer whose effective width
of the compression flange is &,

EI;: The flexural mgldlty of the floor beam only in the case of
through plate girder bridges.

El.: The flexural rigidity of the load distributing cross beam whose
effective width of the compression flange is * in the case of model com-
posite grillage beam bridge.

As : The interval of the stringers.
A; : The interval of the floor beams.
A : The interval of the main beams.

D, : The flexural rigidity of the orthotropic plate in the direction
of x, that is, the bridge axis.

D,: The flexural rigidity of the orthotropic plate in the direction
of y, that is, perpendicular to the bridge axis.

In the calculation by the theory of the orthotropic plate, H? = D, . D,
and v = 0 were assumed.

3. Application to the through plate girder bridge.

The Otanigawa bridge is a through girder bridge as shown in Fig. 1.
In the design of such a through girder bridge, the slab, stringer, floor
beam and main girder have been calculated individually as independent
members. One method of analysing the stringer is to assume the slab
as a one direction continuous rectangular plate simply supported by two
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opposite floor beams and elastically supported by stringers. Now, if
this bridge is regarded as an orthotropic rectangular plate with two
opposite edges simply supported at the abutements and the other two
edges elastically supported by the main girders, a rational calculation
will be carried out at once for all members.

In this case, EI;/); is adopted for D,. Next, the question is how
to determine D,. Once more, EI,;/», is adopted for D,. As a matter of
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fact, the change of value D, produces no remarkable changes in the
bending moment. Thus, D,/D, for the orthotropic plate is 0.71.

Both test loads were placed at different positions as shown in Fig. 2
and the stress ratio at sections A, B, C, E, F and G are shown in
Table 1. The theory of the orthotropic plate gives better results than
the conventional method, particularly so in the case of the stringer.

Furthermore, the following facts appear:

1) When there is a load on the floor beam or on the neighbouring
stringer, the bending moment in the observed stringer is ipositive by
method B, and is negative or zero by method A.
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TABLE 1
Stress Ratio of Each Member of the Otamigawa Bridge (/)

State of Loading 1 2 3 4
Method of calculation ... ... ... ... A B A B A B A B
Main Beam, section A... ... ... ... 52 62 60 71 54 B8 60 71
Main Beam, section B... ... ... ... 58 68 60 71 50 54 51 64
Stringer, section C... ... ... ... ... 37 107 38 05 oo 112 47 105
Stringer, section E... ... ... ... ... 60 103 63 104 - - 52 107
‘Stringer, section F... ... ... ... .| 38 102 42 109 | o 127 | 2¢0 118
Cross Beam, section G... ... ... ... 40 52 46 65 27 64 48 Tl

2) By method A, the stress varies according to loading state 2 or 3
in Fig. 2, while it is almost constant by method B.

The measured values show that the theory of the orthotropic plate
is more rational. From this theoretical and experimental analysis, it
becomes clear that the theory of the orthotropic plate is available to the
calculation of through plate girder highway bridges.

Furthermore, the method for the determination of D, and the
boundary condition about the main girder is a problem to be studied,
and by an accurate research of this problem, better results will be obtained.

4. Application to the floor system of truss bridges.

The design of the stringer is one of the important problems in the
design of the floor system of a truss bridge. In the conventional calcu-
lation, the stringer being considered as a beam (simple or continuous)
and the cooperative action between the flexible stringer and slab not
taken into account accurately, the measured stress is considerably smaller
than the conventionally calculated value. Furthermore, because the
composite action between the stringer and the slab by the slab connector
and the co-operation between the stringer and the members of the truss
are disregarded, this tendency becomes more remarkable. In this paper,
the result observed on the stringer of the floor system of the pony-truss
of Ryogoku bridge is discussed and compared with the calculated result.
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This bridge is shown in Fig. 3, and a 14.8 t truck is used as the
test load. The loading line of the rear wheel is at the center of the span
of the stringer and the states of loading are shown in Fig. 4. It is
most ideal, but difficult, to analyse the slab, stringer and floor beams as
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one body in the calculation of this floor system and the determination of
the boundary condition is not as easy as in the above mentioned through
plate girder bridge, Here, the theory of the orthotropic plate with two
opposite edges simply supported by floor beams and the other two

26
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opposite edges free or elastically supported by outside stringers is applied.
As the bending moment of the stringer is almost equal whether the
edges are free or elastically supported, the analysis for the case of
the free edge is mentioned here. D, is determined in the same way as in
the case of Otanigawa bridge and the flexural rigidity of the slab is
adopted as D,, and D,/D, = 5.9 is obtained.

TABLE 2
Stress Ratio of the Stringer of the Pony-Truss of the Ryogoku Bridge (%/,)

State of Loading 1 2 3 4
Method of calculation ... ... ... ... A B A B A B A B
Stringer 1 at its midspan-section 23 64 31 65 o 170 o 75
Stringer 2 » » » » 34 55 31 55 22 59 33 66
Stringer 3 » » » » 42 73 23 56 36 60 33 57
Stringer 4 » » > » w 62 w 78 31 58 23 66
TABLE 3

Load Ratio of the Stringer of the Truss of the Ryogoku Bridge

State of Loading 1 2 3 4
Method of calcu-

lation ... ... ... M A B C|M A B C MA BT C| M A B C
Stringer 1 ... ... 42 56 40 48 |27 31 27 28|17 O 15 1710 O 9 7
Stringer 2 ... ... 30 26 33 3029 29 290 30|29 47 31 36|20 22 22 20
Stringer 3 ... ... 22 18 19 17 {30 40 30 29 (30 29 30 33129 27 31 26
Stringer 4 ... ... 6 0 8 5(14 0 14 13124 24 24 14 | 41 51 38 47

Total ... ... ' 100

NoTE: Method of calculation M mens that the measured stresses are used as the stresses in the
denominator and numerator of the load ratio.

The stress ratio by methods A and B for the loading state showh
in Fig. 4 is shown in Table 2. The load ratio of each stringer is shown
in Table 3. In these cases the stress ratio obtained by method A is
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extremely small, its mean value being about 30 °,, but the stress ratio
obtained by method B is about 60 °,, and the ratio of 40 ¢, remains
unknown. One of the reasons is that the co-operation between the slab,
stringer and lower chord is disregarded. Next, the load ratio calculated
by method B agrees very well with the load ratio obtained from the
measured stress and its results are better than the results of method C.

5. Application to composite beam bridges.

The application to the side span of Ryogoku bridge is described
hereunder. This bridge is formed by three composite beams (I = 18.0 m)
as shown in Fig. 5. A 14.5 t truck is used as test load and the state of
loading is shown in Fig. 6. The center of the span is loaded by the rear
wheels. D, and D, are calculated as in the previous case and D./D, was
130 in this composite beam bridge. The stress ratio and load ratio of
each main beam are show in Tables 4 and 5.
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In the most important case, when one wheel is placed on the side
main girder, the stress ratio by method A is not uniform, and the results
of method B are better. Next, the stress ratio of the span bending moment
of the slab M, under one of the rear wheels in the case of loading state
2 in Fig. 6 (rear wheel is at the center of the span of the slab), is 92 9,
by method B and 42 9, by the theory of the continuous plate which is
provided by the Japanese Specification of Steel Highway Bridges.

6. Application to model composite grillage beam bridge.

The application of the grillage beam theory to bridges has been
studied recently, but this solution becomes very complicated when the
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TABLE 4
Stress Ratio of the Composite Beam of the Ryogoku Bridge (/)

State of Loading 1 2 3
Method of Caleulation... ... ... ... A B A B A B
Beam 1 at its midspan-section ... 64 81 69 53 0 73
Beam 2 » » » » 53 65 46 57 50 68
Beam 3 » » » » 340 72 69 62 69 85
TABLE 5

Load Ratio of the Composite Beam. of the Ryogoku Bridge (°/,)

State of Loading 1 2 3
Method of caleulation ... ... ... ... M A B M A B M A B
Main Beam 1 ... ... ... ... ... ... | 42 50 38 20 25 31 24 0 26
Main Beam 2 ... ... ... ... ... ... 31 4 35 35 4 35 32 50 35
Main Beam 3 ... ... ... ... .. ... 27 6 27 36 31 34 44 50 39
Total ... ... «. v oov .o 100

NoTE: The meaning of M is the same as in the case of Table 3.

grid and slab are composed and the effect of the continuity of the slab
or of the torsion of the girder is contained in the theory of the grillage
beam or when the mumber of main girders and load distributing cross
beams increases greatly. On the contrary, by the theory of the orthotropic
plate all cases are dealt with as plates. A model of the grillage beam
bridge as shown in Fig. 7 was tested. D, is determined as before, but
for this model in which there is only one cross beam, the determination
of D, in the direction of the cross beam is not easy. In this case,
D, = EI;/» was adopted. Thus D./D, = 2.15 was obtained. The deflec-
tion ratio and stress ratio at mid-span and quarter-span points of each
beam when loads of 4.9 t are placed simultaneously at the center of
main girders B and D, are shown in Table 6 which also contains the values
obtained by method D. In short, the value obtained by method B agrees
with the result of method D, and even in the case of a single cross beam,
a satisfactory result is obtained by the application of the orthotropic plate.
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Furthermore, the more accurate the determination of D, H, v, etc.,
the better the result obtained will be.
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Stress Ratio and Deflection Ratio of Model Composite Grillage
Beam Bridge (%)

Stress Ratio

Deflection Ratio

Measured Section ... ... ... ... ...

%

%

Y2

4

Method of caleculation ... ... ... ... B D B D B D B D
Main Beam A ... ... ... ... ... ... | 81 87 70 095 88 96 83 89
Main Beam B ... ... ... ... ... ... 80 87 68 70 95 93 91 87
Main Beam C ... ... ... ... ... ... | 85 85 81 82 96 92 91 86

7. Conclusion.

By comparing the results measured in various kinds of bridges
with the theoretical value obtained by the application of the theory of
the orthotropic plate, it becomes obvious that this theory is a suitable
method for the calculation of bridges. It is one of the merits of this
method that this analysis of a plate is applied simultaneously to the

calculation of the main girder, floor beam, stringer, slab, etc.

The method for the determination of D,, D,, H, v and the boundary
condition stated in this paper is believed to be a proper practical method,
but there are many problems to be studied in detail. If the determination
of these values and the boundary conditions improves, better results will
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be obtained. This will be done by a model test of the beam and girder
bridge.

In the analysis by the theory of the orthotropic plate, the differential
equation of he 4th order of M. T. Huber was used, but this equation is
only effective in the case of the orthotropic plate itself, and can not be
applied accurately to the beam and girder bridge structure with slab.
Strictly speaking, the differential equation of the 8th order of K. Trenks
must be used. However, the result of the application of the differential
equation by M. T. Huber shows that the theory is very effective in the
analysis of girders and floor systems.

This experimental research was done in the elastic range of small
stress, but it can be extended to the whole elastic range. Whether the

“theory of the orthotropic plate can be applied to the co-operation of each
member beyond the elastic range or not must be studied in the future.
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SUMMARY

The results of the stress measurement of a through plate girder
bridge, stringers of the floor system of a truss bridge, main beams of a
composite beam bridge and main beams of a model composite grillage
beam bridge are compared with those obtained by the conventional method
and by the theory of the orthotropic plate introduced by M. T. Huber.
In conclusion, it becomes obvious that this theory is very effective in the
analysis of girder and floor system of bridge structures.

ZUSAMMENFASSUNG

Die Ergebnisse von Spannungsmessungen an einfache Balkenbriicken
mit unterliegende Fahrbahn, an den Léangstriagern der Fahrbahnroste
von einfache Fachwerkbriicken, an Haupttriagern von Briicken mit Ver-
bundtragern und an Haupttriagern bei Modellbriicken mit Tragerrost
wurden mit denjenigen Werten verglichen, welche man in iiblicher Weise
und mit Hilfe der Theorie der orthotropen Platte erhilt, wie sie von
M. T. Huber entwickelt wurd. Es zeigt sich dabei in eindeutiger Weise,
dass diese Theorie fiir die Berechnung von Tragern und Platten bei
Briickenbauten sehr wertvoll ist.
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RESUMO

Comparam-se os resultados obtidos medindo as tensdes numa ponte
de alma cheia, nas longarinas do tabuleiro de uma ponte triangulada,
nas vigas principais de uma ponte mixta betdo/aco e nas vigas principais
de um modelo reduzido de ponte mixta com viga reticulada, com os
resultados obtidos pelo calculo convencional e pela teoria da placa orto-
tropica da autoria de M. T. Huber.

Em conclusao, torna-se evidente que a referida teoria permite obter
resultados muito satisfatérios quando do estudo das vigas e dos tabuleiros
das pontes.

RESUME

L’auteur compare les résultats obtenus par la mesure des contraintes
dans les ponts-poutre & ame pleine, dans les longerons du tablier d’un
pont triangulé, dans les poutres principales d’un pont mixte béton/acier
et dans les poutres principales d’un modéle réduit de pont mixte & poutre
en treillis avec ceux obtenus par le calcul conventionnel et par la théorie de
la plaque orthotropique diie & M. T. Huber.

En conclusion, il semble évident que cette théorie permet d’obtenir
des résultats tres satisfaisants lors de 1’étude des poutres et des tabliers
des ponts.
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Voiles minces cylindriques formés par une maille triangulaire
Metallic cylindrical shells made of a triangular network
Kreis-Zylinderschalen mit Metallischem Dreiecks-Gitter

Coberturas delgadas cilindricas metalicas formadas
por malha triangular

FLORENCIO DEL POZO
Ingeniero de Caminos, Canaless y Puertos
Madrid

Généralités

L’idée d’aboutir a une solution en voile mince adaptée aux charpentes
métalliques provient, d’une part, de la considération simultanée des avan-
tages économiques et esthétiques des voiles pleins en béton armé, et,
d’autre part, de la légereté des structures en acier.

Les couvertures & voiles minces en béton permettent, en général,
une économie de matiere notable; économie qui est souvent annulée par
le prix relativement élevé du cintre et du coffrage, qui ne peuvent étre
utilisés qu’une seule fois dans la plupart des cas.

D’autre part, dans ce type de structure et spécialement dans les
couvertures a grande portée, le poids propre entre pour une part importante
dans 1’ensemble des surcharges totales que la structure doit supporter
et il convient, par conséquent, de le réduire au minimum. Parmi les
différentes solutions de couvertures continues en béton, celle du voile
mince offre les avantages correspondant & son poids propre minimum;
cependant, celui-ci est beaucoup plus grand que celui d’une charpente
métallique a toiture en fibrociment ou matériau similaire et protégée a
I'intérieur, le cas échéant, par un revétement en matiéres isolantes.

Or, les structures métalliques ordinaires, fermes, portiques ete., ont
souvent besoin d’éléments résistants, disposés a l'intérieur de la mef,
causant une obstruction, et qui sont presque toujours & deconseiller du point
de vue de l'esthétique. Ces considérations suggerent 1’idée d’appliquer
aux structures métalliques les méthodes de caleul des voiles continus, mais
en remplacant le voile par un treillis triangulaire léger, inscrit sur la



406 11b2. FLORENCIO DEL POZO

surface théorique de ce voile. L’étude de quelques projets de ce type
de structure, et les essais en modele réduit qui sont en cours, permettent
de confirmer les grandes possibilités et I’'intérét qu'offrent ces couvertures.

Le réseau triangulaire, équilatéral ou non, est facilement adaptable
aux surfaces reglées, et parmi celles-ci, aux cylindriques. Dans ce cas,
le réseau est formé par des génératrices continues et deux systémes
diagonaux avec inclinaisons symétriques par rapport a la directrice.
L’état actuel de la technique de la soudure permet I'emploi exclusif de
profilés commerciaux courants, sans avoir recours & des usinages.

Des couvertures cylindriques de ce type ont été construites, les unes
utilisant des profilés spéciaux brevetés, en tole pliée, les autres utilisant
des profilés laminés ordinaires; jusqu’ici cependant, la capacité portante
de la charpente était confiée a I’effet de volite, et non pas a 1'effet de voile.

Dans ce qui suit nous exposons les grandes lignes d’'une théorie des
voiles cylindriques réticulés, fondée sur la solution classique des voiles
pleins en régime élastique. Cette théorie, dont la validité semble acceptable
pour le voile reticulé infinitésimal doit étre confirmée par l'expérience,
et, peut étre simplifiée en I’extrapollant, pour le cas pratique de réticulés
non élémentaires.

Théorie du voile cylindrique réticule a directrice circulaire.

La théorie des voiles pleins en régime élastique est bien connue et
a été amplement verifiée au cours d’une trentaine d’années d’application.
Nous fonderons sur elle le calcul des voiles réticulés, object de la présente
étude.

Nous supposerons par la suite que la transmission des charges
superficielles se fait au moyen d’efforts du type membrane; hypothese
parfaitement admissible quand il s’agit de charges continues, les erreurs
introduites étant mégligeables. _

Conformément & ce qui précede, nous développerons le calcul en
deux parties: la premiére traitera de 1’étude générale du voile, abstraction
faite des charges extérieures superficielles, et des charges linéaires aux
bords longitudinauxj; la deuxieme traitera de I’étude de I’état membrane
pour la transmission des charges superficielles. La superposition des
deux états antérieurs et les conditions aux cotés que nous imposerons,
nous donnera les efforts définitifs dans le voile dans les conditions admises.

1. — Notations.

Sur le voile, I'origine des x sera l'appui dorsal, et celle des o le
bord droit.

L’effort longitudinal par unité de longueur Ny, ainsi que I'effort
transversal N, seront positifs lorsqu’ils produisent un effort de traction
dans I'élément considéré. L’effort tangentiel No, ou N,v¢ sera positif
quand il représente une traction selon les valeurs croissantes de x et o.
Le moment fléchissant longitudinal M, et le moment fléchissant trans-
versal M, seront positifs lorsqu’ils produisent des efforts de traction
a l'intrados du voile. Les efforts tranchants normaux au voile Q. et Q o
et la réaction normale R¢ du bord, seront positifs lorsqu’ils sont dirigés
vers le haut sur faces les plus proches de 'axe des ¢ ou des x respective-
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ment. Le moment de torsion My« ou My est positif lorsqu’il produit un
effort tangentiel positif & I'intrados.

Les déplacements longitudinal et tangentiel u et v seront positifs
lorsqu’ils ont le sens des X ou ¢ positifs, respectivement, et le déplacement
normal au voile w sera considéré positif lorsqu’il est dirigé vers le haut.
La rotation du voile 6 sera positive lorsque la section tourne dans le sens
des aiguilles d’une montre.

2. — Théorie gémérale.

Comme simplification de la théorie générale, nous supposerons par la
suite que les efforts tangentiels au plan du voile N¢, et Ny sont égaux,
ce qui implique que la composante tangentielle du moment de torsion est
nulle. Par analogie, mnous supposons égaux les moments de torsion
M@ x et Mxtg .

Ces simplifications offrent une approximation plus grande que celles
qui correspondent aux hypotheses de Finsterwalder.

Ayant suivi la théorie classique des voiles pleins, il nous faudra
résoudre le systéme formé par les équations d’équilibre de 1'élément de
voile et par les rapports qui lient les efforts aux déplacements. Le
systéme formé par les équations d’équilibre de I'élément de voile n’est
aucunement affecté par la constitution interne de cet élément; il sera
par conséquent le méme que celui obtenu pour les voiles pleins. Au
moment d’établir les rapports qui lient les efforts avec les déformations
et déplacements, il faudra au contraire tenir compte des caractéristiques
élastiques de I’élément de voile.

Nous supposons que le voile est constitué par une maille infinitésimale
de triangles équilatéraux (Fig. 1), et nous considérerons comme élément
différentiel I'un quelconque des losanges
formés par deux triangles adjacents dont
le c6té commun est disposé selon la géné-
ratrice: ABCD, par exemple. Un probléeme
d’élasticité se pose alors, dans lequel le
corps considéré est homogéne, mais non
isotrope; il a, cependant, dans son aniso-
tropie, trois plans de symétrie élastique.
Ce probléme général renferme nécessaire-
ment douze constantes élastiques, quoique
I'on puisse les reduire a cing en considérant
les hypothéses fondamentales des voiles;
par conséquent, le systéme qui lie les contraintes aux déformations, peut
s’écriré sous la forme suivante:

Ex

Ox = ———— (& + ¥y )
1—7,‘114?
E,
Gy = : ex + Vx 2x
¥ 1—'JxV(?( + ) (1)

Txo=G.7xy
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Dans ces expressions il apparait deux modules d’élasticité E. et E¢, un
module de rigidité G et deux coefficients de Poisson v« et v, desquels
vx représente le rapport ¢ : & pour s. = 0; et v le rapport e« : % pour
ox = 0.

Soit S la section de la barre élémentaire, I son moment d’inertie
par rapport a la surface moyenne du voile, 1 le c6té du triangle élémen-

taire et E le module d’élasticité du matériau qui

p constitue les éléments du réticule profilés en acier

* ordinaire.

A L’on admet que les barres qui composent le
réticule sont des profilés symétriques par rapport
a son intersection avec la surface moyenne.

Si nous considéronsg le losange élémentaire
ABCD (Fig. 2) et supposons un effort de com-
" pression P appliqué dans la direction de la diago-
nale AC, en déterminant les efforts et les défor-
mations que présente 1’élément, nous obtenons:

‘_Uf:?_‘ﬁ P . 5P __3
s S.V3 3V3. ES 5

(2)

€x L P . 5P o 3 (3)
& V3.ES 3V3ES 5

V,:D:__—

Cette valeur, plus grande que 0,5, pour un coefficient de Poisson
peut mous surprendre, & premiere vue; pour l'expliquer. il suffit de
tenir compte des caractéristiques d’anisotropie du corps étudié, et vérifier
que le module d’expansion de volume obtenu est positif.

Si, dans la méme fig. 2, nous supposons le losange élémentaire
ABCD soumis & une compression P dirigée selon la diagonale BD, nous
avons:

= _P.P g @)
€x S ES

5? P . P o 1
Ex 3ES " ES 3

(5)

V¢ ==

Pour calculer la valeur du module de rigidité G nous considérerons
le losange élémentaire ABCD soumis a I’action de deux couples en équi-
libre de valeur P.1? \f’/§,—fi;g. 3; a l'aide de cette figure et de la fig. 4,
nous obtenons:

p— /_
G Tx2 _ _Txo =P.l:iA;: Pl: 4_P1 :V3E ©6)
Txo ¥ +7, S 1V3 S V3ES 4
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Etant donné que les constantes E,, Eo, vi, v» et G, sont connues,
nous avons les rapports qui lient les contraintes aux déformations (1) et,
par conséquent les rapports contraintes-déplacements qui seront:

5E [ 3 z 3 | \
Gy=—|u'+—(v +w ——(w”%— W w J
41‘[ 5( ) r 5( ))
cwzﬁ[w%—v'—klu'—i(wicw“ntlw")J
' 4r 3 r 3
Txo == Ev3 {u'+v’——i(u'——v’+2w")l
' 4r | r -

r étant le rayon de la directrice. Dans les expressions antérieures et dans
ce qui suit, nous emploierons la notation suivante:

. 0% ,
;o ... ;o T—=1"; r2—=1{";
09 092 0xX 0X>

Il nous reste a relier les contraintes aux efforts et aux moments
unitaires, et pour cela il faut déterminer les sections et moments d’inertie
correspondant a la longueur unité, pour les divers efforts et moments.

Y
FiG. 3

Par la fig. 5, nous voyons qu’ils sont obtenus au moyen de calculs simples;

les sections unitaires cherchées sont: %; S—l‘—?i, % pour les efforts N,
. e 21  Lv3
N, et Nox respectivement; et les moments d’inertie unitaires: r?; ]
v

—i— pour les moments M,, M, et Mo, respectivement.

Une fois connus les efforts et moments unitaires en fonction des
déplacements, avec les équations d’équilibre, on arrive par élimination,
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analogiquement comme 1’on fait dans la théorie générale des voiles pleins,
a un systéme de trois équations différentielles. Les déplacements u, v
et w, sont liés dans notre cas, par les relations suivantes:

Ne

\, t 10u"+3u” +9v '+ 6w'=0

—

u'(2-6)+3v+v'1+E£)+3w —BEBw- +
+3w "+3w")=0 0h)

60°
609

-
G —
;

! |

¥
xl 1=

6fu’' —6Lv "+3u'+9v + 9w+ LOw  +
Fic, b +21w " +10w"" + 9w +6w") =0

La valeur de B est I:Srz. Par élimination de u et v dans le systéme
antérieur on obtient ’équation différentielle suivante, du huitiéme degré,
en 'w:

— % (3-8) W'+ 2w % (55-68) w " —;)—(21-4@) Wi wi

10 1 . 100
- 12_5 s il 49-2 s 3 Bl 1+ P rn
+ 57 (1250w " - (492w 3w o (1w

20 8
TaA4wm a2 e __

Cette équation est vérifiée en faisant:

5 . X nrwTr . .
W=2e™.sin « = | avec o« = T; L étant la longueur du voile et n
'r

un nombre entier dont la valeur sera fixée par le terme du développement
en série des charges extérieures. L’équation caractéristique qui résoud
ce probléme sera:

4 ' ) a2 at
m8 - <2— —§— (3-5) o2 ) m6 +| 1— ? (21-4p) —}—?(55-6@ ] mé -+

+ [-3a2+—“i 49-25) — 0o 12+ 56) [m2+ o (1 4+ ) [—8— 0. O
| 0 27 | e 21
100 |
ErTR

Une fois cette équation résolue et, d’une maniére analogue aux
développements de la théorie classique des voiles pleins, on obtient les
efforts, les moments et les déplacements du systéme homogeéne auquel
on devra superposer les effets des charges extérieures, obtenus, comme
on I'a indiqué en étudiant I’état membrane.
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I1 faut remarquer que l’équation (9) a une forme semblable a celle
que l'on obtient pour le voile plein, quoique les coefficients soient plus
compliqués dans ce cas. Dans l’équation (9) interviennent seulement
les dimensions du voile, r et L; et les caractéristiques du profilé adopté,
S et I, indépendamment des dimensions du réticule. Cette circonstance
simplifie beaucoup le travail de tatonnement, car un profilé déterminé
ayant été fixé «i priorix, elle permet de varier les dimensions du réticule
s’adapter aux efforts obtenus, sans avoir besoin de refaire les calculs sauf
dans ce qui a trait & 1’étude des équations aux cotés et a 1'obtention des
efforts définitifs.

Formules pratiques.

Toutes les formules données dans cette partie seront applicables aux
cas de réticules équilatéraux, pour lesquels nous avons déja obtenu les
sections et les moments d’inertie fictifs ainsi que les constantes élastiques.
N’oublions pas que les expressions obtenues ne sont valables que pour
ce type de réticule; toutefois en suivant une marche analogue a celle
déja exposée, nous pourrions obtenir les expressions correspondant a
une inclinaison différente des barres diagonales. De toutes facons les
formules que 'on obtiendrait seraient plus compliquées car il intervient
alors un nouveau parametre, la grandeur 1 ne suffisant pas pour définir
le réticule.

Dans les expressions trouvées seuls les cinq parameétres suivants
interviennent :

S et I, section et moment d’inertie du profil laminé, exprimés en
m? et m*, grandeurs qui, dans certaines limites, peuvent étre considérées
comme coefficients numériques, compte tenu de la discontinuité des jauges
de lamination. '

1, coté du réticule en m, qui d’apres ce qui a été indiqué, interviendra
seulement, a la fin du calcul, dans le développement des équations aux
cotés et dans I'obtention des efforts qui agissent sur les barres du réticule.

L et r, dimensions fondamentales du voile qui au cours des dévelop-
pements en série trigonométrique, interviennent dans tout le procédé
de calcul. Ces grandeurs sont exprimées en m.

Ce type de voile s’applique principalement aux grandes couvertures
de caractére industriel et, en général, se présenteront comme voiles isolées
ou en voiles multiples réunits par les bords ou ¢ = const.

La charge principale a considérer sera celle due a4 son poids propre,
a laquelle on atribuera par la suite I'intégrale particuliére representée par
I’état ‘membrane. Nous pouvons réduire aux charges de ce type non
seulement le poids de la charpente métallique, mais aussi celui des élements
ou des couches de couverture. En plus de ces charges il faudra tenir
compte des surcharges de neige et de vent.

La surcharge de neige et considérée d’habitude dans tous les regle-
ments comme étant uniformément répartie sur la projection horizontale
de la couverture. Cependant, dans le cas des voiles polilobulés, cette
hypothése n’est pas applicable, puisqu’il se produirait des accumulations
sur les rives. Ceci nous autorise a utiliser une loi de distribution uniforme
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tout le long de la directrice qui équivaut & une loi de la forme __ Pn

cos (Px-9)
par unité le longueur en plan. ®x est 'angle d’ouverture du voile mesuré
depuis le bord jusqu’a la verticale. Finstenwalder et Jakobsen, entre
autres, emploient cette hypothése de répartition de neige dans leurs
études sur les voiles cylindriques.

Dans le cas des voiles isolés, cette hypothése de distribution est treés
défavorable, et il convient d’utiliser celle de la répartition uniforme en
plan dont I'intégrale particuliére correspondante sera indiquée ci-dessous.

En ce qui concerne la surcharge due au vent, on peut négliger son
action pour des voiles dont le demi-angle d’ouverture est égal a, ou plus
petit que 50°, ce qui est le plus souvent le cas. Les reglements modernes
admettent que dans une couverture cylindrique a directrice circulaire,
le vent provoque des suctions dans toute la zone sous le vent, et dans un
secteur d’a peu prés 50° compté a partir de la clef, de la zone au vent.
Il y aura lieu de prévoir des pressions dans le reste de la zone au vent
lorsque le demi-angle d’ouverture du voile est supérieur a 50°; c’est un cas
rare en pratique.

Les suctions produisent un allégement dans le régime général de
contraintes du voile et pour cette raison on ne les prendra pas en
considération. Par contre, il faudra les considérer au moment de projeter
I’ancrage du voile, pour tenir compte de soulévements diis & des pressions
intérieures éventuelles du vent.

Ces raisonnements se rapportent aux batiments isolés; dans ces cas
on peut supposer le vent pratiquement horizontal. Lorsqu’il s’agit de
toitures entourées par d’autres batiments, ’action du vent peut devenir
plus complexe & cause des déviations et tourbillons produits par les
obstacles. Ces cas doivent étre étudiés tout particuliérement afin d’aboutir
a une loi de répartition de pressions qui, comprenant avec une approxi-
mation suffisante les actions les plus défavorables, permette un calcul
facile de l'intégrale particuliére correspondante. Pour ces cas, comme
nous le verrons plus tard, la solution du systéme homogene est étudiée
pour une charge symétrique et une autre antimétrique. Il sera possible,
en superposant les deux, d’obtenir la solution correspondant & une charge
quelconque.

3. — Ftat membrane.

En général, les charges extérieures sont réparties d’'une maniére uni-
forme tout le long du voile, ce qui fait que 'on peut supposer la charge
développée en série de Fourier:

pxzilR ‘sinﬂvjrlsin dwx Jrl sin SrX

T | L 3 L 5 L

et, comme il est d’usage dans la théorie générale des voiles pleins, on peut
trouver la solution en additionant les divers termes, et, comme il arrive
dans le cas de ces voiles, il ne sera pas nécessaire, en général, de considérer
plus des deux termes. Cependant, les formules que nous donnons ci-dessous
sont obtenues pour un terme général de la série.
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Dans le cas du poids propre nous avons:

N¢ = (Pk-9) sin a%
Nox =
Ni = (-9) sin a;:— (10)
u= % Lr—:Q (%-1‘) cos (Pgr-7) cos x%
=— V%I)I:'.S ::3 (7 -i—%) sin (Px-9) sin a-f—
= \/43p};5 IrA K— — —) cos (Px-9) sin a—?—

Ces expressions donnent les efforts et les déplacements de l'état
membrane pour une forme général du développement d’'une charge due au
poids propre p (Kg par m?).

Dans le cas d’une charge uniformément répartie en projection hori-
zontale nous avons:

r2 . X
No=—4q — cos? (Px — ) sin « —
L r
Noo = — 4q 5 cos (Px — ») sin (@K—?)COSa—}(—
X

iy

2
Be= 5 {COSQ((DK_?)_SiUQ(q’K——?) sin «
L3 » r
24 (“'_2 ) cos? (P —3) — gSiﬂQ(q’K——?)r cos x =
\3ES Lac2 ‘ 22 7 v
—8q.1 1 0 N . X
_ — +hHY)sin (Pgy — 9) cos (Pgx — ) sin « —
V3ES Lo3 ( 2 )S n (% 7) (Px — o) o -
- 3
we =24 T (19 +—ng‘B’O*)‘:052(‘1)K—<?)— (11)
Vv3ES Lz 3 22 ak .
- ( 17 I 36 ) sin? ((I)[\ — y) sin « }-
o2 i i :

27
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Ces expressions donnent les efforts et les déplacements de 1’état
membrane pour un terme général du développement d’une charge unifor-
mément répartie en projection horizontale q (Kg par m? de projection
en plan).

Toutes les expressions indiquées ont été obtenues en supposant que
le voile s’appuie sur les supports frontaux, c’est-a-dire, en x =0 et
x — L. .

4. — Résolution de Uéquation caractéristique.

Dans les pages précédentes nous sommes arrivés a une équation de
huitiéme degré de la forme

mé+cembt+cy,mt+c2m24¢c, =0 (12)

dans laquelle les valeurs des coefficients sont celles portées dans ’expres-
sion (9). Si nous faisons m*> = t, nous obtenons une équation du quatriéme
degré:

t4+cst3+c4t2+C2t$C0=0 (13)

Etant donné la grande importance du terme indépendant par rapport
aux autres coefficients, une premiére approximation consisterait & prendre

8, —
les valeurs de m =s\/ C, , ¢ étant les huit racines huitiémes de 1'unité
négative, car ¢, est toujours négatif. Cependant, cette approximation
conduit & des erreurs appréciables dans presque tous les cas; elle devient

inadmissible pour des valeurs de ]i < 0,3.

La méthode que nous indiquons ci-dessous, quoiqu’approximative,
introduit des erreurs moindres que celles commises en remplacant dans
B =1 :Sr? les valeurs S et I tirées des manuels qui, d’ailleurs, n’admettent
pas une approximation plus grande.

Cette méthode consiste, dans ses grandes lignes, & égaler le polynéme
(13) & un autre polyndme qui aurait les mémes coefficients c., ¢, et ¢, et
qui serait le produit de deux polynomes de second degré. Ceci se fait,
compte tenu de ce que le terme qui n’est pas commum dans les deux,
c’est-a-dire celui en t, premier degré, est celui de moindre importance.
En faisant quelques développements simples les racines approximatives
de I’équation (13) deviennent:

3 o G4 . c2 2

= 4 6 _
16°° 2i\/(~2 8) .

et en extrayant la racine carrée on obtiendra les huit racines de 1’équation
(12) qui seront de la forme: + a + bi; + ¢ + di.

Pour le premier terme de la série (n = 1) nous obtenons, pour les
cas les plus défavorables des erreurs relatives pour la valeur du polyndome
inférieures au 4:1000 et en général beaucoup plus petites; pour le second
terme de la série (n = 3) et dans le cas le plus défavorable l'erreur

t=—lbt
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augmente légérement, mais on peut continuer a utiliser cette méthode car
I'influence sur les racines et 'influence de celles-ci dans le développement
général, est faible:

5. — Systeme homogeéne.

Les expressions des déplacements, efforts et moments, correspondant

au systéme homogene, et qui se déduisent apres avoir effectué les déve-
loppements de la maniere indiquée précédemment, ont la forme suivante:

W :|/81¢1+B2(D2+B5(D5+B4(D4’] Sindi(—
. . r

=[<K1 B, + Kj By) @, + (K, B,— K, B,) &, + (K5 B; + K, By) &5+

+(K5 B_}—K;l B5) ¢)4l COS « 1

r

= [(Kg B, + Ky Bo) @5+ (Kg By, — Ky By) @6+ (Kyy B+ Ky By) @, +

_:_(K“ B;—KIQ Bs) (DS_ sin o —X—
r
2ES )
N, =————| (K13 B1 +Kyy By) 1+ (K3 By — Ky By) 9 + (K 5B+ K By) 95+
A%(Klﬁ B4'—“K16 B5)¢4| Sin o 4 —X—
, r
3ES
N —“—————| (K47 B+ K5 By) 9 + (K7 By — Ky g By) @5 + (K19 Bs + Koy By) @5+
+" (KIQB4—K20B5)(D4 l Sin o4 i
. r
3ES | | o
S = 31r l (Kgy By -+ Koo Bo) @5+ (Kgy By — Koy By) @6+ (Kos Bs + Koy By) @7
+(K25B4 K)4 Ba) J COS « ——X—
r
2E1 ‘ ‘ ‘
TV 3l (Kys By -+ Kog Ba) @+ (Kgs Bo—KogB1) @9+ (Koy Bs + Kog By) 5+
+ (Ko7 By—Kog st)¢’4] sin « —
_ r
3EI | | | \
M, =iv3l r9| (Kog By +Kjzo Bg) @ +(Kgg By—Kjo By) Po-+ (K31 Bs K3 By) @5+

+ (K51 By —K3z Bj) ¢4J sin « %
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3EI
Mox = EIRE [(Kss B, 4Ky Bo) @51 (K55 Ba— K34 By) @6+ (K35 Bs + Kz By) @7+
+ (K55 B4 - K56 Bg,) (I)SJ COS « -—X—-
r
3EI ‘
¢= V31D [(st B, 4K Bo) @5+ (K57 Bo—Kig By) @6+ (K9 B+ Ky By) @71

+(K59 B4'—K40 Bg,) (I)S] sin « i
R Tr

1r , '
O — T| (K41 Bl + K42 BQ) (I)5 e (K41 BQ - K42 Bl) (I)G + (K45 BS I K44 B4) (I)7 —|_
+(Kys By = Kyy By) @ | sin « =
_ r

3EI |
&=131e [(K‘*S B, +Kis Ba) 95+ (Kys By — Ky By) @6+ (K7 Bs+Kyg By) 01+
+ (K47 B-} - K48 Bs) (I)S -] sin a _;.
3EI | -
Qx - m l (K49 Bl +K50 BQ) q)l+(K49 BQ— K5O Bl) (I)2+(K51 B5+ K52 B4) ¢5+

+(K51 By — Ks50 B5) 94 I cos o« —
_ r

R étant la réaction normale au bord longitudinal, ¢ la rotation
d’une section, et B,, B, B; et B, des constantes d’intégration qu’il faudra
déterminer conformément aux conditions aux cotés longitudinaux.

Les fonctions @,; ®,; @3, """, @ s’expriment de la maniére suivante:
¢, —e " #cosbot+e—3@Wcosbn ; Ps=e~“®cosby e—89cos bw
P)— e~ % sin by e —29sin bw ; Py=e "% sin by F e—23»sin bw

P3—e~%cosdote—c®cosdo ; P, =e " cosdy T e—3%cos dw
P,—e—~%sindy +e—C®cosdn ; Pg=e " “sindyFe—3®cosdw

=2 Py — 9, c’est-a-dire que o est I’angle mesuré au bord gauche du
voile. Les signes supérieurs correspondent a des charges symétriques
aux deux bords longitudinaux et les signes inférieurs a des charges anti-
métriques, c’est-a-dire a4 des charges linéaires sur un bord longitudinal
égales et du méme signe, ou de signe contraire, & I"autre bord, respecti-
vement.

Les constantes K s’expriment de la maniére suivante:

Pour le déplacement longitudinal u:

=P1ml:—q1n1
n12+ m12

K _ Pymy—qny
57 The? 4+ my2
9“ T Mg

K,
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. P1n1+q1ml . ~ P2n9+q2m2
2 — n12+ mlg ’ 1= n22+m22

Avec:

m;=6ab (3+83+2)

ny =22 (21--20602)- 3 (a2-b?) (3-+85 )

pi=108%zab (a2 +b2)-126ab+*+545abx

q=9Y2+275=z(a*+b*-6a2b?)-635*(a2-b2)+3052 +
+2752(a2-b2)-305

my=06cd(3+8 {22

ng — 22(21 +20 6 22)- 3 (c2-d2) (3 +8 5 »2)

pe=10825cd(c2-d?)-126cd*+54fLcd =«

qe=021+27Lx(c*+d*-6c2d?2)-6333(c2-d2)+30054+
+2762(c2-d?)-3051

Par le déplacement transversal v:

ngaha-bkﬁ : K, = c K;-dKg
a2+ b2 c2 +d2
Klozal\6+bl\5 : K12:C I\S—T_dl\-‘v
2t bo ¢ + a2
K5=61—— K, (3(a2b?)-1022)+62abK,+ 6=
- -
KSZ 51— Kg 3(3 (ag-bg)-IOQQ)-ﬁabKl I
o 1.
K7:51— Ky (3(c2-d2)-1042) + 6 cd K, + 6 =
o L -
1 1. o )
KS:T 1\4 (3<C2'd2)'101')'6CdK5J
AL

Pour l'effort longitudinal Ni:

411

K13=—'51 K]'33K9'3bk10+3 N K15:—52K5'30K11-3dK]2+3

Kiy=—52K,-3aK;+3bKy, ; K;z=—532K,-3cK;p+3dKk;,
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Pour l'effort transversal Ny :
K;;=—aK;-3aKy-3bK,;+3 ; Kjy=—=K;-3cK;;-3dK;p+3
Kig=-—2K,-3aK;,+3bK, ; Kog=—aK;-3cKp+3dK,

Pour l'effort tangentiel Ny :
Koy=+a2Ky-aK;-bK, ; Kys=aKj1-cK;5-dK,
Koo = +aKy-aKy+bK; ; Koy =aKpp-cKy+d Ky

Pour le moment fléchissant longitudinal M,:
Ky;=3-542+3(a2-b2) ; Ko. =3-252+3(c2-d?)

Pour le moment fléchissant transversal Mo:
K29=3-a2+3(32-b2) , K51=3-d9'+3((‘,2-d2)
K50=_"6ab' , K5«_):—6Cd

Pour le moment de torsion My, ;

K55=——(aK1+bK2+aK9+2aa) ; K55—'=—(CK5+dK4+OCK“+20CC)
Kz, = —aKy+bK;-aKjg+2ab  ; Kg=—cK,+dKz-2Kp+22d

Pour la réaction longitudinale R¢ :

K57=—‘aK29‘bK50'2“K55 ; K5J:—CK51'dK52-2xK53
Kz =—a Kz +bKy-2xKj, ; Ky = — cKsptdKs -22Ks

Pour la rotation 6:
Ky=—Ky—a ) Kiy=—K;—c¢

Kjp=—Kj,+Db ) Ky=—Kj+d

Pour l'effort tranchant Q.:
K45=—3K29-bK5J-06K55 3 K47=—CK51'dK52'aK55
K= —aKjs,+bKg-2Kj ; Kig=-—cKz+dKs -=Ks
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Pour Teffort tranchant Q.:

Km:—;—le'aKaa'me ; Kg,]——%iKgy‘CKss-szs
2 , 2
K50:~3“1K25'3K5ﬁb1<55 ) Kso = 3 % Kog- ¢ Kgs+d Ky

a et ¢ les parties réelles des racines de I’équation du huitieme degré

. . nEr .
et b et d les parties imaginaires, « = L ; n = 1 pour le premier terme

de la série de Fourier, n — 3 pour le 2éme, etc. Les efforts et les
moments sont indiqués par unité de longueur, c’est-a-dire Kg par m et m.
Kg. respectivement.

Nous avons déja indiqué que cette théorie est actuellement en cours
de verification au «Laboratorio Central de Ensayo de Materiales de
Construccion» de Madrid, au moyen d’essais sur modeéle réduit; les
premiers résultats obtenus sont satisfaisants. On a, d’autre part construit
quelques couvertures de
ce type; parmi celles-ci,
on peut en citer une
formée par une série
de huit éléments égaux
de 12,70 m de portée,
6,50 m de rayon et un
angle au centre de 9<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>