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Ha6
Thin spherical shells under rim loading

Dünne Kugelschalen unter Randbelastung

Paredes delgadas de forma esferica carregadas ao longo do bordo

Voiles minces de forme spherique charges le long de leur bord

Dr. MILAD M. HANNA,
Ph. D.y A.M.I. C. E. - Lecturer, Faculty of Engineering

Abbassia, Cairo

INTRODUCTION

x^

In the analysis of spherical shells of rotational symmetry in loading
and support conditions, bending moments and horizontal forces are
introduced at the rim to satisfy the boundary conditions. Hence there arises
the need for the analysis of spherical shells under these two cases of
loading.

The mathematical Solution of this problem has already been
investigated in previous Papers. (See Bibliography). It involves certain
mathematical assumptions and approximations and
therefore needs experimental verification. A
review of the theoretical analysis is presented
in this Paper with the application of the general
Solution to the conditions of the experimental
shells.

Figure 1 shows an element of a spherical
shell, loaded at the rim only. The position of
the element is defined by the angle 4> measured
from the rim of the shell (figure 3). For
rotational symmetry, the element is loaded only with
the forces and moments shown in figure 1, as
the element itself is not subjected to external
loads. The direct stress components N^ and
N q acting in the meridional and hoop directions
respectively are positive when they produce tensile stresses. The bending
stress components M $ and M9 acting in the meridional and hoop
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directions respectively, are positive when they produce tension on the
inner surface of the element.

I. THEORETICAL ANALYSIS

The exact mathematical Solution of the problem involves the use of a
hypergeometrical series which is slow to converge for thin shells [3] *.
The exact Solution has therefore become obsolete for design purposes.

Geckeier [1] introduced an approximate Solution which is applicable
for thin spherical shells with uniform thickness. His Solution renders
the following equations:

N$ —cot (cc — <\>) C e— A '^sin (X ty + y)

N0 — )V~2 C e — X+ sin (ty + y -)

M* —^= Ce-x + sin (X^ + v + —)^ X ^2 r ' 4

M0 =m M$

3 — — sin (« —<|0 1 \T2 C e—A^ sin (ty + y_—)Eh 4

V =--Ce~ '-Vcos (ty + y)
Eh

where
5 the horizontal displacement

V the change of slope of the tangent to the meridian
a radius of shell
h thickness of shell
a half the angle of opening of the shell

E Young's Modulus
m Poisson's ratio

X the damping coef \/3 (1 -m2) / _a_

and C & 7 are two arbitrary constants to be determined by satisfying
the boundary conditions.

Equation (1) defines the stress components in the shell by finding
the constants C and/

As will be seen later, the experimental shells were provided with
horizontal flange rings, as a means of applying the rim loading, as shown
in figure 7. This flange ring partially restrained the shell rim in the
horizontal direction.

(*) Numbers refer to Bibliography at the end.
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Geckeler's Solution as given by equation (1), was therefore, applied
for the case of rim bending moment under the two limiting boundary
conditions: —

a. the rim free to develop the horizontal displacement. This case is
referred to as «Theoretical free edge».

b. the rim fully restrained horizontally. This case is referred to as
«Theoretical fixed edge».

The case of a shell subjected to rim horizontal force H is presented
when Ha is applied through a flange ring.

/. Spherical shell subjected to rim bending

a. Bending Moment Applied to Free Edge

The boundary conditions for a spherical shell subjected to rim bending
moment M as show in figure 2, are satisfied by:

[M^J.j, 0 -Ma and [n*] + ==0 0

-4 ~7~?r 5-

Mo( lb.in/m'

^4

Fig. 2 Fig.

Substituting in Equation (1), the constants are:

2X Ma
y 0 and C

a

Substituting now these constants in Equation (1), the following
equations are obtained, giving the stress components for this case:

2) —1<L
sin l'h cot 0 - '!)

9)2 ] I

Ne — Ma e— '* (sin ty - cos ty)
a

M,4> M e
'* (sin ty + cos X-|)

M0 m M$

(2)
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b. Bending Moment Applied at the Rim when Restrained Horizontally

This case differs from the previous case a, in that the bending
moment is applied to the shell rim when it is fully restrained in the
horizontal direction, as shown in figure 3.

The boundary conditions are satisfied for:

[3J*-0 0 and [M<J>]*=0 Ma

The constants for this case will be:

y — and C= M„/ 4 a a

Substituting in equation (1), the following equations are obtained:

N(t) — M e
— k v (sin ty + cos ty) cot (« —<|0

a

NQ Mae * sin ty
a

M0 —Mae —^ cos ty

(3)

M9 m M$

//. Spherical shell subjected to rim horizontal force

a. Shell with Free Edge

In a similar manner, the case of a shell subjected to horizontal
force H as shown in figure 4, will give the following equation:

N $ — Ha sin ol e
A * (sin ty — cos ty) cot (a — |)

N 9 2 Ha sin a.e — ^ cos ty

M ^ — H sin «. e *sin ty

MQ m M$

(4)
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b. Shell with Horizontal Flange

When the shell is subjected to rim horizontal force Ha applied to
flange ring as shown in figure 5a, the force acting at the rim of the
shell H' (fig. 5b) is given by the equation:

haLJ '

2/b h. + ha
H (5)

where b and hr are the breadth and thickness of the flange ring.
This equation is arrived at by closing the horizontal «gap» between

the flange ring and shell as illustrated in figure 5.

S--!-^7>

J
H« lb/in*

Fig. 4

\TK

Ho.H.

Ha 4 H

iy

Y-b Ma-HiJ

Fig. 5

HvH«

The edge zone

The mathematical analysis, shows that for both the two cases of rim
loading, the forces N^ and N0 and the bending moments M^and MQ
are functions of one of the expressions: —

1 -e-ty sin >4

2 - e- ** cos ty
3 - e~*T (sin >^ + cos i<|0

4 - e- *+ (sin ty + cos ty)
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These functions are shown in figure 6. It is clear from the figure
that these functions damp quickly and at X ü - the value of any of
these functions is not more than 4.32 % of its maximum value. It is therefore

concluded that the effect of the rim loading is mainly confined to the
zone defined by the equation X £ -.

If S denotes the width of this edge zone, then,

S a 6 a —
X

for Poisson's ratio m 0.30

X 1.285 yA and S 2.45 \ ~äh

and for m 0

X 1.317 y/-J- and S 2.39 \ "äh

As will be seen later, the experiments showed that S may be
given by the equation:

S 2.0 \ ~ä7h (6)

Spherical shells with variable thickness

The method suggested by Geckeier in dealing with this problem was
to divide the shell into several zones by hoop circles. For each zone
an average value of X is used. Starting with the first zone at the edge,
the boundary conditions are known and thus the constants C and y
can be determined from equation (1). The stresses components can,
now, be calculated at the upper rim of this zone. These values are
taken as the boundary conditions for the second zone. Thus again, in
equation (1) the boundary conditions are satisfied and new constants
are found for the second zone and so on.

Equation (2) for the case of bending moment applied to free rim
will give:

N* —M e '^sin Il-\i cot (x —11)
a

Ne
2X* —2/1; v. ,^— M e T (sin 2/^ — cos -/•!)
a

M0 — Ma e ^(sin 2/ + + cos 21 ty

M9 mMQ

(7)

Equations (3) and (4) may be modified in a similar manner.
The value of X that appears as a common factor in any of these

equations, is taken as the average of the values for the zone considered

and the zones that preceed.
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But, as the mathematical Solution of equation (1) is based on approximation

and as the zone affected by rim loading is very limited, it is
thought that if the shell is considered having uniform thickness h

at X ^ — the curves of distribution would not alter much. In this
4

case, the stress components N^ NQ and M^ may be calculated
77 77 77 3 "7

at X 6 and tx using the coefficient given in
8 4 2 4

figure 6 instead of calculating them at specific values of <J/°.

II. EXPERIMENTAL ANALYSIS
The Shell Models

Five aluminium spherical shells were specially eonstrueted for the
experiments by A. P. V. Co. Ltd., London. The material had a modulus
of elasticity of 10,500,000 lb./sq. in and Poisson's ratio of 0.29.

The shells were shaped by spinning aluminium sheets of uniform
thickness on a spherical template 18 inches radius. The process of
spinning resulted in a Variation of the thickness in the meridional direction.
The thickness of the shell was uniform on the same hoop circle. Table I
gives the thicknesses of the experimental shells. Each of the five shells
will be referred to by the thickness of the plate from which the shell
was spun and half the central angle of opening a. For instance the
shell (V/', 55°) refers to that having an angle of opening 110° and
was spun out of a plate 7/' thick. The five experimental shells were:
shell CA", 55°) refers to that having an angle of opening of 110° and
was spun out of a plate OA" thick. The five experimental shelle were:
(7/', 55°), CA", 55°), (Vie", 55°) and CA", 35°), <7ie", 35°).

A rim flange ring was spun monolithically with the shell as shown
in figure 7 to provide a means of applying the rim loading. It was
desired at the beginning to have the shells with uniform thickness and
connected to the rim in a sharp connection as shown in figure 7a.
It was only possible to spin the shell with the flange ring by introducing
a fillet 7s" radius between the shell and the flange ring as shown
in figure 7b.

The Strain Gauges

Electrical wire resistance strain gauges
having a gauge length of 6 millimetres, were
fixed at stations corresponding to integral
values of ty°. At each Station two gauges
were fixed on the outer surface, one in the
meridional direction and the other in the
circumferential direction and similarly two
gauges on the inner surface. The gauges
were not spaced uniformly on the shell
surface. More gauges were fixed at the rim zone

F Rtnq

Fig. 7
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of the shell to study the stress distribution due to edge loading. At the
Station corresponding to <J> 0°, i. e., on the fillet between the shell and the
flange ring, gauges were fixed on the outer surface, but no gauges could
be fixed on the inner surface.

Table I
Thicknesses of Experimental Shells

(1/4 ", 55°) (1/8", 55") (1/16 *\ 55°) (1/8 *, 35°) (1/16 ", 35°)

\jro h
inches \J*o h

inches xyo h
inchea \J*o

h
inches \j;o h

inches

at pt. a 0.250 a 0.125 a 0.065 a 0.125 a 0.065

at pt. b 0.215 b 0.100 b 0.049 b 0.108 b 0.061

0° 0.213 0° 0.100 0° 0.047 0° 0.103 0° 0.053
1° 0.217 1° 0.104 1° 0.048 1° 0.106 1° 0.054
2° 0.213 2.5° 0.106 2.5° 0.051 2.5° 0.108 2.5° 0.055
5° 0.205 5° 0.113 5° 0.054 5° 0.114 5° 0.060

10° 0.213 15° 0.113 15° 0.056 15° 0.120 15° 0.062
15° 0.220 20° 0.117 20° 0.059 20° 0.124 20° 0.065
20° 0.228 25° 0.115 25° 0.060 25° 0.124 25° 0.065
25° 0.233 30° 0.118 30° 0.060 30° 0.125 30° 0.065
30° 0.238 35° 0.121 35° 0.062 35° 0.125 35° 0.065
35° 0.236 40° 0.124 40° 0.064
40 > 0.244 50° 0.125 50° 0.065

50° 0.248 55° 0.125 55° 0.065

55° 0.250

Application of Rim Loading

Rim loading was applied by placing the spherical shells on cast iron
rings and applying either vertical loads to produce bending moment or
horizontal forces to produce circumferential horizontal forces as shown
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diagrarnmatically in figure 8 and as in the photographs. Two cast
iron rings were used, one to fit in with the 55° shell and the other
for the 35° shells. It was found out that it was adequate to have 16
equidistant points of loading to produce a fairly uniform load at the
shell rim.

id

V\\ \ Lss-^0/

' id.
i id

C O ¦• t H

Fig. 8
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Procedure of Experiments

The three 55° shells were tested under the condition of continuity of
the flange ring, the bending moment test was carried out on the shells
and the results presented in figures 13, 14 and 15. The case of the
rim bending moment is referred to as «Case M». Although the horizontal
force test, which is referred to as «Case H», was carried out on these

three shells, yet the
readings obtained were
so small that no reliable
curves could be obtained.

The reason was
that the test was carried

out under the
condition of «Flange Ring
Continuous» and the
force H transmitted to
the shell edge was very
small as may be seen
from equation (5).

The tests for the two
35° shells were therefore

carried out for
both «Case M» and
«Case H» under the
two conditions:

1. The flange ring
continuous as described
for the three 55° shells.
For the shell (V/', 35°)
no appreciable readings
could be obtained with
the available loadings
for Case H, F. Ring
Continuous.

¦ J™™*™***9W^HWM1>1^^

1 1 ¦! p|| | *
—¦ i„|

¦MB-Am«»,.. ,-Mmy.y.

1 ¥"" "* "~~*—-~*Ji;

l|h~_^4-gpP' ~~M^* ^lKr~i
JLjjy ~d

4

JL ms

* jHHbjT**"^

'jf Txil ~* Sj^Ä

\ 'HL« j^^i"m - Ibe
¦4MM #t^j*PSr£*J«

x x - z ^^^! ^r jm
^***4^Z"""" ¦•

' *" ''"''¦:' ¦'¦44:4'^ ''4* ;
"^^füHinn^

1*' '
i

' * '^ '*¦¦:
: .' ;•. %fp

¦

Wmmam\ ¦¦¦•

Fig. 12. 35° shell-Case M 2. The flange ring cut
at 16 equidistant points
between the points of

loadings as shown in figure 12. The flange ring was not cut through
completely until the shell rim as this might have prevented the use of
the same shells for another series of tests not mentioned in this Paper.
A distance of 1/2" was left uncut at the edge of the shell. The flange
ring after being cut ceased to produce horizontal restraint except that
part of the 1/2" ring. The conditions is referred to in figures 16 and 17

for case M and 18 and 19 for case H, as «Experimental F. Ring cut».
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Presentation of Results

For all this series of experiments the rim loading was applied in
increments and the strains were recorded at the different stations, both
when loading and unloading. Knowing the average values of the
meridional strain em and the circumferential strain ec at any Station, the
corresponding stresses <jm and <yc can be computed by the elastic relations:

l-m<

E

1-m2

(em + m ec)

ec + m em)

For comparison the stresses were calculated for the corresponding
value of either MÄ 1 lb.in./in. or Ha= 1 lb./in. according to the case

of loading.
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The experimental stresses are presented on the diagrams, figures 13
to 19 inclusive, together with the stress distribution calculated analytically
according to Geckeler's approximate Solution as presented in the first
part of this Paper. The Variation of the thickness of the shells was
taken into account. It was found that the stress distribution is very
nearly the same for the stresses calculated according to Geckeler's method
dealing with the Variation of thickness and those calculated according to
the simplified method suggested in this Paper as mentioned before.
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Discussion of the analytical and experimental distribution of stresses

Studying the distribution of stresses as shown on the diagrams the
following points are noted:

1. Both theory and experiment show clearly that the rim loading
affects only a limited edge zone. Comparing the diagrams of the
shells 35° with those for the shells 55°, it is noticeable that the edge
zone is not affected by the angle of opening of the shell (provided that
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it is not small). It increases, however, with the increase of thickness
of the shell. This rim zone is mainly confined to the distance

S 2 V~äh

2. The meridional stresses obtained from the experiments showed
close agreement with the analytical distribution, but with slightly earlier
damping. It is, however, recommended that the analytical stress
distribution is used for design so as to be on the safe side, since the discrepancy
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may be due to the introduction of the fillet between the shell and the
flange ring. Nevertheless, it is clear that the stresses due to N^ are small

compared with those due to M(j, and therefore N^ may be neglected.

3. The experiments showed that the hoop stresses did not have
as close agreement to the analytical stresses as the meridional stresses.
The reason is probably that the effect of the flange ring is more
on N 9 than on M^ as may be noticed from equations 2 and 3. In the case

of reinforced concrete, however, Poisson's ratio is usually neglected and
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therefore M Q can be ignored. In this case the hoop stresses may be

calculated from Ng only.

4. Studying the diagrams for the 35° shells, figures 16, 17, 18 and 19,
the effect of cutting the flange ring is noticed. The effect was, however,
clearer for Case H than for Case M. The horizontal strain on the edge
beam «absorbed» most of the horizontal force H^ according to equation (5).

CONCLUSIONS

A. The theory and experiment showed that:

1. The rim loading affects an edge zone given by S 2 V ah, where
a is the radius of the spherical shell and h is the thickness.

2. In calculating the stresses in a concrete shell the following equation
may apply, based on ignoring the meridional force N^ and the circum-
ferential bending moment Mg.

a. for the case of rim bending moment Ma lb. in/in

6 tut — ^ / •

<7m + — M e * (sin Pb + cos Pb)

nc =+-—LM e ^ (sin ).-}—cos ty)ah'
b. for the case of rim horizontal force H^ lb./in.

6a TT • —/+.,.cm ^ H sin y. e sin Pb~ h2 x

2
T_r • ~ ' +

<7C -f- —H sin a e T COS Pb
h y'

in which

h is the actual thickness of the point considered
X 1.317 vrä/h

and a half the central angle of opening of the shell
and <]/ angle defining the point considered, figure 3.

Instead of calculating the stresses at specific angles ty, it is easier

to calculate these values at / <|* 0, —, —, — and ic using the
8 4 2

coefficients given in figure 6.
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B. For Computing the stress components N$, M^and Nq for spherical
shells with variable thickness, the shell may be considered having a
uniform damping factor X. If the shell is thikened at the edge with
a gradual Variation of thickness and the thickened part is covering the
limit of the edge zone, then an average l is taken at a distance from rim
equal to 0.5 Va-ha,, where hav is the average thickness in the edge zone.
The stress components may, then be obtained from the coefficients
given in figure 6. Knowing the stress components, the stresses are
calculated, but the Variation of thickness should be taken into consideration

in this case.
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SUMMARY

The purpose of this Paper is to study experimentally the stress
distribution in thin spherical shells when subjected to axisymmetrical
bending moment or horizontal force at the rim. Experiments were carried
out for these two cases of loading on five aluminium shells having the
same radius but different thicknesses or different angles of openings.
Strains were measured at near-by and distant stations on the upper
and lower surfaces of the shells, by means of electrical wire resistance
strain gauges. Stresses were then computed from the experimental strains
and compared with the stress distribution obtained from the available
theoretical Solution.

Both theory and experiment indicate that the rim loading affects
only a limited zone near the edge. In this Paper, a simplified formula
is presented to define the extent of this rim zone. An easier procedure
is also given, by which the stress distribution for these cases of loading
may be calculated.

ZUSAMMENFASSUNG

Der Zweck dieser Arbeit liegt darin, auf experimenteller Grundlage
die Spannungsverteüung in dünnen Kugelschalen zu bestimmen, die
axialsymmetrischen Biegungsmomenten oder Horizontalkräften längs des
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Randes unterworfen sind. Diese zwei Belastungsfälle wurden an fünf
Aluminiumschalen mit gleichem Radius, aber verschiedener Dicke und
verschiedenem Oeffnungswinkel untersucht. Dabei wurde die Beanspruchung

an benachbarten und entfernten Stellen, sowohl auf der obern
wie der untern Fläche der Schale mit Hilfe von elektrischen Wider-
standsmess-Streifen gemessen. Die Spannungen Hessen sich aus den
gemessenen Dehnungen berechnen, und es folgt ein Vergleich mit der aus
der theoretischen Lösung bestimmten Spannungsverteilung.

Sowohl Theorie wie Versuch zeigen, dass die Randbelastung nur eine
begrenzte, anliegende Zone beeinflusst. Eine vereinfachte Formel für die
Bestimmung der Ausdehnung dieser Randzone kann aus dem vorliegenden
Beitrag entnommen werden, ebenso gibt der Verfasser ein einfaches
Berechnungsverfahren für die Spannungsverteüung unter diesen Belastungsfällen.

RESUMO

0 autor faz um estudo experimental sobre a distribuigäo das
tensöes em coberturas delgadas de forma esferica submetidas, ao longo
dos bordos, a momentos flectores ou forgas horizontais simetricas em
relagäo ao eixo. Fizeram-se ensaios para estes dois casos de carga/ sobre
5 coberturas de aluminio de raio igual mas de espessura e ängulo de
abertura diferentes. Mediram-se as deformagöes em pontos vizinhos e

distantes, nas faces superior e inferior das coberturas, por meio de flexö-
metros electricos de resistencia. As tensöes foram calculadas a partir das
deformagöes assim determinadas e comparadas com a distribuigäo de
tensöes obtida a partir da solugäo teörica.

Tanto a teoria como os ensaios indicam que a carga periferica influe
sömente sobre uma zona limitada vizinha do bordo. 0 autor apresenta
ainda uma formula simplificada que define a referida zona. Tambem
indica um processo simplificado permitindo calcular a distribuigäo de
tensöes nestes casos de carga.

RESUME

L'auteur decrit une etude experimentale de la distribution des
contraintes dans des voiles minces de forme spherique soumis, le long de leur
bord, ä des moments flechissants, ou des forces horizontales aximetriques.
Les essais effectues pour ces deux cas de charge ont porte sur 5 voiles en
aluminium de meme rayon mais d'epaisseur et angle d'ouverture differents.
Les deformations ont ete mesurees en des points voisins et distants sur
les deux faces des voiles, au moyen de flexometres ä resistance. Les
contraintes ont ete calculees ä partir des deformations ainsi obtenues
et comparees ä la distribution des contraintes determinee ä partir de la
Solution theorique.

Tant la theorie que les essais montrent que la charge peripherique
n'affecte qu'une zone limitee voisine du bord. L'auteur presente encore
une formule simplifiee qui definit cette zone. II donne egalement un
procede simplifie permettant de calculer la distribution des contraintes
pour ces cas de charge.
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