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IIa3
Cantilever triangulär slabs

Dreieckförmige, längs einer Seite eingespannte Platten

Lages trianguläres em consola

Dalles triangulaires en console

Prof. Dr. TELEMACO VAN LANGENDONCK
Escola Politecnica, Universidade de Säo Pernio

Säo Paulo

Introduction

In previous publications (*) the author had the opportunity to present
a method to solve partial differential equations, by using the properties
of orthogonal functions, conveniently chosen for each case. In those
publications, the application of the method referred to was restricted to
Problems in which the equation to be solved was of 2nd order, having
only one boundary condition.

It is intended now to extend that application to the plates problem,
characterized by differential equations of 4th order, with two 'boundary
conditions, using the method of calculation of isosceles triangulär plates
with clamped base, having the two other sides free and syinmetrically
loaded.

The explanation of the calculation algorithm will not be repeated
herein, since it was summarized in the first of the above mentioned papers
and given in detail in the second.

(*) «L'emploi de fonctions orthogonales speciales pour la Solution du probleme de la torsion»,
IABSE, 4th Comgress, 1952, p. 189.

«Funcöes ortogonais na resolucäo de problemas da teoria da elasticidade». Associacäo Brasileira de
Cimento Portland, Säo Paulo, 1952.
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334 IIa3. TELEMACO VAN LANGENDONCK

The plate equation

The plate equation is (2):

d*w
2

<)4w ()4w _q_

dx' dx^dy1 dyk D
where

x and y are the coordinates of the points of the plate,
w is the deflection of the plate,
q is the intensity of the lateral load (function of x and y),
D is the flexural rigidity of the plate equal to Eh3/12 (1-v2),
h is the thickness of the plate supposed to be constant,
E is the modulus of elasticity of the material and
v is its Poisson's ratio.

If wa is a particular Solution of equation (1) and w0 is its general
Solution when its 2nd member is zero, we have:

w Wo + Wi. (2)

It is known also that:

w0 fi (x + iy) + x f2 (x + iy) + f3 (x — iy) + x f4 (x — iy)

or developping the functions in power series:
OO 00

w0 2 (A'm + C'm x) (x ^ iy)"' + ^ (B'm f D'm x) (x - iy)-m=0 m —U

or combining the terms of the two series in order to obtain the real Solution
00 OO

w0 ^ (A,n -r Cm x) Um + 2 (Bm + D,„ x) Vm
m U m U

where Um — [<x + iy)m + (x-iy)m] and Vm =—7 [x + iy)m—(x—iy)m]
Zd c.1

are the functions already used in the previous papers:

U„ l v0 o

Ü!=X Vl y
U2 x2 --y2 V2 2xy

The constants Am, Bm, Cm and Dm must be chosen in order to
satisfy the boundary conditions. Taking as x - axis the clamped base of
the triangle and as y - axis its axis of symmetry, some of these constants

(a) The derivation of this equation and all the following formu'as referring to moments, shearing
forces, ete can be found in speciahzed booka as, for instance, in S Timoshenko — «Theory of Plates and
Shells», Mc Graw Hill B Co 1940, p 85/94, which notation is used herein
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are eliminated, since functions that contain odd powers of x (condition
of simmetry) and functions that do not contain y2 as a factor (clamped
base condition) must not be considered.

This is obtained when the relative values of the constants are such
that we have:

with (n> 1)

w0 ^ cm Wm
m 0

b2"-1 W2n_2
1

(x U2„-i - U2n) Y V2n"1

2n —1 " 2n —1
xV2l) V2n + ib2»W2n_!

2n 2n + l

(the factor bm is introduced in order to make homogeneous the expression
of w0, corresponding to cm abstract values), i. e.:

b Wo y2

b2 Wx y-
3

v4
b3 W2 x2 y2 — ^-

3
v5

b4 W3 x2 y3 — y-
5

v6
b"J W4 x4 y2 — 2x2 y4 + ^—

5

b* W5 - x4 y3 — 2x2 y' + y—

3 7

b7 W6 x6 y2 — 5x4 y4 + 3x2 y6 — y-

The constants cm must still be determined so as to satisfy the boundary
conditions along the side AC of the triangle (since the boundary conditions

along the side AB will be automatically satisfied by the condition
of symmetry and those along the side BC have already been considered
when choosing Wm).

The functions Wm will in turn be grouped so as to obtain functions
Zm which satisfy the demanded conditions of orthogonality:

m —1
Zm W,„ + 2 cm,„ Zn (3)

n-0
with

CO

w0= 2 am Zm (4)
m =o

where cm,n and am are found with the calculation algorithm described in
the mentioned papers and shown in Table I herein.
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Boundary conditions

Along the side AC, the bending moments per unit length, which act
on planes perpendicular to it, are (positive when they produce tension on
the lower face of the plate):

Mn —D[(cos2« + -Jsen2«) -— +(1 — v) sen 2« +
<)x2 dxdy

*</<**?//{\ t +(sen2a + ucos2a)—-] (5)
dyrir~,i

c

Fig. l

with
iL i _ .y
a b

where a, a and b have the meaning given in Fig. 1.
The external forces which are distributed along AB are, per unit

length (positive when they act upwards):

<)3W r, /1 w 9 r, 4 d^W
V Djcos«[l + (l-^)sen2a] —+sen«[l+(l-u)(sen2a-2cos2a)

l dx']

+ cos«[l+(l-^)(cos2a-2sen2a)]-^-^- + sena[l + (l-^)cos2a]-^j (6)
dxdy2 dyd J

with

a b

In addition to these moments and forces a concentrated force R
acts at the triangle Vertex (positive if acting upwards):

f)2 W ^)2W ()2W
R — 2D (l — -j) [ cos 2a + sen a cos al (n\

dxdy dy2 dx2
v ;

with x 0 and y l

In order to avoid considering R, when discussing the boundary
conditions, we can first calculate the effect of a concentrated force at A
and then solve the remaining cases without taking R into account, since
its effect can always be eliminated if already known.

This case may be considered putting w w0, since when q 0,
Wi 0 is a particular Solution of (1):

w w0 Z0 +1 ^ am Zm (8)

and determining the coefficients a™ so that the Mn and V which correspond
to the summation 2am Zm be equal and of opposite signs to those due
to Z0. Thus we eliminate the moments and forces along the side AC,
leaving only the external force R at A.
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The same Solution also applies to the case when we have a constant
moment along the side AC (corresponding in actual practice to the effect
of a horizontal force acting on a balustrade fixed to the slab edge),
since the Solution w w0 Z0 leads to the result looked for, excepting
the existence of R, which can be eliminated, as has been said.

For the case of a uniformly distributed load along the side AC
(weight of a wall which rests on the slab edge) the boundary conditions
are Mn 0 and V constant. For the load q uniformly distributed
over all the plate, the Solution is obtained with Wi qy4/24D.

The calculations needed for applying the described method will be
shown in detail for the case of a plate shaped as a right triangle (a b)
made of a material with v 1/6.

Composition of the orthogonal functions

Considering the case of a force applied at the vertex of a plate
with * 45° and v 1/6, we deduce from (8) combined with (5) and (6)
(noting that Z0 w0 y2/b):

Mn -—[14-^ 2 am(7-^^+10^^+7^^L)b]
12b

'

m=i dx2 dxdy dy2

D
(14+ 2 amT'm) (9)

12b m=l

v D oo b2 tyn d*Zm ^7 e)3Zm ^n d*Zn
V 2 am — (17 — + 7—-—¦+-/¦

4b2V/2 m-i 3 dx3 dx*dy dxdy*

+ 17^%L)= D *
dy3 4b2 sjl m=i

x vexpressions that must vanish when — 1 — — with 0 < y < b. The
a b

coefficients am of (8) must be determined so as to make the summations
that appear in (9) and (10) equal to — 14 and 0, respectively. In order
to facilitate the seeking of its values we choose the functions Zm, i. e.,
the coefficients cm „ of (3) in such way that the functions T'm and T"m
(which form the terms of the summations referred to) may be orthogonal
on the interval 0 < y < b. This, however, cannot be obtained considering
T'm and T"ra separately, as in this way we should obtain different values
for the same cm,n. The functions T'm and T"m must be considered together
as if extending over twice the interval, as it is shown for the case of
T'2 and T"2, with Z2= w?, in Fig. 2.

There is yet the possibility of multiplying T"m by a constant so as to
get the same convergence for the two parts of the interval. The disposition
given to the coefficients that appear within and without the summations
in (10) is already done with a view to that, noting that the mean square
error of the orthogonal functions development is minimum when Mn and

Vb 1A. are put in the same scale
3
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I„= 193,77781 I21 =-137,11111 \2,= 467,70371 Isi= -0,266
I« =-512,25401 L3 -826,00001 I« 1480,1143 1 I51 251,55£

I55= 1937,01331 IC1 -256,22221 I62= 787,74601 I63=:992,935

Ii 9.8 1 L 93,3333 1 Is 70 1 I4 =-16,81

m 1 X 1 X 1 X 1 X 1 X

1

2 -137,1111
- - - -

0,707569

3 - 0,2667 433,4558 - - - -1,169327
4 114,7111 -431,0880 -321,7592 - - 1,468100

5 251,5556 -302,6103 - 165,7399 692,2077 - -1,578565
6 - 256,2222 606,4512 283,4409 -613,0099 - 355,7693 2,309539

Calculating the functions

bT', 14y bT",
34 b

4b
b2 T2 14x2 + 40xy — 14y2 b2 P — (7x — 27y)

b» T3 42x2y -f 60xy2 — 14y3 b3 T" 2b (17x2 + 14xy — 27xy2)

and noting that (notation of Fig. 1) :

t xm yn ds
m! n!

(m + n + 1)!
V

we can perform the integrations

l \ym-\-n ym

Im,„ j'TmTa ds+j'T"mT"„ ds

-X28
yA*bu=o yfo JC^Ojc^a oc=<? I jc=<z

FlG. 2

which enable us to make the Table I in the form described in the previous
papers we have already mentioned. From this Table we get coefficients
cm,n of (3) which enable us to write:

Z2 W2 + 0,707.569 Zx
Z3 W3 — 1,169.327 Z2 + 0,001.376 Z1
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E I

I32 433,64441 I33 726,0190 1 I«= 114,71111
I52 -480,60321 I5,= -519,93651 U 1436,3619 1

1^ =-1886,07221 I65 =-2345,48441 100=3519,93031
I5 -141 lc 80 1 I 1061

1 X 1 X **m

_ _ _ 193,7778 98,0000 0,505734

- - - - 370,6882 162,6751 0,438846

0,001376 - - - 219,1671 - 120,0855 -0,547918

1,162940 -0,591972 - - 438,5043 - 61,9296 -0,141229

0,756226 0,816347 -1,298165 - 145,3837 - 1,4725 -0,010129

1,397956 -1,293264 -1,636014 1,322248 189,9809 8,76S0 0,046152

Coefficients of the series

According to the procedure we are pursuing here for the calculations,
it is necessary to calculate the integrals

I„=|T'Tnds+| T"T"n ds (11)

in order to have T' — -14 and T" 0. With those integrals we calculate
the two last columns of Table I, finding the constants am of (8), which
enable us to write finally

°>

w -21 — 0,505.734 Z1 — 0,438.846 Z2 + 0,547.918 Z, +
b

0,141.229 Z4 + 0,010.129 Z5 — 0,046.152 Z6 (12)

We have an idea of the accuracy gotten when we interrupt the
series just after the term that contains Z6, by comparing the sum S of
the products of the figures from the last two columns of Table i, with

1 rr*ds+ ^'T"2ds 196 1 (13)
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towards Vhich that sum must tend. The mean square error of all the
values of 12 Mn/D and 4 Vb V 2/D along AC is given by

m i /^—^- 1/196—195,913=0,29

This error is small in comparison with the maximum moment that occurs
at x 0 and y 0 which in the same scale is 12 M/D 24.

The value of R which produces the deflection surface of equation (12)
is, from (7) :

R — 3,07 — (1 — v) — 2,56 — (14)
b b

Concentrated load at the Vertex

For the case of unit concentrated load acting downwards at the Vertex
of the slab, we obtain the ordinates of the deflection surface dividing (12)
by (14) with changed sign. In so doing we are able to calculate the
deflection at the Vertex:

Rb2
wA 0,308 —z- (15)

D

and by the application of the classical formulas we are also able to
calculate, in function of the deflection surface, the bending moments
(Mx and My acting in sections perpendicular to the directions of x and y,
respectively), twisting moments (Mxy), shearing forces (Qx and Qy) and
reactions (VBc Qy distributed along BC and Rc concentrated at B and C)
These values are shown in Fig. 3 and contain a small error occurring
because we have neglected the last terms of series (12). These results
would be exact if along the edges AB and AC actuate the moments Mn
and the forces V given by (9) and (10), in which series, the terms are
taken until m 6. These moments and forces are represented in Fig. 3a
by dotted lines. They are drawn in the same scale of Mx, My and Qy

(to compare with the reactions along the clamped side BC) and of the
bending moments Mt at the sections perpendicular to the edges AB and AC.

Uniformly distributed load over the edges

In this case we proceed as in the case of a concentrated load putting
T" 0 and T" constant. In order to take advantage of the previous
calculations in the determination of the In, we take for that constant
the value 34 b/3. In this way we obtain:

w= 0,662.844 Z1 — 0,162.476 Z2 + 0,218.720 Z3 + 0,171.969 Z4 —

— 0,131.661 ZD —0,182.313 Z6
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to which corresponds, with the previous notation

I 128,44 1

341

s V 128,444 — 127,212 1,11

and the external loads (P 2 V 2 Vb is the total load)

R

V 2,40 — (1
b2

2,74 £(1
b

»)

D
>), P 6,80 — (1

b

M

°J O.Of0.O4
-M. ^

M. Vb
O.Ol nr

Rb
0,306TT

0,0

vzz^cY/////A
a=b

w
(0,50

V - A4* M,Mx — ^
y XÄ

0,6Mi_ ,' 020 ooa -frQ*o

007 4030.O4 Q05> 006'

-0.03 0,05 -Q050,04 -005
Q23V Q43 asr

fyx0,13 \-OjOS0£
7Z

-0,09 XH ' 0 8S f.ff

Fig. 2. Concentrated load R at the Vertex A

Having subtracted the already known effect of R, we got the results
of Fig. 4.

Other load cases

The Solution of the case of a constant moment applied along the
edges AB and AC is given by the superposition of the Solution

w y2
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to which corresponds Mn constant and V 0, but R -2D (1 - v),
with that of the case of a concentrated force at A, in order to eliminate R.

pFor a load p —° uniformly distributed over all the plate we make

Wi py4/24D, to which corresponds, in (11) and (13), T' -3,5bpy2/D
and T" -17pb2y/3D.

In the design of reinforced concrete slabs we must know the reactions
at the supports and the bending moments. For those two load cases these

A»
o.or

cu-At._
VbMn

^
P^0.09S

*-. 0,028

B VM{////////////M^^^

M.M. yoc

-aofs.
0.051

Q~6Mi TP ,'
->/ -Ot015aoM aos 0,15

D / Af*
>/ 0,016
-otooi N^ aoM G028, wnr OMU0,0

n\ rfuxspOAZw^iW/W^^0.053 \0.034-W 0.047 O.OS1

v//////}>///;/;/yy////;//A '///,g,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,'-,,„,„„,„„"C
Fig. 4. Uniformly distributed load P over the edges AB and BC

reactions and moments are shown in Figs. 5 and 6. The deflection of the
vertex is also given for the Solution of the following problem.

The slab supported at the vertex

If the slab besides being clamped along the side BC is also supported
at A, the resulting moments, shearing forces and reactions can be obtained
adding those obtained for the cantilever slab (Fig. 4, 5 and 6) with
those produced by the reaction at A, made equal to-R, so as to use
the data of Fig. 3.
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The value of this reaction is obtained from the ratio of the deflections
at A; in this way we have:

too -MU
UMo ' Qut,M

M
Mi 058

Mt
M039 J3Ö

03+

/ ^ V
02t 02Z

0Z9

§tfg,/ i ^1 §H ^ \o/io \otf \otf \o*L" Wx* o ^
Ma

Fig. 5. Constant moment Mo along the edges AB and AC

1) Load P 2 V 2 Vb distributed over the edge:

_R^lP=.0)31P;
0,308

2) Moment M0 uniformly distributed over the edge:

_R=0MJ_ M 1,35 M0;
0,308

M M,

^ Äo* Q..bM
0/)3003

Mt\ a6

OMs QOZ OOV

\ J
H) *r»

oo* \\-ao4
0.0

P0b2
W ^ 0053 -~-1 D

Fig. 6. Load Po uniformly distributed over all the plate

3) Load P pb2 uniformly distributed over the slab:

0,053¦R
0,308

P 0,17 P.



344 IIa3. TELEMACO VAN LANGENDONCK

SUMMARY

The author applies his method, expounded in his contribution to
the IABSE 4th Congress, making use of the orthogonal functions to solve
the plate equation.

Forming orthogonal functions by the sum of biharmonic functions
which are particular Solutions of the plate equation, he seeks, employing
the mentioned method, the coefficients of the development in series of
the function which represents the deflection surface of the plate, so as to
satisfy the boundary conditions.

In this way he obtains, by successive approximations and with the
desired accuracy, the equation of the deflection surface and, therefore,
the shearing forces, bending moments and twisting moments by making
use of ithe partial derivatives classical formulas.

The method is applied to the case of isosceles triangulär plates with
one side clamped and the two other sides entirely free. A numerical
Solution is presented for the case of right isosceles triangle and the
procedure of calculation to be used in the case when the vertex of the triangle
is also supported, is also indicated.

ZUSAMMENFASSUNG

Der Verfasser wendet sein im Beitrag zum 4. Kongress erläutertes
Verfahren an, indem er für die Auflösung der Plattengleichung die
Orthogonal-Funktionen verwendet.

Aus der Zusammensetzung biharmonischer Funktionen, die
Teillösungen der Plattengleichung darstellen, ergeben sich Orthogonalfunktionen.
Mit dem erwähnten Verfahren lassen sich die Koeffizienten für die
Reihenentwicklung derjenigen Funktion ermitteln, welche die
Durchbiegungsfläche der Platte erfasst und damit die Randbedingungen erfüllt.

Auf diese Weise erhält man durch fortlaufende Annäherung und mit
der gewünschten Genauigkeit die Gleichung der Durchbiegungsfläche
und daraus mit den bekannten Formeln über die partiellen Differentialquotienten

die Querkräfte, Biegungs- und Torsionsmomente.
Diese Methode wird für Platten von der Form gleichseitiger Dreiecke

angewendet, wobei eine Seite eingespannt ist und die beiden anderen
auskragen.

Dann folgt die numerische Behandlung eines rechtwinkliggleichschenkligen
Dreiecks und das Berechnungsverfahren für den Fall, dass die

Spitze des Dreiecks ebenfalls aufliegt.

RESUMO

O autor aplica o seu proprio metodo, ja exposto quando do 4.°
Congresso da Associagäo Internacional de Pontes e Estruturas, em que
utiliza fungäes ortogonais, ä resolugäo da equagäo das placas. Formando
fungöes ortogonais pela soma de fungöes bi-harmonicas que säo solugöes
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particulares da equagäo das placas, procura, empregando o referido metodo,
os coeficientes do desenvolvimento em serie da fungäo que representa a
superficie flectida da placa, de modo a satisfazer as condigöes nos limites.

Deste modo obtem, por aproximagöes sucessivas com a precisäo que
deseja, a equagäo da superficie flectida e, portanto, os esforgos cortantes,
momentos flectores e momentos de torsäo, utilizando as förmulas clässicas
de derivagäo parcial.

Este metodo e aplicado ao caso de placas trianguläres isosceles encas-
tradas num lado estando os outros dois inteiramente livres. 0 autor
apresenta ainda uma solugäo numerica para o caso do triängulo rectängulo
isosceles e o processo de calculo aplicävel no caso do vertice do triängulo
ser simplesmente apoiado.

RESUME

L'auteur applique sa methode, dejä exposee lors du 4eme Congres
de TAssociation Internationale de Ponts et Charpentes, et oü il utilise des
fonctions orthogonales, ä la resolution de l'equation des plaques.

Formant des fonctions orthogonales par l'addition de fonctions
bi-harmoniques, qui ne sont autres que les Solutions particulieres de
l'equation des plaques, il cherche, en appliquant sa methode, les coefficients
du developpement en serie de la fonetion qui exprime la surface flechie
de la plaque, de maniere ä satisfaire les conditions aux limites.

Par ce procede il obtient, par approximations successives et avec la
precision desiree, l'equation de la surface flechie, et, par consequent, les
efforts tranchants moments flechissants et moments de torsion en utilisant

les formules classiques de derivation partielle.
L'auteur applique sa methode au cas d'une plaque triangulaire

isocele, encastree sur un cote, les deux autres etant entierement libres.
II donne egalement une Solution pour le cas du triangle rectangle isocele
et indique encore le procede de calcul applicable au cas oü le sommet du
triangle est simplement appuye.
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