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IHa3
Cantilever triangular slabs
Dreieckformige, lings einer Seite eingespannte Platten
Lages triangulares em consola

Dalles triangulaires en console

Pror. DR. TELEMACO VAN LANGENDONCK
Escola. Politécnica, Universidade de Sdo Paulo
Sdao Paulo

Introduction

In previous publications (*) the author had the opportunity to present
a method to solve partial differential equations, by using the properties
of orthogonal functions, conveniently chosen for each case. In those
publications, the application of the method referred to was restricted to
problems in which the equation to be solved was of 2nd order, having
only one boundary condition.

It is intended now to extend that application to the plates problem,
characterized by differential equations of 4th order, with two boundary
conditions, using the method of calculation of isosceles triangular plates
with clamped base, having the two other sides free and symmetrically
loaded.

The explanation of the calculation algorithm will not be repeated
herein, since it was summarized in the first of the above mentioned papers
and given in detail in the second.

(1) «L’emploi de fonctions orthogonales spéciales pour la solution du probleme de la torsion»,
IABSE, 4th Congress, 1952, p, 189.

«Fungdes ortogonais na resolucdo de problemas da teoria da elasticidade». Associacdo Brasileira de
Cimento Portland, Sio Paulo, 1952.
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334 1Ia3. TELEMACO VAN LANGENDONCK

The plate equation
The plate equation is (?) :

4 4 13
o*w 9 0 w‘ oW q a)
ox* 0X2 9y? oy* D

where

x and y are the coordinates of the points of the plate,

w is the deflection of the plate,

q is the intensity of the lateral load (function of x and y),
D is the flexural rigidity of the plate equal to Eh3/12 (1 —v?),
h is the thickness of the plate supposed to be constant,

E is the modulus of elasticity of the material and

v is its Poisson’s ratio.

If w, is a particular solution of equation (1) and w, is its general
solution when its 2nd member is zero, we have:

W =W, + W,. (2)

It is known also that:
wo=1F x+iy) +x f, x+1iy) +f;, x—1iy) + xf, x—1y)
or developping the functions in power series:
@ <
W, = mio (Alm + Cnx) (x Hiy)m + = (Bw+ Dnx) (x —iy)"
or combining the terms of the two series in order to obtain the real solution
@ @
W, = m%() (Am + Cm X) Um + m%O (Bm + Dm X) Vm y

where U, '—-%[(x +iy)™ + (x-iy)™] and Vi :% [x + iy)® —(x—iy)™]
i

are the functions already used in the previous papers:

U():]. V0=0
U, =x V.=y
U,=x2—y? V. = 2xy

The constants A.. Bn. Ch and D, must be chosen in order to
satisfy the boundary conditions. Taking as x — axis the clamped base of
the triangle and as y — axis its axis of symmetry, some of these constants

(3) The derivation of this equation and all the following formulas referring to moments, shearing
forces, etc., can be found in specialized books as, for instance, in S. Timoshenko ~— «Theory of Plates and
Shells», Mc. Graw Hill B. Co., 1940, p. 85/94, which notation is used herein.
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are eliminated, since functions that contain odd powers of x (condition
of simmetry) and functions that do not contain y? as a factor (clamped
base condition) must not be considered.

This is obtained when the relative values of the constants are such
that we have:

m=0
with (n > 1)
bin—1 W, _,— ___1_ (x Usne1 — Usp) = l‘i‘“’i
2n —1 2n —1
bgn Wgn_l — X V?n . v2n+1
2n 2n+1

(the factor b™ is introduced in order to make homogeneous the expression
of w,, corresponding to ¢, abstract values), i. e.:

b W, = y?
y?
b2 W, =-"-
3

b3W2:x2y2__y_
: 3
5
b“Ws:x?y‘*-—y—
b"’W4:x4y‘~’—2x2y4+%
3{77
b6W5: —xtys —2x‘~’y"’+~7—

8
b* W = x° y2 — 5x* y* + 3x2y° — }7_

The constants ¢, must still be determined so as to satisfy the boundary
conditions along the side AC of the triangle (since the boundary condi-
tions along the side AB will be automatically satisfied by the condition
of symmetry and those along the side BC have already been’ considered
when choosing W.).

The functions W,, will in turn be grouped so as to obtain functions
Z., which satisfy the demanded conditions of orthogonality:

m—1

Zm = Wrm + X Cinyn Zn (3)

with
. an_l Za (4)

where ¢n,n and a, are found with the calculation algorithm described in
the mentioned papers and shown in Table I herein.
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Boundary conditions

Along the side AC, the bending moments per unit length, which act
on planes perpendicular to it, are (positive when they produce tension on
the lower face of the plate) :

M, = —DJ[(cos?x+vsen?«) I*w + (1 —v) sen 2« W 4
0x? 0X0y
i — 02w
,—g{y.x:;_z + (sen?a -+ v cos? a) 5 1 (5)
Y i with
\/ | .. X _1_ Y
8 A€ a b
Fic. 1

where «, a and b have the meaning given in Fig. 1.
The external forces which are distributed along AB are, per unit
length (positive when they act upwards) :

3 3
V=D { cosa[14(1—v) sen?a] ()—E} +senaf 14+(1—v) (sen?ax—2cos?a) %W— +
oxX’ :

0°X0y
L 0w 5 7 OOW
+cosa[1+4 (1—v) (cos?x—2 sen?a)] - +sena[1+ (1—v) cos®a] — } (6)
0X0y* oy?
with
X _ 1Y
a b

In addition to these moments and forces a concentrated force R
acts at the triangle vertex (positive if acting upwards) :

2 2 2
0" W cos2a+(()“‘:——-aw
0X0y 0y* 0x?

withx=0and y=1.

R=—2D(1—v)] ) sen a cos « (7)

In order to avoid considering R, when discussing the boundary
conditions, we can first calculate the effect of a concentrated force at A
and then solve the remaining cases without taking R into account, since
its effect can always be eliminated if already known.

This case may be considered putting w = w,, since when q =0,
w; = 0 is a particular solution of (1) :

R
+ < ag Z. (8)

and determining the coefficients a., so that the M, and V which correspond
to the summation Za, Z. be equal and of opposite signs to those due
to Z,. Thus we eliminate the moments and forces along the side AC,
leaving only the external force R at A.
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The same solution also applies to the case when we have a constant
moment along the side AC (corresponding in actual practice to the effect
of a horizontal force acting on a balustrade fixed to the slab edge),
since the solution w = w, = Z, leads to the result looked for, excepting
the existence of R, which can be eliminated, as has been said.

For the case of a uniformly distributed load along the side AC
(weight of a wall which rests on the slab edge) the boundary conditions
are M, =0 and V = constant. For the load q uniformly distributed
over all the plate, the solution is obtained with w, = qy*/24D.

The calculations needed for applying the described method will be
shown in detail for the case of a plate shaped as a right triangle (a = b)
made of a material with v = 1/6.

Composition of the orthogonal functions

Considering the case of a force applied at the vertex of a plate
with « = 45° and v = 1/6, we deduce from (8) combined with (5) and (6)
(noting that Z, =w, = y*/b):

2 2 2
I R G BT W2 Sy 2 RSN
12b m=1 ox? 0X 0y 0y?
D ®
—— — 14+ 5 a, Th 9
12b ( m=1 ) ( )
2 3 3 3
_ D 2, Par e g P g Pl
4b2y2 m-—=1 3 0x3 0x2)y 0X0y?
3
+17 ()Zm =_—Q—— 02'0 Am T”m (10)
oy® 4b2Y2 m=1
expressions that must vanish when > = 1—%With 0 <y<b. The
a

coefficients a., of (8) must be determined so as to make the summations
that appear in (9) and (10) equal to — 14 and 0, respectively. In order
to facilitate the seeking of its values we choose the functions Z,, i. e.,
the coefficients c,, of (3) in such way that the functions T, and T"n
(which form the terms of the summations referred to) may be orthogonal
on the interval 0 <<y <b. This, however, cannot be obtained considering
T’.» and T”, separately, as in this way we should obtain different values
for the same cn,. The functions T’,, and T”., must be considered together
as if extending over twice the interval, as it is shown for the case of
T’, and T”,, with Z,= w,, in Fig. 2.

There is yet the possibility of multiplying T”. by a constant so as to
get the same convergence for the two parts of the interval. The disposition
given to the coefficients that appear within and without the summations
in (10) is already done with a view to that, noting that the mean square
error of the orthogonal functions development is minimum when M, and

Vb _”33 are put in the same scale
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Iu = 19'3,7778 1 I'_u = —137,1111 1 122 = 467,7037 l I:n j— —0,266
I, =—=-512,25401 L, —-826,00001 I, =—=1480,11431 I, =— 251,55¢
I:: = 1937,01331 I =—-256,22221 I. —= 787,74601 Te; =—992,933
I, = 981 L. = 93,33331 L = 701 I, —=-16,81
m 11X 1X 1X 1X 1X
1 - = = - - -
2 -137,1111 - - - - 0,707569
3 - 0,2667 433,4558 - - - -1,169327
4 114,7111 -431,0880 - 321,7592 - - 1,468100
5 251,5556 -302,6103 -165,7399 692,2077 - - 1,578565
6 - 256,2222 606,4512 283,4400 -613,0099 - 355,7693 2,309539
Calculating the functions
34b
bT’l gl 14y bTHI == T

b2 T'y = 14x2 + 40xy — 14y? b2 T' = % (7x — 27y)
b3 T's = 42x%y + 60xy*> — 14y3 b3 T" = 2b (17x% 4 14xy — 27xy?)

and noting that (notation of Fig. 1):

1

1 m! n!
/ xm yn ds — ' ] pm+n ./m "
®
o (m+n—+1)! /1\; 3
T 28 !
, - T AP -5
we can perform the integrations % %0\% %20

1 1

Im,n - /’T’m Tln dS +J.T”m T”n dS

L %
[¢)

which enable us to make the Table 1 in the form described in the previous
papers we have already mentioned. From this Table we get coefficients
Cmyn Of (3) which enable us to write:

Z, =W,
Z, =W, + 0,707.569 Z,
Z; = W;—1,169.327 Z, + 0,001.376 Z,
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EI
I.— 433,64441 I.— 726,01901 L= 11471111
I. = -480,60221 I, — -519,93651 1., — 1436,3619 1
L, —-1886,0722 1 Iss — -2345,48441 T — 3519,93031
I = -141 I = €01 I = 1961
1X I X a;m
- - - - 193,7778 98,0000 0,505734
- - - - 370,6882 162,6751 0,438846
0,001376 - - - 219,1671 - 120,0855 -0,547918
1,162940 -0,591972 - = 438,5043 - 61,9206 -0,141229
0,756226 0,816347 -1,298165 - 145,3837 - 1,4725 -0,010129
1,397956 -1,203264 -1,636014 1,322248 189,0809 8,7680 0,046152

Coefficients of the series

According to the procedure we are jpursuing here for the calculations,
it is mecessary to calculate the integrals

1 1

I, — /"T' Thds+ [ T'T' ds

(%
(o] (]

(11)

in order to have T’ = —14 and T” = 0. With those integrals we calculate
the two last columns of Table I, finding the constants a, of (8), which
enable us to write finally

w = —3;)—- — 0,505.734 Z, — 0,438.846 Z. + 0,547.918 Z, +

-+ 0,141.229 Z, + 0,010.129 Z; — 0,046.152 Z; 12)

We have an idea of the accuracy gotten when we interrupt the
series just after the term that contains Z;, by comparing the sum S of
the products of the figures from the last two columns of Table 1, with

1 1

1:[?2 ds -+ /"T”ﬂ ds —196 1 (13)

(%
[+]
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towards "which that sum must tend. The mean square error of all the
values of 12 M,/D and 4 Vb V' 2/D along AC is given by

. \/ 1;131 — \/ 196 —195,013 —0,29

This error is small in comparison with the maximum moment that occurs
at x = 0 and y = 0 which in the same scale is 12 M/D = 24.

The value of R which produces the deflection surface of equation (12)
is, from (7) :

R=—-3,07%(1——u)=—2,56%. (14)

Concentrated load at the vertex

For the case of unit concentrated load acting downwards at the vertex
of the slab, we obtain the ordinates of the deflection surface dividing (12)
by (14) with changed sign. In so doing we are able to calculate the
deflection at the vertex:

Rb?

wa = 0,308 (15)

and by the application of the classical formulas we are also able to
calculate, in function of the deflection surface, the bending moments
(M, and M, acting in sections perpendicular to the directions of x and y,
respectively), twisting moments (M,,), shearing forces (Qx and Q,) and
reactions (Vec = Q, distributed along BC and R. concentrated at B and C) .
These values are shown in Fig. 3 and contain a small error occurring
because we have neglected the last terms of series (12). These results
would be exact if along the edges AB and AC actuate the moments M,
and the forces V given by (9) and (10), in which series, the terms are
taken until m = 6. These moments and forces are represented in Fig. 3a
by dotted lines. They are drawn in the same scale of M,, M; and Q,
(to compare with the reactions along the clamped side BC) and of the
bending moments M; at the sections perpendicular to the edges AB and AC.

Uniformly distributed load over the edges

In this case we proceed as in the case of a concentrated load putting
T’ = 0 and T” = constant. In order to take advantage of the previous
calculations in the determination of the I,, we take for that constant
the value 34 b/3. In this way we obtain:

w— 0,662.844 Z, — 0,162.476 Z, + 0,218.720 Z, + 0,171.969 Z, —
— 0,131,661 Z; — 0,182.313 Z;



CANTILEVER TRIANGULAR SLABS 341

to which corresponds, with the previous notation
1— 128,44 1
¢ = V128,444 — 127,212 = 1,11
and the external loads (P =2 v 2 Vb is the total load) :

Re—274 2 1y
b
V2402 d—v), P—6802d—"2).
b? b

+ 7 7; 'Q
1943 // aq57
! //

z 7 ! 085 / 1.15 /‘/yz:
B// VIS /7777777777 7/ 2. /LA, ,c

Fi1g. 2. Concentrated load R at the vertex A

Having subtracted the already known effect of R, we got the results
of Fig. 4.

Other load cases

The solution of the case of a constant moment applied along the
edges AB and AC is given by the superposition of the solution

w =y
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to which corresponds M, = constant and V=0, but R=-2D (1-)),
with that of the case of a concentrated force at A, in order to eliminate R.

For a load p = —ig uniformly distributed over all the plate we make

w, = py*/24D, to which corresponds, in (11) and (13), T’ = -3,5bpy?/D
and T” = -17pb?y/3D.

In the design of reinforced concrete slabs we must know the reactions
at the supports and the bending moments. For those two load cases these

]
N\25,
o

aqre A
g20 2
a2/ J
a42 2

aq43

941

Q35

v

/2 b3 A hed

~ ©

l% 3 I\ 3 NN =
S )

v
B ’{ggg////////////////////// G177/ 7 I////////////////////////////////_/(/él
- a i B a= b 1

Q]

IR Q

-9o15 008 AANY
“
S

9
Qoss

QOXB—5703 LU= d 7)),

0053\ __goe wpl s (TN
Y/ ///////c g

F1G. 4. Uniformly distributed load P over the edges AB and BC

reactions and moments are shown in Figs. 5 and 6. The deflection of the
vertex is also given for the solution of the following problem.

The slab supported at the vertex

If the slab besides being clamped along the side BC is also supported
at A, the resulting moments, shearing forces and reactions can be obtained
adding those obtained for the cantilever slab (Fig. 4, 5 and 6) with
those produced by the reaction at A, made equal to-R, so as to use
the data of Fig. 3.
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The value of this reaction is obtained from the ratio of the deflections
at A; in this way we have:

]—01! -5 o2 -~ A

%0
//////g//{//,?}(/ 77 C %-_-0,7/ x

w

7

- N

-0

F1c. 5. Constant moment M, along the edges AB and AC

1) Load P =212 V, distributed over the edge:

RO p 31 p;
0,308

2) Moment M, uniformly distributed over the edge:

_R— 0,417
0,308

M,=1,35 M,;

Fi1c. 6. Load P, uniformly distributed over all the plate

3) Load P = pb? uniformly distributed over the slab:

_R=908 p_517p.
0,308
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SUMMARY

The author applies his method, expounded in his contribution to
the IABSE 4th Congress, making use of the orthogonal functions to solve
the plate equation.

Forming orthogonal functions by the sum of biharmonic functions
which are particular solutions of the plate equation, he seeks, employing
the mentioned method, the coefficients of the development in series of
the function which represents the deflection surface of the plate, so as to
satisfy the boundary conditions.

In this way he obtains, by successive approximations and with the
desired accuracy, the equation of the deflection surface and, therefore,
the shearing forces, bending moments and twisting moments by making
use of the partial derivatives classical formulas.

The method is applied to the case of isosceles triangular plates with
one side clamped and the two other sides entirely free. A mumerical
solution is presented for the case of right isosceles triangle and the pro-
cedure of calculation to be used in the case when the vertex of the triangle
is also supported, is also indicated.

ZUSAMMENFASSUNG

Der Verfasser wendet sein im Beitrag zum 4. Kongress exldutertes
Verfahren an, indem er fiir die Auflosung der Plattengleichung die
Orthogonal-Funktionen verwendet.

Aus der Zusammensetzung biharmonischer Funktionen, die Teillo-
sungen der Plattengleichung darstellen, ergeben sich Orthogonalfunktionen.
Mit dem erwédhnten Verfahren lassen sich die Koeffizienten fiir die
Reihenentwicklung derjenigen Funktion ermitteln, welche die Durch-
biegungsfliache der Platte erfasst und damit die Randbedingungen erfiillt.

Auf diese Weise erhdlt man durch fortlaufende Anndherung und mit
der gewiinschten Genauigkeit die Gleichung der Durchbiegungsfliache
und daraus mit den bekannten Formeln iiber die partiellen Differential-
quotienten die Querkrifte, Biegungs- und Torsionsmomente.

Diese Methode wird fiir Platten von der Form gleichseitiger Dreiecke
angewendet, wobei eine Seite eingespannt ist und die beiden anderen
auskragen. '

Dann folgt die numerische Behandlung eines rechtwinkliggleichschenk-
ligen Dreiecks und das Berechnungsverfahren fiir den Fall, dass die
Spitze des Dreiecks ebenfalls aufliegt.

RESUMO

O autor aplica o seu préprio método, ja exposto quando do 4.° Con-
gresso da Associacdo Internacional de Pontes e Estruturas, em que
utiliza funcoes ortogonais, a resolucdo da equacio das placas. Formando
funcoes ortogonais pela soma de fungoes bi-harmoénicas que sdo solucoes
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particulares da equacio das placas, procura, empregando o referido método,
os coeficientes do desenvolvimento em série da funcdo que representa a
superficie flectida da placa, de modo a satisfazer as condig¢oes nos limites.

Deste modo obtém, por aproximacdes sucessivas com a precisdo que
deseja, a equacdo da superficie flectida e, portanto, os esforcos cortantes,
momentos flectores e momentos de torsdo, utilizando as fé6rmulas classicas
de derivacio parcial.

Este método é aplicado ao caso de placas triangulares isdsceles encas-
tradas num lado estando os outros dois inteiramente livres. O autor
apresenta ainda uma solucdo numérica para o caso do triangulo rectangulo
isbsceles e o processo de calculo aplicavel no caso do vértice do triangulo
ser simplesmente apoiado.

RESUME

L’auteur applique sa méthode, déja exposée lors du 4éme Congres
de I’Association Internationale de Ponts et Charpentes, et ou il utilise des
fonctions orthogonales, & la résolution de I’équation des plaques.

Formant des fonctions orthogonales par l'addition de fonctions
bi-harmoniques, qui ne sont autres que les solutions particuliéres de
I’équation des plaques, il cherche, en appliquant sa méthode, les coefficients
du développement en série de la fonction qui exprime la surface fléchie
de la plaque, de maniére & satisfaire les conditions aux limites.

Par ce procédé il obtient, par approximations successives et avec la
précision désirée, I’équation de la surface fléchie, et, par conséquent, les
efforts tranchants moments fléchissants et moments de torsion en utili-
sant les formules classiques de dérivation partielle.

L’auteur applique sa méthode au cas d’'une plaque triangulaire
isocéle, encastrée sur un coté, les deux autres étant entiérement libres.
Il donne également une solution pour le cas du triangle rectangle isocéle
et indique encore le procédé de calcul applicable au cas ou le sommet du
triangle est simplement appuyé.
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