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IIa2
Lange parabolische Zylinderschalen

Coberturas cilindricas delgadas alongadas de forma parabölica

Voiles cylindriques allonges ä section parabolique

Long parabolical cylindrical shells

Prof. Dr. KONRÄD HRUBAN
Technische Hochschule

Prag

In manchen Fällen weisen die parabolischen Zylinderschalen bedeutende

Vorteile auf. So ist z. B. die Neigung der unteren Endtangente des
Normalschnittes der Zylinderschalen in Abb. 1 bedeutend kleiner als die
eines Kreisbogens mit derselben oberen Endtangente. Ebenso ist der
eingeschlossene tote Raum kleiner. Die Betonierung der Schalen konnte

:*>

Abb. 1. Teil einer Hallenkonstruktion mit parabolischen
Zylinderschalen

überall ohne Schalung der Oberfläche erfolgen. Die Versuche, Schalen mit
veränderlicher Krümmung nach der üblichen Methode zu berechnen [1],
haben jedoch zu ausserordentlich komplizierten Differenzialgleichungen
geführt, die praktisch nicht ausgewertet werden können. Infolgedessen
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werden Kreiszylinderschalen oft auch dort angewendet, wo eine wirt-
schaftlich, konstruktiv und ästhetisch bessere Lösung möglich ist. In der
folgenden Mitteilung werden wir über eine Berechnungsmethode berichten,
die seit 1948 als Grundlage für den Entwurf einer Reihe parabolischem
Schalenkonstruktionen für grosse Industrieanlagen benützt worden ist.

1. Transformation der Grundgleichungen.

Wählt man Bezeichnungen und positive Richtungen der in der
Berechnung von Zylinderschalen vorkommenden Kräfte, Momente, und
Verschiebungen gemäss Abb. 2. und vernachlässigt man die unbedeutende

T^"Ak l

IQ»

*£

?l
Q.

r z
Abb. 2. Bezeichnungen

Differenz zwischen Tx, und T,x sowie zwischen Mx, und Msx, so liefern
bekanntlich die Gleichgewichtsbedingungen folgende Zusammenhänge:

<)NX dT>

dx ds
X=0,

N« dQ*

dU,

+
dx

ds

_
dQ,
ds

dT, Qs

dx

+ Z 0,

+ Y 0, (la)

(lb)

dUs dU
ds

+
dx

-Qs o,
<)MX dM

dx
+ ¦

ds
Qx (lc)

Hierin ist r der Krümmungshalbmesser der Normalschnittkurve im
betrachteten Punkte der Mittelfläche. Die Belastungskomponenten X,
Y, Z sind auf die Einheit der Mittefläche bezogen. (Abweichend von
einigen Autoren wird hier die Komponente w positiv gezählt, wenn
sich die Verschiebung in positiver Richtung der Belastungskomponemte
Z vollzieht).

Für die parabolische Schale wählen wir kartesianische Koordinaten
an Hand der Abb. 3; die x-Achse hat die Richtung der Zylinderachse, die
z-Achse verläuft parallel mit der vertikalen Achse des parabolischen
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Normalschnittes; die positive Richtung der y-Achse ist in der Abb. 3
angegeben.

Die Gleichung der Parabel ist dann

z„ + 2R

Abb. 3. Parabolischer Normalschnitt
der Mittelflache. Lage der Koordi¬

natenachsen

1-Ä-J

*vy\

wo R ihr Krümmungshalbmesser im Scheitel ist, also eine konstante
Grösse.

Wir bilden die Ableitungen

dz

dy
tgW

d2z

dy*

Aus den geometrischen Zusammenhängen folgt weiter

dy ds cos W9 —±-LLL — Cos W, —
ds dy R

(2a)

(2b)

Wir werden nun die Belastungskomponenten nicht mehr auf die
Mittelfläche beziehen, sondern auf die Flächeneinheit deren Grundrissprojektion

(d. h. der xy -Ebene). Diese neuen Komponenten bezeichnen
wir mit px, py, p2 (Abb. 4). Es ist dann

Xdxds=- pxdxdy,
Ydxds py dxdy cos ^ — pz dxdysinH^,
Zdxds pzdxdycos*F — pydxdysin1^,

d. h. X pxcosvF, Y p cos^+p^inYcosY, Z pzcos2lF— PySincosT.
(3)

Wir werden auch neue Kräftekomponenten einführen, die auf eine
Längeneinheit der Grundrissprojektion bezogen sind und die wir folgen-
dermassen definieren:

Nx nx cos W, Txs Tsx txx t)x t, Ns —"— + qv sin V
cost

Mx mx cos2 W, MX8 Msx mXN cos W, Ms m}

Qx qx cos2 V Qs qN cos W

(4)



306 IIa2. KONRÄD HRUBAN

Die neuen Komponenten sind mit kleinen Buchstaben bezeichnet,
um von den Schnittkräften deutlich unterschieden zu werden. Ihre Bedeutung

ist aus den Formeln (4) ersichtlich. So sind die Komponenten
nxdy und tdx Projektionen der Vektore der Kräfte Nxds und T8X dx auf
die x -Achse, usw. Die Komponente nv ist die Projektion der Resultante
der beiden Schnittkräfte N8 und Qs in die y -Achse; ist ny null, so

oj
dxd

m

^

4
3

W. yfr
¦Ol

&
ix

<ft

V

Abb. 4. Geometrische Zusammenhänge der Komponenten, (a) Belastung.
(6) Schnittkräfte im Längsschnitt

bedeutet das, dass diese Resultante vertikal ist; wird die Resultante AB
in die Richtungen der Tangente und der Vertikale zerlegt, so ist qy die
vertikale Komponente (s. Abb. 4b).

Beim Einfülhren der Beziehungen (3) und (4) in die Gleichgewichts-
bedinguugen (1) benützen wir die Zusammenhänge (2). In die zweite
Gl. (la) setzen wir ausserdem für p, aus der transformierten Gl. (lb) ein.
Nach kurzer Rechnung kommt man auf diese Weise auf die folgenden
Grundgleichungen des Parabelzylinders:

dx dy dy dx dx- sin V cos V (5a)

dy

_ny.
R

dtOy djOxy

dq*

dx

dx

+ iqy +P*-Pytgy 0,

-q,=0,

<>y

dmx

dx

dm *y mx

<>y

(5b)

q^^sin^cosV. (5c)
R
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2. Membrantheorie des Parabelzylinders.

Ist die Schale momentenfrei, so reduziert sich das System (5) auf
drei Gleichungen für drei unbekannte Spannungskomponenten; wir schreiben

sie in der Form

n^-RCp.-pytgHO, (6a)

dt
dx

dnx ()nN dt
Py»

dy dx dy
- Px • (6b)

Sie können der Reihe nach aufgelöst werden.
Wir legen nun den Koordinatenursprung in denjenigen Normalschinitt

des Zylinders, in welchem die Schubkräfte Txz t null sind und bezeichnen
als x + a diejenigen Normalschnitte, in welchen die Längskräfte. Nx
wegen Auflagerbedingungen der Schale auf den Bindern verschwinden
müssen. Dann liefert die Auflösung des Systems (6) die im folgenden
zusammengestellten Ergebnisse.

b) Gleichmässige lotrechte Belastung der Schale
mit g0 auf Einheit der Grundrissfläche.

Px 0, pN 0, pz g0.
nx 0, t 0, ny =-g0 R. (7)

b) Gleichmässige lotrechte Belastung der Schale
mit gi auf Einheit der Mittelfläche.

px 0, py 0, p2
gl

cos *F

1 a2—x2 .„, ^ lf, g4R
nx — gi cos3 W tx gi x sin W nN 2 /o\

2
S R " cos¥ w

c) Lotrechte Belastimg, die mit der Neigimg wächst.

px 0, py =0, pz g2 + g3 y°) (Bezeichnungen gemäss Abb. 3).

n* g3 (a2-x2) — t 2g3 x (y+y0) —, ny - [g2 + g3 (Z^~) ] R*

(9)
d) WwdbelastuMg mit gw sin W

auf Einheit der Schalenmittelfläche.

px==0, py — gwtg^sin^F, pE gwsin W

a2 — x2 w t 1+2 sin2 W
nx==gw-—r—- sin V (3 + 2 cos2 *F)f t gwx -2K cos W

tgW
n3 —gw R

cos *F

(10)
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3. Einfluss der Querschnittsgestalt des Zylinders.

In der Abb. 5 ist der Querschnitt einer Sägedachschale dargestellt;
a) ist ein Kreisbogen und b) ein P^rabelbogen. Die Abmessungen sind
in Zentimetern angegeben. Um den Einfluss der Bogenform zu untersuchen,

wurden die Schnittkräfte für eine ständige Belastung von gx=200 kg
auf 1 m2 Mittelfläche und eine Schneebelastung von gQ 75 kg auf 1 m2
Grundrissebene berechnet. Für die Kreiszylinderschale wurden die bekannten

Formeln

N8 - gx r cos W - g0 r cos2 W, n} — N5 cos M7

TX8 - 2gx x sin W- — g0 x sin 2V

für die parabolische Schale die Formeln (8) und (7) benutzt. In der
nachfolgenden Tabelle sind die festgestellten Randwerte der Schubkräfte
TX8 (am Ende x a 6 m) und der horizontalen Komponenten n} der
Längskräfte N5 zusammengestellt.

Horizontale Komponenten der Membrankräfte für Schalen
gemäss Abb. 5 im kg/m.

Rand A Rand B

Belastung
Bogenform Bogenform

Kreis Parabel Kreis Parabel

(T,.K n, (TXi)„ n7 (T„). n, (T,.)> n,

So

Summe

- 585

- 2078

- 2863

- 86

- 460

- 546

0

907

907

- 518

- 2108

- 2626

0

0

0

- 6*90

- 1840

- 2530

ooo

- 518

- 13S0

- 1898

Da die geradlinigen Randglieder nicht imstande sind die horizontalen
Komponenten nN aufzunehmen, müssen diese durch die Schale selbst
auf die Bogenrandträger (Binder) übertragen werden, wodurch eine
Biegungsbeanspruchung der Schale hervorgerufen wird. Man muss daher
dem Membranzustand einen Spannungszustand überlagern, der entsteht,
wenn die Schale an den geradlinigen Rändern mit Kräften -ny belastet
wird. Aus der Tabelle ersieht man, dass diese Kräfte in unserem Falle bei
der Kreisschale

546 kg/1. M. und 2530 kg/1. M.

und bei der Parabelschale

2646 kg/1, m. und 1898 kg/1. M.
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betragen. Der Unterschied zwischen beiden Werten, der bei der Kreisschale

bedeutend grösser ist, verursacht eine besonders ungünstige
Beanspruchung der Schale. Auch die Schubkräfte, die Hauptzugspannungen in
den Schalenecken hervorrufen, sind bei der Kreisschale bedeutend grösser
(2663 gegen 907 kg/m).

Bei den wirtschaftlichen Vergleichserwägungen darf man natürlich
nicht die Schale allein in Erwängung ziehen, sondern die ganze Konstruktion

samt Randgliedern und Bindern. Wir werden daher zunächst das
Problem der Randstörungen untersuchen.

/-
© 08

8<r

.*,SV 79? 7Q?

v.\oSb
tf>

^\
Abb. 5. Vergleich eines Parabelbogens (b) mit einem Kreisbogen (a)

4. Grundlagen der technischen Theorie.

Wir kehren jetzt zurück zur Abb. 2 und betrachten eine unbelastete
Kreiszylinderschale, an deren Rändern Kräfte angreifen.

Um den Einfluss dieser Randbelastung untersuchen zu können, muss
man bekanntlich in den Gl. (1) die Schnittkräfte durch Ableitungen der
drei Verschiebungskomponenten ausdrücken und eine passende
partikuläre Lösung des so entstandenen Systems von partiellen Differen-
zialgleichungen suchen. Nimmt man an, dass die Schale aus einem
elastischen Material hergestellt ist, so ist z. B.

-h/2

N- - r^J <•¦ + Vc dz

Hierin ist v die Querdehnungszahl,

cs> sx die bezogenen Dehnungen der Fasern,

z der Abstand der Faser von der Mittelfläche der Schale
und

h deren Dicke.



310 IIa2. KONRÄD HRUBAN

Wir werden uns hier lediglich mit Schalen aus Stahlbeton beschäftigen.

Die Zahl v wird für Beton mit —— bis — angegeben. In
12 6

Stahlbetonquerschnitten nimmt man jedoch schon bei normaler Belastung
der Konstruktion die Existenz von Haarrissen in der Zugzone an; die
Zugspannungen werden lediglich von den Stahleinlagen aufgenommen.
Dehnt sich ein in der x -Richtung liegender Bewehrungsstab, so hat das
jedoch auf die in der s -Richtung liegenden Stäbe keinen Einfluss. Es
ist daher in der Zugzone mit v 0 zu rechnen. Da nun für das
Tragvermögen der auf Biegung beanspruchten Stahlbetonquerschnitte ihre
Bewehrung ausschlaggebend ist, scheint für dünnwandige
Stahlbetonkonstruktionen der Wert v 0 der Wirklichkeit am nächsten zu entsprechen.

Wir nehmen daher in den weiteren Untersuchugen v 0 an, so
wie es auch bei der Berechnung von Stahlbetonplatten üblich ist.

Die Gleichung für die s -Dehnung lautet mit Rücksicht auf die
gewählte Richtung der z -Achse

dv w r <)2w

ds r — z r — z ds*

dv w/.zz2, \ d2w / *, x

ds r \ r r2 / t)s2 \ r
Die sogenannte strenge Theorie der elastischen Schalen vernachlässigt

in den Klammern alle Glieder, die wir in (11) mit Punkten angedeutet
haben (s. z. B. 2, S. 115), und rechnet dann (bei v 0) weiter mit

Ns Ed[^-^-^(^ +^lIds r 12r\r2 <)s2/J

Diese Gleichung ist also nicht mathematisch exakt, da hier Grössen
weggelassen worden sind, die zwar klein sein können, nicht aber unendlich

klein. Die Vernachlässigung dieser kleinen Grössen ist natürlich
mit Rücksicht auf das nicht vollkommen elastische Verhalten von z. B.
Stahl voll berechtigt. Mit demselben Recht kann man jedoch beim
Stahlbeton, dessen Verhalten weit mehr vom vollkommen elastischen
abweicht, auch die mit z2 behafteten Glieder ini (11) wieglassen. Ähnliche
Erwägungen führen zur Vereinfachung aller in der strengen Theorie
benützten Zusammenhänge von Schnittkräften mit Deformation. In den
Formeln für Momente wird dann bei flachen Schalen auch der
Krümmungsradius als unendlich gross angenommen, als wenn es sich um- eine
ebene Platte handelte. Infolge dessen fällt auch das Glied Q8/r in
(la) weg.

Mit v 0 lauten dann die vereinfachten Gleichungen, auf denen die
technische Theorie aufgebaut ist, folgendermassen:

xt t-i-^U ™ ^ 1 -p, / du JV\ XT t?u /dv W
Nx Eh —, TXS TSX=—Eh — + — Ns Eh

dx 2 \ ds dx 1 \ ds r
(12a)
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12 ax2

Q,=
<)MX

dx

MSX

ds '

Eh5 <)2w

12 <)x<)s

SsJs

Ms

t)Mx

Ehg <)2w

12 <)s2

c)s
+

dx

(12b)

Führt man (12) in die Gleichgewichtsbedingungen (1) ein, in welchen
nun X Y Z 0 ist, da die Oberfläche der Schale nicht belastet ist,
so erhält mian

/ d* 1 ()2 \ 1 ()2V

\<)x2 2 <)s2/ 2 Jxds

JLÜL
2 dxds ,)s2 2 ax2

1 <)w

r <)s
0,

f

1 dv I 1 h2 \
r ds Vr2 12V /

Hierin bedeutet das Symbol V4 die Operation

V* v2 V2 > wo V2

(13a)

(13b)

lst.
<)X2 <)S2

(Wir untersuchen hier eine Kreiszylinderschale, sodass der Radius
r konstant ist.)

Wir führen nun eine analytische Funktion F (x,s) ein; die
Verschiebungskomponenten seien durch folgende Ableitungen dieser Funktion
gegeben:

1 d*F

r dxds2 r ds \
<)2 di

ax2 <)s2
F, w v4 F. (14)

Die DifferenziaJoperatoren in diesen Ausdrücken wurden so gewählt,
dass die beiden Gleichungen (13a) identisch erfüllt sind. Die letzte zur
Verfügung stehende Gleichung (13b) stellt dann die Bedingung dar, die
die Funktion F erfüllen muss. Führt man in sie (14) ein, so lautet sie

vV+
12

F 0
h2 r2 dx*

Wir werden im weiteren mit c die folgende Länge bezeichnen:

==y^= ^ 0,76 V^r

(15)

(16)

Diese Länge ist eine gewisse Charakteristik der Sehale. Die Gleichung
(15) kann dann auch geschrieben werden

* • 2 <)2

V
c2 ^x2

(v4 + i
2 <)2

c2<)x2
F=0, (17a)
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wo i V7— 1 die imaginäre Einheit ist. Die Funktion

*(x,s)= (V+iAjSp
\ c2 <)x2

(17b)

kann als die komplexe Formänderungsfunktion der Schale bezeichnet
werden. Ihr Realteil

92 $ v4 F w (18a)

stellt die Verschiebung in der Richtung der Normale dar, ihr imaginärer
Teil ist der Spannungsfunktion

f (x,s)= — 9$= —2 dx*
(18b)

proportional. Die Gleichungen (12a) liefern nämlich mit Rücksicht
auf (14)

Eh dH
Nx

Es ist weiters

Eh d*i T _ Eh _dH_ N _
r ds* r dxds r <)x2

du

dx

1 dH dv 1 /r. — 7(w-
dn

r ds2 ds dx2

(19)

(20)

Die komplexe Formänderungsfunktion 0 muss die Gleichung (17a)
befriedigen, sie muss daher die Bedingung erfüllen

V
c2 <)x2

O. (21)

5. Normalbelastung der bogenförmigen Schalenränder.

Wir beschränken uns hier auf die Untersuchung derjenigen Fälle,
die in der Baupraxis vorkommen. Dann kann man die Normalverschiebung

wR des Randes x 0 (Abb. 6) durch den Ansatz (22) ausdrücken,
worin w0, wx und b konstante Längen sind.

Wr Wo + wi cos
TTS

b ' (22)

Abb. 6. Bezeichnungen für Absatz 5
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a) Betrachten wir zunächst das erste Glied, das von s nicht abhängt.
Die dazugehörige Spannungsfunktion ist symmetrisch mit Bezug auf die
Achse des Zylinders und die Formeln (18) ergeben

d4F d2f
w==

dx4 dx2

Die Bedingung (21) heisst nun

2 d2 \ / 2
i --tt w+i — f

dx4 c2 dx2

Die Ausrechnung liefert

d4w 4iL^L + Jl w o (23a)
dx4 c4

Dies ist jedoch die bekannte homogene Grundgleichung der Behältertheorie,

deren Lösung wohl bekannt ist:

w Ai <j>i + A2 ?2 + A3 % + A4 q4 (23b)

Ai A4 sind Konstanten und

^_ x * x
a>1(x) e c cos — cp2(x) e c sin—

c
k

c

?3(X) ?i(1 — X)> ?4 W ?2 (1 — X)

Die Schnittkräfte Nx, Txs und die Momente Mxs, M8 sowie die
Querkraft Qs sind null; es entstehen nur gewisse Normalkräfte Ns,
Biegungsmomente Mx und Querkräfte Qx, die jedoch mit der wachsenden
Entfernung vom Rande rasch abklingen und bei den üblichen Abmessungen
der Tonnen in einer Entfernung von 2c vom Bogenrande als bedeutungslos
angesehen werden können.

Falls z. B. die Formänderung einer gleichmässig normal belasteten
Schale lediglich dadurch gestört wird, dass die Bogenstützen steif sind,
kann der Verlauf der Schnittkräfte und der Durchbiegung der Schale
längs einer Erzeugenden durch die in Abb. 7 gezeichneten Kurven
dargestellt werden.

Das Einspannmoment der Schale in den Binder beträgt

min Mx — — Zc2, (23c)

wo Z die Normalkomponente der Belastung im betreffenden Punkte und c
die Länge gemäss (16) bedeutet.

Im Grundriss (Abb. 7b) sind die durch die Bindersteifigkeit beein-
flussten Teile der Schalenfläche durch Schraffierung gekennzeichnet.
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Aus der Abb. 7 kann man folgern, dass in einem weit überwiegenden
Teile der Schalenfläche langer unbelasteter Tonnenschalen der
Formänderungszustand praktisch nur durch die an den geradlinigen Rändern
wirkenden Kräfte beeinflusst wird.

b) Betrachten wir nun eine erzwungene Durchbiegung der
bogenförmigen Ränder, welche durch das zweite Glied der Summe in (22)
beschrieben ist. Die komplexe Formänderungsfunktion nimmt nun die
Form an

$ Ce c COS
7TS

(24)

worin C eine konstante komplexe Grösse ist und
k eine komplexe Zahl bedeutet.

O)
r-t6m, h-6cm

Ns

Mx

l=18m

KX Hi-^r oo
263c

\ 0,61mm

^<

Abb. 7. (a) Längsschnitt
und (b) Grundriss der
Schale. Einfluss der
Bindersteif igkeit auf die
Schnittkraft N8, das
Moment Mx und die Durchbiegung

w bei einer Belastung
der Schale von 300 kg auf
1 m2 Grundrissfläche

Führt man (24) in (21) ein, so erhält man für k die charakteristische
Gleichung

[(T),-(i),J,-7^'-
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Dies kann geschrieben werden

[»-(f)"-^]- [k'-(?)'+k^H-
Die Gleichung hat 4 Wurzeln

ki xi + i pi, k2 x2 + i[x4

k3 jc3 + i fx3, k4 a4 + ifi2

worin alle a und n reale Zahlen sind.
Die ersten zwei Wurzeln folgen aus

k2 —(1 + i) k —82 0;

wir haben hier V7 2i 1 + i eingesetzt und ^c/b 8 bezeichnet. Die
Ausrechnung liefert

xw-i[1±v/|(-1+v/1+434) ±V\{i+^+i5i) J •

7TC

pi'2=i[1+V/i(-1+^1+454)+\/i(1+v/1+4^)J;5=^

Bei den Schalen, die wir hier behandeln, ist die Zahl 8 sehr klein;
ist z. B. r 16 m, h 6 cm, b 4,5 m, so ist 8 0,132, 34 0,00030
und ki 1,0088 + 0,9914 i, k2 -0,0088 — 0,0086 i.

Die Differenz
ki — (1 + i) 0,0088 — 0,0086 i

ist kleiner als 1 % des Wertes 1 + i, der für die unter a) behandelte
achsensymmetrische Verteilung der Randstörung gilt. Falls man diese
unbedeutende Differenz vernachlässigt, so erhält man die Wurzeln

ki 1 + i, k2 0, k3 - k2 0, k4 - ki - (1 + i),

d. h. dieselben wie im Falle wv w0. Die weitere Rechnung zeigt dann,
dass sich die in der Abb. 7 dargestellten Verhältnisse sowie die Formel

t:S
(23c) auch für den Fall wR wx cos — nicht ändern. Auch die Breiten

b
der gestörten Zonen bleiben so wie sie in der Abb. 7 dargestellt sind.
Der mittlere Teil der Tonne ist durch die am Bogenrand angreifenden
Normalkräfte praktisch unbeeinflusst.

Es folgt daraus weiter, dass die Funktionen (23b) oder (24) nicht
geeignet sinde, den Einfluss der Kontinuität der Schale in 1er x -Richtung
zu erfassen. Wollen wir dies tun, so müssen wir andere Wege einschlagen.
Wir werden daher im folgenden solche Fälle betrachten, in welchen die
Formänderungsfunktion durch Polynome ausgedrückt werden kann.
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6. Horizontale Belastung der bogenförmigen Ränder.

Für weitere Untersuchungen legen wir nun den Koordinatenursprung
in die Symmetrieebene xy (Abb. 8) der Tonne und führen folgende
Bezeichnungen ein:

1= —K
1

' b ' (25)

K und C sind beliebige Konstanten,

Xo K0, Xi l(KoE + Ki)f

X2 l2(K0|y+ Ka + K2),

X3=l^Ko^+ K1|i + K2E+K3)

X4 l*(K0|j +Ki^ + Ks^ + K3£ + K4

Es ist offenbar

(26)

dX4 dXi dX0a^\4 v a^\i v.A3 • — Ao i\qdx dx dx
0.

Eine zweite Gruppe von Polynomen, welche Funktionen von s allein
sind, schreiben wir der Form

S0 Cob-5, Si b-4 (Con + Ci), S2-b-3 C0^ + Cirj + C2),

4

S« Co — + Ci — + C2 — + C3 — + C4y) + C5,5
f> 4' ^1 21

S9=b* Co^- + Ci^-+ ...+C7^-+ C8r, + C9
g» 8! 2!

(27)

Es ist wiederum

dS9
ds

— S8
dSi c dSo

ds ds

Soll die komplexe Formänderungsfunktion

0 w + —f
c2
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die Gleichung (21) befriedigen, so muss wie der reale so auch der imaginäre
Teil der Ableitung

„k ¦ 2 d* \ 2f
c2 dx*

\ I -!_• 2f
)(W + 1-c^

gleich Null sein. Da die beiden Funktionen w (x,s) und f (x,s) real sind,
liefert die Ausrechnung folgende zwei Bedingungen:

V*W+1Ä=0, v*f_^ 0. (28)
C4 ()X2 <)X2

Diese Zusammenhänge ermöglichen es, zu einem passend gewählten
Ansatz für w die dazugehörige Spannungsfunktion f zu bestimmen. So
findet man z. B. für

w= — X5S4: (29)
Eh

V4w 0, -^ 0, f XiV4(s) + y*(s)
dx2

Hierin sind W{ und ^9 Funktionen von s allein, die durch Einsetzen
in die zweite Gleichung (28) und durch Integration bestimmt werden
können. Man erhält

f=-£-XiS5 (30)
Eh

Die Formänderungsfunktion hat also die Form

*=ihX3Sl+i^XlS^- (81)

Durch Einsetzen in (21) kann man sich überzeugen, dass diese
Bedingung erfüllt ist, dass also die Funktion (31) einen Formänderungszustand

der Schale richtig darstellt.
Die von (29) und (30) gemäss Formeln (19) und (12b) abgeleiteten

Werte der Schnittkräfte und Momente sind

Nx -rXiS3, Txs rX0S4, Ns 0, (32a)

Mx -^XiSi, MXS -^X2S0, Ms 0. (32b)

Die dementsprechend mit x parallele Verschiebungskomponente ergibt
sich zu

— X8S3 —^^(Ko-^ + K^ + K^ (33)
Eh 3

Eh \ 2 ' 2)

21

U
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Nehmen wir jetzt an, dass die Schale in Abb. 8 auf ihren beiden

Bogenrändern x + — 1 frei verschiebbar aufliegt und längs der Erzeu-
Cd

genden gleichmässig belastet wird. Es ist aus der Membrantheorie
bekannt, dass der Verlauf der mit x parallelen Normalkräfte Nx längs
der Erzeugenden parabolisch ist. Liegt die Tonne an den Endbindern
frei auf, so müssen diese Nx an den beiden Randbögen null sein. Bei
üblichen Belastungsfällen kann man die von der Belastung entstehenden
Längskräfte NxB durch die Formel ausdrücken

12 __ 4X2
NRB S5r±—— =S5lr(l-44=) (34)

Im Schnitt x £ 0 ist (N^ß )0 S3 lr, an den Rändern x — — 1

ist (NtB)« O

Vi

Abb. 8. Bezeichnungen für Absatz 6

Wenn in der Ebene x 0 keine u -Verschiebung vorkommen kann,
so ist

Uß ^1 ^-^x2 _ S^Pr £ j _ _4_
£2

v

(g5)
Eh 31 Eh [ 3 '

An den Rändern x ±f ist (ub)« -+1
~~ 3

S3l2r
Eh

*

Wäre jetzt die Schale in den beiden Randebenen x + — 1 fest
iL

eingespannt oder sollte es sich um das Mittelfeld einer in der x -Richtung
kontinuierlichen Konstruktion mit sehr vielen Feldern handeln, so ist
eine solche Randverschiebung unmöglich. Es entsteht ein zusätzlicher
Spannungszustand, der durch die Formeln (32) beschrieben ist und der
sich demjenigen der freiaufliegenden Schale überlagert. Die resultierende
u -Verschiebung der Punkte der beiderseits eingespannten Schale sei mit
u uß + u bezeichnet. Sie ist mit Rücksicht auf (33) und (35)

u —
S3Pr
Eh

lt \ Q 12r

2 ' Eh V
V
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Da der Verlauf der Verschiebung antimetrisch ist, sind die

Konstanten Ko K2 0. Weiters soll u längs der Ränder x + — 1, d. h.
Ct

bei £ +— für einen beliebigen Wert des Arguments s null sein. Es
Ci

muss daher

Mit diesen Werten der Konstanten liefern die Formeln (26) und (32a)

Xi |-1, Nx -|-S3lr. (36)

Die resultierende Längskraft Nx NxB + Nx ergibt sich aus (34)
und (36) zu

Nx S5lr(l-4W)_ ^S5lr=S3lr(l_45

Ihr Wert in der Spannungsmitte ist

(Nx)0=-*-S5lr l(NxB)o,

über den Auflagerbögen für E H
^ - 2

(NX)R -J-S3lr -|-(NxB)o

Der Verlauf von Nx längs der Erzeugenden ist daher derselbe wie
der Verlauf der Biegunsgsmomente eines eingespannten Trägers.

Untersucht man auf diese Weise verschiedene Arten der Kontinuität
der Schale in der x -Richtung, so kommt man für die hier behandelten
Fälle zum folgenden Ergebnis:

Die Schnittkräfte Nx resp. Txs verlaufen längs einer Erzeugenden in
derselben Weise wie die Biegungsmomente resp. die Querkräfte eines
kontinuierlichen Trägers längs seiner Achse.

Es muss auch so sein, denn das Polynom X3 stellt eigentlich die
Biegungslinie eines unbelasteten Trägers dar, der nur durch Auflagermomente

belastet ist. (*)
Die durch die Belastung hervorgerufenen Längskräfte NsB und

Momente M werden durch die Kontinuität der Schale nicht beeinflusst,
denn die diesbezüglichen Zusatzkräfte in (32) sind null.

(*) Es ist anzumerken, dass dies nur für die Fälle streng gilt, in welchen sich die Abhängigkeit
von s der von der Belastung der Schalenfläche hervorgerufenen Längskraft NxB durch die Funktion S,
ausdrücken lässt.
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Die Biegungsmomente, welche durch die Kontinuität in der Schale
hervorgerufen wenden, sind durch die Formeln (32b) gegeben. Bei den
üblichen Dachkonstruktionen erreichen diese Momente nicht eimal den
Wert von 5 kgm/m und können ohne weiters vernachlässigt werden.

7. Gleichmässige Belastung geradliniger Ränder.

Bei kontinuierlichen Schalen werden wir ein jedes Feld selbstständig
untersuchen. Wir bezeichnen mit x 0 denjenigen Normalschnitt des
Zylinders im betrachteten Felde, wo die Schubkräfte null sind. Aus
dem vorhergesagten folgt, dass dies derselbe Querschnitt ist, in welchem
die Querkraft des entsprechenden kontinuierlichen Trägers verschwindet,
d. h. wo das Biegungsmoment des Trägers sein Maximum erreicht
(Abb. 9) Mit a bezeichnen wir den Abstand der Querschnitte, in welchen
das parabolisch verlaufende Biegemoment null ist. Für diese Lage des
x -Nullpunktes nehmen die Polynome (26) die Form an

t-^

^

X0 l, Xi x ,X2=^-(x2-a2),
JL

X3 ^-aSx + K3,
6

X.=
24

+ K3x + Kv

(37)

Abb. 9. Verlauf der Schnittkraft Nx einer
kontinuierlichen Schale vnd des Momentes M eines

kontinuierlichen Trägers

Mit diesen Bezeichnungen gelten dann weitere Formeln im ganzen
Bereiche eines Feldes einer in der x -Richtung kontinuierlichen Schale.

Handelt es sich um nur ein frei gelagertes Feld, so ist a — 1 und der
Ca

x-Nullpunkt liegt in der Mitte der Spannweite 1 wie in der Abb. 8.
Die Beziehungen (7) bis (10) zeigen, dass die Membranschnittkräfte

Ns von Dachschalen an den geraden Rändern gleichmässig verteilt sind.
Können diese Kräfte von den Randgliedern nicht aufgenomen werden,
so ist der Membranzustand nicht möglich. Das Problem wird bekanntlich
in der Weise behandelt, dass man den Membrankräften den Spannungszustand

überlagert, der durch eine entsprechende Belastung der Ränder
der unbelasteten Schale hervorgerufen wird. Bisherige Lösungen haben zu
diesem Zwecke einen Ansatz benützt, der mit den Bezeichnungen gemäss
Abb. 8 lauten würde

<P= I C„e kn 7 cos
n*nrx
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Wir wollen hier einen arideren Weg suchen, der zu geschlossenen
Formeln führen würde. Wir setzen die Formänderungsfunktion in der
Form an

* ^r 4 S9 + 5 S5- 2 X2 S3-X4 S4- i \ X2 S5) (38)
Eh \cl

Hierin sind die Polynome S (s) durch Formeln (27) und X (x) durch
Formeln (37) definiert. Man findet

j*9 -U -2S3-XJSi + 4s7 + 5S5-2XJSi-iA(S5 + X,S5)lf
Eh I c4 c2 J

V4<P — [~ — S3 —i—(XsSi + 2S3)"|V Eh I c4
ü c2 .1

2 <)2<S> r r 4 Q
2 Q Q

i

l~iTl "^T "7 S5 —i —(X2Si + 2S3)
c2 <)x2 Eh L c4 c2 J

Der Ansatz (38) erfüllt also die Bedingung (21) und stellt einen
möglichen Formänderungszustand der Schale dar.

Es ist nun gemäss (18)

w
Eh

4 \
— S9 + 5 S5 — 2 X2 S3 — X4 Si

f: — X2 Sc
Eh 5

Die Ableitungen gemäss (19) ergeben

NX X2S.1( TXS -X1S4, NS S5,

Die Formeln (12b) liefern

M, -^(XsSi + 2Ss), MiS=-^(2X!S2+ X3So),

(39a)

(39b)

(40a)

M.
S h2 r-5l + ^(2X2S,-5S3),
r 12

Qv=-^-XiSlf Q.=-^ + ^(X,S0-S,).
4 r 4

(40b)

Man sieht, dass sich die Schnittkräfte Ns an den geraden Rändern
wirklich gleichmässig verteilen, denn S5 ist von x unabhängig. Wenn
man also dem Membranzustand das System (40) überlagert, so können
die willkürlichen Konstanten in den Polynomen S (s) so bestimmt werden,
dass die gegebenen Randbedingungen befriedigt werden können.

In (40b) sind die Glieder, die mit dem Faktor h2 behaftet sind, im
Verhältnis zu den anderen sehr klein; sie können bei der Berechnung
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langer Schalen, deren Spannweite 1 und Krümmungsradius r nicht grösser
sind als 25 m, vernachlässigt werden. In diesem Falle verschwinden
die Momente Mx und Mxs sowie die Querkraft Q und es bleibt aus
(40) nur

Ms - ^1, Q, - ^ (41)
r r

Die Längskraft Ns, die der Normalkraft eines Bogenträgers
entspricht, ist durch die Funktion S5 gegeben und bleibt längs einer jeden
Erzeugenden unveränderlich.

In den Gleichungen (40) treten 8 unabhängige Konstanten auf, die
aus den Randbedingungen (je 4 auf einem Rand) zu bestimmen sind.
Zu dieser Aufgabe werden wir noch im weiteren zurückkommen.

8. Kritik der technischen Theorie.

Die Grundbeziehungen der technischen Theorie stammen aus den
Arbeiten von A. J. Lurje [3], A. Kuhelj [4, 5], V. Z. Vlasov [6], u. a.
Betrachtet man die eingeführten Vereinfachungen näher, so findet man
jedoch, dass die zweite Gleichgewichtsbedingung

^Ns_
+ !)T^__Qs_=0 (42)

ds dx r

nicht erfüllt ist, da das letzte Glied Qs/r vernachlässigt wurde und in der
zweiten Gleichung (13a) nicht enthalten ist. Dies hat zur Folge, dass
die aus (19) und (12b) berechneten Reaktionen der Schalenränder nicht
genau der Belastung der Schale entsprechen. Die Theorie kann jedoch
ohne Bedenken für flache Tonnen verwendet werden, denn dort ist das
vernachlässigte Glied in (42) im Vergleich zu den beiden anderen sehr
klein und der Fehler daher unbedeutend.

Die Theorie der Baukonstruktionen zieht es dagegen vor, die
Gleichgewichtsbedingungen streng zu erfüllen und nötigenfalls lieber die
Kompatibilitätserfordernisse nicht voll zu befriedigen, da diese sowieso
auf Annahmen beruhen, die das wirkliche Verhalten von Baumaterialien
nicht richtig wiedergeben. Wenn wir diesen Grundsatz beibehalten
wollen, so können wir die bisherigen Ausführungen als eine Untersuchung
betrachten, durch welche nur die Probleme der Kontinuität und der
Gestalt der Momentenlinien geklärt werden sollten. Zur Auflösung der
Gleichgewichtsgleichungen (1) genügt es nämlich, die Form der Funktionen
Mx (x,s), Mxs (x,s) und Ms (x,s) zu kennen. Die Werte, welche die Intensität

der Kraftwirkung bestimmen, folgen dann aus den Angaben über
Belastung und aus den Randbedingungen.

Weiters bestätigen die Ergebnisse der technischen Theorie, dass die
Momente Mx, Mxs und die Querkraft Qx in langen Tonnen ausserhalb der in
Abb. 7 schraffierten Binderzonen unbedeutend sind und vernachlässigt
werden können.

Diese Folgerungen werden wir nun bei der Untersuchung der
Parabelschalen ausnützen.
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9. Biegetheorie des langen Parabelzylinders.

Den Spannungszustand in den Binderzonen werden wir dadurch
berücksichtigen, dass wir den im weiteren gefundenen Schnittkräften
die Momente Mx gemäss Abb. 7 und (23c) überlagern. Bei der
Untersuchung des Einflusses gleichmässiger Belastung der beiden geraden
Ränder einer langen Zylinderschale kann man, wie schon gesagt wurde,
die Momente Mx und Mxs als null annehmen, Dann besagen die
Formeln (4), dass auch die Werte mx, mxy und «qx null sind. Die
Gleichgewichtsbedingungen (5) lauten damit, wenn wir sie für eine auf
der Oberfläche unbelastete Schale schreiben, folgendermassen:

dnx _(H_

dx öy
0,

dny dt

öy dx

n> ^qy o,
am>. _R dy dy

o,
(43)

Wir haben gesehen, dass die Momentenlinie Ms eines an den
geradlinigen Rändern gleichmässig belasteten Zylinders gemäss (40c) durch
ein Polynom 7. Grades in r, beschrieben werden kann. Wir nehmen an,
dass dies auch bei einem Parabelzylinder der Fall ist, wenn (s. Abb. 3)

y

bedeutet. Die Berechtigung dieser Annahme werden wir noch im weiteren
nachprüfen.

Wir werden für die parabolische Schale neue Konstanten einführen
und schreiben für das Moment den Ansatz

m} b2 (Co + Din + dr? + D2v;3 + Ci*4 + Dsrp f- C3/;6 4- DAtf) (44)

Die Lage der Koordinatenachsen ist aus Abb. 3 und 9 ersichtlich,
der Zylinderquerschnitt x 0 ist identisch mit demjenigen Normalschnitt,
in welchem die Querkraft des entsprechenden kontinuierlichen Trägers
null ist. Jedes Schalenfeld wird dabei getrennt behandelt.

Die Gleichung (44) werden wir in zwei Teile spalten, einen
symmetrischen (mit den Konstanten C) und einen antimetrischen (mit den
Konstanten D).

a) Symmetrischer Fall.

Führt man (44) in (43) ein und löst das System mit Rücksicht auf
Abb. 9 auf, so kommt man auf folgende Gleichungen:

nx=l2 a2~x2
R(C0+15C3r;»), (45a)

b~
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1 24 4^^2 + 503^),
b

ny —2R(C1 + 6C2n2 + 15C3n4),
| (45b)

qy 2MCt + 2C8 -i2 + 3C3r!4),

my b2 (Co + Cii? + Ctit + C»iP); *=£-.
b

Eine symmetrische Belastung der Ränder y + b besteht im
allgemeinen aus Kräften und Momenten, deren Komponenten wir auf dem
Rande y b mit Ax t, N =nv, Q qy, M my bezeichnen, auf dem
Rande y - b greifen dann - Ax, N, - Q und M an. Setzt man diese
Werte in (45b) mit *i 1 ein, so können daraus die Konstanten leicht
bestimmt werden:

C0=- Ab 3N
48 R 16 R

110 M
16b b2 '

Ab^ _7N +15Q
16R 16R 16b

C» - Ab _ _5N__ _5Q^

16 R 16 R 16 b

N Q

(46)

C
Ab

3

48 R 16 R 16b

Wir werden den Vorgang der Berechnung auf einem einfachen
Beispiel zeigen, wobei wir auch die Berechtigung der gemachten Annahme
nachprüfen wollen. Die Schale in Abb. 3 sei lediglich längs der beiden
Ränder A und B lotrecht gestützt und frei' gelagert, sodass keine horizontalen

Stützdruckkräfte entstehen können. Dann verwandelt sich die Schale
in eine beiderseits gestützte gekrümmte Platte und die Gleichungen der
Schalentheorie 'müssen auf die aus der Baumechanik bekannten
Zusammenhänge führen. Die Schale sei gleichmässig lotrecht belastet mit g0
(kg auf 1 m2 der Grundrissfläche).

Die Membrankräfte, die wir mit Indizes 0 bezeichnen, sind gemäss (7)

0, t0 0, nNO — go R. (*)

Die horizontale Komponente des Stützdruckes kann von den
Randstützen nicht aufgenommen werden. Wir müssen daher einen 'Spannungszustand

(45) überlagern, der durch folgende Randbelastung hervorgerufen

wird:

A Of N -nyo g0Rf Q -g0b, M 0.
Die Kraft Q ist hier die vertikale Reaktion der Randstütze y b,

die mit der Belastung der halben Spannweite im Gleichgewicht sein muss
und daher g0b beträgt. Das Vorzeichen ist im Einklang mit Abb. 2.
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Mit diesen Werten liefern die Gleichungen (46)

Co= —go, Ci — — go, C2 C3 0
2* Jt

325

Die zusätzlichen Schnittkräfte, die wir mit den Indizes 1 bezeichnen,
folgen nun durch Einsetzen der Konstanten in (45)

nxi 0, t4 0, nyi g0 R, q>i —gobn

m>i=ygob2(l-^).
(»

Der resultierende« Spannungszustand wird durch Addieren der Werte
(a) und (ß) beschrieben:

nx 0, t 0, n} =0, qy —goy, my — g0 (b2 — y2)

Führt man dies in (4) ein, so erhält man

Ns =-g0 y sin V, Qs -g0 y cos Y, Ms i- g0 (b2-y2)

Diese Formeln geben richtig die Normal- und Schubkräfte sowie das
Biegungsmoment eines statisch bestimmten frei aufliegenden Bogen-
trägers an.

b) Antimetrischer Fall.

Der Vorgang der Berechnung ist derselbe. Die Auflösung des
Systems (42) liefert

nx=60-—^R*(D3 + 7D4r2)
b-

(47a)

t 6 — (Dj -r 10 Di ¦<? V 35 D4 rt)
b

r,y — 2 Rr; (3 D2 + 10 Di r? + 21 D4 n4)

qy =b (Dt + 3 D2r;2 + 5D3Vi4 + 2D4r;6)

my b2n (Di + D21? + Da /,* + D4 rp)

(47b)

Die Konstanten können wieder durch die antimetrischen Randkräfte
A'x, + N', Q' und + M' ausgedrückt wenden.
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c) Allgemeine Randbelastung.

Am Rande A (Abb. 3) greifen die Kräfte N, QAa usw. an, am
Rande B die Kräfte NB, Qb usw. Der dadurch hervorgerufene Spannungszustand

besteht bekanntlich aus dem symmetrischen Anteil (45), detf von
der Randbelastung

N=-i (NA + NB),Q^ 1(QA-QB), usw.

herrührt, und dem antimetrischen Anteil (47), den die Randbelastung
hervorruft

N'=i-(NA-NB), Q'=~-(Qa+Qb), usw.

Beim praktischen Entwerfen kann man die Randglieder so dimensionieren,

dass die Konstanten der Systeme (45) und (47) gewisse Bedin-

R
-j-no

fc

LrA
\V

REZ I-I i
1 1

Abb. 10. Quer- und Längsschnitt der Dachkonstruktion Abb. 1

gungen befriedigen. Dadurch kann eine günstige Spannungsverteüung
in der Schale erzielt werkten [7]. Dies fällt jedoch ausserhalb des Rahmens
dieser Mitteilung.
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10. Ausführungsbeispiel.

Die erste Konstruktion dieser Art wurde i. J. 1949 erbaut. Der
Querschnitt des Hallendaches ist in Abb. 10 dargestellt. Die Schalen haben
in der x -Richtung (senkrecht zur Bildebene) 3 Felder mit je 12 m Spannweite.

Die 6 cm dicke Schale ist an den Rändern bis auf 10 cm verstärkt.
Neulich wurden ähnliche Hallen
mit 3 x 18 m Spannweiten
erbaut, wo die Schalen eine Dicke
von 7 cm haben. Verschiebbare
Schalungsgerüste besonderer
Konstruktion werden benützt,
wobei das Erhärten des Betons
durch Dampfbehandlung
beschleunigt wird.

In der Abb. 11 ist der Verlauf

der Spannungskomponenten
im ersten Feld dargestellt,

die von ständiger Belastung
204 kg auf 1 m2 der Mittelfläche
samt einer Schneelast von 75 kg
auf 1 m2 Grundrissfläche
hervorgerufen werden. Die Abb. 12

zeigt die Trajektorien der
Hauptschnittkräfte in einer
Hälfte der dreifeldrigen Schale.
Voll ausgezogene Linien stellen
die Hauptzugrichtungen dar,
gestrichelte Kurven geben die
Richtungen der Hauptdruckkräfte

an.
Es wurde ein Beton von

250 kg/cm2 Würfelfestigkeit
verwendet. Die Bewehrung
besteht aus Spezialstahl von 3800
kg/cm2 Streckgrenze. Der
Materialverbrauch für die
Dachkonstruktion samt Randträgern,
Fensterwand und Bindern (ohne
lotrechte Säulen und Fundamente)

betrug

360 360

«ft'

249 252x-0

S

x-7120 m

rX-/20/D

^
fcs*ly

Abb. 11. Schnittkrafte- und
ponenten

Momentenkom-

0,137 m3 Beton und 7,63 kg Stahl

auf 1 m2 gedeckter Grundrissfläche.
Die Abb. 13 und 14 zeigen die Innen- und Aussenansicht der

Konstruktion.
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Abb. 13. Aus-
senansicht
einer Halle mit
Parabelschalen

Abb. 14.
Innenansicht einer
Halle mit Pa-
rabelschalen
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Abb. 12. Trajektorien der Hauptschnittkräfte der Schale Abb. 1 und 10
(Volle Linien — Zug, gestrichelte — Druck.)
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ZUSAMMENFASSUNG

Im Vergleich mit Kreiszylinderschalen bieten die parabolischen
Zylinderschalen in manchen Fällen gewisse Vorteile. Die Versuche, Schalen
mit veränderlichem Krümmungshalbmesser nach der üblichen Methode
zu berechnen, haben jedoch zu ausserordentlich komplizierten Differen-
zialgleichnungen geführt, sodass solche Schalen in der Praxis bisher nur
selten benützt worden sind.

In der vorliegenden Abhandlung wird zunächst die genaue Membrantheorie

der parabolischen Zylinderschale entwickelt. Randstörungen werden

dann auf Grund der sogenannten technischen Theorie von flachen
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Schalen behandelt. Schnittkräfte und Momente können durch Ableitungen
einer Formänderungsfunktion ausgedrückt werden. In den wichtigsten
Fällen kann diese bei langen Schalen durch geschlossene Ausdrücke
angegeben werden, sodass die Losung ohne besondere Schwierigkeiten
praktisch ausgewertet werden kann.

Beispiele von ausgeführten Sägedächern mit Parabelschalen zeigen,
dass diese Konstruktionen auch wirtschaflich vorteilhaft sind.

RESUMO

Comparadas com coberturas cilindricas circulares, as coberturas
cilindricoHparabolicas apresentam um certo numero de vantagens. No
entanto, estas coberturas so muito raramente se tem empregado na
prätica pelo facto do calculo pelos metodos habituais de coberturas de
raio de curvatura variävel conduzirem a equagöes diferenciais extrema-
mente complicadas.

0 autor examina primeiro a teoria exacta das membranas na sua
aplicagäo aos invölucros cilindricos. As condigöes aos bordos säo depois
tratadas pela chamada teoria tecnica dos invölucros planos. 0 esforgo de
corte e os momentos podem exprimir-se a partir de uma fungäo da
variagäo da forma. Nos casos mais importantes de coberturas compridas
pode esta ser traduzida por expressöes finitas o que permite obter a
solugäo sem grande dificuldade.

Exemplos präticos de aplicagäo permitem verificar a economia deste
tipo de construgäo.

RESUME

Par rapport aux enveloppes cylindriques circulaires, les enveloppes
cylindrojparaboliques presentent de nombreux avantages. Ces enveloppes
sont neanmoins rarement appliquees dans la pratique, leur calcul par les
methodes courantes des enveloppes ä rayon de courbure variable conduisant
ä des equations differentielles de forme compliquee.

L'auteur examine d'abord la theorie exacte des membranes appliquee
aux enveloppes cylindriques. Les conditions aux limites sont traitees par
ce qu'il est convenu d'appeler la theorie technique des enveloppes planes.
L'effort tranchant et les moments peuvent s'exprimer ä partir d'une
fonetion de la Variation de forme. Pour les cas les plus importants
d'enveloppes longues, celle-ci peut s'exprimer ä l'aide d'expressions finies
ce qui permet de les resoudre sans trop de difficulte.

Des exemples pratiques d'application montrent que ce mode de
construction est viable du point de vue economique.

SUMMARY

Parabolic cylindrical shells present quite a number of advantages
as compared to circular cylindrical ones. Nevertheless, due to their
analysis by the methods usually applied to variable curvature shells leading
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to extremely complicated differential equations, they have very seldom
seen practical use.

The author first examines the exact membrane theory as applied
to cylindrical shells. The boundary conditions are then taken into account
by the so-called technical theory of plane shells. The shearing force and
bending moments can be expressed through a function of the shape
Variation. In the most important cases of long shells, this can be expressed

by finite equations thus allowing to solve the problem with no great
difficulty.

Practical examples of applications show this to be an economical
type of strueture.
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