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a2

Lange parabolische Zylinderschalen
Coberturas cilindricas delgadas alongadas de forma parabélica
Voiles cylindriques allongés a section parabolique

Long parabolical cylindrical shells

Pror. DR. KONRAD HRUBAN

Technische Hochschule
Prag

In manchen Féllen weisen die parabolischen Zylinderschalen bedeu-
tende Vorteile auf. So ist z. B. die Neigung der unteren Endtangente des
Normalschnittes der Zylinderschalen in Abb. 1 bedeutend kleiner als die
eines Kreisbogens mit derselben oberen Endtangente. Ebenso ist der
eingeschlossene tote Raum kleiner. Die Betonierung der Schalen konnte

ABB. 1. Teil einer Hallenkonstruktion mit parabolischen
Zylinderschalen

iiberall ohne Schalung der Oberfliche erfolgen. Die Versuche, Schalen mit
veranderlicher Kriimmung nach der iiblichen Methode zu berechnen [1],
haben jedoch zu ausserordentlich komplizierten Differenzialgleichungen
gefiihrt, die praktisch nicht ausgewertet werden konnen. Infolgedessen
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werden Kreiszylinderschalen oft auch dort angewendet, wo eine wirt-
schaftlich, konstruktiv und asthetisch bessere Losung moglich ist. In der
folgenden Mitteilung werden wir iiber eine Berechnungsmethode berichten,
die seit 1948 als Grundlage fiir den Entwurf einer Reihe parabolischer
Schalenkonstruktionen fiir grosse Industrieanlagen beniitzt worden ist.

1. Transformation der Grundgleichungen.

Wahlt man Bezeichnungen und positive Richtungen der in der
Berechnung von Zylinderschalen vorkommenden Krifte, Momente, und
Verschiebungen gemiss Abb. 2. und vernachlidssigt man die unbedeutende

ABB. 2. Bezeichnungen

Differenz zwischen Ty und T. sowie zwischen M,. und M, so liefern
bekanntlich die Gleichgewichtsbedingungen folgende Zusammenhinge:

ONy | 0Ty x g, ONe 0T Quiy_ g (1a)
oX  9s Js  JX r
N | 0Qx , 0Q:
+ + + Z=0,
r 0X 0S (1b)
aMs ()st ()Mx ()Msx
+ -_ s=0 —I_ _ x=0'
0S 0X 9 ' oox 0s Q 1o

Hierin ist r der Kriimmungshalbmesser der Normalschnittkurve im
betrachteten Punkte der Mittelfliche. Die Belastungskomponenten X,
Y, Z sind auf die Einheit der Mitteflache bezogen. (Abweichend von
einigen Autoren wird hier die Komponente w mpositiv gezdhlt, wenn
sich die Verschiebung in positiver Richtung der Belastungskomponente
Z wollzieht).

Fiir die parabolische Schale wihlen wir kartesianische Koordinaten
an Hand der Abb. 3; die x-Achse hat die Richtung der Zylinderachse, die
z-Achse verlduft parallel mit der vertikalen Achse des parabolischen
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Normalschnittes; die positive Richtung der y-Achse ist in der Abb. 3
angegeben. '
Die Gleichung der Parabel ist dann

(y ty.)?

=BT TR

ABB. 3. Parabolischer Normalschnitt
der Mittelfliche. Lage der Koordi-
natenachsen

gq R ihr Kriimmungshalbmesser im Scheitel ist, also eine konstante
rosse.
Wir bilden die Ableitungen

_di-—t Y d2Z__l_
g ) dy? R (2a)

Aus den geometrischen Zusammenhingen folgt weiter

3
A (xy) o gy, Lcos®¥ o

dy =ds cos ¥
y ' s oy r R

Wir werden nun die Belastungskomponenten micht mehr auf die
Mittelflache beziehen, sondern auf die Flacheneinheit deren Grundriss-
projektion (d. h. der xy -Ebene). Diese neuen Komponenten bezeichnen
wir mit p;, py, D. (Abb. 4). Es ist dann

Xdxds = pxdxdy,
Ydxds = pydxdycos¥ — p,dxdysinV¥,
‘ Zdxds = p,dxdycos¥ — pydxdysin¥,
d.h. X=p cos¥, Y=p cos?¥+psin¥cos¥, Z=p, cos*¥—p sincos¥.
(3)
Wir werden auch meue Kriaftekomponenten einfiihren, die auf eine

Langeneinheit der Grundrissprojektion bezogen sind und die wir folgen-
dermassen idefinieren:

- ny
Nx = Ny €OS W y sz = Tsx = tx_\‘:tyx:tn Ns = :

¢sin¥ l
cos‘lf+q' !

- (4)

M: = m,cos* ¥, Mys = M = my, cos ¥, M, = m,,

Q.= qxcos?V¥, Q, ———‘q_\- cos ¥.
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Die neuen Komponenten sind mit kleinen Buchstaben bezeichnet,
um von den Schnittkriaften deutlich unterschieden zu werden. Ihre Bedeu-
tung ist aus den Formeln (4) ersichtlich. So sind die Komponenten
n.dy und tdx Projektionen der Vektore der Krifte N ds und T, dx auf
die x -Achse, usw. Die Komponente n, ist die Projektion der Resultante
der beiden Schnittkrdfte N, und Q. in die y -Achse; ist ny null, so

& g
n //
N £ d
‘; v
'3 A £ /'I dx
\\6 I'l X
J Y D
c A
/
/
vij /F
B

ABB. 4. Geometrische Zusammenhinge der Komponenten. (a) Belastung.
(b) Schnittkrdfte im Langsschnitt

bedeutet das, dass diese Resultante vertikal ist; wird die Resultante AB
in die Richtungen der Tangente und der Vertikale zerlegt, so ist q, die
vertikale Komponente (s. Abb. 4b).

Beim Einfiihren der Beziehungen (3) und (4) in die Gleichgewichts-
bedingungen (1) beniitzen wir die Zusammenhinge (2). In die zweite
Gl. (1a) setzen wir ausserdem fiir p, aus der transformierten Gl. (1b) ein.
Nach kurzer Rechnung kommt man auf diese Weise auf die folgenden
Grundgleichungen des Parabelzylinders:

0Ny ot on ot 0qx _.
4 pe=0 L +—+p =—"sin¥cosV¥ :
ox +ay+P ’ oy +¢)X p )X y»  (52)
Iy n 0qx T aqy + _ te ¥V =0
R 0X 0y P Py 8 ’ (5b)
omy , May oo, 0Mx My o TGnWeos¥. (50)
oy 0X 0X oy R
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2. Membrantheorie des Parabelzylinders.

Ist die Schale momentenfrei, so reduziert sich das System (5) auf
drei Gleichungen fiir drei unbekannte Spannungskomponenten j wir schrei-
ben sie in der Form

ny=—R (p.—pytg¥), (6a)
ot 0Ny ony ot
—_— e — - — _— e " = X o (6b)
Tx 3y Py x 3y p

Sie konnen der Reihe nach aufgelost werden.

Wir legen nun den Koordinatenursprung in denjenigen Normalschnitt
des Zylinders, in welchem die Schubkrifte Ty, = t null sind und bezeichnen
als x = + a diejenigen Normalschnitte, in welchen die Lingskrafte. N,
wegen Auflagerbedingungen der Schale auf den Bindern verschwinden
miissen. Dann liefert die Auflosung des Systems (6) die im folgenden
zusammengestellten Ergebnisse.

b) Gleichmdissige lotrechte Belastung der Schale
mit g, auf Einheit der Grundrissfliache.

P-=0, py =0, p. = &..
n,=0,t=0n, =-g, R. (7

b) Gleichmissige lotrechte Belastumg der Schale
mit g, auf Einheit der Mittelfldche.

g1
x=0,py=0, p. = 5
P Py 2 cos ¥
1  a?2—x? . aiR
Ny = — cosdV¥ , t, = sin¥, ny = — .
2 81— R ! gL x ¥ cos ¥ (8)

c) Lotrechte Belastung, die mit der Neigung wdchst.

2
Ppx=0, py =0, p, =g+ 83 <%> . (Bezeichnungen gemiss Abb. 3).

R 0o\ 2
mw B s = e ()

)
d) Windbelastung mit g, sin ¥
auf Einheit der Schalenmittelfléiche.
px=0, py=—gwtg¥sin¥, p,=gysinV¥.
2 in?
Ny = gy a—x sin ¥ (3+2cos?V¥), t=gux el ok

2R cos ¥

(10)

tg ¥

ny = —gw R
’ & cos ¥
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3. Einfluss der Querschnitisgestalt des Zylinders.

In der Abb. 5 ist der Querschnitt einer Sagedachschale dargestellt;
a) ist ein Kreisbogen und b) ein Parabelbogen. Die Abmessungen sind
in Zentimetern angegeben. Um den Einfluss der Bogenform zu untersu-
chen, wurden die Schnittkriafte fiir eine stindige Belastung von g,=200 kg
auf 1 m? Mittelfliche und eine Schneebelastung von g, = 75 kg auf 1 m?
Grundrissebene berechnet. Fiir die Kreiszylinderschale wurden die bekann-
ten Formeln

N.=-gircos¥-g, recos®¥, mny=N;cos ¥V .
. 2 .
T = —2g; X sin ‘{f—? g, X sin 2V,

fiir die parabolische Schale die Formeln (8) und (7) benutzt. In der
nachfolgenden Tabelle sind die festgestellten Randwerte der Schubkrifte
T:s (am Ende x = a = 6 m) und der horizontalen Komponenten n, der
Liangskriafte N, zusammengestellt.

Horizontale Komponenten der Membrankrifte fiir Schalen
gemdiss Abb. 5 m kg/m.

Rand A Rand B .
Bogenform Bogenform
Belastung
Kreis Parabel Kreis Parabel
(Tx)s n, (Ta)a ny (Tx) s n, (Tx). n,
o — b8b - 86 0 - 518 0 - 690 0 - 518
e - 2078 — 460 907 — 2108 0 — 1840 0 — 1380
Summe — 2663 — 546 907 — 2626 ) — 2520 0 - 1898

Da die geradlinigen Randglieder nicht imstande sind die horizontalen
Komponenten n, aufzunehmen, miissen diese durch die Schale selbst
auf die Bogenrandtriger (Binder) iibertragen werden, wodurch eine
Biegungsbeanspruchung der Schale hervorgerufen wird. Man muss daher
dem Membranzustand einen Spannungszustand iiberlagern, der entsteht,
wenn die Schale an den geradlinigen Randern mit Kraften —n, belastet
wird. Aus der Tabelle ersieht man, dass diese Krifte in unserem Falle bei

der Kreisschale

546 kg/l. M. und 2530 kg/l.. M.
und bei der Parabelschale

2646 kg/l. m. und 1898 kg/l. M.
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betragen. Der Unterschied zwischen beiden Werten, der bei der Kreis-
schale bedeutend grosser ist, verursacht eine besonders ungiinstige Bean-
spruchung der Schale. Auch die Schubkrifte, die Hauptzugspannungen in
den Schalenecken hervorrufen, sind bei der Kreisschale bedeutend grosser
(2663 gegen 907 kg/m).

Bei den wirtschaftlichen Vergleichserwiagungen darf man matiirlich
nicht die Schale allein in Erwingung ziehen, sondern die ganze Konstruk-
tion samt Randgliedern und Bindern. Wir werden daher zunichst das
Problem der Randstorungen untersuchen.

B . "
A ®
A // %
| A C.k
B/<C -
.,60/,\ N FOE S 797
/ ;\\ \\ //
N \\
AN
\\ \
N

‘ABB. 5. Vergleich eines Parabelbogens (b) mit einem Kreisbogen (a)

4. Grundlagen der technischen Theorie.

Wir kehren jetzt zuriick zur Abb. 2 und betrachten eine unbelastete
Kreiszylinderschale, an deren Réndern Krifte angreifen.

Um den Einfluss dieser Randbelastung untersuchen zu konnen, muss
man bekanntlich in den Gl. (1) die Schnittkriafte durch Ableitungen der
drei Verschiebungskomponenten ausdriicken und eine passende parti-
kulare Losung des so entstandenen Systems von partiellen Differen-
zlalgleichungen suchen. Nimmt man an, dass die Schale aus einem
elastischen Material hergestellt ist, so ist z. B.

0y
E ?
stl—vﬂj (s, +ve)dz.

=g

Hierin ist v  die Querdehnungszahl,

gs, ix die bezogenen Dehnungen der Fasern,

z der Abstand der Faser von der Mittelfliche der Schale
und
h  deren Dicke.
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Wir werden uns hier lediglich mit Schalen aus Stahlbeton beschif-

tigen. Die Zahl v wird fiir Beton mit —11?- bis % angegeben. In
Stahlbetonquerschnitten nimmt man jedoch schon bei normaler Belastung
der Konstruktion die Existenz von Haarrissen in der Zugzone an; die
Zugspannungen werden lediglich von den Stahleinlagen aufgenommen.
Dehnt sich ein in der x -Richtung liegender Bewehrungsstab, so hat das
jedoch auf die in der s -Richtung liegenden Stidbe keinen Einfluss. Es
ist daher in der Zugzone mit v = 0 zu rechnen. Da nun fiir das Trag-
vermogen der auf Biegung beanspruchten Stahlbetonquerschnitte ihre
Bewehrung ausschlaggebend ist, scheint fiir diinnwandige Stahlbeton-
konstruktionen der Wert v = 0 der Wirklichkeit am nichsten zu entspre-
chen. Wir nehmen daher in den weiteren Untersuchugen v =0 an, so
wie es auch bei der Berechnung von ‘Stahlbetonplatten iiblich ist.

Die Gleichung fiir die s -Dehnung lautet mit Riicksicht auf die
gewihlte Richtung der z -Achse

W0V _ W, T Pw
) 0s r—z r—z 9s?
2 9 2
—_—QX_E<1+_Z__|_Z_+“_>—‘)W<z—|—i—+...>. (11)
0S r r r2 0s? r

Die sogenannte strenge Theorie der elastischen Schalen vernachlassigt
in den Klammern alle Glieder, die wir in (11) mit Punkten angedeutet
haben (s. z. B. 2, S. 115), und rechnet dann (bei v = 0) weiter mit

- 2 2
N,—Ed [‘)_‘_’_lv___h_ <l+_d_W>] )
0S r 12r \ 12 0s?

Diese Gleichung ist also nicht mathematisch exakt, da hier Grossen
weggelassen worden sind, die zwar klein sein konnen, nicht aber unend-
lich klein. Die Vernachlissigung dieser kleinen Grossen ist natiirlich
mit Riicksicht auf das nicht vollkommen elastische Verhalten von z. B.
Stahl voll berechtigt. Mit demselben Recht kann man jedoch beim
Stahlbeton, dessen Verhalten weit mehr vom vollkommen elastischen
abweicht, auch die mit z2 behafteten Glieder in (11) weglassen. Ahnliche
Erwigungen fithren zur Vereinfachung aller in der strengen Theorie
beniitzten Zusammenhinge von Schnittkriften mit Deformation. In den
Formeln fiir Momente wird dann bei flachen Schalen auch der Kriim-
mungsradius als unendlich gross angenommen, als wenn es sich um eine
ebene Platte handelte. Infolge dessen fillt auch das Glied Q./r in
(1a) weg.

Mit v = 0 lauten dann die vereinfachten Gleichungen, auf denen die
technische Theorie aufgebaut ist, folgendermassen:

N, —En’Y, T,—T,— LEh ("_“+"_"> , Ns—_—Eh(‘i‘-’—E),
0X 2 oS oX 08 r ,
(12a)
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3 )2 3 )2 3 )2
M, —— ER2 W M ERPOW N EDSOw
12 ox2 12 9x0s 12 g9s? |
oM, oM oM, = oM (12b)
9= )4 + s Q= 0S T 0X

Fiihrt man (12) in die Gleichgewichtsbedingungen (1) ein, in welchen
nun X =Y =7Z = 0 ist, da die Oberfliche der Schale nicht belastet ist,

so erhilt man
02 1 52 1 o%v }
L a4 =% ) u4+ = =0
(ax2+ 2 as2> N 2 9X9s ’

_1_62u (c)z lﬁ)v 1 ow
2 0x9s sz 2 gx2
1 ov

1  h? |
=Y (24 =0 . 13b
r ds <r2+12V >w (13b)

Hierin bedeutet das Symbol V¢ die Operation
0% 02

b= p2 2 wo py?= — |+ — ist.
Vi=VV,woy ax2+as2

{ (13a)

(Wir untersuchen hier eine Kreiszylinderschale, sodass der Radius
r konstant ist.)

Wir fiihren nun eine analytische Funktion F (x,s) ein; die Verschie-
bungskomponenten seien durch folgende Ableitungen dieser Funktion
gegeben :

\'
r 9x9s?’ r os

0x2  gs?

2 2
1 02F 129 (2 ¢ 49 )F.W=V‘F. (14)

Die Differenzialoperatoren in diesen Ausdriicken wurden so gewihit,
dass die beiden Gleichungen (13a) identisch erfiillt sind. Die letzte zur
Verfiigung stehende Gleichung (13b) stellt dann die Bedingung dar, die
die Funktion F erfiillen muss. Fiihrt man in sie (14) ein, so lautet sie

12
<V‘V4+ h? r? W)F’——_O' (15)

Wir werden im weiteren mit ¢ die folgende Léange bezeichnen:
hr
V3

Diese Linge ist eine gewisse Charakteristik der Schale. Die Gleichung
(15) kann dann auch geschrieben werden

(v*—-ii—‘f—) (VA.HE"L) F=0, (172)

c? ox? c? ox?

c— ~ 0,76 V' hr. ' (16)
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wo i =V —1 die imagindre Einheit ist. Die Funktion
@@sﬁ=(‘+b—ﬁi)F (17b)
o c? gx2

kann als die komplexe Forminderungsfunktion der Schale bezeichnet
werden. Ihr Realteil

RO—=y*F=w (182)

stellt die Verschiebung in der Richtung der Normale dar, ihr imaginirer
Teil ist der Spannungsfunktlon

_*F
T oox?

f (x,5) = —9 (18b)

proportional. Die Gleichungen (12a) liefern namlich mit Riicksicht
auf (14)

2 2
Nxz_EﬂLf, T, — £ 0% , Ny:_gggi (19)
r os? r 0Xo0s r ox2
Es ist weiters
9 , 9
0X r 9s? 0s r ox2

Die komplexe Forminderungsfunktion ¢ muss die Gleichuﬁg (17a)
befriedigen, sie muss daher die Bedingung erfiillen

.2 020
c? 9x?

v =0. (21)

5. Normalbelastung der bogenformigen Schalenrinder.

Wir beschrinken uns hier auf die Untersuchung derjenigen Fille,
die in der Baupraxis vorkommen. Dann kann man die Normalver-
schiebung w; des Randes x = 0 (Abb. 6) durch den Ansatz (22) ausdriicken,
worin wW,, w; und b konstante Lingen sind.

$ -
WR == Wo' -} Wy €COS Lbi , (22)

| ABB. 6. Bezeichnungen fiir Absatz 5
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a) Betrachten wir zuniachst das erste Glied, das von s nicht abhingt.
Die dazugehorige Spannungsfunktion ist symmetrisch mit Bezug auf die
Achse des Zylinders und die Formeln (18) ergeben
d‘F d2f
dx* dx*?

—|—-iw=0. (23a)

Dies ist jedoch die bekannte homogene Grundgleichung der Behilter-
theorie, deren Losung wohl bekannt ist:

W= A1 91+ Ay 9+ A5 954 Ay 3 - (23b)
A, ......... A, sind Konstanten und
cpl(x)=e—%cos X , qaz(x)ze_%sini ,
c c

a()=al—x%x), 9E)=9pl—x).

Die Schnittkrifte N,, Tys und die Momente M,., M, sowie die
Querkraft Q. sind null; es entstehen nur gewisse Normalkrifte N,
Biegungsmomente ‘M, und Querkrifte Q, die jedoch mit der wachsenden
Entfernung vom Rande rasch abklingen und bei den iiblichen Abmessungen
der Tonnen in einer Entfernung von 2¢ vom Bogenrande als bedeutungslos
angesehen werden konnen.

Falls z. B. die Formianderung einer gleichméissig normal belasteten
Schale lediglich dadurch gestort wird, dass die Bogenstiitzen steif sind,
kann der Verlauf der Schnittkridfte und der Durchbiegung der Schale
laings einer Erzeugenden durch die in Abb. 7 gezeichneten Kurven
dargestellt werden.

Das Einspannmoment der Schale in den Binder betragt

min M, — — % Ze, (23¢)

wo Z die Normalkomponente der Belastung im betreffenden Punkte und ¢
die Lange gemiss (16) bedeutet.

Im Grundriss (Abb. 7b) sind die durch die Bindersteifigkeit beein-
flussten Teile der Schalenfliche durch Schraffierung gekennzeichnet.
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Aus der Abb. 7 kann man folgern, dass in einem weit liberwiegenden
Teile der Schalenfliche langer unbelasteter Tonnenschalen der Formin-
derungszustand praktisch nur durch die an den geradlinigen Randern
wirkenden Krifte beeinflusst wird.

b) Betrachten wir nun eine erzwungene Durchbiegung der bogen-
formigen Rénder, welche durch das zweite Glied der Summe in (22)
beschrieben ist. Die komplexe Forminderungsfunktion nimmt nun die
Form an

x s

<D=Cek?cosT, (24)

worin C eine konstante komplexe Grosse ist und
k eine komplexe Zahl bedeutet.

r=16m, h=6cm
9
Lﬁ 1=18m >H
Ns ﬁ 4\
! ! [ !
r | T v E
: 1 ! N
Me & &
N I 7
s § 1 QO
263¢ Nt
v :\:g 1 061mm J‘l/
' | | 0
n T -
L L
: ! | [
b ’//% V/
/ }/ ABB. 7. (a) Liangsschnitt
und (b) Grundriss der
X £ Schale. Einfluss der Bin-
) / dersteifigkeit auf die
/ Schnittkraft Ns, das Mo-
/ / ment Mx und die Durchbie-
gung w bei einer Belastung
% / der Schale von 300 kg auf
1 m? Grundrissfliache
» l N
Fiihrt man (24) in (21) ein, so erhdlt man fiir k die charakteristische
Gleichung

[(E) =G -5 =
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Dies kann geschrieben werden
2 R
[kz_ <E> kY2 ] [k’— ("—c) + RV J=
b b
Die Gleichung hat 4 Wurzeln

k1=x1+im, k2:7~2+i5’-4
ks = %3 + 1ps, ky = 24 + i

worin alle » und p reale Zahlen sind.
Die ersten zwei Wurzeln folgen aus

k2 —(1+i) k—8 = 0;

wir haben hier V' 2i =1+ i eingesetzt und =c/b =38 bezeichnet. Die
Ausrechnung liefert

zi,2=%[1i\/%(~1+\/‘1?4737) i\/—%(HVW)] ,

= {5 Ty R -

Bei den Schalen, die wir hier behandeln, ist die Zahl & sehr klein;
istz. B.r=16m, h=6 cm, b = 4,5 m, so ist 3 = 0,132, 3* = 0,00030
und k, = 1,0088 + 0,9914 i, k, = —-0,0088 — 0,0086 i.

Die Differenz
k,— (@1 +1i) = 0,0088 — (,0086 i

ist kleiner als 19, des Wertes 1+ i, der fiir die unter a) behandelte
achsensymmetrische Verteilung 'der Randstorung gilt. Falls man diese
unbedeutende Differenz vernachlédssigt, so erhidlt man die Wurzeln

1{1:1+i, k2:0, k3:—k2:0, k4:_k1:_‘(1+i),

d. h. dieselben wie im Falle w. = w,. Die weitere Rechnung zeigt dann,
dass sich die in der Abb. 7 dargestellten Verhiltnisse sowie die Formel

(23c¢) auch fiir den Fall wy = w; cos ;_s nicht andern. Auch die Breiten

der gestorten Zonen bleiben so wie sie in der Abb. 7 dargestellt sind.
Der mittlere Teil der Tonne ist durch die am Bogenrand angreifenden
Normalkrifte praktisch unbeeinflusst.

Es folgt daraus weiter, dass die Funktionen (23b) oder (24) nicht
geeignet sinde, den Einfluss der Kontinuitdt der Schale in ler x -Richtung
zu erfassen. Wollen wir dies tun, so miissen wir andere Wege einschlagen.
Wir werden daher im folgenden solche Fille betrachten, in welchen die
Forminderungsfunktion durch Polynome ausgedriickt werden kann.
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6. Horizontale Belastung der bogenformigen Riénder.

Fiir weitere Untersuchungen legen wir nun den Koordinatenursprung
in die Symmetrieebene xy (Abb. 8) der Tonne und fiihren folgende

Bezeichnungen ein:

K und C sind beliebige Konstanten,
Xo=Kjp, X1=1 (Ko E»}—Ki),
Xo= 12 <K0 25"-!+K1 £t K2> ,
€3
X, =I5 (Ko—+K1 4K+ K, }

X, — 14<K0Z+K1£+K2£—+K EK, )

Es ist offenbar

dX4=X5 ) -..dXi*——XO KO dXO
dx dx dx

= 0.

Eine zweite Gruppe von Polynomen, welche Funktionen von s
sind, schreiben wir der Form

’ 2
Sy = Cy b5, St — b-* (Cgn+ Cy), Sz — b8 (col'+c4n+c2), -

Ss—CO +C1—+C +C5 +C4Y)+Ca,.-.

(25)

(26)

allein

L (27)

9 -8
Sy—= bé <c0—+c18”—+ 4 c +C8n+C9>.

Es ist wiederum

dSQ_—“Sg, e dSl SO,dSO 0.
ds ds ds

Sol! die komplexe Formanderungsfunktion

=w+2f
2
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die Gleichung (21) befriedigen, so muss Wie der reale so auch der imaginire

Teil der Ableitung
. 2 9 / . 2f
b - -
<V ' c? ax2> (W_H c? \)

gleich Null sein. Da die beiden Funktionen w (x,s) und f (x,s) real sind,
liefert die Ausrechnung folgende zwei Bedingungen:

Vlbw—i-i ik = 0, V"f—dhvj’

ch a X2 axz

=0. (28)

Diese Zusammenhinge ermoglichen es, zu einem passend gewéahlten
Ansatz fiir w die dazugehorige Spannungsfunktion f zu bestimmen. So
findet man z. B. fiir

I‘?

X. S, : 29)
En 3! (

Viw=0, =0, f=X¥i(s)+Ya(s).

Hierin sind ¥; und ¥, Funktionen von s allein, die durch Einsetzen
in die zweite Gleichung (28) und durch Integration bestimmt werden
konnen. Man erhilt
I‘2

Eh

f = Xl 55 . (30)

Die Forminderungsfunktion hat also die Form

2

.2
b= (X Suti X155> . (31)

Durch Einsetzen in (21) kann man sich iiberzeugen, dass diese
Bedingung erfiillt ist, dass also die Funktion (31) einen Forminderungs-
zustand der Schale richtig darstellt.

Die von (29) und (30) gemiss Formeln (19) und (12b) abgeleiteten
Werte der Schnittkrafte und Momente sind

Nx=——rX155, szerOS4, NSZO, (323)

h2r? her?
XiSi, Me=-—

M, = —
12 12

XeSy, M;=0. (32b)

Die dementsprechend mit x parallele Verschiebungskomponente ergibt
sich zu

u=__r_X255:__S5l-r<

K, 2 LK.z K> 33
Eh Eh 0 TR R (33)

2

21
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Nehmen wir jetzt an, dass die Schale in Abb. 8 auf ihren beiden
Bogenrindern x = 4 —;—l frei verschiebbar aufliegt und langs der Erzeu-
genden gleichmissig belastet wird. Es ist aus der Membrantheorie
bekannt, dass der Verlauf der mit x parallelen Normalkrafte N, ldngs
der Erzeugenden parabolisch ist. Liegt die Tonne an den Endbindern
frei auf, so miissen diese N; an den beiden Randbogen null sein. Bei
iiblichen Belastungsfillen kann man die von der Belastung entstehenden
Langskriafte N durch die Formel ausdriicken

2 _ 2
Ny —Syr - 14i=5311-(1_4aﬂ). (34)
: . : , 1
Im Schnitt x = £ = 0 ist (N3 ), = S; Ir, an den Réndern x = + ?1

ist N =0 .

ABB. 8. Bezeichnungen fiir Absatz 6

Wenn in der Ebene x = 0 keine u-Verschiebung vorkommen kann,
so ist

_ Syt 84 S;lr, 4

, 1 2y, 35
T En T 3l S 163}
, 1 : 1 S,I2r
An den Réndern x = + 0 1 ist (u,), == = EL

Waire jetzt die Schale in den beiden Randebenen x = i—lz—'] fest

eingespannt oder sollte es sich um das Mittelfeld einer in der x -Richtung
Kontinuierlichen Konstruktion mit sehr vielen Feldern handeln, so ist
eine solche Randverschiebung unmoglich. Es entsteht ein zusétzlicher
Spannungszustand, der durch die Formeln (32) beschrieben ist und der
sich demjenigen der freiaufliegenden Schale iiberlagert. Die resultierende
u -Verschiebung der Punkte der beiderseits eingespannten Schale sei mit
u = up + u bezeichnet. Sie ist mit Riicksicht auf (33) und (35)

Sy I
Eh

S512r2(1_§£2> .

u=

b
//

z2
<K0:2—+K15+K2) +
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Da der Verlauf der Verschiebung antimetrisch ist, sind die Kon-
stanten K, = K. = 0. Weiters soll u lings der Rinder x = :}:%1, d. h.
bei £ =+ —;— fiir einen beliebigen Wert des Arguments s null sein. Es

muss daher

—1 1 1 ' 2
+EKli—2— (\1—3/) =0, d'h°K‘:§ .
Mit diesen Werten der Konstanten liefern idie Formeln (26) und (32a)
2 2
Xiz-??l, Nxz——?)—Sslr. (36)
Die resultierende Lingskraft N, = N,; + N, ergibt sich aus (34)
und (36) zu
N, — Sylr(1—42) — 2 S;lr— Sylr (——42°) .
‘ ° 3 .3 ,
Ihr Wert in der Spannungsmitte ist
<5 1 1
( Nx )0: _é‘ Sslr: ?(NXB)O)
N y ) 1
iiber den Auflagerbogen ( fiirz = + E)
— 2 2
(Nx)RZ_“—?,‘Sslrz— E(NXB)O .

Der Verlauf von N, lings der Erzeugenden ist daher derselbe wie
der Verlauf der Biegunsgsmomente eines eingespannten Tragers.

Untersucht man auf diese Weise verschiedene Arten ider Kontinuitat
der Schale in der x -Richtung, so kommt man fiir die hier behandelten
Falle zum folgenden Ergebnis:

Die Schnittkrifte N, resp. T,. verlaufen lings einer Erzeugenden in
derselben Weise wie die Biegungsmomente resp. die Querkrifte eines
kontinuierlichen Trdgers ladngs seiner Achse.

Es muss auch so sein, denn idas Polynom X, stellt eigentlich die
Biegungslinie eines unbelasteten Trégers dar, der nur durch Auflagermo-
mente belastet ist. (*)

Die durch die Belastung hervorgerufenen Lingskriafte Ng und
Momente M werden durch die Kontinuitit der Schale nicht beeinflusst,
denn die diesbeziiglichen Zusatzkrifte in (32) sind null.

(*) Es ist anzumerken, dass dies nur fiir die Fille streng gilt, in welchen sich die Abhingigkeit

von s der von der Belastung der Schalenfliche hervorgerufenen Liangskraft N, durch die Funktion S,
ausdriicken ladsst.
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Die Biegungsmomente, welche durch die Kontinuitdt in der Schale
hervorgerufen werden, sind durch die Formeln (32b) gegeben. Bei den
iiblichen Dachkonstruktionen erreichen diese Momente nicht eimal den
Wert von 5 kgm/m und konnen ohne weiters vernachldssigt werden.

7. Gleichmiissige Belastung geradliniger Rinder.

Bei kontinuierlichen Schalen werden wir ein jedes Feld selbststindig
untersuchen. Wir bezeichnen mit x = 0 denjenigen Normalschnitt des
Zylinders im betrachteten Felde, wo die Schubkrifte null sind. Aus
dem vorhergesagten folgt, dass dies derselbe Querschnitt ist, in welchem
die Querkraft des entsprechenden kontinuierlichen Tragers verschwindet,
d. h. wo idas Biegungsmoment des Tréigers sein Maximum erreicht
(Abb. 9) Mit a bezeichnen wir den Abstand der Querschnitte, in welchen
das parabolisch verlaufende Biegemoment null ist. Fiir diese Lage des
x -Nullpunktes nehmen die Polynome (26) die Form an

ABB. 9. Verlauf der Schnittkraft Nx einer konti-
nuierlichen Schale vnd des Momentes M eines
kontinuierlichen Tragers

e T T

| | | X, =¥

i — : S_E—ak—f—Ksy r 37)
? 10T T + Ksx+ Ky

|

|

|

|

|

SR,

[

—re—a—>|

Mit diesen Bezeichnungen gelten dann weitere Formeln im ganzen
Bereiche eines Feldes einer in der x -Richtung kontinuierlichen Schale.
Handelt es sich um nur ein frei gelagertes Feld, so ist a = % I und der
X -Nullpunkt liegt in der Mitte der Spannweite 1 wie in der Abb. 8.

Die Beziehungen (7) bis (10) zeigen, dass die Membranschnittkrifte
N, von Dachschalen an den geraden Ridndern gleichmissig verteilt sind.
Konnen idiese Kriafte von den Randgliedern nicht aufgenomen werden,
so ist der Membranzustand nicht moglich. Das Problem wird bekanntlich
in der Weise behandelt, dass man den Membrankridften den Spannungs-
zustand iiberlagert, der durch eine entsprechende Belastung der Réander
der unbelasteten Schale hervorgerufen wird. Bisherige Losungen haben zu
diesem Zwecke einen Ansatz beniitzt, der mit den Bezeichnungen gemaéss
Abb. 8 lauten wiirde

nrtx

1

S
®= 3C,e" 7 cos
1
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Wir wollen hier einen anderen Weg suchen, der zu geschlossenen
Formeln fithren wiirde. Wir setzen die Forminderungsfunktion in der
Form an

r /4 .2
(D=_E—E(-c—ﬁ_ Sg+5S5"‘2X2 S5_X4 Si'—]'gX?Sﬁ) * (38)

Hierin sind die Polynome S (s) durch Formeln (27) und X (x) durch
Formeln (37) definiert. Man findet

V2O — L[ﬁ_z S,— X2 Si++ S, 45S5;,—2Xa Si—ig;(Sﬁ—{—Xa Sa)] ,
Eh | ct c?

- .2 -
6(1) S —X?S +2S5 |’
v Eh[ Tl e g
2
L2 20 L[is_l_(xq,swrzsz,)J
c? 9x? Eh

Der Ansatz (38) erfiillt also die Bedingung (21) und stellt einen
moglichen Forminderungszustand der Schale dar.
Es ist nun geméiss (18)

r 4
= 2o (S8 —2XeSi— X, S ), (392)

f———XS . 390
Eh 2 5 ( )

Die Ableitungen gemiss (19) ergeben

Nx = X2 S3 ’ T_\s __ — Xl S4 y Ns - S5 ’ (403)
Die Formeln (12b) liefern ‘
M, — 2°F - (X:$1428y), Mu—
Ms=—§l+*<2xasl—sss>, | (40b)
r 12
Se
Qx Qs—_—+—‘(X2SO—S2) J

Man sieht, dass sich die Schnittkrafte N, an den geraden Réndern
wirklich gleichméssig verteilen, denn S; ist von x unabhingig. Wenn
man also dem Membranzustand das System (40) iiberlagert, so konnen
die willkiirlichen Konstanten in den Polynomen S (s) so bestimmt werden,
dass die gegebenen Randbedingungen befriedigt werden konnen.

In (40b) sind die Glieder, die mit dem Faktor h? behaftet sind, im
Verhéltnis zu den anderen sehr klein; sie konnen bei der Berechnung
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langer Schalen, deren Spannweite 1 und Kriimmungsradius r nicht grosser
sind als 25 m, vernachldssigt werden. In diesem Falle verschwinden
die Momente Mx und M, sowie die Querkraft Q. und es bleibt aus
(40) mur

Ms:—iy Hs‘z—i- (41)

r r

Die Liangskraft N, die der Normalkraft eines Bogentrégers ent-
spricht, ist durch die Funktion S; gegeben und bleibt langs einer jeden
Erzeugenden unveranderlich.

In den Gleichungen (40) treten 8 unabhingige Konstanten auf, die
aus den Randbedingungen (je 4 auf einem Rand) zu bestimmen sind.
Zu dieser Aufgabe werden wir noch im weiteren zuriickkommen.

8. Kritik der technischen Theorie.

Die Grundbeziehungen der technischen Theorie stammen aus den
Arbeiten von A. J. LURJE [3], A. KUHELJ [4, 5], V. Z. VLASovV [6], u. a.
Betrachtet man die eingefiihrten Vereinfachungen nédher, so findet man
jedoch, dass die zweite Gleichgewichtsbedingung

()Ns + l)’I XS . QS =0 (42)
0S 0X r

nicht erfiillt ist, da das letzte Glied Q./r vernachlissigt wurde und in der
zweiten Gleichung (13a) micht enthalten ist. Dies hat zur Folge, dass
die aus (19) und (12b) berechneten Reaktionen der Schalenriander nicht
genau der Belastung der Schale entsprechen. Die Theorie kann jedoch
ohne Bedenken fiir flache Tonnen verwendet werden, denn dort ist das
vernachlassigte Glied in (42) im Vergleich zu den beiden anderen sehr
klein und der Fehler daher unbedeutend.

Die Theorie der Baukonstruktionen zieht es dagegen vor, die Gleich-
gewichtsbedingungen streng zu erfiillen und notigenfalls lieber die
Kompatibilitidtserfordernisse micht voll zu befriedigen, da diese sowieso
auf Annahmen beruhen, die das wirkliche Verhalten von Baumaterialien
nicht richtig wiedergeben. Wenn wir diesen Grundsatz beibehalten
wollen, so konnen wir die bisherigen Ausfiihrungen als eine Untersuchung
betrachten, idurch welche nur die Probleme der Kontinuitdt und der
Gestalt der Momentenlinien geklart werden sollten. Zur Auflosung der
Gleichgewichtsgleichungen (1) geniigt es namlich, die Form 'der Funktionen
M, (x,8), M, (x,s) und M, (x,s) zu kennen. Die Werte, welche die Intensi-
tit der Kraftwirkung bestimmen, folgen dann aus den Angaben iiber
Belastung und aus den Randbedingungen.

Weiters bestitigen die Ergebnisse der technischen Theorie, dass die
Momente M,, M, und die Querkraft Q. in langen Tonnen ausserhalb der in
Abb. 7 schraffierten Binderzonen unbedeutend sind und vernachlassigt
werden konnen.

Diese Folgerungen werden wir nun bei der Untersuchung der
Parabelschalen ausniitzen.



LANGE PARABOLISCHE ZYLINDERSCHALEN 323

9. Biegetheorie des langen Parabelzylinders.

Den Spannungszustand in den Binderzonen werden wir dadurch
beriicksichtigen, dass wir den im weiteren gefundenen Schnittkridften
die Momente M, gemiss Abb. 7 und (23c) iiberlagern. Bei der Unter-
suchung des Einflusses gleichmissiger Belastung der beiden geraden
Riander einer langen Zylinderschale kann man, wie schon gesagt wurde,
die Momente M, und M,; als null annehmen, Dann besagen die For-
meln (4), dass auch die Werte m,;, m,, und q. null sind. Die
Gleichgewichtsbedingungen (5) lauten damit, wenn wir sie fiir eine auf
der Oberfliche unbelastete Schale schreiben, folgendermassen:

0Ny ot ony ot
0X 0y oy 0X

]

|

} (43)
Dy 99 g, Oy g, |
R oy 0y ’

Wir haben gesehen, dass die Momentenlinie M; eines an den gerad-
linigen Rindern gleichméissig belasteten Zylinders gemdiss (40c) durch
ein Polynom 7. Grades in v beschrieben werden kann. Wir nehmen an,
dass dies auch bei einem Parabelzylinder der Fall ist, wenn (s. Abb. 3)

y
T
bedeutet. Die Berechtigung dieser Annahme werden wir noch im weiteren
nachpriifen.

Wir werden fiir die parabolische Schale neue Konstanten einfiithren

und schreiben fiir das Moment den Ansatz

my = b?(Cy+ Dyr+ Cyv® + Dand+ Cont + Dyr® -+ C348 + Dyn) . (44)

Die Lage der Koordinatenachsen ist aus Abb. 3 und 9 ersichtlich,
der Zylinderquerschnitt x = 0 ist identisch mit demjenigen Normalschnitt,
in welchem die Querkraft des entsprechenden kontinuierlichen Tragers
null ist. Jedes Schalenfeld wird dabei getrennt behandelt.

Die Gleichung (44) werden wir in zwei Teile spalten, einen symme-
trischen (mit den Konstanten C) und einen antimetrischen (mit den
Konstanten D).

a) Symmetrischer Fall.

Fiihrt man (44) in (43) ein und lost das System mit Riicksicht auf
Abb. 9 auf, so kommt man auf folgende Gleichungen:

n, =12 ib——x— R(C,+15Cy72), (45a)
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t=24 % n(Ca+5C3n?),

ng=—2R(C1+6Cyn*+15C5 %),
qy =2bn(Ci+2Cen*+3Csxt),

+ (45b)

my =b2(Co+ Cyn? + Cant + C3m8); n= % .

Eine symmetrische Belastung der Rander y = + b besteht im allge-
meinen aus Kriften und Momenten, deren Komponenten wir auf dem
Rande y = b mit Ax=1t, N =n,, Q qy , M = m, bezeichnen, auf dem
Rande y= —b greifen dann —Ax, N, —=Q und M an. Setzt man diese
Werte in (45b) mit » = 1 ein, so kénnen daraus die Konstanten leicht
bestimmt werden:

L

Ab 3N 11Q+M
48R 16R 16b b2’

Ab 1IN 15Q
Cy=
'=16R " 16R | 16b’

Coe — Ab 5N 5Q
16R 16R 16b’

Ab N Q
Cy— .
"“48R _ 16R  16b ]

Co— —

(46)

Wir werden iden Vorgang der Berechnung auf einem einfachen
Beispiel zeigen, wobei wir auch die Berechtigung der gemachten Annahme
nachpriifen wollen. Die Schale in Abb. 3 sei lediglich lédngs der beiden
Réinder A und B lotrecht gestiitzt und frej gelagert, sodass keine horizon-
talen Stiitzdruckkrifte entstehen konnen. Dann verwandelt sich die Schale
in eine beiderseits gestiitzte gekriimmte Platte und die Gleichungen der
Schalentheorie miissen auf die aus der Baumechanik bekannten Zusam-
menhédnge fithren. Die Schale sei gleichmaéissig lotrecht belastet mit g,
(kg auf 1 m? der Grundrissfliche).

Die Membrankrifte, die wir mit Indizes 0 bezeichnen, sind geméss (7)

nxozo’ t():()’ n_\'0=—g.oR. (1)

Die horizontale Komponente des Stiitzdruckes kann von den Rand-
stiitzen nicht aufgenommen werden. Wir miissen daher einen ‘Spannungs-
zustand (45) iiberlagern, der durch folgende Randbelastung hervorge-
rufen wird:

A=0, N=—ny,=g,R, Q=—g,b, M=0.

Die Kraft Q ist hier die vertikale Reaktion der Randstiitze y = b,
die mit der Belastung ider halben Spannweite im Gleichgewicht sein muss
und daher g,b betrigt. Das Vorzeichen ist im Einklang mit Abb. 2.
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Mit diesen Werten liefern die Gleichungen (46)

1 1
Co= Ego, C4=—‘§go, Cy=0C3=0.

Die zusitzlichen Schnittkrifte, die wir mit den Indizes 1 bezeichnen,
folgen nun durch Einsetzen 'der Konstanten in (45)

na=0, t41=0, nn=g, R, qu=—g,bn,

myl:%gon(i'—”?)- ®

Der resultierende Spannungszustand wird durch Addieren der Werte
() und () beschrieben:

1 2
n,=0,t=0,n=0,qy=—g, y, My = 5 8 (b*—y? .
Fiihrt man dies in (4) ein, so erhidlt man

N, =—goysin ¥V, Qs = —g,ycos ¥V, My = _12'_ g, (b?_y'.?) .

Diese Formeln geben richtig idie Normal- und Schubkridfte sowie das
Biegungsmoment eines statisch bestimmten frei aufliegenden Bogen-
tragers an.

b) Antimetrischer Fall.
Der Vorgang der Berechnung ist derselbe. Die Auflosung des

Systems (42) liefert

9 9
a? — x*°
n, = 60 —

Ry (Ds+ 1D, ) , (472)

9

¢ :6% (D210 Dy 2 -+35 D, 1) ,

ny =— 2 R%n (3 Da+10 D3 »2+21 Dy v%) , (47b)

qy =b (D1+3 D2x2+5D3»*+1 D, »5),

my = b?n (Dy + D2 72+ D3 «* + Dy #°) .

J

Die Konstanten konnen wieder durch die antimetrischen Randkrafte
Ay, + N’, Q und + M’ ausgedriickt werden.
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c) Allgemeine Rarrtdbelastung.

Am Rande A (Abb. 3) greifen die Krifte N, Qsa usw. an, am
Rande B die Krifte Ny, Qs usw. Der dadurch hervorgerufene Spannungs-
zustand besteht bekanntlich aus dem symmetrischen Anteil (45), der von
der Randbelastung

N= ‘;' (Na+ Ng), Q:%(QA_QB); usw.

herriihrt, und dem antimetrischen Anteil (47), den die Randbelastung
hervorruft

1 , 1
N’='2—(NA—~N3); Q =—2—(QA +Qgp ), usw.

Beim praktischen Entwerfen kann man die Randglieder so dimensio-
nieren, dass die Konstanten der Systeme (45) und (47) gewisse Bedin-

I * b

1 . I

|

[ ]

i

[ 200 | 00

i I
ABB. 10. Quer- und Liangsschnitt der Dachkonstruktion Abb. 1

gungen befriedigen. Dadurch kann eine giinstige Spannungsverteilung
in der Schale erzielt werden [7]. Dies fallt jedoch ausserhalb des Rahmens
dieser Mitteilung.
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10. Ausfiihrungsbeispiel.

Die erste Konstruktion dieser Art wurde i. J. 1949 erbaut. Der
Querschnitt des Hallendaches ist in Abb. 10 dargestellt. Die Schalen haben
in der x -Richtung (senkrecht zur Bildebene) 3 Felder mit je 12 m Spann-
weite. Die 6 em dicke Schale ist an den Réandern bis auf 10 em verstarkt.
Neulich wurden dhnliche Hallen
mit 3 X 18 m Spannweiten er- A 360
baut, wo die Schalen eine Dicke
von 7 em haben. Verschiebbare
Schalungsgeriiste besonderer Ll
Konstruktion werden beniitzt, Ny
wobei das Erhirten des Betons *~°
durch Dampfbehandlung besch-
leunigt wird.

In der Abb. 11 ist der Ver-
lauf der Spannungskomponen-
ten im ersten Feld dargestellt,
die wvon stindiger Belastung x=720m
204 kg auf 1 m? der Mittelflache
samt einer Schneelast von 75 kg a
auf 1 m? Grundrissfliche her- ?
vorgerufen werden. Die Abb. 12 TS |
zeigt die Trajektorien der x=Z20m’
Hauptschnittkriafte in einer
Hailfte der dreifeldrigen Schale.
Voll ausgezogene Linien stellen
die Hauptzugrichtungen dar, ge-
strichelte Kurven geben die
Richtungen der Hauptdruck-
krafte an.

Es wurde ein Beton von
250 kg/em? Wiirfelfestigkeit
verwendet. Die Bewehrung be-
steht aus Spezialstahl von 3800
kg/em? Streckgrenze. Der Ma-
terialverbrauch fiir die Dach-
konstruktion samt Randtrégern,
Fensterwand und Bindern (ohne  AsBB. 11. Schnittkriafte- und Momentenkom-
lotrechte Sdulen und Funda- ponenten
mente) betrug

%0 8

&

+ 7802 kg/m'
+7578

- 9753 kg/m'

2
~9473

9
—

)

+5gz.|
‘___:!'
+5752

&3

7 \'

- _VZ |
\

-94kgm/m' - 191 kyfm"

107
k
- 210

3

231

:

-225kg/m'

i

0,137 m* Beton und 7,63 kg Stahl

auf 1 m? gedeckter Grundrissfliche.
Die Abb. 13 und 14 zeigen die Innen- und Aussenansicht der Kon-
struktion.
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ABB. 12, Trajektorien der Hauptschnittkrifte der Schale Abb. 1 und 10
(Volle Linien — Zug, gestrichelte — Druck.)
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ZUSAMMENFASSUNG

Im Vergleich mit Kreiszylinderschalen bieten die parabolischen Zylin-

derschalen in manchen Fillen gewisse Vorteile. Die Versuche, Schalen
mit verdnderlichem Kriimmungshalbmesser nach der iiblichen Methode
zu berechnen, haben jedoch zu ausserordentlich komplizierten Differen-
zialgleichnungen gefiihrt, sodass solche Schalen in der Praxis bisher nur
selten beniitzt worden sind.

In der vorliegenden Abhandlung wird zunéchst die genaue Membran-

theorie der parabolischen Zylinderschale entwickelt. Randstorungen wer-
den dann auf Grund der sogenannten technischen Theorie von flachen
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Schalen behandelt. Schnittkrafte und Momente konnen durch Ableitungen
einer Forminderungsfunktion ausgedriickt werden. In den wichtigsten
Fillen kann diese bei langen Schalen durch geschlossene Ausdriicke
angegeben werden, sodass die Losung ohne besondere Schwierigkeiten
praktisch ausgewertet werden kann.

Beispiele von ausgefiihrten Sdgeddchern mit Parabelschalen zeigen,
dass diese Konstruktionen auch wirtschaflich vorteilhaft sind.

RESUMO

Comparadas com coberturas cilindricas circulares, as coberturas
cilindrico-parabélicas apresentam um certo nimero de vantagens. No
entanto, estas coberturas s6 muito raramente se tém empregado na
pratica pelo facto do wcalculo pelos métodos habituais de coberturas de
raio de curvatura varidvel conduzirem a equacoes diferenciais extrema-
mente complicadas.

O autor examina primeiro a teoria exacta das membranas na sua
aplicacdo aos invoélucros cilindricos. As condicbes aos bordos sdo depois
tratadas pela chamada teoria técnica dos invélucros planos. O esforco de
corte e os momentos podem exprimir-se a partir de uma funcio da
variacdo da forma. Nos casos mais importantes de coberturas compridas
pode esta ser traduzida por expressoes finitas o que permite obter a
solucao sem grande dificuldade.

Exemplos praticos de aplicagdo permitem verificar a economia deste
tipo de construcéio.

RESUME
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