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Aerodynamic stability of suspension bridges
under wind action

Aerodynamische Stabilitit von Héngebriicken unter der
Windeinwirkung

Estabilidade aerodindmica das pontes suspensas
submetidas a accao do vento

La stabilité aérodynamique des ponts suspendus
sous l’action du vent

A. HIRAI

Prof. of Civil Engineering
Tokyo

In 1942, the writer submitted a paper [1] on the stability of the free
torsional oscillation of a suspension bridge suggesting that the single-
-noded torsional oscillation is fatal for the bridge and the frequency
variation has a great significance for the destiny of a span. In 1948,
Dr. Fr. Bleich directed his attention to the fact that the frequency
is not constant.

The present paper deals with the forced oscillation of the suspension
bridge due to an alternating aerodynamic force with a frequency o, and
shows the resonance diagram or dynamic magnifier as a function of o
and wind velocity V. The resonance diagram gives the stability range
of suspension bridges.

The results obtained from the forced torsional oscillation and forced
coupled oscillation of deflectional and torsional motion are summarized
as follows.

The torsional frequency of a suspension bridge under wind action
is a function of wind velocity, and the stiffening girder becomes unstable
at a certain wvelocity. Especially, the action of drag coefficient which
has been omitted by other investigators plays an important role in the
analysis.

The formula for critical wind velocity is given short and clear.
According to the formula, the torsional stiffness and the flexional stiffness
have a great influence on the critical wind velocity, and the greater the
dead load the greater the effective stiffness ot the suspension bridges.
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As to the profile of a cross section of stiffening girder (including a
floor part), it is preferable to choose the section which has minimum
vortex discharge and positive lift curve for positive angle of attack.
Streamlining the cross section of a stifening girder often results in a
decrease of critical wind velocity.

Regarding the slope of aerodynamic moment coefficient, the writer
would like to choose its value as small as possible and negative for
positive angle of attack.

The so called «Section-model experiment» can not play the part of
«Full-model experiments in the higher wind wvelocity range.

To check up the adequacy of this analysis, the writer has conducted
a wind tunnel test in a small scale, in cooperation with prof. M. Yasumi.

In the experiment, slow single noded torsional oscillations were
recognized, when the wind velocity approached the predicted critical wind
velocity. The existence of slow oscillations with long period seems to
back up the writer’s analysis.

NOTATIONS
| Span length.
f . Cable sag.
b ... Distance between cables or width of stitffening girder.
Y iinenns Torsional angle of the girder which corresponds to the «angle of
attacky,
' RO Deflection of the girder.
2m ...... Dead load per unit length of bridge.
H..... Horizontal component of cable tension due to dead load H=ml?/8f.
e/1 ... Polar moment of inertia of stiffening girder per unit length.
EI ... . Flexional rigidity of stiffening girder.
GK ...... Torsional rigidity of stiffening girder.
EJ ... Reduced flexional rigidity of suspension bridge.
GK ...... Reduced torsional rigidity of suspension bridge.
Vo, Wind Velocity.
Vi.ooo..o. Critical wind velocity.
W ernnnnne Natural torsional circular frequency of suspension bridge. (wind off).
No........ Natural torsional frequency of suspension bridge. (wind off).
WL eeeens Natural deflectional circular frequency of suspension bridge. (wind off).
Nu ...... Natural deflectional frequency of suspension bridge. (wind off).
Nu=0w,/2 =«
@ eeeeeenn Circular frequency of an alternating aerodynamic force which acts
on stiffening girder.
" kg —sec? ’
B rneencoens Air density ¢ =0,125 ( —>——— |
\ m4
P PO Acceleration of gravity.
ClL.oveennnnn Lift coefficient of stiffening girder.
Cq.ocnnnnn Drag coefficient of stiffening girder.
Cumeerrnenns Aerodynamic moment coefficient of stiffening girder.
g ( d Ci
......... \——d e ) e=0
g 'd Cm
o (=) .
1
P oeeeeenns Stagnation pressure; p = — pV?

2
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B eonessens Coefficient concerning lift coeff. and drag coeff. For a singel-noded
oscillation, it yelds to
V128 S
2_ 1 L >
p=1 T Ca
W oeeeernnnn Dynamic magnifier
Joeee. Imaginary unit ( =y —1)

The other letter symbols used in this paper are defined where they
first appear.

I. Fundamental Equations.

The subsequent analysis is based on the following assumptions.

1) The bridge is a single span and its span length is 1.

2) The direction of wind is horizontal and perpendicular to the
bridge axis.

3) The effect of towers and side spans are not considered. (Fig. 5).

4) For the sake of simplicity, the distance between cables is assumed
to be equal to the width of the stiffening girder.

5) Flexional rigidity (EI) and torsional rigidity (GK) of the stif-
fening girder are considered constant.

6) The bridge is considered as an elastic structure.

The present paper deals with symetrical single span suspension
bridge in which the effect of towers and side spans are not considered.
For simplicity’s sake, the direction of wind is assumed to be horizontal
& perpendicular to the bridge axis. As can be seen from Fig. 1, the
bridge section is assumed to be H- shaped, that is, the floor part lies
in the middle of the stiffening girder (including the truss type). It seems
easys to modify the analysis, so the writer has adopted the above mentioned
assumption.

In deriving the fundamental equations of the twisted and deflected
stiffening girder, the writer uses the system of fixed coordinate axis
X, ¥, z directed as shown in the figure. He also takes at the centroid of
any cross section of the stiffening girder the system of coordinate axis
£, n, Z, such that £ and = are in the direction of the principal axis of
the cross section and ¢ is in the direction of the tangent to the center
line of the stiffening girder after deformation.

The deformation of the girder is defined by the two components
u and v of the displacement of the centroid of the cross section in the
x- and y- directions and by the angle » of which the cross section rotates.
In the subsequent analysis the horizontal displacement v is neglected.

The aerodynamic forces acting on the stiffening girder per wunit
length, are expressend as follows.

Drag, W =Cq4 pb
Lift, L =C, pb (1)
Torque, T =C, pb2
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The relations between the aerodynamic coefficients and the angle
of incidence are assumed as follows.

For lift coefficient C=8» } @

For aerodynamic torque coef. C,,= S »

Considering mow the oscillation of stiffening girder (including a
truss type), it is evident that if the girder oscillates, it becomes slightly
twisted, and a wind blowing perpendicularily to the span produces aero-

A

N\
\\

g =l
tower direclion cosime
x
Y 4 21 £ /
T T T _

| _d

| ,'dl ! g ,ng

Y Win I'igc. 1

dynamic forces. The aerodynamic torque (moment) around the ~axis.C
per unit length of the span is given by the following expression, consi-
dering the relative vertical velocity of the girder,

Sepb? (- = —o

V_dt)

Besides this aerodynamic torque, there is another important factor
which has a great influence on the stability of a suspension bridge. A
girder exposed to wind, is subjected to a lateral wind pressure which
corresponds to the drag in an airfoil. The effect of the bending moment
due to wind pressure after deformation of the span must be considered,
as it then has a component which tends to increase the twist, when the
girder is twisted slightly. Calling the bending moment &%, the additional
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torque about the axis  due to the wind pressure W in (1), is represented
by @ du/dz.

The aerodynamic torque and the above mentioned additional torque
are resisted by the torsional stiffness of the span and the tension of
the cables. So, considering next the equilibrium condition of the twisted
and deflected stiffening girder in Fig. 2. The restoration torque per unit
length of stiffening girder due to cable tension is

Hb[d‘zuz dQUIJ

2 dz? B dz?

Fic. 2

where, H is the horizontal component of the cable-tension due to dead
load m per cable. Substituting the relations;

u‘:u——b—'g and U2:u+—b—?
2 2
we obtain,
Hbprd?u: d>u | HDb*d?y
2 Ldzz  dzz ]l 2 dz

Furthermore, considering the shear effect and the torsional rigidity of
the girder, the restoration torque is given by the equation:

, 2\ 42 . b2 d¢ -
(GK+Hb) o EL.b*dty
\ 2 ) dz 4 dz

where, EI is the flexional rigidity and GK is the torsional rigidity of
the stiffening girder.

Now, the differential equation for torsional oscillation is expressed
by the equation:

@ v 7

Hb2\ 920 EL.b24%0 2u 1 ou

— (GK + > P P U S pb? (p— 12

1 o t2 ( 0 z* 4 gzt ()zgwr tP ( vdt)
(32)

in which, © is the polar moment of inertia of the cross section of the
stiffening girder.

In solving the eq. (3a), it is assumed that

p—A.siniz __
b T (n=23 L) } 4a)
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Then eq. (3a) is equivalent to the equation;

® 920 62 02 u 1 ou
s S S, pb? —_] 3b
BT Y -+ S p I_ v ot (3b)
Where,
2 /
GK— GK + 225 «EI+ ﬁ) (5a)
== 4 2

for

12
<EI+2 H) (5b)

At first, we consider the torsional oscillation, neglecting the term
containing du/dt.

There is some disturbance, such as Karman vortex or fluctuations
of wind intensity, which offer a chance to produce an alternating
aerodynamic force. It can be assumed that the alternating torque acting
on the girder is T, sin o t. T, may be a function of wind velocity V,
but at present very little is known about T,. However, it is interesting
to study rapidly the behavior of the bridge under the action of T, sin o t.

Then, the fundamental equation has the following expression, with
the damping coefficient inserted.

© 9?

2 . 2
?4c%? _GRE2. My S, pb2—T, sin wt ©6)
ot ——o9z* 92z

e

1

S

t?

As eq. (6) contains the term d2u/dz®> we consider the deflection of the
span. A deflection of a suspension bridge under a certain uniform load
w is given the eq.:

4
g1 &8 _ oy diu
az iz

As long as we assume that

u=DB - sinlz
2= 2% (n =123 ...) (4b)

the above equation is equivalent to the following expression.

(EI+2H>‘”—“

32 ) dzt
Hence the reduced flexional rigidity of a suspension bridge is:

E]_EI+—1—2H (7a)
(nx)?
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For n = 2,

' 2
EJ —El 4 —— H (7b)

2=

Then the reduced torsional rigidity, GK is

2
GK=GK—I—MEJ
E— 412
(5¢)
2 K2
n—2 GK=GK-+ "2

l‘)

The subsequent analysis is limited to the case, n = 2, that is » = 2x7/],
because the one-noded torsional oscilation is fatal to the span.
As the n -component of bending moment 27 due to wind pressure
M o, the deflection of the span is defined by the eq.

2 2
<E1+2_Ii> d_EZEJ (_i__u:_alzc‘p
)32 dz? dz?

Furthermore, additional deflection due to lift force L can be con-
sidered. Considering this effect, the above equation becomes

2 y
o) el =—( 1+ Spb > ol
dz? \ 2291 ‘
and introducing the symbol
Spb
2___ 1-4-
pre= )2 N i58)
Then,
2 2 an
E]du:_[ﬂa/z@ or du:-—gﬂ ; P 9)
dz? dz? EJ

The bending moment N due to wind pressure is given approximately
by the equation [1, 2];

Cgpbl?
M (EB_ (10)
v 128
And eq. (8a) yields to;
vi28 S
2—1+  — —= 8
P & o2 Cd ( b)

Substituting Eq. (9) into eq. (6), and considering eq. (4a),

2 ’ 2, M2
L S ML
1 ot? ot ——oz? E]

9— Stpb?¢=T, sin mt
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or
9 9% +C£—+K9:To sin ot !
1 ot? ot .
where, (11)
on 2 -
K =[GK>.2_ 223 b2J
: GK K E] tP
Its solution for T, = O;
__C t
g=e 20/l .[A, singt+As.cosgt]
K C?2 (12)
g= ) _ ¢ @ y 2
- 4 |
T A7)
Particular Solution of eq. (11) is;
T, . sin (nt—19,)
H =
\/(K—‘—H)“”)Q"f((?w)2 12
vl 1
where,
tan Co
9, = —— ;
P e . (14)
K——u?
. 1

The critical damping v is given by the equation,

vi=4

@ td
7 5 SCEY

As the natural torsional frequency of the span in still air (v = 0O) is,

oyt (16)

the critical damping in still air v, is exppressed by the equation;

e
I m? (17)

vy =2

With eq. (17), the solution (13) becomes,
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T, sin (0t —9,) we2

o ® 3 2 2002 12
I ”%Q_w,_stpb N } _}_4(2)2%2.0,2
1 ‘ e/l EJ.o/ Vo ‘

From this equation, the dynamic magnifier 3¢ is obtained.

X (,V)=— ! . o
V (1= v AX—BXtp+4 ()Y (18)
where,
v 2 3
X= (o\?.b>’ Y=
J K:_S_‘%E.b?, gz(i%___t’lg)g.%ﬂbt (19)
l 2 512E].

¢ is a function of o and V. Neglecting the damping term,

1

N, = -
Y 1—Y2—AX—BX®

(20)

When the denominator in eq. (20) diminishes until zero wvalue, ¢y
becomes infinite, and the wind velocity for o is obtained from the
equation.

1—Y2—-AX—-BX2=0

or
4 2 P .
BVO) + AV(,) —_ (0)? —0?)=0
2 bl2 )2 ¢
where, A= &% B — (_P‘gd‘i)_l)_ (21)
2 512 E]
1 1
Vi, ooeeee Wind velocity for o
6)  eereen Observed torsional Osc. (rad/sec)
B eeeee Natural torsional Osc. (rad/sec)

In eq. (21) the term involving V* is the dominating factor at high
wind velocity. Consequently, it is expected that the observed frequency o
becomes small as V increases. At the critical state, » becomes zero. The
critical wind velocity V is obtained for o = 0 in eq. (21), that is

BV, +AV] —0’=0 (22)
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This critical condition is also obtained from the equation of free
oscillation ;
0 d2y Jt
—22 [GKe_w— —s b2] —0 23a
[an | GEP—e 5y =S @32)
Its solution is,

— Ay sinqt+ Az cos qt
where, q= \/ K (23D)
@/l

For q = 0 the same condition <s obtained with eq. (22). Neglecting
the second term in eq. (22);

(For one-noded tor. osc., 2 = 21—‘“ )

v 2 ATV VE].GK
L ¢ Cdo b13

(24a)

This condition corresponds to the stability condition which is obtained
from the following equation.

d2o on2
GK 2 _—5=0 25
Fpcie £ ? (25)

The above equation is equal to a torsional buckling (Kippung) of a
suspension bridge.

® |

I

|

; | ;“

7 / |
M%ﬁ/// i
|

'Ili/
// Q:\,\ !

L (wes) FI1G. 3

Again we return to the eq. (18). The function ¢ varies as shown
in Fig. 3. The locus of the crest projected on XY-plane is given by
0 X [ox = O. Its equation is;

1—Y2—AX -BX2=0 (26)
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which corresponds to the eq. obtained from eq. (23)

) o2
— q2=GK 22— S, pb2 — 2 —
1 q t P HEJ

Theoretically, the height of the peak at point K in Fig. 3 is large,
meaning that a damping term is inactive at this point. The critical
velocity V. given by eq. (22) corresponds to point K. The curve on 3¢ -Y
plane is a dynamic magnifier or a resonance diagram when wind dies
away.

We can sketch a contour line of the )¢ -diagram by cutting it with
a horizontal plane of height h. And its equation is

— _ 1 FC\2
1—Y:—AX —BX= — — (—> Y2 27)

Yo

The curve on ) -X plane (Fig. 4) refers to the stability of suspension
bridge. At point K in fig. 4, the amplitude of torsional oscillation becomes
infinitely large, but practically, the amplitude will be sufficiently large
at point K’ in the figure and the bridge will be destroyed by wind. As
we lack information about the disturbing force T, it is difficult to
determine the point K’ theoretically. But it is possible to determine it
experimentally, and we can determine the value of h in fig. 4.

If the value of h (the magnitude of ¢ at wrecking - point K’) is
known, the corresponding wind velocity is calculated by the equation;

_ R+ \/Ar+4B (1_%‘) 280
‘. |

2B
Neglecting the term A, (This is on the safety side as long as S, < O)
x—— 1L (28b)
VB h

And the following equation is obtained instead of eq. (24a)

Vka=4n V128 \/E].EE \/1___1_ 24b)
wCdebl h
The above equation is also transformed, assuming that
b2
GK == 72 2 F] (29)
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2m
< Vi )2:(23:)" g Vi /1 (302)
N?b b o b2 pCd h :
where, rﬂz—GL r; radius of gyration
2m/g
If we represent the wind pressure W by the equation,
W=k FV? 31)
| ST Coefficient.
F ... Area of exposed surface per unit length of the stiffening girder.

then eq. (80a) is expressed as follows.

7 Fic. 5 f
2m
= iz, <_Vk_>2__ rgl)?_g_\/IQS 1
| | ; N’Pb Kb oFb 2kp h
| / /A Y/ //é (30b)
3 y;

II. Full Model Test in small scale (in cooperation with prof. M. Yasumi).

To check up the adequacy of the analysis reported in the preceeding
article, wind tunnel tests were carried out in cooperation with prof. M,
Yasumi (Univ. of Osaka) since 1949. However, it required several years,
the cost of the tests being comparatively high.

The measurements of aerodynamic characteristics of the stiffening
girder sections were conducted at the University of Tokyo. The tests on
model suspension bridges were carried out in a 3. bm Wind Tunnel at
the University of Osaka. The model suspension bridgs was small scale.
(Fig. 5). Its span length was 3m, its width 4cm, and sag/span ratio was
1/10. The girder sections were H-shaped with a depth-width ratio of 0.10,
0.15, and 0.20. The girders were made of brass plate, and thin lead plates
were added as weights.

The behavior of suspension bridge under statical lateral loading was
also investigated. The studies showed that the natural frequency of the
suspension bridge under the action of lateral load decreases with increa-
sing loadings. Fig. 6 shows a test of torsional buckling (Kippung) of a
suspension bridge due to lateral load.

One of the results obtained from wind tunnel tests is as follows.

Model-N2 1; 2m = 5.94 gr/cm Cl‘ = 0.00775 gr-sec
EJ = 7686 x 10% gr-cm? ﬂ{: 162 X 103 gr-cm?
Cy = 0.243 S =5.64
S, — — 0.482 w = 277

v, = 95.7 rad/sec (calculated)
No = 15.2 ¢cyc/sec ( » ), 15.5 cyc/see
(observed)
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The ecritical velocities obtained from test were 11.9 m/sec and
11.8 m/sec. Observations of torsional frequencies were made by using
an electrical-resistance gage. One of its records on an oscillograph is

FiG. 6

shown in fig. 7, and it indicates a long period of torsional oscillation.
When the velocity approached the predicted critical wind velocity,

Time T [ T T T T[T T T T [T T T T T TETTTTTT] T

1- noded /V
Tor: Ose.

j Scaled out

Defl Osc.

Fic. 7

slow torsional oscillations (One-ncoded osc.) were observed with naked
eyes, which differed from the natural frequency in still air. The photo-
graph (Fig. 8) shows the instant when the span was wrecked by wind.
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The last shape of the bridge is similar to the form of the torsiomal
buckling in Fig. 6. Fig. 9 shows the ¢ -diagram of the model suspension
bridge calculated from eq. (18). Two contour lines fordt =2 and ) = 4
are shown in figure. The critical points obtained from tests are indicated
with two flags.

e -X curve for Model N.» 1 is given in Fig. 10, in which the
wrecking point (V = 11.9 m/sec) is shown as X = 9.65.

Fic. 8

Fi1Gc. 9

Neglecting the term A and assuming h = 3.5 in eq. (24b) the critical
velocity is V|, = 12.2 m/sec which compares to the observed value
11.9 m sec.

Experimental results on 4 models are given in Table-1 and Table-2.
Fig. 11 shows one of the records of Torsional Oscillation. (Model N.° 3)
A mean value of «h» obtained from the narrowly confined studies is 3.48.
To decide the correct value of «hs (Dynamic magnifier at wrecking
instant) more experimental studies will be required.
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b
40~
201
Experimental Result Figc. 10
. L1 L
0 5 , 70 K /5
(o 1=965 1265 X
TABLE 1
Model N.° N-1 N.» 2 N." 3 N.” 4

A/D oo e e e e e e 0.20 0.20 0.15 0.10

Cd eee e . . 0.243 0.243 0.187 0.137

S 5.64 5.64 5.74 8.62

St - 0.482 - 0.482 - 0.504 - 0.515

“ 2.766 2.766 3.130 4.362

m gr/cm 2.971 2.828 2.569 2.848
(2m/g) X 103 gr—sec’ = = 6 063 5.771 5.243 5.812

cm

{@/1) x 10-2 gr-see? ... ... ... ... 0.775 0.807 0.619 0.698

H kg N 1.114 1.061 0.963 1.068

EI kg-cm’ 2607 3483 927 361

EJ kg-cm? 7686 8321 5318 5231

GK kg-cm?® 149 93 75 114

GK kg-em® 162 108 84 123

B/20ee. i e e e e e 1.77 1.69 1.84 1.82
No cyc/sec (caleulated) ... ... ... 15.2 12.2 12.3 14.0
VET . GK et e s 1660 1410 1142 1342

pn Ca -
4= /128 Y EJ . GK

Viz8 v =— m%/sec’... ... 174.84 148.53 120.26 141.36

- Cd o bI3

Note: d... depth of stiffening girder.
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a.s‘ec
Time 1] T T T 1 T

N A N IR T T O O A A

Long Perrod, 7= 4
Fnoded
Tor: asc. MAM/\NWV\N V\Ml"\f\:\,,

T I
sec -

hqu\_f.v—\___,\f__,/
Defl Osc,
V=10 m'sec (entre 0/5,00/7
,-\ :< —
Wird —
TABLE 2
Model N.° Ne°1 N.- 2 N 3 N. 4
about
Observed critical velocity in m/sec 11.9 10.9 10.3 11.0
\/ 4 V128 VET . GK /ey 13.2 12.2 11.0 11.9
wCiphbl
Value of <h» obtained from eq.
(24b) e e e e s 2.9 2.8 4.5 3.7
b 1
\/ 1— W 0.90 0.89 0.94 0.93
Mean value of ¢h» obtained from experiments is 3.48.
TABLE 3
Comparison of predicted and observed values
Model N.° N. 1 N.° 2 N.° 3 N.° 4
Vi =\/‘20‘/ EJ . GK (m/sec) 12.2 11.2 10.1 10.9
nCipdbl
Observed critical velocity (m/sec) 11.9 10.9 10.3 11.0
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4 5

LR 1T 11 R R T o T U 1]
__—‘_J V\._ b
rof Hpoung* “"“/N SN

TR A

Ve 120VE] . GK
k pnC, obld

Substituting h=3.48 in eq. (24b) the following expression is obtained.

(32)

We can estimate the mecessary stiffness of a stiffening girder, by

introducing a proper factor of safety. Flexional stiffness of a suspension
bridge is approximately given by the equation, [substituting V = 60 m/sec
and considering eq. (29)].

EJ =18 (= Ci1%

which corresponds to the equation;

V2=80\/E].9_K_
p C,obl3

k

III. Coupled Oscillation.

(33)

We consider next the coupled oscillation of torsional and deflectional

vibration in suspension bridges. The critical condition is also obtained
from the equation of free vibration.

In 1947 the writer developed [3] the coupléd oscillation according

to Mr. Theodorsen, but in the present article he considers the aerodynamic
forces as in the preceeding articles in order to obtain a general outlook.

The equation of flexional oscillation of the span is introduced by

remarking that the =m -component of the bending moment due to wind
pressure is ¢ 2%, [3, 4] And considering the relation

d2p , a d2u
dz2 ~ GK dz?
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the fundamental differential equation of suspension bridge is represented
approximately as follows:

2
2mdiu p_sphe+D I 0
g dt? . dt

®

&g b? du do
P L Ko+S, p2%Uicd% _o
I ae | -7 TYP Y g dt (34)

where,
E—E]. )#— o
- GK

2
K—GK .1#— o — S, pb?

.‘Az

=S_pl_) + A (A; damping coeff.)

S'=S + C4

The solution is assumed to be of a sinusoidal form, then the charac-
teristic equation has the quartic form, neglecting the damping coefficient.

x+ax3+bx2+cx+d=0

__ s'pb E K
Ty, et )
g g 1
s'pb ’b 1
= P K+s pV Tm
g 1
KE
Tme
g 1

The principal stability conditions derived from eq. (35) may be
summarized as follows.

i) $=8S+Cy >0
i) S, <0 (36)
ili) eq. (24a)
In analysing the forced oscillation of the span, the writer has assumed

the disturbing force shown in the following equations, according to
the eq. (6).
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®3+Ko+Co+F U=T, sinnt *
Mﬁ+EU—F?+DU=—g—TO sin o t
where,
o2 M= 2m
1 g
K —GK.#i? — 2 _S, pb? (37)
. - EJ~
2
— b )2
E=EJ.) oK )
b2
F,=S‘$ F—s'pb
D_SPb 4
Y

The particular solution is, with the notation j =v -1,

[ (E—Ma?) + juc] T,

"7 (K—@4%) (E— Mo?) —w? CD + ju [D (K— @u?) + C (E— Mo#) + FF, ]
_ : : : (38)

where, ¢=D—F,e/b

The magnitude of ¢ is defined by the equation,

o \? (E—Mo»2)2+m252
<To>* [(K—®0?) (E—Mw?)—?CD]2+ 0 D(K —®0?) + C (E— Mw?) +FF J?
. . . . (382)
Neglecting the damping factor A and C;
2 ]
Z:—_Y2_ B'X2Z?) —
(2) ( " G o
To/™ <_@i’_> "w; (1-Y2-AX-B'X2)% Z2-Y2-B'X2Z2)? + Y , (12 <§E> “(0-Y1-B'Xa
7 (2m,g) ”? A’ (38b)
2
where, X:(——V—> v ©
(l)m b b)m
£ —=— D i F[ 3
b
K=St ¢ b? b B — (Cd ¢ bl?)? w2 b

20/l ~ 512EJ.e/l 9
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The managing terms are the last term in the denominator and in the
numerator. Hence the dynamic magnifier is represented by,

(S'—eS, ) 1
(S [1—Y:*—BX2]

962 =

(39)

Comparing with eq. (20), eq. (39) is multiplied by a coefficient
which involves an aerodynamic coefficient and does not include an A-term.
Furthermore, eq. (39) shows again that the «Kipperscheinung» due to
wind pressure plays an important part in stability problems of suspension
bridges.

If eq. (89) is correct in spite of involving some assumptions and a
certain approximation, it seems to be preferable to choose a section
which has the characteristic S; >0, but this condition is against
eq. (36). As our experimenal studies have been restricted, it is difficult,
presently to clear this point definitely. The writer never theless
recomends, at present, to choose the value S; as S.==0, and when this
is impossible, S, < 0.

IV. Section-Model Experiment.

As the full size model test is expensive, a «section model test» is often
carried out. Let us consider the section model with a fixed center of
rotation as shown in Fig. 12. Spring constant per unit length per one
side, is noted K. The fundamental equation is:

® d% [ Kb
LA

— S.pb?
1 dt? 2 L

o+ C%?-:To sin o t (40)
t

While, the equation of torsional oscillation in suspension bridge is
represented by eq. (11)

o2

9 d
— S [)b

?-I-C—(i-’f—:'l’o sin ot (11)
t <

® d%
9% [GK.12—
] dt2+[—” ¢

Comparing eq. (40) and (11), it appears that a section model may
be made to correspond to a full size model, as long as the term % is
inactive. Hence, in the comparatively low velocity range, a section
model can play the part of a full size model. But in high wind velocity
range, the wind pressure cannot be neglected. As the eq. (11) shows,
the reduced spring constant of this system is not constant but decreases
with increasing wind velocity, due to &% including the velocity V.

Dynamic magnifier of eq. (40) is,

2
®

\/ [m2 w2 — S_‘_PE]:_ 4<§—>2m2 0
? @/l Vo . ©

)

(41a)
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Where, v, is the critical damping in still air. Neglecting the damping
term, we obtain:
(1)2
a_ Sep b? Ve (41b)
4 20/1

Making the denominator of eq. (41b) equal to zero, the critical
condition of the system is introduced;

St ob?
2 2 v V22—
w? —w» 9 ®/l —O (42)

To check the adequacy of the above analysis, data introduced by
Dr. Fr. Bleich [5] will be mentionned here.

T T b =90 ft. r=27.8 ft.
Centerof Rolation 2—m -— K55 l_b_'._s.eﬁ
K Spring constant per unit length per one side g fe?
Fic. 12
Configuration I =~ Natural torsional frequency « =0.929 rad/sec
Observed torsional frequency ‘
for Vo, o, =0.856 rad/sec
Observed wind velocity Vm‘ =94 ft/sec
Configuration II Natural torsional frequency v = 1.74 rad/sec
Observed tcrsional frequency
for Vo, v, = 1.67 rad/sec
Observed wind velocity \Y% = 127 ft/sec

I,)__'
Substituting the numerical values of configuration I in the eq. (42):

s. 202 2109202 —(0856)2]

o/l b*VZ 2378 10-3,(90)2.(94)?

1531 1 )
104 ( Ib —sec?

Substituting the above value and the values of configuration II in
eq. (42) again, the predicted critical wind velocity for configuration II
will be V = 127.3 ft/sec.

The observed figure is 127 ft/sec, which corresponds to the calculated
value.
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V. General Considerations.

The present analysis is based on the assumption that the aerodynamic
alternating torque is represented by T, sin o t. There seems to exist
many opportunities of resonance between the frequency o — it does not
always follow that the aerodynamic force is a source of disturbance
with a frequency o — and the frequency of the suspension bridge, as
the frequency of the suspension bridge, under wind action is not constant,
as shown in Fig. 3.

Karman vortex or fluctuation of wind intensity is considered to be
the origin of the alternating aerodynamic torque. In any case, minimizing
a vortex discharge is an efficient step to do away with a certain amount
of oscillation. The term T, remains untouched, as the writer knowlege
of aerodynamics is restrained.

It is interesting to note that the frequency of the alternating torque
which determines the fate of a suspension bridge is a slow frequency,
as the dynamic magnifier has an infinite height at point K in Fig. 3.
Due to this, the records of torsional oscillations obtained from the expe-
riment at the collapse of the bridge, as can be seen in Fig. 7 or 11, are
the interesting figures.

Supposing that there exists no aerodynamic alternating force, — when
the wind velocity approaches the critical velocity Vi, the suspension
bridge will be wrecked by wind pressure. This phenomenon is known
as the «Kipperscheinung», as shown in eq. (25).

Considering this, the aerodynamic alternating torque T,.sin o t
is introduced as a matter of convenience to obtain the critical velocity.
The suspension bridge apparently produces a play in costume of «vibra-
tion» before the limelight of «aerodynamic disturbance», but the producer
behind the stage seems to be the «Kipperscheinung» or torsional buckling
of a suspension bridge.

The critical wind wvelocity for the fatal singlenoded torsional oscilla-
tion is given by the eq. (24b).

sz__:41=t/128 VE]% \/1_‘%

# Cag bP =

From this equation the mecessary stiffness of a stiffening girder
may also be calculated. Increasing dead load results in an increase of
the effective stiffness of a suspension bridge, thus the dead load plays the
part of a flexional stiffness EI of the stiffening girder as slown in
eq. (7b) and (5c).

2
EJ—EIl+ 4 H (b)

22

g:GKq-fPEEJ (50)
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The use of both top and bottom lateral systems in the stiffening
girder (truss type) increases the GK in eq. (5¢).

Installing of center diagonal ties is an effective means of preventing
single-noded torsional motion, and in this case the stability conditions
for » = 3=/l and etc. make their appearance.

As can be seen from eq. (24b), a small value of p raises the critical
wind velocity. Streamlining the shape of the cross section of a stiffening
girder seems to increase the value of coefficient x which contains
coefficient S.

Tao prevent the dangerous self-excited vibration of the span, requires
S’ = S ‘I‘ 'Cd > 0

Regarding the coefficient S, the writer recommends to choose a
value S, = 0, if possible.

Eq. (24b) is transformed into the following expression.

2m
<Vk >2: (2\)2X_g_2><ﬂ%_8 1_L (30a)
N,b b/ bt uCy h

This expression offers some resemblance to the experimental results
obtained by prof. Farquharson [6], but the critical wind velocity defined
by prof. Farquharson corresponds to the starting point of the catastrophic
torsional oscillation, whereag the critical velocity Vi in the present paper
corresponds to the last instant of the bridge oscillation.

Substituting the numerical value for the New Tacoma bridge in
eq. (32), assuming h = 3.48;

1 =2800 ft. b = 60 ft.

S =1.54 Ca =025 (")
m = 4339 lb/ft/cable H = 15.187 x 10° 1b
EI =277.53 x 10 Ib — ft* (®)
EJ =8.807 x 10 1o — ft?

GK = ”"lzb“ EJ =39.91 x 10°  lb— fts
p = 1.66

From eq. (32) the critical wind velocity is:
Vi = 234 ft/sec = 160 mile/hour = 71 m/sec

Finally, the writer has much pleasure in expressing his grateful
thanks to Emeritus prof. Y. Tanaka who has kindly afforded great
facilities for investigation of the present problems. (22, April, 1955)
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SUMMARY

The frequency of the fatal single noded torsional oscillation of a
suspension bridge, under forced vibration due to aerodynamic alternating
force, is different from the natural frequency (wind off), as the drag
coefficient of the stiffening girder plays an important part in the higher
wind velocity range.

The critical wind velocity Vi (m/sec) is expressed approximately by
the equation:

120VE]) . GK
P = = (1)
wCapbld

In practice, it will be reasonable to take a correct safety factor.
Then the necessary stiffness of a stiffening girder (including truss type)
can be estimated.

The flexional stiffness of suspension bridge is approximately given
by the equation obtained by introducing V = 60 m/sec into eq. (1).

EJ =18 (v Cs 1¥) in Kgm? 2)
which corresponds to the equation,

v 80 VE] . GK
K — == 3)
Y- Cd p b 15

The greater the dead load, the greater the effective stiffness of a
suspension bridge.

As to the shape of cross-section of the stiffening girder, it is
preferable to choose the section which has minimum vortex discharge
and S’=S + C;>0. Streamlining the cross section of a stiffening
girder seems to bring an increase of the coefficient u which involves
a lift coefficient and a drag coefficient.
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Regarding the coefficient S,, the writer recommends at present to
choose its value S, = 0, and when this is impossible, S, < 0.

As to the adequacy of the numerical factor in eq. (1) or (3) further
experimental research is expected.

ZUSAMMENFASSUNG

Die unter der Einwirkung einer wechselnden Windkraft auftretende
Frequenz der gefidhrlichen, einknotigen Torsionsschwingung einer Hin-
gebriicke ist verschieden von der Eigenfrequenz, da der Widerstands-
koeffizient des Versteifungstriagers bei hohen Windgeschwindigkeiten
eine wichtige Rolle spielt.

Die kritische Windgeschwindigkeit Vi (m/sek) wird durch folgende
Niherungsgleichung erfasst:

120 VE] . GK
V.2 — J. Gl

1
“ P-Cdpbls ()

In der Praxis ist ein entsprechender Sicherheitsfaktor bei der Aus-
wertung der obigen Gleichung zu wihlen und damit ist auch die erfor-
derliche Steifigkeit des Versteifungstragers bestimmt (auch fiir Fachwerk-
trager).

Die wirksame Biegungssteifigkeit einer Hangebriicke wird anndhernd
durch folgende Gleichung gegeben, die durch Einsetzen von V = 60 m/sek
in Gl. (1) folgt:

EJ =18 (¢ C4 1*) in kgm? 2)
Diese entspricht der folgenden Gleichung:

80 VEJ . GK
V2= ) o8

Je= s 3)
pCqob I3

Eine grossere stindige Last ergibt eine grossere wirksame Steifigkeit
der Héangebriicke.

Es ist noch wiinschenswert, am Versteifungstriger einen Querschnitt
zu wahlen mit minimaler Wirbel-Ablosung und mit S =S + C; > 0.

Wird der Querschnitt des Tréigers stromlinienformig gestaltet, dann
scheint es, als ob der Beiwert p sich’ vergrossere, der einen Widerstands-
und einen Auftriebs-Beiwert enthilt.

Hinsichtlich des Koeffizienten S. mochte der Verfasser dessen Wert
mit S;= 0 wiahlen, und wenn dies unmoglich wire unter den gegenwirtigen
Umsténden, mit S; < 0.

Ueber die Zweckmaissigkeit numerischer Faktoren in GI. (1) oder (3)
sind weitere experimentelle Untersuchungen abzuwarten.

16
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RESUMO

A frequéncia da oscilacdo de torsdo de né unico que provoca a
rotura de uma ponte suspensa sob o efeito de vibragoes forcadas produ-
zidas por esforcos aerodinamicos alternados difere da frequéncia prépria
(vento nulo), pelo coeficiente de resisténcia da viga de contraventamento ter
um papel importante para valores elevados da velocidade do vento.

O valor aproximado da velocidade critica do vento Vi (m/seg) é dado
pela equacao

, 120VEJ.GK
o pCapbld

(1)

Na pratica é conveniente tomar-se um coeficente de seguranca ade-
quado. Pode-se entdo avaliar a rigidez mnecessaria da viga de contra-
ventamento (incluindo as vigas trianguladas).

A rigidez a flexdo aproximada de uma ponte suspensa obtém-se
partindo da equacio (1) ma qual V = 60 m/seg

EJ] =18 (1 Cy4 I*) em Kg/m? (2)

que corresponde a equacao
, SOVEJ.GK
T kCqpb P

3)

Quanto maior é o peso proprio, maior é a rigidez efectiva de uma
ponte suspensa.

No que se refere a forma da seccdo transversal da viga de contra-
ventamento, convém escolher a que da o voértice minimo e para a qual
S’=8S+ Cs>0. A adopcdo de formas aerodindmicas para essa seccio
transversal parece causar um acréscimo do coeficiente p que compreende
um coeficiente de sustentacdo € um coeficiente de resisténcia.

No que diz respeito ao coeficiente S,, o autor recomenda, que, por
enquanto, se escolha S; = 0 ou, caso nido seja possivel, S; <<O0.

Quanto a exactiddo do valor do coeficiente numérico das equacoes
(1) ou (3), convém esperar os resultados de novos estudos experimentais.

RESUME

La fréquence de ’'oscillation torsionnelle & noeud unique qui cause la
rupture d’un pont suspendu sous l'effet des vibrations forcées produites
par des efforts aérodynamiques alternés est différente de sa fréquence
propre (vent nul), le coefficient de trainée de la poutre de raidissement
jouant un réle important pour des valeurs élevées de la vitesse du vent.
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La valeur critique approximative de la vitesse du vent V (m/sec) est
donnée ppar 1’équation:

, 120VEJ.GK

1
B pCagb I3 )

Dans la pratique il conviendra de prendre un coefficent de sécurité
raisonnable. ‘On pourra alors estimer la rigidité nécessaire de la poutre
de raidissement (y compris les poutres triangulées).

La rigidité a la flexion approximative d’un pont suspendu est donnée
par l'equation (1) dans laquelle V = 60 m/sec

EJ=18 (v C; I*) en kgm:* (2)

qui correspond a 1’équation
, S80VEJ.GK

3
#Capb I3 ?

Plus le poids propre est important plus la rigidité effective d’un
pont suspendu est grande.

Quant a la forme de la section transversale de la poutre de raidisse-
ment, il convient de choisir celle donnant le minimum de tourbillon et
pour laquelle S’=S 4+ C; > 0. L’adoption de formes aérodynamiques
pour cette section transversale semble entrainer une augmentation du
coefficient p qui comprend un coefficient de portance et un coefficient
de trainée.

En ce qui concerne le coefficient S,, 'auteur recommande, dans
I’état actuel des choses, de prendre S; = 0 ou, si ceci n’est pas possible
S, < 0.

Quant a lexactitude de la valeur du coefficient numérique des
équations (1) ou (3), il convient d’attendre les résultats de nouvelles
études expérimentales.
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