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Ib2
Brückenschwingungen unter Verkehrslasten

Vibra§öes nas pontes sob a acijäo de cargas moveis

Les vibrations dans les ponts soumis ä des charges mobiles

Vibrations in bridges submitted to the action of moving loads

Dr-Ing. BRUNO BRUCKMANN
Bundesbahnoberrat im Bundesbahn-Zentralamt

München

1. Einleitung

Bei der überfahrt von Verkehrslasten über Brücken entstehen ausser
den statischen Wirkungen aus ständigen Lasten, den jeweiligen Verkehrslasten

und sonstigen Lasten auch noch Schwingwirkungen infolge des
Bewegungszustandes und der Arbeitsweise der Verkehrslasten. Die Grösse
dieser Schwingwirkungen ist abhängig von den schwingungstechnischen
Eigenschaften des elastischen Bauwerkes je Art, Baustoff und Gewicht,
von Bauart, Gewicht, Anordnung, Aufeinanderfolge, Geschwindigkeit und
Schwingfähigkeit der Fahrzeuge, ferner von der Art und Grösse der
Schwingerregungen, namentlich periodischer Art, während der überfahrt.
Die Gesamtheit aller dieser Einflüsse wird bei der Berechnung i.a. durch
Vervielfachung der statischen Spannungen infolge der ruhenden Verkehrslasten

mit «Schwingbeiwerten 9» berücksichtigt. Ihre — an sich
komplexen — Grössen müssen möglichst treffend bestimmt werden, damit alle
Beanspruchungen und Verformungen auch infolge der «Brückenschwingungen

unter Verkehrslasten» mit Rücksicht auf die Betriebsfähigkeit
und Wirtschaftlichkeit möglichst wirklichkeitsgetreu berechnet werden
können. Bei der Vielfalt der Einflüsse folgen diese Schwingvorgänge
sehr verwickelten Gesetzen. Nachstehend wird daher ein Näherungsverfahren

zur Berechnung von Einschwingvorgängen und Schwingbeiwerten
bei erzwungenen Schwingungen infolge periodischer, ortsveränderlicher
Erregungen in allgemeiner Form und mit dimensionslosen Grössen
behandelt. Es beruht auf den gleichfalls kurz behandelten Gesetzen des
Vertikalpendels und berücksichtigt die Masse der Brücke, die Masse und
die Bewegung der fahrenden Verkehrslasten sowie die Federungs- und
Dämpfungseigenschaften des gesamten Tragwerkes.
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2. Die Brücke als mechanischer Schwingkreis

Bei einer Brücke sind Massen, Federn und Dämpfer in verwickelter
Weise zu einem gedämpften mechanischen Schwingkreis mit vielen
Freiheitsgraden zusammengeschaltet, der bei entsprechender Erregung zu
freien und zu erzwungenen Schwingungen angefacht werden kann. Unter
Schwingungen werden die den Gesetzen der Mechanik, insbesondere der
«Kinetik» (*) folgenden, zeitlich veränderlichen Ausschläge a(t) der
Spannungen und Verformungen der Federung oder der Bewegungen des
Massenschwerpunktes um die zugehörige statische Gleichgewichtslage
verstanden. Zu ihrer mathematischen Darstellung eignet sich als anschauliches

Ersatzgebilde das einfache Vertikalpendel mit einem Freiheitsgrad,
das mit dem ursprünglichen System in Federung und Eigenfrequenz
übereinstimmen möge. Der Ersatzkreis besteht aus der massenlosen Feder
c als Speicher für die potentielle Energie und dem angehängten Gewicht G
mit der Masse m G/g als Speicher für die kinetische Energie und aus
dem Dämpfer mit dem Widerstand p. Seine ungedämpfte Eigenfrequenz

(2. 1) f0 v0/2 w in s-1 mit v0 2 « f0 ungedämpfte Eigenkreisfre¬
quenz folgt bei einer Amplitude a des Ausschlages
entweder aus der Energiegleichung

(2.2) Vj-m (2-.f0)2 i/2.c.a2
oder aus der Kraftgleichung

(2.3) m .a2.(2K.f0)2 c.a zu

(2. 4) f0 v0 / 2t. */*w • V "^ in s -* (Hertz)

Der Zusammenhang zwischen diesem Ersatzschwingkreis und
der Brücke wird über die Eigenfrequenz und die Federkonstante
der Brücke hergestellt. Denkt man sich ihre verteilte Elastizität
und Massen in Teilfedern cr und Teilmassen mr in den
Knotenpunkten r vereinigt, deren Auslenkungen yr den statischen
Durchbiegungen der Knoten infolge eines gegebenen Zustandes i
mit den Knotenlasten Kri mri g entsprechen, so ergibt sich
nach Kull-Rayleigh aus der Energiegleichung für alle Knoten

(2.5) l/2.2(Kryr) 7j2(Kr/g. yr2)-voi2

(2.6) fol Vül/2i: V«TC-V/ g-^(Kr • yr)/2(Kr -yr2)«

als die ungedämpfte Eigenfrequenz der Brücke in Abhängigkeit
vom beliebigen Lastzustand i. Hierfür lassen sich aus den

(*) Der Verfasser bezeichnet nach Klotter das gesamte Gebiet der Kräftelehre als «Dynamik» und
unterteilt es in «Kinematik Bewegungslehre ohne Kräfte, in «Statik» Lehre von den ruhenden Kräften
ohne Massenkräfte und in «Kinetik» Lehre nur von den bewegten Kräften und Massenkräften aus
Beschleunigungen und Verzögerungen und von den zugehörigen Schwingungen allein.
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Einflusszahlen 5ik die Durchbiegungen yri der Knoten r berechnen,
wenn als Knotenlasten Kri angesetzt werden
bei unbelasteter Brücke:
die Knotenlasten nur aus ständiger Last (g)

(2.7) Kri — Kri

bei belasteter Brücke:

(2.8)

die Knotenlasten aus ständiger Last (g) und aus ruhender
Verkehrslast (pt) je nach Laststellung i

K^ Krg + Krpi

Statt Gl (2. 6) kann bei bekannter Durchbiegung ymi [cm] in
Brückenmitte auch angesetzt werden:

(2.9) f0, 5,531 /Vy ' in s"1.

Die Eigenfrequenz foi ist also mit dem Lastzustand i
veränderlich (Bild 1).

/• S s.6is *s,ooo
MJSUls- 4.120 -j wu-xrrs /os S*2S t 62SI.93S»— J.S90 +.7900\92ä

cpcpipfp j. (r'Md'4.2*ef- f.ssmA
ImMm/a» ?*f t6S *,?S\*20 9.10 9SSt />-~9jr~l

I Q QUO

f,s '*

o.J*
S 2 t 62.4

SL'f*

6 S»9H2

3 792 H
3. SM ff.

J 369 H

S 2.0

10-

£ru<. fe

£asfsfo//un$ t

ti stur« i"0 0 EU
'

ÜJ """S Ü
'

EU ""UJ H Knoten r
Bild. 1 Veränderlichkeit der Eigenfrequenz f0 einer befahrenen Brücke

Bei Anwesenheit von Dämpfung ergibt sich

(2.10) vD v0 V 1 - D2 in s1

mit dem dimensionslosen Dämpfungsmass D nach Lehr
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(2.11) D P/(2mv0),

das zum logarithmischen Dekrement d zweier um eine volle
Periode auseinanderliegender Amplituden die Beziehung hat

(2.12) d 2-.D/y 1— D*

D liegt zwischen 0 und 1 und beträgt z. B. bei Brücken in Stahl
oder Spannbeton 0,006 bis 0,05. Sein Einfluss auf die Frequenz
ist gemäss Gl. (2. 10) zwar klein, nicht aber auf den Schwingausschlag

selbst.
Als Federkonstante cm der Brücke wird jene Kraft angesetzt, die
in Brückenmitte m angreifend diese um 1 cm statisch durchbiegt;
mit der Einflusszahl 8mm ist somit

(2.13) cm=l/3min in y,cm

Die schwingende Masse mx folgt unter Berücksichtigung der
Massen von Brücke und Verkehrslast je nach Lastzustand i
aus Gl (2. 4) zu

(2. 14) m. cm/v0l2 in kg-s2/cm.

Mit cm, f01 und m, ist somit die Brücke für jeden beliebigen
Lastzustand i ersetzt durch einen Schwingkreis mit konstanter
Feder cm, aber mit je nach Lastzustand i veränderlicher
Eigenfrequenz foi und Masse mx einschliesslich der Dämpfung D.
Versuchsmässig können f und D durch Aufnahme von Resonanz-
Frequenz-Kurven bestimmt werden.

3. Erregende Ursachen für erzwungene Schwingungen an Brücken

Die folgenden Ausführungen beschränken sich auf die wichtigen
lotrechten Schwingungen durch Verkehrslasten auf geraden Brücken.
Praktisch von Bedeutung sind nur die periodischen Erregungen, weil i. a.

nur diese die Brücken zu grösseren Schwingausschlägen anfachen können.
Die Deutung der Ursachen von vorgelegten Schwingvorgängen wird
erleichtert, wenn man den zur vollen Schwingperiode T gehörenden
Weg It der bewegten Verkehrslast aus der gemessenen Frequenz oder
aus der gemessenen Fahrgeschwindigkeit v in m/s ermittelt, also

(3.1) lT v/f v- T.

Dieser Weg It ist bei einer bestimmten periodischen Erregung und
bei konstanter Geschwindigkeit v eine Konstante und entspricht i. d. R.
einem bevorzugten Mass entweder an den Fahrzeugen (a) oder an den
Brücken (b).
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Folgende periodische Erregerursachen sind erkannt:

a) Fahrzeugtechnisch:

1. Abstandswirkungen aus der gleichmässigen Reihenfolge von
Radlasten gleichen oder fast gleichen Abstandes a mit It a;

2. Wirkungen aus Schwingungen (fp) abgefederter Fahrzeugmassen
mit It v/ff ;

3. Wirkungen umlaufender oder hin und her gehender Maschinenteile
ausserhalb der Räder (z. B. Motoren) mit Frequenzen fM und
mit 1T v/fM;

4. Wirkungen unrunder Räder vom Durchmesser d' mit It ¦* d',
dazu bei Eisenbahnbrücken:

5. Wirkungen aus Fliehkräften von Ausgleichsgewichten in Treib-
und Kuppelrädern der Triebfahrzeuge vom Durchmesser
d mit It * d v/fd ;

6. Wirkungen bei Triebrädern aus den lotrechten Anteilen der
Stangenkraft, z B bei Dampflokomotiven infolge des Dampfdruk-
kes in den Zylindern und infolge von Beschleunigungs»- oder
Verzögerungskräften der hin und her gehenden Massen des
Triebwerkes bei Frequenzen fs mit It v/fs;

b) Bautechnisch:

7. Abstandswirkungen aus sich wiederholenden gleichen Längen b
in Fahrrichtung (z • B • Abstände von Querträgern, kleinere
Stützweiten hintereinander liegender Hauptträger, Hindernisse
oder Löcher (Unebenheiten) im Fahrweg bei annähernd gleichen
Abständen) mit lT^b;

8. Fliehkraftwirkungen der gesamten Masse der Verkehrslast wegen
Durchfahrens einer in lotrechter Ebene gekrümmten oder
gewellten Fahrbahn,
dazu bei Eisenbahnbrücken:

9. Schwellenwirkung (ähnlich 7) bei gleichen Schwellenabständen
s mit lr s.

Aus Gl. (3. 1) folgt bei bekanntem Weg It die einer bestimmten
Frequenz f entsprechende Fahrgeswindigkeit

(3.2) V lT-f- 3,6 in km/h

und die zu einer bestimmten Fahrgeschwindigkeit V gehörende Frequenz

(3. 3) f V/(3,6 • 1T) v/lT in s-1.

Bei den Abstandswirkungen ist zu bedenken, dass ein Auffahren
von Lasten mit endlicher Geschwindigkeit stets Eigenschwingungen der
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Brücke anfacht, weil — entgegen den Annahmen der Statik — in der
Kinetik alle Lasten sofort in ihrer vollen Grösse wirken: Dadurch müssen
beim schnellen Übergang einer Gleichgewichtslage in eine andere stets
Ausgleichsschwingungen in der Eigenfrequenz auftreten. Erfolgen solche
Übergänge periodisch, dann müssen erzwungene Schwingungen angefacht
werden.

Da nun bei einer Brückenstützweite 1 die Zahl der bei einer überfahrt
möglichen Erregerperioden 1/1t meist nur klein sein kann, so verlaufen
die durch Verkehrslasten erzwungenen Schwingungen infolge der gesamten
periodischen Ursachen meist kurzzeitig nur als Einschwingvorgänge
unter gleichzeitigem Auftreten von gedämpften Eigenschwingungen und
nicht, wie z. B. Gebäudeschwingungen infolge von Maschinen mit
Unwuchten, langzeitig im Beharrungszustand.

4. Einschwingvorgang eines konstanten Schwingkreises

Für die erzwungenen Schwingungen eines einfachen gedämpften
Schwingkreises mit konstanter Feder c, konstanter Masse m
Eigenkreisfrequenz v0 2 7c f0 (Gl. 2. 4) und Dämpfungswiderstand p (Gl.
2. 11) lautet bei periodischer Erregung durch eine von ihrer Erregerkreisfrequenz

w 2TC-f abhängige Erregerkraft, z.B. durch die Sinusanteile
einer Fliehkraft einer Masse m0 am Hobel r0, die Differentialgleichung

(4. 1) m y - p. y + c • y m0 r0 ro2. sin wt

oder nach Kürzung mit m v02 c allgemein

(4. 2) y + 2D y 4 y S )2 sin t

mit den dimensionslosen Werten

(4. 3) für die Zeit t v0. t

(4. 4) für die Frequenz X ü>/v0 «Abstimmung»

(4. 5) für die «Dämpfung» D p/(2m v0).

Alle Ausschläge y hingegen werden auf den absoluten und konstanten
Ausschlag

(4.6) S m0ro • v02/(m • v02) [cm]

der gegebenen Feder c bezogen, d. i. die statische Auslenkung der Feder c
infolge der statischen Wirkung der Amplitude der Erregerkraft im
Resonanzfall mit <o v0.

Die allgemeine Lösung von Gl. (4.2) lautet bei der beliebigen
Abstimmung X mit den Intergrationskonstanten A, B und C und dem
Wert )D= v,)/v0 gemäss Gl. (2.10)

— Dt
(4.7) y ==y1 i y2=C • sin t — «) tc (A cos 1 - T + B-sini.T)
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Dieser Schwingvorgang besteht also aus dem stationären Anteil y!
einer erzwungenen Schwingung und dem exponentiell abklingenden
Anteil y2 einer gedämpften freien Eigenschwingung. Die nach dem
Abklingen von y2 übrig bleibende Schwingung yx heisst der
«Beharrungszustand» und hat bei der Abstimmung X die Amplitude

(4.8) C;=V}.S,

wobei Vj das Verhältnis der stationären Amplitude C). zum konstanten
Ausschlag S ist und «kinetische Vergrösserung des Beharrungszustandes
bei der Abstimmung /» heisst mit dem dimensionslosen Wert

(4.9) V; C;/S /2/V (1— F>2-4D2.>2-

V / wird durch die bekannten Resonanzkurven dargestellt, die im
Resonanzfall mit X 1 bei Dämpfung D die Kuppe

(L 10) maxV^VRes- 1/(2D)

haben und bei höheren Abstimmungen / » 1 sich asymptotisch dem
Wert «1» nähern.

Solange aber ein Beharrungszustand nicht vorliegt, d. h. solange die
gedämpften Eigenschwingungen noch nicht abgeklungen sind, weil—wie
bei Brücken — nur wenige Erregerperioden gewirkt haben können, besteht
der für Brücken so wichtige «Einschwingvorgang».

Bezieht man Gl (4. 7) und die von den Anfangsbedingungen abhängigen
Integrationskonstanten A und B auf die konstante Amplitude C nach
Gl (4. 8), so ergeben sich die Verhältniswerte
für den Ausschlag

(4.11) y>./q yx/tVx -S)=sin(/T_«)--e-i*r.sin (V-*,)
und für die Schwinggeschwindigkeit

(4.12) y/C?=y?/(Vj.S) >.cos (>T-a)--e-DT.r.cos(XDT-|v)

Aus der Zusammensetzung der beiden Teilschwingungen nach Gl (4.11)
folgt

(4. 13) y} / C; H} / C} sin (>t— ,3t) h} sin (>t — 6t)

mit der diese Ausschlagsverhältnisse umhüllenden Kurve der Verhältnisse

(4. 14) h} Hj / C} H} /(V} S) V1 + (e-D^ r)2 — 2 e - D~ • r • cos ?T
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In den Gleichungen (4. 11) bis (4.14) bedeuten

(4. 15) r V a*+bs (4. 16) tg * 2 D 31/(1 — ?2) (4. 17) tg % — a/b

(4.18) tgi,=(a.)D i b./)/(a-D_b.*D)
(4.19) ?T ()D_>) t —({,.-«)

sin ai-e-De-r sin (-j>_ — a)
(4.20) tgß_ -

COS a — p~"Dt. r-cos (?T—«)

Die Hilfswerte a und b ergeben sich aus den Integrationskonstanten
A und B nach Gl. (4. 7). Für den Sonderfall der Ruhe als Anfangszustand

ist

(4.21) a0 2D.V>/X (4.22) b0 (1 — X2- 2D2). V,/(A.XD)

(4.23) r0 X/XD

(4.24) tg^ao=2DXD/(l-X2-2D2)

(4. 25) tg ^v - (1 + X2). D / (1 - X2) XD

Der für das Näherungsverfahren wichtige Wert hX nach Gl. (4. 14)
stellt das Verhältnis der Ordinaten der Hüllkurven H;k des Ausschlages

zur Amplitude C^ V^. S des Beharrungszustandes X dar. Sein Vektordiagramm

bei den Anfangsbedingungen der Ruhe zeigt das Bild 2. Hiernach
ergibt sich der jeweilige Wert hx mit der logarithmischen Spirale
OME e~DT -r als Leitkurve aus der Seite AE des umlaufenden Dreiecks
AME (dargestellt für die «Zeit» t =30). Das Verhältnis hj nach
Gl. (4. 14) wird zu «1», d. h. H^=C), wenn mit dem Ende des Einschwingvorganges

E mit M zusammenfällt, d. h. der Beharrungszustand erreicht
ist. (X 0,95, D 0,01).

Bild 3 zeigt den zeitlichen Verlauf einzelner Hüllkurven-Verhältniswerte
für verschiedene Abstimmungen X und verschiedene Dämpfungen D.

Um diese Kurven hier untereinander vergleichbar machen zu können,
sind alle Werte hx im Verhältnis Vx /max V verkleinert, d. h. die
kinetischen Vergrösserungen dieser ausgewählten Hüllkurven sind auf die
grösstmögliche Vergrösserung max V 50 im Resonanzfall mit der
Dämpfung D 0,01 (vgl. Gl. 4.10) bezogen. Aus dem schwebungsähn-
lichen Verlauf der Hüllkurven nach Bild 3 ist ersichtlich, dass im
Einschwingvorgang Spitzenwerte entstehen, die grösser als die Werte
des zugehörigen Beharrungszustandes sind. Diese Überschwingungen im
Einschwingvorgang, nicht die eigentlichen Resonanzschwingungen im
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Bild 2. Vektordiagramm für den Einschwingvorgang einer erzwungenen
gedämpften Schwingung eines konstanten Schwingkreises

Beharrungszustand, sind für die erzwungenen Schwingungen von Brücken
unter Verkehrslasten besonders zu beachten.

Allgemein sind also die Hüllkurven des Ausschlages durch den
statischen Ausschlag S nach Gl. (4. 6) und durch die kinetische
Vergrösserung hx " V/ darstellbar nach Gl. (4. 14) zu

(4.26) H?i hj. V}• S v]} • S.

13
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5. Einschwingvorgange einer befahrenen Brücke als veranderllchpr Schwingkreis

Wird eine unter fahrenden Verkehrslasten schwingende Brücke nach
Abschnitt 2 durch einen gedämpften Schwingkreis mit konstanter Feder,
aber veränderlicher Eigenfrequenz und veränderlicher Masse ersetzt
(Bild 1), so muss ausserdem noch der Einfluss des Ortswechsels xr der

oy
Vi

SA*
V /V

0 oos

i / /
'//

799
A'09S

Iff X*VÄ If 6iS
I ff .<*

1// »Q^-.o>v>IVJf
O'f 5-

C/v

o t- /t " /s ij JJ JO 60 kJ ' 0 /lll /**

0 z 3 s

L.

0

l

1

*yC

A' *O0

A'OSf

Bild 3. Kinetische Vergrosserungen bei Einschwingvorgängen mit
verschiedenen Abstimmungen und Dampfungen D

Erregerkraft auf die Durchbiegung in Brückenmitte berücksichtigt werden.

Dies kann dadurch geschehen, dass die wandernde Erregerkraft mit
konstanter Amplitude durch eine ortsfeste Errergerkraftmit veränderlicher
Amplitude ersetzt wird. Als Umrechnungswert dient entweder das
Verhältnis der Einflusszahlen 8 für die Durchbiegung oder — bei Annahme
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einer sinusförmigen Schwingform — der Wert sin « xr/l. Die Erregerkraft
hat also die mit der Stellung veränderliche Amplitude

(5. 1) Fr m0 rQ • w r2 • 3mr / 5mm ~ m0 r0 w2. sin - xr /1.

Bei einer periodischen Erregung können die der Brücke aufgezwungenen

Schwingungen, wenn wegen der üblichen Stützweiten nur wenige
Erregerperioden aufgeprägt werden können, nur als Einschwingvorgang
verlaufen. Für diesen bei Brücken nach obigen Darstellungen sehr
verwickelten Fall liegt eine geschlossene Lösung noch nicht vor. Das
nachfolgend beschriebene Näherungsverfahren, das die im Abschnitt
4 behandelten Gleichungen weiterentwickelt, führt aber zu brauchbaren
Ergebnissen. Bezüglich der Erregerfrequenz wird dabei die Annahme
gemacht, dass sie mit der kleinsten Eigenfrequenz zusammenfällt, die
während der überfahrt einer bestimmten Verkehrslast über eine bestimmte
Brücke überhaupt möglich ist, also

(5. 2) w 2 t: fom min v0 vom

Diese Erfahrungstatsache wurde aus vielen Versuchsfahrten an
Eisenbahnbrücken eindeutig gewonnen (vergl. Bild 1).

Beim Näherungsverfahren wird nun ein Teil der mathematischen
Schwierigkeiten dadurch umgangen, dass grundsätzlich alle stetig
veränderlichen Kennwerte des Schwingkreises nur noch in «Stufen» veränderlich
angenommen wenden. Die Stufen sollen je einen bestimmten Zeitabschnitt
umfassen, z. B. von der Dauer einer Erregerperiode, und sind durch die
augenblickliche Stellung i der Verkehrslast zur Zeit der Mitte i der
Zeitstufe i gekennzeichnet. Der Schwingkreis i der Stufe i hat demnach
die konstanten Stufenkennwerte

c, m, v01 2 t: f01, >, vüin/v01 D, Dm/A Si und V, ;

er wird gemäss Gl. (5.1 und 5.2) periodisch erregt durch

(5. 3) F, m0 rQ • vom2 • 3mi 3mm • sin vom t,

also durch eine Erregerkraft mit konstanter Frequenz vom und mit einer
der Stufe i angepassten konstanten Amplitude.

Aus dem statischen Ausschlag der Feder c im Resonanzfall v0l der
Stufe i

(5. 4) S, m0 r0 vol2 / c (vergl. Gl. 4. 6) folgt die auf Brückemmitte

m umgerechnete statische Auslenkung für die Stufe i zu

<5.5) Smi=SI iü!L=S_üL.i^
1 2 S
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und damit die kinetische Vergrösserung für den Beharrungszustand der
Stufe i zu

(5.6) Vml Q/Sm=öW5 -1/v(l-X2)2 + 4Dm2 •

Hierin ist die für alle Stufen gleiche Bezugsgrösse

(5.7) Sm m0r0 • vom2/c

als statische Auslenkung für die massgebende mittlere Stufe i m infolge
der grössten Amplitude der Erregerkraft ohne weiteres errechenbar.

Auf jede einzelne dieser Stufen i können die Gleichungen des
Abschnittes 4 angewendet werden, also auch für die Hüllkurven des
Ausschlages. Beginnend mit den Anfangsbedingungen der Ruhe für
t 0 werden für den Endzustand der Stufe 1 zur Zeit t T l/fom die
Werte des Ausschlages y und der Geschwindigkeit y nach der Gl. (4.11)
und (4.12) berechnet und als Anfangsbedingungen für die Stufe 2 zu
Grunde gelegt und so fort. Mit den weiteren dimensionslosen Ansätzen
nach Abschnitt 4 erhält man somit für die einzelnen Stufen i die einzelnen
Äste der Hüllkurven stufenweise zu

(5.8) rn =hi • Vmi

unter Beachtung der Gl. (5.6), (5.5) und (4.14) mit der jeweiligen
Abstimmung Xt als «Verstärkungszahlen des Ausschlages».

Als Folge der stufenweisen Veränderlichkeiten der Kennwerte müssen
die einzelnen Äste der Hüllkurven Unstetigkeiten an den Stufenübergängen
haben.

Auf diese Weise wurde folgendes Beispiel praktisch durchgerechnet.
Eine eingleisige Eisenbahnbrücke von 1 45 m Stützweite wird

durch die lotrechten Anteile der Fliehkräfte aus den um 90° gegeneinander
versetzten Gegengewichten in den Triebrädern einer Dampflokomotive
von 100 t Gesamtgewicht und 2 Zylindern periodisch erregt. Bei 4
Triebachsen von je 16 it Achslast, 1,35 m Raddurchmesser oder 4,24 m Radumfang

It und einer grössten Geschwindigkeit von 65 km/h beträgt die
grösste sekundliche Drehzahl max f 4,26/s und die Zahl der Stufen
n 6 mit i m 3 in der Mitte.

Mit der kleinsten Eigenfrequenz der belasteten Brücke min
f fom 3,37/s nach Bild 1 beträgt die kritische Geschwindigkeit
krit V ie 1,35 3,6 3,37 52 km/h und die Amplitude der Errerger-
kraft für i 3 Fm 0,15 .8.^2. 3,372/4,262 1,064 t/Brücke und
demnach die Bezugsgrösse des Ausschlages Sm 0,0505 cm.

Mit der Dämpfung D 0,0175 sind die Verstärkungszahlen für die
einzelnen Äste der Hüllkurven des Ausschlages berechnet.

In Bild 4 sind für die überfahrt in kritischen Geschwindigkeit für die
Brückenmitte dargestellt unten: der zeitliche Verlauf der Verstärkungszahlen

iq i für die einzelnen Äste der Hüllkurven des kinetischen Ausschlages
in Brückenmitte, oben: der zeitliche Verlauf der statischen Durchbiegung
stat ym und der ihr überlagerten Schwingungen aus Messung und
Rechnung. Die Übereinstimmung ist befriedigend.
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Bild. 4. Zeitlicher Verlauf der Durchbiegungen und der kinetischen
Verstärkungszahlen der Hüllkurven des Ausschlages für die

Brücke nach Bild 1

6. Berechnung von Schwingbeiwerten

6.1 Verhältnisse von zugeordneten Durchbiegungen oder Dehnungen.

Sind die Duchbiegungen bei «Fahrt» und bei «Ruhe» der Brücke
gemessen oder — z. B. nach vorstehendem Näherungsverfahren — gerech-
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net, so ergibt sich der Schwingbeiwert zu

(6. 1) y (Fahrt)/y (Ruhe) (stat y f km y)/stat y
aus Duchbiegungen

oder

(6. 2) <p z (Fahrt) / z (Ruhe) (stat z + kin z) / stat s aus Dehnungen

6. 2 Ersatzlastenverfahren nach Krabbe

Wenn an n Knotenpunkten r eines Tragwerkes gemessen sind

a) die statischen Einflusszahlen Sik infolge der Last 1,

b) die zugeordneten Durchbiegungen yr bei Langsamfahrt und bei
kritischen Schnellfahrten,

so sind für jeden beliebigen Zeitpunkt zugehörige Gruppen von jenen
statischen Ersatzlasten Pr berechenbar, die in den Messpunkten r angreifend
die gleichen Durchbiegungen erzeugen, die unter den Verkehrslasten
Dei Fahrt und bei Ruhe gemessen wurden.

Aus den n linearen n-gliedrigen Simultangleichungen

(6.3) y, 2(Pr.3ir)
folgt nach Lösung der Matrix der 8 Werte, z. B. nach Gauss, mit
den Lösungswerten

(6. 4) )lk f (olk)

(6.5) P,=2 yi Xir

je für Fahrt und für Ruhe.
Aus den zugehörigen Arbeitsladungen je Stellung i

(6.6) A, =2(Pir.yir) folgt

(6.7) ?=Vmax AFahrtynidX ARuhe

6. 3 Momentenverfahren nach Brückmann.

Wenn durch Rechnung (siehe Näherungsverfahren) oder durch
Messung die Durchbiegungen yr aller n Knoten mit gleichen Knotenabständen

a bekannt sind, so liefert die Differenzengleichung der Biegelinie
zwischen den Durchbiegungen y und den Biegemomenten M von 3 aufeinander

folgenden Knotenpunkten r— 1, r und r + 1 und mit dem Ansatz

(6.8) Mr_i.«r +M, .ßr + Mr+i.ar+1=C( — yr+i+2yr — yr-i) C zr
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n 3-gliedrige Simultangleichungen, aus denen sich die Biegemomente
M unmittelbar berechnen lassen zu

(6.9) Mi =C2(zr.Xir).
Die Werte *, ß und C sind nur von den Abmessungen der Brücke

abhängige Festwerte, die die Lösungswerte Xir der Matrix nach Gl. (6. 8)
liefern. Demnach ergibt sich für den zu untersuchenden Fall

(6.10) MFahrt/MRuhe (stat M + kin M) / stat M.

7. Allgemeine Erkenntnisse

Die beschriebenen Vorgänge über Brückenschwingungen unter
Verkehrslasten bei periodischer Erregung führen zu folgenden allgemeinen
Erkenntnissen:

1) Erzwungene Schwingungen von Brücken infolge Verkehrslasten
verlaufen mit veränderlicher Abstimmung Xj und wegen der meist
geringen Zahl von aufprägbaren Erregerperioden nur als
Einschwingvorgänge, bei denen zwar gefährlich hohe Ausschläge im
Beharrungszustand des Resonanzfalles nicht zu befürchten sind,
aber trotzdem wegen des schwebungsähnlichen Verlaufs gewisse
Überschwingungen eintreten können.

2) Bei Veränderlichkeit der Eigenfrequenz als Folge der Bewegung
der Verkehrslast wird die Brücke meist dann zu grösseren
Schwingausschlägen aufgeschaukelt, wenn die Erregerfrequenz mit der
kleinsten während der überfahrt einer bestimmten Verkehrslast
möglichen Eigenfrequenz übereinstimmt (w min vom). Die
Zeitdauer der Resonanzlage kann somit nur ein Bruchteil der
Überfahrtzeit betragen.

3) Bezogen auf die statischen Wirkungen der Verkehrslast sind ihre
kinetischen Wirkungen (Schwingausschlag und Schwingbeiwert)
umso grösser, je leichter und kürzer sie ist, weil dann die
Veränderlichkeit der Masse und der Eigenfrequenz am geringsten ist.
Die Abstimmung X, bleibt hier verhältnismässig nahe bei 1, so
dass grosse kinetische Ausschläge bei kleinen statischen
Wirkungen eintreten.

4) Entsprechend (3) liefern schwerere Verkehrslastan kleinere
Schwingbeiwerte. Bezeichnet man das Verhältnis zwischen den
statischen Wirkungen einer Betriebslast B und der für die Brücke
massgebenden Regellast R als «Belastungsgrad» X (B/R), so
gehören zu grossen Belastungsgraden kleine Schwingbeiwerte.
Aus Versuchen mit Verkehrlasten kleinen Belastungsgrades
gewonnene Schwingbeiwerte liegen daher bezüglich der Regellast
auf sicheren Seite.
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5) Der durch die Fahrgeschwindigkeit v und die Erregerfrequenz f
bedingte Weg It v/f ist ein Kennzeichen für die Erregerursache
und ein Mass stab für die Zahl der Erregerperioden n 1/1t-
Zusammen mit min f nach (2) liefert er die kritische Geschwindigkeit

krit v It minf [m/s].

6) Brücken mit niedrigen Eigenfrequenzen haben kleinere Erreger¬
amplituden. Weiche Brückenträger sind daher kinetisch günstiger.

7) Auf Grund obiger Erkenntnisse konnten in den deutschen Vor¬
schriften die Schwingbeiwerte 9 für die Hauptträger von Eisenbahn-

und Strassenbrücken herabgesetzt werden. Für Fahrbahnträger

sind nach dem jetzigen Stand der Untersuchungen ähnliche
Ergebnisse zu erwarten.

ZU SAMMENFASSUNG

Es wird ein Näherungsverfahren zur Berechnung von Schwingbeiwerten

für Schwingungen von Brücken unter Verkehrslasten beschrieben,
wobei die Massen von Brücken und Verkehrslasten sowie die Dämpfung
mitberücksichtigt werden. Eine befahrene und von periodischen Kräften
erregte Brücke kann wegen der Ortsveränderlichkeit der Verkehrslasten
und Erregungen als gedämpfter Schwingkreis mit konstanter Feder, aber
veränderlicher Masse und Eigenfrequenz aufgefasst werden, der durch
periodische Erregung mit konstanter Frequenz, aber veränderlicher Amplitude

zu erzwungenen Schwingungen angefacht wird. Für das Verfahren
wird dieser Schwingkreis in einen solchen verwandelt, bei dem sich die
Veränderlichen nur stufenweise ändern, so dass während einer Stufe,
z. B. gleich einer Erregerperiode, alle Werte konstant angenommem und auf
diesem konstanten Schwingkreis die Gesetze des einfachen Vertikalpendels
angewendet werden dürfen. Wegen der geringen Zahl von möglichen
Erregerperioden verläuft der gesamte Vorgang als Einschwingvorgang,
bei dem die anfangs mitangefachten und wegen der Dämpfung exponentiell
abklingenden Eigenschwingungen mit ihren je Stufe veränderlichen
Frequenzen von erzwungenen Schwingungen konstanter Frequenz, aber je
Stufe veränderlicher Erregeramplitude zu schwebungsähnlichen Schwingungen

überlagert werden. Die Grösse der möglichen Schwingausschläge
wird durch die «Hüllkurven des Ausschlages» umschrieben, die dimensionslos

als «kinetische Verstärkungszahlen der Hüllkurven» mathematisch
entwickelt werden, während als absolute Bezugsgrössen der statische
Ausschlag Sm der Feder durch die Amplitude der Erregerkraft in Brückenmitte

dient.
Weiter werden einige Angaben über die Ermittlung von Schwingbeiwerten

durch Rechnungen oder durch Versuche gemacht. Hierbei wird
auch auf die Abhängigkeit des Schwingbeiwertes für eine bestimmte
Verkehrslast und Brücke vom «Belastungsgrad» hingewiesen, unter dem
das Verhältnis zwischen den statischen Wirkungen der jeweiligen Betriebs-
last und der für die Brücke massgebenden Regellast verstanden wird.
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RESUMO

0 autor descreve um metodo de calculo aproximado permitindo deter-
minar o coeficiente de vibragäo no caso de pontes submetidas ä acgäo de
cargas möveis. Este metodo considera näo so a massa da ponte e das cargas
como tambem o efeito do amortecimento. Uma ponte, sob a acgäo do
tränsito e solicitada por forgas de caräcter periödico, pode comparar-se
—-em virtude da posigäo variävel das cargas moveis e das forgas que a
solicitam — a um sistema o-scilante amortecido de mola constante e massa
e frequencia pröpria variäveis, levado a vibragöes forgadas por uma
excitagäo periodica de frequencia constante e amplitude variävel. Para aplicar
este metodo, transforma-se este sistema num outro em que as variäveis
mudam de valor por patamares, de tal modo que num patamar, por exem-
plo durante um periodo de excitagäo, todos os valores säo constantes e se
podem portanto aplicar as leis do pendulo simples. Dado o numero redu-
zido de periodos de excitagäo possiveis, todo o processo decorre como um
fenömeno transitörio durante o quai as vibragöes pröprias inicialmente
provocadas, e exponencialmente decrescentes em virtude do amortecimento,
e de frequencia variävel em cada patamar, säo levadas a batimentos por
vibragöes forgadas de frequencia constante e amplitude variävel em
cada patamar. 0 valor das elongagöes e dado pela envolvente das elon-
gagöes que se descrevem em matemätica como «multiplicadores cine-
ticos sem dimensäo das envolventes», enquanto que se utiliza como gran-
deza de referencia absoluta a flecha estätica Sm da mola provocada
pela amplitude da forga de excitagäo a meio da ponte.

0 autor tambem da algumas indicagöes acerca da determinagäo dos
coeficientes de oscilagäo pelo calculo e pela experiencia. Tambem se
refere ä relagäo existente, para uma ponte e uma carga determinadas,
entre esse coeficiente e o «grau de carga», a quai relaciona a acgäo estätica

da carga mövel com a carga de regulagäo da ponte.

RESUME

L'auteur decrit une methode de calcul approchee permettant de
determiner le coefficient de Vibration d'un pont soumis l'action de charges
mobiles. Cette methode tient compte, non seulernent de la masse du
pont et des charges, mais aussi de l'amortissement. Un pont, sous l'effet
du traffic, et sollicite par des forces ä caractere periodique peut etre
compare — en vertu de la position variable des charges mobiles et des forces
qui le sollicitent — ä un Systeme oscillant amorti, ä ressort constant et
ä masse et frequence propre variables, soumis ä des vibrations forcees
par une excitation periodique ä frequence constante et amplitude variable.
Pour pouvoir appliquer cette methode de calcul, ce Systeme est remplace
par un autre, dans lequel les variables changent de valeur par paliers, de
maniere ä ce que, au cours d'un palier, par exemple pendant une periode
d'excitation, toutes les valeurs soient constantes et que l'on puisse ainsi
appliquer les lois du pendule simple. Etant jdonne le nombre reduit de
periodes d'excitation possibles, tout le processus se deroule comme un
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phenomene transitoire pendant lequel les vibrations propres ä frequence
variable dans chaque palier, provoquees ä l'origine, et decroissant comme
un exponentielle gräce ä l'amortissement, sont soumises ä des battements
par les vibrations forcees ä frequence constante et amplitude variable
dans chaque palier. La valeur des elongations est donnee par l'enveloppe
des elongations que l'on designe en mathematique par «multiplicateurs
cinetiques sans dimension des enveloppes», tandis que l'on utilise comme
grandeur de reference absolue la fleche statique Sm du ressort provoquee
par l'amplitude de la force d'excitation au centre du pont.

L'auteur donne egalement quelques renseignements sur la determination
des coefficients d'oscillation tant par le calcul que par l'experience.

II mentionne egalement le rapport qui existe, pour un pont et une charge
donnes, entre ce coefficient et le «degre de charge» du pont, et qui lie
l'action statique de la charge mobile ä la charge de reglage du pont.

SUMMARY

The author describes an approximate method to compute the value
of the Vibration coefficient in the case of Vibration in bridges submitted
to the action of moving loads. This method takes into account the mass
of the bridge and of the loads as well as the effect of damping. A bridge
submitted to traffic and to periodic forces can be compared — due to the
variable position of the moving loads and to the forces — to a damped
oscillating system, with constant spring and variable mass and natural
frequency, taken up to forced vibrations by a periodic force with constant
frequency and variable amplitude. In order to apply this method, the
above system is transformed in another one where the variable quantities
iollow a step pattern in such a way that, along each step, i. e. during one
period of loading, all values are constant and the laws of the simple
pendulum can thus be applied. Due to the restricted number of possible
periods of loading, the whole process takes place as a temporary phenomenon

in the course of which beats take place between the initially started
self-vibrations, through the action of constant frequency forced vibrations,
the amplitude of which varies along each step; the decrease of these
self-vibrations, due to the damping effect, obeys the exponential law and
their frequency varies along each step. The value of the elongations is
given by the enveloping curve of the elongations which can be mathema-
tically described as «kinetic dimensionless multipliers of the enveloping
curves». The absolute reference magnitude used is the statical deflection
Sm of the spring, caused by the amplitude of the periodic force at mid-span.

The author also gives information regarding the experimental and
theoretical determination of oscillation coefficients. He also refers to
the existing relation, for a given bridge and loading, between this coefficient

and the loading grade, linking the statical action of the moving load
and the adjustment load of the bridge.
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