Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 5 (1956)

Artikel: Calcul des pistes en béton précontraint

Autor: Cot, Pierre D.

DOI: https://doi.org/10.5169/seals-6120

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

V a 2

Calcul des pistes en béton précontraint

Design of prestressed concrete runways

Die Berechnung von Pisten in vorgespannten Beton

Cálculo de pistas de betão preesforçado

PIERRE D. COT

Directeur Général de l'Aéroport de Paris

Paris

Les procédés traditionnels employés pour la construction des revêtements routiers ne sont pas bien adaptés à la construction des revêtements destinés à supporter les avions les plus lourds. Il semble que seul l'emploi de matériaux plus nobles que les matériaux routiers traditionnels peut conduire à une solution satisfaisante. C'est pourquoi, dès 1945, Monsieur Freyssinet a songé à utiliser le béton précontraint.

En 1947 une section de piste en béton précontraint de 400 m de longueur, 60 m de largeur et 16 cm d'épaisseur a été construite à l'aéroport d'Orly. Ce revêtement expérimental, qui fut une réussite technique, ne pouvait concurrencer économiquement les procédés traditionnels. En 1952 nous avons repris ce problème et nous avons abouti à un procédé nouveau mis au point en 1953, lors de la construction d'Orly, sur un tronçon de voie de circulation.

Description de la voie de circulation

Cette voie a une longueur de 430 m, une largeur de 25 m et une épaisseur de 18 cm. Elle a été construite par bandes longitudinales de 5 m de large. Le béton, dosé à 330 kg par m³, a la composition des bétons usuels employés à Orly pour les revêtements en béton ordinaire. La précontrainte transversale de 18 kg/cm² après retrait du béton et fluage des aciers est obtenue par des câbles transversaux de 12 fils de 7 mm de diamètre espacés de 1,33 m passant à mi-épaisseur du revêtement dans des trous cylindriques de 5 cm de diamètre, ancrés sur les bords longitudinaux du revêtement.

La précontrainte longitudinale est obtenue par l'action de vérins plats «Freyssinet» dénommés «joints actifs». Chaque joint actif comporte 3 vérins plats placés en série. Un seul est utilisé pour la mise en compression. Le revêtement comporte à ses deux extrémités, deux culées qui ont la même largeur que la voie de circulation.

Effets des variations thermohygrometriques

Les contraintes de compression longitudinale introduites dans le revêtement par l'action des joints actifs et la mise en tension des câbles de culées varient, lorsque des variations thermohygrométriques affectent le revêtement. Les défauts mécaniques ou physiques de construction du revêtement pourraient provoquer, dans certains cas, le flambement longitudinal des petites parties du revêtement. Ce sont les joints actifs qui, pratiquement, peuvent introduire des excentrements des compressions longitudinales suffisants pour compromettre la stabilité du revêtement; c'est pourquoi des dispositions spéciales ont été prévues pour ces joints lors de la construction de la piste en béton précontraint d'Alger Maison-Blanche.

Essais de chargement

La voie de circulation a été soumise à des essais de chargement. Sept essais ont été effectués. Chaque essai consiste à charger, puis à décharger un même point du revêtement, un certain nombre de fois N_1 par une charge P_1 ; après ces N_1 cycles de chargement, on effectue au même point N_2 cycles de chargement pour une valeur de la charge P_2 supérieure à P_1 et enfin, éventuellement, N_3 cycles de chargement pour une charge P_3 supérieure à P_2 .

Calcul des revêtements en béton précontraint

Nous considérerons seulement le cas où la charge appliquée est située à une distance supérieure à 2 ou 3 m du bord du revêtement le plus voisin. Le revêtement se comporte alors comme s'il avait des dimensions infinies puisqu'en raison des précontraintes, les joints n'introduisent pratiquement pas de discontinuité notable dans le comportement du système, c'est le cas de charge «au centre».

Lorsque la charge P est modérée (45 t au plus) le revêtement se comporte comme un corps homogène et les methodes de calcul classiques de Westergaard, Burmister ou Hogg lui sont applicables. Lorsque P est plus élevée, il n'en est plus ainsi; des fissures se produisent à la partie inférieure du revêtement tout le long des rayons passant par le centre de charge; les moments fléchissants rayonnants (correspondant aux contraintes se développant sur les éléments dirigés suivant les rayons) ne peuvent dépasser une certaine valeur qui peut varier selon l'importance de la déformation. Cette fissuration rayonnante s'étend jusqu'à un cercle dont le rayon C est fonction de la valeur de la charge appliquée P. Au-delà

de ce cercle, les contraintes dans le revêtement sont en général au plus égales à la valeur qui provoque le début de fissuration dans le revêtement, alors les déformations sont proportionnelles aux contraintes.

Par définition de ce cercle (de rayon C) la contrainte de traction sur les éléments radiaux situés à la distance C du centre de la charge est égale à la résistance à la traction du béton, augmentée de la précontrainte; pour une charge donnée, la valeur de C est déterminée.

Le principe du calcul est le suivant:

On écrit:

- 1°) les conditions d'équilibre de la zone intérieure au cercle de rayon C, à partir d'hypothèses vérifiées par la concordance entre les calculs et les résultats expérimentaux; le moment fléchissant sur les éléments tangentiels tout le long de ce cercle de rayon C s'exprime en fonction de deux paramètres qui sont:
 - la déformation verticale
 - et la pente de la méridienne des déformations tout le long de ce cercle.
- 2º) les conditions d'équilibre de la zone extérieure au cercle de rayon C, définies par l'équation de Lagrange; le moment fléchissant sur les éléments tangentiels tout le long de ce cercle; s'exprime en fonction des deux paramètres mentionnés ci-dessus.
- 3°) que le moment fléchissant sur les éléments tangentiels a la même valeur, qu'il soit calculé à partir de la zone intérieure ou de la zone extérieure au cercle de rayon C.
- 4°) que la contrainte sur les éléments radiaux tout le long du cercle de rayon C est la contrainte qui provoque la fissuration (par définition de ce cercle).

On obtient ainsi les équations du problème.

Pour les résoudre on se donne alors une valeur numérique pour le rayon C, on en déduit la charge totale P correspondante, les moments fléchissants et les déformations.

Représentation graphique des résultats du calcul

Les calculs ont été effectués pour 2 valeurs de K, module de réaction de la fondation,

à savoir: $K = 5 \text{ kg/cm}^3 \text{ et } K = 2.5 \text{ kg/cm}^3$

et pour diverses valeurs du rayon C.

Les résultats du calcul sont représentés par les graphiques suivants:

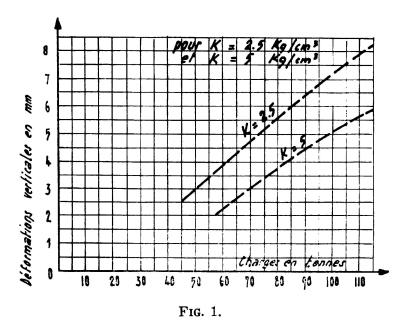


Fig. 1. Déformations verticales au centre de la charge.

Sur ce graphique on a porté les déformations verticales au centre de la charge appliquée, exprimée en tonnes pour les valeurs de K sus mentionnées.

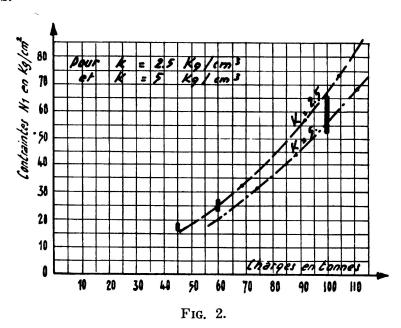


Fig. 2. Contrainte maxima N_1 .

Ce graphique donne pour les valeurs de K précitées, les valeurs des contraintes maxima de traction à la partie supérieure du revêtement en fonction des charges. On constate que l'augmentation de la contrainte N₁

due à une diminution de K est relativement faible. Les valeurs des contraintes déduites des mesures pour les cycles de chargement correspondant aux charges de 45 — 60 et 100 t, sont représentées par des traits forts verticaux.

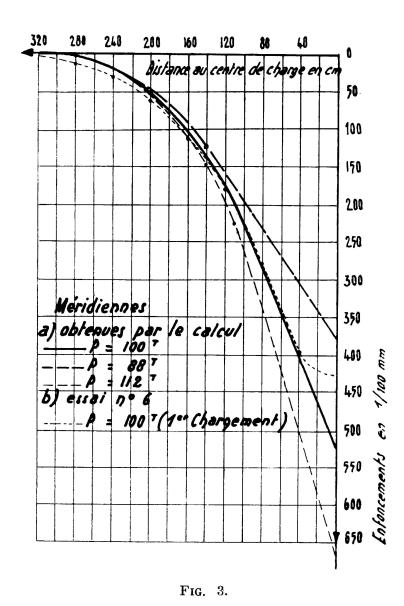
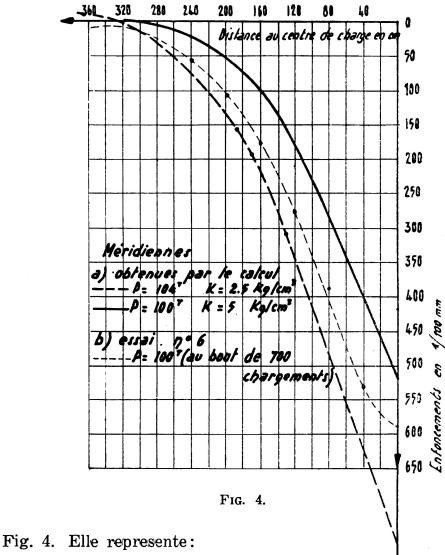



Fig. 3. Méridiennes pour K = 5.

On a représenté les méridiennes calculées pour les charges de 88 t et 112 t et la méridienne correspondant à la charge de 100 t qui en a été déduite par interpolation. La courbe en pointillés représente la méridienne obtenue expérimentalement pour la charge de 100 t.

la méridienne calculée pour $P=100~t~K=5~kg/cm^3$ la méridienne calculée pour $P=104~t~K=2,5~kg/cm^3$ Ces deux méridiennes encadrent la méridienne obtenue expérimentalement

au bout de 700 chargements sous une charge de 100 t.

Les valeurs obtenues par le calcul sont dans l'ensemble voisines des résultats expérimentaux et la méthode peut être considérée comme satisfaisante; les hypothèses utilisées pour appliquer cette méthode sont bien vérifiées pour le cas d'espèce, toutefois suivant les propriétés des sols et pour des dalles d'épaisseurs différentes de celles que nous avons utilisées il pourrait s'avérer nécessaire d'apporter quelques retouches à ces hypothèses.

Etat du revêtement sous la charge

En ce qui concerne la détermination de l'état du revêtement du sol dans la zone d'application de la charge, les essais ont montré qu'au bout de 700 chargements à 100 t, la valeur du raccourcissement unitaire atteignait 760 10-6.

Le rayon de courbure de la méridienne déterminée expérimentalement était de 160 mètres environ. Le revêtement a bien supporté ces grandes déformations. On peut en conclure qu'il n'y a pas à se préoccuper des déformations qui se produisent dans la zone d'application de la charge.

En ce qui concerne la rupture effective, il faut s'attendre à ce que le comportement des revêtements précontraints se révèle plus satisfaisant que ne le laisserait supposer la théorie présente.

RÉSUMÉ

Les essais de chargement réalisés à l'Aéroport d'Orly montrent que le revêtement en béton précontraint peut supporter un trafic pratiquement illimité de roues isolées de 60 t. (pression de gonflage 13 kg/cm²) et un trafic peu élevé de roues isolées de 100 t. (pression de gonflage 22 kg/cm²).

Ils confirment que le béton précontraint est un matériau capable de supporter, sans dommage, des répétitions, en nombre pratiquement illimité, de grandes déformations accompagnées de fissuration.

SUMMARY

Load tests carried out at Orly Airport show that the prestressed concrete lining can carry a practically unlimited traffic of isolated 60 t. wheels (13 kg/cm² inflating pressure) and a limited traffic of isolated 100 t. wheels (22 kg/cm² inflating pressure).

Those tests confirm that prestressed concrete is capable of supporting, without damage, a practically unlimited number of recurring large deformations with crack formation.

ZUSAMMENFASSUNG

Die Belastungsversuche, die im Flughafen von Orly angestellt wurden, zeigen, dass die Pisten in vorgespanntem Beton einen praktisch unbegrenzten Verkehr mit Einzelraddrücken von 60 t (Rad-Luftdruck 13 atü) ertragen können und einen wenig starken Verkehr mit Raddrücken von 100 t (Rad-Luftdruck 22 atü).

Die Versuche bestätigen, dass der vorgespannte Beton ein Material darstellt, das imstande ist, ohne Schaden eine praktisch unbegrenzte Zahl von grossen Verformungen, begleitet von Rissebildungen zu ertragen.

RESUMO

Os ensaios de carga realizados no Aeroporto de Orly mostram que o revestimento de betão preesforçado pode suportar um tráfego pràticamente ilimitado de rodas isoladas de 60 t. (pressão de enchimento 13 kg/cm²) e um tráfego pouco elevado de rodas isoladas de 100 t. (pressão de enchimento de 22 kg/cm²).

Os ensaios confirmam que o betão preesforçado é um material capaz de suportar sem estragos, um número pràticamente ilimitado de repetições de deformações importantes acompanhadas de fissuração.

Leere Seite Blank page Page vide