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VIbi
Losses of cable force at prestressing

Spannungverluste in den Kabeln bei der Vorspannung

Perdas de tensäo nos cabos de uma estrutura
em betäo preesforgado

Pertes de tension dans les cäbles d'un ouvrage
en beton precontraint

ALLAN BERGFELT
Chief Designing Engineer

Port of Gohtenburg Authority

Gothenburg

One of the most important conditions for calculating prestressed
concrete is to have a good knowledge of the different forces which are
conveyed into the prestressing cable. To form an opinion of the future
existence of the construction it is also necessary to know in which way
the forces are going to change after some time.

The cable force at prestressing, checked on the jack or calculated
through the extension of the cable is only very exceptionally constant
along the length of the cable but changes because of losses of different
nature. These losses can be divided as follows: jack losses, losses along
the length of the cable, and losses when, and after anchoring the cable.
A more aecurate division is shown in table 1.

Losses c, v- and k are usually measured by pulling a cable with a
jack at one end and checking the force transmitted to the other end. This
can be also done by simultaneously measuring the force and the resulting
extension of the cable at one end for one loading and unloading cycle.
The result given by the first measurement is the total loss, while the
second one gives a relation between ithe final force after losses have taken
place and this force's distribution along the cable. These results give
an approximate idea of the value of the area of force x cable length.
For the determination of the constants for the different losses, this
method is scarcely suitable except for cäbles with comparatively Sharp
curves. A combination of the different methods will of course give the
best iresults.



1024 VIbl. ALLAN BERGFELT

Table 1

Losses of cable forces in prestressed concrete

Jack losses C Cj + c2 + c3
Friction in the jack Cl
Friction at the thread angle for attaching

to jack. On the jack c2
Friction at the thread angle for attaching

to jack. In the anchorage es
Friction losses due to the cable's line shape... r1

Losses due to deformation of the cable tubes... k
Friction caused by unintended wave shape ki
Adhesion in a compressed tube k2
Adhesion or increased friction due to

leaking of concrete into the tube k3

Losses due to cable slip at anchoring 0\

Losses after the anchoring A<7

Creep in the cable steel A^
Shrinkage and creeping of concrete A2,3*
Temporary variations such as changes in

temperature and load A4 5*

The theory of friction losses at cable curves.

The calculation of friction losses is normally based upon the rope
theory. In average structures, curve radii are large enough to justify
complete disregard of the effect of the stiffness of prestressed reinforcement.

When a rope is pulled over a curve and bent with the contact angle <*r

the traction Z is reduced owing to the friction between the rope and the

slab (Fig. 1). The contact stress is p — for a radius r. If the friction

coefficient is p, then the traction Z is reduced of dZ \l p r. da along the
length r. da

v dZ p. pr. da Z. p.. da

vZ Zi.e-^
(1)

if a is measured from the end 1, where the force is Z±.
The Variation of length, due ito the loading and subsequent unloading

to 0 tension of a curved prestressing cable may be calculated, by means
of a simple integration, with this well known formula.
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When loading from 0 to P0 the extension is
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where a is the total angle Variation, «x is the Variation up to an
arbitrary point and 1 r *. The final form #of this expression is obtained

by developping e~u* in series.
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Fig. 1. The theory of friction losses at a cable curve. a) Variation
of the cable stress along the length of contact. Rope friction.
Increasing of the force Pi from 0 to Po. b) Discharging from Po to
Po e-2^Ä. c) Further discharging from Po e "2^a to 0. d) Relation
between stress and strain at the end of the cable curve for one loading
and unloading cycle. e) Relation between the force Pi applied at
one end of the cable curve and the force P> actuating at the other

end, for one loading and unloading cycle.

When tmloadmg, the theoretical sequence must be divided into two
stages. The first one is when the force P is reduced from P0 to
P0 e ^a, under which the force at the fixed end will not be reduced.
The second stage, is when the force P is reduced from P0. e"2fxa toO, the
reduction at the fixed end being proportional.
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Calling 80 the extension due to PG, the residual extension after the
first stage of the unloading is:

a-8--|*(1-N/£),=3--" (3)

When changing over to the second unloading stage, i. e. when
P P0 e _2(xa, the negative term reaches its maximum value

Aoa 30(l-e-fÄ) (4)

2

Along the second unloading stage, i. e. from P0.e-"^to 0, the
residual extension is:

EA Pa EA l 2 6 J

At the change-over point between the two unloading stages the
8 curves are tangent to each other and the residual extensions is

a=a0.e-^a
It will be noted that, in all the formulae for 8, either r or 1 r. a

are found, besides a. From this it is seen that the Variation of length
cannot, as is the case for the friction loss, be independent of the curve's
shape.

The above expressions giving a relation between P and 8 for one
loading and unloading sequence are shown in Fig. 1 - d; Fig. 1 -e shows
the relation between the external force Pi and the force P2 at the
fixed end.

To illustrate the theoretical curves, results of earlier experiments [4]
carried out during 1951 and 1952 according to a program drawn up by
me, are also shown. This example has been chosen because the
prestressing cable, in this case, is curved practically along its whole length
and the shape, consequently, corresponds very nearly to the above
mentioned theoretical curves.

Fig. 2 shows the dimensions and shape of the prestressing cable
and its stress-strain diagram; its main interest lies in the fact that it
also shows the measured results under symetrioal as well as one sided
loading cycles. Under the measured curves are the corresponding theoretically

calculated ones for different values of (x. The likely value for
pl is, of course, the one which gives the best resemblance between the
measured and calculated curves. The theoretical curves are calculated
with a probable jack loss of 3 %, i. e. c 0,97. Experiments made with
the press in KTH's Laboratory for Building Statics, have shown losses
as small as 1 % f°r new jacks and as high as 8 % for jacks that have been
in use. Experiments at the site, extending two jacks against each other,
have shown losses from 1 to 6 %. It follows that 3 % must probably be
a reasonable average value.
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Fig. 2. Results of tes\ts\ with prestressed bars of almost semievrcular
shape (the Fig. is from the article Ref. 4). b) P-S-diagram at the
first loading and subsequent unloading and reloading. Symmetrical
tension from both ends. c) Repeated loading and unloading according
to b. d) Repeated loading and unloading at tension from one end.
e) Px - IVdiagram corresponding to d. /, g, h) Theoretical curves
corresponding to the measured c, d, e. Liest is estimated by comparison

between the figures for various presumed \l values.

Any loss k due to unintentional deformation of the cable tubes was
in this case, not separaitely determined but related to ^. The length being
small and the steel in the tube stiff, the effect of k ought to be small.
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It may be observed in Fig. 2 - b that the first loading gives a far
greater extension than the later cycles. This can partly be explained
by the fact that in this case, due to the small bending radius, the cable tubes
are likely to buckle at the bend causing the formation of folds. When
the cable is stretched these folds are pressed down and this deformation
appears as an extension of the cable. To a certain extent it is, however,
a real extension presumably owing to the fact that the cable at the
bend has been loaded above the flow limit, and a levelling by sheer traction
gives a greater stretching than normal. The curve corresponding to
the first loading is consequently markedly set apart from the following
cycles. These also show, however, considerable spreading, which indicates
that the value of y. is not wholly fixed. Any marked reduction of
p. as the number of loading cycles increases is hardly shown although
such a reduction seems obvious.

Experimental results observed during the construction of two bridges.

In 1953 and 1954 two bridges were built for the Port of Gothenburg,
over the Rosenlund canal, and a number of measurements were made
to determine the prestressing losses and the deformations. Both bridges
are freely^supported beam bridges and the main beams are prestressed
according to Freyssinet's system, (see Fig. 3).

At the first bridge the measurements were made by determining the
force and corresponding cable extension at one cable end only. The deter¬

mination of he constants gave
the results [4] jx 0,5, c 0,90
and k 65 kg/m for 26 ton or
k 0,003Vm, which k corresponds

to an imagined change of
direction of 1/2° per m. Judging
among other things, from the
shape of the prestressing bars
selected for the investigation and
from the spreading of the test
results, it seems that the sharing
of the losses amongst those
represented by c and by k is not very
aecurate.

During the tests carried out
in 1954 in connection with the
construction of the other twin
bridge, the steel cäbles were
therefore especially selected for

testing so that the resulting measurements should allow a separate
determination of the different influences. The measurements were, again,
carried out so as to include also the determination of the force at the
fixed cable end.

Fig. 1 shows the Variation curve of the force along a continuous cable
bend for a loading and unloading cycle. The shape of the interesting
cäbles in the bridge is, however, the one shown in Fig. 4. By combination

nlh
H

|iTh

K\Vi lim

Fig. 3. Bridge over Rosenlund
canal, Gothenburg. Span 18,5 m.
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of curve parts similar to those of Fig. 1, it is possible to obtain the
curves of Fig. 4.

Jack losses.

Jack losses are measured from the extension of a free cable pulled
at both ends through anchor blocks. This system simultaneously allows
a control of the modulus of elasticity E.

The jack loss for a Freyssinet-jack is composed of an internal loss
due to the relative movements of its different parts and of losses due

K. PPP

ba
V< >Xö*

4<K 66 66* w-

P ¦P

<UOiRe

ci6 4

¦-2A»«

Fig. 4. Curves corresponding to fig. 1 d for cäbles with straight
middle parts.

to the bending of the threads, both at the jack and at the re-bending in
the anchor block. Fig. 4 (right) may also show the stretching of a
free cable, if it is assumed that the total jack losses are represented
by one cable bend.

Fig. 5 - a shows measurement curves for two loading and unloading
cycles, jack 1 being the only one operating. Similar curves are obtained
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for jack 2. The cäbles consist of 12 0 5,0 mm and the jack's piston
area is 81,07 cm2.

The curves show fairly regulär readings. For Pi 350at the'
measured values for both experiments is p2 290at, the jack loss in
both cases should therefore be ^290:350 0,910 or 9,0 %. When unloading,

the value of p2 changes first when ipx is reduced respectively to
272 and 275, and the corresponding losses are V7 272:290 0,968 and
y/ 275:280 0,991. More satisfactory values of V 272:350 0,939 and
V 275:350 0,941, are reached if the total jack force, necessary to
change the force at the fixed end, is considered for the calculation. The
following values are obtained from the diagram corresponding to jack 2,

loading: y/310:350 0,942 5,8 %
V 305:350 0,933 6,7%

unloading: ^270:310 0,933 6,7 %
4j/262:305 0,927 7,3 %

total: y270:350 0,935 6,5 %
1/262:750 0,930 7,0%

If all the 12 values are used in order to calculate the average value and
mean error, the loss is

l-c 6,2%±0,6%

Losses can also be determined from the extension diagram shown
in Fig. 5. The vertical drop between both curves represents very accura-
tely the double jack loss, as the extension depends mainly on the extension
of the straight part of the cable.

The correction, which depends on the camber of the unloading
curve, is slight as the camber is only a function of the extension of
the jack sections represented in Fig. 4 by <3i + 02 and <$4 + o5 The
greatest of these values, i. e. öi + o2 is only about

0,96 350 81,07 — 3,85 mm,
2,1.106.2,35

while the extension of the straight part corresponding to 53 is approximately

100 mm.

The values obtained are

c ^304:350 0,933 6,7 %
^305:350 0,935 6,5%

The values obtained from the diagram corresponding to jack 2 are:

c 1/293:350 0,916 8,4 %
V7298:350 0,923 7.7%
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The resulting mean value is 7,3 %, which is fairly larger than the
one obtained from the proportion between the forces. In the subsequent
calculations the assumed likely value is 7,0 %.

A control of E gives in the first experiment

PI 0,03.81,07.350. 1864,0
3 A (10,8 — 0,735) .2,35

and the corresponding average value is E 2,05

2 070 000 kg/cm2

IO6.

Friction losses owing to unintended wave- shaped cable tubes.

The loss along the cable is assumed to be e-(f*a + ^x)> where the
exponent's first term is the normal loss due to friction in the curves of
the cable. The other term is assumed to depend on the fact that the
reinforcement is involuntarily wave-shaped while being erected. The
stays cannot be made very tight and, while vibrating the concrete
for instance, the cäbles may happen to be be further displaced. k is
calculated here as a constant along the length of the cable x. k could be
assumed to be smaller in the bends, where the stays are usually tighter;
however, the risk of leakage is perhaps somewhat greater in curves and
k in that case ought to be larger.

Experiments have been carried out with the least bent cable for
two loading and unloading cycles with Pi in Operation; similar experiments
have also been carried out with p2 in Operation. Fig. 5-b shows two
average cycles.

The diagram pa — p2 gives the proportion between these forces when
loading and unloading as well as the drop corresponding to the change
of loading. By comparing Fig. 1 with Fig. 4 it appears that the proportion
is tf.e-^.e-k* and the drop the square of this expression. Introducing
the different points of the diagram the result will be: loading 242:350

0,720; unloading 168:250 0,672; and from the drop \l 168:350 0,693.
A combination of the results also taken from the other experiments

.gives the following values:

loading unloading drop

0,685
0,657

0,768 0,707

0,720
0,720

0,672
0,672

0,693
0,693

0,700
0,685

0,8313
0,8313

0,755
0,755

If all values are given the same weight, the mean value is 0,723 ±_

± 0,012.
If the values of the known magnitudes are c 0,93, a 1°50' —

0,032 radius, and 1 17,9 m, and if \l is assumed to have probable
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limit values, then, for \i 0, the value k 0,010 and for p 0,6 the
value k 0,008. The influence of ja in this almost straight cable is thus
relatively small and it may be assumed that the likely value of the losses
due to the cable's wave shape is

k 0,009 l/m

The theoretical curves in Fig. 5 - c, also show that a value of about
k 0,01 is in agreement with the p — 8 curves.

Friction losses owing to the curves of the cable.

For the most bent cable where the factor e-^dominates, measurements

have been carried out, similar to those already described for the
least bent one. Two average cycles are shown in Fig. 5-d.

A combination of all the values of Pi/p2 as givem by the diagram of
P1-P2 gives the following results:

loading unloading drop

0,528
0,528

(0,303)
0,572

(0,378)
0,534

0,404
0,500

0,588
0,588

0,554
0,534

0,528
0,542

0,572
0,572

0,534
0,534

If both values within brackets are excluded, the average value is
0,542 + 0,007. This corresponds to c2.e-2F*.e-kl; introducing c 0,93,
a 25° 0,436 radius, k 0,009, and 1 11,677 m in the expression,
a value n 0,415 is obtained.

The theoretical curves in Fig. 5-e also show that the pair of values
k 0,010, jx 0,40 to 0,45 are in agreement with the p - 8 curves. It
should be noted that for instance k 0,020, jx 0,35 would also be
satisfactory but would not suit the straightest cable where even for ja 0, it
would be hardly possible to assume a value higher than k 0,015.

Regarding the calculation of the friction losses, it should be noted
that the Pi-p2 diagrams give the total force loss. Calculations based
on the rope equation give, in this case, very satisfactory values for
different angles. The shape of the p - 8 diagrams give a certain amount
of control as to whether or not the distribution along the length of the
cable really follows the rope equation. The correspondence of the shapes
of the measured curves and the theoretically calculated ones is quite
satisfactory. Both experiments described above — one with Dywidag-
-steel as shown on Fig. 2 and one with Freyssinet-cables as shown
on Fig. 5 — give, however, measured diagrams somewhat more «füll»
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than the calculated ones. The fact that \l at unloading is larger than
under normal conditions as long as the load is high possibly explains
this difference. For a smaller load, the Pi - p2 diagrams show that the
the value of p. is normal. It may not be entirely impossible to imagine that
the particles, pressed hard against the cable tubes, are directed in the
direction of the stress. The friction would then have to be quite large
to make them return to their original position as long as stress pressure
was high.

Cable slip at the anchoring.

When the jack is released and the cable force is transfered to the
anchoring, there is a certain slipping of the cable in relation to the
anchor block. This will cause a certain reduction of the force in the
cable but, as can be seen from Fig. 1 and 4, this generally occurs only

NumberNambec

mm05mm

i-S.-3SO25 and/~1

JWAIW

J I

l/#-3—,
-3 mm

Fig. 6. Cable slip at
anchorings.

Trrn-3-2 -7 0 1 23 4S6789 /Omm

at the ends. It is however possible, due to the injections for instance,
for a certain adjustment of the different forces to occur.

The lock slipping being rather small, as is shown below, its effect
is only noticeable in very short cäbles.

The lock slipping at both ends was measured in both bridges for
each one of the 180 cäbles. The results of these 360 measurements are
shown in Fig. 6. In this case the displacement of a point on the cable
at a distance of 60 cm from the external surface of the concrete was
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measured and reduced by 3 mm corresponding to a shortening of 3,0 to
3,5 mm of the projecting cable end while unloading.

Some results seem to indicate a negative lock slipping. If, however,
it is remarked that, in some of the cases, the sliding at the other end
of the cable is unusually large, it is obvious that a certain movement
of the cable over to one side has taken place. Such pairs of values are
marked with dotted areas in the diagram. To eliminate the influence of
such effects, the mean value of the readings at both ends of each cable
was considered. The corresponding results have been indicated in Fig. 6
with a dotted line. It may be seen that the lock slip is usually 1 or 2 mm.
Only in a few cases does this value raise above 3 mm. The mean value is
approximately 8X 1,5 mm or probably even less if it is considered that the
extension of the projecting cable is in some cases as high as 3,5 mm,
while for the diagram it is assumed to be 3,0 mm.

Measurement of permanent set.

There is a further alteration of the force in the cable after the
anchoring has been carried out, which is principally due to the shrinkage
and creep (plastic flow) of the concrete. This is the reason why it is
necessary to use relatively high tensile steel with high stresses in order
to have sufficient effective stress left, even after the permanent set
of the concrete has taken place.

In order to check these losses, the Variation of length and bending
of the bridge were measured. The measuring began at the same time
as the bridge was being prestressed and the resulting diagrams in Fig. 7,
show how closely the upward bending follows the stretching of the cäbles.
After a few months, part of the permanent set has already taken place.
The diagram also shows that ithe measured values depend, to some extent
upon air temperature changes and upon rain, both of which in combination
can give rapid cooling.

Only the main lines of the calculation principle of these deformations
are given here. From these deformations it is then possible to deduce the
prestressing losses. Secondary influences such as the reduction of the
creep due to the decrease of stress in the steel or the influence of the
reinforcement upon the shrinkage, are not treated.

Shrinkage and creeping of the concrete.

I have chosen to base the following calculation of the shrinkage
and creep of the concrete upon the calculations I had the pleasure of
carrying out for I. Häggbom as a complement to his description [5], at
the Congress in 1948, of the large concrete arch of Sandö-bridge in
Sweden. At the time the transformation of the results obtained from
testing upon concrete prisms in the laboratory to the actual arch with
its box section of concrete slabs, was undertaken following an idea
brought forward in an article by R. W. Carlson [6]. In it he points out
the possibility of using an equation corresponding to the heat equation
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in order to judge time effect upon shrinkage of concrete objecto of
different size and form.

The same equation is also valid for electric fields and diffusion of
gases; Terzaghi and Fröhlich [7, 8] for instance have also used it for the

Section
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Fig. 7. Days for prestressing of the cäbles, Deformation - time diagram.

calculation of void water Streaming in clay and for the subsequent
calculation of the corresponding settling. Because of the strong resem-
blance existing between that problem and the one treated herewith,
the equation is taken in the form given by those authors for parallel plane
clay layers.

k <)2w f)w
(bh

v y dz2 d t
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Here, w is the hydrostatic overpressure at a point with coordinate Z,
at the time t k is the water perviousness, v is the specific void water
loss, and y is the volume weight.

For three-dimensional problems, - has to be changed for the
riz-

differential parameter of Laplace, A2w.
The equation is dealt with in detail in different treatises [9, 10] on

heat, and reference is only made here to the simple Solution valid
for hydrostatic pressure wich is sinus-shaped at time i> 0. After time
t has elapsed, it has been uniformly diminished by means of the multiplier
e P * where ß is a constant and T at/d2 (7)

in which d is the thickness of the layer and a —. Using the same
vy

symbol ja for the time function of settlement, as in the above-mentioned

paper [5], one has p. 1 — e P

If the original hydrostatic pressure has a form other than the simple
sinus-shape, it can, for instance, be expressed by means of Fourier series,
and the Solution can be written in a generalized form:

f*= 1 — ^ An e~<6n ' T (8)

If instead of a slab one has a long prism, this could then be mathe-
matically treated as being composed of two slabs, one for each direction
and, in the case of a square prism the Solution is

ppr=i_(2An.e~"ßn-T)2 (9)

The curves for shrinkage K and creep f, wich were measured for
the prisms at Sandö and are intended to be used here as it is plausible
that the concrete is similar, are given in Fig. 13 of the above- mentioned
article [5]. They are easy to express approximately, by means of equation

(9) :

,f t-.-'^ fr-l-l..-f*-±..-*t-1 (1011)

With t in years, h in cm and, if a is a constant for the concrete used,
then constant ß a 138 cm? year.

This expression is easily made valid for the case of a slab by means
of the relation between equations (9) and (8):

n-t-.'W „;sl-±.e-»2-T_l.e-32'iT(10-a,ll-a)
5 5

66
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From this and assuming the shrinkage to be

10O-R
K k fAK and the creep to be f * F ^ (12, 13)

where R relative humidity, k 0,88 IO-3, o- stresss in kg/cm2 and
F 0,94 IO-5, the sinking the aforesaid bridge crown was calculated.
In the the above-mentioned paper [5] it was seen that calculated and
measured sinking were almost exactly the same, 17 cm, 5 years after
the crown was built. This corresponds to a theoretical sinking of 28 cm
counted from the time, some months earlier, when the watering was ceased
and the load brought on. After another 5 years the measured value was
19 cm and the corresponding calculated value was 20 cm. The difference
is relatively still less when the theoretical total values 30 and 31 cm
are compared. It may also be seen that the values are high up in an
extrapolated, and thus very uncertain, part of the p. tpr -curve.

This extremely good agreement is probably due to a great extent,
to the fact that, in this case proof-objects and actual construction have
rather similar cross dimensions and about the same load and Variation
of relative humidity. For more than 20 years it has been pointed out [111
that shrinkage and creep should not be calculated totally independently;
this is possibly connected with the very curved shape of the elasticity
curve of concrete. It Kas also been pointed out by G. Pickett [12], that
surface resistance should not be neglected in diffusion or heat equations. The
above deduction, where no surface resistance has been taken into account,
corresponds to a Pickett's factor B oo, As a matter of fact, B 2 should
give a little better agreement if the «diffusion constant» is similarly altered.
The difference is, however, extremely slight and it seems possible to
choose any value B as long as the other constant is equivalently adopted.
It therefore, seems necessary to take B into account only when comparing
tests of various dimensions and loadings.

In the case of the Pustervik bridge, the simplified equations (12)
and (13), with time functions (10-a) and (11-a), are applied independently
of each other for the calculation of camber and length Variation.

The time function must be altered for application to bending. In
this case, the parts nearest to the surface must, of course, play a most
significant part and the creep function for a bended slab will be rather
similar to the one for a prism with centric pressure. An estimated curve for
the upward bending due to creep where the irregulär shape of the slab
and the beam were considered, is drawn on Fig. 7 as a thin line.

The length Variation at point A due to creep, is composed of compression

with its |j.f, and of bending with its faster increasing fxfb ; the
shrinkage is to be added to both of these. In Fig. 7 only the shrinkage
is drawn as a thin line merely in order to give an idea of its magnitude.

It may be seen that there is not as yet good agreement between
these uncorrected calculated values and the measuiriings. JFhe most
important influence to be added is presumably the creep of the steel.
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Temperature variations.

Temperature variations also have a great influence upon the measu-
rings, in spite of the fact that most of the length variations due to
temperature are eliminated by measuring with a steel bar placed under
the 'paving, directly upon the concrete surface. The temperature
differences ought therefore to be small and the length variations ought
not to differ greatly.

In order to give at least a qualitative picture of the conditions for
day and night Variation of temperature, some diagrams are included,
even though they are primarily established for concrete cisterns and
dams where the temperature changes are rather large on one side and
small on the other. They are, however, also valid for relative conditions
between surface and centre of a rather thick concrete construction or,
as in this case, for a bridge deck the upper surface of which is exposed
to sun and rain, whilst the conditions underneath are more constant.

Fig. 8 shows the temperature conditions in a concrete wall, one
surface of which is exposed to a sinus-shaped temperature change with
the amplitude °P1(i and the period T. For an infinitely thick wall the
Solution [9] is

cy cy10-e l cos kx v/n (14)

05#in.-l

Here the temperautre conductive power a is 2. IO-3 to 3,5 1fr3 for
concrete. In Fig. 8, conditions corresponding to a wall with a thickness
d such that kd 4 are shown; for day
and night Variation this corresponds, to
a 0,5 to 0,6 m thick wall, which is
enough for agreement with the above
formula.

M. Ritter [13] has given a Solution
for the case of a wall with a smaller
thickness and under the condition that it
is the temperature of the surroundings
which varies. From this I have calculated
the diagrams in Fig. 9 and 10. They
show length variations and bending of
a slab for sinus-variations of temperature;

they also show how the amplitude
on the concrete surface is less than that
of the surrounding air.

For the actual Pustervik-bridge, no
detailed calculations have yet been
concluded; it has nevertheless been noticed
that the day and night movements, as
measured and drawn in Fig. 7, agree in
principle with what was to be expected ^ 0 m
from temperature variations and rain &V"££^ÄS.i owers. temperature.
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SUMMARY

Prestressing force losses have been calculated and measured for
two prestressed concrete bridges in Gothenburg. The bridges were built
accordind to the Freyssinet system. The measurements were carried out
according to two methods:

— By applying a force with a jack at one end of the cable and
measuring the force transmited to the other end.

— By measuring both the force and corresponding extension at one
end only, the other end being fixed.

The latter is particularly satisfactory for very curved cäbles and
is applied when only one end is accessible. The combination of both
these methods gives a certain control of the distribution of the prestressing
force along the cable.

Results of these measurements showed jack losses to be of 6,5 to 7 %,
which corresponds to c 0,93. This not only includes jack losses proper,
but also stretching losses at the bending of the threads, both at the
jack and in the anchor block.

The friction loss in the cable curves corresponds to u. 0,42 in the
expression e~ l10C.

The friction losses owing to unintended wave-shaped cable tubes
correspond to k 0,009 in the expression e~kx where "x" is the measured
length of the cable, in meters.

A previous measurement [4] had given approximately the same or
a little higher u. but a different ratio between "c" and "k".

The slip at anchoring was approximately 1,5 mm and exceeded
only very occasionally 3,0 mm.

Measurement of permanent set is being carried on for the purpose
of checking the calculation of the corresponding losses of prestressing
force. Some basic equations for shrinkage and creep are given. The
measurements for the hitherto rather short period of time show little
agreement, but this probably is due, partly to certain subsidiary influences
such as the irregulär shape of the bridge and to the reinforcement, and
mainly to the influence of the creeping of the prestressed steel.
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ZUSAMMENFASSUNG

Zwei nach dem System Freyssinet vorgespannte Betonbrücken in
Göteborg dienten zur Untersuchung der Spannungsverluste. Die
Durchführung der beiden Messungen erfolgte teils nach dem üblichen Verfahren,
indem eine Kraft mit Hilfe einer Spannvorrichtung am einen Kabelende
zur Wirkung gebracht und die übertragene Kraft am andern Ende
bestimmt wurde, im andern Fall indem die Spannung und die entsprechende
Dehnung nur an einem Ende unter Festhaltung des andern Endes
gemessen wurde. Die letztere Methode ist besonders für stark gekrümmte
Kabel angebracht und praktisch unumgänglich, wenn nur ein Ende erfasst
werden soll. Bei der Kombination beider Verfahren kann die Spannungs-
verteilung längs des Kabels kontrolliert werden.

Aus den Untersuchungen ergab sich ein Spannpressenverlust von
6,5 bis 7 %, entsprechend einem c-Wert von 0,93. Dieser Verlust umfasst
den eigentlichen innern Pressenverlust neben den Streck-Verlusten beim
Umbiegen der Drähte am Spannschloss und im Verankerungsblock.

Der Reibungsverlust in den gekrümmten Kabeln entspricht einem
fx - Werte von 0,42 für den Ausdruck e - V-*.

Die Reibungsverluste infolge unbeabsichtigter, unregelmässiger Form
der Kabelrohre entsprechen einem k - Wert von 0,009 für den Ausdruck
e-kx wobei "x" die Kabellänge in m, der Kurve nach gemessen, bedeutet.

Eine frühere Messung [4] ergab angenähert gleiche oder etwas
höhere [x-Werte, aber eine andere Proportion "c:k".

Die Verschiebung bei der Verankerung betrug angenähert 1,5 mm
und schlug nur gelengentlich bis zu 3 mm aus.

Die Messungen der bleibenden Formänderungen werden weitergeführt
mit dem Zweck, die Berechnung der entsprechenden Verluste bei der
Vorspannung nachzuprüfen. Einige Grundgleichungen für das Schrumpfen

und das Kriechen liegen vor. Die Messungen während der bisherigen
kurzen Zeitspanne stimmen mit den Berechnungen schlecht überein \\ der
Grund ist wahrscheinlich bei den Nebeneinflüssen zu suchen, z. B. bei
der unregelmässigen Form der Brücke und der Bewehrung, besonders
aber beim Einfluss des Kriechens im vorgespannten Stahl.

RESUMO

Mediram-se e calcularam-se as perdas de tensäo em duas pontes de
betäo preesforgado situadas em Gotemburgo. Estas duas obras tinham
sido executadas de acordo com sistema Freyssinet.

As medigöes foram efectuadas por dois metodos diferentes:

— Esticando os cabos com um macaco num dos extremes e medindo
a tensäo transmitida ao outro.

— Fixando um dos extremos e medindo no outro a forga exercida
e a extensäo resultante.
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Este ultimo metodo da iresultados satisfatörios especialmente no caso
de cabos fortemente encurvados e tambem se emprega quando so uma
das extremidades e acessivel. A combinagäo destes dois metodos permite
controlar a distribuigäo da tensäo ao longo do cabo.

Os resultados destas medigöes mostram que as perdas de tensäo nos
macaoos säo da ordern de 6,5 a 7 % o que corresponde a c 0,93. Este valor
compreende, alem das perdas devidas aos pröprios macacos, as que säo
causadas pela encurvadura dos cabos no macaco e no cunho de amarragäo.

As perdas por fricgäo, devidas ä encurvadura do cabo, correspondem
a fx 0,42 na expressäo e ~ F-*

As perdas por fricgäo, devidas a uma forma ondulada acidental do
tubo de protecgäo do cabo, correspondem a k 0,009 na expressäo e~kx
em que "x" e o comprimento do cabo expresso em metros. Em medigöes
anteriores [4] tinham-se obtido, para (x, valores semelhantes ou ligeira-
mente superiores; no entanto, a relagäo entre "c" e "k" era diferente.

O escorregamento nas amarragöes era de cerca de 1,5 mm e so
raramente ultrapassou 3 mm.

Estäo actualmente em curso medigöes das deformagöes permanentes
que se destinam a verificar as perdas de tensäo correspondentes.

O relatörio inclui igualmente, algumas equagöes de base relativas
ä contracgäo e ä fluencia.

Os resultados das medigöes efectuadas durante o espago de tempo
relativamente curto que medeia desde que as pontes foram postas em
tensäo näo correspondem exactamente aos valores dados pelos cälculos,
o que pode talvez ser atribuido em parte a certos factores secundärios
tais como a forma irregulär da ponte, a armadura e principalmente ä
fluencia do ago em tracgäo.

R£SUM£

Les pertes de tension ont ete mesurees et calculees sur deux ponts
en beton pecontraint situes ä Göteborg. Ces deux ouvrages ont ete
construits selon le Systeme Freyssinet.

Les mesures ont ete effectuees suivant deux methodes differents:

— En tendant les cäbles, ä l'aide d'un verin, ä l'une de leurs
extremites et en mesurant l'effort transmis ä l'autre.

—. En fixant l'une des extremites et en mesurant ä l'autre la force
exercee et l'extension resultante.

Cette derniere methode donne des resultats particulierement satisfai-
sants dans le cas de cäbles ä forte courbure et s'applique egalement
quand seule l'une des extremites est accessible. La combinaison de ces
deux 'methodes permet de controler la distribution de la tension le long
du cäble.

Les resultats de ces mesures montrent que les pertes de tension
aux verins sont de l'ordre de 6,5 ä 7 % ce qui correspond ä c 0,93.
Ce chiffre comprend, non seulernent les pertes dues aux verins eux-memes,
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mais aussi celles dues ä la courbure des fils dans le verin et dans les
cönes d'ancrage.

Les pertes par friction dues ä la courbure du cäble sont donnees, pour
y. 0,42, par l'expression e - P*

Les pertes par friction dues ä une forme ondulee accidentelle des
tubes de protection des cäbles sont donnees, pour k 0,009, par l'expression

e_kx, oü "x" est la longuer mesuree du cäble exprimee en metres.
Une mesure anterieure [4] avait donne pour fx des resultats semblables ou
legerement superieurs, mais le rapport entre "c" et "k" etait alors
different.

Le glissement aux ancrages etait de l'ordre de 1,5 mm. et ne depassait
que rarement 3 mm.

Des mesures des deformations permanentes sont en cours dans le
but de verifier les pertes de tension correspondantes.

Le rapport comprend egalement quelques equations de base relatives
au retrait et au fluage.

Les mesures effectuees pendant le temps relativement court qui s'est
passe, ne donnent pas encore une correspondance tres rigoureuse avec le
calcul, ce qui peut, probablement, non seulernent etre attribue an partie ä
certaines influences secondaires telles que la forme irreguliere du pont et
l'armature, mais surtout ä l'influence du fluage de l'acier tendu.
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Nouveaux types d'armature precontrainte

New types of prestressing cable

Neue Typen von Vorspannarmierungen

Novos tipos de armadura para betäo preesforgado

Prof. J. COURBON
Ingenieur en Clief des Ponts et Chaussees

Paris

A) ARMATURE SOUPLE PRETEDUE

I - Description de Varmature souple pretendue

L'armature souple pretendue Systeme Chalos comprend trois elements
essentiels:

a) un element tendu: la gaine, forme de torons d'acier trefile enroules
en helice sur un tube en acier flexible.

b) un support provisoire comprime, Vame, forme de courts noyaux
en acier, capable d'equilibrer la traction de la gaine.

c) des organes de jonction aux extremites de l'armature, les culots,
permettant de reporter la traction de la gaine sur l'äme pendant
la construction, puis sur le beton ä precontraindre, apres extraction
de Täme.

L'armature souple precontrainte est donc capable de conserver une
tension constante et connue pendant un temps suffisamment long pour
permettre son transport, sa mise en place et le betonnage des elements
sur lesquels sera reportee sa tension apres ducissement du beton.

L'armature souple presente tous les avantages des armatures tendues
ä l'avance sur ancrages fixes en ce qui concerne l'adherence au beton
et la connaissance precise des forces de precontrainte. Le procede utilise
pour sa mise en tension permet d'obtenir une tension uniforme le long de
l'armature connue avant emploi et susceptible meme d'etre modifiee avant
le betonnage. Cete uniformite de la tension n'est pas alteree par les
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deformations elastiques ou permanentes que l'armature doit subir pour
etre disposee suivant le trace prescrit. La robustesse de l'armature, mise
en place dans les coffrages avant betonnage, permet la pervibration dans
la masse, au contact meme de l'armature. II en resulte un enrobage total
de l'armature, constituant la plus sure garantie pour sa conservation.

L'armature souple pretendue, bien que se rattachant ä la classe des
armatures mises en tension sur ancrages fixes avant coulage du beton,
ne presente pas l'inconvenient d'immobiliser le moule pendant le durcisse-
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Armature souple pretendue
Details

ment du beton. Gräce au support provisoire interieur, le materiel necessaire

ä la mise en tension n'est immobilise que quelques heures par armature.

II serait du reste difficile d'obtenir au moyen d'ancrages fixes, sans
depense excessive, des forces de precontrainte aussi importantes que celles
mises en oeuvre par l'emploi simultane de plusieurs armatures souples
pretendues (90 tonnes par armature).

La fäbrication des armatures souples precontraintes exige des fils
d'acier de haute qualite. Enfin, leur mise en oeuvre impose aux armatures
des efforts de traction superieure ä ceux qu'elle supportera en service.
Cet exemple assez rare d'un essai total portant sur tous les elements
mis en service sans aucune exception, constitue une amelioration non
negligeable du facteur securite.

II — Description des elements de Varmature souple pretendue

sl) Gaine: L'element tendu de l'armature est constitue par deux
nappes de torons enroules en helice de sens oppose sur un tube support.
Les pas et le nombre des torons de chaque nappe sont determines de fagon
que s'equilibrent les couples de torsion de chacune des nappes tendues
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1) Les torons: Les torons sont formes de fils de 2 ä 4 m/m de
diametre en acier trefile d'une resistance ä la rupture de
180/200 kg/mm2 et d'un allongement de rupture appreciable.

La gaine toute entiere est ecrouie ä un taux moyen de
160 kg/mm2 ä 170 kg/mm2 environ. Cet ecrouissage qui se fait
progressivement, permet d'obtenir un ensemble dont les defor-

Armature souple pretendue Detailes
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2)

mations sont rigoureusement proportionnelles ä la tension lorsque
le taux de traction de l'acier varie de 0 ä 160 kg/mm2.

II est necessaire qu'il y ait une possibilite de deformation
plastique assez importante, pour permettre d'egaliser les tensions
dans les differents cablots et d'aboutir ä un ensemble homogene.
Pratiquement, les fils employes ont un allongement ä la rupture
de l'ordre de 2 %.

Tube support: Le tube support a un diametre interieur de 45,6 mm.
II est flexible et etanche. Pour l'obtenir, on enroule en helice un
feuillard de 80 mm de largeur, en acier doux. Avant son enroulage,
le feuillard porte des saillies ou «taquets» obtenues par poingon-
nage et qui definissent les helices d'enroulement des torons.
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Les taquets sont, l'autre part, indispensables pour maintenir
en place les torons, lorsque l'armature en Charge est disposee
suivant un trace courbe. En effet, les taquets empechent les
torons de glisser les uns par rapport aux autres.

b) Arne: L'äme est l'organe qui sert ä maintenir la tension de la
gaine depuis la mise en tension de l'armature jusqu'au moment de mise
en precontrainte du beton.

Elle est formee d'une chaine d'elements cylindriques en acier dur
trempe de 44 mm de diametre et de 160 mm de longueur. Chaque element
est termine par deux surfaces cylindriques de 30 mm de rayon. Ces
surfaces sont convexes pour un element (element male) et concaves pour
l'element suivant (element femelle).

Dans l'armature en Charge, les elements s'appuient les uns sur les
autres et chacun d'eux peut eprouver un deplacement angulaire par rapport
ä un element voisin en glissant sur la surface d'appui.

Les elements de l'äme ont un diametre inferieur au diametre interieur
du tube. Ce jeu est necessaire pour une introduction et une extraction
faciles. Ce jeu ne nuit en rien ä la stabilite de l'armature en charge,
ni ä sa stabilite pendant les manipulations.

c) Organes de jonction: Les organes de jonction aux extremites de
l'armature ont un röle double: reporter sur l'äme la traction des cäbles
de la gaine pendant la periode de la mise en tension de l'armature ä la
precontrainte du beton, et ensuite reporter sur le beton durci la tension
de la gaine au cas oü, pour une raison quelconque, l'adherence des torons
de la gaine au beton ä precontraindre ferait defaut.

Les organes de jonction sont des prismes en beton frette dc 0,50 m
de longueur et dont la section transversale est un octogone inscrit dans
nn cercle de 0,21 m de diametre. Les fils des torons de la gaine sont
ancres dans ce beton qui fait office de culot d'ancrage.

Au moment de la mise en tension de l'armature, la tension des cablots
est reportee sur l'äme par un tirefond en acier visse dans le beton du
culot d'ancrage. L'empreinte du tirefond se fait au moment du betonnage
du culot. L'extremite du tirefond etant legerement engagee dans le tube
support pour eviter toute entree de mortier dans le tube. On retire le
tirefond apres prise du beton. Les blocs d'ancrage sont ainsi traverses
longitudinalement par un tube d'un diametre süffisant pour permettre
l'introduction et l'extraction des elements de l'äme.

L'extremite du tirefond a une section carree qui permet, soit de le
visser pour le mettre en contact avec l'äme soit de le devisser sous charge
pour reporter la tension de l'armature sur le beton en dechargement l'äme.

Le pas et le trace des filets du tirefond ont ete choisis de maniere ä
permettre un devissage facile du tirefond sous la poussee de l'äme, sans
toutefois que celui-soit reversible.

III — Mise en tension de Varmature

La mise en tension de l'armature se fait dans un «banc de mise en
tension» ä l'aide de deux verins: Tun servant ä tendre les torons et l'autre
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plus petit ä exercer sur les elements de l'äme une poussee par l'intermediaire

du tirefond du culot d'ancrage.
Le banc de mise en tension se compose essentiellement de deux

poutres paralleles (INP ou ILA) entretoisees et terminees par deux
traverses T et T'.

L'armature terminee avec les tirefonds visses jusqu'au contact de
l'äme est placee sur le banc de mise en tension entre les deux poutres C.
L'un des culots d'ancrage C est rendu solidaire d'une traverse d'extre-
mite T. Le deuxieme culot d'ancrage est saisi par un palonnier qui
regoit la poussee du verin D prenant appui sur la traverse d'extremite T'
du banc ä travers laquelle passe de palonnier.
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Un verin auxiliaire D' prenant appui sur l'autre face de la traverse T'
permet d'exercer une poussee sur l'äme par intermediaire du tirefond
du culot d'ancrage.

Les differentes phases de l'operation sont les suivantes:

a) Ecrouissage de l'armature ä l'aide du verin D. On soumet l'arma¬
ture ä une serie d'extensions depassant la limite elastique des
aciers, suivies de decharges completes jusqu'a ce que les allongements

de l'armature et les efforts auxquels eile est soumise soient
proportionnels de zero ä une valeur correspondant ä une contrainte
moyenne des torons de 160 kg/mm2. Les cycles correspondants
representes sur le diagramme sont: OAB, BCD, DEG.

b) L'armature etant devenue un Systeme elastique, on tend l'armature
ä une tension F' interieure au domaine elastique. L'operation se
traduit sur le graphique par la droite G H'.

C^f

f
4//vito*/ne/*:ji0 OC

c) A l'aide du verin D' on exerce sur l'äme une compression Q par
l'intermediaire du tirefond qui est visse au für et ä mesure que
la poussee du verin D' augmente. La compression de l'äme est ä
chaque instant tres sensiblement egale ä la poussee du verin D',
le vissage du tirefond ne pouvant se faire que si la difference
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entre la compression et la poussee est tres faible. On effectue ainsi
une Substitution d'appui de la tension de la gaine sans Variation
de cette tension, ce qui se traduit sur le graphique par la droite
verticale H H'.

d) On decharge ensuite lentement le verin D. La tension de la gaine
decroit de la valeur F' ä la valeur F tandis que la compression
de l'äme augmente de la valeur Q ä la valeur F. C'est la partie H,
I du graphique.

La tension finale de l'armature est donnee par l'ordonnee I I'.

B) OUVRAGES CONSTRUITS AVEC EMPLOI D'ARMATURE SOUPLE

Pont sur la Focht ä In-
gershein (Haut-Rhin)

Ce pont a ete construit en
1950 et a permis pour la
premiere fois, l'emploi de l'armature

souple pretendue. C'est
pour cette raison que les
caracteristiques choisies n'ont rien
d'exceptionnellement ose.

II est constitue par deux
travees continues de 24,50 m de
portee. Sa hauteur constante
d'une culee ä d'autre est de
1,62 m. II supporte une chaussee

de 6 m et deux trottoirs de
1,50 m, de largeur.

Pont d'Ingersheim. Courbure des
armatures de precontrainte sur

<„

NX
N'

Pont sur le Canal du Loing ä la Genevraye (Seine-et-Marne)

Cet ouvrage est un pont dalle de 24 m de portee dont l'epaisseur
varie de 0,79 m sur les culees ä 0,85 m ä la cie. L'eclancement est de 1/28.

II supporte une chaussee de 5,50 m et deux trottoirs de 1 m.
II est precontraint dans le sens longitudinal et dans le sens

transversal par des armatures souples pretendues. Les culots d'ancrage des
armatures transversales sont visibles sur la Photographie.

Pont sur la Seine ä Chartrettes (Seine-et-Marne)

C'est un cantilever ä articulation centrale dont les portees sont
29,46 m, 55,68 m et 29,46 m. II a ete construit sur les piles et culees
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Pont de la Genevraye sur le Canal du Loing

existantes, ce qui a necessite la construction de contrepoids aux extremites

des travees de rive.
Le trace de l'intrados a ete determine en fonetion des gabarits de

navigation imposes pendant et apres la construction.
II supporte une chaussee de 6 m et deux trottoirs de 1 m.
Les deux poutres consoles ont ete construites l'une apres l'autre en

remployant le meme cintre. Elles ont ete reunies apres mise en precon-

Pont de Chartrettes, sur la Seine
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trainte par l'articulation centrale qui ainsi ne subit d'efforts que sous
les surcharges.

Pont sur le Canal de Nantes ä Brest Redon (Ille & Vilaine)

Cet ouvrage est un bow-string de 42,50 m de portee.
Les deux arcs sont en forme de double T dont la hauteur est de

1,30, les ämes et les
ailes ayant la meme
epaisseur 0,25.

Le tirant est constitue

par la dalle de 0,25
d'epaisseur qui s'etend
sous la chaussee et les
trottoirs. Les 12 armatures

de precontrainte
sont placees dans la
dalle et reparties ä raison

de 4 sous chaque
are et 4 sous la chaussee.

De cette maniere,
la poussee maximum
est inferieure ä la
somme des tensions des
armatures places au

droit de 1'arc. Les cisaillements longitudinaux dans la dalle sont ainsi
reduits ä une valeur extremement faible.

Les culees sont fondees sur le schiste ä faible profondeur.

Pont sur le Canal de Nantes ä Brest ä Redon
(Ille & Vilaine)

Pont sur la Garonne ä Ondes (Hte Garonne)

L'ouvrage est constitue par cinq travees independantes de 39,20 m
de portee, la hauteur
des poutres est de 2,35.
La dalle sous chaussee
et trottoirs est supportee

par 4 poutres
longitudinales reunies par
sept entretoises est
precontraintes chacune par
six armatures souples.

Les piles et culees
sont fondees sur des
caissons descendus par
havage sur le tuf dur.
Les caissons des culees
sont en beton arme. Les
caissons des piles sont
ä double paroi metalli-

w

Pont d'Ondes sur la Garonne
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ques. Ils ont ete mis en place au blondin et lestes par du beton coule
entre les deux parois.

L'ouvrage a ete construit sur cintre en bois ä l'avancement.

Pont sur le Boulevard de Ceinture ä St Föns - Lyon (Rhone)

L'ouvrage comprend trois travees continues dont les portees biaises
sont 23,80 - 36,50 - 23,80. La largeur totale de l'ouvrage est de 25,50 m.
II est coupe dans le sens longitudinal par un Joint place dans Taxe de

l'ouvrage. L'angle du biais est de 42° 35'.
Chaque moitie supporte une chaussee de 8 m, un trottoir exterieur

de 2,75 m et un trottoir central de 2 m. L'ouvrage est du type caisson,

Pont sur le Boulevard de Ceinture ä St Föns — Lyon (Rhone)

la dalle superieure ayant une epaisseur de 0,18 m et la dalle inferieure
une epaisseur de 0,07 m. Les deux dalles sont reunies par six poutres
longitudinales precontraintes chacune par six armatures souples en travee
de rive. Des entretoises espacees de 6 m environ reunissent les poutres
transversalement. Elles sont armees par des aciers doux ordinaires.

Par suite du biais, l'ouvrage n'a qu'un seul point fixe, les autres
appuis ayant des articulations spheriques.

Reservoir ä hydrocarbures (Maitre de Voeuvre Marine Nationale)

C'est un reservoir de 2 700 m3 pour hydrocarbure de forme torique.
La paroi cylindrique exterieure est precontrainte par des armatures verticales

et horizontales en forme de demi-cercle. La partie superieure et la
partie inferieure sont des calottes toriques qui s'appuient sur un pilier
central et la paroi cylindrique exterieure.

Ce reservoir a subi avec succes les essais d'etancheite ä l'eau et aux
hydrocarbures avec suppression de 400 g/cm2 et depression de 20 g/cm2.
II est actuellement en service.

Im
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Reservoir ä hydrocarbures de 2 TCO m:i

C) NOUVELLE ARMATURE DE PRECONTRAINTE

La Societe des Grands Travaux de Marseille a mis au point un
nouveau type d'armature de precontrainte mise en tension sur le beton
durci.

Ces armatures sont constituees par des torons d'acier trefile dur
maintenus en tension par des ancrages metalliques d'un type brevete.

Acier de precontrainte

Les armatures sont constituees par un certain nombre de torons
de 7 fils, dont le diametre peut varieur de 3 ä 3,6 mm. Le nombre de
torons est determine par la force que l'on desire obtenir. Les deux
types principaux d'armatures comprennent 4 et 7 torons. Une armature
de 4 torons de 7 fils de 3,6 permet une tension initiale de 35 t. Une
armature de 7 torons de 7 fils de 3,6 permet une tension initiale de 65 t.

Dans les deux cas, ces torons sont cäbles ensemble de fagon ä obtenir
un ensemble n'ayant aucune tendance ä un ecrasement. Le cäble obtenu
presente cependant une tres grande souplesse et permet les traces les

plus sinueux. L'acier employe pour les torons est de l'acier trefile de
la nuance 160/180 ou meme 180/200.
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Ancrages de Varmature (voir dessin)

L'ancrage est un organe metallique constitue par une frette
cylindrique maintenant des clavettes en acier mi- dur serrees sur les torons.
A la mise en tension, les clavettes sont matricees sur les torons par la
frette cylindrique exterieure. Les clavettes reportent la tension des fils

Armature de 65
Ancrage

Frette

p-fi-u.

Bcto

Clavette

Plaque d'appui

Poo(ee-oqo

sur le beton par appui sur une plaque d'acier permettant la repartition
des pressions sur une surface süffisante.

Les clavettes, dont le nombre pour un ancrage donne est egal au
nombre des torons, sont profilees suivant une surface cylindrique d'un
diametre legerement inferieur ä celui des torons et pour la face exterieure
suivant une surface cylindrique egalement.

La frette est un cylindre creux dont la partie inferieure presente
un evasement torique permettant l'introduction des clavettes. Elle est
enfoncee ä force et exerce alors un serrage süffisant pour entrainer une
penetration des fils torons dans le metal des clavettes.
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Mise en tension de Varmature

L'armature est mise en tension par traction ä ses extremites au
moyen de verins annulaires ä deux corps opposes. Les torons de l'armature
sont enfiles dans le tube interieur du verin et ancres ä la partie arriere
du verin par un ancrage provisoire.

La mise en tension s'effectue en prenant appui sur le beton durci
ä precontrainte. Le corps arriere du verin tend les cäbles tenus dans
l'ancrage provisoire. Apres ecrouissage et tension ä la valeur desiree,
la frette est enfoncee sur les clavettes qui occupent dejä leur fonetion
definitive par le corps avant du verin. A l'ecrouissage, la tension des
torons est portee ä 150 kg/mm2, apres plusieurs montees ä des valeurs
inferieures et descente complete. Ces Operations ont pour but d'egaliser
des tensions entre les differents torons de l'armature. Apres avoir ete
maintenue pendant quelques minutes ä 150 kg/mm2 environ, la tension
est ramenee ä la valeur desiree.

Apres mise en tension, on injecte un coulis de ciment dans la gaine
oecupee par l'armature, par l'intermediaire d'un orifice tranversant
l'organe d'ancrage.

Qualites de Varmature

En dehors de ses qualites de robustesse, de facilite d'emploi et
d'economie, l'armature presente trois caracteristiques essentielles:

— Absence totale de glissement de l'armature dans son ancrage au
moment de la mise en tension;

— Coefficient de frottement tres faible (inferieur ä 0,08);
— Possibilite de mise en precontrainte par troncons en laissant aux

cäbles la longueur necessaire pour la mise en precontrainte
definitive.

On peut montrer l'absence de glissement de l'armature dans son
ancrage au moment de la mise en tension de la maniere suivante: la frette
cylindrique exterieure est bloquee sur les clavettes par le corps avant du
verin. Si on place entre la frette et le verin une plaque d'un diametre
legerement inferieur au cäble de precontrainte, le cäble est erraffle en
surface par cette plaque et on mettrait en evidence s'il existait le deplacement

relatif des fils et des clavettes.
Diverses experiences ont ete faites pour determiner la valeur du

coefficient de frottement. On s'est servi pour ces experiences du tube
support d'armature souple pretendue decrit par ailleurs. Ces armatures
avaient ete utilisees pour la precontrainte d'ouvrages d'art. Les
experiences ont ete faites avant l'injection de ces armatures.

La premiere experience a eu lieu au pont de St Föns, ouvrage ä trois
travees continues. Le trace de l'armature etait le suivant:

34/O
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Longueur totale 84,10m
Somme des angles en valeur absolue 93° 44'
Rapport moyen des tension entre les manometres places ä

chaque extremite apres correction 0,93
Valeur du coefficient de frottement 0,045

La seconde experience a eu lieu au Pont d'Ondes, sur la Garonne.
Le trace de l'armature etait le suivant:

ti * ho'

TO,*&

tool, 12*°* 0,397J 26.71

Longueur totale 27,74 m
Somme des angles en valeur absolue 43° 20'
Rapport moyen des tensions entre les manometres places ä

chaque extremite apres correction 0,94
Valeur du coefficient de frottement 0,08

La valeur tres faible de ce coefficient est due en grande partie ä la
conception meme de l'armature. L'emploi de torons cäbles formant un
ensemble robuste facilite un glissement l'armature n'etant en contact
avec la gaine que par points. L'ensemble des torons n'a pas tendance ä
s'ecraser dans les parties courbes.

La troisieme qualite de cette armature est la possibilite qu'elle
procure de mettre en precontrainte un element par trongons pouvant
servir ä l'assembler sur un autre trongon. II suffit pour cela de laisser
au cäble une longueur süffisante, au-delä de l'ancrage provisoire sur le
verin. On voit toutes les ressources que procure cette possibilte pour
la prefabrication.

Enfin, employee simultanement avec l'armature souple pretendue,
eile permet d'obtenir des unites de l'ordre de 150 t dans un espace tres
reduit et d'une maniere tres economique, le tube support de l'armature
souple procurant une gaine gratuite ä cette nouvelle armature.

RUSUME

La «Societe des Grands Travaux de Marseille» a mis au point deux
systemes d'armature de precontrainte.

L'armature souple pretendue (Systeme «chalos») qui comprend trois
elements essentiels:

— un element tendu, la gaine, forme de torons d'acier trefile, enroules
sur un tube,

— un support provisoire comprime, l'äme, forme de courts noyaux
d'acier,

— des organes de jonction aux extremites, les culots.
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Les avantages sont: l'adherence parfaite au beton, la connaissance
precise des forces de precontrainte, l'uniformite de la tension le long de
l'armature qui est conservee quelles que soient les deformations imposees
ä l'armature pour obtenir la trace prescrit.

La fäbrication et la mise en place des armatures ne fait appel qu'ä
un materiel simple et immobilise peu de temps.

De nombreux ouvrages construits avec ce type d'armature sont en
en service et donnent entiere satisfaction.

Un second type d'armature de precontrainte qu'on met en tension en
prenant appui sur le beton ä precontraindre est constitue par des torons
d'acier trefile, ancres par matrigage de clavettes ä 1'interieur d'une frette
cylindrique.

Les qualites sont notamment:

— l'absence totale de glissement de l'armature dans son ancrage au
moment de la mise en tension,

— un coefficient de frottement tres faible (inferieur ä 0,08).

Ces deux types d'armatures peuvent etre utilises simultanement, le
tube de l'armature souple procurant une gaine gratuite ä la seconde.

SUMMARY

The «Societe des Grands Travaux de Marseille» has devised two
new types of prestressing cäbles.

One of them is the «pre-tensioned flexible reinforcement» with three
basic components:

— a stretched element or «sheath», composed of wiredrawn steel
Strands twisted around a tube,

— a temporary compressed support or «core» composed of short
steel stubes,

— end anchorages.

It insures an excellent steel-concrete bond, an exact knowledge of
of prestressing forces and a uniform tension along the cable, whatever
its shape in the strueture.

Manufacturing and installation requires only a simple equipment
in use for a short time.

There are many structures in service built by this process, their
behaviour being very satisfactory.

The other type of reinforcement, which is prestressed by using the
concrete as a support, is composed of wiredrawn steel Strands, anchored
by steel keys in a cylindrical end-piece.

It is completely slip-proof at the anchorage at prestressing and its
friction coefficient is extremely low, inferior to 0,08).
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Both types of reiforcement can be used simultaneously, the tube of
the flexible cable then becoming a sheath for the second.

ZUSAMMENFASSUNG

Die Societe des Grands Travaux de Marseille hat zwei Systeme von
Vorspannarmierungen herausgebracht.

Die biegsame Armierung mit vorausgehender Vorspannung, die aus
drei Hauptteilen besteht:

— ein gespannter Teil, ein «Kabel», bestehend aus Litzen von
gezogenem Stahldraht, die auf einer Röhre aufgewickelt sind,

— eine Stahl-Kern als vorübergehende, gedrückte Abstützung aus
kurzen Stücken,

— die Verbindungsteile an den Enden, die Anker.

Die Vorteile sind die folgenden: die vollkommene Haftung mit dem
Beton, die genaue Kenntnis der Vorspannkräfte, die Gleichförmigkeit
der Spannung längs der Armierung, die unabhängig von all den für
die vorgeschriebene Linienführung der Armierung auferlegten Abbiegun-
gen, erhalten bleibt.

Die Herstellung und Montage der Armierung verlangt nur einfache,
Kurzfristig verwendete Hilfssmittel.

Zahlreiche Bauwerke mit diesem Vorspannsystem stehen heute zur
vollen Zufriedenheit im Gebrauch.

Ein zweiter Typ einer Vorspannarmierung, die unter Abstützung
gegen den vorzuspannenden Beton gespannt wird, besteht aus gezogenen
Stahldraht-Litzen, die mit Keilen im Innern eines zylindrischen Stahlrings
verankert werden.

Die Merkmale sind im besondern:

— das vollständige Fehlen eines Gleitens der Armierung in der
Verankerung im Zeiptpunkt der Vorspannung.

— ein sehr kleiner Reibungskoeffizient (kleiner als 0,08).

Diese zwei Armierungstypen können auch gemeinsam verwendet
werden, indem das Rohr der biegsamen Armierung als Hülle für die
zweite dient.

RESUMO

A «Societe des Grands Travaux de Marseille» elaborou dois novos
tipos de armaduras para betäo preesforgado.

Pode citar-se em primeiro lugar a «armadura flexivel em pre-tensäo»
que compreende tres elementos essenciais:

— um elemento em tensäo, ou «bainha», formado por fios de ago
trefilados enrolados em torno de um tubo,
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— um suporte provisörio comprimido ou «alma» formada por curtos
cilindros de ago,

— örgäos de uniäo nas extremidades ou ancoragens.

Este tipo de armadura permite garantir uma aderencia perfeita
com o betäo, o conhecimento exacto das forgas de pre-tensäo e a unifor-
midade da tensäo ao longo do cabo, que se mantem sejam quais forem as
deformagöes impostas ä armadura para seguir o tragado prescrito.

A fabricagäo e a colocagäo das armaduras exigem apenas um material
simples e imobilizado durante tempo.

Numerosas obras construidas por este processo estäo ja em servigo,
e o seu comportamente tem sido satisfatörio.

0 outro tipo de armadura, que e preesforgada tomando apoio sobre
o betäo, e constituido por fios de ago trefilados, fixados por chavetas
num cilindro fretado.

Este tipo de armadura garante uma ausencia total de escorregamento
na ancoragem quando e posta em tensäo e um coeficiente de atrito muito
baixo (inferior a 0,08).

Os dois tipos de armadura podem empregar-se simultäneamente,
formando o tubo da armadura flexivel bainha para o segundo tipo.
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