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CIIl

Theorie de la fissuration des pieces flechies en beton arme

Theory of the formation of cracks in reinforced concrete sections
subjected to bending

Theorie der Rissebildung bei Eisenbetonquerschnitten auf Biegung

L. P. BRICE
Ingenieur E.C.P., Paris

NOTATIONS EMPLOYEES

Z Force d'adherence par frottement non elastique par unite de longueur du groupe
des barres tendues

o- Force d'adherence par frottement non elastique par unite de surface des barres
s Contrainte elastique d'adherence en section homogene fissuree
s0 Contrainte elastique d'adherence en section homogene non fissuree
<j> Contrainte de l'acier
R Contrainte du beton
R'b Limite de rupture du beton par traction simple ou par traction due ä une

flexion *
Ea Module elastique de l'acier
Eb Module elastique du beton
e Module elastique apparent de l'acier

m Rapport des modules elastiques acier beton w=—
Lb

il Coefficient d'equivalence des deformations de l'acier et du beton
S Section du beton
oi Section d'acier tendu

* Les calculs etant faits dans le domaine elastique, la valeur de R'b ä prendre en compte dans
le cas de la flexion est celle de la formule elastique R'b=6M/bh2 et non'les six dixiemes de cette
valeur admise comme resistance ä la traction simple.
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öj Pourcentage d'acier tendu par rapport au produit de la hauteur totale par la

largeur de beton tendu
d Diametre d'une barre (ou diametre moyen des barres)
x Longueur sur laquelle est applique l'effort d'adherence
A Longueur sur laquelle doit etre applique l'effort d'adherence pour provoquer la

rupture par traction du beton
/ Distance moyenne separant deux fissures
AI Deplacement relatif de l'acier par rapport ä la face d'une fissure ou ouverture

d'une fissure
L Longueur de la region fissuree d'une poutre flechie

f Fleche residuelle
z Bras de levier du couple resistant en section fissuree

1. Hypothese concernant la liaison acier beton : traction simple

(a) Hypothese fondamentale definissant les conditions de la liaison entre les aciers et
le beton

Quelques experiences personnelles et l'etude d'une serie tres complete d'essais
effectues au Laboratoire du Bätiment et des Travaux Publics par M. Bichara et dont
M. L'Hermite, Directeur du Laboratoire, m'a fort aimablement permis de prendre
connaissance m'ont amene ä constater que:

l'adherence se presente sous deux formes essentiellement differentes, selon
qu'il s'agit d'une liaison elastique, consequence d'une deformation simultanee
du beton et du metal, ou d'une adherence non elastique dans laquelle les
deformations n'ont plus les memes caracteres de simultaneite.

l'adherence elastique n'existe que s'il n'y a pas fissuration du beton et si les

deplacements relatifs du metal et du beton qui l'enrobe restent nuls pendant
le fonctionnement de la liaison.

l'adherence non elastique, au contraire, se produit lorsque le beton s'est
fissure et quand le deplacement de la barre, par rapport au beton, devient
effectif.

C'est ce dernier cas qui nous interesse tout particulierement car il intervient
toujours des qu'il y a fissuration. L'etude des experiences precitees nous a conduit
ä formuler la loi suivante suffisamment approchee pour les deplacements et les efforts
pratiquement atteints en fonctionnement normal:

Pendant les deformations non elastiques les forces de liaison du beton et du metal
ont le caractere d'un frottement constant toujours dirige en sens contraire du deplacement

de la barre dans la gaine de beton.

En consequence, l'effort Z par unite de longueur qui s'oppose au deplacement
d'un groupe de n barres de diametre d, de section totale

a pour valeur:

Z=no-rrd=—td

en appellant o- le frottement par unite de surface de barre.
C'est en completant de cette seule hypothese celles qui sont universellement

admises en resistance des materiaux que nous avons etabli la theorie qui suit.
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(b) Repartition des contraintes le long d'un scellement

Deformations avant fissures

Considerons une barre scellee dans un massif indefini. A l'origine, toutes les
contraintes sont supposees nulles. En exercant une premiere fois une traction F sur

^ s
<p

%

M A„e

Fig. 2Fig.l

l'extremite libre de la barre, la repartition des contraintes <f> dans la barre suit une
loi lineaire. En un point B de profondeur x on a (fig. 1):

*=-
F-Sx

-=<f>o--jX

Au point y4 de la section de la barre definie par la face du massif la contrainte est:

J>-F¦Po—-

Au point C d'abcisse \=<j)0— la contrainte est nulle.

Si l'on fait decroitre F jusqu'ä une valeur F' le nouveau diagramme aura l'aspect
F'DC et si F est reduit jusqu'ä 0 le diagramme sera un triangle isocele AEC.
Augmentan!, ä nouveau F jusqu'ä une valeur F" on aura une repartition teile que F"GEC.

En determinant le deplacement A0l du point A de l'acier par rapport ä la face du
massif on trouve immediatement que sous I'application premiere de la force F

EaA0l=<f>02-
off

En fonction de <j>a le deplacement Af suit (fig. 2) une loi parabolique Oa ; en
faisant decroitre ^0 jusqu'ä </>i on voit que le raccourcissement, ä partir de l'allongement

A0l a pour valeur:

Le raccourcissement pendant la diminution de l'effort est represente par une
deuxieme parabole de sommet a, coupant l'abcisse au point b, tel que:

Si l'on fait remonter l'effort de 0 ä <f>0 on constate que le deplacement de A est une
troisieme parabole bca teile que:



794 cn i—l. p. brice

On voit donc apparaitre, comme consequence de la liaison par frottement, un
diagramme de deformations irreversibles, ayant Failure classique des courbes
d'hysteresis.

II est ä noter que si l'on avait fait varier l'effort de traction suivant une autre loi
qu'un accroissement continu de 0 ä 4>o et une diminution de 4>0 ä 0 on aurait pu
tracer un cycle interieur au cycle bcad.

Les deformations dues au frottement ont donc le double caractere de n'etre ni
elastiques, puisque les deplacements sont proportionnels au carre des forces, ni
reversibles, puisque le phenomene d'hysteresis rend de nouvelles deformations
dependantes des deformations anterieures et de la loi d'application des efforts.

(c) Apparilion des fissures dans le beton

Explication de F"Etirage" du beton

Lorsque l'on exerce une traction croissante appliquee aux deux extremites d'une
barre enrobee sur une longueur assez grande dans un bloc de beton de section assez

faible, il y aura un moment oü la fissuration se

/| \ / produira. En effet dans la partie mediane du
Vr —I 1 V.' i i » r- • ,r- -.\~j i yC I bloc on a avant fissuration (fig. 3):

M J' ^ ,:

F=SR+cü</>

Comme on se trouve en phase elastique

Mais d'autre part au point C d'abcisse x on aura en vertu de l'hypothese fonda-
mentale:

w(j>=F— xE
Ces trois equations donnent:

IE F
S tu/77 + S

On en conclut que pour une valeur süffisante de F la contrainte limite de traction
R'b du beton est atteinte. II y a donc rupture de ce dernier pour:

F=R'b(ojm+S)
Pour cette valeur de F, la longueur A de la barre le long de laquelle se transmet

l'effort d'adherence est:

Ce n'est donc qu'ä une distance au moins egale ä A que se produira la premiere
fissure du prisme de beton.

Si le prisme a une longueur totale inferieure ä 2A il n'y aura pas de fissure.
Si le prisme a une longueur superieure ä 2A il se produira une premiere fissure

ä une distance d'une des extremites egale ou superieure ä A du cöte ou R'b est
minimum.

Si Fun des deux troncons restants du prisme est de longueur superieure ä 2A une
autre fissure pourra s'y produire, etc.

On constate donc que l'ecartement / des fissures est compris entre: A et 2A.
Si l'on trace le diagramme des contraintes dans la barre, on voit que celles-ci

varient lineairement avec un minimum au milieu de chacun des troncons de beton,
et un maximum constant, egal ä F/co, au droit de chaque fissure. En exercant une
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%-,

traction F croissante, l'augmentation mesuree des deformations de la barre sur une
longueur de base comprenant toutes les fissures qui ont pu s'y produire croit avec la
tension de la barre, mais diminuee d'une quantite proportionnelle ä l'aire des triangles
abc, cde, efg (fig. 4). Comme l'adherence E est
constante, ces triangles conservent la meme surface
et la deformation de la barre est diminuee d'une
quantite constante.

II s'ensuit donc que tout se passe comme si pendant

toute la duree de l'experience le beton prenait
ä son compte la partie constante de la traction de
la barre, dont la deformation est representee par —

cette surface.

b id! f 1

i i i

i

—

—, F.

_£_..

Fig. 4

La surface d'un triangle El2/4 est equivalente
ä celle du rectangle de meme base et de hauteur
£1/4. I variant entre R'bS/£ et 2R'bS/£ la diminution

de la contrainte moyenne de la barre varie entre ^R'bS/co et \R'bS/to selon le
hasard de Fapparition des fissures.

On s'explique ainsi facilement le phenomene connu sous le nom d'etirage du
beton, que l'on avait tente d'expliquer par un allongement plastique du beton sous
charge constante.

Pratiquement il semble que la diminution apparente de la tension supportee par
la barre puisse etre situee au voisinage de 0,4R'bS.

En appliquant ce qui precede au calcul des deformations d'une barre enrobee de
beton, on peut rendre compte avec precision des resultats experimentaux.

Nous avons etudie sous cet angle les resultats des essais faits en 1902 par la
Commission du Beton Arme de 1906 (Commission du Ministere des Travaux
Publics).

Sans revenir sur l'analyse que nous en avons faite dans les Annales de l'Institut
Technique du Bätiment et des Travaux Publics, No. 179, mars-avril 1951, nous
rappellerons que les essais avaient consiste ä mesurer sur une base de 1 metre les
deformations de prismes en beton de 10 cm. de cöte, armes aux quatre angles d'une
barre de 6 mm., sous I'application de charges diverses.

La diminution de tension apparente de l'acier 800 kg. donne /c©=20 kg./cm.2,
la longueur minima 8 cm. des prismes donne a=35 kg./cm.2 Avec ces donnees on
peut etudier la Variation de la repartition des contraintes dans la barre en fonction
des tractions agissantes et determiner l'allongement de la piece tendue, selon qu'il
s'est forme successivement une premiere, une deuxieme, etc. une 77ieme fissure.
Le resultat du calcul est figure en trait ponctue sur la fig. 5.

Les diagrammes reels et theoriques superposes manifestent, par la coi'ncidence
des courbes, Fapparition successive des fissures dont l'epaisseur est d'ailleurs toujours
tres faible (variant de 4/100 mm. pour F=l 300 kg. (premiere fissure) ä un dixieme
de millimetre pour 2 000 kg.). Elles ont pu passer inapercues.

Chacune des fissures successives se produit au point relativement moins resistant;
elles apparaissent des qu'est atteinte en un point, soit la limite de resistance sous un
effort unique, soit la limite d'endurance.

C'est ainsi que, pendant la serie des cycles ä 1 740-1 790 kg., le nombre theorique
de fissures passe de 4 ä 8 et se stabilise ä ce chiffre. Mais des qu'on augmente la
traction ä 2 060 kg., il doit apparaitre au douzieme cycle, une neuvieme fissure.

Des lors, l'equilibre definitif est atteint, neuf fissures sur 1 metre correspondent
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bien ä la longueur moyenne comprise entre 8 et 15 cm. effectivement observee.
La coi'ncidence entre les conclusions directes de notre hypothese et l'experience

ne semble pas due ä un simple hasard. II nous parait donc possible d'en tirer des

consequences plus lointaines et d'etudier la fissuration des pieces flechies et leur
deformation.

iOOQ

-LT 6*%,

Z_5oo

2.0&0

tooo

^'790

ff'- f.rtMJKA500 ^'3oo

,m
LOOO

'X
Resultat des essais

Cluffres thioriques
Soo

C^arjoe_ initiale w&jg.

25 3o 35 *o *s so 55 co «5 7o Allongement en
centiernes de M/M par metre

Fig. 5

II. Fissuration des pieces flechies : calcul de l'ecartement des fissures

(a) Principe du calcul

Au debut de la mise en charge d'une piece flechie, les deux materiaux elementaires
beton et acier travaillent elastiquement. Le solide peut etre remplace par un solide
homogene equivalent obtenu en remplacant la section w d'acier tendu par mco:

m=Eb
Des que la contrainte du beton tendu atteint en un point la limite de resistance

R'b, il y a fissuration. Aussitöt que les deplacements acier beton au voisinage de la
fissure ne sont plus coi'ncidants, c'est la liaison par frottement definie plus haut qui
intervient. Pour qu'une deuxieme fissure se produise au voisinage de la premiere,
il faut que les efforts de traction subis par les aciers dans la fissure se transmettent
au beton. Cette transmission d'efforts exige une longueur d'adherence süffisante
pour que la tension du beton atteigne la limite de rupture. C'est cette longueur A

qui definit l'ecartement minimum entre les deux fissures. Si le moment de flexion
n'atteint pas, ä la distance A de la fissure, la valeur necessaire pour provoquer la
fissuration, il n'y a plus de fissure due au moment de flexion du sens considere.
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(b) Calcul de l'ecartement minimum

On considerera successivement la section homogene non fissuree et la section
fissuree. Les contraintes dans la section homogene seront obtenues, en appliquant
les calculs classiques avec un module d'equivalence

Ea

m=EZb

Les contraintes dans la section fissuree seront determinees par les formules classiques
en supposant fissuree toute la zone de beton tendu et en prenant pour module
d'equivalence le rapport ll de la deformabilite reelle e de l'acier sous une contrainte
donnee </> compte tenu de Fenrobage du beton, au module elastique du beton Eb.
Le calcul de la valeur de p ä prendre en compte fera l'objet de la troisieme section.

• Toutefois afin d'eviter de longs calculs d'approximation, bien inutiles, nous
ferons apparaitre dans le calcul de l'ecartement la valeur z du bras de levier du couple
resistant qui varie assez peu avec p pour que l'on puisse prendre avec une approximation

süffisante une valeur moyenne.
De plus on supposera la poutre de section constante. Les caracteristiques utiles

sont: dans la section (a) non fissuree, la contrainte maximum de traction du beton
R'b et celle de l'acier <f>0 sous l'influence du moment M0 produisant la premiere
fissure, puis dans la section fissuree la valeur (f>1 de la contrainte de l'acier sous le
meme moment MQ. Enfin les contraintes </> et <j>' de l'acier sous des moments crois-
sants M et M' (fig. 6).

Lorsque la premiere fissure se produit c'est que R atteint
la limite de rupture R'B sous le moment de flexion M0:

R'bh
^M0

Mio-

A ce moment la contrainte de l'acier est:

V0M0m V0 ¦

n=—j— Rb-pmh Vb

1 Mi

///
' 1 tu) / /

<<f1

(b),

L
a)

V0 et Vb etant, dans la section homogene non fissuree la <fo ^ -i /_^j<p0
distance de l'acier et de la face tendue du beton ä la fibre ^-
neutre.

Si le moment de flexion croit, il augmente aussi dans
une section voisine (b) et lorsque il y atteint la valeur M0
il se produit en (b) une seconde fissure.

Mais pour que le moment atteigne cette valeur MQ dans Fig. 6

la section (b) il faut que, par adherence, les barres trans-
mettent au beton une part süffisante de traction pour que la section (b) soit dans
l'etat oü etait la section (a) sous le moment M0. Au moment de la production de
la deuxieme fissure on a donc le Schema de la fig. 6 ; la section (a) est soumise ä un
moment M ; la tension des aciers y est </>; eile decroit jusqu'ä f/>0 dans la section
(b) et l'on a:

4f7
i>—<f>0=~jr\

Comme:

on a

M=M0+T0X
jMq+TqX 4a
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<f> 4s
En remarquant que T0—=—j en appellant s l'adherence des barres dans la section

fissuree sous l'influence de l'effort tranchant T, il vient:

dM0M M0
A=~Pi T—T U)

que l'on peut ecrire:
1 i\A=

R'bd /o o
m—

ZLO I0
(2)

4[a-s] Vb

II faut noter que cette theorie n'est applicable que si toute la section de beton, ä

travers laquelle se transmet le cisaillement, est capable d'y resister sans fissuration
longitudinale. Cette fissuration longitudinale peut se produire en particulier dans
le cas des poutres en double T fortement armees oü l'äme, bien que solidarisee aux
tables par des armatures transversales, n'a pas ete coulee en meme temps que les
tables.

(c) Application
Cette formule donne l'ecartement minimum A des fissures d'une piece flechie. II

doit etre bien entendu qu'il s'agit des veritables fissures de flexion et non des eclate-
ments locaux du beton qui fönt apparaitre des fissures partielles. Lorsque le moment
de flexion est constant, l'ecartement / des fissures peut varier comme nous l'avons
Signale plus haut entre A et 2A. Si au contraire le moment de flexion varie d'une
section ä l'autre, il restera au voisinage de A pour autant que la dispersion considerable

de la resistance en traction du beton le permettra. Afin de contröler cette
formule, nous l'avons appliquee ä des essais de toutes provenances pour lesquels des

photos ou des dessins permettent de mesurer l'ecartement moyen des fissures.
Si l'on porte sur un diagramme en abcisse les valeurs A de l'ecartement minimum

calcule et en ordonnee les valeurs moyennes / observees, il est evident que, si la
formule est exacte, tous les points (A, /) devront se trouver compris dans l'angle
forme entre les deux droites /=A et /=2A ä condition bien entendu que les efforts
appliques aient ete suffisants pour que toutes les fissures se soient produites, sinon /
mesure pourrait etre superieur ä 2A.

II faut pour appliquer la formule connaitre, outre les caracteristiques geometriques

de la section, les caracteristiques mecaniques du beton, sa resistance ä la
traction R'b et la resistance a ä l'adherence.

Or, il se trouve que ces deux resistances sont pratiquement liees entre elles,
compte tenu de la position des barres dans le beton. Les "Regles d'Utilisation du
Beton Arme" du Ministere de la Reconstruction et de l'Urbanisme donnent ä ce
sujet la formule suivante:

R'b .©
e U

.©
?2j

(3)

oü d est le diametre d'une barre consideree, e{ et e2 les distances minima de son centre
aux faces les plus proches du beton mesurees dans deux directions perpendiculaires.
R'b/a varie donc de £ dans le cas d'une barre noyee dans une masse indefinie de
beton, ä 2 lorsque la barre n'est recouverte que de son demi diametre de beton.

Bien qu'approximative, cette formule due ä M. Caquot joue dans un sens
convenable et permet d'apprecier a priori la valeur de R'h/a ä introduire dans les calculs.
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p mesure* moyen

cm /
Vi

1©y
/ f7. /

o!5 / ^>© ,25 4>

In 2<

23 / 3

©52
/of

33 »^^^^
"Vp

ä^"os .^

cm

• Commission duB.A. de 190$

(France)

* Chambaud (LS. ellP. Paris)

X caicuie

+ Laboratoipe du bätiment et des KP (Fans)

D Wästlund et Jonson
{Ponls et Charpentes - Liege)

* F.Dumas (Annales des Ponts ei Charpentes 1931)

Fig. 7

Nous avons donc porte sur la fig. 7 les points dont les ordonnees correspondent
aux resultats des essais que nous avons pu consulter et les abcisses au resultat de
calcul de A par les formules (2) et (3).

On constate qu'ä tres peu d'exceptions pres, pour lesquelles la fissuration n'est
probablement pas complete, les points se groupent dans l'angle des deux droites
/=A et /=2A. On voit sur le graphique qu'en prenant:

/=l,6A
on aura l'ecartement moyen avec autant de precision qu'on en peut esperer puisque
l'on ne peut pas savoir oü se fixera la moyenne reelle entre les deux limites.

L'etude des sections rectangulaires armees d'un pourcentage w * d'armatures
tendues montre que l'on peut, avec une approximation süffisante, ecrire :

R'bd
l=Tü^-7) <4>

Ce calcul de / n'aurait qu'un interet purement theorique s'il ne permettait pas,
comme nous allons le montrer dans la troisieme section, de determiner l'allongement

reel du metal pendant la flexion; et partant de determiner le module
d'equivalence ll ä introduire dans les calculs de resistance et de deformation.

* Ce pourcentage est le rapport de la surface des armatures ä celle obtenue en multipliant la
hauteur totale de la poutre par la largeur du beton tendu.
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III. Deformation de l'acier: calcul du module d'equivalence

(a) Bloc entre deux fissures

Considerons le bloc compris entre les deux fissures a et b separees par la
distance /; soit <j>a et fo la contrainte de tension des
aciers dans les sections a et b soumises aux moments
Ma et Mb. Soit (fig. 8) M le moment au milieu de ab
et T l'effort tranchant.

Le diagramme des tensions le long de la barre ab
est represente par la ligne dee dont les deux cötes de et
ec fönt avec l'axe un angle dont la tangente est £/w.

La deformation de la barre depuis la charge nulle est
representee par l'aire adeeb qu'il faut evaluer.

On a evidemment:

X=i l-(4>a-<f>b)j.

MbJ Ma

^

L_
puis

Fig. 8 d'oü

£ </>a — 4>b

Cf=X Z+ —

cf=
£1 (4>u-<l>b)2<o

'leo 2EI

La deformation AI de la barre sur la longueur / a pour valeur:

EaAl=l
</>a + <t>b 1 El (</>a-<f>b)2OJ

2w 2EI

(ba -\- <pb
En posant </>=—-— (valeur moyenne de la contrainte au droit d'une fissure) en

remarquant que r

(<f>a — (/>b)cü—s-ndn l
et en appelant j la contrainte d'adherence habituelle des barres en section fissuree
il vient:

c2lAI ul
E°-r*—d i— (5)

4er

Ao

fo-rr
Mo

Fig. 9

Cette formule permet donc de calculer l'allongement
de la barre qui traverse un bloc compris entre deux
fissures.

Voyons maintenant la valeur Axl de l'allongement
de la barre au droit de la derniere fissure, du cöte non
fissure de la poutre, oü eile fonetionne comme le scelle-
ment que nous avons etudie plus haut.

(b) Scellement de l'armature apres la derniere fissure

A partir de la derniere fissure a la contrainte </>' de la
barre decroit de la valeur <f> jusqu'ä une profondeur lv oü
eile atteint la contrainte fo correspondant ä la deformation

elastique sans fissuration (fig. 9).
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A cette profondeur lit on a:
£ 4a

</>'=cb — li-=<f>—-j/t
cu a

et la contrainte elastique a pour valeur:

d,"-d>M s
En egalant ces deux valeurs on trouve:

'."4(^J"(S-|) W

So etant la contrainte d'adherence beton-metal en section homogene non fissuree.
Au voisinage de la derniere fissure, le moment agissant M ne peut etre inferieur

ä M0 (puisqu'il s'agit d'efforts regulierement croissants) sans quoi il n'y aurait pas
eu fissuration, ni superieur ä M0-hTA, sans quoi il y aurait une autre fissure ä gauche
de a qui ne serait plus la derniere fissure.

On voit alors que /] est compris entre les deux valeurs:

'V©T</,<A (7)
er—S0

Comme, en pratique, les conditions de calculs imposent ä s une valeur maximum
d'une dizaine de kg. par cm.2 atteinte seulement dans l'effort tranchant maximum
alors que a est voisin de 30 kg./cm.2 on ne commettra pas une erreur excessive par
exces en prenant /[ A.

Quant ä la deformation de l'acier, on ne prendra en compte que la fraction
correspondant ä la difference entre la deformation elastique en section non fissuree
et la deformation totale.

II ne faut, en effet, compter dans le calcul que nous faisons plus loin de la
deformabilite de la barre entre les deux fissures extremes que le Supplement de deformation

du au glissement dans les parties extremes non fissurees.
On a donc pour la deformation supplementaire:

M\ ~,p—soEaAl1=i(^-^y 2X^-
d

En negligeant s0 devant a on trouve une valeur par exces de la deformation.
Compte tenu de l'incertitude ineluctable de l'ecartement des fissures, on prendra /
un peu plus faible que 1,6A soit ©2A simplement pour pouvoir ecrire:

2A2(7 /2<7

E^-T=-d ^
(c) Deformation des armatures d'une zone fissuree

Considerons un troncon de poutre ab limite par deux fissures.
Nous calculerons la deformation AL reelle de l'acier sur la longueur ab=L. Le

module elastique de l'acier etant Ea, sa deformation Aa sous la contrainte uniforme
appliquee ä l'acier au droit d'une fissure serait:

EaT=4>

On appellera module elastique apparent de l'acier la quantite e teile que:
AL

A

CR.—51
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Le coefficient d'equivalence des sections acier-beton entrant dans le calcul des
contraintes et des deformations du beton arme sera:

e Ea € m L</>

Eb Eb Ea Ea AL
m
'!)

Y

M

W-W-r-

Fig. 10

Supposons une repartition du moment de flexion
entre a et b symetrique et l'effort tranchant constant
en valeur absolue. Les deux fissures extremes a
et b correspondent aux deux sections soumises au
moment de flexion M0.

Soit <f> la contrainte moyenne de l'acier (dans les
fissures) (fig. 10).

L'allongement AL des armatures entre a et b,
compte tenu des scellements en a et b, a pour valeur,
en appliquant les formules (5) et (8):

EaAL=L ©'(-5)] + 2/2 (9a)

2/
(9b)

(II y a, entre a et b, n blocs de longueur /.)

AL la
D=E°TL=l-Ji

Cette formule permet de calculer le module p en fonction de la longueur / entre
fissures, de la longueur L entre fissures extremes et des caracteristiques mecaniques
et geometriques de la poutre.

(S'il n'y a qu'une fissure sur appui, on ne peut plus parier que de rotation des
sections sur appui, l'angle dont tourne une section par rapport ä l'autre est Al/z.)

On constate que, si l'effort tranchant est nul et si la longueur L comprend une
dizaine de fois /, ce qui est generalement le cas dans la partie en travee des poutres,
D est d'autant plus faible que l'adherence de frottement est plus elevee, le diametre
des barres et leurs contraintes moins elevees. D etant inferieur ä 1, p est plus eleve

que m et peut atteindre 2m. Au contraire, si, comme sur les appuis, l'effort tranchant
est important, s peut atteindre 10 kg./cm.2, soit Ie 1/3 de a. De plus, L pouvant ne
comprendre qu'un bloc entre deux fissures, D peut etre sensiblement plus grand que
1, voisin de 2 et jx=m/2.

(d) Formules pratiques—poutres reclangulaires

En remplacant / par sa valeur approchee (4) on aura:

D=\ R>
llw<j>{a—s)

1-
IR'bd

CT2 llco((J—s)L
(10)

Cette formule a permis de construire le graphique de la figure 11 qui donne p en
fonction de d/L et de w dans les deux cas suivants:

1° Effort tranchant nul (s — 0) avec R'b 30 kg./cm.2; a 30 kg./cm.2;
c4=1200 kg./cm.2 (</> a une valeur sensiblement constante, voisine du
maximum).

2° Effort tranchant eleve 5=10 kg./cm.2; R'b=30 kg./cm.2; cr=30 kg./cm.2;
^=800 kg./cm.2 (valeur moyenne de </> entre le maximum et une valeur plus
faible correspondant au moment M0).



FISSURATION EN BETON ARME 803

Ces resultats peuvent s'appliquer d'une facon approchee aux sections en T en
prenant pour surface du beton, ä laquelle se rapporte la surface des aciers tendus,
le produit de la hauteur totale par la largeur de beton tendu, c'est-ä-dire par la
largeur de l'äme si celle-ci est tendue (M>0) ou par la largeur de la table en section
sur appui {M<ff).

15 12
I I

I

I I II

ht fttH*rt—eoo ri' i
f ii

\\>N\ .:j—«oo

IS'
I

I

N;s.

vT

J_\

Ji i fOO TXT

o.25 O.So f 2 «

Valeur is. du coe/ficienl d'equivalence de deformalion acier -belon

Secfion en fravee <r h\ A o tf I2oo *^/cm2

SeCliOn SUr appui fJ" P't= 3o Ko/Cm2 A fo kg/:in2 CB s 8oO Kq/Cn\l

Fig. 11

(e) Consequences de la Variation du module elastique apparent de l'acier sur la
deformation des poutres continues

Sans insister sur cette question qui necessiterait un grand developpement, il faut
remarquer que dans les conditions courantes la valeur de p peut, pour une meme
poutre, varier de 14 dans les sections du milieu des travees ä 4 sur les appuis.

La deformation AL/L liee directement ä ll peut donc varier de un ä quatre, mais
la distance qui separe les armatures tendues de la fibre neutre varie dans des

proportions beaucoup moindres, la piece est donc beaucoup plus flexible sur les appuis
que ne le laisse prevoir la theorie classique. II en resulte que la repartition reelle
des moments de flexion peut etre fort differente des resultats du calcul. En
particulier les contraintes sur appui sont certainement moins elevees et Celles au milieu
des travees plus fortes que ne le prevoit habituellement la theorie des poutres
continues.

Si Fon Joint ä ce fait celui que les variations de contraintes dues aux variations
des charges mobiles conditionnent pour une large part la duree des pieces flechies
on s'explique facilement et logiquement pourquoi les elements de construction
continue soumis ä des variations de surcharges relativement petites presentent une
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solidite et une durabilite parfaites, meme lorsque, comme c'est souvent l'usage en
France, elles ne sont pas calculees selon la theorie des poutres elastiques.

II faut enfin noter que, L etant defini par la repartition des moments de flexion,
on ne peut agir sur la flexibilite sur appuis qu'en diminuant le diametre des barres,
car il ne saurait €tre question ni de diminuer R'b necessaire ä la resistance de la piece
ni d'augmenter ä> pour cette suele raison.

IV. Deformations residuelles
(a) Deformation residuelle

u). 2cr

• X

2er B

b)(aj

Fig. 12

Considerons le bloc compris entre deux fissures
(o) et (b) et admettons que le moment de flexion soit
pratiquement constant (T negligeable) dans chaque
bloc (fig. 12).

Sous l'influence d'un moment M croissant, la
tension des aciers est <f> au droit des fissures et <h—2al/d
au milieu du bloc.

L'ouverture AI de la fissure est donc (au droit de
l'acier):

^<-'*(*-t)-'K)
(formule (5) pour s=0).

Si le moment applique decroit jusqu'ä une valeur
M'<CM, la tension des aciers atteint une valeur </>' et la
deformation a pour expression:

EaA'l=EaAl-(4>-<f>')^

tant que </>-</>'<-
4al

Au-delä la deformation residuelle a pour expression:

EaA"l=(t+al]jl
Lorsque <f>'=0 on a pour valeur de la deformation residuelle sous charge nulle:

Si (f> est reste inferieur ä <f>0 (M<M0: la deformation est restee elastique)
deformation residuelle nulle.

Si <f><4ol/d:

Si 4>>4alld:

EaA^lt-^-rh^ ]

EaAU=
r/2 (11)

(b) Ouverture des fissures

En appliquant la formule simplifiee (4)

/=
R'bd

IL
On trouve que l'ouverture maxima moyenne a pour valeur:

**-ira(*-m) <'2>
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On en conclut que:
A resistance, adherence et contrainte egales, l'ouverture des fissures est

proportionnelle au diametre des barres et inversement proportionnelle au
pourcentage d'acier.

L'ouverture des fissures est une fonction lineaire de la contrainte de l'acier,
nulle pour une contrainte qui varie en raison inverse du pourcentage d'acier.

Toutes choses egales d'ailleurs, l'ouverture est en raison inverse de
l'adherence.

La largeur cumulee des fissures sur une longueur L est L/l fois celle d'une fissure
soit:

L_

Ea.
Elle ne depend pas de l'adherence. L'amelioration de l'adherence diminue

l'epaisseur des fissures, mais augmente leur nombre.

;MK(*-§) <'3>

(c) Deformation residuelle et fleche residuelle

La deformation residuelle est la somme des deformations relatives aux L/l blocs,
augmentee de la deformation residuelle des deux scellements, cette derniere etant la
moitie de leur deformation maxima. Cette deformation par application de la
formule (11) lorsque <f> est superieur ä 4al/d et sensiblement constant en raison du
mode de chargement (M constant) a pour valeur:

¦ E^=iL>B) (i4)

La fleche residuelle peut dtre appreciee de la facon suivante (fig. 13). Soit a la

L L

Fig. 13

portee, L la longueur de la partie fissuree. On peut sensiblement ecrire, en appelant
v la distance des aciers ä la fibre neutre:

^=4v(*-2J (15)

et en appliquant la formule (14) en negligeant les scellements

'-Ä~i) • <16>

L'application du diagramme des deformations entre fissures permet de calculer
la fleche residuelle en fonction des surcharges croissantes successivement appliquees,
puis supprimees; on verra plus loin un exemple de calcul.

(d) Comparaison des theories avec les experiences

Nous avons donne plus haut les resultats de l'application de la theorie ä la
fissuration et la deformation d'une piece tendue (Experience de la Commission
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Francaise du B.A. 1906) (fig. 5) et ä la determination de la distance des fissures dans
les poutres en beton arme (fig. 7). Nous allons appliquer les formules precedentes
ä des experiences anterieurement publiees.

II faut toutefois rappeler que les deformations residuelles dont nous nous occupons
sont essentiellement differentes de celles qui sont dues ä un depassement de la limite
elastique des materiaux au sens oü eile est generalement entendue.

On verra que la fleche residuelle (en phase elastique des contraintes des materiaux)
augmente avec la charge maximum appliquee, puis tend vers une limite independante
de la surcharge. Mais, bien entendu, si au cours de la charge la limite elastique des
materiaux, beton ou acier, avait ete atteinte, la theorie ne s'appliquerait plus et la
fleche residuelle n'aurait d'autre limite que celle qui correspond ä la rupture de la
piece.

Experience de M. F. G. Thomas (Congres des Ponts et Charpentes, Berlin, 1936,
Publ. Prelim., page 231, figs. 5 et 6)

La poutre ayant la section figuree ci-contre (fig. 14), le pourcentage Zü=0,7%.
L'experience a eu pour objet la mesure de la largeur de la fissure en fonction de

la traction de l'acier (fig. 6, page 237)

3.1

JF
6/ 1 c; 1

\Mon • Mo

2 <j 0.95
\ I

N
/ -26.500

31.000

Fig. 14 Fig. 15

Comme il s'agit de "la plus grande fissure," on doit admettre qu'elle est relative
ä un bloc de longueur 2A et non de blocs moyens de longueur 1,6A, il y a lieu d'en
tenir compte en multipliant le deuxieme nombre de Fequ. (12) par 2/1,6:

Avec les valeurs R'b=35, cr=28, on trouve:
zl/=0 pour 0=460 kg./cm.2 au lieu de 0 700 kg./cm.2

on trouve pour: 0=3 000 zl/=0,187 mm. au lieu de A 1=0,20 mm.
La largeur totale des fissures (fig. 5, page 236 du rapport F. G. Thomas reproduite

fig. 19) est calculee par la formule (9a).
Le moment maximum sous la charge de 1 016 kg. est 31 000 kg. xcm. (fig. 15), le

moment M0 de rupture de traction du beton (R'b=35) est 26 500 kg.xcm. La
longueur L qui separe les deux points de moment M0 est L=80 cm. La contrainte
de l'acier est 1 450 kg./cm.2 L'ouverture de la fissure au niveau de l'acier avec

35x95
/=llx28x0,7=15'5 (f0rmule 4)' est

1 450-15,5^52,1.10M/=80
2.15,52.28

0,95
85 000
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soit zl/=0,40 mm.; pour rapporter l'ouverture ä la fibre oü a ete faite la lecture ä

\ pouce de l'arete, il faut multiplier ce chiffre par:

y=y, Al=0,40x |y=0,47 mm.

pour 0,45 mm. de deformation immediate et 0,58 apres attente.
La fissure residuelle apres suppression de la surcharge est calculee de la facon

suivante.

HSO

»OO

S^N>.vs\-ü»!:fS!

15 5

Fig. 16

&
>23o

f5.Sx )23o
2x9oo

Fig. 17

1230

La surface du diagramme des contraintes (fig. 16) multipliee par le nombre de
blocs donne:

/900 175\ 80
15'5(^-3509Öo)l5r5=30600k8-X cm.

et en y ajoutant les deformations des scellements (fig. 17):
1 230 15,5 1 230 r cnn,2X-27X—X2x^ÖÖ=6500kg-XCm-

on trouve:

A r 30 600+6 500 ninnAaL=—. .n, =0,177 mm.
2,1 10«

En multipliant par le facteur de distance ä la fibre neutre, on arrive ä:

13

0,177x^=0,21 mm.

Le chiffre mesure est 0,9 centiemes de pouce, soit 0 mm. 225.
Les coincidences des deformations maxima instantannee et residuelle sont con-

venables. On peut tracer par ces deux points la parabole de deformation qui a bien
Failure de la courbe observee compte tenu de l'augmentation de deformation pendant
Fattente (fig. 18).

Le rapport donne aussi la Variation de la fissuration avec le pourcentage d'arma-
tures.

Nous avons vu—formule (12)—qu'ä l'ouverture nulle de la fissure, la tension des

aciers est en raison inverse du pourcentage; or l'experience a donne:

pour les pourcentages suivants: 1,38 1,19 0,98 0,78 0,59
les contraintes mesurees: 415 325 620 700 950
le produit des deux termes: 5,70 3,85 6,10 5,50 5,60
reste convenablement constant.
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SoS4»

s^o47
=-r

J^
© ^
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L«--
0,1 0,2 0.3 0,4

/OO 'ooIOO

0,5 '%,
//oo ote pouce

Fig. 18

De plus, cette meme formule montre que la Variation de la fissure entre deux
contraintes de l'acier est, eile aussi, en raison inverse du pourcentage d'armature.

Or, les chiffres du rapport sont les suivants, pour une Variation de tension de
2 800-1 260=1 540 kg./cm.2

pourcentages: 1,38 1,19 0,98 0,78 0,59
deformations: 0,099 0,132 0,162 0,185 0,205
produitxlOO: 0,136 0,158 0,159 0,144 0,121

II est possible de serrer le probleme de plus pres en calculant les valeurs theoriques
de ces constantes. II faut toutefois remarquer que les armatures sont formees de
deux fers ronds juxtaposes et torsades, et qu'il faut en consequence remplacer le

rapport £/w=4a/d par la valeur

£_a 2tt+2 3,3o-

w d TT d
La valeur de / etant multipliable aussi par le facteur 1,25 puisqu'il s'agit de la plus
large fissure. La formule (12) devient:

l,25R'bd4i
EaAl-

Pour Al=0 le produit </>u)=~- R'b

ll<rw3,3
35x1,5

11

/, R'bl,S\

=4,8 au lieu de 4 ä 6 mesure.

De plus pour une difference de 1 540 kg., la Variation calculee de Al<o (avec les
valeurs precedentes de Ä'0=35 et <j=28 kg./cm.2) est:

_ 1 1,50x35x1,27
Alw -Ea

1540=-
0,16

pour
0,121 0,159

observees.
11x28 '-"""IOO * 100 100

Ces resultats sont tres convenables compte tenu de l'incertitude oü l'on est de la
repartition des contraintes a autour de l'acier torsade.

Experiences de MM. Wästlund et Jonson (Congres des Ponts et Charpentes,
Liege, 1948, Publ. Prelim., page 215, figs. 1 et 2)

La figure 2 du rapport donne l'ouverture de la plus large fissure en fonction de la
tension de l'acier.
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La formule (12) permet de calculer la valeur theorique de cette largeur. Le
tableau ci-dessous a ete etabli avec R'b=30 kg./cm.2, la valeur de a etant calculee

par la formule (3). Les diagrammes relatifs ä chaque poutre sont des droites pour
lesquelles nous avons calcule la valeur de <f>0 pour Al=0 et la valeur de AI pour
0=2 500—00 kg./cm.2. Cette derniere valeur de AI est celle de la formule (12)
multipliee par 1,1 pour tenir compte du fait qu'il s'agit d'une large fissure et non
d'une moyenne (fig. 19).

2b

//
I' / S1/ /U

2 ooo TZ'
i S.P,///:'/' //*r?7

/./ /1 i

S*f. OOO

>

u¦Hl P

Fig. 19

Poutre R'bh i=*4-
<r=

R'bl\\i> <P= AiJh \,\At
No. OJ cl O 1 lfü pour

Al=0
2 500 -<j>o Ea

O /
• 0 cm. moyen cm. kg./cm.2 kg./cm.2 1/100 mm. 1/100 mm.

lb 1,2 2 1,2 18 230 2 270 19,5 21,5
3 1,2 1 0,85 6,4 230 2 270 6,9 7,5
4 3,6 2 1 5 75 2 425 5,8 6,5
7 0,6 2 1 30 450 2 050 29 32

18 0,80 2 1,2 27,5 350 2 150 28 30

La coi'ncidence est excellente pour les poutres 2b, 3 et 7. Elle est moins bonne

pour 18 et surtout pour 4. Pour expliquer cette difference, il faudrait connaitre la
position exacte de la fissure consideree qui peut se trouver entre deux blocs particulierement

larges.
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Experiences de M. F. Dumas (Annales des Ponts et Chaussees, 1931, t. n,
page 439, figs. 40 et 42)

L'experience a consiste ä mesurer la fleche sous des charges croissantes separees
par des dechargements oü l'on mesure la fleche residuelle.

La portee est 4 m.; la surcharge P est concentree au milieu (figs. 20-21).

—*—|
3^8 T T T

4<f 12

az Uli

iQO

T^ ©^
-«

Fig. 20

L'application de la formule (3) donne:

R'b

Fig. 21

=0,8

Puis la formule (2) donne:

0,8 / 208
/=1,6A—J-x 1,2x4 500(2250

/ 208 28 \
\2 250

~~
2 250)~ 13 cm.

ecartement qui correspond bien aux valeurs relevees (Annales des Ponts et Chaussees,
1933, T.I, page 114, fig. 10).

Pour que la fissuration se produise, il faut que le moment de flexion, avec
R'b=30 kg./cm.2, soit de l'ordre de 1 200 kg. correspondant apres fissuration ä

une tension de l'acier de 1 200 kg./cm.2 On peut donc tracer le diagramme ci-contre
donnant la repartition des tensions des barres, compte tenu du frottement dans
chaque bloc. On a admis que tous les blocs ayant exactement 13 cm., la Variation
de tension des barres au-passage des fissures et au centre des blocs est egale ä 2al/d.

Comme
30

R'b=30 kg./cm.2, ^=08=37 kg./cm.2

la Variation de tension est:
2al 2x37x13 nnntT=—L2—=800kg./cm.2

Pour chacune des charges considerees, on peut tracer un diagramme des
contraintes dans la zone fissuree limite par la region oü le moment est inferieur ä M0 ou
bien 0O inferieur ä 1 200 kg./cm.2 (fig. 22).

Afin de simplifier, nous avons admis que le poids propre qui donne un moment de
flexion de 400 kg x m. est equivalent ä une charge concentree de 400 kg. La surcharge
est donc P-400 kg.

Chacun des triangles de 13 cm. de base et 800 kg./cm.2 de hauteur correspond ä

„ 13x800
EaAl= =5 200.

La fleche est calculee par la formule (15):

AL
fr 4Eav H)
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Fig. 22

dans laquelle v, distance des barres tendues ä la fibre neutre, est 18,5 et AL est obtenu
en multipliant l'aire S de la somme des triangles de deformation residuelle par Ie

facteur 5 200:
5 2005

Jr' 4x£axl83H)
P

p (Poids propre
+ surcharge)

a-L/2 S fr
mm.

800 1 200 400 0,4 0,05
1200 1 600 350 5,4 0,63
1600 2000 320 11,6 1,25
2000 2400 300 14,8 1,50
2 800 3 200 275 18,4 1,7
3600 4 000 260 21,0 1,85

Fleche limite 200 30 2,00

En tracant sur le meme diagramme la fleche residuelle calculee et mesuree, on
constate un parallelisme correct entre les deux courbes. Les differences s'aecentuent

pour les contraintes depassant 2 000 kg./cm.2 pour lesquelles la limite elastique des
aciers est atteinte (fig. 23).

La fleche residuelle limite ne pourrait etre etudiee qu'avec des aciers durs ä

limite elastique elevee.
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La formule approchee (16) donne avec la valeur Z.=200 cm. correspondant ä

p=2 000 kg. (P=/?+400=2 400).

R'b I L\ 30x100
/r=44l>a7Lifl-2J=^ 200x300=1 mm. 75

44x2,1 xl06x 18x0,6
On peut enfin constater que l'application de la formule (10) donnant la valeur

de ll ä prendre en compte conduit ä ll—10,0 (avec 03=0,6%, (7=1,2, L=160). Une

3%

Dumas fig. 40. K fi 439

Flectie restduelte calculee
Formule simplifiee

tun 7/ i

tf

{PRiiye f/jst tut

/.-
//

flg. «
" Pa-«

¦nylVt

^0$ä&&
i-£&L—

Fische residuelle ;000
nulle

J Kg

Fig. 23

contrainte moyenne de l'acier de 1 200 kg. appliquee aux calculs classiques conduit
ä une fleche d'environ 6 mm. 5, sous une charge de 2 000 kg., en admettant que
toute la poutre se comporte comme la zone fissuree—l'experience a donne de 6 ä
6,3 mm.

Conclusion
Cet expose nous semble avoir demontre suffisamment que l'hypothese simple de

la liaison par frottement de l'acier dans le beton, que nous avons proposee, conduit
ä un ensemble de resultats coherents qui concordent convenablement avec
l'experience.

II subsistera sans doute une certaine indetermination liee ä l'imprecision des
valeurs des caracteristiques mecaniques R'b et surtout o qui, entrant dans les formules,
devront etre systematiquement mesurees.

Mais, d'ores et dejä il devient possible d'etudier l'influence des divers facteurs
agissants et meme de determiner quantitativement leur action. Les phenomenes
concernant la fissuration en flexion et en traction, la plasticite en traction du beton
et la deformabilite de l'acier, l'irreversibilite partielle des fleches y trouvent une
explication logique et sourtout constructive.

Plus particulierement la valeur du module d'equivalence p de deformabilite du
beton et du metal n'est plus un chiffre arbitraire, mais une fonction definie par les

caracteristiques de la section et son mode de chargement.
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Enfin les deformations residuelles sont maintenant calculables avec une precision
süffisante pour avoir au moins des ordres de grandeur avec une exactitude qui, tout
compte fait, ne doit pas Stre tres inferieure ä celle qui reellement intervient dans les
etudes classiques de resistance des materiaux.

Resume

La liaison des barres d'armatures avec leur gaine de beton ne presente le caractere
elastique que pour de tres faibles deformations relatives.

Pour les deformations plus importantes, pratiquement toujours realisees au
voisinage des fissures, la liaison presente tous les caracteres d'un frottement dirige
en sens contraire du deplacement relatif.

II en resulte, que les deformations du metal par rapport au beton n'obeissent pas
aux lois de proportionnalite et de reversibilite.

Les experiences ont permis de contröler cette hypothese par la determination de
la repartition des contraintes le long de barres scellees dans le beton. La theorie
qui en decoule a permis notamment d'eclaircir les points suivants:

1° L'etirage apparent en traction du beton d'une piece armee s'explique par
la formation de blocs entre fissures et le glissement des armatures.

2° L'epaisseur d'une fissure est en raison inverse de l'adherence totale des

barres, mais l'epaisseur cumulee des fissures reste constante, c'est-ä-dire
qu'une amelioration de l'adherence multiplie les fissures.

3° L'ecartement des fissures d'une piece flechie peut etre calcule a priori par
une formule qui tient compte des caracteristiques geometriques de la
section, de l'adherence entre l'acier et le beton et de la resistance ä la
traction du beton.

4° Le rapport d'equivalence ll de la deformabilite de l'acier tendu ä celle du
beton varie dans de tres notables proportions. Elle est calculable selon les
diametres des barres, leur section, leur longueur utile, et les caracteristiques
du beton.

5° La theorie permet d'expliquer la non proportionnalite des deformations aux
charges et de calculer la valeur des fleches residuelles apres decharge.

Summary

The bond between the steel reinforcement and its concrete covering has elastic
properties only for very slight deformations.

For very great changes in shape, such as practically always occur in the neighbour-
hood of cracks, the bond displays all the properties of a friction in a direction
opposite to the displacements.

From this it follows that the deformations of the metal with respect to those of
the concrete do not obey the law of proportionality and of reversibility.

By determining the stress distribution along bars in the concrete, the tests have
allowed this hypothesis to be checked. The theory which has been developed from
this clarifies the following points:
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(1) The apparent elongation of the concrete in the reinforced tension zone is

explained by the forming of " blocks" between the cracks and by the slip
of the reinforcement.

(2) The width of crack is in inverse ratio to the total adhesion of the steel bars,
but the sum of the widths of all cracks remains constant; that is, an
improvement of the adhesion increases the number of cracks.

(3) The distances apart of cracks in a part subjected to bending can be calcu¬
lated beforehand by a formula which takes into aecount the geometrie
properties of the cross-section, the adhesion between steel and concrete,
and the tensile strength of the concrete.

(4) The ratio p of the plastic deformability of the steel subjected to tension to
that of the concrete is variable between very wide limits. It can be calculated

from the diameter of the bars, their cross-section, their effective
length, and from the properties of the concrete.

(5) The theory allows the non-proportionality of the changes in shape under
load to be explained, and the value ofthe permanent deflection after removal
of the load to be determined.

Zusammenfassung

Die Verbindung der Eiseneinlagen mit ihrer Betonumhüllung hat nur für sehr
kleine Deformationen elastische Eigenschaften.

Für grössere Formänderungen, wie sie praktisch immer in der Nähe der
Rissebildung auftreten, zeigt die Verbindung alle Eigenschaften einer den relativen
Verschiebungen entgegengesetzt gerichteten Reibung.

Daraus folgt, dass die Deformationen des Metalls gegenüber denen des Betons
nicht dem Gesetz der Proportionalität und der Umkehrbarkeit gehorchen.

Die Versuche haben erlaubt, durch die Bestimmung der Spannungsverteilung
längs im Beton eingelegter Stäbe, diese Hypothese nachzuprüfen. Die Theorie,
welche daraus entwickelt wurde, gestattet die Abklärung folgender Punkte:

(1) Die scheinbare Dehnung des Betons in der armierten Zugzone erklärt sich
durch die Bildung von "Blöcken" zwischen den Rissen und das Gleiten
der Armierung.

(2) Die Rissbreite verhält sich umgekehrt zur Gesamthaftung der Stahlstäbe,
aber die Summe sämtlicher Rissbreiten bleibt konstant, d.h. eine
Verbesserung der Haftung vermehrt die Anzahl der Risse.

(3) Die Rissabstände eines Teiles unter Biegung können zum Vornherein durch
eine Formel berechnet werden, welche den geometrischen Eigenschaften
des Querschnittes, der Haftung zwischen Stahl und Beton und der
Zugfestigkeit des Betons Rechnung trägt.

(4) Das Verhältnis ll der Verformbarkeit des Stahls auf Zug zu der des Betons
ist in sehr grossen Grenzen veränderlich. Es lässt sich aus dem Durchmesser

der Stäbe, ihrem Querschnitt, ihrer wirksamen Länge und aus den
Eigenschaften des Betons berechnen.

(5) Die Theorie erlaubt die Nicht-Proportionalität der Formänderungen unter
der Belastung zu erklären und den Wert der bleibenden Durchbiegung nach
der Entlastung zu bestimmen.
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