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Cll1

Théorie de la fissuration des piéces fléchies en béton armé

Theory of the formation of cracks in reinforced concrete sections
subjected to bending

Theorie der Rissebildung bei Eisenbetonquerschnitten auf Biegung

L. P. BRICE
Ingénieur E.C.P., Paris

NOTATIONS EMPLOYEES

Force d’adhérence par frottement non élastique par unité de longueur du groupe
des barres tendues

Force d’adhérence par frottement non élastique par unité de surface des barres
Contrainte élastique d’adhérence en section homogeéne fissurée

Contrainte élastique d’adhérence en section homogéne non fissurée

Contrainte de I’acier '

Contrainte du béton

Limite de rupture du béton par traction simple ou par traction due a une
flexion *

Module élastique de 1’acier

Module élastique du béton

Module élastique apparent de I’acier

a

Rapport des modules élastiques acier béton m=+
b

Coefficient d’équivalence des déformations de I’acier et du béton
Section du béton
Section d’acier tendu

* Les calculs étant faits dans le domaine élastique, la valeur de R’p & prendre en compte dans
le cas de la flexion est celle de la formule élastique R’p=6M/bh> et nonles six dixiémes de cette

valeur admise comme résistance a la traction simple.
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Pourcentage d’acier tendu par rapport au produit de la hauteur totale par la

w
largeur de béton tendu

d Diametre d’une barre (ou diamétre moyen des barres)

x  Longueur sur laquelle est appliqué I’effort d’adhérence

A Longueur sur laquelle doit étre appliqué I’effort d’adhérence pour provoquer la
rupture par traction du béton

! Distance moyenne séparant deux fissures

4] Déplacement relatif de 1’acier par rapport a la face d’une fissure ou ouverture
d’une fissure

L  Longueur de la région fissurée d'une poutre fléchie’

f+  Fléche résiduelle

z  Bras de levier du couple résistant en section fissurée

1. HYPOTHESE CONCERNANT LA LIAISON ACIER BETON: TRACTION SIMPLE

(a) Hypothése fondamentale définissant les conditions de la liaison entre les aciers et
le béton ' '

Quelques expériences personnelles et I'étude d'une série trés compléte d’essais
effectués au Laboratoire du Batiment et des Travaux Publics par M. Bichara et dont
M. L’Hermite, Directeur du Laboratoire, m’a fort aimablement permis de prendre
connaissance m’ont amené a constater que:

I’adhérence se présente sous deux formes essentiellement différentes, selon
qu’il s’agit d’une liaison élastique, conséquence d’une déformation simultanée
du béton et du métal, ou d’une adhérence non élastique dans laquelle les
déformations n’ont plus les mémes caractéres de simultanéité.

I’adhérence élastique n’existe que s’il n’y a pas fissuration du béton et si les
déplacements relatifs du métal et du béton qui lenrobe restent nuls pendant
le fonctionnement de la liaison.

I’'adhérence non élastique, au contraire, se produit lorsque le béton s’est
fissuré et quand le déplacement de la barre, par rapport au béton, devient
effectif.

C’est ce dernier cas qui nous intéresse tout particuliérement car il intervient
toujours dés qu’il y a fissuration. L’étude des expériences précitées nous a conduit
a formuler la loi suivante suffisamment approchée pour les déplacements et les efforts
pratiquement atteints en fonctionnement normal:

, Pendant les déformations non élastiques les forces de liaison du béton et du métral
ont le caractére d’un frottement constant toujours dirigé en sens contraire du déplace-
- ment de la barre dans la gaine de béton.
En conséquence, I'effort 2" par unité de longueur qui s’oppose au déplacement
d’un g'roupe de »n barres de diametre d, de section totale

wd?
w= I‘IT
a pour valeur:
4
Z=nond= %

en appellant o le frottement par unité de surface de barre.
C’est en complétant de cette seule hypothése celles qui sont universellement
admises en résistance des matériaux que nous avons établi la théorie qui suit.
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(b) Répartition des contraintes le long d’un scellement
Déformations avant fissures

Considérons une barre scellée dans un massif indéfini. A I'origine, toutes les
contraintes sont supposées nulles. En exer¢ant une premiere fois une traction F sur

b o

Fig. 1 : Fig. 2

I’extrémité libre de la barre, la répartition des contraintes ¢ dans la barre suit une
loi linéaire. En un point B de profondeur x on a (fig. 1):

F—2x 4o
(,'b_—' =¢0— gx
Au point A4 de la section de la barre définie par la face du massif la contrainte est:
F :
$o=_

. d :
Au point C d’abcisse )\=¢0£Er la contrainte est nulle.

Si ’on fait décroitre F jusqu’a une valeur F’ le nouveau diagramme aura [’aspect
F'DC et si F est réduit jusqu’a 0 le diagramme sera un triangle isocéle AEC. Aug-
mentant a nouveau F jusqu’a une valeur £’ on aura une répartition telle que F"'GEC.

En déterminant le déplacement 4y/ du point 4 de I’acier par rapport a la face du
massif on trouve immédiatement que sous ’application premiere de la force F

d
Edol=¢ig

En fonction de ¢, le déplacement 4,/ suit (fig. 2) une loi parabolique Oa ; en
faisant décroitre ¢, jusqu’a ¢; on voit que le raccourcissement, a partir de 1’allonge-
ment 4,/ a pour valeur:

1 d
F b

Le raccourcissement pendant la diminution de effort est représenté par une
deuxiéme parabole de sommet a, coupant ’abcisse au point b, tel que:
4,1=%4,yl
Si I’on fait remonter ’effort de O a ¢, on constate que le déplacement de A4 est une
troisiéme parabole bca telle que:

1 d
4, =ER(¢02 +¢)6.
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On voit donc apparaitre, comme conséquence de la liaison par frottement, un
diagramme de déformations irréversibles, ayant I’allure classique des courbes
d’hystérésis.

Il est A noter que si ’on avait fait varier I’effort de traction suivant une autre loi
qu’un accroissement continu de 0 a ¢, et une diminution de ¢é; & 0 on aurait pu
tracer un cycle intérieur au cycle bcad.

Les déformations dues au frottement ont donc le double caractére de n’étre ni
élastiques, puisque les déplacements sont proportionnels au carré des forces, ni
réversibles, puisque le phénoméne d’hystérésis rend de nouvelles déformations
dépendantes des déformations antérieures et de la loi d’application des efforts.

(c) Apparition des fissures dans le béton

Explication de I’*“Etirage” du béton
Lorsque I’on exerce une traction croissante appliquée aux deux extrémités d’une
barre enrobée sur une longueur assez grande dans un bloc de béton de section assez
faible, il y aura un moment ou la fissuration se

oA N e produira. En effet dans la partie médiane du
wl ol X bloc on a avant fissuration (fig. 3):
N . v
wb B F=SR+w¢
x
Comme on se trouve en phase élastique
: ¢ E,
F]ga 3 —_———=m
R E,

Mais d’autre part au point C d’abcisse x on aura en vertu de I’hypothése fonda-
mentale:

wp=F—x2
Ces trois équations donnent:
= F
R= S om+S

On en conclut que pour une valeur suffisante de F la contrainte limite de traction
R’y du béton est atteinte. 1l y a donc rupture de ce dernier pour:
F=R'y(wm+S)
Pour cette valeur de F, la longueur A de la barre le long de laquelle se transmet
I’effort d’adhérence est:
R'pS
R
Ce n’est donc qu’a une distance au moins égale a A que se produira la premiére
fissure du prisme de béton.
Si le prisme a une longueur totale inférieure a 22 il n’y aura pas de fissure.
Si le prisme a une longueur supérieure a 2A il se produira une premiére fissure
a une distance d’une des extrémités €gale ou supérieure a A du c6té ou R’, est mini-
mum.
Si I'un des deux trongons restants du prisme est de longueur supérieure a 2A une
autre fissure pourra s’y produire, etc.
On constate donc que ’écartement / des fissures est compris entre: A et 2A.
Si I’on trace le diagramme des contraintes dans la barre, on voit que celles-ci
varient linéairement avec un minimum au milieu de chacun des trongons de béton,
et un maximum constant, égal & F/w, au droit de chaque fissure. En exergant une
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traction F croissante, I’'augmentation mesurée des déformations de la barre sur une
longueur de base comprenant toutes les fissures qui ont pu s’y produire croit avec la
tension de la barre, mais diminuée d’une quantité proportionnelle a 1’aire des triangles
abe, cde, efg (fig. 4). Comme I'adhérence 2 est
constante, ces triangles conservent la méme surface
et la déformation de la barre est diminuée d’une
quantité constante.

|
Il s’ensuit donc que tout se passe comme si pen- :
dant toute la durée de I’expérience le béton prenait 1
a son compte la partie constante de la traction. de
la barre, dont la déformation est représentée par =~ ¢ 7
cette surface. N

fm

La surface d’un triangle 2/2/4 est équivalente Ak
a celle du rectangle de méme base et de hauteur Fig. 4
2l/4. [ variant entre R',S/2 et 2R',S/2 la dimin-
ution de la contrainte moyenne de la barre varie entre $R’,S/w et 1R',S/w selon le
hasard de I’apparition des fissures. :

On s’explique ainsi facilement le phénoméne connu sous le nom d’étirage du
béton, que I’on avait tenté d’expliquer par un allongement plastique du béton sous
charge constante.

Pratiquement il semble que la diminution apparente de la tension supportée par
la barre puisse étre située au voisinage de 0,4R’;S.

En appliquant ce qui précede au calcul des déformations d’une barre enrobée de
béton, on peut rendre compte avec précision des résultats expérimentaux.

Nous avons étudié sous cet angle les résultats des essais faits en 1902 par la
Commission du Béton Armé de 1906 (Commission du Ministére des Travaux
Publics). _

Sans revenir sur I’analyse que nous en avons faite dans les Annales de I’Institut
Technique du Biatiment et des Travaux Publics, No. 179, mars-avril 1951, nous
rappellerons que les essais avaient consisté & mesurer sur une base de |1 metre les
déformations de prismes en béton de 10 cm. de coté, armés aux quatre angles d’une
barre de 6 mm., sous I’application de charges diverses.

La diminution de tension apparente de ’acier 800 kg. donne R',=20 kg./cm.2,
la longueur minima 8 cm. des prismes donne ¢=35 kg./cm.2 Avec ces données on
peut étudier la variation de la répartition des contraintes dans la barre en fonction
des tractions agissantes et déterminer 1’allongement de la piece tendue, selon qu’il
s’est formé successivement une premiére, une deuxiéme, etc. . . . une niéme fissure.
Le résultat du calcul est figuré en trait ponctué sur la fig. 5.

Les diagrammes réels et théoriques superposés manifestent, par la coincidence
des courbes, I’apparition successive des fissures dont I’épaisseur est d’ailleurs toujours
trés faible (variant de 4/100 mm. pour F=1 300 kg. (premiére fissure) a un dixi¢me
de millimeétre pour 2 000 kg.). Elles ont pu passer inapergues.

Chacune des fissures successives se produit au point relativement moins résistant;
elles apparaissent dés qu’est atteinte en un point, soit la limite de résistance sous un
effort unique, soit la limite d’endurance.

C’est ainsi que, pendant la série des cycles a 1 740-1 790 kg., le nombre théorique
de fissures passe de 4 a 8 et se stabilise a ce chiffre. Mais dés qu’on augmente la
traction & 2 060 kg., il doit apparaitre au douzieme cycle, une neuviéme fissure.

Deés lors, I’équilibre définitif est atteint, neuf fissures sur 1 metre correspondent
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bien a la longueur moyenne comprise entre 8 et 15 cm. effectivement observée.

La coincidence entre les conclusions directes de notre hypothése et I’expérience
ne semble pas due & un simple hasard. Il nous parait donc possible d’en tirer des
conséquences plus lointaines et d’étudier la fissuration des piéces fléchies et leur
déformation.
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1I. FISSURATION DES PIECES FLECHIES: CALCUL DE L’ECARTEMENT DES FISSURES

(a) Principe du calcul

Au début de la mise en charge d’une piéce fléchie, les deux matériaux élémentaires
béton et acier travaillent élastiquement. Le solide peut étre remplacé par un solide
homogene équivalent obtenu en remplacant la section w d’acier tendu par mw:

E,

m=—
Ep

Dés que la contrainte du béton tendu atteint en un point la limite de résistance
R'p, il y a fissuration. Aussitdt que les déplacements acier béton au voisinage de la
fissure ne sont plus coincidants, c’est la liaison par frottement définie plus haut qui
intervient. Pour qu’une deuxiéme fissure se produise au voisinage de la premiére,
il faut que les efforts de traction subis par les aciers dans la fissure se transmettent
au béton. Cette transmission d’efforts exige une longueur d’adhérence suffisante
pour que la tension du béton atteigne la limite de rupture. C’est cette longueur A
qui définit I’écartement minimum entre les deux fissures. Si le moment de flexion
n’atteint pas, a la distance A de la fissure, la valeur nécessaire pour provoquer la
fissuration, il n’y a plus de fissure due au moment de flexion du sens considéré.
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(b) Calcul de I’écartement minimum

On considérera successivement la section homogéne non fissurée et la section
fissurée. Les contraintes dans la section homogéne seront obtenues, en appliquant
les calculs classiques avec un module d’équivalence

E,
m-—Eb
Les contraintes dans la section fissurée seront déterminées par les formules classiques
en supposant fissurée toute la zone de béton tendu et en prenant pour module
d’équivalence le rapport p de la déformabilité réelle € de I’acier sous une contrainte
donnée ¢ compte tenu de I’enrobage du béton, au module élastique du béton E,.
Le calcul de la valeur de p & prendre en compte fera [’objet de la troisiéme section.

- Toutefois afin d’éviter de longs calculs d’approximation, bien inutiles, nous
ferons apparaitre dans le calcul de I’écartement la valeur z du bras de levier du couple
résistant qui varie assez peu-avec . pour que 1’on puisse prendre avec une approxima-
tion suffisante une valeur moyenne.

De plus on supposera la poutre de section constante. Les caractéristiques utiles
sont: dans la section (@) non fissurée, la contrainte maximum de traction du béton
R’y et celle de l'acier ¢y sous l'influence du moment A, produisant la premicre
fissure, puis dans la section fissurée la valeur ¢; de la contrainte de l’acier sous le
méme moment M,. Enfin les contraintes ¢ et ¢’ de ’acier sous des moments crois-
sants M et M’ (fig. 6).

Lorsque la premiére fissure se produit c’est que R atteint

la limite de rupture R’, sous le moment de flexion Mj: i To | My
R’blo °
M0= —_— A CP
Ve ad
A ce moment la contrainte de I’acier est: &
VoM, V, d
I Vs /11’: y p

Vo et V, étant, dans la section homogéne non fissurée la ¢, 4/1_.1_“_ — /{;7 Po
distance de I’acier et de la face tendue du béton a la fibre e
neutre. : -

Si le moment de flexion croit, il augmente aussi dans - S
une section voisine (b) et lorsque il y atteint la valeur M, (b)l__ C
. . A
il se produit en (b) une seconde fissure.

Mais pour que le moment atteigne cette valeur M, dans Fig. 6

la section (b) il faut que, par adhérence, les barres trans-

mettent au béton une part suffisante de traction pour que la section (b) soit dans
I’état ou était la section (a) sous le moment M,. Au moment de la production de
la deuxiéme fissure on a donc le schéma de la fig. 6 ; la section (&) est soumise a un
moment M ; la tension des aciers y est ¢; elle décroit jusqu’a ¢, dans la section
(b) et I’'on a:

4o
p—go=—)
Comme:
M= M0+ ToA

on a ¢T—¢0=—d')\
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4s
En remarquant que T(’%:E en appellant s I’adhérence des barres dans 1a section

fissurée sous I'influence de ’effort tranchant 7, il vient:

_ L)
dMy M~ M,
=T o (1)

que ’on peut écrire:

_ R'sd Iy [ 1 Vo] @
4[0—5] Vil zw 10

Il faut noter que cette théorie n’est applicable que si toute la section de béton, a
travers laquelle se transmet le cisaillement, est capable d’y résister sans fissuration
longitudinale. Cette fissuration longitudinale peut se produire en particulier dans
le cas des poutres en double T fortement armées ou I’Ame, bien que solidarisée aux
tables par des armatures transversales, n’a pas été coulée en méme temps que les
tables.

(c) Application

Cette formule donne I’écartement minimum A des fissures d’une piece fléchie. 1l
doit étre bien entendu qu’il s’agit des véritables fissures de flexion et non des éclate-
ments locaux du béton qui font apparaitre des fissures partielles. Lorsque le moment
de flexion est constant, I’écartement / des fissures peut varier comme nous I’avons
signalé plus haut entre A et 2A. Si au contraire le moment de flexion varie d’une
section a l’autre, il restera au voisinage de A pour autant que la dispersion considé-
rable de la résistance en traction du béton le permettra. Afin de contrdler cette
formule, nous ’avons appliquée a des essais de toutes provenances pour lesquels des
photos ou des dessins permettent de mesurer I’écartement moyen des fissures.

Si I’on porte sur un diagramme en abcisse les valeurs A de I’écartement minimum
calculé et en ordonnée les valeurs moyennes / observées, il est évident que, si la
formule est exacte, tous les points (A, /) devront se trouver compris dans I’angle
formé entre les deux droites /=A et /=2X a condition bien entendu que les efforts
apphqucs aient été suffisants pour que toutes les fissures se soient prodmtes sinon /
mesuré pourrait étre supérieur a 2A.

Il faut pour appliquer la formule connaitre, outre les caractéristiques géomé-
triques de la section, les caractéristiques mécaniques du béton, sa résistance a la
traction R’y et la résistance o a ’adhérence.

Or, il se trouve que ces deux résistances sont pratiquement liées entre elles,
compte tenu de la position des barres dans le béton. Les *““Regles d’Utilisation du
Béton Armé”” du Ministére de la Reconstruction et de I’Urbanisme donnent a ce

sujet la formule suivante:
R d
-1—5P+ }P+~] R )|
€2

ou d est le diameétre d’une barre considérée, e, et e, les distances minima de son centre
aux faces les plus proches du béton mesurées dans deux directions perpendiculaires.
R'p/o varie donc de 4 dans le cas d’une barre noyée dans une masse indéfinie de
béton, a 2 lorsque la barre n’est recouverte que de son demi diamétre de béton.
Bien qu’approximative, cette formule due a M. Caquot joue dans un sens con-
venable et permet d’apprécier a priori la valeur de R'p/o a introduire dans les calculs.
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Fig. 7

Nous avons donc porté sur la fig. 7 les points dont les ordonnées correspondent
aux résultats des essais que nous avons pu consulter et les abcisses au résultat de
calcul de A par les formules (2) et (3).

On constate qu’a trés peu d’exceptions prés, pour lesquelles la fissuration n’est
probablement pas compléte, les points se groupent dans ’angle des deux droites
[=Aet /[=2X. On voit sur le graphique qu’en prenant:

I=1,6A

on aura I’écartement moyen avec autant de précision qu’on en peut espérer puisque
’on ne peut pas savoir ou se fixera la moyenne réelle entre les deux limites.

L’étude des sections rectangulaires armées d’un pourcentage w * d’armatures
tendues montre que I’on peut, avec une approximation suffisante, écrire:

R'vd 4@

— llw(a'_s) - . . . . - - . - 0

Ce calcul de / n’aurait qu’un intérét purement théorique s’il ne permettait pas,
comme nous allons le montrer dans la troisiéme section, de déterminer 1’allonge-

ment réel du métal pendant la flexion; et partant de déterminer le module d’équi-
valence p a introduire dans les calculs de résistance et de déformation.

/

* Ce pourcentage est le rapport de la surface des armatures a celle obtenue en multipliant la
hauteur totale de la poutre par la largeur du béton tendu.
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III. DEFORMATION DE L’ACIER: CALCUL DU MODULE D’EQUIVALENCE

(a) Bloc entre deux fissures

Considérons le bloc compris entre les deux fissures a et b séparées par la
distance /; soit ¢, et ¢, la contrainte de tension des
Mbj wT M‘\ aciers dans les‘sections a et b soumises aux moments
N\ ® M,et M,. Soit (fig. 8) M le moment au milieu de ab
d @ et T leffort tranchant. : g
Le diagramme des tensions le long de la barre ab
est représenté par la ligne dce dont les deux cotés dc et
ec font avec ’axe un angle dont la tangente est 2/cw.
La déformation de la barre depuis la charge nulle est
représentée par l'aire adceb qu’il faut évaluer.
On a évidemment:

x=3] 1=,y

il S Y szx[f +¢a7¢>b]

Zl (ba—bs)?
Fig. 8 d’ott cf=2—w—%)

La déformation 4/ de la barre sur la longueur / a pour valeur:

batds  [[Z] (Pa—p)’w
BAl=F5==5132"" 22
En posant <;b=¢"-;¢b (valeur moyenne de la contrainte au droit d’une fissure) en

remarquant que:
(ba— Pp)w=s7dnl

et en appelant s la contrainte d’adhérence habituelle des barres en section fissurée

il vient: _
.4l al 52
E”7=¢"E[l_;2] e &)
2 Cette formule permet donc de calculer I'allongement

de la barre qui traverse un bloc compris entre deux

fissures.

Voyons maintenant la valeur 4,/ de ’allongement
de la barre au droit de la derniére fissure, du c6té non
fissuré de la poutre, ou elle fonctionne comme le scelle-
ment que nous avons étudié plus haut.

(b) Scellement de I’armature aprés la derniére fissure

. A partir de la derniére fissure a la contrainte ¢’ de la
barre décroit de la valeur ¢ jusqu’a une profondeur /; o1
elle atteint la contrainte ¢, correspondant a la déforma-
Fig. 9 tion élastique sans fissuration (fig. 9).
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A cette profondeur /;, on a:
, b 40
$=¢—1"=¢——1,

et la contrainte élastique a pour valeur:

M 4s
¢Il ¢0 011
En égalant ces deux valeurs on trouve.
__ d ¢ o
11—4(0—S0)M(H—A_{[0) . . . . . . . (6)

8o €tant la contrainte d’adhérence béton-métal en section homogene non fissurée.

Au voisinage de la derniére fissure, le moment agissant M ne peut étre inférieur
a M, (puisqu’il s’agit d’efforts régulierement croissants) sans quoi il n’y aurait pas
eu fissuration, ni supérieur 8 My+TA, sans quoi il y aurait une autre fissure a gauche
de a qui ne serait plus la derniére fissure.

On voit alors que /, est compris entre les deux valeurs:

Q)

Comme, en pratique, les conditions de calculs imposent a s une valeur maximum
d’une dizaine de kg. par cm.2 atteinte seulement dans I’effort tranchant maximum
alors que o est voisin de 30 kg./cm.Z on ne commettra pas une erreur excessive par
excés en prenant /;=A.

Quant & la déformation de l’acier, on ne prendra en compte que la fraction
correspondant a la différence entre la déformation élastique en section non fissurée
et la déformation totale.

Il ne faut, en effet, compter dans le calcul que nous faisons plus loin de la dé-
formabilité de la barre entre les deux fissures extrémes que le supplément de déforma-
tion di au glissement dans les parties extrémes non fissurées.

On a donc pour la déformation supplémentaire:

M —8
Eaazl=%(¢—¢%)ll=z e

En négligeant s, devant o on trouve une valeur par excés de la déformation.
Compte tenu de I'incertitude inéluctable de 1’écartement des fissures, on prendra /
un peu plus faible que 1,6 soit 4/2A simplement pour pouvoir ecrire:

2X%0 120

EA][ d — =" (/ v . . . . . . . . (8)

(c) Déformation des armatures d’une zone fissurée

Considérons un trongon de poutre ab limité par deux fissures.

Nous calculerons la déformation 4L réelle de I’acier sur la longueur ab= L. Le
module élastique de I’acier étant F,, sa déformation 4, sous la contrainte uniforme
appliquée a I'acier au droit d’une fissure serait:

4,
E“f_¢

On appellera module élastique apparent de I’acier la quantité e telle que:

ET=QS

C.R.—51
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Le coefficient d’équivalence des sections acier-béton entrant dans le calcul des
contraintes et des déformations du béton armé sera:

€ E,, € ngbm

Supposons une répartition du moment de flexion
entre a et b symétrique et I’effort tranchant constant
en valeur absolue. Les deux fissures extrémes a
et b correspondent aux deux sections soumises au
moment de flexion M,

Soit ¢ la contrainte moyenne de ’acier (dans les
fissures) (fig. 10).

L’allongement 4L des armatures entre a et b,
compte tenu des scellements en a et b, a pour valeur,
en appliquant les formules (5) et (8):

EAL= L[¢——(1——)]+212‘—l N )

(Il y a, entre a et b, n blocs de longueur /)

B EAL 1 Iol sz 2
T LT qu[ o2 LJ _

Cette formule permet de calculer le module x en fonction de la longueur / entre
fissures, de Ia longueur L entre fissures extrémes et des caractensthues meécaniques
et geometrlqucs de la poutre.

(S8’il n’y a qu’une fissure sur appui, on ne peut plus parler que de rotation des
sections sur appui, I’angle dont tourne une section par rapport a ’autre est 4//z.)

On constate que, si I’effort tranchant est nul et si la longueur L comprend une
dizaine de fois /, ce qui est généralement le cas dans la partie en travée des poutres,
D est d’autant plus faible que ’adhérence de frottement est plus élevée, le diamétre
des barres et leurs contraintes moins élevées. D étant inférieur a 1, u est plus élevé
que m et peut atteindre 2m. Au contraire, si, comme sur les appuis, I’effort tranchant
est important, s peut atteindre 10 kg./cm.2, soit le 1/3 de o. De plus, L pouvant ne
comprendre qu’un bloc entre deux fissures, D peut étre sensiblement plus grand que
1, voisin de 2 et p=m/2.

(9b)

(d) Formules pratiques—poutres rectangulaires
En remplagant / par sa valeur approchée (4) on aura:
R'yo 52 2R'vd
ﬁT&#(o——s)[ ”ﬁ"m]
Cette formule a permis de construire le graphique de la figure 11 qui donne p en
fonction de d/L et de w dans les deux cas suivants:

D=1-— (10)

1° Effort tranchant nul (s =0) avec R’y =30 kg./cm.2; o =30 kg./cm.2;
¢=1200 kg./cm.2 (¢ a une valeur sensiblement constante, voisine du
maximum).

2° Effort tranchant élevé s=10 kg./cm.2; R’,=30 kg./cm.2; o=30 kg./cm.2;
¢=800 kg./cm.2 (valeur moyenne de ¢ entre le maximum et une valeur plus
faible correspondant au moment My).
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Ces résultats peuvent s’appliquer d’une fagon approchée aux sections en T en
prenant pour surface du béton, a laquelle se rapporte la surface des aciers tendus,
le produit de la hauteur totale par la largeur de béton tendu, c’est-a-dire par la
largeur de I’dme si celle-ci est tendue (M >0) ou par la largeur de la table en section
sur appui (M<<0).

alr

8oo

400

foo Tor

0.25 o.50 1 2 4
Valeur u du coefficient d'équivalence de déformation acier -béton

Section en lravee 2Ry 4=0 @ =120 Kgfomz

------ Section sur appui O s Ry=3okgkmz 4= tokgkm2 Q= Boo Kgkmz

Fig. 11

(e) Conséquences de la variation du module élastique apparent de Iacier sur la dé-
Jformation des poutres continues

Sans insister sur cette question qui nécessiterait un grand développement, il faut
remarquer que dans les conditions courantes la valeur de p peut, pour une méme
poutre, varier de 14 dans les sections du milieu des travées a 4 sur les appuis.

La déformation AL/L liée directement & p peut donc varier de un a quatre, mais
la distance qui sépare les armatures tendues de la fibre neutre varie dans des pro-
portions beaucoup moindres, la piéce est donc beaucoup plus flexible sur les appuis
que ne le laisse prévoir la théorie classique. Il en résulte que la répartition réelle
des moments de flexion peut étre fort différente des résultats du calcul. En par-
ticulier les contraintes sur appui sont certainement moins élevées et celles au milieu
des travées plus fortes que ne le prévoit habituellement la théorie des poutres con-
tinues.

Si I'on joint & ce fait celui que les variations de contraintes dues aux variations
des charges mobiles conditionnent pour une large part la durée des piéces fléchies
on s’explique facilement et logiquement pourquoi les éléments de construction con-
tinue soumis a des variations de surcharges relativement petites présentent une
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solidité et une durabilité parfaites, méme lorsque, comme c’est souvent l'usage en
France, elles ne sont pas calculées selon la théorie des poutres élastiques.

Il faut enfin noter que, L étant défini par la répartition des moments de flexion,
on ne peut agir sur la flexibilité sur appuis qu’en diminuant le diameétre des barres,
car il ne saurait étre question ni de diminuer R’, nécessaire a la résistance de la piéce
ni d’augmenter w pour cette suele raison.

1V. DEFORMATIONS RESIDUELLES
(@) Déformation résiduelle

e
P20 "
V) GP
27N
7/
N
J AN
// 2:9 Y
(a) (6)
o4
Fig. 12
tant que

Considérons le bloc compris entre deux fissures
(a) et (b) et admettons que le moment de flexion soit
pratiquement constant (7" négligeable) dans chaque
bloc (fig. 12).

Sous l'influence d’un moment M croissant, la
tension des aciers est ¢ au droit des fissures et ¢—20//d
au milieu du bloc.

L’ouverture 4/ de la fissure est donc (au droit de
I’acier):

o)

(formule (5) pour s=0).

Si le moment appliqué décroit jusqu’a une valeur
M’'<M, la tension des aciers atteint une valeur ¢’ et la
déformation a pour expression:

d
I i e — ’ 2_
EA'I=FE,dl—(¢—¢") %o

, 4al
p—¢' <

Au-dela la déformation résiduelle a pour expression:

E A" 1= (¢+°31)1

Lorsque ¢'=0 on a pour valeur de la déformation résiduelle sous charge nulle:
Si ¢ est resté inférieur a ¢y (M<<M,: la déformation est restée élastique)

Si ¢<<dol/d:

Si ¢=>4ol/d:

(b) Ouverture des fissures
En appliquant la formule simplifiée (4)

déformation résiduelle nulle.

[2
Eudy=1p— "0 g2
d 8a
i N 5)

EaA()[:'j

R'yd

llow

1=

On trouve que ’ouverture maxima moyenne a pour valeur:

(12)

llow

_RWd(, R
E,dl= (45—11—(;).
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On en conclut que:

A résistance, adhérence et contrainte égales, I’ouverture des fissures est
proportionnelle au diameétre des barres et inversement proportionnelle au
pourcentage d’acier.

L’ouverture des fissures est une fonction linéaire de la contrainte de I’acier,
nulle pour une contrainte qui varie en raison inverse du pourcentage d’acier.

Toutes choses égales d’ailleurs, ’ouverture est en raison inverse de 1’ad-
hérence.

La largeur cumulée des fissures sur une longueur L est L// fois celle d’une fissure

soit:
%(¢—‘g) (qs ﬁ:) N ¢ &)

Elle ne dépend pas de l’adhérence. L’amélioration de 1’adhérence dlmmue
I’épaisseur des fissures, mais augmente leur nombre.

(c) Déformation résiduelle et fleche résiduelle

La déformation résiduelle est la somme des déformations relatives aux L// blocs,
augmentée de la déformation résiduelle des deux scellements, cette derniére étant la
moitié de leur déformation maxima. Cette déformation par application de la
formule (11) lorsque ¢ est supérieur a 4ol/d et sensiblement constant en raison du
mode de chargement (M constant) a pour valeur:

R’y
E L= l(Ld+55w) N € 1)

La fleche résiduelle peut étre appréciée de la fagon suivante (fig. 13). Soit a la

Fig. 13

portée, L la longueur de la partie fissurée. On peut sensiblement écrire, en appelant
v la distance des aciers a la fibre neutre:

AL L
et en appliquant la formule (14) en negligeant les scellements
R L L '
fr—m(a—i) R (16)

L’application du diagramme des déformations entre fissures permet de calculer
la fleche résiduelle en fonction des surcharges croissantes successivement appliquées,
puis supprimées; on verra plus loin un exemple de calcul.

(d) Comparaison des théories avec les expériences

Nous avons donné plus haut les résultats de l’application de la théorie a la
fissuration et la déformation d’une piéce tendue (Expérience de la Commission
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Frangaise du B.A. 1906) (fig. 5) et a la détermination de la distance des fissures dans
les poutres en béton armé (fig. 7). Nous allons appliquer les formules précédentes
a des expériences antérieurement publiées.

Il faut toutefois rappeler que les déformations résiduelles dont nous nous occupons
sont essentiellement différentes de celles qui sont dues a un dépassement de la limite
élastique des matériaux au sens ou elle est généralement entendue.

On verra que la fleche résiduelle (en phase élastique des contraintes des matériaux)
augmente avec la charge maximum appliquée, puis tend vers une limite indépendante
de la surcharge. Mais, bien entendu, si au cours de la charge la limite élastique des
matériaux, béton ou acier, avait été atteinte, la théorie ne s’appliquerait plus et la
fleche résiduelle n’aurait d’autre limite que celle qui correspond a la rupture de la
pigce.

Expérience de M. F. G. Thomas (Congres des Ponts et Charpentes, Berlin, 1936,
Publ. Prélim., page 231, figs. 5 et 6)

La poutre ayant la section figurée ci-contre (fig. 14), le pourcentage w=0,7%.
L’expérience a eu pour objet la mesure de la largeur de la fissure en fonction de
la traction de lacier (fig. 6, page 237)

]

G/ l 67 1 61
i T T T T2
3.1 o y M | L I Mo
N l // 26.500
2.4 0.95 N 131000
Fig. 14 Fig. 15

Comme il s’agit de “la plus grande fissure,”” on doit admettre qu’elle est relative
a un bloc de longueur 2A et non de blocs moyens de longueur 1,64, il y a lieu d’en
tenir compte en multipliant le deuxiéme nombre de I’équ. (12) par 2/1,6:

R'b95 R’b x 100
770\ 77
Avec les valeurs R',=35, 0=28, on trouve:
- 41=0 pour $=460 kg./cm.2 au lieu de $=700 kg./cm.2

on trouve pour: ¢=3 000 4/=0,187 mm. au lieu de 4/=0,20 mm.

La largeur totale des fissures (fig. 5, page 236 du rapport F. G. Thomas reproduite
fig. 19) est calculée par la formule (9a).

Le moment maximum sous la charge de 1 016 kg. est 31 000 kg. x cm. (fig. 15), le
moment M, de rupture de traction du béton (R',=35) est 26 500 kg.xcm. La
longueur L qui sépare les deux points de moment M, est L=80 cm. La contrainte
de l’acier est 1450 kg./cm.2 L’ouverture de la fissure au niveau de l’acier avec

35%95
= Tx28 0= 155 (ormule 4), est

EAl=1,25

35 2.15,52.28
64]= — 2 =
2,1.1064/ 80[1 450 15,50,95]-{— 0.95 85 000
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soit 4/=0,40 mm.; pour rapporter I’ouverture a la fibre ou a été faite la lecture a
4 pouce de l’aréte, il faut multiplier ce chiffre par:

Ve 13 13
Va—ﬁ AI—O,4OX1_1=0,47 mim.

pour 0,45 mm. de déformation immédiate et 0,58 apres attente.
La fissure résiduelle aprés suppression de la surcharge est calculée de la fagon
suivante. :

1450

Y00

N \» \
15.5x 1230

15.5 2% 900
Fig. 16 Fig. 17

La surface du diagramme des contraintes (fig. 16) multipliée par le nombre de
~ blocs donne:

900 175\ 80
15,5(—2——-350 @)F’S=3O 600 kg. xXcm.

et en y ajoutant les déformations des scellements (fig. 17):
1230 15,5 1230

) X2><900=6 500 kg. x cm.
on trouve:
30 600+6 500
AaL:W =0,177 mm.

En multipliant par le facteur de distance a la fibre neutre, on arrive a:

13
0,177 x ﬁ=0’21 mm.

Le chiffre mesuré est 0,9 centiémes de pouce, soit 0 mm. 225.

Les coincidences des déformations maxima instantannée et résiduelle sont con-
venables. On peut tracer par ces deux points la parabole de déformation qui a bien
I’allure de la courbe observée compte tenu de I’augmentation de déformation pendant
I’attente (fig. 18). .

Le rapport donne aussi la variation de la fissuration avec le pourcentage d’arma-
tures.

Nous avons vu—formule (12)—qu’a I’ouverture nulle de la fissure, la tension des
aciers est en raison inverse du pourcentage; or I’expérience a donné:

pour les pourcentages suivants: 1,38 1,19 0,98 0,78 0,59
les contraintes mesurées: 415 325 620 700 950
le produit des deux termes: 5,70 3,85 6,10 5,50 5,60
reste convenablement constant,
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for 9 | : 1| _o¥ i/b/‘
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| ] : {
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°‘§|/oo ’/Ioc ,S/Ioo 2/100 ode pouce
Fig. 18

De plus, cette méme formule montre que la variation de la fissure entre deux
contraintes de I’acier est, elle aussi, en raison inverse du pourcentage d’armature.

Or, les chiffres du rapport sont les suivants, pour une variation de tension de
2 800-1 260=1 540 kg./cm.2

pourcentages: 1,38 1,19 0,98 0,78 0,59
déformations: 0,099 0,132 0,162 0,185 0,205
produit x 100: 0,136 0,158 0,159 0,144 0,121

Il est possible de serrer le probléme de plus prés en calculant les valeurs théoriques
de ces constantes. Il faut toutefois remarquer que les armatures sont formées de
deux fers ronds juxtaposés et torsadés, et qu’il faut en conséquence remplacer le
rapport Z/w=4o/d par la valeur

2 o 2742 33¢

:)_dx r d
La valeur de / étant multipliable aussi par le facteur 1,25 puisqu’il s’agit de la plus
large fissure. La formule (12) devient:

1,25R'bd4( R'gl:5
KAl 1low3,3 ,“6_ 11w )
Pour 4/=0 le produit 455_1115 R b—3si<11’5=4,8 au lieu de 4 a 6 mesuré.

De plus pour une différence de 1 540 kg., la variation calculée de d/w (avec les
valeurs précédentes de R',=35 et =28 kg./cm.2) est:

1 1,50x35x%1,27 0,16 0,121 _ 0,159

dlo=g —— 55— 1540=155 POUr 55" 2 5

Ces résultats sont trés convenables compte tenu de I'incertitude ou I'on est de la
répartition des contraintes ¢ autour de I’acier torsadé.

observées.

Expériences de MM. Wastlund et Jonson (Congrés des Ponts et Charpentes,
Li¢ge, 1948, Publ. Prélim., page 215, figs. 1 et 2)
La figure 2 du rapport donne I’ouverture de la plus large fissure en fonction de la
tension de ’acier.
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La formule (12) permet de calculer la valeur théorique de cette largeur. Le
tableau ci-dessous a été établi avec R',=30 kg./cm.2, la valeur de o étant calculée
par la formule (3). Les diagrammes relatifs 4 chaque poutre sont des droites pour
lesquelles nous avons calculé la valeur de ¢, pour 4/=0 et la valeur de 4/ pour
$=2 500—¢, kg./cm.2. Cette derniére valeur de 4/ est celle de la formule (12)
multipliée par 1,1 pour tenir compte du fait qu’il s’agit d’une large fissure et non
d’une moyenne (fig. 19).

3000 fl
2|3 K
/] A 26 B
ey /,:a par
e
TZ% / > AZ
f 7”7 -~
I /// / /// L
/ / /,’//
I/ ’ ‘,/ e
Soco ; l/ / ,/ 7 Gl
i r ¥ 727
7 L~
i
{_P 2
lLoco
o o 20 g 30
Fig. 19
, R d | Riyflle b= I$,
- Al=-"2 4
P&Lg.re @ d R'bfo 4 g lle pour 2 500 —¢o ¢ Eq L1
41=0
%% cm. moyen cm. kg./em.2 | kg./cm.2 |1/100 mm. |1/100 mm.
2b 1,2 2 1,2 18 230 2270 19,5 21,5
3 1,2 1 0,85 6,4 230 2270 6,9 7,5
4 3,6 2 1 ) 75 2 425 5,8 6,5
7 0,6 2 1 30 450 2 050 29 32
18 0,80 2 1,2 27,5 350 2150 28 30

La coincidence est excellente pour les poutres 25, 3 et 7. Elle est moins bonne
pour 18 et surtout pour 4. Pour expliquer cette différence, il faudrait connaitre la

position exacte de la fissure considérée qui peut se trouver entre deux blocs particuliére-
ment larges.
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Expériences de M. F. Dumas (Annales des Ponts et Chaussees, 1931, t. 11,
page 439, figs. 40 et 42)

L’expérience a consisté a mesurer la fleche sous des charges croissantes séparées
par des déchargements ou ’on mesure la fleche résiduelle.
La portée est 4 m.; la surcharge P est concentrée au milieu (figs. 20-21).

— F TE’ .
a4 1 1 1 ] [ 7
gz g ™ L »
o T—I _l_l l My \1// M,
Fig. 20 Fig. 21

L’application de la formule (3) donne:

R 0,8
g
Puis la formule (2) donne:
0,8 208 28
l=1,6/\=7 x1,2x4 Sm(m—m) =13 cm.

écartement qui correspond bien aux valeurs relevées (Annales des Ponts et Chaussées,
1933, T. 1, page 114, fig. 10).

Pour que la fissuration se produise, il faut que le moment de flexion, avec
R’p=30 kg./cm.2, soit de 'ordre de 1200 kg. correspondant apres fissuration a
une tension de ’acier de 1 200 kg./cm.2 On peut donc tracer le diagramme ci-contre
donnant la répartition des tensions des barres, compte tenu du frottement dans
chaque bloc. On a admis que tous les blocs ayant exactement 13 cm., la variation
de tension des barres au-passage des fissures et au centre des blocs est égale a 2q//d.

Comme

30
R’,=30 kg./cm.2, cr=0—8=37 kg./cm.2
la variation de tension est:
20 2x37x13
d 1,2
Pour chacune des charges considérées, on peut tracer un diagramme des con-
traintes dans la zone fissurée limité par la région ol le moment est inférieur a ‘M, ou

bien ¢, inférieur a 1 200 kg./cm.2 (fig. 22).

- Afin de simplifier, nous avons admis que le poids propre qui donne un moment de
flexion de 400 kg x m. est équivalent 4 une charge concentrée de 400 kg. La surcharge
est donc P—400 kg.

Chacun des triangles de 13 cm. de base et 800 kg./cm.2 de hauteur correspond a
13
Edl= "2800=5 200.
La fleche est calculée par la formule (15):

4aL L
fr= 4E,v (a—f)

—800 kg./cm.2
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Fig. 22

dans laquelle v, distance des barres tendues a la fibre neutre, est 18,5 et 4L est obtenu
en multipliant ’aire S de la somme des triangles de déformation résiduelle par le
facteur 5 200: '

52008 L
f=rixiesle3
4% F,%x 18,5 2
P
p (Poids propre a—Lj2 S fr
-+ surcharge) mm.
800 1200 400 0,4 0,05
1200 1 600 350 5,4 0,63
1 600 2000 320 11,6 1,25
2 000 2 400 300 14,8 1,50
2 800 3200 275 18,4 1,7
3 600 4 000 260 21,0 1,85 -
Fléche limite 200 30 2,00

En tragant sur le méme diagramme la fiéche résiduelle calculée et mesurée, on
constate un parallélisme correct entre les deux courbes. Les différences s’accentuent
pour les contraintes dépassant 2 000 kg./cm.2 pour lesquelles la limite élastique des
aciers est atteinte (fig. 23).

La fleche résiduelle limite ne pourrait étre étudiée qu’avec des aciers durs a
limite élastique élevée.
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La formule approchée (16) donne avec la valeur L=200 cm. correspondant a
p=2 000 kg. (P=p+400=2 400).
fi= R’y L(a—li)— 30 x 100
" 44Evw 2] 44x2,1x100x18x0,6
On peut enfin constater que 'application de la formule (10) donnant la valeur
de u 4 prendre en compte conduit & p=10,0 (avec w=0,69%, d=1,2, L=160). Une

200 % 300=1 mm. 75

fr Oumas  [ig. %0.42 p 439
3

i fig. %0

T flg 4

e
2 e A /
Fléche résiduelte calculée E st
ﬁ:wm;/; fsin;p//}“fée / emplare .
Jem 7. ! .

o |Pase élastigue
fldche residvelle 1000 2.000 Jooo 4000 Kg
nvlle

Fig. 23

contrainte moyenne de I’acier de 1 200 kg. appliquée aux calculs classiques conduit
a une fleche d’environ 6 mm. 5, sous une charge de 2000 kg., en admettant que
toute la poutre se comporte comme la zone fissurée—I’expérience a donné de 6 a
6,3 mm.

CONCLUSION

Cet exposé nous semble avoir démontré suffisamment que I’hypothése simple de
la liaison par frottement de I’acier dans le béton, que nous avons proposée, conduit’
a un ensemble de résultats cohérents qui concordent convenablement avec I'ex-
périence.

Il subsistera sans doute une certaine indétermination liée a I'imprécision des
valeurs des caractéristiques mécaniques R’ et surtout o qui, entrant dans les formules,
devront étre systématiquement mesurées.

Mais, d’ores et déja il devient possible d’étudier I'influence des divers facteurs
agissants et méme de déterminer quantitativement leur action. Les phénomenes
concernant la fissuration en flexion et en traction, la plasticité en traction du béton
et la déformabilité de I’acier, l'irréversibilité partielle des fleches y trouvent une
explication logique et sourtout constructive,

Plus particuliérement la valeur du module d’équivalence p de déformabilité du
béton et du métal n’est plus un chiffre arbitraire, mais une fonction définie par les
caractéristiques de la section et son mode de chargement.
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Enfin les déformations résiduelles sont maintenant calculables avec une précision
suffisante pour avoir au moins des ordres de grandeur avec une exactitude qui, tout
compte fait, ne doit pas étre trés inférieure a celle qui réellement intervient dans les
études classiques de résistance des matériaux.

Résumé

La liaison des barres d’armatures avec leur gaine de béton ne présente le caractére
élastique que pour de tres faibles déformations relatives.

Pour les déformations plus importantes, pratiquement toujours réalisées au
voisinage des fissures, la liaison présente tous les caractéres d’un frottement dirigé
en sens contraire du déplacement relatif.

Il en résulte, que les déformations du métal par rapport au béton n’obéissent pas
aux lois de proportionnalité et de réversibilité.

Les expériences ont permis de contrbler cette hypothése par la détermination de
la répartition des contraintes le long de barres scellées dans le béton. La théorie
qui en découle a permis notamment d’éclaircir les points suivants:

1° L’étirage apparent en traction du béton d’une piéce armée s’explique par
la formation de blocs entre fissures et le glissement des armatures.

2° L’épaisseur d’une fissure est en raison inverse de ’adhérence totale des
barres, mais I’épaisseur cumulée des fissures reste constante, c’est-a-dire
qu’une amélioration de I’adhérence multiplie les fissures.

3° L’écartement des fissures d’une piéce fléchie peut étre calculé a priori par
une formule qui tient compte des caractéristiques géométriques de la
section, de l’adhérence entre I’acier et le béton et de la résistance a la
traction du béton.

4° Le rapport d’équivalence p de la déformabilité de I’acier tendu a celle du
béton varie dans de trés notables proportions. Elle est calculable selon les
diameétres des barres, leur section, leur longueur utile, et les caractéristiques
du béton.

5° La théorie permet d’expliquer la non proportionnalité des déformations aux
charges et de calculer la valeur des fléches résiduelles aprés décharge.

Summary

The bond between the steel reinforcement and its concrete covering has elastic
properties only for very slight deformations.

For very great changes in shape, such as practically always occur in the neighbour-
hood of cracks, the bond displays all the properties of a friction in a direction
opposite to the displacements.

From this it follows that the deformations of the metal with respect to those of
the concrete do not obey the law of proportionality and of reversibility.

By determining the stress distribution along bars in the concrete, the tests have
allowed this hypothesis to be checked. The theory which has been developed from
this clarifies the following points:
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(1) The apparent elongation of the concrete in the reinforced tension zone is

explained by the forming of ‘““blocks” between the cracks and by the slip
of the reinforcement.

(2) The width of crack is in inverse ratio to the total adhesion of the steel bars,

3)

(4)

(3)

but the sum of the widths. of all cracks remains constant; that is, an
improvement of the adhesion increases the number of cracks.

The distances apart of cracks in a part subjected to bending can be calcu-
lated beforehand by a formula which takes into account the geometric
properties of the cross-section, the adhesion between steel and concrete,
and the tensile strength of the concrete.

The ratio p of the plastic deformability of the steel subjected to tension to
that of the concrete is variable between very wide limits. It can be calcu-
lated from the diameter of the bars, their cross-section, their effective
length, and from the properties of the concrete.

The theory allows the non-proportionality of the changes in shape under
load to be explained, and the value of the permanent deflection after removal
of the load to be determined.

Zusammenfassung

Die Verbindung der Eiseneinlagen mit ihrer Betonumhiillung hat nur fiir sehr
kleine Deformationen elastische Eigenschaften.

Fiir grossere Formédnderungen, wie sie praktisch immer in der Ndhe der Risse-
bildung auftreten, zeigt die Verbindung alle Eigenschaften einer den relativen
Verschiebungen entgegengesetzt gerichteten Reibung.

Daraus folgt, dass die Deformationen des Metalls gegeniiber denen des Betons
nicht dem Gesetz der Proportionalitdt und der Umkehrbarkeit gehorchen.

Die Versuche haben erlaubt, durch die Bestimmung der Spannungsverteilung
lings im Beton eingelegter Stdbe, diese Hypothese nachzupriifen. Die Theorie,
welche daraus entwickelt wurde, gestattet die Abklirung folgender Punkte:

(1)

)

(3)

4

()

Die scheinbare Dehnung des Betons in der armierten Zugzone erklirt sich
durch die Bildung von “Blocken” zwischen den Rissen und das Gleiten
der Armierung.

Die Rissbreite verhidlt sich umgekehrt zur Gesamthaftung der Stahlstidbe,
aber die Summe sdmtlicher Rissbreiten bleibt konstant, d.h. eine Ver-
besserung der Haftung vermehrt die Anzahl der Risse.

Die Rissabstinde eines Teiles unter Biegung konnen zum Vornherein durch
eine Formel berechnet werden, welche den geometrischen Eigenschaften
des Querschnittes, der Haftung zwischen Stahl und Beton und der Zug-
festigkeit des Betons Rechnung trigt.

Das Verhiltnis p der Verformbarkeit des Stahls auf Zug zu der des Betons
ist in sehr grossen Grenzen verdnderlich. Es ldsst sich aus dem Durch-
messer der Stébe, ihrem Querschnitt, ihrer wirksamen Linge und aus den
Eigenschaften des Betons berechnen.

Die Theorie erlaubt die Nicht-Proportionalitit der Formdnderungen unter
der Belastung zu erkldren und den Wert der bleibenden Durchbiegung nach
der Entlastung zu bestimmen.
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