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The various subjects in the theme AI, although apparently quite independent,
are none the less related by a common interest. This common link is the philosophical
idea of safety, and it is interesting to notice how at present there is a growing tendency
to focus these problems in a manner entirely disparate from that which served initially
to establish the nominal concept of safety factor.

Whilst, according to classical theory, structures are designed so that extreme
working stresses fall within the limiting permissible stresses, the modern tendency
is to refer most definitely to the final breaking loads, or to loading conditions immedi-
ately prior to failure. ,

The idea of permissible stress derives from the supposition that, under a certain
system of loading, the members behave in a certain way. Modern criteria on limiting
conditions of loading are based on the system of externally applied forces that will
cause the collapse of the structure.

According to the first of these two methods, the factor of safety is a number which
divides certain yield or breaking stresses.
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In the second method the external applied forces, or the set of forces acting on a
section, are multiplied by the factor of safety, and the structure is then designed so
that it will just fail at the resulting values.

Each procedure has its pros and cons. The first of these methods is widely
accepted, and there are few codes that do not specify it in a more or less direct manner.
The second method has the advantage of expressing the conditions of failure more
rigorously. The first one is more easy to apply in most cases. The latter provides a
more generalised description of the concept of safety. It can be applied both to
problems of buckling and to modern prestressed structures.

If building materials exactly satisfied Hooke’s Law, it would be satisfactory to
apply either of the two methods. The exact linear correspondence between stress and
strain implied by this law means a close proportionality between stresses and applied
loads, and so both methods will be identical. Conversely, if this proportionality
cannot be extended up to the point of failure, there is no longer a linear correlation
between cause ‘and effect, and the two concepts of safety mentioned will differ.

In strict rigour, the real solution has something of both criteria. To allow for
the natural uncertainty in the mechanical properties of the material and inevitable
defects in the process of manufacture, it is wise to rely on a yield or breaking stress
that is.lower than the estimated value. This will provide some margin of safety to
cover the possibility of these aforementioned defects. Thus the limiting stress should
be lowered, and it seems logical to divide this stress R by a partial safety factor C,,
so that the probability that the estimated design stress R’ will not surpass the value
R/C, is sufficiently small.

Furthermore, any unforeseen increase in the overload, any error in the layout of
the structures or in the sizes of the structural parts when actually made, any calcula-
tion mistakes, either in the arithmetical work or in the initial hypotheses, may result
in actual or virtual increase of the estimated applied forces acting on a given section.
This uncertainty necessitates that a factor of safety be accepted which, on multiplying
the design forces by it, will give the structure the required measure of safety. By
this means the chance that a set of sufficiently unfavourable circumstances shall
coincide will be rendered small enough to meet the particular requirements of the case.

Often this distinction between factors of safety which multiply loads and those
which divide top stresses is unnecessary, and it suffices to design the structure for a
product of both factors. But in other cases it is necessary to make this distinction
to reduce the cost without sacrificing safety.

Lack of sufficient experimental work has made it impossible to calculate the dis-
tribution of these two factors in metal structures. Tests on the change in strength
of concrete if there is an excess of water or deficient proportioning of cement have
made it possible to obtain a statistical law relating the magnitude of the defects and
their probable incidence. In constructional work there will be several sources of
~ error: variations in the quality of materials, mistakes in the actual construction,
errors in dimensioning, arithmetical mistakes and faulty hypotheses, fluctuations in
the overload, etc. These various sources of error have been expressed in the form of
probability laws.

By means of successive compositions and eliminations of these laws, it was possible
to obtain the relationship between the safety factor C. by which loads should be
multiplied and the total factor C.* '

* This relation is, with fair approximation, equal to one plus the third of the total factor of safety,
namely: Ce—1+C/3 and Cr=C/Ce is the partial factor of safety by which maximum stresses
should be divided.
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These two partial factors of safety C. and C, provide a more precise description
of the problem. The former describes the possibility that external loads should
increase unforeseeably. The second describes the measure of confidence that can be
placed on the materials selected for the work.

The paper submitted by B. G. Neal and P. S. Symonds on “The calculation of
plastic collapse loads for plane frames™ i1s a magnificent example of the diversity of
these concepts. The authors advocate the adoption of a factor of safety of 1:75 as
the factor by which dead-weight and foreseeable loads are to be multiplied; design
calculations being based on the effect of such a system of externally applied loads.
Having obtained their final results, they adopt the same procedure for external-
forces and wind load. For this set of forces they take a factor of safety of 1-4, as an
indication of the lesser likelihood that the most adverse loading conditions shall
operate simultaneously.

This manner of estimating maximum loads enables one to calculate stresses in
hyperstatic structures, based on the elasto-plastic behaviour of the metal. Only
under loadings that are 759% or 40 %—according to the case—greater than those
estimated will the structure begin to yield slowly. Such collapse occurs when a suffi-
cient number of plastic hinges have formed to transform the statically indeterminate
structure into a mechanism.

Thus the final condition of failure is clearly indicated by the previous “yielding”
phase of the material. Apart from involving more laborious calculations, the method
of permissible stresses enables one to describe only the distribution of stresses within
the structure. It cannot correctly describe its safety against the danger of collapse
with the vigour, clarity and simplicity of the theories initiated and developed under
the direction of Prof. J. F. Baker.

This subject, novel and capable of rational analysis, involves the arduous, complex
problem of the safety of hyperstatic structures. Both in the previously mentioned
paper and also in the paper submitted by J. Heyman, *“Plastic analysis and design of
steel-framed structures,” it is remarked how the initial measure of redundancy of the
structure tends to impede the general movement of the system.

If these ideas are applied to the simple case of a pitched-roof portal frame, it will
be noticed that the structure would collapse if the steel were to reach the point of
yield prematurely. A defect in rolling, an internal air bubble or a defective weld
would suffice for a given section to fail to withstand the forces for which it is designed.
The section becomes plastic and a plastic hinge appears at a given point.

If the structure is statically determinate, failure will occur more or less suddenly.
Conversely, if the system is highly redundant, the conditions of safety vary. Before
a highly redundant multi-bay portal frame can collapse laterally, under the action of a
horizontal force, all the vertical members have to become plastically hinged and
rotate. A local defect in one of them implies a point of weakness, but the danger of
collapse becomes notably reduced by the supporting strength of the other vertical
members. Only at the final moment, when the externally applied forces are very
severe, does the whole structure fail. Each member, fully strained under excessive
loading, cannot render further assistance to its neighbours, and these, unable to with-
stand the load, subdivide and collapse.

In this sense, pin joints and other flexible joints seem to limit the capacity of the
system to resist. They are veritable boundaries, or barriers, forcing adjacent members
to depend only slightly on other members. This isolation and great autonomy are
sometimes prejudicial, sometimes advantageous. Flexibility is an inestimable advan-
tage in all those instances where it is to be anticipated that foundations will subside,
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The fact that a structure may have to withstand a given set of loads effectively,
as well as the strains arising from subsidences, makes it difficult to establish general
conditions of safety for this dual form of loading.

Perhaps one of the most important points arising from the work inspired by Prof.
J. F. Baker relates to the new concept of safety. The whole structure fails although
at the instant when it begins to collapse the most loaded fibres have not reached their
ultimate failing stress.

This new idea, this mutation of the concept of ultimate strength in order to sub-
stitute it for the critical instant at which the steel begins to yield, sets new problems.
-The nature of failure is shown, not as a sudden phenomenon but as a steady state of
transition towards instability. In this situation the rheological behaviour of the
material acquires a predominant importance. If failure requires that loads shall be
kept applied for a certain time, i.e. if the collapse is not sudden, then damage due to
accident will be less severe than in the case of a brittle collapse. If damage is less,
the required factor of safety will diminish. The structure can be designed with a
smaller margin of safety than if a sudden collapse is anticipated.

This effect of the time-variable leads to a new aspect of the behaviour of the
material during the critical phase in which the creep phenomenon appears. In tests
in which the load has been rapidly applied, it has been found that the moment at
which plasticity begins may differ, according to the definition of J. F. Baker, from the
critical moment at which, if the load is applied during a certain interval, the member
yields. All will depend on the position within the stress—strain diagram of the
theoretical or conventional creep limit.

Tests by Prof. Campus in which steel has been subjected to tensile stresses at
ordinary temperatures have revealed the different behaviour of various kinds of steel
and the influence of rolling or strain on the point of the limit of creep. This position
does not seem to be directly related to the real, or conventional, yield point, nor
to the arbitrary proportional limit.

This behaviour of the material under sustained loading sets two problems that so
far have not been satisfactorily overcome, and which can be enunciated briefly as
follows:

What is the bending moment which, if applied indefinitely, leads to considerably
larger strains than those due to a slightly smaller moment ? In tests in which loads are
maintained over a long period, is there any indication of discontinuity, or is there a
point at which steel suddenly begins to strain rapidly? In these circumstances has
the previous history of cyclic loading any influence ?

It cannot be overlooked that, rheologically, short-time tests only illustrate one
facet, a partial aspect, of the strain problem. The loading processes which the struc-
ture will have to withstand involve conditions entirely different from those under which
tests are often conducted. These begin with a rapidly increasing loading, until failure
occurs. But the collapse of a structure is usually preceded by a long, uncertain history
during which there may have been many unforeseeable loading cycles. Sometimes
the collapse is due to the violent action of an external system of forces; these, acting
statically or dynamically, sometimes after repeated cycles, are capable of causing
failure either suddenly, or slowly or by successive steps. On other occasions some
important defect in one or several sections of the structure imposes severe working
conditions. The member, being stressed nearly to its ultimate capacity under normal
loading, is strained to a point close to its creep or yield limit. Strains grow continu-
ously under design loads, and failure may even occur for smaller strains than the
maximum strains attained during a short-time test. The material, prematurely aged,
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is not able to resist any further. It withstood the initial loading, but time was the
direct cause of its final failure.

In a sense, the effect of permanently applied loads is akin to the phenomenon of
alternating or cyclic loading. A single cycle of loading and unloading does not
suffice to break a structural member, but continuous repetition of loading cycles may
lead to fatigue failure. The endurance limit seems to have some relationship with the
critical load the material can withstand indefinitely. This critical load, according to
tests on concretes by J. R. Shank, is 86 % of the instantaneous ultimate strength.

For the present very little can be said about a possible correlation between fatigue
and ageing phenomena due to loads permanently applied. The urgent problem faced
by high-pressure-steam plant makers regarding the rheological behaviour of steel at
high temperatures has been only partly classified, in spite of great efforts and advances
made in this field. Nor is the similarity of the strain-time diagrams for constant
stress, at various temperatures to the strain—time diagrams for various stresses at
constant temperature of much help in formulating a satisfactory relationship between
these two types of phenomena. There is a remote possibility that a relationship
may exist between the behaviour of steel under sustained loading over a long period
at a given temperature and a similar behaviour at a different temperature, by making
some corresponding, but so far obscure, compensation in the time factor. But such
a suggestion, for all its interest, cannot be formulated with any pretence to scientific
rigour. .

Only experimental research can clear up the complex strength behaviour of
materials under permanently applied loads. New results on the behaviour of material
under repeated loading can only be obtained by a systematic programme of tests.

All estimates about the future are tinged with uncertainty. As a first approxima-
tion the designer may guess intuitively, or may estimate the limiting value of certain
loads to be statically applied. If he wants to get nearer the truth, he may take account
of their effect on the structure when applied over a certain time span. Dead weights
and permanent overloads constitute a system of forces which never cease to operate.

But additional to these, and concomitantly with accidental overloads which may
operate over long periods, phenomena of the opposite type may supervene. Two
examples of intermittent loading are the wind, with its gusts of capricious intensity,
and the regular cadence of a train crossing a bridge. Its action endures hours or
minutes, but in contrast to permanent loading which remains uniform, the magnitude
of loading is modulated, varying according to arbitrary laws, and is always dependent
on many variables which are difficult to estimate.

At times such intermittent loading may induce oscillations, which, if the structure
is very flexible, will merely cause discomfort to users. A typical example of this is
the Whitestone Suspension Bridge, near New York. The structure was capable of
withstanding hurricanes and gusty winds, but when these attained a given intensity,
the amplitude of oscillations at the centre of the main span was sufficiently large to
cause justifiable qualms among those travelling over it. The magnitude of these
displacements did not imply the slightest risk to the stability of the structure, but the
heavy traffic and the adverse psychological condition induced in those who normally
used it became an adequate motive for widening the deck as well as correcting its
exaggerated flexibility, by increasing the depth of the stiffening beams. This is a
complex matter, difficult to accommodate within normal safety criteria, though un-
doubtedly it requires attention for the sake of the peace of mind of those who use
such a structure.

In this connection the paper submitted by Prof. Dr. E. Friedrich is very interesting.
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The considerable oscillations caused by all types of traffic over the bridge at Villach
necessitated the restriction of speed of wheeled traffic. The consequence of this,
which from a functional aspect was logical, was an interference with the movement of
traffic so that at certain times of day the difficulty became acute.

Starting from this particular case of statically determinate beams Prof. Friedrich
has investigated the resonance of a simply supported beam, and has inferred that the
best way to eliminate an unfavourable combination of oscillations is to suspend a
longitudinal mass, like a beam, from the main stringers by means of springs and dash-
pots. This will avoid resonance. The additional mass will only account for 109
of the total weight of the bridge, and the calculations for the design of this device
are easy, using the formulae worked out by him.

In order to simplify calculations and arrive at practical results, Prof. E. Friedrich
has substituted a somewhat equivalent mechanism for the actual system. Even in its
most simple case, the investigation of the effects on a simply-supported girder over
which a single load moves smoothly at a constant speed involves enormous diffi-
culties of calculation. These difficulties have been pointed out by Dr. A. Hillerborg.
The contribution he has submitted is a summary account of the results announced in
the publication Dynamic Influences of Smoothly Running Loads on Simply Supported
Girders. This work has been published by the Royal Institute of Technology of Stock-
holm, under the direction of Prof. Wistlund.

The theoretical merit of the work done by Dr. Hillerborg is evident. The mathe-
matical work is developed with much ability and scientific rigour, but the practical
consequences are disappointing due to the vast amount of work necessary to ascertain
the dynamic factors applicable to even the most simple and elementary case.

The difficulties met in analysing a particular case are technically almost insur-
mountable. Actual conditions are such that for the time being they seem to defy
direct calculation. The applied loads move with variable speeds. The hypothesis
is made that effects are to be superimposed. The structure will consist of one or several
spans, straight, or curved, independent, or not. The cross-section of the members
changes frequently in accordance with functional requirements. The damping of
the oscillations is closely linked with the rheological mechanism of the material.

But in spite of all this the engineer has to keep on constructing. It is not right to
avoid the use of a particular type of structure, which intuition informs us to be adequate,
simply because its dynamic behaviour is unknown. Theoretical research must con-
tinue, but until the desired aim is attained new resources have to be devised that will
reveal the stability of the structure. It is not prudent to ignore the evidence of
phenomena, even if they cannot be fully grasped by our reason.

In the present state of technology, it appears that only experimental work can lead
to cogent results. Scale-model tests make it possible to study the most complex cases.
By such means the influence of given phenomena can be measured, and the structure
can be subjected to systems of forces very similar to the actual anticipated overloads.

The experimental work by C. Scruton at the National Physical Laboratory, on
behalf of the British Ministry of Transport, is an example of this kind of attempt
to study the behaviour of a structure subjected to the dynamic action of wind operating
continuously or in gusts. The model was placed in a wind tunnel suitable for this
type of test. By turning it conveniently around, it was possible to observe the effects:
first on the structure as a whole, then separately on the deck.

As it was practically impossible to reproduce the structure so that similarity would
be maintained in density, elasticity modulus, damping and speed and viscosity of the
wind, this last factor was ignored because of its negligible influence. The test on the
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full model served to compare results with tests on sectional models, suitably mounted.
These latter tests also served to measure in a simple manner different types of decks,
so that by a process of trial and error, the most satisfactory deck was evolved, careful
account having been taken of the results obtained with some of these decks in relation
to the full model.

As so often happens the experiment by-passes the obstacles of calculation and solves
problems that lie beyond the reach of theory. Sometimes it serves to determine the
effect of imposed loads. At other times it reveals the behaviour of the material
employed and corrects or checks the truth of the hypotheses, which often are too
idealised to be correct.

Model research and work on test-pieces performs two distinct functions, both
most valuable. The former overcomes problems beyond the scope of mathematical
computation, and the latter reveals properties and defines qualities that broaden or
limit the strength and mechanical possibilities of a given material.

Both are most valuable aids to technical research. Methods of calculation based
on the plastic behaviour of materials, when applied to the dimensioning of reinforced-
concrete sections, and by Prof. F. Baker to metal structures, are the result of good
observation of the mechanical properties of steel.

The advantages of this procedure are not only that it provides a method more
simple to apply, but also that it corresponds more closely to the actual behaviour of
the material. ,

But to solve the stress—strain laws, as well as their evolution in the course of time
under different kinds of loading, it is necessary to return to the basic material and to
observe all its changes, its elongations and contractions.

With this end in view, Prof. J. F. Baker has undertaken a series of tests. These have
been done in the Engineering Laboratory of Cambridge University by M. R. Horne.

Simultaneously, A. Lazard has arranged another set of tests, also on mild steel
full-web double-T girders, and has compiled valuable data from other experimental
centres.

As A. Lazard points out, the interest of the subject is such that there appears to be
justification for a vast systematic research programme, not only into the behaviour
of beams under an increasing bending moment, but also on structural pieces subjected
to cyclic loadings, either in the form of repeated loadings, or of alternating or oscil-
lating forces.

Other interesting aspects of this subject are buckling phenomena of the com-
pression flange, the influence of shear stresses, rivet holes, and internal stresses due
to rolling or welding. Further, this investigation should include tests on simply-
supported beams, fixed-ended girders, continuous beams over several supports,
portal frames, etc., and it should include rolled and built-up sections. It will be
realised how vast is the field that awaits systematic exploration. The synoptic table
prepared by A. Lazard gives a clear idea of the magnitude of the problem, to which it
would probably be necessary to add the series of tests on strains and failures due to
~ the action of permanently applied loads.

The task is enormous, but the consequences and the advantages that would result
in reduced cost would far outweigh the effort made. Firstly, sizes could be cut down,
since the behaviour of the material would be better known. In the investigation
presented by M. R. Horne on the most efficient shape of fixed-ended beams it is
shown that a saving of 16 % can be achieved. A study into the optimum values that
should be given to the safety factors which multiply loads and divide limiting stresses

could lead to an additional saving of between 109 and 20%,.
C.R.—3
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If to these percentages is added the reduction in the value of the safety factor due
to the extensive research into the behaviour of structural members under long-acting
dynamic loads, and due to the better estimation and precise functional operation of
the structure, it can be well understood that those figures can be increased even more.
So the safety factor might be lowered even further, all this as a result of a better
knowledge of the materials and more accurate design hypotheses.

For these reasons, based on the highly promising results implied by Prof. J. F.
Baker’s theory, as expounded by B. F. Neal, P. S, Symonds, J. Heyman and M. R
Horne inits various aspects, the general reporter seconds the proposal of A. Lazard, and
takes great pleasure in communicating this most interesting proposal to the Congress—
a proposal that is full of difficulties, and that will involve many hours of hard work,
but which leads him to hope for a technological evolution from which all engineers
will benefit.

Summary

In the general report concerning the contributions to theme Al, the different
criteria are first explained on which the conception of the safety of structures is based.
For this purpose it is suggested that the factor of safety C should be split into two
partial factors C, and C, whose productis C. With one partial factor, the calculated
shearing forces are to be multiplied; with the other, the strengths or limiting stresses
are to be divided. The relation between these two partial coefficients results also
from mathematical-statistical considerations.

The general reporter describes the special points of the various papers submitted.
According to the above considerations, these are divided into two groups. To the
first belong the papers on the deduction of the shearing forces from the dynamic
or static loadings. In the second group are summarised the papers for extendiing
the knowledge of materials with the help of experimental research on the behaviour
of materials under the influence of static and dynamic loads.

Finally, the economic advantages which would result from these studies are ex-
plained. The materials would be better utilised when one or other of the partial
factors of safety is reduced, so that the fundamental assumptions underlying the calcu-
lations are improved and a more accurate knowledge is obtained of the mechanical
properties of the materials that are used.

Résumé

Dans ce rapport général, qui sert d’introduction a la discussion des travaux pré-
sentés a la Section Al, le rapporteur général expose les différents critéres sur lesquels
est basé le concept de la sécurité des structures. A cet effet, il suggere la décompo-
sition de la valeur numérique C du coefficient de sécurité, en deux coefficients partiaux
C. et C,, dont le produit est égal a C. L’un d’eux est destiné a multiplier les moments
fléchissants, les efforts tranchants et les efforts normaux prévus; et ’autre, a diviser
les résistances ou contraintes limites. La relation entre ces deux coefficients partiaux
est basée sur des considérations de mathématique statistique.

Ensuite, le rapporteur expose sommairement les particularités qu’offrent les différ-
ents travaux présentés. Conformément aux idées antérieures, il les classe en deux
groupes. Le premier groupe est formé par les thémes qui traitent de la déduction
des efforts produits par les surcharges, soit dynamiques, soit de type statique. Dans
le deuxiéme groupe, il inclut toutes les contributions destinées & compléter la con-
naissance des matériaux au moyen de I’é¢tude expérimentale de leur comportement
sous l’action de charges statiques, dynamiques et permanentes.
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Enfin, le rapporteur indique les avantages économiques qui résultent de ces tra-
vaux et portent sur une meilleure mise en valeur des matériaux et sur la réduction de
I'un et I'autre des coefficients de sécurité partiaux, par ’amélioration des hypothéses
de base de calcul et par la connaissance plus exacte des caractéristiques mécaniques
des matériaux employés.

Zusammenfassung

Im Generalbericht iiber die eingereichten Arbeiten der Abteilung AT werden
zunéchst die verschiedenen Kriterien dargelegt, auf die sich der Begriff der Sicherheit
der Baukonstruktionen griindet. Zu diesem Zweck wird die Aufteilung des Sicher-
heitsfaktors C in zwei Teilfaktoren C. und C,, deren Produkt C ist, nahegelegt. Mit
dem einen sind die berechneten Schnittkréifte zu multiplizieren, durch den andern
die Festigkeiten oder Grenzspannungen zu dividieren. Die Beziehung zwischen
diesen beiden Teil-Beiwerten ergibt sich aus mathematischstatistischen Betrachtungen.

Sodann beschreibt der Generalberichterstatter zusammenfassend die Besonder-
heiten der verschiedenen eingereichten Arbeiten. Gemiss den vorstehenden Ueber-
legungen werden diese in zwei Gruppen eingeteilt. Zur ersten gehoren die Beitrige
iiber die Ableitung der Schnittkrifte aus den dynamischen oder statischen Belastungen.
In der zweiten Gruppe sind die Beitrdge zur Vervollkommnung der Materialkennt-
nisse mit Hilfe der Versuchsforschung iiber das Materialverhalten unter dem Einfluss
statischer und dynamischer Lasten zusammengefasst.

Schliesslich werden die wirtschaftlichen Vorteile dargelegt, die sich aus diesen
Arbeiten ergeben, welche erlauben, die Materialien um soviel besser auszuniitzen,
als es gelingt, den einen oder den andern der Teilsicherheitsfaktoren zu verkleinern,
indem die grundlegenden Rechnungsannahmen verbessert werden und eine genauere
Kenntnis der mechanischen Eigenschaften der verwendeten Baustoffe erreicht wird.
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An investigation of the oscillations of suspension bridges in wind
Etude sur les oscillations de ponts suspendus sous I’effet du vent

- Eine Untersuchung iiber die Schwingungen von Héngebriicken
infolge Winddruck

C. SCRUTON, B.Sc., A.F.R.Ae.S.
National Physical Laboratory, Teddington, England

1. INTRODUCTORY

The paper gives a brief review of experiments on the aerodynamic stability of sus-
pension bridges which have been carried out by the National Physical Laboratory on
behalf of the Ministry of Transport. The specific purpose of the investigation was to
give guidance on the aerodynamic design aspects of a proposed bridge over the River
Severn with a centre span of 3,240 ft. (987 m.) The experiments were commenced in
1946 and were concluded early in 1951 by tests which provided a final confirmation
. of the stability of the preferred design for the bridge.

Although in the time available no fundamental research could be undertaken to
elucidate the root causes of the aerodynamic oscillations, much information of a
general nature was gained which should be helpful in the design of future suspension
bridges. A previous paper* submitted by the author to the 3rd Congress sum-
marised the preliminary stages of the work.

The wind-excited oscillations which have occurred on long-span suspension
bridges (notably the “original Tacoma Narrows Bridge) have been basically either
vertical bending or torsional motions. In vertical oscillations the suspended plat-
form moves up and down and the two cables displace equally and in step. In
torsional oscillations the platform twists about a spanwise axis and the cables displace
equally but in opposite directions. Both types of motion can occur at various fre-
quencies and in a variety of modes. The instantaneous shape of a spanwise reference
line during an oscillation is termed the wave form of the oscillation and is either

* C. Scruton, “An Experimental Investigation of the Aerodynamic Stability of Suspension
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“symmetric” or ‘‘antisymmetric’® with respect to the centre of the bridge according
as the displacements of the two half-spans are in the same phase or in anti-phase.

In the investigation to be described the oscillatory behaviour of bridges was studied
experimentally by tests of models in wind-tunnels. The two types of model used were
similar to those used by Farquharson, Vincent and others* at the University of
Washington (U.S.A.) in the extensive investigations which followed the collapse of
the Tacoma Bridge in 1940. These were:

(a) Sectional models

A sectional model is a short rigid model of a sample length of the suspended struc-
ture and is mounted across the wind-tunnel (with its span horizontal and normal to
the wind-stream) with freedom to oscillate against spring constraints. In the present
investigation the model mountings permitted vertical translatory motions and pitching
motions.f These motions, which were the two-dimensional equivalents of the
vertical bending and torsional motions of the complete bridge, could take place at the
same time for coupled motion tests, or could be isolated for tests with a single freedom.

In general the wind tests of these models involved no more than the observation
and measurement of the critical wind speeds and frequencies bounding the ranges over
which oscillations were maintained by the wind. Occasionally the damping rates of
oscillations in the wind-stream were measured. The tests were made in transverse
winds with inclinations varying between 15 degrees. It was not considered prac-
ticable to test sectional models in horizontally inclined winds. '

(b) Full models

A full model is a replica of a complete bridge so constructed that its behaviour in
a wind-stream is similar to the full-scale bridge. The full model used in this investiga-
tion was installed in a large wind-tunnelf specially built by the Ministry of Transport
for the investigation. The direction of the tunnel wind-stream could not be varied
but the effect of inclined winds, both horizontally and vertically, was simulated by
inclining the model. Critical wind speeds, frequencies and oscillation modes were
recorded.

In the early stages of the investigation it was uncertain whether the stability of a
complete bridge could be predicted satisfactorily from experiments on a sectional
model alone, since with this method of test the influence of several factors cannot be
represented directly. Such factors include, for example, the tower stiffnesses and
inertias, the longitudinal camber, the oscillation wave form and the horizontal
inclination of the wind. However, it was also clear that full models were unsuitable
for routine comparisons between different forms of suspended platform, owing to the
length of time required for construction and the high cost. To provide a practical
programme it was therefore decided to depend on tests of sectional models for an
indication of the most promising structural forms. Whilst the tests were in progress,
the design and construction of a full model was also put in hand, with a view to tests
of the correlation between the two different experimental methods. This full model-
was necessarily based on a very early design for the bridge, and it became available
for wind-tunnel tests in 1948. The results obtained with these two types of models

* “The Aerodynamic Stability of Suspension Bridges with special reference to the Tacoma
Narrows Bridge,”” Bulletin No. 116 of the University of Washington Engineering Experiment Station.

1 A few tests were also made with Jateral motion (i.e. translation normal to the span and in the
plane of the decks).

1 The wind-tunnel is briefly described in Appendix II.
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led to the conclusion that sectional model tests were sufficient for reliable full-scale
prediction, and accordingly the construction of a further full model based on the
design finally preferred for the bridge was considered to be unnecessary. A final
verification of the stability of this design was, however, provided by tests of a large-
scale sectional model. An increase of the linear scale from 1/100 to 1/32 was con-
sidered advisable, because previous tests had shown that the stability was sensitively
influenced by details of the structural form which could not be copied with sufficient
accuracy on a small-scale model.

2. NOTATION

p air density

v kinematic viscosity of air

B width of bridge between stiffening trusses

g acceleration due to gravity

o typical material density

E typical elastic modulus

6 angular torsional displacement of suspended platform at any instant of
oscillation (radians)

z linear vertical displacement of structure at any instant of oscillation

I,
I
Ng and Nz

e and e,

3
3 and 8,

894 and 6,4
8ps and 8
88w

V and ¥V,
N and N,

V,=
V=

o

B

torsional moment of inertia per unit spanwise length

mass per unit spanwise length

natural frequencies of oscillation in torsional and vertical bending
modes respectively

elastic stiffnesses corresponding respectively to I, Ny and 7, N..
natural logarithm of the amplitude of successive cycles of oscillation
(logarithmic decrement) ,

logarithmic decrements for torsional and vertical oscillations in still air
respectively

logarithmic decrements due to still air damping

logarithmic decrements due to structural damping

logarithmic decrement of torsional oscillations due to the wind-stream
wind speed and critical wind speed respectively '
frequencies of oscillation corresponding to ¥ and V. respectively
V/NB reduced velocity

V/NyB

angular inclination of wind to the bridge platform in a vertical plane
—upwinds positive (degrees)

angular inclination of the wind to the bridge in a horizontal plane
(B=0 and 90 degrees for transverse and longitudinal winds)

3. MODEL AND FULL-SCALE SIMILARITY

(i) Full models

The motions of similar-shaped suspension bridges in wind may be influenced by
the bridge size (B), by the density, damping and elasticity of the bridge structure
(o, 85, E) and by the viscosity, density and velocity of the air (v, p, V).
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By the usual principles of dimensional analysis these parameters can be grouped
in the following independent non-dimensional combinations:
@) o/p (density)
(b) E/pV? (elasticity)
(c) & (structural damping*) % . . . . . . (1) .
(d) gB/V?2 (gravitational) f
(e) VB/v (viscosity)

Full dynamic similarity between model and full-scale is achieved if the model
is geometrically similar to full-scale and the above numbers are equal for both
systems.

For tests in atmospheric wind tunnels of practicable dimensions and wind speeds
the full-scale value of (¢) cannot be achieved. The velocity scale would moreover be
incompatible with that required by (d). However, there is evidence that the aero-
dynamic forces acting on bluff bodies such as bridge structures depend mainly on
pressure action and only indirectly on viscous action and hence the validity of full-
scale prediction by model testing is not seriously impaired by incorrect scaling of the
viscous forces.

The design and construction of a model to accord with the similarity numbers (a)
to (d) presents considerable difficulties. It will be found generally that materials of
construction do not exist which possess the requisite combinations of density and
elastic moduli, and that even were such materials available, the exact small-scale repro-
duction of details might be impracticable. However, it is sufficient if the correct
overall inertias and elastic stiffnesses are reproduced in the model. Equivalent
similarity numbers to those given in (1) but using inertia and elastic stiffness terms
are:

(@) Io/pB*, I./pB?, elc. 1
(b) esfpV2B2, e./pV?, etc.
() 8, B etc. RN e)
. (d) gB/V?2 ]
With a linear scale of 1/n the foregoing numbers yield a velocity and a frequency

scale of 1/4/n and \/;i respectively. The values of ¥V, and V; are therefore the same
for the full-scale bridge as for the model.

(i) Sectional models
With strict inertial scaling

True similarity conditions are obviously not observed in the sectional model
method of test. The use of the method for full-scale prediction assumes that oscilla-
tions of a complete bridge arise from the aerodynamic action on the suspended
structure alone and that the other components (e.g. cables) contribute to the dynamic
properties only. It also implies that critical values of ¥, are not influenced by oscilla-
tion wave form.

The inertial coefficients of sectional models represent the total contribution of
suspended structure and cables. The model stiffnesses are merely those which pro-
vide the required oscillation frequencies and need not, as in the case of full models, be
derived from correctly proportioned gravitational and elastic forces. When (d) is

* It is shown in Appendix I that when the influence of viscosity is negligible values of 8¢4 are the

same for model as for full-scale provided strict inertial scaling is observed. Hence, for the full model
tests and for the sectional model tests with strict inertial scaling 8 may be used in place of &g;.
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omitted and expressions for natural frequencies are substituted in (b), the similarity
numbers for sectional models become:

(@) L/pB*% I./pB?
(b) V/N¢B, V|N.B N )
(C) 885’ 825 J

where [, I, now represent overall values.

Thus the actual velocity and frequency scale for sectional models are inter-
dependent but one or other may be chosen at convenience.

Inertial scaling not attempted

In the writer’s previous paper* tests of sectional models involving isolated motions
only were considered. The requirements for similarity were then approached through
the solutions of the equations of motion. Similarity conditions equivalent to those
given in (3) were, of course, obtained ; but in addition, it was shown that when Ny;=N,
approximately, strict inertial scaling is not essential and the critical values of V,
depend only on the geometric shape of the structure and on the product of (a) and (c)
i.e. on Iy . 8y5/pB* and I, . 8;/pB? for angular and linear motions respectively.

Procedure for prototype prediction from sectional model test data

Some remarks may be useful on the procedure in the two cases where strict
inertial scaling of the model is observed, or is not attempted and N.=N, approxi-
mately.¥ The critical values of ¥, obtained from the models by both these methods
are applicable to the prototype, provided the values of &, satisfy the stated condi-
tions.] Strict inertial scaling is essential for values of V; (and N,) to be applicable:
critical speeds are then determined from critical values of V; or V, by either of the
relations V.=NyBV; or V.=N_.BV,. The value of N, required by the latter relation
is not given by the other method, and it is therefore necessary to use the approximation
V.=N,BV,. Experience with various types of bridge sections indicates that this
approximation introduces no serious discrepancies within the range of normal winds.

4, THE FULL MODEL EXPERIMENTS
Model construction

A photograph of the 1/100-scale full model is reproduced in fig. 1. The model
was designed to give wide scope for modifications both to the elastic properties and
to the form of the suspended structure. It represented a truss-stiffened bridge of
width 107 ft. (32:6 m.) and of total span 5,040 ft. (1,535 m.); the centre span of length
3,000 ft. (914 m.) had a sag ratio of 1/10. The two roadways of width 39 ft. (11-9 m.)
were separated by an 83 ft. (2-53 m.) wide reservation.

The required stiffness and inertial properties of the suspended structure were ob-
tained by the use of light rigid components with steel interconnecting springs. These
rigid components were mainly of aluminium-balsawood sandwich construction and
each component spanned one bay of 60 ft. (18:3 m.). Theuseof spring interconnections
enabled the stiffnesses to be altered and also had the advantage that the structural
damping was kept to a sufficiently low value, since the deformations occurred mainly

* Loc. cit.

t For convenience, pitching oscillations only are discussed here. The procedure applies equally

well to other motions.
1 See note at foot of page 40.
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through flexing of the springs. Both the elastic and inertial properties of the towers
were variable, but it was not considered necessary to reproduce the correct external
shape of either the towers or the anchorages. The model cable consisted of piano
wire of diameter 0-024 in. (0-61 mm.), which provided the equivalent of a full-scale
cross-sectional area of about 450 in.2 (2,900 cm.2) with a 1/100 reduction of Young’s

B ., =51 - i
e i . =
R il ol ; : - o, P 5

4 4. P, = ey
3 -

YA

Fig. 1. The 1/100-scale full model mounted in the wind-tunnel

modulus. To obtain the correct mass and external shape, hollow brass cylinders
were spaced along the wire and fixed to it by a single grub screw. The model sus-
penders were made of fishing line which had been prestretched and treated with a
beeswax coating to reduce the effect of humidity changes on its length.

The model was mounted on the horizontal turntable which fitted flush with the
floor of the wind-tunnel test chamber (see Appendix II and fig. 7). Changes of the
horizontal wind direction were reproduced by rotation of the turntable and the effect
of vertically inclined winds was simulated by tilting the whole model about a spanwise
axis near the wind-tunnel floor.* In the second case, the correct representation of
the gravitational forces was then restored by attaching suitably angled and spring
tensioned cords at several points along the span. The additional elastic stiffnesses
contributed by this arrangement were rendered small by the use of long cords and
very weak springs.

Test procedure

In still air tests resonance modes and frequencies were observed by exciting the
model through weak springs driven by a reciprocating motion. The logarithmic
decrements of the artificially excited oscillations were measured in the usual way from
photographic records.

In wind tests the tunnel speed was gradually increased from zero to a maximum
corresponding on full-scale to a little over 200 ft./sec. (61 m./sec.). The critical wind

* The provision made for tilting the model is not shown on fig. 1.
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speeds and frequencies for maintained oscillations in the various modes were noted.
In general the modes were observed visually, but cinematograph records were taken
of certain typical oscillations.*

Results and conclusions

Tests on the full model were carried out for various vertical wind inclinations « and
horizontal wind inclinations 8. The effective angle o produced by a given tilting
inclination o’ of the model depended on the value of B and was given to a close
approximation by «a=a' cos 8. Except for longitudinal or near longitudinal winds,
the values of vertical inclination attained ranged between 415 degrees.

Tests were made on the influence of several design variations such as grade-line
camber, tower stiffness and cable loading; and also on the effects of modifications to
the external shape of the suspended structure. By covering the stiffening truss panels
with paper it was possible to simulate the aerodynamic effect of a plate-girder-
stiffened bridge. In this condition the model reproduced many of the modes of
oscillation which occurred on the original Tacoma Bridge.

The inore important results and conclusions are given below.

(@) Coupling between vertical bending and torsional motions

Each wind-induced oscillation observed corresponded in mode and in frequency
to a natural oscillation induced by resonance tests in still air. From this experi-
mental evidence, and from independent visual observations, it was concluded that
coupling effects between the vertical bending and torsional motions had little influence
on the oscillations. However, it should be noted that the natural frequency ratio
Ny/N, for corresponding wave forms was approximately 2 and was therefore more
appropriate to a bridge with a double rather than a single plane of lateral bracing.
There was no means on the full model of substantially reducing this ratio. The
effect of a close approach to equality of the natural frequencies in sectional model
tests is described later.

(b) Influence of oscillation form

With a given wind inclination and model condition all the different types of tor-
sional oscillation appeared for approximately the same constant value of V,. A
similar conclusion applied for vertical bending oscillations. This indicates that the
influence of oscillation wave form is unimportant.

(¢) Influence of shape of suspended structure

The stability depended on the shape and arrangement of the components of the
suspended structure. The model with plate-girder stiffening exhibited a high degree
of instability in both vertical bending and torsional oscillations. No instability in
vertical bending motion was found in any test with a truss-stiffened model. Torsional
oscillations occurred for certain arrangements of the truss-stiffened model.

The influence of shape is discussed in more detail in the description of the sectional
model tests.

* Some of these records have been incorporated in a short silent film entitled ‘Oscillations of a
Model Suspension Bridge in Wind.”
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(d) Influence of elastic stiffnesses and natural frequencies

Critical values of ¥, were not appreciably influenced by variation of the stiffnesses
and natural frequencies due to structural modifications which did not involve change
of shape of the suspended structure. Such modifications included variation of the
tower stiffnesses, unloading the sidespan cables, and fitting a centre tie between truss
and cable.

(e) Influence of wind inclination

The highest degree of instability was found in transverse winds (8=0) and the
stability characteristics improved progressively with increase of 8. Vertical bending
oscillations of the plate-girder-stiffened model persisted, but with decreasing am-
plitude, up to a value of B between 30 and 45 degrees, while weak torsional oscillations
were still present at 8=60 degrees. No instability of any type was found in steady
longitudinal winds. _

The stability was sensitive to the vertical inclination of the wind. The highest
degree of instability of the plate-girder-stiffened bridge occurred with slight negative
vertical inclination, and that for the truss-stiffened bridges with slight positive
inclination.

(f) Effect of grade-line camber

The stability was not greatly influenced by variations of the grade-line camber.
The indications were that a cambered grade-line yielded very slightly better stability
characteristics than a level grade-line.

(g) Effect of gusty winds
Some tests were attempted with several types of disturbed airflow, none of which,
however, was necessarily representative of natural gusty winds. In longitudinal, as
well as in transverse winds, irregular vertical oscillations were set up by the buffeting
action of large-scale eddies shed from the gust-making device, but no tendency to
torsional motion was observed.

(h) Correlation between sectional and full model tests

The full model tests showed that critical values of ¥, for specific values of the
structural damping were determined by the shape of the suspended platform and were
not substantially affected by other structural properties or by the wave form of the
oscillation. Also in these tests the highest degree of instability was produced in
transverse winds. It was concluded that sectional model tests would be adequate for
stability prediction provided they yielded the same critical values of ¥, as those given
by the corresponding full model.

Table 1 sets out a comparison of the results obtained with the full model and with
its sectional model copy. The alignment of the vertical motion in the sectional model
tests were not strictly correct except at zero incidence, since the direction of model
motion was not altered to correspond to the incidence change. The error in align-
ment increased with incidence and hence may account for the lack of correlation
between the results at «a=410 degrees for vertical oscillations of the plate-girder-
stiffened section. With this exception all the results showed very good agreement
between the two methods of test and support the conclusion that reliable predictions
of the stability of proposed suspension bridges may be based on sectional model tests
only.
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TABLE 1

Comparative results from sectional and full model tests

The models represented a mid-deck bridge of section A, fig. 3. In its standard condition (fig. 1)
the model decks were separated by an open reservation and were fitted with paling-type handrailing
and truss-type roadway stringers. The values for the structural damping were:

Full Model: 8§;5=0-035, 8,,=0-05
Sectional Model: 8:5=0-06, 84,=0-05

The full model was tested up to speeds corresponding to values of F; of 15 and 8 for vertical and
torsional oscillations respectively. Higher values were reached in the sectional model tests, but for
the purpose of this comparison the above values are taken as the limits for both types of test and a
result is given as STABLE when no oscillations occurred up to these limits. Only the lowest critical
values are quoted here, since on the full model the critical speeds for the upper limit of the instability
range were usually masked by the onset of a further mode of oscillation.

Lowest critical values of V,

Model Configuration (3 Vertical Oscillations Torsional Oscillations
degrees - _
Sectional Full Sectional | Full
Model Model Model Model
. —15, —10, A
Standard —-5,0,5, STABLE STABLE
10, 15
10 7-0 ‘ 6-8
Standard but with all hand-
railing removed =15, 10,
g -5,0,5, STABLE STABLE
15
. 0 34 3-8
Standard but with solid " ;s g
plate handrailing ——3, 5, 16, > STABLE 7 STABLE STABLE STABLE
15 ‘
Standard but with castellated =15, —10,
handrailing —5,0,5, STABLE STABLE
10, 15
T Is 50 4:5
Standard but with the hand- ] ]
rz}iling on the inner edges 10 54 48
of the carriageways re- ; .
moved and a solid cover 3 12 69
fitted over of the central [ j < _ g
reservation -15 STABLE STABLE
J J
15 STABLE STABLE 55 STABLE
10 STABLE 1-8 26 2-5
Stz;ndard but with the stif- 5 17 17 24 21
ening trusses covered to . . . :
r?rese?t tl}gdaell'odynalé'nic 0 1-8 16 24 26
effect of solid plate-girder K . . ; \
stiffening 5 1-8 1-7 24 25
—10 STABLE 1-7 2:8 24
—15 STABLE STABLE 5-8 | 4-2
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5. EXPERIMENTS WITH 1/100-SCALE SECTIONAL MODELS

A typical 1/100-scale sectional model is shown by fig. 2. The models were of
rigid wooden construction and represented a 340-ft. (103-5 m.) length of the bridge-
suspended structure. They were tested in a wind-tunnel with a working section
measuring 4 ft. by 3-40 ft. (1-22 m. X 1-:035 m.). Two types of mounting, here referred
to as the “original” and the “improved,” were used.

Fig. 2. Typical 1/100-scale sectional model.

The original mounting

This permitted both vertical bending and pitching motions, either singly or
together. The apparatus damping was not directly variable, and the inertias of the
model on this mounting were very much greater than those required by correct scaling
of the prototype values. However, since in the tests N.=N,, the similarity conditions
given in paragraph 3 were applicable.

The model was attached at both ends to circular plates which were supported on
ball bearings so that pitching motion could take place against the elastic constraint
provided by helical springs. Each bearing and spring assembly was carried on a
framework which was constrained to move vertically by a steel-strip device; helical
springs again providing stiffness. The circular end-plates fitted flush with the walls
of the wind-tunnel.

The improved mounting

This was used for pitching motion tests with correct inertial scaling and with the
apparatus damping variable from a low initial value. As in the case of the original
mounting the model was carried between discs. Each disc was supported on a steel-
strip suspension which maintained a fixed axis of oscillation and also provided the
required elastic stiffness. The damping due to this suspension was very small.
Additional damping was supplied by the action of a thin segment of copper which
oscillated with the model and passed between the pole-pieces of an electromagnet.
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The damping moment produced by the eddy currents set up in the copper was propor-
tional to the velocity of the motion and could be readily varied by adjusting the
current through the coils of the electromagnet.

Discussion of results

The main types of bridge section tested are shown in fig. 3. They were all stif-
fened by trusses of the single Warren type, but could be readily converted to represent
plate-girder-stiffened sections by the attachment of solid covers to the trusses. The
models were usually tested with a pitching axis placed approximately centrally with
respect to the four stiffening-truss-chords members, but some tests were made with

_r—a.?%}—’!

25'(7-62m)

107’
(32:6m)

Section A

!
16 24’
Fa?::) I 32m) —f-

L i — 25’(7'52’”)

1200 O
(396 m)

This section was also tested with B=95(28'9m) and B=107'(32:6 m)

Section B
166" 266"
'(?0371 l (a-oa?Tl
: : " 27%" (8:38m )
80’ -
(24-4m)
Section C
16’ 6" §
_6.. 28
(s-aami _ (8:52m)
27'¢"(8-38 m)
o,
(24-4 m) o
Section D

Fig. 3. Main types of bridge sections tested

other axis positions. The maximum of ¥, or V; obtainable in the tests depended on
the test conditions; but in all cases corresponded to full-scale wind speeds of well over
100 miles/hr. (161 km./hr.).

Some of the models were tested on both the original and improved mountings.
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The good agreement obtained between corresponding sets of results provided experi-

mental verification for the similarity conditions stated in paragraph 3 for the case
where strict inertial scaling is not attempted.

The main conclusions derived from the results of the sectional model test are
summarised below.

(a) Influence of structural damping

A typical diagram showing the influence of structural damping on the stability of

a plate-girder-stiffened section is reproduced in fig. 4. Similar tendencies were
exhibited by truss-stiffened sections.

a5

\ |

—f— O
1\ —o=——sa =10
1\ —+—3a=5) 4 is used when
10 T a=0 values for these
Vo =—eQ===0=-5 angles coincide
\ ——-a---a= -0
\ \ ———Om——ds 1§

[}

005 010 015 o’
b

Fig. 4. Influence of damping on the pitching oscillations of the plate girder stiffened section A

Increase of 8, narrowed the instability range by increasing the critical speeds for
the lower boundary and decreasing those for the upper boundary. The magnitude of

3¢s mecessary to prevent oscillations for all wind speeds provided a qualitative
indication of the relative strengths of the instabilities.

(b) Influence of location of pitching axis

The vertical position of the pitching axis was varied in tests of the mid-deck section
(B, fig. 3) and of the top-deck section (D, fig. 3). For axes lying midway between the
stiffening trusses the stability of both these sections was least when the axis was
located near the level of the deck. '
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(c) Coupling between vertical bending and pitching oscillations

In sectional model tests with coupled motions particular attention was given to
ratios of the natural frequencies near unity, since it was expected that the influence of
coupling would then be most marked. Except when the frequency ratio Ny/N,
closely approached unity, one of the.motions was always found to predominate, and
the critical frequency and reduced velocity were in fair agreement with those obtained
in the corresponding isolated motion test. When N,/N,=1 both motions were
present in substantial proportions. In one instance coupled oscillations occurred °
when N,/N,=1 which were absent when N,/N,>1 or when the motions were isolated.
Hence it was concluded that sectional models can be tested satisfactorily with the
vertical and pitching freedoms isolated, unless the frequencies for corresponding
modes are approximately equal.

(d) Influence of structural form of suspended platform

Plate-girder-stiffened sections. These sections were considerably more unstable
than truss-stiffened ones. The majority of them were obtained by covering the stif-
fening trusses of the sections shown in fig. 3 and thus the plate girders represented
were rather deeper than is usual in practice. All the plate-girder sections showed
instability in both vertical and pitching motions, generally at low wind speeds. For
example, the critical values of V, for the section derived by covering the trusses of
A (fig. 3) were about 1-7 and 2-5 for vertical and pitching oscillations respectively
(see Table I).

Truss-stiffened sections. No vertical oscillations were excited with any of the
truss-stiffened sections. The pitching oscillations were influenced by the form and
arrangement of the structural components of the bridge, and were especially sensitive
to those of the roadway deck fittings. The results have been discussed in greater
detail in the writer’s previous paper.* Only those factors which were found to have
a corrective influence on aerodynamic instability in pitching oscillations will be listed
here:

Stiffening truss chords of high width/depth ratio;

Separation of traffic lanes by open slots or gratings;

Truss-type deck stringers in preference to the plate-type;

Castellated handrailing, or other types of handrailing designed to break up the
continuity of the airflow pattern;

Sidetracks (e.g. footpaths, cycle-tracks, etc.) mounted outboard of the stiffening
truss. ‘

By the inclusion of a number of these stabilising features in the design, a satis-
factory degree of stability was achieved for each of the types of section shown in
fig. 3. However, the stability still proved to be sensitive to other factors such as the
relative levels of the various roadways and the positioning of the roadway stringers.
These effects were only noted and not investigated systematically. In view of the
many design features which may possibly influence the stability it is considered that
model tests provide the only satisfactory basis for stability prediction.

The sections A to D shown in fig. 3 are lettered in the chronological order of the
tests and illustrate successive steps in the evolution of a design with very good stability
characteristics. Section A represented a mid-deck design with two roadways
separated by an open central reservation. The presence of the gap between the

* Loc. cit.
C.R—4
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roadways greatly improved the stability. Further improvement was obtained on
dividing the two roadways into four, provided adjacent roadways were separated by
an open reservation (section B). The two outer roadways, termed ‘“sidetracks,”
each represented the combination of cycle-track and footpath; the inner ones repre-
sented carriage-ways. For economy in the construction of the piers and towers the
width between trusses was reduced to 80 ft. (244 m.) in section C and the sidetracks
were supported outside the trusses. This change also improved the stability. The
top-deck section D was the last of this series of 1/100-scale models and it allowed
horizontal cross bracing to be incorporated in two widely separated planes. Its
stability characteristics were superior to those of the sections tested previously, and
this fact, in conjunction with the considerable increase in torsional frequency due to
the two planes of bracing, increased the estimated critical speed for torsional oscilla-
tions of the full-scale bridge to over 250 miles/hr. (400 km./hr.). Two models of
section D were used, the second of which approximately represented the design finally
‘adopted for the Severn Bridge.

6. CONFIRMATORY TESTS OF THE STABILITY OF THE PROPOSED SEVERN BRIDGE

Since earlier tests had already shown sectional models to be adequate for the
prediction of the stability of a complete bridge, the construction of a full model
representing the preferred design for the Severn Bridge was considered to be unneces-

Fig. 5. Sectional model of design proposed for the Severn Bridge (1/32-scale)

sary. However, to provide a final confirmation of the stability, tests were carried
out in the large wind-tunnel on a 1/32-scale sectional model. This increase of the
linear scale* allowed a more accurate reproduction of fine structural detail.

The model (see fig. 5) represented 600 ft. (183 m.) of the suspended structure and
considerable care was taken in its construction to reproduce all the important features

* Preliminary experiments had indicated that the oscillations of a still larger model might be
affected by the proximity of the tunnel roof and floor.
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of the full-scale design. It was mounted on steel-spring suspensions carried by
frames which tilted to give the desired vertical incidence to the wind. The suspension
arrangements permitted pitching combined with either vertical translation or lateral
translation motions, as well as tests with each of these motions isolated. Tests with
the lateral freedom included were necessary, since with the top-deck structure the

0:4

a=15%|—=e-~
a=10°| —x—
Fsz o= 5°|—o—
a=0°|--+--
a 1-5°|—o—
02
+
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Fig. 6. Damping rates of pitching oscillations due to wind (1/32-scale model
of proposed Severn Bridge)
lateral and pitching motions were inertially coupled due to the offset of the centre of
mass above the elastic axis of the structure. In all three motions viscous oil dampers
were provided to enable the amount of structural damping represented to be varied.

The inertias of the model conformed with the requirements for strict inertial
scaling. Initially the frequencies were adjusted to values 3-2 times greater than those
calculated for full-scale. This yielded a speed-scale of 1/10 and enabled the tests to
be carried out up to wind speeds corresponding to approximately 140 miles/hr.
(225 km./hr.). The minimum values of 8y; and 8., were 0-01 and 0-06 respectively.
No instability of any type occurred in these tests.

No further tests involving the lateral and vertical motions were made. With the
more important pitching motion* ¥, was reduced to allow tests to be carried out up
to wind speeds equivalent on full-scale to about 250 miles/hr. (400 km./hr.). The
value of 3y, for these tests was 0-02. No instability was observed for these conditions,
but to provide further information the variation of the damping rate due to wind
only (8s,) with wind speed was measured. The curves of &, against V; for several
wind incidences are reproduced in fig. 6. These show that for negative wind incidences

* On models and on actual bridges with truss stiffening, instability has been recorded only in
torsional (pitching) motions.
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the damping rate became increasingly positive. For positive incidences the damping
rate increased with the initial increases of ¥, and thereafter maintained a substantial
positive value for the whole speed range tested. These results verified that the
design of suspended structure proposed for the Severn Bridge was satisfactory from
‘the standpoint of aerodynamic stability.

In addition, the model was used to confirm some of the results found on the
1/100-scale models and also to obtain some information on the effect of the width/
length ratio of sectional models. Some unstable configurations of the model (e.g.
that obtained by covering the central reservation) were tested with model lengths
representing 600 ft. (183 m.) and 300 ft. (91-5m.). The results obtained with these
two model lengths showed only small differences.
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APPENDIX 1
NOTE ON THE DAMPING PROPERTIES OF BRIDGES

The total damping rate (8) of a structure in still air is made up of the contributions
due to the structure only (8;) and that due to the surrounding air (6,4). The applica-
tion of model test results to prototype prediction requires a knowledge of the values
of 8, for both model and prototype. There is as yet no reliable method for calculating
these values for a proposed bridge, and measurements of & on actual bridges, which
might be used for statistical estimates, have only been made on bridges of short span.
The values of & found for short-span bridges varied from 0-05 to over 0-2. Model
test values are, of course, readily obtained by decaying oscillation experiments.

The aerodynamic damping arises from the effects of viscosity and pressure. For
oscillations of bridge sections, dimensional analysis yields:

_pBY [ v :
89A_219f[32N9’9°] N ()

where 6, is the amplitude and 8,4 denotes the values of &4 for pitching oscillations.
The scanty experimental evidence available supports the assumption that the
influence of the viscosity parameter is very small and that equation (1) can be written:

pB4
33A=-E[a0+0130+a2902+ o« ] o e w e e e (2)

where the coefficients a,, a;, etc., are approximately constant.
The equivalent expression for linear motions is:

‘ _PB7' Zp) Z9\? '
8zA_§1,—z[b0+bl(§)+b2(§) +] .0

¥ Messrs. Mott, .Hay and Anderson and Messrs. Freeman, Fox and Partners.
T Arne Selberg, ‘“ Dampening Effect in Suspension Bridges,” I.4.B.S.E. Publications, Tenth
Volume. )
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Thus with the same inertial scaling as that required for the wind tests, the values of
34 are the same for model as for full-scale.

Values of 8,4 for complete bridges or their models will be influenced by the oscilla-
tion wave form and may be calculated if the sectional values and the wave form are
known.

Some values of 8,4 were measured during the course of the Severn Bridge investi-
gation. The results obtained for sections A and D shown in fig. 3 gave respectively
the relations:

8¢ =pB4/21; (0-01+0-29 6,)

and | So4=pB4/21, (0-05+3-40 )

APPENDIX II
THE LARGE WIND-TUNNEL
DESIGN AND CONSTRUCTION

The wind-tunnel (see fig. 7) was not required as a permanent structure and hence
the main considerations governing the design were that of low cost of construction
rather than that of high aerodynamic efficiency. For this reason the tunnel was of
the non-return flow type and used only one fan. It was erected in a disused aircraft

240ft (731m)

50ft
(15:24m)

— 16Ftdia — ——
===l 4 (+-87m) 120 Ft
(36°6 )
- ]

__outline of hangar
(a) Plan

(b) Elevation

Tunnel Fan

. I
m) 7t (213m) | (b) C{ (d) |

Fig. 7. The wind-tunnel

hangar and was raised from the hangar floor only by the few feet necessary to accom-
modate a well for the turntable. The fabric of the tunnel consisted mainly of a
timber framework lined with wallboard, and the roof was suspended from Bailey
bridge girders supported at their ends by vertical concrete pillars. The four main
components of the tunnel were: :
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(i) The test chamber, (a) fig. 7

This had a floor area of 60 ft. by 60 ft. (18-3 m.) and was 7 ft. (2-13 m.) high. The
air entered the test chamber through a conventional bell-mouth fairing and a wire-
mesh screen for smoothing the airflow. In the centre of the chamber was a 55-ft.
(16:75 m.) long turntable contained within a shallow quadrantal pit which allowed a
rotation of 90 degrees. The flooring over the central part of the turntable was carried
by the turntable itself and the outer annular area was filled in by wedges of 5-degree
angles constructed of boarded trestles, which were lifted successwely when the model
had to be rotated relative to the wind direction.

(i) The contraction chamber, (b) fig. 7

The contraction chamber was 60 ft. long (18:-3 m.) and in this distance the cross-
section developed smoothly from a 60-ft. rectangle to the 12-ft. (3:65 m.) diameter
circle of the adjoining fan annulus. A wire-mesh screen at the front of the contraction
chamber helped to ensure even airflow in the test chamber.

(iii) The fan and fan annulus, (c) fig. 7

The fan annulus, 12 ft. (3:65 m.) in diameter and 3 ft. (0-91 m.) in length, was of
all-timber construction and stiffened to ensure that the small clearance between it and
the two-bladed fan was maintained. The fan was driven by a concentric 130-h.p.
motor with fine speed control.

(iv) The diffuser, (d) fig. 7

: This was of circular section, 30 ft. (9-14 m.) in length, and expanded from the fan
annulus to a diameter of 16 ft. (4-87 m.) at the discharge.

Performance

Tests of the aerodynamic characteristics were made initially on a 1/12-scale model
of the tunnel and hangar.

In the actual wind-tunnel extensive measurements of the distribution of airflow
within the test chamber showed that at all speeds up to the maximum of 22 ft./sec.
(6-7 m./sec.) the velocity variations both along the length of the chamber and vertically
were less than 39%,. In the horizontal direction across the test chamber the variation
of wind speed of nearly 109, was recorded at a distance of 5 ft. (1:52 m.) from the
sides. A variation of this order was predicted by the model tunnel tests and was not
considered important in view of the clearance of nearly 5 ft. between the full-model
anchorages and the sides of the chamber.

\

Summary

The paper presents a general review of the experiments carried out in an investiga-
tion of the aerodynamic stability of suspension bridges undertaken by the National
Physical Laboratory of the Department of Scientific and Industrial Research on
behalf of the Ministry of Transport. The specific purpose of the investigation was
to assist the designers of the proposed Severn Bridge, but much of the information
gained is applicable to suspension bridges generally.

Wind-tunnel tests using both sectional and full models are described and the
limitations of these two experimental techniques are discussed. The reliability of the
use of data obtained from sectional model tests alone for the prediction of the
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behaviour of full-scale bridges is verified by comparisons of the results obtained by
both methods. A comparison is made of the stability of various bridge sections and
the design features favourable to the promotion of stability are indicated. The
sectional models used for these tests illustrate the evolution of the design of the sus-
pended platform for the proposed Severn Bridge and the results show that a satis-
factory degree of stability can be attained by attention to the structural shape and
arrangement of the details of the suspended platform.

Résumé

Cette communication constitue un bref exposé de recherches relatives a la stabilité
aérodynamique des ponts suspendus. Ces recherches ont été entreprises par le
National Physical Laboratory du Department of Scientific and Industrial Research,
a l’instigation du Ministére des Transports. Le but spécifique était de fournir des
informations aux dessinateurs chargés de 1’établissement du projet de pont sur la
Severn. Toutefois, un grand nombre de renseignements ainsi obtenus s’appliquent
également aux ponts suspendus en général.

L’auteur expose également les essais qui ont été effectués en soufflerie, tant sur
modéles complets que sur modeles partiels; il étudie les avantages et les inconvénients
de chacune des deux méthodes. La valeur des résultats obtenus exclusivement sur
modeéles partiels, du point de vue de la prévision du comportement des ponts réels, a
été confirmée par la comparaison entre les deux méthodes.

Différents profils de ponts font I’objet de comparaisons du point de vue de la
stabilité et 'auteur indique les dispositions qui permettent d’accroitre la stabilité.

Les modeles partiels qui ont été utilisés pour ces essais mettent en évidence le
développement de la conception du tablier; les résultats montrent que I’étude
minutieuse de la forme et des caractéristiques de détail du tablier permet d’obtenir une
stabilité suffisante.

Zusammenfassung

Die vorstehende Arbeit gibt einen kurzen Ueberblick iiber Versuche, die fiir das
Ministry of Transport im National Physical Laboratory des Department of Scientific
and Industrial Research im Zusammenhang mit einer Untersuchung der aero-
dynamischen Stabilitit von Hidngebriicken ausgefiihrt wurden.

Die Untersuchung wurde urspriinglich fiir den Konstrukteur der geplanten Severn-
Briicke ausgefiihrt, aber die Ergebnisse erscheinen von allgemeinem Interesse fiir die
Konstruktion von Hidngebriicken.

Windkanalversuche an Teilmodellen sowohl als vollstindigen Modellen werden
beschrieben, und die Vor- und Nachteile der beiden Methoden besprochen. Die
Zuverldssigkeit von ausschliesslich an Teilmodellen erhaltenen Ergebnissen fiir die
Voraussage des Verhaltens von Briicken in natiirlicher Grosse wurde bestétigt durch
den Vergleich von mit den beiden Methoden erhaltenen Ergebnissen.

Die Stabilitdt verschiedener Briickenprofile wird verglichen, und Konstruktionen
werden vorgeschlagen, die die Stabilitdt erhéhen.

~ Die in den Versuchen benutzten Teilmodelle zeigen die Entwicklung der Kon-
struktion der Fahrbahnplatte der geplanten Briicke; und die Ergebnisse zeigen, dass
durch geeignete Form und sorgféltig ausgearbeitete Einzelheiten der Fahrbahnplatte
ausreichende Stabilitét erzielt werden kann.
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Die Dimpfung von Briickenschwingungen
The damping of oscillations in bridges

L’amortissement des oscillations des ponts

Pror. DRr. TECcHN. DIrL. ING. ERICH FRIEDRICH

Vorstand der Lehrkanzel fiir Betonbau an der Universitit fiir Technische Wissenschaften
in Graz, Osterreich.

EINLEITUNG

Durch das Bestreben immer leichter und kiihner zu bauen, wird es auch im
Betonbau erforderlich, das Bauwerk unter den Verkehrsbelastungen nicht mehr als
statisch ruhend zu betrachten, sondern den Einfluss der bewegten Belastung zu
beriicksichtigen. Der alte Grundsatz, dass, je schwerer gebaut wird, um so sicherer
das Bauwerk ist, gilt nicht mehr. Wir kommen dazu, auch im Betonbau unliebsame
dynamische Einfliisse zu ergriinden und, wenn erforderlich, ihnen durch bauliche
Massnahmen entgegenzutreten. Die gesamte Frage der Sicherheit von Bauwerken,
die Frage der Einfiihrung eines n-freien Bemessungsverfahrens und die Frage, wie
man zweckmadssig bestehende Bauten auf ihre Tragfahigkeit untersucht, kann durch
die Betrachtung des Bauwerkes als dynamisches Gebilde in viel umfassenderer Weise
beantwortet werden. Der Bauingenieur wird hier vielfach die bereits im Maschinen-
bau gewonnenen Erfahrungen und Erkenntnisse fiir seine Bediirfnisse umformen und
anwenden konnen.* Im nachfolgenden wird auf eine dieser Fragen eingegangen,
wobel die bei dynamischen Untersuchungen bereits bekannten Verfahren auf das
Gebiet des Briickenbaues iibertragen und dem Bauingenieur erschlossen werden
sollen. Bei einem Maschinenfundament hat man es in der Regel mit einer gleich-
bleibenden Schwingungszahl zu tun. Im Briickenbau hingegen wird das Bauwerk
von Fahrzeugen mit verschiedener Belastung und verschiedenen Schwingungszahlen
befahren, so dass man darauf Riicksicht nehmen und die Untersuchungen auf
verianderliche Schwingungszahlen ausdehnen muss.

Bei einer bestehenden Briicke in Villach traten unter der Verkehrsbelastung
erhebliche Schwingungen auf. Man hatte daraufhin die Verkehrsbelastung
beschrankt und die Geschwindigkeit, mit der die Briicke befahren wird, herabgesetzt.
Beide Massnahmen storten empfindlich den gesamten Verkehr und wirkten sich

* . P. Den Hartog, Mechanische Schwinéungen. Deutsche Bearbeitung von Dr. Gustav Mesmer
Julius Springer, Berlin, 1936.
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vielfach nachteilig aus. So hatte die Beschrinkung der Geschwindigkeit zur Folge,
dass die Briicke stindig mit der vollen Verkehrslast belastet war, weil sich die Kraft-
wagen auf der Briicke zusammendridngten. Auch die Beschrinkung der Hochst-
belastung wirkte sich nachteilig auf den gesamten Verkehr aus. Ausserdem ist es
praktisch unmoglich, bei dem stets zunehmenden Verkehr diese Beschrinkung
aufrechtzuerhalten.

Zunichst 1st die Frage interessant, welche Schwingungen von den Kraftwagen-
typen auf die Briicke ausgeiibt werden. Bei der Briicke in Villach handelt es sich um
ein Bauwerk, das wohl statisch einwandfrei ist, aber mit der Eigenschwingungszahl
gerade in dem Bereich der von den Fahrzeugen ausgeiibten Schwingungen liegt,
sodass die Briicke stets Resonanzschwingungen ausfiihrt.

Vom Institut fiir Kraftfahrzeugbau an der Technischen Hochschule in Graz
wurden fiir einige Fahrzeugtypen folgende Schwingungszahlen angegeben. Im
Mittel schwanken die Schwingungen von Fahrzeugfedern zwischen 0,9 und 2,30 Hertz.

TAFEL I
Ausgeiibte Schwingungen in Hertz

Fahrzeugtype Belastung [ Vorderfeder | Hinterfeder
Steyr 220 ' ohne Nutzlast 1,85 | 2,30
Steyr 220 | 100 kg. (1 Person) l — L 2,03
Steyr 220 | 400 kg. (4 Personen) | —_ 1,62
Fiat Topolino | ohne Nutzlast | 1,77 2,23
Fiat Topolino /'3 Personen | 2,70 ’ 1,67
Fiat 1100 | ohne Nutzlast 5 1,40 1,42

|

Fiat 1100 | 6 Personen 1,27 , 1,29

‘Durch den Marschtritt werden etwa 2,2 Hertz ausgeiibt. Der Einfluss der
Unebenheiten der Fahrbahn verursacht beim Befahren ebenfalls Schwingungen.
Um auch hier Anhaltspunkte zu gewinnen, sei folgendes mitgeteilt: Bei Fahrbahnen
mit Kopfsteinpflaster ist der mittlere Abstand der Hocker a=10-15 cm., bei Fahr-
bahnen mit Schlaglochern betrdgt der Abstand der Schlaglécher rd. 50<100 cm.
Bei Landstrassen ist der Abstand der Hocker rd. 20400 cm. Man kann auch hieraus
auf die Stosse schliessen, die ein Fahrzeug auf die Fahrbahn ausiibt.

V (km./h.)
f (Hertz)= 3.6 (m)

Bei einer Geschwindigkeit z.B. von V=16 km./h. ergibt sich hieraus bei einer
Hockerentfernung von rd. 1 m. eine Schwingungszahl von rund 5 Hertz. Die Frage,
die gestellt wird, ist die, ob es moglich ist, durch einen Einbau die Schwingungen fiir
die Briicke unschéddlich zu machen, und weiter, wie dieser Schwingungsddampfer
aussehen muss. '

DIE EIGENSCHWINGUNG VON BRUCKEN

Fiir einen frei aufliegenden Triger mit der Elastizititszahl E, dem Trigheits-
moment J und der Stiitzweite / ergibt sich bei kon-

PR stanter Masse u je Lédngeneinheit die Eigenschwin-
T—t\_ﬂ/} gungszahl (Abb. 1).
l

| n2  [EJ
w=m. [— . ... ()
Abb. 1 ] m
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Die Schwingungsdauer 7, das ist die Zeit, die der Trdger braucht um von einer Lage
ausgehend wieder in die gleiche Lage zuriickzukehren, ist mit « durch folgende
Gleichung gegeben.

T.w=27 . . . « . . « . .. @
Die Zahl der Schwingungen in einer Sekunde (Hertz genannt) betrigt:
l o '
f=f‘=2_1r' P T T &)

Um die Rechnung zu vereinfachen, geniigt es, an Stelle des wirklichen Systems
einen einfachen Schwinger zu betrachten (Abb. 2). Ein einfacher
Schwinger besteht aus einer Feder mit der Federkonstanten ¢ und Z
einer darunter angehidngten Masse m. Die Federkonstante ¢ ist jene
Kraft, die erforderlich ist, um die Feder um 1 em. zu verlingern. Wird c
die Masse aus der Ruhelage gebracht, indem an der Masse m nach
abwirts gezogen wird, und wird die Feder losgelassen, so schwingt das
System mit der Eigenschwingungszahl .

c
w=J—........(4) Abb. 2

m

Bei einem Trager ist die statische Durchbiegung 8 in Feldmitte bei gleichmaéssiger

Lastverteilung G=mg (g=981 cm./sec.2=Erdbeschleunigung) gegeben. Die Feder-
konstante ist daher

mg
—C‘\/g_lo.fr
oder w=’\/l7l=78= \/5 v e e e e e e (6)
w 3
fm=mm s s s s 5 s @i 1 oa ¢ 0D

Die statische Durchbiegung des Tridgers unter der gegebenen Massenverteilung ist
daher ein Mass fiir die Eigenschwingungszahl des Trigers.

Man sollte in Hinkunft in die Briickenbestimmungen eine Vorschrift aufnehmen,
die die Eigenschwingungszahl beschrinkt. Damit wiirde allerdings die Durchbiegung
unabhidngig von der Stiitzweite beschrinkt werden. Wenn nun eine Briicke mit der
Eigenschwingungszahl in der Ndhe der durch den Verkehr auftretenden Schwingungen
liegt, so kénnen die durch die Resonanz bedingten grossen Verformungen die Trag-
fahigkeit der Briicke wesentlich herabsetzen. Die statische Durchbiegung &, ist mit
einem Yergrosserungsfaktor

1
S )

0\ 2
—(2)
w
zu multiplizieren, um die unter der Verkehrslast auftretenden Verformungen zu
erhalten. In dieser Gleichung ist £ die durch den Verkehr hervorgerufene
Schwingungszahl und « die Eigenschwingungszahl. Wird 2/w=1 so wird 8= co.
Eine Abminderung dieses Faktors bekommt man durch die Ddmpfung D.

Setzt man die Dampfung proportional der Geschwindigkeit, so lautet fiir das
Ersatzsystem (Abb. 2) die Differentialgleichung

mi+kx+cex=0 . . . . . . . . .0
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Als Dampfung bezeichnet man

k
=T 10
D=3V am (19)
Bei einer Dampfung ist die Vergrosserungsfunktion fiir die Durchbiegung
' 1
(11)

TG

An Hand von ausgefiihrten Versuchen, iiber die Oberregierungsbaurat Arthur
Limmlein berichtet,* kann man sich ein Bild iiber den Dadmpfungsfaktor machen. In
der nachfolgenden Tafel II ist fiir den Resonanzfall die Vergrdsserungsfunktion
ermittelt.

TAreL II

| |

| Vergrosserungs-| _ , Eigen-
Nr. Name Bauweise ! Diampfung g faktor g sch\g'lingungs-

‘ zahl in Hz.
1 Bleibachbriicke Spannbeton l 0,014 35,7 . 4,25
2 | Briicke bei Emmendingen | Spannbeton | 0,008 125 3,14
3 | Briicke Oberhausen Verbund | 0,0065 154 6,88
4 | Hiigelsheim Stahlbeton- | 0,1213 8,2 10,60

platte |

Man erkennt aus diesen Zahlen, dass bei Resonanz Werte auftreten kénnen, die fiir
die Briicke ausserordentlich bedenklich sind. Auch bei der Briicke in Villach ist
die Ddmpfung der Briicke selbst gering. Der Wert D liegt bei 0,010, sodass der
Vergrosserungsfaktor rd. 100 ist. Um diese Briicke zu beruhigen, wird ein Ddm-
pfungstriger vorgeschlagen, der nun berechnet und beschrieben wird.

Die DAMPFUNG EINER BRUCKE

Beschreibung der Konstruktion
Zunichst soll an Hand der Systemskizze Abb. 3 der Gedanke der Ddmpfung
erldutert werden. Unter dem Briickentragwerk I befindet sich ein Trdger II, der

Briickentragewerk [

A 8 c
A %@Df %@DZ 0«?@% f%z
E KX - F

Ddéimpfungstréiger 11
Abb. 3

Diamptungstrager genannt wird. Dieser Ddmpfungstriger II ist an drei Federn A,
B, C mit dem Haupttrdger verbunden. Zwischen den beiden Trédgern sind ausserdem
Fliissigkeitsdimpfer D eingebaut. Natiirlich befindet sich der Ddmpfungstrager II
mit den Einbauten bei dem tatsédchlichen Bauwerk nicht unterhalb des Haupttrégers,
sondern zwischen den Haupttridgern und ist nicht sichtbar. Der Ddmpfungstriger
hat i%s der Masse des Haupttrigers.

* Arthur Limmlein, “Schwingungsmessungen an Strassenbriicken verschiedener Bauarten,”
Beton und Stahlbeton, Heft 5, 1951.
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Die Wirkungsweise des Einbaues des Dampfungstrigers zeigt Abb. 4. Als
Ordinate ist die Vergrosserungsfunktion 28 und als Abszisse das Verhiltnis der
aufgezwungenen Schwingung zur Eigenschwingung aufgetragen. Die Vergrosserungs-
funktion nimmt hochstens den Wert 4,6 an. Bis zu einer Vergrosserungsfunktion

LI

Vergrasserungsfunklion 1)

3 S ——

: i ;
4 0.8 17 1% 16 18
2 Sc/‘rwmgz/ﬂg a‘e/‘ [Ghrzeuge

N~ Lgenschwingurlg der Brocke

4

-

o0 4z

Abb. 4 -

von 5 kann man im allgemeinen damit rechnen, dass die dadurch hervorgerufenen
Spannungen innerhalb der zulédssigen Grenzen bleiben. Die Fliissigkeitsdimpfer Dy,
D,, D; und die Federn sind leicht konstruierbar. Die nun beschriebene Wirkungs-
weise und der Zusammenhang zwischen den einzelnen Grossen soll nun erortert

werden.

Al;leitung der Gleichung*

Die Ableitung der Differentialgleichung ist in mehreren Schritten mdglich. An
Stelle des wirklichen Systems wird das Ersatzschwingsystem untersucht.

Abb. 5

fca(v,#Vz)

Abb. 6

1. Schritt. Zwei Massen m; und m, sind mit zwei Federn ¢,
und ¢, mitder Decke und Fussboden verbunden (Abb. 5). Zwischen
den beiden Massen m; und m, befindet sich eine Feder ¢;. Die
Ruhelage sei durch die beiden Punkte O; und O, gekennzeichnet.
Die Bewegungsgleichung ist aufzustellen. Wenn die Masse m, sich
nach unten bewegt, zieht die Kraft ¢;v; die Masse zuriick. Die
Zusammendriickung der mittleren Feder ist »;—wv,. Die Kraft,
die dadurch ausgeiibt wird, ist c3(z;—2,). Die Bewegungsgleichung
lautet (Abb. 6)

md=—cv;—c3(vy—v2) . . . . . (12)
Ebenso kann man eine entsprechende Gleichung fiir die Masse
m, aufstellen. Die Bewegungsgleichungen lauten:
m1791+(C1+C3)'1’1—C3712=0} (13)
myPa+(c2+c3)v—c30,=0
Wir stellen uns nun folgende Frage: Gibt es eine harmonische
Bewegung dieses Systems und wie gross sind die Ausschldge a; und
a, der Massen m; bzw. m,? Welche Schwmgungszahl liefert eine
harmonische Bewegung?
Wir machen also fiir die Bewegung die Ansitze:
v;=a; sin wt
v,=aj, Sin wt
* Den Hartog, Seite 77.

(14)
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und bestimmen die Ableitungen nach der Zeit. Setzt man diese Werte in die
Bewegungsgleichung (13) ein, so ergibt sich:
al(—m1w2+cl+c3)—azc3=0} 15)
—a,c3+ay(—myw?+cy+c3)=0
Aus der ersten Gleichung von (15) kann man den Wert a,/a, und aus der zweiten
Gleichung kann man ebenfalls das Verhiltnis ausrechnen. Wenn es eine Losung
gibt, miissen beide Werte einander gleich sein. Man erhilt auf diese Weise eine
Gleichung fiir die Eigenschwingungszahl », die lautet:
0 z[cl+c3 c2+c3] C1Ca+crc3+c104
wr—w + =
m; m, mhy

0. . . . (16

Es gibt zwei Losungen w;2 und w,? fiir die eine harmonische Bewegung maoglich ist.

2. Schritt. Nun soll die Aufgabestellung etwas abgedndert
werden. Auf die Briicke mit der Masse M (Abb. 7) soll durch
die Verkehrsbelastung eine harmonische Kraft P=P, sin 2
aufgebracht werden. An der Briicke sei ein zweiter Trager mit
der Masse m und der Federkonstante ¢ befestigt. Die Frage
lautet: welche Schwingung fiihrt dieses System aus? Man
bekommt die Bewegungsgleichungen, indem man in den Glei-
chungen (13) den Wert ¢,=0 setzt und in der ersten Gleichung
die aufgezwungene Schwingung beriicksichtigt.

M@1+(C+C)7)1—C7)2=P0 sin ¢
. (17)
miy~+c(vy—2v,)=0 }
Setzen wir v;=a; sin £2f und v,=a, sin £t ein, so erhilt man fiir jene aufgezwungene
Schwingungszahl 2 eine harmonische Schwingung, fiir die folgende Gleichungen
erfiillt sind:

Abb. 7

a,(— M2+ C+c)—ca,=P, ‘
—aycta(—m8224-c)=0 } (18)
Man setzt in dieser Gleichungsgruppe die Eigenschwingungszahl der Briicke
N=+/CJM, die Eigenschwingungszahl des Dampfers v=+/c/m und das Verhiltnis der
Masse des Dampfers zu der der Briicke, p=m/M, ein. - Die Durchbiegung der Briicke

unter der Last P, sei 8;,=2P,/C.
Man erhilt aus der Gleichungsgruppe (18)

C N2 C
o2 e e e e e (19
a1=az(1—§)
Aus dieser Gleichung erhilt man
02 ™
a l—ﬁ
8y 2 c 22\ ¢
(1“72)(”6“1\72 el ... o
az_ 1
S 22 0 ¢
(1=52) (e ¢
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Aus der ersten Gleichung bekommt man a;=0, wenn Q2=v wird. Die Briicke
bleibt dann in Ruhe, wenn die Eigenschwingungszahl des Dampfungstragers gleich
der aufgezwungenen Schwingung £2 wird. Die Schwingung des Dimpfungstrigers
wird

i ¢
Setzt man noch v=N, d.h. die Eigenschwingungszahl der Briicke gleich der Eigen-
schwingungszahl des Dampfungstragers, so wird

8_C ep
m M T M

o 7
=7
¥ 14

v =20y . sin (£21) 7 /o7 |
(1= ()= | el

1

V=085 . sin (£21) fop 0
=

Fragen wir noch, ob es eine Resonanzschwingung gibt. Resonanz ist dann
vorhanden, wenn die beiden Werte »; und v, fiir eine bestimmte aufgezwungene
Schwingung unendlich werden. Dies ist der Fall, wenn der Nenner in den beiden
Gleichungen (21) null wird.

Q2 02
(1_;'2_)(1+'”'—V_2)—'U‘=0 B 2}
@ _ "
Setzt man ﬁ=¢’ so wird: @2—29@ 1+§ +1=0

(12

Woraus folgt: ¢I=I+E+J#+ﬁ
2 4

(23)

L

¢z—l+2 A/ kg

Wenn p=0,10 angenommen wird, so erhdlt man folgendes Ergebnis:
®,=1,38, @,=0,73

Durch den Dampfungstriager wurde also folgendes erreicht:

(a) Bei einer aufgezwungenen Schwingung, die der Eigenschwingung der
Briicke gleich ist, bleibt die Briicke in Ruhe. Fiir diesen Fall hat der
Déampfungstriger eine Bedeutung.

(b) Dafiir ist aber bei einer Schwingung, die 27 %, unter und 38 %, iiber der
Eigenschwingungszahl des Haupttrédgers liegt, eine Resonanz vorhanden.

Hitte man nur eine einzige Schwingungszahl, so kénnte man in einfacher Weise
durch den Dampfungstriger erreichen, dass der Briickentriger in Ruhe bleibt. Da
aber die Schwingungszahl der aufgebrachten Schwingung sehr verdnderlich ist, muss
noch eine Ddmpfung eingebaut werden, wodurch die in Abb. 4 dargestellte Wirkung
erreicht wird.
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3. Schritt. Wenn nun zwischen Briickentragwerk und Ddmpfungstriger ein
Flissigkeitsddmpfer eingeschaltet wird, lauten die Bewegungsgleichungen

w M. 'Z.)‘1+C‘Z-).1+C('Ul —7)2)+k('(/:’1—"??2)=P0 . Si[l Qt} (24)
mi,+c(v,—v)+k(9;—9,)=0
¢ . Versucht man nun die Lésung mit dem Ansatz:
‘ﬁ,’smﬂf ) )
. — 12t —_ 0L
Y — v)=a;.¢e Uy=da; .e
IV; so erhdlt man:
‘ " 131=a1 L i82 . eiQ' 61=—al .02, eiQt
” b Dy=a, . iR . e v=—a,.02. Y
Abb. 8 Diese Werte in die Gleichung (24) eingesetzt ergeben
—Ma192+Ca1+c(a1—a2)+ik'.9(al—a2)=P0 25)
—mS822a,+ c(ay—ay)+ik§A(a,—a)=0 (

In den Gleichungen (25) sind a; und a, unbekannt. Rechnet man sich den Wert a;
aus, so erhilt man:

(c—m82)+iQk

= =P°[(—M.Q?—+ C)(—mS2+ ¢)—mS2c] +i2k[— MR+ C—m27] (26)

Nun kann man hier die komplexen Grossen durch die reellen Werte ausrechnen:

(c—mQ2)2+ Q22

2_-p2
=Py Ot ) —mcp+ R — Mt C—maE © PT)

Setzt man noch die Eigenschwingungszahl der Briicke N2=(C/M, die Eigen-
schwingungszahl des Dimpfungstrigers »2=c¢/m, die Durchbiegung der Briicke unter
der Last P, gleich 8, sodass 8;,=P,/C wird, ferner das Verhiltnis der Eigenfrequenz
des Ddmpfungstrdgers zu dem der Briicke ¥y=v/N und die Ddmpfungszahl D=k/2mN,
das Verhiltnis der Masse des Dadmpfungstragers zu der der Briicke p=m/M und das
Verhiltnis der Schwingungszahl der aufgezwungenen Schwingung zur Eigen-
schwingungszahl der Briicke {=£/N, so wird:

s J D) H((— g2y
1=% N @DOAC—1+ 2P+ [ — (= D(C— DT

Dies ist die Gleichung, die die Vergrosserungsfunktion fiir die statische Auslenkung
angibt:

(28)

Bt J (D02 +(12—¢?)?
T TN (2DOH— 14 pl2)2 4 [ — (2= 12—
In der beifolgenden Tafel III sind die Zahlenwerte fiir verschiedene Dampfungen D

angegeben. Die Abb. 9 =zeigt das Ergebnis. Setzt man die Ddmpfung D=0,
so erhdlt man

(29)

§2_¢,2
pp2l2— (2= 1)(E2—42)

L= (30)
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Vergrosserungsfaktor 8B

TAFEL II1

65

L D=0 D=0,10 D=0,16 D=0,20 D=w
0,50 1,40 1,40 1,40 1,39 1,38
0,60 1,73 1,73 1,72 1,72 1,65
0,70 2,56 2,50 2,42 2,38 2,17
0,80 13,10 4,97 4,10 3,87 3,38
0,82 30,20 5,23 4,44 4,24 3.84
0.84 - 6,00 4,92 4,70 4,62 4.47
0,86 2,25 3,84 4,50 4,75 5,37
0.88 0,99 315 4,29 4,82 6,75
0,90 0,25 2,71 4,06 4,82 9,17
0,92 0,27 2,49 3,90 4,77 14,48
0,94 0,71 2,46 i 3,82 473 35.70
0,96 1,13 2,56 ! 3,84 472 72,75
0,98 1,58 2,78 3,97 4,73 17,70
1,00 2,10 3,18 4,10 4,75 10,00
1,02 2,76 3,57 4,32 4,75 6,92
1,04 3.72 4,16 4,50 4,66 5.27
1,06 5,29 4,85 4,62 4,51 4,23
1,08 8,55 5,52 4,60 4,27 3,53
1,10 19,72 5,87 4,40 3,97 3,02
1,16 7.61 4,35 3,34 2,99 2,08
1,20 4,06 3,20 2,68 2,45 1,63
1,30 1,89 1,77 1,65 1,58 1,15

2
N

C.R.—5
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Dieser Wert stimmt mit (20) inhaltlich iiberein. Fiir D=co erhidlt man volle
Verbindung der beiden Tréger, also praktisch nur einen Trager mit der Masse (M +m).
In diesem Fall ist die Vergrosserungsfunktion

1
T 1—=(1+p)2?
Der Wert stimmt mit der Gleichung (8) iiberein.
Man kann nun die Gleichung (29) noch weiter untersuchen und die Frage stellen,
ob es {-Werte gibt, die von der Ddmpfung D unabhingig sind. Von der Dampfung

unabhingig wird der Ausdruck ¥ dann, wenn die Dampfungszahl im Zéhler und
Nenner von (29) gekiirzt werden kann. Dies ist dann der Fall, wenn

B 3D

1 2 r2—y2 2 _ ,
(EZ—H-#CZ) =(#C2¢3—(€3—1)(§2_¢2)) R
Man erhilt eine quadratische Gleichung
4__ 9#¢2+1+'ﬁ2 21,[12 -
{4=2f 3 Taga=0 ¢ - ov - . (33)

Es gibt also zwei Werte £; und {5, fiir die die Lésung von der Dampfung unabhéngig
ist. Dies sind die Punkte A und B in Abb. 9. Die Werte fiir A und B kann man aus
der viel einfacheren Gleichung (31) berechnen. Man kann nun noch—und das ist
das Ziel der Untersuchung—fragen, wie man die Eigenschwingungszahlen v und N
aufeinander abstimmen muss, um die Vergrosserungsfunktion 2 in den beiden
Punkten A und B gleich gross zu erhalten. Ist dies der Fall, so muss

1 |
—La+p) 1-LXi+p)
Das Minuszeichen kommt daher, dass zu einem positiven Wert von A der Punkt B’
mit negativem Vorzeichen gehért. Aus der Gleichung (34) folgt

2
C1Z+C22=m e T T (35)

Andererseits muss die Gleichung (33) erfiillt sein. Da die Summe der Losungen
{12+ ,2 in jeder quadratischen Gleichung gleich dem negativen mittleren Glied ist,
wird :

(34)

2 2w +1442)

= 36
14p 24u (36)
Daraus ergibt sich
1
- 3
I+p )

Wenn man p=0,1 wihlt, d.h. also die Masse des Ddmpfungstrigers zu 1 der Masse
des Haupttrigers, wird

i |
p=77=0909091 . . . . . . . . (38

Dieser Wert ist in der Tafel III gewihlt worden. Der Ddmpfer muss eine Eigen-
schwingungszahl haben, die nur 0,91 der Eigenschwingungszahl des Haupttrigers ist.
Die Vergrosserungsfunktion 8 wird in diesem Fall

2 _
%=J1+;=V21=4,58
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Nun wurde fiir 0=0,10, D=0,20 und D=0,16 der Verlauf der Vergrosserungs-
funktion gerechnet. Als diejenige Linie, die iiber die Punkte A und B nicht
hinausgeht, wurde die Linie mit D=0,16 ermittelt. Das Ergebnis ist somit:

(1) Der Dampfungstrager muss eine Eigenschwingungszahl einschliesslich der
Federn, mit denen er mit dem Haupttriager verbunden ist, haben, die das
0,91-fache der Eigenschwingungszahl des Haupttrigers betrigt.

(2) Die Masse des Tragers ist v5 der Masse des Haupttrégers.

(3) Die Dampfung muss D= 0 16 sein.

Dadurch ist der Didmpfungstriger eindeutig festgelegt Ein Beispiel soll die
Konstruktion zeigen.

Beispiel
Der Dampfungstrager einer vorgespannten Betonbriicke ist zu entwerfen. Die
Abmessungen der Briicke sind in Abb. 10 angegeben.

Zahlenwerte:
Trédgheitsmoment der Briicke: J;=688,105 cm.4
Masse der Briicke: rr=0,0956 kg./cm.2 sec.2
Elastizitdtsmodul: E=210 000 kg./cm.2

Die Eigenschwingungszahl der Briicke ergibt sich aus (1) zu:
m JETOW 688 .10
2. 33002 0,0965
Die erforderliche Masse des Dampfungstrigers betragt:
m=0,1,0,0956 . 33=0,316 kg./cm.2 sec.2
Gewihlt werden zwei Dampfungstrager mit den Abmessungen:
I=25 m.,; b=38 cm., d="70 cm;

.3
,u,”—o ]6—0 0126 kg./cm.2 sec.?

N=

=1,76 Hertz

Die erforderliche Eigenschwingungszahl der Dampfungstriger betragt:
v=0,91.1,76=1,6 Hertz
Bezeichnet man mit »; die Eigenschwingungszahl der Dimpfungstriger mit starrer

Befestigung, mit v, die Eigenschwingungszahl der starr gedachten Didmpfungstriger
mit elastischer Befestigung, mit J;; das Trigheitsmoment der Dampfungstrdager und
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mit Cr das Gesamtfedermass aller Aufhidngefedern, so gilt nach Dunkerley*
angendhert:

1 1 1
172:1?—'_;2_5""""'(39)
. v=1,6 Hertz
™ EJy 1 J Cr 704
i _ - [ =—=20.105 cm.?4
Mit: vy 5 { 2/\/ pir 250 wir . I Ju 12 cm
5 ' [=2500 cm.

ergibt sich aus (39) das erforderliche Gesamtfedermass aller Aufhingefedern zu:
CF=3200 kg./cm.

Zusammenfassung

In Zukunft muss man den dynamischen Kréften auch im Stahlbetonbriickenbau
entgegnen. An einem Beispiel wird gezeigt, wie man durch den Einbau eines
Dimpfungstragers den unliebsamen Schwingungen einer Briicke bei Resonanz
begegnen kann.

. Summary
In future, means must be adopted to counteract the effects of dynamic forces in
reinforced-concrete bridges. From an example it is shown how, in a case of resonance,
the undesirable oscillations of a bridge can be obviated by adding a damping girder.

Résumé
1l sera, a I’avenir, nécessaire de faire face aux efforts dynamiques, méme dans la
construction des ponts en béton armé. L’auteur montre, en s’appuyant sur un
exemple, comment I’on peut s’opposer aux oscillations inopportunes qui peuvent se
manifester par résonance, a ’aide d’une poutre d’amortissement.

* Dunkerley, Philosophical Transactions, 1894.



Al 2

Dynamic increments in an elementary case
Les influences dynamiques considérées dans un cas élémentaire

Dynamische Zuschlige in einem einfachen Fall

Dr. ARNE HILLERBORG

Stockholm

In the Preliminary Publication to the Congress in Liége in 1948, the author pre-
sented the first results of an investigation of dynamic influences of moving loads on
girders. This work was carried out at the Institution of Structural Engineering and
Bridge Building at the Royal Institute of Technology, Stockholm, Sweden, under the
supervision of Professor G. Wistlund. The final results of the investigation were
published in 1951 in a treatise,* which also describes the theoretical and experimental
methods used. A summary of the practical results will be given here.

The case that has been studied is that of a single load moving smoothly at a con-
stant speed along a simply supported girder. The girder has been supposed to be of
uniform section and to be straight under dead load. The following factors have been
taken into account:

the mass of the girder,

the mass of the load,

the velocity of the load,

spring-mounting of the load,

viscous damping of the girder (internal and external),
dry friction in the load-carrying spring.

These factors have been given a dimensionless form by introducing the notations:
mass of load
v= 5
mass of girder
_ velocity of load
*=35 X length of girder x frequency of girder
_ frequency of load
#= frequency of girder

B_Spring friction force
~ weight of load

2nB
e vi-p=ratio of two consecutive amplitudes in the same direction of the free vibra-
tion of the girder.

* Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.



70 . Al2—A, HILLERBORG

In the above notations, the frequency of the girder is the fundamental frequency
of the undamped girder at no load.

Two different values are used for the constant 8. One of them, denoted only
by B, refers to an external damping force, while the other, denoted by B, refers to an
internal damping force.

In the investigation, a distinction was made between two cases, viz. spring-borne
and non-spring-borne loads, but, as the former is of much greater practical importance,
only the results relating to spring-borne loads will be given here.

A dynamic increment in a quantity is defined by: '

dynamical value
static value

To make the definition strict, it is also necessary to know what kind of quantity
is measured and what dynamical and static values are to be used. This is indicated
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by subscripts as follows: M for moments, Q for shearing forces, and R for reaction
forces. The following definitions show what values are to be taken:

__greatest dynamical value for the girder
Cabs™ greatest static value for the girder

. - greatest dynamical value at any point
€max=maximum of - — —
greatest static value at the same point
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The value €, (the absolute increment) expresses the greatest influence of a given
kind (for instance, the greatest moment) on the girder, and is therefore the most
interesting value in dealing with girders of uniform strength. The value €., gives
the greatest dynamic increment at any section of the girder. This value is of great
interest in studying girders of non-uniform strength (for instance, reinforced-concrete
girders).
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The most interesting dynamic increments ar€ €as, max, €M, abss €Q, maxs €Q, abss
and eg. The latter has only one subscript, as the gauge point must be at the support,
and the definition of eg is:

greatest dynamical reaction force
ER= 3 .
R greatest static reaction force

It can be shown that:

€0, abs=€R
Further, it has been shown that €p, .. may with sufficient accuracy be put equal
t0 €p, max in this case. It is therefore sufficient to plot diagrams for the dynamic
increments €xs, max, €n, abs, and eg. Such diagrams are shown in figs. 1 to 4, from
which the dynamic increments for any arbitrary values of v, «, p, 8, B, and 6 (within
practical limits) can be calculated by means of the formula:

B B 0
— o —————————— A —————————— A o~ a & A
=t o T s s o
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In this formula e is the value taken from fig. 1, and the three de-values are taken
~ from figs. 2 to 4.

The values of € which are given by this formula are approximate, as it has been
constructed in the way that is described below, but it seems always to give sufficiently
accurate values.

For studying the dynamic increments, use can be made of the theoretical methods
described in the above-mentioned treatise. In the general case, however, the cal-
culations are so intricate that it takes about two days to carry them out for a single
case. If complete calculations including four values of each of the six variables were
to be made, the number of calculations would be 46=4096, and the time required
would be about twenty-five years. This is obviously impracticable, and some other
method must be found in order to limit the work, even if the results will be less
accurate. :

For plotting the diagrams in figs. 1 to 4 the following method has been used. To
begin with, the case v=co0 has been studied, that is, the case where the mass of the

% concentrated load
5 — — — distributed load
25 P e S
\_ Ep
f \
. P /@_ —bm__ ]
10 20 Lm 3o
Fig. 5

girder is neglected in comparison with that of the load. In this case the calculations
are so simple that they can be carried out almost completely. When studying the
results of these calculations, trials have been made to find simple approximate relations
between € and the variables. It was then found that the above formula gave
sufficiently accurate results in this case. This formula and the corresponding
diagrams have thus first been made for the case v=o0, in which the numbers
0-25 and 0-5 added to v are without significance. It is to be noted that, in this case,

the values of va2, yu2, and \—5— are finite.
14

After the case v=o00 had been studied theoretically, a very complete series of tests
comprising v-values between 0-75 and 5 was made. The test values were then com-
pared with the theoretical values for v= o0, and it was found that if v was increased by
the values given in the formula and the diagrams, the agreement was sufficiently close
for all test values.

In order to give an idea of the order of magnitude of the dynamic increments
caused by the influence studied in this investigation, the diagram in fig. 5 has been
plotted on the following assumptions:

(1) The deflection under live load is 1/1250 of the span length.

(2) The velocity is 30 m./sec (=108 km./hour).

(3) The mass of the girder is neglected (this gives too small values of ¢).
(4) The damping is neglected.

(5) The frequency of the load is 3 cycles per second.

For comparison, a curve for a distributed load is also shown in fig. 5. The
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assumptions on which this curve is based are such that it gives only a lower limit for
the increments.

The investigation has shown that dynamic influences of moving loads of nearly
any kind on simply supported girders can be calculated theoretically, but in com-
plicated cases the calculations are very laborious. This difficulty is still more pro-
nounced when the girder is supported in a more intricate manner, for instance when
it is continuous, although the calculations are possible in principle. On the other
hand, the investigation has also shown that a comparatively simple test set-up can
give reliable test values with a small amount of work. It therefore seems advisable
that future investigations of this subject should mostly be based on model tests,
especially in relatively complicated cases. Theoretical studies are of course of great
value for the right understanding of the dynamical problems, but the number of
numerical calculations should be limited.

In addition to such studies of elementary cases, it is of course also valuable to make
tests on real bridges under real loads. However, these tests must be carried out and
treated in a scientific and methodical way, and not at random. Thanks to the
development of measurement engineering, we are today much better equipped for
making such tests than we were only ten years ago. Resistant wire strain gauges and
oscillographic recorders have made it possible to get accurate records of strains in
any points of the load-carrying structures without much work and at small costs.

It seems to the author that the conditions are now favourable for acquiring a much
better knowledge of the dynamical problems in bridge building if they are attacked
methodically.

Summary

The practical results of an investigation of dynamic problems are summarised.
A complete report on the investigation was published in 1951 in a book entitled
Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.

It is pointed out that the conditions are now favourable for acquiring a better
knowledge of the dynamic problems if they are attacked methodically.

Résumé

L’auteur expose sommairement les résultats pratiques d’une étude relative aux
problémes dynamiques. Un rapport complet sur cette étude a été publié en 1951 dans
un livre intitulé Dynamic Influences of Smoothly Running Loads on Simply Supported
Girders (Influences dynamiques des charges roulantes a allure uniforme sur les poutres
a appuis simples).

L’auteur fait remarquer que les conditions actuelles sont favorables a I’appro-
fondissement de nos connaissances des probléemes dynamiques, si I’on aborde ces
problémes d’une maniére méthodique.

Zusammenfassung

Der vorliegende Bericht enthélt eine Zusammenfassung der praktischen Ergeb-
nisse einer Untersuchung dynamischer Probleme. Ein vollstindiger Bericht iiber
diese Untersuchung wurde 1951 in einem Buch unter dem Titel Dyrnamic Influences of
Smoothly Running Loads on Simply Supported Girders (Dynamische Einfliisse gleich-
massig beweglicher Lasten auf einfach unterstiizten Trdgern) veroffentlicht.

Der Verfasser weist darauf hin, dass die gegenwirtigen Verhiltnisse fiir eine
Vertiefung unserer Kenntnisse der dynamischen Probleme giinstig sind, wenn diese
Probleme methodisch in Angriff genommen werden. ’
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The calculation of plastic collapse loads for plane frames
Le calcul des charges plasﬁques de rupture des cadres plans

Die Berechnung der plastischen Brucklasten ebener Rahmentragwerke

B. G. NEAL and P. S. SYMONDS
Engineering Department, Cambridge University Brown University, Providence, R.1., U.S.A.
INTRODUCTION

Plastic design methods have been developed with a view to providing a more
rational and economical approach to the design of framed structures whose members
possess a high degree of ductility.! The methods are applicable to cases in which the
members of a frame possess a relation between bending moment and curvature of the
form illustrated in fig. 1. The important features of this type of relation are:

(1) If the curvature increases indefinitely, Bending
the bending moment tends to a limiting value HMoment
4+ M), termed the fully plastic moment, re-
gardless of the previous history of loading.

(i) An increase of curvature is always
accompanied by an increase of bending mo-
ment of the same sign, unless the bending
moment has attained its fully plastic value.

./

The behaviour of mild steel beams con- Curvalure
forms quite closely to these assumptions, and
experimental investigations have confirmed
the validity of applying plastic methods of Ly
design to framed structures of mild steel.z — =——=_ - -M,
As yet, little consideration has been given to
the possibility of applying the plastic methods Fig. 1

1 For references see end of paper,
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to framed structures of other ductile materials, such as certain of the light alloys.

When the fully plastic moment is attained at a particular cross-section of a member,
the curvature at this cross-section is indefinitely large, so that a finite change of slope
can occur over an indefinitely short length of the member at this cross-section. The
member therefore behaves as though a hinge existed at this cross-section, rotation of
the hinge being possible only when resisted by the fully plastic moment. This con-
cept of a plastic hinge was first introduced by Maier-Leibnitz,3 and it is of great value
in considering the behaviour of framed structures under load.

For the sake of simplicity, consider first a framed structure subjected to several
loads, each load maintaining the same proportion to each of the other loads. If the
loads are steadily increased, the structure will first support the loads by wholly elastic
action. Eventually a plastic hinge will form at the most highly stressed cross-section.
If the loads are increased still further, this plastic hinge will rotate under a constant
bending moment, its fully plastic moment, and further plastic hinges will form and
rotate in other parts of the structure. Finally, a condition will be reached in which a
sufficient number of plastic hinges have formed to transform the structure into a
mechanism. The structure will then continue to deform to an indefinite extent while
the loads remain constant, until the geometry of the structure is changed appreciably.
Such changes may either check the growth of the deflections, or cause a catastrophic
collapse by accentuating the effects of the loads. In practice, strain-hardening also
checks the growth of deflections. The theoretical condition of indefinite growth of
deflection under constant loads is termed plastic collapse.

The methods of plastic design are used in conjunction with a load factor. The
structure is designed so that the most unfavourable combination of the working loads,
when multiplied by the chosen load factor, would just cause a failure by plastic col-
lapse. This procedure is justifiable even when the loads do not necessarily maintain
the same proportions to one another, for it has been shown that plastic collapse of a
structure will occur at the same set of loads regardless of the sequence in which the
individual loads were brought up to their collapse values. It is clear that the load
factor has a very precise meaning in plastic design, for it represents the margin of
safety which is provided against an actual physical failure of the structure.

Several methods for computing plastic collapse loads have been suggested.4 S
- These methods have been capable, in principle, of determining plastic collapse loads
for framed structures of any degree of complexity. In practice, however, their appli-
cation has been limited by the amount of time required for the necessary computations.
In the present paper a method is presented which enables plastic collapse loads and
their corresponding mechanisms to be determined very simply. The method con-
sists essentially of building up the actual collapse mechanism from a certain number
of independent components, which are termed the independent partial collapse
mechanisms. Corresponding to any mechanism which is being investigated, a value
can be found for the applied load by applying the Principle of Virtual Work.6 It
has been shown that the correct collapse mechanism is the one to which there cor-
responds the smallest possible value.of the applied load. The method consists
therefore of combining the independent partial collapse mechanisms in a systematic
manner in order to reduce the corresponding value of the applied load to its least
possible value. In order to explain and justify the method, a simple example will
first be discussed. Detailed calculations will then be given for a single-bay pitched-
roof portal frame, and the calculations for a three-bay pitched-roof portal frame will
also be outlined. Calculations for a two-bay three-storey rectangular frame have
been given elsewhere.?
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SIMPLE ILLUSTRATIVE EXAMPLE

The rectangular portal frame shown in fig. 2 will be used as a basis for the dis-
cussion of the method. All the joints of this frame are assumed to be rigid, and the
feet of the stanchions are rigidly built in. The dimen-

sions of the frame are as shown, and horizontal and W
vertical loads W are applied at the positions indicated DR DU S
in the figure. The fully plastic moment of each mem- 2 21 s
ber is M,, and the problem is to find the value of W 4 _f_’ e ——— == 3
which causes failure by plastic collapse. . ! : :
For this particular type of structure it is known _L | !
that there are only three possible collapse mechanisms, | ) 7»;
and these mechanisms are shown in figs. 3(a), 3 (b) Fig. 2

and 3(c). In these figures the magnitudes of the plastic

hinge rotations are all shown in terms of a single parameter §. For reference,
the signs of the plastic hinge rotations are also given, although in the technique to
be described there is no need to take account of these signs. The sign convention
adopted is that a hinge rotation is positive if the hinge is opening when viewed from
inside the frame.

==

Fig. 3(b)

For each mechanism it is possible to cal-
culate a corresponding value of W by ap-
plying the principle of virtual work in the
special form that the virtual work done by
the applied loads during a small displacement
of the mechanism is equal to the virtual work
absorbed in the plastic hinges. Considering

Fig. 3(c) the mechanism of fig. 3(a), for example, it is

seen that during the small mechanism dis-

placement shown, the horizontal load W does no work and the vertical load W,

displaced through a distance /6, does virtual work WI/0. To calculate the virtual

work absorbed in the plastic hinges, it is noted that the work absorbed in any in-

dividual hinge is always positive. Since the fully plastic moment is M, everywhere

in the frame, the virtual work absorbed in the plastic hinges is at once seen to be

40M,, since the total rotation of all the plastic hinges is 46. Applying the principle
of virtual work: ’

WId=46M,, or W=4£I”. A ¢)
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Similar calculations for the mechanisms of figs. 3(b) and 3(c¢) are readily made.
The results of these calculations are:

M,

fig. 3(b): Wi6=40M,, or W=4—l” s ¢ 8 » m 3 = &)
| M,

fig. 3(c): 2WI=60Mp, or W=3—" . . . . . . . (3

The correct collapse mechanism can now be distinguished by applying what has been
termed the kinematic principle of plastic collapse.6: 8 This principle states that: ** For
a given frame and loading, the correct collapse mechanism is the mechanism to which
there corresponds the smallest possible value of the applied loads.” For the parti-
cular problem of fig. 2, it follows that the actual collapse mechanism is the mechanism
shown in fig. 3(c), which yields the lowest value of W, namely 3Mf,/I.

Examination of figs. 3(a), 3(b) and 3(c) reveals the fact that the mechanism of
fig. 3(c) is a direct combination of the mechanisms of figs. 3(a) and 3(b), in the sense
that the displacements and plastic hinge rotations of this mechanism are obtained by
summing the corresponding quantities for the mechanisms of figs. 3(a) and 3(5).
In fact, as will be seen later, these latter two mechanisms are the independent partial
collapse mechanisms for this structure and loading. In general, all possible collapse
mechanisms can be formed by combining the independent partial collapse mechanisms.
In the simple problem under consideration there is, of course, only one possible com-
bination to be investigated.

The particular feature of the combination of the independent mechanisms of
figs. 3(a) and 3() which is of interest is that for both these mechanisms the correspond-
ing value of W was 4M,/l, whereas for the mechanism of fig. 3(¢) which resulted from
their combination the value of W was only 3M,/l. This reduction of W is due to the
cancellation of the plastic hinge at the cross-section 2 which occurs when the
mechanisms are combined. When the two mechanisms are superposed, the virtual
work done by the loads in each case may be added to obtain the virtual work done in
the resulting mechanism. However, to obtain the virtual work absorbed in the
plastic hinges in the resulting mechanism, work 26/, must be subtracted from the
sum of the virtual work absorbed in the two independent mechanisms. This is to
account for the term 8M, which was included in the virtual work absorbed in each of
these mechanisms for the plastic hinge at the cross-section 2, which disappears as a
result of the superposition. The virtual work equation for the resulting mechanism
is thus obtained by adding equations (1) and (2), and subtracting 20M, from the
resulting work absorbed in the plastic hinges, giving:

WIe+ Wi0=40M,+40M,—20M,
or 2WIG=60M),

which was previously obtained as equation (3).

In general, the technique for combining the independent mechanisms thus con-
sists in selecting pairs of independent mechanisms which themselves yield low values
of W, and which can be combined so as to cancel a plastic hinge. Such a combination
may, as has been seen, result in a value for W which is lower than the value correspond-
ing to either of the mechanisms which were combined. Even in complicated problems,
the combinations to be tried are usually small in number, so that a solution can be
obtained with great rapidity.

It is, of course, essential to start an analysis with the correct number of independent
mechanisms. In fact, the number of independent mechanisms is always equal to the
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number of independent equations of equilibrium for the frame. To justify this
statement, it is necessary to consider the statics of the illustrative example of fig. 2,
although it should be stressed that in actual applications of the technique there is no
need to write down the equations of equilibrium. However, it is recommended that
solutions should always be checked by statics, making use of the principle of uniqueness
of solution,® 8 which states that: *“ If a sufficient number of plastic hinges occur in a
frame to transform the frame into a mechanism, and if a bending moment diagram
can be constructed for the frame in which the fully plastic moment occurs at each
plastic hinge position, then the corresponding load is the correct collapse load if the
fully plastic moment is not exceeded anywhere in the frame.”
Examples of this form of check are given later in the paper.

The equations of equilibrium

The equations of equilibrium for the frame illustrated in fig. 2 are written down
most conveniently in terms of the bending moments at the five cross-sections numbered
from 1 to 5 in fig. 2. It will be seen from this figure that when these five bending
moments are known, the bending moment distribution for the entire frame is deter-
mined, for between any adjacent pair of these cross-sections the shear force is constant,
so that the bending moment must vary linearly along the length of the member.
These five bending moments are denoted by M, M,, . . . M5, the suffix indicating the
relevant cross-section. The sign convention adopted for these bending moments is
that a positive bending moment causes tension in the fibres of a member adjacent to
the dotted line in fig. 2.

This frame has three redundancies, for if a cut is imagined to be made at section 1,
for example, and the values of the shear force, thrust and bending moment at this
section are known, the entire frame becomes statically determinate. These three
quantities can therefore be regarded as the redundancies of the frame. Since there
are five unknown bending moments, it follows that there must be two independent
equations of equilibrium.

The first of these equations of equilibrium expresses the fact that the vertical load
W is carried by the shear forces in the horizontal member 234. Fig. 4 shows the

Fig. 4

relevant forces and bending moments, the load W being carried by a shear force V in
the member 23 and a shear force W —V in the member 34. Taking moments for the
equilibrium of the members 23 and 34, it is found that

M3;—M,=VI

My;—M,=(W-V)l
On adding these equations to eliminate ¥, it is found that

IMy—Mo,—My=WI1 . . . . . . . . @
In a similar way, an equation expressing the fact that the horizontal load W is carried
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By the shear forces in the vertical members 12 and 45 may be found. This equation
is
Mz—M1+M5'—M4= Wl . . . - . . . . (5)
Equations (4) and (5) constitute the two independent equations of equilibrium.
In the mechanism of fig. 3(a) plastic hinges have formed at the cross-sections 2, 3
and 4, so that the magnitude of the bending moment at each of these cross-sections is
M,. Having regard to the sign convention, these bending moments are

M2=—Mp, M3=Mp, M4=—Mp

When these values are substituted in equation (4), a value for W is immediately found,
this value being W=4M,/l.

It will be seen that the mechanism of fig. 3(a) corresponds to equation (4) in the
special sense that in this mechanism each of the bending moments appearing in
equation (4) takes on its fully plastic value, and that the sign of each bending moment
is such as to give rise to the largest possible value of W. In a similar way, the
mechanism of fig. 3(b) may be said to correspond to equation (5). If each of the
bending moments appearing in equation (5) is given its fully plastic value, and the
sign of each bending moment is such that the largest value of W is obtained, the
following values are found:

M1=—Mp, M2=Mp, M4=—Mp, M5=Mp_

These are the fully plastic moments appearing in the mechanism of fig. 3(b).

To generalise, it may be said that any mechanism corresponds in this special sense
to a particular equation of equilibrium. It follows that for any particular frame and
loading the number of independent mechanisms will be equal to the number of
independent equations of equilibrium. In the particular example under considera-
tion there are only two independent equations of equilibrium, namely equations (4)
and (5) and any other equation of equilibrium must be obtainable by combining
these two equations. Correspondingly, it follows that any possible mechanism will
be found to be a combination of the mechanisms of figs. 3(¢) and 3(b). In this
particular example, there is only one possible combination of these mechanisms,
which is illustrated in fig. 3(c). The equation of equilibrium which corresponds to
this mechanism is obtained by adding equations (4) and (5) so as to eliminate Mz,
giving

2M3—M1"2M4+M5=2Wl . . . . . . . (6)

This addition corresponds to the superposition of the mechanisms of figs. 3(a) and
3(b). The bending moments at the plastic hinges may be seen from this equation,
or from the mechanism of fig. 3(c), to be

My=—-M, M=M, M,=—M, Ms=M,

and the corresponding value of W is 3M,/l.

For convenience of discussion, the loads have previously been referred to as the
yariables, whereas in an actual design the loads will be given quantities and the
problem is to find the required fully plastic moments of the members. When viewed
in this light, the problem just discussed amounts to determining the greatest value of
M, rather than the least value of W, corresponding to any possible mechanism, for
it is the quantity WI/M, which is determined for any particular mechanism by a
virtual work analysm, and minimising W for given values of M, and / amounts to
maximising M, for given values of W and /.
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To summarise, then, the proposed method is as follows:

(1) Determine the correct number of independent mechanisms by calculating
the number of independent equations of equilibrium.

(2) Calculate the required values of the fully plastic moments of the members
by virtual work for these independent mechanisms.

(3) Investigate combinations of these mechanisms so as to maximise the
required fully plastic moments.

(4) Check the solution by constructing a bending moment diagram.

An application of the method to a single-bay pitched-roof portal frame will now
be given in detail, followed by a brief indication of the application of the method to a
three-bay pitched-roof portal frame.

PITCHED-ROOF PORTAL DESIGN

As an illustration of the practical application of the proposed method of design,
typical calculations for a pitched-roof portal frame will now be given. The dimen-
sions of the frame are as indicated in fig. 5,
the roof slope being 221°. The working 076+ r5zt
loads on the frame are also shown in fig.
5. These working loads, which are given
in tons, are assumed to be spread uniformly
over the purlins and sheeting rails shown
in the figure. Of these loads, the vertical
loads of 2-61 tons, acting on each rafter,
are due to dead and superimposed (snow)
lIoads, and the remaining loads are wind
pressures and suctions. The frame is to Fig. 5
be designed to a load factor of 1-75 for the
case in which only the dead and superimposed loads are acting, and to a load factor
of 1-4 for the case in which the wind loads are also acting. Each member of the
frame will be taken to have the same cross-section, with a fully plastic moment M,

besign for dead, superimposed and wind loads

The first design case which will be considered is the design to a load factor of 1-4
for the case in which the wind loads are acting in conjunction with the dead and
superimposed loads. The first step is to decide how many independent partial col-
lapse mechanisms must be considered. The number of such mechanisms for any’
given frame and loading has been shown to be equal to the number of independent
equations of equilibrium. It is therefore necessary to calculate the number of
independent equations of equilibrium, and this is done most conveniently by counting
the number of bending moments which are needed to specify the bending moment
distribution for the entire frame and subtracting the number of redundancies.

For each of the four members of the frame, the loads will be assumed to be
uniformly distributed, so that the distribution of bending moment is parabolic. Each
parabola will be completely specified if the values of the bending moment at three
sections are known. These three sections are chosen most conveniently for the
present purpose as the two end sections and the central section in each member. It
follows that the bending moment distribution for the entire frame will be specified

completely by the values of the bending moments at the nine cross-sections numbered
C.R.—6
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from 1 to 9 in fig. 5. This frame has three redundancies, and so there must be six
independent equations of equilibrium.

It follows that there must be six independent partial collapse mechanisms. These
mechanisms are illustrated in figs. 6-11, inclusive. It will be seen that the mechanisms
of figs. 6, 7, 8 and 9.are merely simple beam failure mechanisms, and fig. 10 shows a
simple sidesway mechanism. If it were not known that there must be six independent
mechanisms, it might be concluded that these five mechanisms constituted the inde-
pendent partial collapse mechanisms, and thus a calculation of the correct number of
independent mechanisms is a vital preliminary operation in the analysis. However,
a sixth independent mechanism must be selected, and the most convenient choice is
the mechanism shown in fig. 11. 1In each figure the rotation of each plastic hinge is
given in terms of a single variable §. There is no need to consider the signs of the
plastic hinge rotations, since the virtual work absorbed in a plastic hinge is always
positive. However, for convenience in the later stages of the calculations when the
solution is checked by statics, the signs of the plastic hinge rotations are also given,
the sign convention being that a hinge rotation is positive if the joint is opening when
viewed from within the portal.

In the simple beam failure mechanisms of figs. 6, 7, 8 and 9, the plastic hinges
within the spans are all shown as occurring at mid-span. However, the loads on
these spans are all assumed to be uniformly distributed in the first instance, so that
these plastic hinges might occur anywhere within the spans. This is because a
plastic hinge within a span must occur at a position of maximum bending moment,
and the positions at which the maximum bending moments occur are not known until
a later stage in the analysis. However, in the preliminary calculations it is con-
venient to take these plastic hinges as occurring in mid-span.

Now consider the mechanism of fig. 6. For the hinge rotations shown, the
plastic hinge at mid-span moves through a distance 66 ft. The average displacement
of the uniformly distributed load of 0-94 tons is therefore 36 ft., so that the virtual
work done by this load, taking into account the load factor of 1-4,1s 0-94 . 1-4 . 360 tons-
ft. The total plastic hinge rotation involved in the mechanism is 46, so that the
virtual work absorbed in the plastic hinges is 46M,. Applying the principle of
virtual work, it is found that

40M,=0-94 . 1-4 . 36=3-950
M,=0-99 tons-ft. 5 KB . « {D
The virtual work equation for the mechanism of fig. 7 is precnsely the same as

) &
— - p29-1- , "
T K
Fig. 6 Fig. 7

equation (7). Corresponding virtual work equations may be written down at once -
for the mechanisms of figs. 8 and 9. These equations are:

fig. 8: 40M ,=1-4[2:61 . 4-50—0-76 . 4-870]=11-30
M—283tonsft 3 & I €]
fig. 9: 40M,=1-4[2-61 . 4:50—1-52 . 4 870] =6-084

M—-152tonsft i e e m e m e e e e e {9)



PLASTIC COLLAPSE LOADS FOR PLANE FRAMES 83

The geometry of the sidesway mechanism of fig. 10 is also simple. Each side load of
0-94 tons moves through an average distance of 68 ft., and the entire roof moves
laterally through a distance 126 ft. The virtual work equation is

46M,=1-4[2 . 0-94 . 6640-76 sin 224° . 120]=20-76
M,=518%onsft: .« « « » s » » » » » # » wu (10

The geometry of the mechanism of fig. 11 is a little more complicated. If the hinge
at joint 3 rotated through an angle —6 while the joint 5 remained rigid, joint 7 would

07+ 152+

ﬂﬂ 74F7

§74fF
v

Fig. 8 Fig. 9
a7t 152+
s
J l—z'zw
2671 -0—927

1248 g

Fig. 10 - Fig. 11

move downwards through a distance 364 ft. Since there can be no downwards motion
of joint 7 for a small displacement of the mechanism, it follows that the hinge at
joint 5 must rotate through an angle 366/18=20 so as to reduce the vertical displace-
ment of joint 7 to zero. This hinge rotation causes a horizontal displacement of
joint 7 through a distance 26 . 7-45=14-99 ft., so that the rotation of the hinge at
joint 9 is 14-96/12=1-248. The hinge rotation at joint 7 is then seen to be—2-246,
and it is found that the centre of the member 57 moves 11-28 ft. to the right and 96 ft.
downwards. The virtual work equation for this mechanism may now be written
down as follows:
6-480M,=1-4[2.2:61 . 96—0-76 . 9-7404-1-52 sin 224° . 11-26
—1-52 cos 224° . 90+40-94 . 7-450]
=56-60
M,=873tons-ft. . . . . . . . . . . . o . . . (1D

Among the six independent partial collapse mecha-
nisms, the highest values of M, are thus 5-18 tons-ft.
and 873 tons-ft. for the mechanisms of figs. 10 and 11,
respectively. The next step is thus to investigate the
combination of these two mechanisms. It is seen
that if the mechanism of fig. 10 is superposed on the
mechanism of fig. 11, the rotation of the hinge at joint Fig. 12
3 is cancelled, so that the resulting mechanism is as
shownin fig. 12. The virtual work equation for this mechanism is obtained by adding
equations (10) and (11), and subtracting 26M, from the resulting virtual work
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absorbed in the plastic hinges, since a term #M,, was included in each of these equa-
tions for the plastic hinge at joint 3. The virtual work equation is thus:

(4+6-48—2)6M,=20-70456-60
8-480M,=77-30
M,=9-12 tons-ft. s & s o8 s (l2)

The highest value of M), obtained from the other four independent mechanisms of
figs. 6, 7, 8 and 9 was 2-83 tons-ft. for the mechanism of fig. 8, and it is readily seen
that- there is no possible combination of these mechanisms with the mechanism of
fig. 12 which will result in a further increase in the value of M,. It is therefore con-
cluded that the mechanism of fig. 12 is the actual collapse mechanism, subject to the
proviso that no consideration has yet been given to the possibility of the occurrence
of plastic hinges at positions other than those numbered from 1 to 9 in fig. 5. When
this solution is checked by statics it will, in fact, be found that the plastic hinge shown
at the apex of the roof in fig. 12 should be located somewhat to the left of the apex.

Check by statics

The solution can be checked by constructing a bending moment diagram for the
frame. If the fully plastic moment is not exceeded at any cross-section, the solution
is correct. The actual bending moment at a cross-section may be regarded as the
sum of the ““free bending moment,” produced in the frame by the applied loads when
a cut has been made at some cross-section so as to render the frame statically deter-
minate, and the “redundant bending moment” produced in the frame by the three
redundancies. For convenience, the form of the redundant bending moment diagram
will be considered first. '

The three redundancies may be taken as the
bending moments, M, and M,, at the feet of the
vertical members, and the horizontal thrust #,
as in fig. 13. With no external loads acting on
the structure, the vertical reactions at the feet of
the vertical members would be equal and oppo-
site, and of magnitude (M| — M,)/36 as shown in
the figure. In drawing the bending moment
diagrams, the sign convention will be that a
positive bending moment will cause a member
to sag inwards, and thus to produce tension in
the flange of the member which is adjacent to
the dotted line in fig. 13. With the redundancies as shown in this figure, the
redundant bending moment diagram is thus of the form indicated in fig. 14, in which
the members of the frame have been redrawn to a horizontal base, and positive
bending moments are plotted as ordinates below this base. In fig. 14 the dotted line

Fig. 13
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indicates the form of the redundant bending moment diagram for the case in which H
is zero, and the full line indicates the effect of superposing the bending moment dia-
gram for the case in which H acts alone.

The free bending moment diagram refers to the bendmg moments produced in
the frame by the applied loads when a cut is made at any arbitrary cross-section. The
most convenient choice of cross-section for this purpose is the roof apex. Fig. 15
shows the free bending moment diagram, consisting of three parabolas, which is
obtained in this way, the loads having been multiplied by the load factor of 1-4.

10
Seale

\/ (fonsft) | 5

2-8f/
Fig. 15

The collapse mechanism of fig. 12 has four plastic hinges at the cross-sections 1, 5,
7 and 9, so that at these cross-sections the bending moment has its fully plastic value,
which was found to be 91 tons-ft. To check the solution, it must be verified that a
diagram of actual bending moments can be constructed in which the bending moment
has the value 9-1 tons-ft. at these four cross-sections, and does not exceed this value
at any other cross-section in the frame. Now the actual bending moment is equal to
the sum of the free and redundant bending moments, so that if a redundant bending
moment diagram is drawn in fig. 15 with the signs of the bending moments changed,
the actual bending moment will be represented by the difference in ordinate between
this diagram and the free bending moment diagram. The appropriate diagram is
shown in fig. 15 as ABCDE.

The construction for this diagram is to lay off from the free bending moment
diagram the calculated fully plastic moment of 9-1 tons-ft., with appropriate sign, at
the four cross-sections 1, 5, 7and 9. This gives the four points A, C, D and E on the
redundant bending moment diagram. Referring to fig. 14, it is seen that the point B
may then be plotted by making the slope of AB equal in magnitude to the slope of
DE, but of opposite sign. A check can then be made by observing that the vertical
intercept between C and the dotted line in fig. 15is 19-45 H, whereas the corresponding
intercept at D is 12 H. These intercepts both correspond to a value of H of 0-05 tons,
thus checking the solution. However, it will be seen that although the bending
moment at the cross-section 3 is less than the calculated fully plastic moment of
9-1 tons ft., a higher value of the bending moment occurs at a distance of 2-8 ft. along
the left-hand rafter member from the apex joint, this value being 9:6 tons-ft. This
does not imply an error in the virtual work calculations, for in those calculations the
choice of plastic hinge positions was restricted to the ends and centres of the members.
The calculation of the required fully plastic moment could be refined by carrying out
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a fresh virtual work calculation in which the plastic hinge at the apex joint 5 was
moved to the new position 2-8 ft. along the left-hand rafter member. However, it is
unnecessary to perform this calculation, for it will be seen that the design is, in fact,
not governed by this loading case but by the dead and superimposed loading case.
It is therefore noted that a value of M, between 9-1 and 9-6 tons-ft. would be adequate
for dead, superimposed and wind loads in conjunction.

Design for dead and superimposed loads

The design for dead and superimposed loads to a load factor of 175 will now be
considered. The relevant working loads are merely loads of 2:61 tons uniformly
distributed over the two rafters, as shown in fig. 16.
261t 261+ Since this loading is symmetrical, the bending moment
distribution for the frame is also symmetrical, and so
only four bending moments are needed to specify the
bending moment distribution. These may be taken
as the bending moments at the cross-sections 1, 3, 4
and 5 in fig. 16. Due to symmetry, the frame has
only two redundancies, for the bending moments at
Fig. 16 the cross-sections 1 and 9 are equal. The bending
moment at cross-section 1 and the horizontal thrust
can thus be regarded as the two redundancies. It follows that there are only two
equations of equilibrium, and therefore two independent mechanisms. Both of these
mechanisms must be symmetrical.
The two independent mechanisms are illustrated in figs. 17 and 18. Fig. 17 merely
represents failure of the two rafters as beams, and the equation of virtual work is

80M,=2.261.175.4-56=41-10
My=5l14dtotissft. « . « + » « s =« « « » (13)

In the mechanism of fig. 18, the hinge rotation ¢ at cross-section 1 would produce a
horizontal movement of 19-456 at the roof apex if there were no hinge rotation

261 261+
2:67¢ 2614

Fig. 17 Fig. 18

at cross-section 3. The hinge rotation at cross-section 3 must therefore be
—19-456/7-45=—2-610 in order that there should be no horizontal movement at the
apex. The downwards vertical displacement at the apex is thus 18 . 1:616=29-06 ft.
The virtual work equation is:

10-440M,=2 .2-61 . 1-75 . 14-50=132-50

My=12"7Tto05ft: « « » &« v « s « = « » (14)

It will be noted that this value of M, exceeds the value found for the case in which
the wind loads act in conjunction with the dead and superimposed loads. It follows
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‘that the design must be governed by the present case in which only the dead and
superimposed loads are acting.

Considering now the combination of the independent mechanisms, it will be seen
that cancellation of the plastic hinge rotation at the roof apex can be achieved by
superposing the mechanism of fig. 17, with g
all the hinge rotations and displacements
increased by a factor of 3-22/2=1-61, on -+4226
the mechanism of fig. 18. The mechanism
thus obtained is illustrated in fig. 19. The
virtual work equation for this mechanism
is obtained by adding equation (13), multi-
plied by 1-61, to equation (14), and sub-
tracting 6-446M, from the resulting virtual work absorbed in the plastic hinges, since
a plastic hinge rotation of 3-226 in each of the mechanisms at the roof apex has been
cancelled. The resulting equation is:

(8.1:61+10-44—6-44) 6M,=41-1 . 1-616+4132-560
16-880M,=198-78
M,=11-8tons-ft. . . . . . . (15)
The highest value of M, obtained from these mechanisms is thus 12-7 tons-ft. for
the mechanism of fig. 18. This is therefore the actual collapse mechanism, subject to
possible alterations due to the occurrence of plastic hinges within the spans of the

members rather than at the joints. A statical check will reveal, in fact, that the plastic
hinge at the roof apex should be replaced by one plastic hinge in each rafter member.

261t

-4-228

Fig. 19

Check by statics

The free bending moment diagram for the frame, cut at the roof apex, when sub-
jected to the factored loads, is shown in fig. 20, together with the redundant bending
moment diagram. This latter diagram is constructed by setting off the calculated
fully plastic moment of 12-7 tons-ft. from the free bending moment diagram at the
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Fig. 20

cross-sections 1, 3, 5, 7 and 9. The value of the horizontal thrust can be calculated
from the intercepts between the redundant bending moment line and the dotted line
in fig. 20 at both the cross-sections 3 and 5. The value obtained in each case is
2-1 tons, thus checking the virtual work calculation. It will be seen that the greatest
bending moment which occurs with this bending moment distribution is 14-2 tons-ft.
at a distance of 3-7 ft. from the roof apex. Thus in the correct collapse mechanism
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there should be plastic hinges in each rafter at a distance of about 3-7 ft. from the
roof apex in place of the single plastic hinge shown at the apex in fig. 18. A fresh
calculation for these new plastic hinge positions is readily made, either by virtual work
or by adjusting the redundant bending moment line on the bending moment diagram,
and the resulting value of M, is found to be 13-2 tons-ft. A final refinement is to take
account of the fact that the loads are not, in fact, uniformly distributed over the
rafters, but are carried by five uniformly spaced purlins, as shown in fig. 5. The
plastic hinges in the rafters will be located beneath the purlins which are adjacent to
the roof apex, and the corresponding value of M, is found to be 13-0 tons-ft. or
156 tons-in. :

A choice of section can now be made. The fully plastic moment for a rolled steel
joist is known to exceed the moment at which the yield stress is just reached in the
outermost fibres by a factor termed the shape factor, which is about 1-15 for most
sections.* Taking a yield stress of 15-25 tons/in.2, the fully plastic moment A, is thus:

M,=1'15.1525.Z=17-5 Z tons-in.
where Z in.? is the section modulus. The required value of Z in the present case is:
Z=156/17-5=891 in.3
The nearest available British Standard beam section is a 7x4 X 16 lb., with a section
modulus of 11:29 in.3 This is therefore the required section. From the point of

view of stability, the purlins and sheeting rails, together with some cross-bracing,
would provide adequate stiffening for this section over the given spans.

THREE-BAY PITCHED-ROOF PORTAL FRAME

To illustrate the scope of the technique which has been described in detail, cal-
culations for the three-bay frame whose dimensions and loads are as shown in fig. 21
will now be outlined briefly. As before, all the loads are assumed to be uniformly
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distributed, and the vertical loads of 3-60 tons on each rafter member are due to dead
and superimposed loads, the remaining loads being wind loads. In the first instance,
it will be assumed that all the members of the frame are of the same cross-section,
with a fully plastic moment M.

Design for dead, superimposed and wind loads

For this loading case, a load factor of 1-4 will be used. Examination of fig. 21
shows that twenty-three bending moments are needed to specify the bending moment
distribution for the entire frame, which has nine redundancies. There must therefore
be fourteen independent mechanisms. Eight of these mechanisms are accounted for
by the simple beam type of failure mechanism (as in figs. 6, 7, 8 and 9, for example)
occurring in the members AB, BC, CD, DF, FG, GI, IJ and JK. For these mechan-
isms, the highest value of M, is obtained for the member GI, this value of M, being
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7-28 tons-ft. Two mechanisms must be counted for rotations of the joints D and G
in fig. 21, for it will be realised that for each of these joints there will be an equation of
rotational equilibrium between the three bending moments acting on the joint. There
will also be one sidesway mechanism, with plastic hinges in the vertical members at
A, B, D, E, G, H, J and K, for which the corresponding value of M, is 1-69 tons-ft.
The remaining three independent mechanisms may be chosen in a variety of ways, but
the three mechanisms illustrated in figs. 22, 23 and 24 are probably the most con-
venient for the present purpose. It will be seen that each of these mechanisms is
basically #f the same type, with the rafters collapsing in one bay and thus causing
sidesway of those parts of the frame lying to the right of the collapsing bay. For
reference, the plastic hinge rotations are shown in these figures in magnitude only.
It will be noted that the joints D and G remain unrotated in each of these mechanisms,
since in each case any rotation of these joints would increase the work absorbed in the
plastic hinges and so reduce the value of M.

1660 -

1660

Fig. 23

16668
1666

Fig. 24

The virtual work equations for these three mechanisms are found to be:

fig. 22: 7-320M,=123-56, M,=169 tons-ft. . . . . . (l6)
fig. 23: 10-640M,=120-48, M,=11-3tons-ft. . . . . . (17)
fig. 24: 13-966M,=115-16, M,=8-25tons-ft. . . . . . (18)

The highest value of M, obtained from the independent mechanisms is thus
169 tons-ft. for the mechanism of fig. 22. It is easily seen that this value of M, will
not be increased by combination with any of the simple beam mechanisms, for which
the highest value of M, was found to be 7-28 tons-ft. It is also clear that the sidesway
mechanism, for which M, was found to be only 1-69 tons-ft., cannot be combined
with advantage. It remains to investigate possible combinations of the three
mechanisms of figs. 22, 23 and 24.

The mechanisms of figs. 22 and 23 can be combined if the hinge rotations and
displacements in the mechanism of fig. 22 are all multiplied by a factor of 1:66, and
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then superposed on the mechanism of fig. 23. This enables a clockwise rotation, of
magnitude 1-666, to be given to joint G, which cancels plastic hinge rotations of
1-666 in the members GI and GH at this joint, while increasing the plastic hinge
rotation in the member GF by 1-666. This produces a net reduction in the virtual
work absorbed of 1-660M,. The resulting virtual work equation for this combination
is then seen from equations (16) and (17) to be:
1-66 . 7-32 . OM,+ 10-640M,— 1-660M,=1-66 . 123-56+120-46
21-10M,=3250
M,=154 tons-ft. . . . . (19)

This value of M, is smaller than the value of 169 tons-ft. obtained for the mechanism
of fig. 22, and it is clear that no other possible combination of the three mechanisms
of figs. 22, 23 and 24 will yield a larger value of M,. It is therefore concluded that
the mechanism of fig. 22 is the actual collapse mechanism. This solution will not be
adjusted to allow for the possible occurrence of plastic hinges at cross-sections other
than the ends and centres of the members, for when the dead plus superimposed
loading case 1s considered, it will be found that the wind loading case does not govern
the design.

An interesting feature brought out by this analysis is that there are only four plastic
hinges in the collapse mechanism, whereas the frame has nine redundancies. At
collapse, therefore, only the right-hand bay of the frame is statically determinate, and
in carrying out a statical check the bending moment diagram for the other two bays
could not be constructed directly. Instead, it would be necessary to carry out a trial
and error investigation to show that the six redundancies of these two bays could be
chosen In at least one way so as to produce a resultant bending moment diagram in
which the fully plastic moment was not exceeded anywhere in the frame. This
would be a tedious process, and in view of the fact that this is not the loading case
which governs the design, the check is probably not worth performing.

Design for dead and superimposed loads

A load factor of 1-75 will be used for this loading case. The loading, consisting
merely of the vertical loads of 3:60 tons on each rafter, is symmetrical, so that the
collapse mechanism and the bending moment distribution at collapse must also be
symmetrical. It will be seen that the values of eleven bending moments will specify
the bending moment distribution for the entire frame, and that owing to symmetry
there are only five redundancies. There are thus six independent mechanisms, which
must all be symmetrical. Three of these mechanisms are the simple beam type of
failure mechanism in the pairs of rafters BC and 1J, CD and GI, and DF and FG.
For each of these mechanisms, the corresponding value of M, is 9-45 tons-ft. One
mechanism must be counted for rotation of the joints D and G. The remaining two
mechanisms are most conveniently chosen as the mechanisms shown in figs. 25 and 26.

The virtual work equations for these two mechanisms are:

fig. 25: 14-640M,=302-40, M,=20-6 tons-ft. . . . . . (20)
fig. 26: 10-640M,=151-20, M,=142tons-ft. . . . . . (21
The only possible combination of these mechanisms is obtained if the hinge rota-
tions and displacements in the mechanism of fig. 25 are all multiplied by a factor of
0-83, and then superposed on the mechanism of fig. 26. This enables a counter-

clockwise rotation of the joint D, of magnitude 0-836, to be made, thus cancelling
plastic rotations of 0-836 in the memters DC and DE at this joint, while increasing
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the plastic hinge rotation in the member DF by 0-836. This produces a net reduction
in the virtual work absorbed of 0-836Mf,, and a similar reduction can be achieved by a
clockwise rotation of the joint G. The resulting virtual work equation is then seen
from equations (20) and (21) to be:

0-83.14:640M,+10-646M,—1-666M,=0-83 . 302-46+4151-26
21-16M,=4020
M,=191tons-ft. . . . . (22)

This value of M, is less than the value of 20-6 tons ft. which was found to correspond
to the mechanism of fig. 25. It may also be checked that the beam collapse mechanisms
for the rafters cannot be combined with any of these mechanisms to produce a value

28 28
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Fig. 26

of M, greater than 20-6 tons-ft. The mechanism of fig. 25 is thus the actual collapse
mechanism, subject to alterations due to the occurrence of plastic hinges at positions
other than at the ends and centres of the members. A statical check will now be
made which will also serve to indicate such alterations in the position of the plastic
hinges.

Check by statics

Because of symmetry, the statical check need only be made for one half of the
frame, say the left-hand half. For this portion of the frame, the free bending moment
diagram is constructed by imagining cuts to be made at the apices C and F. The
resulting diagram is given in fig. 27, for the case in which the loads have been multi-
plied by the load factor of 1-75. It will be seen that there is no free bending moment
in the vertical member DE, and the diagram for this member has not been drawn.

For the members AB, BC and CD the redundant bending moment diagram may
be constructed directly, since the bending moment has its fully plastic value at A, B,
C and D. The horizontal thrust H in this bay can be calculated from the vertical
intercept between the redundant bending moment diagram and the dotted line in
fig. 27. In each case a value of 3-44 tons is obtained, thus checking the solution.
Since the centre bay of the frame is not statically determinate at collapse, the redundant
bending moment diagram for the member DF cannot be constructed directly. How-
ever, it is clear from the symmetry of the diagram about D that one possible redundant
bending moment line for DF is the dotted line df shown in fig. 27, where fF represents
the calculated fully plastic moment of 20-6 tons-ft. This line has a slope equal in
magnitude to the line cd in fig. 27, and this corresponds to the same value of the
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horizontal thrust of 3:44 tons which was found for the left-hand bay of the frame.
If this were the actual redundant moment line for the member DF at collapse, it
follows that there would be no resultant horizontal thrust on the vertical member DE,
which would thus have zero bending moment throughout its length. It is therefore
possible to construct a bending moment diagram for the entire frame in which the
fully plastic moment is not exceeded at any cross-section, except within the spans of
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Fig. 27

the rafter members. This confirms that the correct solution was found by the virtual
work analysis.

It will be seen from fig. 27 that plastic hinges will actually occur in the rafter
members at distances of 5-9 ft. from the apices C and G, rather than at these apices.
When this is taken into account, the value of M, is found to be 21-9 tons-ft.

The statical check reveals the fact that the internal stanchions DE and GH need
not be called upon to participate in the collapse mechanism, for it is possible to con-
struct a resultant bending moment diagram in which these members are free from
bending moment. These members, which were assumed in the first instance to
possess a fully plastic moment M, thus function merely as props which hold up the
rafter members. They could therefore be designed simply as compression members,
and made of hollow tubing.

CONCLUSIONS

The merits of the method of design described in this paper can really be appre-
ciated only by applying the method to practical examples. However, the foregoing
examples serve to illustrate some of its advantages. The outstanding feature of the
method is, of course, its rapidity. This is mainly due to the ease with which cor-
responding values of M), can be obtained by the principle of virtual work, and this
in turn is due largely to the fact that there is no need to establish sign conventions
when applying this principle, since the virtual work absorbed in a plastic hinge must
always be positive. A further important advantage of the method is that it enables
solutions to be found without difficulty for those cases in which the entire frame is
not statically determinate at collapse. Such cases have hitherto been somewhat
intractable.
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Summary

In suitable instances the application of plastic design methods to plane frames of
ductile material, such as mild steel, leads to more rational and economical designs.
These design methods are based on the calculation of the loads at which a structure
collapses owing to excessive plastic deformation. Such collapses occur when a suffi-
cient number of plastic hinges have formed to transform the structure into a mechan-
1sm, so that deflections can continue to grow, due to rotations of the plastic hinges,
wh11e the loads remain constant.

It is known that among all possible collapse mechanisms for a given frame and
loading, the actual collapse mechanism is the one to which there corresponds the
smallest possible value of the load. Recently, it has been pointed out that all the
possible collapse mechanisms for a frame can be regarded as built up from a certain
number of simple mechanisms. This has led to the development of a new technique
for determining plastic collapse loads, in which these simple mechanisms are combined
in a systematic manner so as to reduce the corresponding value of the load to its least
possible value. For each mechanism which is investigated, the corresponding value
of the load is determined very quickly by applying the Principle of Virtual Work.

In the present paper, the theoretical basis of this new technique is discussed, and
typical calculations for a pitched-roof portal frame are given.

Résumé

Dans différents cas, I’application de la théorie de la plasticité au calcul des cadres
plans en matériaux forgeables, comme I’acier fondu, conduit a des solutions ration-
nelles économiques. Cette méthode de calcul repose sur la détermination des charges
sous lesquelles un ouvrage céde a la suite de déformations plastiques infiniment
grandes. La rupture se produit 4 la suite de la formation d’articulations plastiques
en nombre suffisant pour transformer I’élément porteur en un ‘““mécanisme”; a la
suite du processus de rotation des articulations plastiques, les déformations prennent
des amplitudes de plus en plus grandes, tandis que la charge reste constante.

On sait que parmi tous les processus possibles de rupture d’un cadre donné sous
I’action de conditions de mise en charge données, le processus décisif est celui qui
correspond a la plus petite valeur possible de la charge. On a montré récemment
que tous les processus possibles de rupture d’un cadre peuvent étre considérés comme
composés d’un certain nombre de processus habituels. Ceci a conduit a la mise au
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point d’un nouveau procédé pour la détermination de la charge plastique de rupture,
procédé dans lequel les processus simples sont combinés d’une maniére systématique
en vue de réduire la charge correspondante i sa plus petite valeur possible. Les
valeurs de la charge peuvent étre déterminées trés rapidement pour chaque processus
ainsi introduit, par I'application du principe des travaux virtuels.

Les auteurs discutent dans le présent rapport les bases théoriques du nouveau
procédé et exposent les modes de calcul caractéristiques pour un cadre-portique avec
toit incliné.

Zusammenfassung

In verschiedenen Fillen fiihrt die Anwendung der Plastizitdtstheorie bei der
Berechnung ebener Rahmen aus schmiedbarem Material, wie z.B. Flusstahl, zu
rationellen und wirtschaftlichen Losungen. Diese Berechnungsmethode beruht auf
der Bestimmung derjenigen Lasten, unter welchen ein Bauwerk infolge unendlich
grossen plastischen Verformungen versagt. Das Versagen tritt ein, wenn sich
plastische Gelenke in geniigender Zahl ausgebildet haben, um das Tragwerk in einen
Mechanismus umzuwandeln; als Folge der Drehungen der plastischen Gelenke ver-
grossern sich dann die Forménderungen weiter, wihrend die Belastung konstant
bleibt.

Es ist bekannt, dass unter allen moglichen Bruchmechanismen eines gegebenen
Rahmens mit gegebener Belastungsanordnung derjenige massgebend ist, dem der
kleinstmogliche Wert der Belastung entspricht. Unldngst wurde gezeigt, dass alle
moglichen Bruchmechanismen eines Rahmens als aus einer gewissen Zahl von
gewoOhnlichen Mechanismen zusammengesetzt betrachtet werden konnen. Dies hat
zur Entwicklung eines neuen Verfahrens zur Bestimmung der plastischen Bruchlast
gefiihrt, bei welchem die einfachen Mechanismen systematisch kombiniert werden,
um so den entsprechenden Wert der Last zu seiner kleinstmdglichen Grosse zu
reduzieren. Die Werte der Last konnen fiir jeden eingefiihrten Mechanismus sehr
schnell durch Anwendung des Prinzips der virtuellen Arbeit bestimmt werden.

Im vorliegenden Aufsatz wird die theoretische Grundlage des neuen Verfahrens
diskutiert, und es werden die typischen Berechnungen fiir einen Portalrahmen mit

geneigtem Dach gegeben.
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INTRODUCTION

The methods presented in this paper for the analysis and design of rigid structures
are purely mathematical in character; that is, techniques are formulated on the basis
of certain fundamental assumptions. These assumptions may or may not be true for
any particular structure; for example, the instability of axially loaded stanchions is
ignored, as is the lateral instability of beams subjected to terminal bending moments.
While for some simple structures under particular conditions of loading these effects
may be relatively unimportant, recent work by Neal (1950a) and Horne (1950) has
shown that the problem may in fact be critical. In addition, it will be seen below
that an *““‘ideal” plastic material is assumed. Structural mild steel approximates to
such an ideal material, but a highly redundant frame will experience strain-hardening
which may invalidate the calculations. The tech-
niques presented here, in short, in no sense form a |
practical design method; however, it is felt that they — m, [----—__
are of sufficient interest to warrant a description of
some of the more important results.

The characteristic ideally plastic behaviour of
a beam in pure bending is shown in fig. 1. From
O to A increase of bending moment is accompanied 0
by purely elastic (linear) increase of curvature. Be- Curvature
tween A and B, increase of bending moment is Fig. 1
accompanied by a greater increase of curvature,
until at the point B the full plastic moment M, is attained. At this moment the
curvature can increase indefinitely, and ‘““collapse” occurs.
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In a general plane structural frame, a section at which the bending moment has
the value M, is called a plastic hinge, and has the property that rotation at the hinge
can occur freely under constant bending moment. From the definition of the full
plastic moment, the moments in the frame can nowhere exceed Mj; if the component
members of a frame have different sizes, it must be understood of course that M,
refers to the particular member under consideration.

Collapse of a frame is said to occur when a sufficient number of plastic hinges are
formed to turn whole or part of the frame into a mechanism of one degree of freedom;
in general, the number of hinges exceeds by one the number of redundancies of that
part of the frame concerned in the collapse. For example, the simple rectangular
portal frame, of constant section throughout, subjected to loads ¥ and H as shown
in fig. 2(a), may fail in any one of the three basic modes shown in figs. 2(b), (¢) and (d).
The actual mode is determined by the values of the two loads.

o #

*>—

Lo 1T

(3) (&)
l —_— * —_—

(c) (a)
Fig. 2

The first part of this paper deals with methods for the exact determination of the
quantities required (location of the hinges, values of collapse loads, etc.); the second
part presents methods for determining upper and iower bounds on the loads, it being
possible to make these bounds as close as is considered necessary. The third part
applies the ideas to space frames, where hinges are formed under the combined action
of bending and torsion.

EXACT METHODS

The use of inequalities in the solution of structural problems was first introduced
by Neal and Symonds (1950), who used a method due to Dines (1918). The very
simple example shown in fig. 3 will be used to illustrate the solution of linear sets of
inequalities.

(a) Collapse analysis under fixed loads

Suppose in fig. 3 that the two spans of the continuous beam are of length /, and
that the fixed loads P; and P, act at the centres of the spans. The full plastic moment
of the beam will be taken as M, and it is required to find the minimum value of M,
in order that collapse shall just occur. (P; and P, may be taken to incorporate a
suitable load factor.)

The general equilibrium state of a frame of » redundancies can be expressed as
the sum of one arbitrary equilibrium state and » arbitrary independent residual states.
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By a “state” is meant some bending moment distribution, so that a state in equili-
brium with the applied loads is any bending moment distribution such that equili-
brium is attained. A residual state is a bending moment distribution that satisfies
equilibrium conditions when no external loads are applied to the frame. Thus,
confining attention to any one cross-section in the frame, the bending moment there
may be expressed as

MM/ +My’+ ... +M, . . . . . . (1)

where M* is the equilibrium bending moment at the section and M,’, M,’, . . . M,
are the bending moments, at the section considered, corresponding to » arbitrary
residual states. Suppose that the full plastic moment at the section (as yet un-
determined) is M,. Then

—My<M*+M, +M,'+ . . . + M,/ <My . . . . (2

— F, 3
" i l
. } C
Fig. 3 ¢ 28
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Fig. 4

Since the continuous beam system under consideration has one redundancy, the
plastic behaviour can be represented as the sum of an equilibrium state and one
residual state, which may be taken as the two bending moment distributions in fig. 4.
The continued inequality (2) may be written for the three critical sections:

Under the load P, —My<p;+c<M,
At the central support, —My< 2c <M, N €))
Under the load P,, —My<p,+c<M,
The set (3) may be rewritten as simple inequalities:
c+p+ My=>0)
C —}—%M() >0
c+pa+ My=>0
—c—p1+ My=0
—C +'&Mo =0
=g—Ps-p MO }OJ
If now every inequality in set (4) which has a coefficient of 41 for ¢ is added to
every inequality which has a coefficient —1 for ¢, ¢ will be eliminated, and Dines has
shown that the resultant set of inequalities (nine in number in this example) gives
necessary and sufficient conditions for the existence of a value of ¢ in order that the
original set should be satisfied. This is exactly what is required for the present
purposes; the actual value of ¢ is of no interest so long as it is known that a ¢ exists
such that at each critical section of the frame the bending moment is less than the full
plastic value.
C.R—7

(4)

h's
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In eliminating ¢ from the set (4), it is found that a large number of the resulting
inequalities are redundant, and if it is assumed that P; >P,, the single inequality

—p1+3My >0 N )

is found to be critical. As long as this inequality is satisfied, all the moments in the
beam will be less than M,. For collapse just to occur, the equality sign should be
taken in (5), giving My=%p,. Now inequality (5) was derived by adding the second
and fourth of set (4); substituting this value of M into these two inequalities gives

c+4p; >0
—e—1p; >0 O )
ie. —ip1=c=>—1p, Co. (7)

that is, a unique value of ¢ has been derived. Using this value of ¢, the bending
moment distribution shown in fig. 5 has been derived from the analysis; it will be
seen that hinges (My=%p,) are formed under the load P;, and at the central support,
forming a mechanism of one degree of freedom for small (really, infinitesimal) dis-
placements.

] Full plastic moment

.Tﬂ’><l/ (B~ 34 Weight per unit fength

Fig. 5 Fig. 6

The type of result obtained in this problem will in general be derived for any more
complicated example. For more residual states defined by ¢;, ¢3, . . . ¢, €ach
parameter c is eliminated successively from the inequalities, and the final inequality,
if just satisfied, will generate a unique set of residual states completely defining the
collapse configuration.

The method given above may be applied to the analysis of frames collapsing under
variable loads; however, this problem will be treated with reference to the slightly
more complex condition of minimum weight design.

(b) Minimum weight design under fixed loads

The parameters used in order to determine the minimum weight of a structure
will be the values of the full plastic moments. If a plot is made for typical structural
sections of full plastic moment against weight per unit length, and the points joined
by a smooth curve, a non-linear relationship of the type shown in fig. 6 will be
obtained. (Owing to the methods used in this paper, the actual relationship is im-
material, but it is of interest to note that a curve given in a British Welding Research
Association report (1947) for British structural sections can be approximated by
w=2-TM %6, where w is the weight in 1b./ft. of a beam of full plastic moment M tons
ft.) In order to develop suitable methods for design, it will be assumed that a
continuous range of sections is available so that a section can be used with any
specified full plastic moment.
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The assumption is made that the moment-weight curve can be replaced in the
region which is significant for any particular problem by a straight line. For a frame
built up of N members, each of constant section, the total material consumption will
be given by the proportionality

N

i=1
where M; is the full plastic moment of the ith member of the frame, and /; is its length.,
Considering again the two-span beam shown in fig. 3, suppose that the left-hand
span has a full plastic moment M, that of the right-hand span being M,. Since the

two spans are of equal length, proportionality (8) may be replaced by the weight
parameter :

X=M+M, . . . . . . .. .0

The problem of minimum weight design for this problem is then reduced to choosing
values of M, and M, such that X is made a minimum. The work starts in the same
manner as for the collapse analysis given above; set (3) is replaced by

— M <p;+c<M,
_Ml < 2¢ <M1 (10)
—Mye JoM, S ¢ C ot e
—M;_ <p2+c <M2
The two continued inequalities are necessary for the central support since it i1s not
known a priori whether M, 2 M,.
Of the sixteen possible inequalities obtained by the elimination of ¢ from set (3),
only five are found to be non-redundant if it be assumed that P; >>P,. These are

-p1 3IM >0}
—-p1 + M;+iM, >0
—p1+p2+ M+ M,>0 N ¢ 0}
—p2+3IM+ M,>0 .
—P2 +3M,>0
The material consumption parameter X will now be introduced into set (10) by the
replacement of M, by (X— M,) from equation (9). Upon slight rearrangement;

—M,+ X —§p1>0

—Mpt2X=2pm20 L |, 1)
bt . 5 M2+X —2p2>O
M, —4p,=>0
together with X>(py—p) - - . . o . .. (13

Now for the problem of determining the minimum value of X, the value of M, is
not required, and Dines’ method may be employed again on set (12) to eliminate M.
On performing this operation, inequality (13) becomes redundant, and the only
significant inequality resulting is

X=py+dps . . o o o ... (19

It should be repeated that this single inequality is a necessary and completely sufficient
condition that values of M, M, and ¢ can be found to satisfy the original set (10).
Since it is required that X should be as small as possible, the equality sign will be
taken in (14), so that

X=p,+ip>. T ¢ Y
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Substitution of this value of X back into the previous sets gives the unique values

M,=p,—1p,
M,=3%p, T ¢ )

2e=—3p,=—M,

The bending moment distribution resulting from the analysis is shown in fig. 7, plastic
hinges being formed at all three of the critical points.

/Raz_ s, The method given above for minimum weight design
,%ﬂz against collapse under fixed loads has been applied by
the Author (1950a, 1950b) to the solution of a rectangular
\l>[(p-§-pz)\V portal frame (cf. fig. 2), and also to derive a design
method for continuous beams of any number of spans

Fig. 7 under either concentrated or distributed loads.

(c) Minimum weight design against collapse under variable loads

Consider the same beam in fig. 3, but with the loads varying arbitrarily between
the limits :
— 0, <P,<0, (17)
0,>0;
The work proceeds as before up to the derivation of set (11). Now, in this set, the
worst values of p; and p, (i.e. ¢, £¢;) must be inserted in each inequality, giving
—q  +3M, =0
—q, + M +iM,>0
—q—q+ M+ M,>0 »~ . . . . . . . (I18)
—q+3iM+ M>>0
—q> +3M,>0 |
Operating on set (18) as before to find the minimum value of X, it is found that

M+M,=X=q,+q>

(@1+392) =M, >3q, N 0 1)
29, >M,>3%q;

(39:+92) =M,

As a specific example, suppose q,=¢,=q. Then
3q>M,>3q
q>M,>3q |

and any values of M| and M, satisfying (20) will give a constant material consumption.

(It is perhaps of interest to note that for X=2X(M)"l, where n<l, the minimum

material consumption is given by M, =2M,=%q (or vice versa), the worst case occurring

for M;=M,=q. An asymmetrical solution is obtained for what appears to be a

completely symmetrical problem. For n=06, the symmetrical solution gives an

increase of less than 2% in material consumption compared with the asymmetrical
solution.)

.—Q1<P1<Q1}

(20)

INEXACT METHODS

The theorems concerning the existence of upper and lower bounds on the collapse
load of a structure were first proved rigorously by Greenberg and Prager (1950). It
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is assumed that the loads on a structure are all specified in terms of one load, so that
when the collapse load is mentioned, this implies the whole system of loads.

An upper bound on the collapse load

Suppose that enough hinges are inserted into a redundant structure in order to
turn it into a mechanism of one degree of freedom. Hill (1948) has shown that the
stress system is constant during collapse of an ideally plastic body, so that for the
frame with one degree of freedom, the equation of virtual work may be written,
equating the work done in the hinges to the work done by the external load during a
small displacement in the equilibrium state. The work done in a hinge is equal to
the full plastic moment multiplied by the absolute value of the change in angle at that
hinge (i.e. plastic rotation) and the work done by the load simply the load multiplied
by its displacement. There will, of course, be elastic displacements obtaining in the
frame, but these do not appear in the equations provided it is assumed that they are
small so that the overall geometry of the frame is not disturbed.

For any arrangement of hinges in the frame producing a mechanism of one
degree of freedom, the load given by the virtual work equation is either greater
than or equal to the true collapse load.

A lower bound on the collapse load

If a state can be found for the structure which nowhere violates the yield
condition, and which is an equilibrium state for a given value of the load, then
that value is either less than or equal to the value of the true collapse load.

In practice, Greenberg and Prager found it useful to derive a lower bound from
the mechanism giving the upper bound. The example will make the ideas clear.
Suppose the values of the loads in fig. 3 are

P1=2P2=2P . . . . . . . . . (21)

and that as a first trial the mechanism in fig. 8 is assumed for failure. The rotation at
the central hinge is 6, and at the hinge under the load P, 26. Hence, by virtual work,

I
P.O=M26)+ M) . . . . . . . . (2D
ie. p=3My, . . . . . . .. ... @

i

vy N
SN S My
5
6 _ 3 M,

Fig. 8 Fig. 9

(It is taken that the beam has the same full plastic moment M, in both spans.) By
. the upper bound theorem, the true value of the collapse load (p.) is less than M.
The bending moment distribution corresponding to the assumed mechanism and this
value of p given in equation (23) is shown in fig. 9, from which it will be seen that the
yield condition is exceeded under the load 2P in the ratio 5/2. Suppose now that the
loads are reduced in the ratio 2/5. Then if the values in fig. 9 are multiplied by 2/5,
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an equilibrium bending moment distribution is obtained which nowhere violates the
yield condition. Hence the load of $M, is a Iower bound on the collapse load, i.e.

IMo<pe<3M, . . . . . . . . (29

It can be shown that removing one of the assumed hinges to the point of maximum
moment will improve the bounds on the collapse load; in this example, shifting the
hinge from under the load P to under the load 2P, while retaining the central hinge,
immediately gives the correct solution p.=3M,. There is, however, no means at
present of choosing which hinge to remove, and in any case the bounds cannot be
narrowed indefinitely; either they are separated by a finite amount, which may be
quite large for even a relatively redundant frame, or the exact solution will be obtained.
Accordingly, Nachbar and the Author (1950) have developed more general methods
for obtaining both upper and lower bounds which may be made as close to the true
collapse value as is considered necessary.

A general method for the upper bound

Suppose yield hinges are inserted into the frame at any suspected critical sections.
In general a frame of N degrees of freedom will result, specified in terms of N deflection
parameters. If the equation of virtual work is written, then the corresponding value
of the load is an upper bound on the true collapse load. In fact, the virtual work
equation is inapplicable, since the system is not an equilibrium system, but it may be
shown that the value of the load resulting from this equation is in fact a true upper
bound, providing that the mechanism is such that the work done by the loads is
positive. ‘

For the general mechanism in fig. 10,

/ {
2P . 501+ P . 58=Mo(|261 +6,+6,]+26,])

2
o _ g (1261] 41601 +65] 426,
1.e. p—MO( 46,420, ) .

(25)

5 T
A
Py —
R
2P P S :
B G ¥
QZ 1
g N L I O N N
Fig. 10 S ; \ —
g € L N
]
|
a 1
-2 -7 g 7 2 J 4 5 6

Values of 6,/8,
Fig. 11

In equation (25), values of 8, and 6, must be chosen to give the minimum value of p;
since p is always an upper bound on p., the minimum value will be equal to p.. A
plot of equation (25) is given in fig. 11, from which it will be seen that p.=3M,
corresponds to 6,=0. The minimum is not a stationary value, since equation (25)
is a ratio of two linear expressions. Nachbar has shown that equations of this type
containing absolute values can be reduced by rational successive steps, and the
method has been applied to mechanisms with a large number of parameters necessary
for their specification.
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A general method for the lower bound

Suppose the members of a redundant structure are cut in such a way that a
number of separate redundant or statically determinate structures are formed. If the
collapse loads are calculated for each of these resulting structures, then the lowest
value of these loads is less than the collapse load of the structure as a whole. The
proof of this theorem follows immediately from the special lower bound theorem
above. An immediate corollary is that if a cut portion of the structure carries no
load, then that portion can be ignored in the derivation of the lower bound. In order
to make the theorem of practical use, an additional lemma is needed. The collapse
load of a structure is unaffected by any initial system of residual stresses (moments,
shear forces). That is, at a cut, equal and opposite longitudinal forces, shear forces,
and moments may be introduced in an attempt to raise the lower bound.

i {? 18 BN i
£ A B 2 & A AT A
Fig. 12 Fig. 13

Suppose the beam in the previous example is cut at the central support; then the
two separate beams shown in fig. 12 will be obtained. The collapse loads of the
right- and left-hand halves are respectively p= M, and p=1M,, i.e.

» pe=iMy, . . . . . . . . . . (20
Now if a central moment is introduced (fig. 13), it is easy to show that the collapse
loads are respectively

M+2M, M+2M
p=——+5—-0 and p=——+z—-0 N )|

The maximum value which M can take is, of course, M,, and hence from (27)
| pe=iMy . . . . . . . . . . (28)

and the problem has been completed. For other more complicated examples (a two-
storey, two-bay portal frame has been solved under both concentrated and distributed
loads), it is found that shear and longitudinal forces as well as bending moments must
be introduced at the cuts.

SPACE FRAMES

The type of space frame considered has members which lie all in the same plane,
all loads acting perpendicularly to this plane. Thus bending moments whose axes
lie perpendicular to the plane and shear forcesin the plane are zero. Any member
of the frame is then acted upon by shear forces parallel to the applied loads and by
two moments whose axes lie in the plane, that is, a bending moment (M) and a torque
(T). For ideal plasticity, hinges will be formed in exactly the same way as for plane
frames; the breakdown criterion will be some such expression as

gM, T)=g(My, 0)=const. . . . . . . . (29
where M, is the full plastic moment in pure bending, as before. At any one hinge,
the maximum work principle of Hill (1948) shows that the moment and torque will be

constant during collapse, and that the rate at which work is done at a hinge will be a
maximum. If B8 and 6 are the incremental changes in angle in bending and twisting



104 AI3—J. HEYMAN

respectively during a displacement in the equilibrium collapse configuration, then the
rate at which work is done is
MB+TO . . . . . . . . . . (30)

For a maximum,
B.8M+6.8T=0 . . . . . . . . (@D

Now the breakdown criterion, equation (29), gives

og og
— —= = R - A
8M.8M+8T.8T 0 (32)

that is,
og
oM (33

og
oT
This flow relationship may be solved simultaneously with the breakdown criterion to
give the moment and torque acting at a hinge during any collapse displacement.
The author (1951) has shown that for a box section, equation (29) becomes

M24-3T2=M;y? P 1))
For the present purposes, the circular breakdown criterion
M24T2=Mz2 . . . . . . . . . (39

will be used for the sake of simplicity. The restriction in no way affects the generality
of the methods proposed for the solution of space frames.
Equation (33) becomes

B M
6T e
which, taken with equation (35), gives
B N
M= VRTE gzM"
R ¥}

T=_\/Bﬁ_2+92MO ]
together with the expression for the work done at the hinge (expression (30))
Plastic work=Myv/B2462 ., . . . . . . (38)

Owing to the non-linearity of the breakdown criterion, it is not possible to set up
exact systems of linear inequalities to be solved by the Dines’ method. However,
approximations may be made to the breakdown criterion itself; for example, equation
(35) could be replaced by the circumscribed octagon

M=:tM0
T=:EMO}........(39)

M+T=4+/2M,

and the moment M and torque T at any section constrained to lie within this yield

domain. ]
As will be shown, simple problems are best solved by a direct method; and the
systems of linear inequalities corresponding to equations (39) become too complicated
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for practical use in the solution of highly redundant structures. For the latter, the
determination of bounds on the collapse load seems to give the quickest results.

- Direct solution

As an example of the direct method, consider the symmetrical two-leg right-angle
bent shown in fig. 14. The ends A and D are encastré against both torque and
moment, and the load P acts at the midpoint B of the leg AC. Suppose failure occurs
by the formation of symmetrical hinges at A and D, so that the point C moves
vertically downward for a small displacement. It is easy to see that By =PBp=~0,=0p
=0, say, so that, from equation (38), the work done in the two hinges is

IMV202 . ... ... .. (40)

Fig. 14
while the work done by the load P is
Pab . . . . . . . . . . . @4
Equating these two expressions, and using the upper bound theorem given above,
po<p=2¥YMo @
a

The frame is, of course, statically determinate in this collapse configuration, and, by
using equations (37) to determine the conditions at the hinges, the forces and moments
shown in fig. 15 are obtained. The yield criterion is exceeded by the greatest amount

1 ; :
at B, where the moment and torque are v2M, and %‘MO respectively, Le.

Mg24Tg2=5M2 . . . . . . . . 43
Hence if the load is reduced by a factor v/2/5, a lower bound will be obtained,
4 M, 4 M,
— <P —
7 g \PC\\/Z - (44)
M,
L A ERT nd
= b 4
Ly, ::’ A ,}' 70
’2’ ar”\‘ 0 :\
... 8 1 /(\\
c l zM

Fig. 15 207
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In order to improve these bounds, a hinge must be inserted at B; but collapse actually
occurs with hinges at all three points A, B and D. At first sight this would appear
to be a mechanism of three independent degrees of freedom. In fact, owing to the
simultaneity of the breakdown and flow criterions (equations (35) and (36)), each
hinge as a whole has only one degree of freedom; since a continuity condition is
required at each hinge, a space frame of the type considered here may collapse with any
number of hinges formed in its members, and an extra hinge may be inserted without
actually increasing the number of degrees of freedom.

The general method for the exact solution of a structure with R redundancies may
be tabulated as follows:

(1) Construct a mechanism with N hinges.

(2) Specify the mechanism in terms of an arbitrary displacement (one degree of
freedom) and [2N—(R+1)] deflection parameters «;.

(3) 2N—R) equilibrium equations may be formulated in terms of the moments

(M) and torques (7;) at the hinges and the applied load.

(4) M; and T; at each hinge may be calculated in terms of the «; from the
breakdown and flow criteria.

(5) The load may be eliminated from the (2N—R) equilibrium equations,
leaving a set of 2N—{R+1}) simultaneous equations for the determination
of the o;.

(6) Having determined the «;, the moments and torques at each hinge may be
calculated, and hence the value of the load. This value is an upper bound
on the collapse load.

(7) If the yield criterion is violated at any point in the structure, a lower bound
may be determined.

(8) If hinges are moved or added to the points where the yield criterion is
violated, the whole process can be repeated.

Following these rules, and inserting hinges at A, B and D, the final exact solution
is found to be

8 M,
_— =2 53—— Y (- %)
=V10 a a “43)

which as a check lies between the previous limits (44).

Bounds on the collapse load

In the method outlined above, it has been tacitly assumed that the theorems on
upper and lower bounds may be extended from plane to space frames; this is in fact
the case, and indeed Drucker, Greenberg and Prager (1950) have shown that the
special theorems may be applied to the problem of the continuum. The general
theorem of an upper bound determined from a non-equilibrium mechanism is also
valid for space frames, and this gives the quickest method for the solution of such
problems.

The advantage of the kinematic method of determining an upper bound on the
collapse load is that no reference is made to equilibrium conditions. Suppose, for

0
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example, the mechanism in fig. 16 (horizontal projection of frame in fig. 14) is specified
by assigning arbitrary deflections to the joints B and C, with hinges occurring at A,
B and D. Then an upper bound may be determined simply by equating the work
done in the hinges to the work done by the load. By trial of various mechanisms,
this bound may be lowered. Alternatively, if, after a trial, the frame is examined
statically, it will be found that it is impossible to satisfy equilibrium conditions, the
total load at B being either lower or in excess of the value of P determined from the
work equation. This implies that an extra (positive or negative) force is required at
B in order to produce the originally assumed collapse configuration. The significance
of this force is best appreciated by an example.

In fig. 16, take 83=205,-=2a, say, since the mechanism may be specified in terms of
one unknown degree of freedom. The following table gives the conditions at the
hinges.

TABLE 1
Hinge B 6 VBRLE Moment Torque
+F (X Mo) (x Mo)
A 2 0-5* l 2062 0-97 0-24
B 2 0-5* 2-062 097 0-24
D 1 0 i 1-:000 1-00 0

The asterisked values were chosen to make the torques equal at A and B, as they
should be; this is an unnecessary restriction, and improves only slightly the value of
the upper bound, and any values of the twist totalling 1-0 could have been used.

The work equation gives
_ P .2a=5124M,

. M,
ie. P. <P=2~567 (46)

The statical analysis of the frame is shown in fig. 17. The number in a circle at the
joint B gives the actual load required to maintain equilibrium, and it appears that a
load of 2:91M,/a is required as against the calculated value 2-56M;/a. Since the
equilibrium load is greater than it should be, it is indicated that the assumed deflection
of the point B was too large; if this deflection is reduced slightly, a better bound should

result. Similarly, a negative load is required at C; the deflection should be increased.

N,

062 , 194 3
0 ? T 0-24 M,
3) {(— 0-97M,
160 M, l 4
097 % lﬂ 24My >
— ,’, 0;@ 1y 1< 097 My
-aJs Ho T
0 97~,
024M, 3 (— ), ?’0

0-24M,
062%

Fig. 17
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In working more complicated examples, it is found that the process of adjusting
deflections at neighbouring joints bears a marked resemblance to a relaxation process,
and that a reduction in the out-of-balance forces at one joint induces increased errors
at the ones adjacent. However, the technique is soon mastered, and the Author
(1950c) solved, with very little labour, a rectangular grid formed by a set of parallel
beams intersecting at right angles another set of 9 beams, loaded transversely at each
of the 81 joints, and requiring 108 hinges in the collapse mechanism.

When it is suspected that the upper bound is fairly good, small adjustments in the
statical analysis will produce an equilibrium system. For example, in fig. 17, if the
torque in CD is increased from O to 0-35M, the other values remaining unchanged, an
equilibrium system results which, however, violates the yield condition at the hinge D
in the ratio 1-06. Hence, using the value in equation (46)

M, M
2-4170<Pc<2-567° R V).

The general procedure for the solution of space frames may be tabulated as
follows:

(1) Insert yield hinges at a large number of points in the frame, producing a
mechanism of many degrees of freedom. The hinges should be placed at
all the sections at which it is suspected actual hinges might occur in the
collapse.

(2) Assign arbitrary (reasonable) deflections to the joints of the grid, and
determine the corresponding changes in angle at each hinge. Equating the
work dissipated in the hinges to the work done by the external loads gives
a value of the load which is in excess of the true collapse load.

(3) Calculate the out-of-balance forces at each joint that are necessary to
produce the assumed deflections. If the out-of-balance force acts in the
same direction as the actual load at a joint, the deflection of that joint was
estimated as too large, and vice versa.

(4) Adjust the deflections, and repeat the whole process.

(5) At any stage, if the out-of-balance forces are small, and it is suspected that
the upper bound is a good estimate of the collapse load, a statical analysis
may be made. Small adjustments are made in the values of the various
shear forces and moments in order to produce an equilibrium system, from
which a lower bound may be determined.

The Author wishes to thank Professors Prager and Drucker of Brown University
for their criticism and encouragement of the work reported in this paper.
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Summary

The preparation of this paper forms part of a general investigation into the
behaviour of rigid frame structures being carried out at the Cambridge Engineering
Laboratory under the direction of Professor J. F. Baker. The paper deals with the
mathematical analysis and design of both plane and space frames, and the ideas are
presented with reference to very simple examples in order to illustrate the techniques
developed. The first part considers methods for the exact determination of conditions
at collapse of rigid ideally plastic plane structures. In the second part it is shown
that inexact methods lead to upper and lower bounds on the collapse loads, and
that these bounds may be made as close as is considered necessary. The various
theorems are applied in the third part to the solution of space frames. -

Résumé

Le présent mémoire rentre dans le cadre d’une investigation générale portant sur
le comportement d’ouvrages en cadres rigides, investigation actuellement en cours
au Cambridge Engineering Laboratory, sous la direction du Professeur J. F. Baker.
L’auteur traite de ’analyse mathématique et du calcul des cadres, tant en plan que
dans I’espace, et son exposé est accompagné d’exemples trés simples, qui illustrent
les procédés adoptés.

La premiére partie se rapporte aux méthodes de détermination exacte des con-
ditions qui se manifestent au rupture des ouvrages plans rigides idéalement plastiques.
Dans la deuxiéme partie, I’auteur montre que des méthodes non rigoureuses permet-
tent de fixer des limites supérieures et inférieures aux charges sous lesquelles les
ouvrages ceédent; ces limites peuvent d’ailleurs recevoir des valeurs aussi étroites qu’il
est jugé nécessaire. Les différents théorémes sont appliqués, dans la troisieme partie,
au calcul de cadres a trois dimensions.

Zusammenfassung

Die Arbeiten zum vorliegenden Aufsatz stellen einen Teil der umfassenden
Untersuchungen iiber das Verhalten steifer Rahmenkonstruktionen dar, die am
Cambridge Engineering Laboratory unter der Leitung von Professor J. F. Baker
durchgefiihrt werden. Der Verfasser behandelt die mathematische Untersuchung
und Bemessung ebener und auch rdumlicher Rahmen und entwickelt seine Ueber-
legungen an Hand sehr einfacher Beispiele, an denen er die gewihlten Verfahren
darlegt. Der erste Teil behandelt Methoden zur genauen Bestimmung der Bruch-
Verhiltnisse steifer, ideal-plastischer ebener Tragwerke. Im zweiten Teil wird gezeigt,
dass durch Naherungsmethoden eine obere und untere Grenze der Bruchlast ermittelt
werden kann und dass diese Grenzwerte so nahe zusammengebracht werden k6nnen,
wie es fiir notwendig erachtet wird. Die verschiedenen Theorien werden im dritten
Teil zur Berechnung rdumlicher Rahmenwerke angewandt.
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Determination of the shape of fixed-ended beams for maximum
economy according to the plastic theory

Détermination de la forme a donner aux poutres encastrées d’aprés
la théorie de la plasticité en vue du maximum d’économie

Bestimmung der wirtSchaftlichsten Querschnittsform eingespannter
Balken nach der Plastizititstheorie

M. R. HORNE, M.A., Ph.D., AM.L.C.E.
Cambridge University

1. INTRODUCTION

In the design of structures according to the plastic theory, the members are so
proportioned that collapse would not occur at a load less than the working load
multiplied by a ‘““load factor.” The plastic theory provides a means of estimating the
collapse loads of ductile structures by considering their behaviour beyond the elastic
limit, It has been shown! that, in the absence of instability, these collapse loads
may be calculated simply by reference to the conditions of equilibrium, without con-
sidering the equations of flexure. Hence the design process is essentially reduced to
the selection of members with plastic moments of resistance sufficient to withstand
the bending moments imposed by the *“factored loads’—that is, by the working loads
multiplied by the load factor.

The direct nature of the design of structures by the plastic theory facilitates the
relative proportioning of the members such that the total weight is an absolute
minimum. A method of proportioning simple structures composed of prismatic
members for minimum weight has already been presented.2 Further economy of
material can, however, be achieved by using members of varying cross-section, and
may be sufficient to compensate for the increased cost of fabrication. It is thus worth
while investigating the maximum saving in material theoretically attainable by this
means. No consideration will be given to the increased cost of manufacture of such
members compared with those of uniform section, since this must depend primarily
on the quantities required; for this reason, it is impossible to arrive at any conclusions
regarding possible overall economies.

1 For references see end of paper.
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The relationship to be assumed between weight per unit length and full plastic
moment of resistance is discussed in 2 below; 3 contains a discussion of a member of
continuously varying section fixed at the ends and supporting a uniformly distributed
load; while the case of a similarly loaded member in which the cross-section is only to
be varied by one or two discrete intervals is discussed in 4.

The term ‘“fixed at the ends” is not here intended to imply complete flexural
rigidity at the supports, but rather that the members to which the beam under con-
sideration is attached are together capable of resisting the full plastic moment of the
end sections of that beam.

2. THE RELATIONSHIP BETWEEN FULL PLASTIC MOMENT AND WEIGHT PER UNIT LENGTH

The full plastic moment of a member (denoted by M) is the moment of resistance
when the whole section is undergoing plastic deformation. If f} is the yield stress,
at which pure plastic deformation can occur, then for a beam of rectangular cross-
section, of width b and depth 24 (see fig. 1),

J
+
L
)

P 7
d Tension /
I R BN 7777 _
1 N
Jd Compressron
| . N
Cross-section |__ 6’ —
Stress distribution
when fully plastic
(a) (6)

Fig. 1. Fully plastic stress distribution for a rectangular beam

M,=bd?, R ¢}

Let the weight per unit length of the beam be w, and let the density of the material
be p. Then

' w=2bdp . . . . . . . . . . @
If b is constant and d varies, then
woeMA . . . . . . . ... ()
If d is constant and 4 varies,
woc M, L | ]
“while if b and d both vary such that b/d remains constant
woeME L. L .. oo (5
Hence, however the section is varied,
w=kM,” . . . . . . . . . . (6)

where k is a constant and $+<<n<<l.
Arguments similar to the above may be applied to sections other than rectangular,
and thus equation (6) gives a general relationship between M, and w. This formula
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isfactory in that it takes no account of the effect of shear forces.
ear forces have little effect on the value of the full plastic moment,?
esisting shear forces will prevent the section of a beam being allowed
the applied bending moment at collapse is zero. Hence it will in
ed that

w=wo+kM," N ¢))

ENDED BEAM OF CONTINUOUSLY VARYING SECTION

7
y ! e l -t
4 Load g/unit |length 4
> 7%,
g ! ,1';
j A \c 8 E
(a)

"

M,TE}V

(6)

Fig. 2. Bending moment distribution for a beam of continuously varying section
(uniformly distributed load)

The beam AB (see fig. 2(a)), of length 2/, is fixed at the ends and carries a uniformly
distributed load at collapse of ¢ per unit length. Let the hogging bending moments
at the ends (M, and M) be assumed equal at collapse, and let M denote the sagging
bending moment at the centre. Let M, be the central bending moment which would
be induced in a similar simply supported beam. The bending moment distribution
at collapse in the fixed-ended beam may be obtained by superimposing on a parabolic
bending moment diagram acb of height M, (fig. 2(b)) the bending moment distribution
aa’b’a due to the terminal moments M4 and M , giving the resultant shaded area.

Let s denote the distance of the points of contraflexure from the centre of length of
the beam.

12 A
Then M’:-“],)—
j2—g2
Ma=My=—7"M, { ®)
SZ
MC—I_ZM,

C.R.—8
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If x denotes the distance of any section from the centre of length of
then the minimum full plastic moment at that section becomes

§2—x2
when 0<<x<Js, M,=——M,

/2

x2—gs2

M J

Hence if W denotes the weight of the beam,

when s<<x<l/, M,=

s !
Mn S
W=2wyl+ 2kIT:’[J (52_A‘z)"dx+_{(.\‘2—Sz)”dx}
The most economical design will be obtained with that value of s for which
minimum, i.e. putting dW/ds=0, when
s !
J.(sz—xz)"" 'd.\‘:J (x2—s2)"-1dx

If M,” and W’ denote the full plastic moment and weight respectively of the least
prismatic beam sufficient to carry the load, then

M! d
Y ¢ 1) I
2
' ’ Mn
W"=2w01+2k(—2—')1 N ¢ k)|

When #=0-5, the most economical value of s is given by
S T
7= sech §=0-3986
The corresponding minimum weight is |
W=2wol+0-9172kM 3]
while W'=2wyl+ 14142k M1

The percentage saving of material depends on the ratio of wy to kM,:.  If the require-
ments of resistance to shear are ignored (wy=0), an economy of up to 3519 of the
weight of the uniform beam can be achieved. When the effect of shear is allowed for,
the percentage economy will become less.

When n=1-0, the economical value of s is 5//=0-5,

whence W=2wyl+0-5kM,
while W' =2wyl+kM,l

In this case therefore a maximum economy (ignoring shear) of 509, is possible.
When $<<n<<l, it may be shown from equation (11) that the most economical -
value of s is given approximately by the formula

/ 3\1-"{1—n
§=2+1'2467(§) (1-{-)1)' « = 5 % 5 o« (14)

Values of s// for various values of n are given in Table I.
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TABLEI

n s/l

0-5000
0-4835
0-4651
0-4447
04226
0-3986

eeeee
AUV S

Points of contraflexure for beam of continuously varying
section carrying a uniform load (see fig. 2)

Although for any given value of » the maximum economy is only achieved for
some definite value of s, the loss in economy is negligible if 5//=0-45. This is demon-
strated in fig. 3, which shows the percentage economies achieved (assuming wy=0)
with various values of s/ for n=0-5 and n=1-0.

=045

S0

'\

Percenlage saving
'e
T

3
T

7} 1 1 L 1 J
a a2 04 a6 g-8 70

Value of 75—

§ = Distance of points of contraflexure from centre
(see fig.2)

Fig. 3. Econcmies achieved by continuously varying the section of a fixed-ended beam
(uniformly distributed load)

4. FIXED-END{D BEAM WITH DISCRETE VARIATIONS IN SECTION

Due to the practical difficulties of varying the section of a beam continuously as
envisaged above, it is worth while investigating the economies which can be achieved
when the full plastic moment is increased by discrete amounts (a) at the centre only,
(b) at the ends only and (c) at both centre and ends.

Since the full plastic moment of resistance is nowhere reduced to zero, there will
in general be no need to allow for the effects of shear on the relationship between w
and M, (equation (7)). In the following analysis it is therefore assumed that wy=0.
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(a) Section increased over a central length only

Let the beam previously considered have a uniform value of M, denoted by M,
except over a central length 2a, where it is reinforced so that M,=M, where M,>M,
(see fig. 4(a)). The bending moments at collapse are shown by the shaded area in

SN
AN
R AN

o cl i

(6)

Fig. 4. Bending moment distribution for a beam reinforced at centre only
(uniformly distributed load)

fig. 4(b), while the moments of resistance M, and M, are indicated by dotted lines,
which must completely enclose the bending moment diagram. Hence

12_S2
M1=MA=MB= 12 M, W ] # ¥ . . . (15)
Sz
My=Mc=pM, . . . . . . . . . . . (16

The value of a is obtained by noting that where the beam changes section, the sagging
moment is equal to M, and hence

M’=TM’ « @ s 3 s m s m LL7)
It follows from equations (15) and (16) that
| M +M,=M, . R ¢ £
while from equations (15) and (17), putting M,/M,=r,
a

The total weight W of the beam is given by
W=2kM,"(I—a)+2kM;"a . . . . . . . (20)
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It may be shown from equations (18), (19) and (20) that

When W has its

W=2kM/ "I[r'"1—V1=2r)+1—=r)"v1—2r]
minimum value,
( r )‘—"_n\/m‘—{-(%r—n—i—r)

1—r 1—Q2nr—n+r)
TaABLE II

n r=M,/M, afl
1-0 0-4444 0-3333
09 0-4432 0-3371
0-8 0-4418 0-3412
0-7 0-4403 . 0-3456
0-6 0-4388 0-3500
05 0-4370 0-:3550

Plastic moment ratio and proportion of beam to be reinforced

for beam reinforced at centre only (see fig. 4)
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@1

(22)

The most economical values of r and a// are given in Table II for values of n

between 0:5 and 1:0.

It may be noted that r represents the ratio of M,, the full

plastic moment of the unreinforced part of the beam, to M,, the full plastic moment
of the uniform simply supported beam which would just carry the same load. Hence

r will be termed the *‘ plastic moment ratio.”

It will be seen that r and a/! (the propor-

tion of the beam to be reinforced) are almost constant, r varying from 0-4444 to
0-4370 and a/! from 0-3333 to 0-3550. As a working rule therefore the beam should
be reinforced for about one-third of its length, the reinforced section having a full

plastic moment

Percentage saving

Fig. 5.

some 259, or 309, greater than the unreinforced section.

40
30
20
roL
a 1 1 1
0 a7 02 03 o4 a5 g6
Valve of -ﬁl?-
23 = Length of 6elam reinforced at cenfre
‘ (see fig. 4)
Economies achieved by reinforcing the centre of a fixed-ended beam

(uniformly distributed load)
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The variation of the percentage saving (as compared with a beam of uniform section
throughout) with a// for n=0-5 and n=1:0is shown in fig. 5. It will be observed that
if more than about half of the beam is reinforced, there is no saving in material.
When n=0-5, the maximum saving possible is 2-03 % as compared with a saving of
35-1% when the section is varied continuously in an ideal manner. When n=1-0,
the corresponding figures are 3-70 9 and 50-0 % respectively. It is therefore apparent
that no great advantage accrues by increasing the section only at the centre.

4 g
' 777 7
l‘— g —at
(a)
T
Full plastic moments | :
1

(3) -

Fig. 6. Bendinhg moment distribution for a beam reinforced at ends only
(uniformly distributed load)

(b) Section increased at ends only

A beam of uniform plastic moment of resistance M is reinforced for a distance a
from either end so that its plastic moment of resistance becomes M, (see fig. 6(a)).
The bending moment distribution at collapse is shown by the shaded area in fig. 6(b),
while the moments of resistance are superimposed as dotted lines. If full plastic
moments are just sufficient to withstand the applied moments, then

52
Ml:MC:I_zM! . . . . . . . . . . . . (23)
[2—g2
M2=MA=MB=TMI 5 . N . = . . N (24)
Since where the beam changes section the hogging moment has the value M,
(l—a)2—s2
M1="'T' M( e e e e e e e (25)

From eqﬁations (23) and (24),
M +M,=M,. . . . . . . . . . . . . (20
while from equations (23) and (25), if M,/M,=r, .

‘.l‘=1_\/27 N )|
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The total weight W of the beam is given by
W=2kM,"(I—a)+

2kM2"a

which, by virtue of equations (26) and (27) becomes

W=2kMI[r"V2r+
At minimum W,
@n+1)r

r

(1—=r)"(1—=420)]

1—n
(ﬁ) =(1 —2nr—r+nV2r)

TaBLE 111
l
n r=M,|M; | all

1-0 0-2946 0-2324
09 0-2866 0-2429
0-8 0-2777 0-2548
0-7 0-2680 0-2679
0-6 0-2571 0-2829
05 0-2449 0-3001

Plastic moment ratio and proportion of beam to be reinforced for beam reinforced

at ends only (see fig. 6)
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(28)

(29)

(30)

The most economical values of » and a/! are given in Table III for values of n
from 0'5 to 1-0. The value of r(=M;/(M+ M,)) varies from 0-2946 to 0-2449, and
hence the reinforced section has a full plastic moment from 1409, to 208 9%, greater

than the unreinforced section. The value of a/l varies from 0-2324 to 0-3001.

A

satisfactory working rule would therefore be to reinforce an eighth of the length of

the beam at either end.

25 _
0 |- n=rg
%5
n=g
? i
8 b/
W
®
N 5k
g ] 1 \ ) .
g ol g2 23 a4 05
Valve of lii

d = length of beam reinforced al either end

(see fig. &)

Fig. 7. Economies achieved by reinforcing the ends of a fixed-ended beam

(uniformly distributed load)
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The variation of the percentage saving (compared with a uniform beam) as a/l
is altered is shown in fig. 7 for n=0-5 and n=1-0. It will be seen that by taking
af/l=0-25 there is very little loss in economy in either case. When »=0-5 the maxi-
mum saving possible is 14-1 % and for n=1-0itis 22-0%,. These figures compare with
the ideally attainable economies of 35-1% and 50-0 9, respectively.

The economy practically attainable by reinforcing the ends alone is therefore quite
appreciable. It should be noted, however, that the surrounding members must
provide a total moment of resistance equal to the full plastic moment of the reinforced
part of the beam, and this may sometimes be a serious disadvantage.

NN NNNS

L Ly

Full plastic moments

b—2 S

|
A
Lot T A I
: ! Bending |moments || ] P M
: Aol ! !
I I !
! L | [ ' M
' .
|

e nek i BERNNERN|
l«—b —-—--—b—-{
(%)

Fig. 8. Bending moment distribution for a beam reinforced at both centre and ends
(uniformly distributed load)

(c) Section increased at both centre and ends

The advantage obtained by reinforcing both centre and ends may be estimated
by considering the beam shown in fig. 8(a). This is reinforced for a distance a either
side of the centre and at each end for a distance (/—b). The bending moment
diagram, shown shaded in fig. 8(b), is completely enclosed by the graph of the full
plastic moments (shown dotted). The unreinforced section has a moment of resistance
M, the ends a moment of resistance M, and the centre a moment of resistance Mj.

a2

Hence M3—M1=l—2M, g 1 o % % & w ¢ = % (31)
b2
M3+M1=ﬁM, wom omom 8B ® o4 # 4 L)

M2+M3=M; . . . . . . - - - - - (33)
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Solving for M, M, and M;,

b2___a2
Ml:TM‘ O 1Y)
212—qg2—p2
M2=—2[2—M, (35)
a’+5b2
M3=TM‘ O 1))
The total mass of the beam thus becomes
Mﬂ
W=2"-"nj— [a(a2+b2)"+ (b—a)(b2—a?)"+(I—-b)(212—a2—b2)"] . (37)

lzn
When W has its minimum value, ¢ W/da=0 and ¢W/cb=0.
When n=1-0 the above conditions give 3a>—al=0 and 3b2—b/—12=0,

whence - (—;=%=0-3333
b_1+VIE_ e

The moment of resistance is 171-8 %, greater than that of the unreinforced beam at the
ends, and 46-5 9%, greater at the centre. The saving is 25-7 %, compared with 22-0%,
with end reinforcement only and 3-7 9] with central reinforcement only.

When n=0:-5, it is found that

ab (b—a)(a+2b) 2P2+Ib—a?—2b2
Vath ' Vb—az  Vil—a-b2
2a2+b2  (b—a)(2a+b) a(l-b)
Vartb:  Vbh—a2  V2l—ai—b? .
These equations give a/l=0-3185 and b//=0-7074. The moments of resistance at the
ends and centre are respectively 250-59, and 50-9 %, greater than that of the unrein-

forced beam. The saving is 161 9%, compared with 14-1 9%, with end reinforcement

only and 2-0 % with central reinforcement only.
Hence the percentage saving with both central and end reinforcement is very little

greater than the saving with end reinforcement only.

5. CONCLUSIONS

It has been shown that the adoption of beams of varying cross-section can lead to
considerable economies in total material consumption when the basis of design is the
ultimate load which the beam will carry as calculated by the simple plastic theory, The
best shape for the beams has been calculated for the case of a fixed-ended beam carry-
ing a uniformly distributed load, the minimum cross-sections occurring at about one-
fifth the length of the beam from the centre. The maximum theoretical economies
are of the order 35-50%.

Since the construction of a beam of continuously varying cross-section may have
considerable practical disadvantages, an investigation has been made into the effect
of reinforcing either the centre or the ends of the beam, or both centre and ends
simultaneously. It has been shown that there is only a negligible advantage in
reinforcing the centre, but that reinforcing the ends does lead to appreciable
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economies. The economy achieved by reinforcing both centre and ends is virtually
no greater than that achieved by reinforcing the ends alone.
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Summary
The simple plastic theory gives a direct means of determining the form of a fixed-
ended beam of varying cross-section such that the total weight of material shall be an
absolute minimum. The paper shows how this form may be deduced for a uniformly
distributed load, both when the cross-section of the beam can be varied comntinuously,
and when the size of the beam can only be adjusted in discrete intervals. The maxi-
mum theoretically attainable economies of material are discussed.

Résumé

La théorie simple de la plasticité fournit un moyen direct pour déterminer la forme
a donner 4 une poutre encastrée a ses extrémités et présentant une section non
uniforme, pour que le poids total de métal employé constitue un minimum absolu.
L’auteur montre comment I’on peut déterminer une telle forme dans le cas d’une
charge uniformément répartie, aussi bien lorsque la section de la poutre peut varier
d’une maniere continue que lorsque ses dimensions effectives ne peuvent étre choisies
que dans des intervalles déterminés. Il discute I’économie maximum de métal que
I’on peut régliser du point de vue théorique.

Zusammenfassung

Die einfache Plastizitdtstheorie erlaubt uns die direkte Bestlmmung derjenigen
Form eines eingespannten Balkens mit verdnderlichem Querschnitt, bei der das
Gesamtgewicht des Materials ein absolutes Minimum sein soll. Der Aufsatz zeigt
die Ermittlung dieser Form bei gleichmaéssig verteilter Belastung, einerseits, wenn der
Querschnitt des Balkens stetig verdnderlich ausgefiihrt werden kann und andererseits,
wenn seine Abmessungen nur in bestimmten Abstufungen verindert werden konnen.
Die hochste theoretisch mogliche Ausniitzung des Materials wird untersucht.
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Sur la plastification de flexion des poutres a ame pleine en acier doux

(Récents essais francais—Examen critique des essais antérieurs—Questions
restant a résoudre)

Plastification of bending plate-web girders in mild steel

(Recent French tests—Ceritical study of previous tests— Problems still to be solved)

Plastifizierung der Vollwand-Biegetriger aus Flusstahl
(Neue franzosische Versuche—KTritische Betrachtung der fritheren Versuche—
Noch zu l6sende Aufgaben)

A. LAZARD

Ingénieur en Chef des Ponts et Chaussées
Chef des Divisions Centrales des Ouvrages d’Art et des Ftudes d’Aménagements de la S.N.C.F.

INTRODUCTION

Les recherches sur la plastification de flexion des poutres a 4me pleine en acier
doux de construction doivent conduire a une économie de métal et a une économie
d’argent. Cela s’obtiendra par relevement des contraintes maxima autorisées par les
réglements officiels, basés presque tous sur ’ancienne conception de 1’élasticité, en
sollicitant soit certaines dérogations, soit des modifications permanentes a ces régle-
ments. Iln’yaespoir d’aboutir que si le dossier présenté aux Organismes responsables
des Grandes Administrations est basé sur des faits indiscutables, résultats d’expériences
nombreuses et probantes, et si les limites d’utilisation des dérogations solhc1tees ou
des nouvelles prescriptions proposees sont bien précisées.

Or a la suite d’importantes expériences de flexion effectuées sur poutrelles Grey de
1 meétre de hauteur (c’est-a-dire sur les plus grands laminés du monde) qui nous a
permis d’entrevoir quantité de phénomenes de plastification peu ou mal connus, il
nous est apparu, en procédant & un examen critique général des théories et des
expériences existantes, que les généralisations étaient souvent hatives, qu’il existait un
nombre considérable de questions non posées ou restées sans réponse, que, malgré
des tentatives isolées dans ce sens, les limites d’utilisation des nouvelles méthodes
n’étaient pas suffisamment précisées, et, qu'en définitive, il fallait procéder a un
nouvel examen du probléme en opérant avec beaucoup d’ordre.
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Pour notre part nous avons mis en train, avec la collaboration de la Chambre
Syndicale des Constructeurs Métalliques Frangais, des séries d’expériences dans le
domaine fort vaste, quoique trés restrictif, des

laminés I ou H

bruts *

de longueur dépassant 6 fois la hauteur
sollicités a la flexion

statiquement

et isostatiquement

jusqu’a ruine.

Le chapitre I de la présente communication est consacré a une description rapide
des expériences déja réalisées et au développement des conclusions auxquelles on est
conduit, en insistant sur les points qui appellent des expériences de contrdle par
‘d’autres chercheurs.

Compte tenu de ces conclusions, les autres essais connus de nous} sont examinés
et discutés au chapitre II, en suivant la classification qui a paru la plus adéquate.
Chaque fois nous nous sommes basés sur la description détaillée des circonstances
expérimentales: malheureusement les détails font souvent défaut.

Les conclusions d’ensemble sont développées au chapitre III. On insiste sur les
lacunes des recherches actuelles. On propose d’établir un programme général des
expériences a reprendre ou restant a faire, dont on souhaite un partage entre les
. membres de I’Association.

CHAPITRE I—LES RECENTS ESSAIS FRANCAIS SUR LA PLASTIFICATION EN FLEXION
STATIQUE ET ISOSTATIQUE DE LAMINES I ou H BRUTS

On décrira quatre séries d’essais qui tous ont été poussés jusqu’a la ruine.

lére Série: Poutrelles H de 1 métre de hauteur

Ces essais, exécutés pour le compte de la S.N.C.F. en 194849, ont été décrits en
détail par nous, dans le Xéme Volume des Mémoires de ’A.I.P.C., et ont fait I’objet
d’un léger complément théorique dans Travaux, numéro de mai 1950. Ils sont
schématisés figs. 1 et 2.

Ils ont clairement mis en évidence les faits suivants:

(a) Les premiers signes de plastification sont apparus bien avant que les contraintes
a la Navier (quotient du Moment M par le module de résistance de la section I/v
ou W), aient atteint la limite élastique conventionnelle du métal (a 2 9, ) déterminée sur
une éprouvette prélevée dans une semelle d’'un about. L’apparition de la plastification
dépend essentiellement des appareils de mesure utilisés pour la déceler et du critére
choisi pour la définir. Elle semble débuter dans la semelle tendue.

Il apparait que la notion de *“ Moment Elastique” (ou produit de la limite élastique
par le module de résistance), souvent utilisée par les théoriciens, ne correspond a

* (Cest-a-dire sans trous. Nous mettons en route, a I’époque a laquelle nous rédigeons la présente
communication—juin 1951—une nouvelle série, avec trous cette fois. Nous espérons pouvoir en
rendre compte a 1’époque du Congres.

1 Il ne nous a pas toujours été possible de nous procurer tous les articles originaux. Compte tenu
du nombre limité de pages dont nous pouvions disposer dans la présente communication, nous ne
donnons qu'un apergu des expériences. Un texte détaillé paraitra dans Travaux, numéros de
novembre et décembre 1951.
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aucun phénomeéne physique réel.* Pour cette valeur la poutrelle est déja partiellement
plastifiée. Cela parait étre sous la dépendance des contraintes préalables, enfermées
dans la poutre par les traitements: chimique, physique, mécanique, subis antérieu-
rement (et que le prélevement de I’éprouvette libere partiellement).

(b) La plastification est un phénoméne essentiellement discontinu. Elle se produit
en des points trés variables et diversement localisés. Ces points se mettent brusque-
ment a fluer, la limite d’écoulement ayant été localement atteinte; les points voisins

* En réalité c’est la limite du domaine de proportionnalité de la poutrelle qu’on a déterminé. 1l

faudrait donc la comparer a la limite de proportionnalité¢ du métal. A supposer que cette:limite
ait un sens pour le métal in situ (état contraint) et soit une constante en tous les points.
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modifient leur progression de déformation, dans des proportions fort variables, allant
d’un simple ralentissement 4 une régression. * '

Les charges augmentant, la plastification se propage graduellement, par a coups,
en intéressant des zones de plus en plus considérables. Il ne se passe rien de spécial
dans les zones tendues; au contraire dans les zones comprimées on finit par parvenir
a des flambements locaux dme ou semelle qui entrainent la ruine de la poutrelle.

(¢) L’hypothése de Bernoulli sur la conservation des sections planes (ou sur la
proportionnalité des déformations aux distances de la fibre neutre) devient de plus
en plus inexacte, au fur et & mesure que la plastification progresse.

(d) Dans les zones tendues apparaissent des lignes de glissement, dans les zones -
comprimées des rides de glissement, selon la terminologie du professeur Baes (voir
fig. 2).7 Lignes et rides n’apparaissent que dans des zones fortement plastifiées.
Leur progression permet d’évaluer grossi¢rement, et probablement avec un certain
retard, la progression de la plastification.

(e) On est amené a en déduire I’existence de contraintes de compression agissant
sur les facettes longitudinales.

Dans I’dme c’est une consequence de l'effet de courbure de la poutre. Dans les
semelles on voit mal & quoi cela correspond.

(f) Les dispositions ayant été prises pour empécher I’apparition de tous les phéno-
menes d’instabilité élastiques (déversement, flambements élastiques locaux) et dans
une certaine mesure les flambements plastiques locaux la ruine des poutrelles est
intervenue par plastification quasi totale. La “contrainte a la Navier’ lors de la
ruine plastique a certainement dépassé 30 kg./mm.2

2éme Série: IPN de 200 et 300 et HPN de 550

Ces essais, exécutés pour le compte de la Chambre Syndicale des Constructeurs
M¢étalliques en septembre-octobre 1949, ont été décrits, en détails par M. Dawance
lors d’une conférence faite a Paris le 13 décembre 1949, suivie d’une intéressante
discussion (voir fig. 3).

Les prélevements d’éprouvettes ont montré que les limites élastiques dans les Ames
sont plus €levées que celles des semelles. C’est 1a d’ailleurs un phénomeéne tout a fait
général.

Les essais ont sensiblement confirmé les conclusions de nos propres essais.

3éme Série: Mdts encastrés en poutrelles HN de 180 et 260

Ces essais ont été exécutés en 1950, sur des chantiers de la S.N.C.F., a ’occasion
de recherches sur les poteaux supports de caténaires des futures électrifications.

Les essais de Marolles (5 septembre 1950) ol des poutrelles HN de 180 étaient
profondément encastrées dans un important massif de béton sont représentés a la
fig. 4.

3 poutrelles ont été essayées avec efforts dans le plan de I’ame seule (fig. 4(b)).
Toutes trois ont été ruinées pour une contrainte a la Navier de 35,2 kg./mm.2 calculée
a la base de ’encastrement.

* Cette régression (a laquelle nous avons donné le nom de “bec d’oiseau’ quand elle apparait
similairement dans le béton tendu au moment de la fissuration) a été également observé par M. Soete,
professeur & Gand, dans des essais de traction sur éprouvettes soudées. Elle semble correspondre
aux phénomeénes obscrvcs en rayons X, par les Allemands. Toutefois Schleicher (par exemple
Bauingenieur, juillet 1950) pretend qu’on mesure par ce procédé les contraintes vraies.

1 Ces phénomenes ont déja été notés, mais avec beaucoup de prudence, par le prof. Kayser.
Congrés de Berlin, Rapport final, 1938, p. 557, et Stahlbau, 26.2.1937.

t Annales de I Institut du Bdtiment et Travaux Publics, mai 1950. Construction Métallique No. 6:
**Nouvelles recherches expérimentales sur la plasticité des éléments de construction métallique.”
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Nous avons pu suivre avec précision le phénomeéne de ruine plastique sur 'une
d’elles. Malgré les précautions prises I’effort n’était pas rigoureusement exercé dans
le plan de I’ame et la poutrelle avait un aspect 1égérement vrillé. Brusquement, au
moment ou I’effort de traction dans le cdble atteignait 1 300 kg. (mesuré au dynamo-
métre), correspondant & un moment a ’encastrement de 14 940 kgm. et une contrainte
a la Navier de 35,15 kg./mm.2, nous avons vu sur une des ailes de la semelle tendue se
propager vers le bas, et & partir d’une hauteur d’environ 60 cm. au-dessus du sol,

"comme une sorte de vibration de plastification; le vrillage a disparu et la poutrelle est
alors venue, sans résistance, a la demande du cible. Compte tenu de la rapide dé-
croissance du moment en fonction de la hauteur, la contrainte a4 la Navier, dans la
zone d’ou est parti I’ébranlement plastique de ruine, atteignait environ 32 kg./mm.2
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Dés qu’on arrétait I’enroulement du cable sur le treuil, les poutrelles cessaient de
se déformer. Nous avons alors déchargé complétement (les poutrelles gardant une
déformation importante) puis rechargé. A partir de cette déformation résiduelle, les
poutrelles se sont comportées sensiblement comme des poutrelles neuves et élastiques
tant que la charge n’a pas atteint une valeur trés peu inférieure a celle ayant provoqué
la ruine plastique; la poutrelle s’est remise alors a se déformer exagérément au simple
appel du céble.

Ces essais complémentaires ont donc montré clairement (contrairement a une’
opinion répandue) qu’une poutrelle peut avoir été amenée a la plastification totale
et étre réutilisée dans certaines limites a partir de la déformation permanente acquise.
Il n’y a ruine définitive que si la sollicitation est maintenue en permanence: si la
sollicitation cesse la poutrelle peut étre récupérée dans une certaine mesure.*

Une autre poutrelle a été essayée a la flexion déviée (fig. 4(c)). La ruine plastique
est intervenue pour une valeur des efforts correspondant a une contrainte a la Navier
a I’encastrement de l’aile de la membrure la plus comprimée égale a 33,3 kg./mm.2

D’autres essais ont eu lieu a Vigneux avec des HN de 260 enfoncées de 3 m. dans
un massif de béton de 55 cm. de diamétre et de 3 m. de profondeur.

Ils ont manifesté des phénoménes d’instabilité élastique qui sont susceptibles de
se produire chaque fois qu’on ne prend pas les précautions nécessaires pour les rendre
impossibles.

4¢éme Série: IPN de 200: Sollicitations cycliques

Ces essais ont été exécutés, conjointement par la S.N.C.F. et la Chambre Syndicale
des Constructeurs Métalliques en 1950 et 1951, par M. Dawance et son équipe de
collaborateurs habituels.

Les trongons de 2,20 m. des poutrelles IPN 200 ont été extraits dans des barres
de 7 m. provenant des parcs de la SN.C.F. Les éprouvettes ont été prélevées dans
des sections d’essai repérées en bout de chaque trongon: deux dans les 4mes, une dans
chaque semelle (voir fig. 5). Le tableau suivant donne les limites élastiques con-
ventionnelles (en kg./mm.2) des sections d’essai.

Poutrelles des: lére sous-série | 2éme sous-série 3éme sous-série
Sections d’essais: A ! C B 1 2 3 4 5 6
Semelles {hautes . ! 24,7 29 28,3 26,9 26,1 26,7 26,6 26,9 27,7
basses 27 28,3 28,3 26,6 25,4 249 26 25,9 24,2
Ames {hautcs . . 29,2 33,8 29,6 26,8 27,9 27,8 28 28,2 29
basses . .| 30 34,8 32,0 27,8 28,4 29,9 30,2 29,4 28,8

On notera une trés notable dispersion des résultats le long d’une méme fibre du méral
ainsi que des valeurs plus €levées dans les 4mes que dans les semelles.

Ces essais ont eu pour but de rechercher I'influence de la répétition de cycles de
sollicitations sur les phénomenes de plastification et notamment de déterminer la
valeur des cycles a partir desquels les déformations permanentes ne se stabiliseraient
plus.

On craignait, en particulier, que la ruine plastique intervint, dans ces conditions,

* Dix ans plus tot nous avions regu I'ordre de mettre 2 la ferraille la charpente d’un pont détruit

par faits de guerre, dont nous avions proposé la réutilisation partielle. C’est la raison qui nous a
poussé & procéder a cette contre épreuve.
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bien avant celle qui aurait été observee en suivant le processus des trois premieres
séries d’essais.

Premiére sous-série: Sollicitations ondulées*—Cycles 4 & +n kg.[mm.2(fig. 6) (Poutres I
et 11, 1lI)—essais des 17 et 23 mai, du 21 juin et du 7 juillet 1950

Les contraintes a la Navier variaient, dans chaque cycle, entre 4 et +» kg./mm.2
La valeur supérieure n du cycle n’était augmentée que lorsque la stabilisation des
fieches était obtenue. Deux poutrelles (I et II de la fig. 5) ont été essayées dans ces
conditions.

On a pu tirer les conclusions suivantes:

1° La répétition de cycles de sollicitations ondulées ne modifie pas la valeur du
moment entrainant la ruine plastigue. La ruine plastique correspond pour une
poutrelle sollicitée statiquement, dans des conditions de flexion déterminées, a un
phénomene bien caractérisé qui est indépendant du processus d’application des charges.

2° On peut ‘“accommoder élastiquement’ une poutrelle, une fois la déformation
permanente acquise. On peut, ce faisant, dépasser, en contrainte & la Navier, la
limite élastique conventionnelle.

Nous en avons congu la possibilité d’utiliser en flexion des poutrelles brutes bien
au dela des limites actuellement tolérées par les réglements, en procédant a une
prédéformation volontaire des poutrelles, sous une contrainte légérement supérieure
aux contraintes maxima d’utilisation.

Mais avant de mettre en application un tel procédé qui peut, naturellement, étre
conjugué avec un enrobement par du béton de la semelle tendue et déformée, en vue
de précontraindre ce béton lorsqu’on retire les charges (les déformations sont, en
particulier, trés réduites et ne limitent plus ’utilisation des hautes contraintes), i/ faut
s’assurer que I’accommodation élastique, ainsi acquise, se conserve dans le temps.

Des essais sont nécessaires pour le vérifier.

Deuxiéme sous-série: Sollicitations alternées—Cycles 10 kg.[mm.2 a +n kg./[mm.2
(fig. 1(a)), 20 kg.[mm.2 a +n kg.[mm.2 (fig. 71(b))

Les résultats confirment sensiblement les conclusions de la premiére sous-série;
la ruine n’a pas été avancée par les sollicitations alternées et elle est intervenue
pratiquement pour les mémes valeurs de la contrainte a la Navier que dans les essais
sans répétitions cycliques.

Troisiéme sous-série: Sollicitations oscillantes—Cycles entre plus et moins n kg.[mm.2

(fig. 8)

L’essai a montré:
(@) que la stabilisation était assez rapidement acquise;T

* Nous adoptons ici la Terminologie que met au point actuellement une sous-commission de

I’A.F.N.O.R., présidée par M. Prot:
Une sollicitation périodique est ondulée lorsque les forces varient entre deux limites de méme

signe.
Une sollicitation périodique est alternée lorsque les forces varient entre deux limites ayant

des signes opposés.
Une sollicitation DCFIOquuC est oscillante lorsque les forces varient entre deux limites ayant

des signes opposés et une méme valeur absolue.
Une sollicitation périodique est répétée lorsque les forces varient entre zéro et une limite.
1 Toutefois le nombre de répétitions (20) n’a peut-étre pas toujours été suffisant. La fleche
pouvait paraitre stabilisée puis brusquement, par exemple & la quinziéme répétition, s’accroitre a
nouveau. .

C.R.—9
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(b) que les cycles d’hystérésis devenaient de plus en plus marqués, la diagonale
s’inclinant de plus en plus sur I’horizontale;

(¢) que l'effet Bauschinger jouait a plein, c’est-a-dire que les déchargements
étaient & peu prés linéaires, mais que les rechargements (dans un seas ou
dans I’autre) montraient au contraire une courbure prononcée;

(d) qu’enfin la ruine est intervenue sensiblement pour la méme contrainte a la
Navier que dans les essais précédents.

Quatriéme sous-série: Poutrelles A et D—Essais des 9 et 11 mai 1951 (fig. 9)

Nous nous sommes posé la question suivante: reste-t-il quelques traces, décelables,
d’une plastification plus ou moins totale d’une poutrelle? 1l est bien certain, en effet,
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que lorsqu’une poutrelle est livrée par les forges elle a subi, au cours de son élaboration
tant chimique que thermique que mécanique, d’innombrables plastifications. Or le
controle consiste & mesurer les caractéristiques mécaniques d’une éprouvette prélevée
dans le métal; si elles sont satisfaisantes on utilise la poutrelle dans les limites régle-
“mentaires. Comment distinguera-t-on une poutrelle ““vierge” d’une poutrelle plus
ou moins “‘outrageusement plastifiée” qui, aprés redressement, aura été remise sur
parc. :
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apres ruine 3 +31 (voir £g. 78)

A cet effet nous avons demandé qu’on soumette a nouveau a des essais de flexion,
jusqu’a des contraintes de 15 kg./mm.2, la poutrelle A de la 2éme sous-série et la
poutrelle D de la 3¢me sous-série qui toutes deux avaient €té plastifiées jusqu’a la ruine
dans des cycles Bauschinger (contraintes positives et négatives).

Selon le sens dans lequel I’effort serait appliqué on pouvait penser que ces poutrelles
se comporteraient élastiquement ou manifesteraient la courbure caractérisque de
’effet Bauschinger, sous réserve que le temps n’ait pas modifié les propriétées acquises.
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Les essais ont eu lieu le 9 mai 1951. Les poutrelles étaient au repos depuis 2 mois
4 pour A et 1 mois 2 jours pour D. Ils sont schématisés par les fig. 9(a) pour des
essais sous + ou —15 kg./mm.2 et fig. 9(b) pour des essais sous + ou —24 kg./mm.2
Il semble qu’on puisse conclure de ces deux essais (qui méritent d’étre renouvelés):

1° qu’aprés un repos de plusieurs semaines* des poutrelles méme séveérement
plastifiées (et tordues) ont récupéré leurs qualités élastiques (fig. 9(a)): les
phénomeénes de plastification ne se manifestent 3 nouveau que sous des
sollicitations importantes voisines de la limite élastique (fig. 9(b)).

2° il n’existe pas de moyen de déterminer les plastifications antérieures}: au
vrai cela devient sans intérét a cause du 1° ci-dessus.

Tous ces essais nous conduisent a conclure comme suit;

CONCLUSIONS DU CHAPITRE I

(1) A la précision des essais et compte tenu de I’extréme dispersion des carac-
téristiques mécaniques du métal on peut dire que le moment produisant la ruine
plastique d’une poutrelle brute sollicitée statiquement et isostatiquement est une
donnée physique indépendante du processus de chargement (chargement continu,
chargement par paliers avec déchargements, sollicitations cycliques: ondulées,
répétées, alternées ou oscillantes).

(2) Si 'on supprime I’application des charges dés que se produit la ruine, la
poutrelle est encore réutilisable élastiquement dans un domaine fort étendu qui parait
dépasser largement le domaine des contraintes réglementaires généralement admises.
Le temps semble jouer, a ce sujet, un réle trés important, et encore mal défini.

(3) Le moment de ruine plastique est plus ¢levé, de plusieurs pour cent, que celui
qui est déterminé par ’hypothése du matériau idéalement plastique, la limite élastique
étant déterminée sur une éprouvette de traction prélevée dans une semelle.

(4) Les contraintes préalables ne jouent aucun role dans la valeur du moment de
ruine, car leur moment est nul (systéme en équilibre). Par contre elles interviennent
certainement dans le déclanchement local des premiéres déformations plastiques. A
ce sujet la considération du “moment élastique” est pratiquement dénuée de sens.

(5) Il semble qu’on puisse utiliser les poutrelles brutes a des contraintes trés
élevées, si I’on prend bien soin d’éviter les phénomenes de déversement et de flambe-
ment locaux des zones comprimées (dme et semelle). Les dispositions a prendre
doivent varier d’ailleurs avec le profil des laminés; ces phénoménes perturbateurs sont
d’autant plus a craindre que le laminé est plus haut ou plus gréle.

(6) La prédéformation volontaire en vue d’obtenir 'accommodation élastique,
-permet le relévement des contraintes.

La question n’est, toutefois, pas encore complétement résolue.

CHAPITRE II—AUTRES ESSAIS SUR LA PLASTIFICATION EN FLEXION DES POUTRES
A AME PLEINE

Nous distinguerons les essais statiques et de fatigue; dans chaque sous-chapitre
les essais isostatiques et hyperstatiques: d’ou quatre paragraphes.

On traitera d’abord des laminés bruts, puis percés, ensuite des poutres composées
et enfin des poutres dissymétriques. On décrira d’abord les essais ou le moment
fléchissant joue le rdle principal, ensuite ceux ou intervient I’effort tranchant, enfin

* 11 pourrait étre intéressant de préciser ce délai.

t 11 serait intéressant de vérifier si ’'approvisionnement des laminés sur parcs améliore leurs
qualités €lastiques.
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on s’attachera aux phénomenes d’instabilité. On insistera sur le processus de charge-
ment.

Ces considérations ont amené a prévoir systématiquement dix sections dans chacun
des quatre paragraphes envisagés, avec pour les systémes hyperstatiques une sub-
division supplémentaire des sections en quatre sous-sections, afin de bien mettre en
évidence les conditions d’appui. De nombreuses réponses ‘“Néant” font mieux
ressortir les lacunes des recherches actuelles, ainsi qu’il ressort du tableau schématique
ci-joint.

Essais staligues Essars de fatigue
A B c /] £ \isostatigues \iypersiah-
ques

*
12 Larmines brufs

2 Laminés percés %
de frous /
, Poutres composees / [
= de plats souvdés : A é

42 Povlres composées
> de plals rivés /

50 Peces rapportées sur
7 les semelles de laminés

o Inflvence de fefYor/
* tranchan!

. Phénomeénes de
° Flambement

P Sections
* dissymélriques %

o Soliciohons réétées 7
* ou ondulées A

Sollititalians ascillantes
* ov allernées

A Isostatigues - B Poutres continves sur 4appurs - L Poutres continves sur 7 30pU1S
0 Poutres encastrées - £ Portiques

Tableau Schématique

Suivant Dutheil* nous distinguerons [’adaptation dans la section en comparant
le moment de plastification vrai au moment calculé d’aprés la théorie élémentaire du
matériau idéalement plastique que nous désignerons comme moment plastique
théorique, de ’adaptation entre sections dans les systémes hyperstatiques, en comparant
les résultats a la théorie de 1’égalisation des moments.

La quasi totalité des essais ont porté sur des laminés ou des poutres de petites
dimensions. La prudence s’imposera quand on voudra généraliser aux poutres de
grandes dimensions.

* Annales de IInstitut Technique du Bdtiment et des Travaux Publics—Théories et Méthodes de

Calcul No. 2, janvier 1948: “L’exploitation du phénoméne d’adaptation dans les ossatures en acier
doux’’; et Ossature Métallique, 3, 1949, p. 143.



134 " AI3—A. LAZARD

Sous-CHAPITRE I—ESSAIS STATIQUES

PARAGRAPHE 1: ESSAIS ISOSTATIQUES
1ére Section: Laminés bruts

On a étudié divers essais de Maier-Leibnitz; d’autres de Stiissi et Kollbrunner,
Kazinczy, Hendry, Wilson, et Graf (aciers mi-durs) qui n’ont pas été tous poussés
jusqu’a la ruine, chargements croissants ou par paliers et déchargements. A T'excep-
tion de I’essai de Wilson ol la contrainte & la Navier a a peine dépassé la limite
élastique, les autres montrent, comme nous l’avons trouvé au chapitre ler, que le
moment de ruine dépasse nettement le moment plastique théorique: un essai de Koll-
brunner donne un dépassement de 32 9%.

2éme Section: Laminés percés de trous

On cite deux essais de la Chambre Syndicale des Constructeurs Métalliques
Francgais ou la section médiane était affaiblie par deux trous dans chaque semelle.
Dans ['un les trous étaient forés; il y eut ruine plastique et peu de différence avec un
laminé sans trou. Dans 'autre les trous étaient poingonnés sans alésage. 11 y eut
cette fois rupture, brutale, dans la semelle tendue a partlr d’un trou, avec cassure
brillante; ’essai est donc plus défavorable.

Les contramtes a la Navier, calculées en section brute et en section nette sont
données dans le tableau ci-aprés en kg./mm.? ou elles sont comparées aux limites
de rupture R de ’acier des semelles tendues.

Trous Section ler I (trés doux) 2¢me I (assez dur) Ruine
forés . ; ’ : brute 28,8 ou 0,90R 35,8 ou 0,90R .
nette 412 0u1.29R | 51.2 0u 1.28R Flastique
poingonnés sans alésage brute 28,0 ou 0,84R 31,5 ou 0,79R Rupture
nette 40,0 ou 1,20R 45 oul,I2R brutale

3éme Section: Poutres composées de plats soudés

On a étudié: un essai de Kayser ol la poutre a péri par voilement de I’dme et
pour une contrainte a la Navier supérieure a la limite de rupture de I’acier des semelles
(mais I’acier de I’ame était beaucoup plus dur); des essais de Hendry et des essais
remarquables de Patton et Gorbunow sous chargements répétés cycliquement, avec
ou non introduction de contraintes préalables.

Ces essais montrent que ces poutres se comportent aussi bien, sinon mieux, que
des laminés bruts de méme section et de méme acier. Les contraintes préalables
sont sans influence sur la valeur de ruine. '

4éme Section: Poutres composées de plats rivés

On a noté un essai peu concluant de Kazinczy et un essai de la Chambre Syndicale
des Constructeurs Métalliques Frangais sur deux poutres ou les trous étaient poin-
- gonnés sans alésage et ol il y a eu rupture, brm‘ale de la semelle tendue & partir d’un
trou de rivet.

Les contraintes a la Navier, en kg./mm.2, calculées en section brute et en section
nette, sont données dans le tableau ci-aprés et comparées aux limites de rupture R de
’acier des semelles tendues.
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Section | 1ére poutre ’ 2éme poutre ‘ Ruine

brute | 2880u06IR | 30,8 ou0,67R

nette V20u08R | 4200u09IR J Rupture brutale

Ces résultats paraissent inférieurs a ceux de poutres soudées ou d’I bruts.

Séme Section: Piéces rapportées sur des semelles de laminés

On cite quelques essais comparatifs de Bryla et Chmieloviec et un ensemble trés
remarquable d’essais de Wilson qui semblent marquer [’influence défavorable de
semelles additionnelles partielles soudées et au. contraire la supériorité des semelles
additionnelles soudées de toute la longueur du profilé, les semelles rivées s’inscrivant
entre les deux.

6éme Section: Influence de I’effort tranchant ou d’une petite portée (L<<6h)

On cite deux essais de Kayser ou la ruine est intervenue par voilement de I’édme
sans que puisse intervenir une semelle additionnelle soudée, deux essais d’Albers sur
poutre de 1,86 m. de haut ol la ruine est également intervenue par voilement de I’dme
malgré un délardage trés important des semelles tendues, qui ont ainsi supporté des
contraintes a la Navier considérables, un essai de Wilson et une série d’essais trés
intéressants d’Hendry a la suite desquels cet auteur a essayé de fixer des reégles pratiques
pour savoir quand faire intervenir I’effort tranchant; malheureusement il s’agissait
de trés petits laminés.. Son étude pourrait servir utilement de base a des essais
systématiques.

7éme Section: Phénomeénes de flambement

On cite des essais systématiques, un peu spéciaux, d’Hendry, sur des cadres en
forme de L a deux branches égales. L’auteur donne, dans la limite de ses essais,
des régles pratiques intéressantes.

8éme Section: Sections dissymétriques

Patton et Gorbunow ont montré que la théorie habituelle de I’adaptation dans la
section s’appliquait parfaitement aux sections dissymétriques en essayant des profilés
en [Tcomposés de plats soudés ou des profils en caissons avec appendices longitudinaux
soudés. Sollicitations ondulées.

La ruine, plastique, intervient pour des contraintes 4 la Navier dépassant largement
la limite élastique (1,81 et 1,54 fois).

Cependant Patton et Gorbunow, en vue d’éviter I’apparition de déformations
élastiques trop importantes ou de déformations permanentes, prescrivent de vérifier
que la contrainte a la Navier ne dépasse pas la limite élastique.

On pourrait sans doute aller plus loin, grace a ’accommodation en utilisant
la prédéformation.

Il semble qu’il y ait le plus grand intérét, contrairement aux idées héritées des
legons de Navier, & utiliser en flexion des piéces dissymétriques. En théorie, a
quantité de maticre donnée, il serait préférable d’utiliser des piéces rectangulaires car
les centres de gravité des sections comprimées et tendues sont alors les plus éloignées
possible (bras de levier maximum); mais, pratiquement, compte tenu des phénomenes
d’instabilité en compression, il faut s’orienter vers des sections dissymétriques en
forme de T ou TT. :
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D’autant plus qu’a I’avenir la Construction Métallique va devoir utiliser largement
les toles minces et abandonner de nombreux laminés symétriques.

En particulier on pourrait renforcer commodément des ouvrages par des appendices
soudés s’écartant le plus rapidement possible de la fibre neutre.

Il est regrettable que ces expériences n’aient pas connu le retentissement qu’elles
meritaient et qu’elles n’aient pas été systématiquement poursuivies.

9¢me Section: Sollicitation ondulées ou répétées
On a déja mentionné, a diverses reprises, les essais de Patton et Gorbunow.

10éme Section: Sollicitations alternées ou oscillantes. WNéant.

PARAGRAPHE 2: ESSAIS HYPERSTATIQUES

C’est ici qu’il a paru nécessaire de subdiviser chaque section en quatre sous-
sections pour tenir compte des conditions spéciales d’hyperstaticité et étudier si la
plastification débutait sous les points d’application des charges ou sur les appuis et
comment se faisait I’égalisation des moments que postule la théorie élémentaire.

11éme Section: Laminés bruts
lére sous-section—Poutres continues sur quatre appuis

L’analyse d’un essai bien connu de Maier-Leibnitz nous a conduit aux conclusions
suivantes (voir fig. 10):

Dans une leére phase les phénoménes sont purement élastiques (jusqu’a 107T;
contrainte a la Navier en travée, 26,2 kg./mm.2).

Une 2¢me phase—de transition—de 107" a 11,27 correspond au début de la
plastification de la section médiane (contrainte croissant de 26,2 a 29 kg./mm.2).
Elle est caractérisée par la formation d’un jarret permanent sous la charge.

Une 3éme phase—de 11,27 a 17T, qui correspond a I’accroissement linéaire du
moment sur appuis, est marquée par la tendance, conforme & ’hypothése classique,
vers I’égalisation des moments en travée et sur appui. Cette égalisation se produirait
pour la valeur du moment plastique vrai.

Mais cette égalisation ne peut se produire. Elle est entravée par ’apparition (a
partir de 177 des phénomeénes de plastification dans la section sur appui: contrainte
a la Navier sur appui 23,3 kg./mm.2 pour une limite élastique des semelles voisine
de 24-25 kg./mm.2  Cette plastification de la section sur appui, avec jarret, se poursuit
difficilement; la section médiane est alors obligée de se plastifier 4 nouveau avec
entrée dans le domaine de raffermissement de I'acier.* C’est la 4éme phase, qui
s’acheve par la ruine de la poutre a 20,77, caractérisée par I’apparition de nouveaux
jarrets dans la travée médiane et méme dans les travées extrémes.

On note par rapport aux essais isostatiques les trois différences essentielles
suivantes:

(a) il se forme un jarret sous la charge dés le début de la plastification de la section
médiane; ,
(b) les sections sur appuis éprouvent de la difficulté a se plastifier complétement f
il se forme également un jarret;
* Cest le seul cas, & notre connaissance, ou le raffermissement ait été.indubitablement observé.
T Il est probable que la surplastification de la section médiane, avec raffermissement, est plus

facile que la plastification des sections sur appui. Il n’est pas exclu que le contraire se produise dans
d’autres conditions d’essai.
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(¢) la section médiane est contrainte d’entrer dans le domaine de raffermisse-
ment.*

L’essai, bien connu lui-aussi, de Stiissi et Kollbrunner, confirme cette analyse.
Nous pensons toutefois que la charge de ruine est supérieure a celle que propose
Stiissi a cause du dépassement de fait du moment plastique théorique dans la section.

Fig. 10

Fig. 12

Fig. 13
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* ]l est probable que la surplastification de la section médiane, avec raffermissement, est plus
Il n’est pas exclu que le contraire se produise dans

facile que la plastification des sections sur appui.

d’autres conditions d’essai.
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2éme sous-section—Poutres continues sur trois appuis

On cite des essais de Maier-Leibnitz, Hartmann et Patton et Gorbunow qui
systématiquement montrent un dépassement de la charge calculée (a cause, semble-t-
il, d’une mauvaise estimation du moment plastique vrai dans la section) et la non
influence sur la ruine d’une quelconque dénivellation d’appui. Par contre la succes-
sion des plastifications a rarement suivi la théorie élémentaire.

3éme sous-section—Poutres encastrées

On ne cite qu’un essai de Maier-Leibnitz pour lequel on peut répéter sensiblement
ce qui a été dit a la lere sous-section quoique 1’égalisation ait failli ici étre parfaite.

4éme sous-section—Portiques

La question semble avoir particulierement attiré les Britanniques. On cite
plusieurs séries d’essais d’Hendry. Dans I'un—voir fig. 11—on trouve une égalisation
des moments avant la ruine pour laquelle le moment du genou dépassait notablement
le moment sous la charge.

Conclusions pour la 11éme section

Il semble qu’on peut conclure comme suit:

A condition de compter avec les moments de plastification vrais, la théorie de
I’égalisation des moments est vérifiée dans les portiques (hyperstaticité interne); elle
ne ’est pas entiérement dans les poutres continues (hyperstaticité extérieure): dans
ce cas il se forme des jarrets deés le début de la plastification d’une section.

12éme Section: Laminés percés de trous. Néant.

13éme Section: Poutres composées de plats soudés

On cite une série d’essais de portiques dus a Hendry pour lesquels la ruine est
intervenue au moment de 1’égalisation des moments pour la valeur du moment
plastique vrai.

14éme Section: Poutres composées de plats rivés

On ne peut citer qu’un essai de Kazinczy avec poutre continue sur trois appuis
mais pour lequel on manque par trop d’éléments de détails.

15éme Section: Piéces rapportées sur les semelles des laminés. Néant.

16éme Section: Influence de I’effort tranchant

On cite plusieurs séries d’essais de portiques, dus 2 Hendry, dont quelques résultats
sont représentés aux figs. 12, 13 et 14. Elles montrent:

fig. 12, des variations linéaires des diagrammes: charges-moments;

fig. 13, un huit fermé, c’est-a-dire ruine par égalisation des moments aprés une
égalisation préalable;

fig. 14, un cas ou la charge étant trés prés du genou, le moment sous la charge
n’a pas pu se développer complétement et ol la ruine est intervenue quand
le moment du genou a atteint la valeur du moment plastique vrai dans la
section.

17éme et 18éme Sections: Phénoménes de flambement et sections dissymétriques.
Néant.



PLASTIFICATION DE FLEXION DES POUTRES 139

19éme et 20éme Sections: Sollicitations cycliques

On aborde un point capital concernant ’adaptation de plasticité dans les poutres
hyperstatiques quand les charges sont variables ou mobiles: 11 s’agit du probléme du
“cumul des déformations plastiques™ analogue a celui que nous avons traité dans le
chapitre ler avec les essais de la 4éme série.

Un examen serré de la proposition théorique bien connue de Hans Bleich nous a
conduit aux conclusions suivantes:

La méthode de H. Bleich tend & améliorer le procédé de I’égalisation des moments
élastiques; en fait cela ne doit étre possible que dans certaines conditions qu’il reste
a préciser. Il faut distinguer au moins deux cas:

1° La disposition des travées et des charges est telle que I'intervention des con-
traintes résiduelles les plus favorables modifie peu 1’égalisation des moments selon la
méthode habituelle: autrement dit les moments aux points les plus chargés, calculés
en élasticité, sont trés voisins.

Dans ces conditions il est probable qu’on atteindra assez aisément un état voisin de
I’égalisation des moments plastiques vrais, cela dépendra d’une part, comme on I’a
vu dans les essais des 11éme et 13éme sections, des répartitions de travées et d’autre
part de I’étendue du domaine dans lequel les moments ondulent.

2° Au contraire les moments aux points les plus chargés sont assez différents pour
que les contraintes résiduelles de H. Bleich modifient assez sensiblement 1’égalisation
habituelle. Dans ce cas, on peut concevoir que le point le plus chargé se plastifiera
entierement avant que n'intervienne la plastification de soulagement d’un point moins
chargé, sauf pour les sections a grand coefficient de forme (marge de plastification
élevée). Autrement dit I’égalisation envisagée ne se produira probablement pas pour
des sections telles que I ou H et il y aura sans doute ruine par divergence des déforma-
tions pour des valeurs des charges plus faibles que celles calculées. Au contraire
pour des sections a grand coefficient de forme on tendra vraisemblablement vers
I’égalisation des moments plastiques vrais et les valeurs calculées seront sans doute

., dépassées. De nombreux paramétres sont susceptibles d’intervenir et, a priori, la
question n’est pas simple a résoudre.

Le 1° est sensiblement confirmé par un essai de Kloppel ou la valeur de Bleich a
été dépassée d’au moins 35 %;; le 2° par des essais de la Chambre Syndicale des Con-
structeurs Métalliques Frangais destinés a vérifier une théorie corrective due a Dutheil.

Le tableau, ci-apres, donne en fonction des valeurs des limites élastiques de I’acier
des profilés:

colonne 2: les valeurs du moment élastique, en cm. T;

colonnes 3, 4, 5: les valeurs théoriques, en 7, des charges pour lesquelles le
moment sur appui égalerait: le moment élastique, le moment critique de
Dutheil,* le moment plastique théorique;

colonnes 6, 7, 8: les valeurs théoriques, en T, des charges donnant 1’égalisation,
dans le cas de charge le plus défavorable, des moments sur appuis et sous la
charge fixe avec: le moment élastique, le moment de Dutheil, le moment
plastique théorique;

colonnes 9, 10: les valeurs théoriques, en 7, des charges donnant I’égalisation des
valeurs extrémes des moments sur appui et sous la charge fixe avec: le
moment élastique (methode de H. Bleich), le moment crlthue de Dutheil
(méthode Bleich corrigée par Dutheil);

* Le moment critique de Dutheil est le moment élastique majoré d’un coefficient de forme égal
a 1,20; 1,425; 1,10 et 1,10 respectivement.
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colonne 11: les valeurs expérimentales, en T, de la charge marquant la fin du
domaine de proportionnalité.

colonnes 12, 13: les valeurs expérimentales, en 7, des charges pour lesquelles la
divergence semble s’étre produite; d’aprés l'estimation du Laboratoire et
d’apres la notre.

1 2 3 4 5 6 7| 8 o |10 | 11 12 I 13
m recuit . [249,1| 10,7 | 129 | 161 | 155 [ 18,6 | 233 | 122 | 146 [ 11 18 17
e recuit . |1737| 75107 | 150 | 108 | 154 | 216 | 86 | 121 | 125 17 | 15
T . 2380|102 | 113 | 119 | 148 | 163 ] 172 | 107 (218 | 97 15| 10
= recult - | 227,7| 98 | 108 | 114 | 142|156 | 165 | 112 123 | 95 110 | 10

On voit qu'au point de vue des premiéres plastifications les prévisions de la
colonne 3 ne sont pas (sauf pour le losange) trop éloignées de la réalité, par excés
pour les H comme souvent déja vu.

Au point de vue de la ruine par divergence on voit nettement apparaitre les deux
groupes que la discussion laissait prévoir:

(a) Pour les H, les charges sont trés voisines de celles pour lesquelles le moment
sur appuis égale le moment élastique ou le moment critique de Dutheil (cols. 3 ou 4)

et 1égérement inférieures au calcul de Bleich (col. 9).
' (b) Pour le carré et le losange, au contraire, les charges sont voisines de celles
pour lesquelles le moment sur appui est égal au moment plastique théorique (col. 5) et
trés supérieures aux calculs de Bleich ou de Dutheil (cols. 9 ou 10): cela tient évidem-
ment a ’énorme réserve de plastification. '

En conclusion, pour les cas de la pratique, tels que I et H, on voit qu’ici le calcul
de Bleich est probablement trop optimiste, alors que dans I'exemple de Kldppel il
était excessivement pessimiste.

La question est donc bien aussi compliquée que notre raisonnement permettait
de I’envisager: il faut tenir compte de la forme des sections, de la répartition des travées,
de la position des charges et des rapports entre les valeurs des différentes charges.

I est souhaitable que de nombreuses expériences soient systématiquement entre-
prises.

SOUS-CHAPITRE I1I—ESSAIS DE FATIGUE

On ne trouve que des essais de Graf et de Wilson plus un essai de la Chambre
Syndicale des Constructeurs Métalliques Frangais sur un assemblage par soudure bout
a bout.

A part les essais isostatiques sur laminés bruts ou I'auteur allemand n’a obtenu
qu’une ruine plastique tandis que I’auteur américain obtenait des ruptures, les autres
essais sont complémentaires et laissent beaucoup de lacunes. Les expériences les
plus complétes sont celles de Wilson sur des semelles additionnelles soudées sur des
laminés: il nous semble que I’on peut en tirer confirmation de la supériorité de
semelles additionnelles de toute la longueur du laminé soudées par cordons continus
d’une part, et de I'infériorité de plaquettes ou de semelles partielles soudées ainsi que
de soudures sur des zones tendues, d’autre part.

Pour le reste les limites d’endurance, par exemple & 2 millions de répétitions,
présentent une telle dispersion des valeurs qu’il est difficile, en I’état actuel, de tirer
de conclusions nettes. Tout ce qu’on peut affirmer c’est que, dés qu’il y a une entaille
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quelconque, la ruine survient par rupture et pour des valeurs des contraintes a la
Navier nettement inférieures a la limite élastique de I’acier utilisé. On ne peut plus
des lors envisager, a proprement parler, de théorie de I’adaptation en flexion basée
sur la plastification.

CHAPITRE 1I1I—CONCLUSIONS

On traitera d’abord des points qui paraissent acquis, ensuite de ceux qui prétent
encore a discussion ou n’ont pas été suffisamment traités.

1ERE PARTIE—POINTS ACQUIS

Si ’on met & part les essais de fatigue sur poutres présentant des entailles (le mot
étant pris ici au sens le plus large) pour lesquelles I’adaptation de plastification ne
semble pas jouer au sens ou I’on entend généralement ces termes, les essais frangais
et etrangers analysés aux chapitres II et III permettent de tirer les conclusions
suivantes, en distinguant par nature de poutres:

1° Laminés bruts

(a) La plastification commence pour des valeurs des contraintes a la Navier
inférieures a la limite élastique. Ceci n’empéche pas le laminé de se comporter
¢lastiquement une fois la déformation permanente acquise et stabilisée; dans les
poutres continues cette déformation se manifeste par des jarrets sous les charges ou
sur les appuis. ' '

(b) Si les précautions sont prises pour éviter les flambements locaux des semelles
et des Ames comprimées et s’il n’existe pas de fortes charges concentrées a4 proximité
d’appuis, la ruine intervient par plastification totale. Le moment atteint dans la
section la plus exposée, ou moment plastique vrai, dépasse de plusieurs pour cent
(10 a 20 en moyenne) le moment calculé d’apres la théorie élémentaire du matériau
idéalement plastique.

(¢) Dans les systemes hyperstatiques les moments sous les points les plus chargés
et sur les appuis ou les genoux ont bien tendance a s’égaliser, la valeur commune
étant celle du moment plastique vrai. Cette égalisation peut étre atteinte dans les
portiques; elle I’est rarement d’'une maniere parfaite dans les poutres continues: il y
a la des circonstances défavorables dues probablement aux appuis. Enfin dans les
cas de solljcitations conduisant au cumul des rotations plastiques, il n’est pas exclu
que, dans certaines circonstances encore mal connues, la ruine survienne, par diver-
gence des déformations, pour des valeurs relativement faibles.

(d) En définitive il semble qu’au regard des questions de sécurité les contraintes
maxima réglementaires pourraient étre fixées a des valeurs élevées dépendant:

de la dispersion des valeurs des limites élastiques conventionnelles (et non des
limites de rupture) en différents points des laminés,

de la forme des sections,

éventuellement de la taille des laminés,

de I'isostaticité ou de ’hyperstaticité du systéme (poutres continues ou portiques),

dans certains cas de la nature des sollicitations (par exemple possibilité du cumul
des rotations plastiques dans les systémes hyperstatiques).

Des dispositions constructives appropriées, variables avec la taille des laminés,
telles que raidisseurs dans les zones comprimées, devraient alors €tre prises pour
éviter des flambements locaux des semelles et des Ames comprimées.
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2° Poutres composées de trongons de laminés bruts assemblés par soudure bout a bout

Si les soudures sont convenables et le mode de soudage approprié, il semble que
de telles poutres peuvent étre utilisées exactement comme des laminés bruts.

Cela est bien net dans les systémes isostatiques. Les essais manquent dans les
systémes hyperstatiques; il semble toutefois que les conclusions peuvent étre étendues
dans ce cas a condition de ne pas disposer les soudures sur les appuis. Telle est, du
moins, la tendance frangaise: elle ne semble pas étre générale a ’etranger.

3° Poutres, a profil constant, composées de plats assemblés par soudures longitudinales
continues
Compte tenu du nombre limité d’essais probants il semble que les conclusions
du 1° (laminés bruts) peuvent étre également adoptées, tout au moins dans les systémes
isostatiques.
Toutefois ici le moment plastique vrai dans la sectlon est sensiblement égal au
moment calculé d’aprés la théorie du matériau idéalement plastique.

4° Laminés percés de trous, poutres chaudronnées (rivées), laminés complétés par des
semelles additionnelles rivées
Il n’existe pas d’essais hyperstatiques. En isostatique la question n’est pas encore
suffisamment éclaircie pour permettre des conclusions nettes. Sauf les cas bien
précisés ol les trous étaient poingonnés sans alésage et ol 1a ruine a été provoquée par
une rupture brutale, il semble que I’adaptation de plastlﬁcatxon joue; mais les
domaines d'utilisation restent a préciser.

5° Poutres composées de plats soudés et laminés complétés par des semelles addition-
nelles soudées

La question est loin d’étre éclaircie.

Il semble bien que le seul cas net soit celui ou, en isostatique, ces semelles ont la
longueur totale du laminé: la plastification est alors intégrale. Au contraire les
semelles de longueur partielle semblent étre nettement défavorables: cela dépend de
plusieurs facteurs qui sont mal précisés.

2EME PARTIE—QUESTIONS RESTANT A RESOUDRE

En plus des points de la 1ére partie encore mal précisés on aura remarque que de
nombreux points restent a étudier, tels que:

I'influence de I’effort tranchant,

les phénomenes de flambement,*

I'influence du temps sur certaines accommodations élastiques,

le cumul des déformations plastiques dans les poutres continues.

De nombreux essais n’ont méme pas été tentés. La plastification des sections
dissymétriques n’a été réalisée qu’'une seule fois. Il n’y a pas d’essais avec semelle
partielle soudée sur un seul c6té, soit tendu, soit comprimé. Il n’y a jamais eu
d’essais de fatigue commencés par une plastification lente: ces essais seraient pourtant
de premiére utilité¢ pour essayer de résoudre le conflit qui oppose les écoles opposées
affirmant ou niant I’existence des phénomenes de fatigue dans les ponts et dans les
charpentes métalliques, sans que les arguments avancés de part et d’autre soient
réellement convaincants. :

* A cet égard les nouvelles recherches théoriques et expérimentales de Stiissi sur le flambement des
plaques seront sans doute du plus grand secours.
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Enfin I’essai le plus intéressant a réaliser, malgré son évidente difficulté, celui de
poutres continues sous charges roulantes: ici intervient au minimum les phénoménes
hyperstatiques, le cumul des déformations plastiques, 'influence de I’effort tranchant.

En conclusion il apparait qu’il reste de nombreux essais systématiques & entre-
prendre. La tdche dépasse les possibilités d’un seul organisme ou d’un seul pays.
C’est pourquoi nous souhaiterions qu’a I'issue de la discussion du Theme AI3 de ce
Congrés, une sous-commission établisse un vaste programme de recherches (basé ou
non sur la classification adoptée dans le cours du présent mémoire) et le répartisse
entre les Membres de notre Association. Rendez-vous serait pris dans quatre ans,
au prochain Congres, pour tirer les conclusions.

Nous insistons sur la nécessité de détailler minutieusement les circonstances de
chaque expérience.
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Résumé
Se basant sur les derniers essais frangais sur des laminés bruts I et H de différentes
tailles sollicités isostatiquement jusqu’a la ruine dans des conditions trés diverses, et
étudiant la dispersion des aciers, les contraintes préalables, la non-conservation des
sections planes, I'importance des volumes plastifiés, ’existence de compressions trans-
versales, le flambement des zones comprimées, I’article conclut que, pour des laminés
bruts sollicités isostatiquement:
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la ruine plastique survient, si les précautions nécessaires sont prises contre le
flambement, pour une valeur supérieure a celle qu’on peut calculer en
admettant la plastification totale d’un acier idéalement plastique;

le laminé s’accommode élastiquement aprés un nombre trés faible de répétitions
des sollicitations. Il est possible d’en déduire un procédé systématique de
prédéformation en vue de travailler sous contraintes élevées. A ce sujet le
temps semble jouer un réle important mais encore mal défini.

Elevant le débat a toutes les poutres & Ame pleine en acier doux et passant en
revue les essais antérieurs généralement exécutés sur petits échantillons, I’article
cherche a distinguer les points définitivement acquis de ceux qui prétent a discussion
ou n’ont pas encore €ét¢ suffisamment traités. Parmi ces derniers on releve plus
particuliérement :

I’effet de I’effort tranchant,
’effet des surcharges roulantes sur poutres continues,
les études sur profils dissymétriques.

En conclusion I'article propose qu’une sous-commission du Congrés dresse un
programme des essais restant a réaliser et les repartlsse entre les divers membres de
I’Association Internationale.

Summary
Based on the latest French tests with plain rolled I and H joists of various sizes,
isostatically loaded up to failure under very different conditions, and by studying the
dispersion of the steel, the residual stresses, the non-conservation of plane sections,
the size of the plastified volumes, the existence of transverse compressions and the
buckling of the compressed zones, the author of the paper comes to the conclusion
that, for plain rolled joists 1sostat1cally loaded:

if the required precautions against buckling are taken, plastic failure happens
for a load which is higher than that which can be calculated by supposing the
total plastification of an ideally plastic steel;

the rolled joist adapts itself flexibly after very few repetitions of the loads. It
is possible from this fact to deduce a method of systematic prestraining in
order to work under high stresses. Time seems here to play a part which is
important but has not yet been clearly defined.

By extending the discussion to all plate-web girders in mild steel and by surveying
previous tests which generally were made on joists of small cross-section, this paper
tries to distinguish the points which are definitively established from those which are
still disputable or have not yet been sufficiently treated.

Among the latter, particular emphasis is put on:

the effect of shearing-stress,
the effect of rolling loads on continuous girders,
the studies on unsymmetrical sections.

It is finally proposed that a sub-committee of the Congress should assume the
task of establishing a programme for the tests which are still to be made and allotting
these to different members of the International Association.

Zusammenfassung

Der Aufsatz stiitzt sich auf die neuesten franzésischen Versuche an unbearbeiteten
normalen und Breitflansch-I-Walztragern unterschiedlicher Grosse, die bei statisch
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bestimmter Anordnung unter sehr verschiedenen Bedingungen bis zum Versagen
beansprucht wurden und untersucht die Streuungen in der Stahl-Qualitit, die inneren
Spannungen, das Nicht-Ebenbleiben der Querschnitte, das Ausmass der plastifizierten
Querschnittsteile, das Auftreten von Quer-Kontraktionen und das Ausknicken der
Druckzonen. Fiir statisch beanspruchte und statisch bestimmt gelagerte unbear-
beitete Walztriger kommt der Verfasser zu den nachstehenden Schlussfolgerungen:

Wenn die notwendigen Vorkehrungen gegen Ausknicken getroffen sind, tritt das
plastische Versagen fiir einen Wert ein, der hoher ist als derjenige, den man
unter der Voraussetzung totaler Plastifizierung eines ideal-plastischen Stahles
errechnen kann. .

Der Triger erfihrt nach einer sehr geringen Zahl wiederholter Beanspruchungen
eine elastische Anpassung. Daraus kann ein systematisches Vorverfor-
mungs-Verfahren zwecks Zulassung hoherer Nutzspannungen abgeleitet
werden. In diesem Zusammenhang scheint der Faktor Zeit eine wichtige,
aber noch ungenau definierte Rolle zu spielen.

Durch Erweiterung der Diskussion auf sdmtliche Vollwandtriger aus Flusstahl
und an Hand eines Uberblicks iiber die friiheren, hauptsichlich an kleinen Probe-
trigern durchgefiihrten Versuche wird versucht, die endgiiltig gelosten Fragen von
denjenigen zu trennen, die noch umstritten oder ungeniigend untersucht sind. Unter
den letzteren werden insbesondere erwihnt:

der Einfluss der Querkraft,
der Einfluss der beweglichen Lasten auf durchlaufende Trager,
die Untersuchung unsymmetrischer Profile.

Als Schlussfolgerung schldgt der Verfasser vor, dass ein Unter-Ausschuss des
Kongresses ein Programm der noch durchzufiihrenden Versuche aufstellen und diese
unter verschiedene Mitglieder der Internationalen Vereinigung verteilen soll.

c.R—10
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Experimental investigations into the behaviour of continuous and
fixed-ended beams

Recherches expérimentales sur le comportement des poutres
continues ou encastrées a leur extrémités

Experimentelle Untersuchungen iiber das Verhalten durchlaufender
und eingespannter Balken

M. R. HORNE, M.A., Ph.D., AM.I.C.E.
Cambridge University

1. INTRODUCTION

The behaviour beyond the elastic limit of mild-steel beams subjected to pure
bending moments or bending moments combined with shear forces has been studied
by Ewing (1903), Robertson and Cook (1913) and many others. The various theories
suggested and the experimental evidence relating to them have been reviewed by
Roderick and Phillipps (1949). It appears that, when considering annealed beams,
the most satisfactory theory is that in which it is assumed that initially plane sections
remain plane during bending, the longitudinal stress being related to the longitudinal
strain as in a tension or compression test (see Roderick, 1948). Good correlation
between bending and tension tests may be obtained if due regard is paid to the upper
yield stress and to the rate of straining in the plastic range. The influence of shear
forces has been investigated experimentally by Baker and Roderick (1940) and
Hendry (1950) and theoretically by Horne (1951). It has been shown that, for
practical purposes, shear forces have negligible effect on the behaviour of a beam.
The stress distributions are also modified in the vicinity of concentrated loads, and
this has been investigated experimentally by Roderick and Phillipps (1949) and
theoretically by Heyman (unpublished). The simple plastic theory has also been
found to apply approximately to rolled steel sections (Maier-Leibnitz, 1936), although
correlation between bending and tension tests is here more difficult due to the
variation in properties of the steel over any cross-section.

The simple plastic theory leads to important deductions regarding the behaviour
of continuous and fixed-ended beams and rigid-jointed unbraced structures such as
building frames. Due to the considerable pure plastic deformation which mild steel
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can undergo (of the order of 1 9 strain, or ten times the strain at the commencement
of yield), the curvature of the longitudinal centre line of an initially straight beam
increases rapidly with practically no increase of bending moment as the section
becomes fully plastic. The bending moment then approaches the ““full plastic’ value
(see Roderick, 1948), and although at extremely high curvatures the beam may
develop a higher moment of resistance due to strain hardening, the full plastic
moment may be regarded as the highest moment to which the beam may be subjected
and still retain its usefulness. When beams are continuous over a number of sup-
ports or encastré (i.e. fixed in position and direction at their ends), the high curvature
which occurs in the vicinity of fully plastic sections enables the applied loads to be
increased until the full plastic moment is reached at a sufficient number of sections
for a “mechanism” to be formed, these sections being regarded as ‘““hinges” with
constant moments of resistance. Similar considerations apply to rigid-jointed un-
braced frames as long as axial forces are small enough to have negligible effect on
the bending moments in the members in which they occur. The application of such
results to the calculation of collapse loads has been considered extensively by Bleich
(1932), Baker (1949), Neal and Symonds (1950), Horne (1950) and others.

The above theoretical developments have been achieved by making certain exten-
sions of the simple plastic theory as established by tests on simply supported members.
The ““plastic hinge” concept is only an approximation to the truth, corresponding
as it does to infinite curvature at the assumed fully plastic sections. It is thus essen-
tial that these theoretical deductions should be tested experimentally. In the case
of continuous beams, the simple plastic theory indicates that the order in which the
spans are loaded, or the sinking of one support relative to the others, should have
no effect on the value of the collapse load. In beams partially fixed against rotation
at the ends, the degree of end restraint should similarly have no effect on the collapse
loads as long as the moment of resistance of the end supports is at least equal to the
full plastic moment of resistance of the beam. Moreover, the fact that full plasticity
has been produced at some section or sections of a beam for one set of loads should
not reduce the carrying capacity of that beam for any subsequent set.
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Fig. 1. Division of bars for continuous beam tests
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While certain investigations on continuous beams have already been made by
Maier-Leibnitz (1936) and Volterra (1943), no attempt to check these deductions

systematically has yet been reported. It was for this reason that the investigations

here described were undertaken.

2. TESTS ON CONTINUOUS BEAMS
(a) Preparation of beams

The beams were taken from 1-in. square bars of rolled mild steel in the
received” condition, the bars being cut according to the scheme shown in fig. 1.
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Fig. 3. Arrangement for testing continuous beams

Fig. 4. Arrangement for testing simply supperted beams
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the beams were roughly planed to the required dimensions (% in. square) and finished
by surface grinding, thus imparting a polished surface which, as described below,
enabled Liiders’ wedges to be observed during the tests,

(b) Description of tests

The tests are summarised in fig. 2, which shows for each beam the positions of
the supports, loads and dial gauges used to measure deflections. Some lengths were
tested from each bar as continuous beams, while other lengths were tested as simply
supported in order to obtain direct measurements of the full plastic moments. In
some of the tests on the continuous beams, the central support was set a certain depth
below the outer supports, and this is also indicated. Increasing loads were applied
simultaneously to both spans of all the continuous beams except beam C5, in which
span AD (see fig. 2) was loaded to collapse with only a small load on span DG. For
all beams, when collapse had occurred in one span, the load on the other span was
further increased until it also collapsed.

The tests were performed in a dead-load testing frame, a full description of which
has been given by Baker and Roderick (1942). The arrangement for testing the
continuous beam CI is shown in fig. 3, in which A is the beam supported on knife-
edges and B is a block by means of which it is possible to adjust the height of the
central knife-edge. The load is applied by the levers C and D whose fulcra react
against the member E, while the dial gauges for measuring deflections are supported

.on an independent frame of which F is a member. The simply supported beam CC7
was tested as shown in fig. 4, which also shows the linkage used to distribute the load
from the lever equally to four knife-edges acting on the upper surface of the beam.

During the tests, as long as the beams remained elastic, finite increments of load
were added at intervals of approximately two minutes, the dial gauges being read
between each increment. After the first signs of creep had been observed, the addi-
tion of each load increment was delayed until no dial gauge showed a rate of increase
greater than 104 in. per minute. Loading was continued until collapse occurred,
this being characterised by a large increase of deflection for a small increase of load.

(c) Test results

The test results for all the beams are summarised in Table I, and are grouped
according to the bar from which the beams were cut. The mean dimensions are
given in columns 3 and 4. In the case of the simply supported beams, the values of
the modulus of elasticity E calculated from the linear portions of the load deflection
curves are given in column 5. The values of E quoted for the continuous beams are
the mean of the values obtained for the simply supported beams cut from the same
bar. Column 6 gives the collapse loads. In the case of the continuous beams, the
mean of the values for the two spans is given; in no case did the difference between
these values exceed 3:39%(. Values of the full plastic moments may be deduced from
the collapse loads by means of the simple plastic theory, giving the lower yield stresses
quoted in column 7 of Table I. Assuming that each bar is of uniform material, the
agreement between these stresses for beams cut from the same bar is a check on the
accuracy of the simple plastic theory. The percentage variations of these yield
stresses as compared with the average for the bar are given in column 9.

It has been shown by Heyman (to be published) that the assumption made in the
simple plastic theory that there is no restraint in directions perpendicular to the
longitudinal axis of a beam is invalidated in the vicinity of heavy load concentrations.
This tends to increase the full plastic moment except where the maximum moment



TABLE I
1 2 3 4 5 6 7 8 ! 9 10 11 12
Analysis by simple plastic theory Anal oy . -
: : ysis in which allowance is made for
Estimated ignoring the egzctE ocr)lf load concen- the effect of load concentration
Bar | Beam \mg%g [I;/éeat.g Modulus of | Load,
No. No. W ig > | Elasticity E,| tons Lower Mean Lower L Mean Lower
‘ : tons/in.2 Yield Yield Stress Per cent , ower Yield Stress Per cent
Stress, for bar, Difference | Yield S_trczss, for bar, Difference
tons/in.2 tons/in.2 tonsfin. tons/in.2

| 1 Cl 0-875 0-876 13,360 1-125 17-83 18-02 —1'1 16-53 16:71 —11
2 C2 0-875 0:876 13,360 1-138 18-04 01 16:72 01
3 CCl1 0-876 0-876 13,380 1-000 1790 —0-7 16-59 —07
4 CcC2 0-876 0-876 13,340 1-025 18-33 1-7 16-99 1-7
5 2 C3 0-875 0-875 13,120 1-560 19-03 18-34 3-8 1796 17-48 2:7
6 C4 0-875 0-875 13,120 1-525 18-60 1-4 17-55 04
7, CC3 0-875 0-875 13,010 1-680 17-43 —50 17-43 —03
8 CC4 0-875 0-875 13,220 1-020 18-32 —0-1 16-98 —29
9 3 Cs 0-875 0-875 12,930 1-225 14:93 1491 01 14-09 14-21 —-0-8
10 C6 0-875 0-874 12,930 1-230 15-01 07 14:16 —04
11 CCs 0-875 0-875 13,270 0-850 1526 2:3 14-14 —0'5
12 CCé6 0-875 0-875 12,590 1-380 14-44 —32 14:44 1-6
13 4 C7 0-875 0-876 12,945 1-:670 1813 17-84 1:6 16-46 16-60 —0-8
14 C8 0-876 0-875 12,945 1-670 1812 1-6 16-45 —09
15 C9 0-876 0-876 12,945 1-650 17-92 0-4 16:27 —20
16 Cl10 0-876 0-876 12,945 1-700 18-38 30 16-69 0-5
17 CcC7 0-875 0-875 13,060 1150 17-16 —3-8 17-16 34
18 CC8 0-875 0-875 12,830 0-580 17-30 -30 16-54 —04

(491
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occurs uniformly over some length of the beam. This explains the lower than
average yield stresses obtained for beams CC3, CC6 and CC7 (Table I, column 7).
Roderick and Phillipps (1949) found that in their tests a satisfactory empirical allow-
ance could be made for this effect by assuming that collapse was delayed until the full
plastic moment had been reached at a section a distance away from the concentrated
load equal to half the depth of the beam. The yield stresses for all the beams corre-
sponding to this assumption are shown in column 10 of Table I, and the percentage
variations from the mean values for separate bars are given in column 12.

There does not appear, from the figures given in columns 9 and 12 of Table I, to
be any distinct advantage in accepting the complications introduced by Roderick
and Phillipps. In either case the agreement is as good as could reasonably be
expected, taking into account probable variations in yield stress in the bars. Ignoring
signs, the mean values of the percentage variations given in columns 9 and 12 are
1-87 and 1-18 respectively. The application of the ““¢” test for the difference between
means gives '=1-646, corresponding to a probability of 0-12 that the difference
between the means is due entirely to random causes. The improvement achieved
with the second method of analysis, although discernible, is not therefore outstand-
ingly significant. In their tests on simply supported beams, Roderick and Phillipps
(1949) obtained much improved agreement by using this method, but it is to be
noted that while these investigators tested carefully heat-treated beams, the tests
here described were performed with the steel in the ““as received” condition.

In a further attempt to decide between the two methods of analysis, tension tests
were carried out on three specimens. Since the mean yield stresses given by the
second method (column 11, Table 1) are lower than those given by the first (column 8),
it should thus be possible to reach some significant conclusion. The first two speci-
mens (CT1 and CT2) were taken one from each end of beam C8, while the third
(CT3) was taken from one end of beam C9. The specimens had a gauge length of
2-00 in. and a diameter of 0-282 in., and were tested in the Quinney Autographic
Machine (see Quinney, 1938). The upper and lower yield stresses and the rates of
strain in the plastic range are given in Table II. Calculations show that, during the

TaBLE II
Upper Yield Lower Yield Rate of Strain
Tension Stress, Stress, in Plastic
Specimen Range/sec.
tons/in.2 tons/in.2 10-6 X
CTl 22-48 17-99 18:20
CT2 19-53 17-32 0-767
CT3 22-31 18-16 18-20

beam tests, the mean rate of strain in the extreme fibres of the most highly stressed

sections varied between 0:7x 106 and 2:0x 10-6 per sec.

Hence the appropriate

lower yield stress for bar 4 (see fig. 1) would be about 17-40 tons/in.2 Since the
values obtained by the two methods of analysis were 17-84 and 16:60 tons/in.2
(columns 8 and 11 of Table I), the result is again inconclusive.

As an example of the load-deflection curves obtained, those for beams Cl and
In the case of beam C2, a theoretical
load-deflection curve for dial gauges 3 and 5 has been calculated by means of the
simple plastic theory, and is seen to be in good agreement with the observed values.

C2 are presented in figs. 5 and 6 respectively.
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In testing beams C1, C4, C8 and C10, the central support was set at such a distance
below the outer supports that yield stress under a sagging bending moment was
reached in the extreme fibres of the central section of the beam before contact
occurred. As the loads on these beams were further increased, the central bending
moment first decreased to zero and then increased until at collapse full plasticity
under a hogging bending moment occurred over the central support. Simultaneously
the position of the maximum sagging moment moved along the beam, as can be seen
most clearly in the cases of beams C4 and C8. Thus in beam C4 (see fig. 2), a
certain amount of yield under sagging moment occurred first at C and E, and finally
at B and F, where full plastic moments developed at collapse. This may be traced
in the appearance of Liiders’ wedges on the side face of part of beam C4 after testing
(fig. 7), in contrast to the absence of such wedges except at B and D on the face of
beam C3, for which the supports were initially level. It will be observed from
Table I that the sinking of the support and the occurrence of Liiders’ wedges along
the beam did not lead to any significant decrease in the carrying capacity of beam
C4 as compared with beam C3.  Similar remarks apply to beam C8, in which the
maximum sagging moment moved first to sections E and G (see fig. 2), then to
sections D and H, until finally full plastic moments were reached at collapse at
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sections C and 1. The side faces of parts of beams C7 and C8 after testing are com-
pared in fig. 8. The theoretically deduced values of the moments at various sections
of beam C8 at all stages of loading up to the collapse load are shown in fig. 9, and
the progressive movement of the positions of the maximum sagging moments is
apparent.

W oW W W W W W W Full plastic ,Mme”/_}_
10 T T T —_——— — —
1
s ol ad b b det ol ol |
b g ¢ o ¢ TG TR :
o
[ Igﬂ‘& - :
%,‘ 50-4 - first contact with !
| = :/ cenfral support !
2 1
E o2 ' Load + Collapse load :
R 1 ! ! L i
o 4 o1 02 K] 04 05 06 a7 08 | [
) -
o2 s \Collspse —
3 o4 ! 2 £ \ load
Eg NN 3 y , 8
S06 - AN ! \ =
22 / | s £ : 2]
I T\~ : L
< 1-0 L. s ey e e, A et iy L =
Upper yield stress reached Full plastic moment

in extreme fibres
Fig. 9. Theoretical bending moment curves for beam C8

In test C5, the supports were at the same level, and equal loads of 0-50 tons were
applied to each span. The load on span DG (fig. 2) was then kept constant while
that on span AD was increased until collapse occurred at 1-20 tons. Finally the
load on span DG was increased until this part of the beam also failed at a load of
1-25 tons.

3. TESTS ON FIXED-ENDED BEAMS
(a) Preparation of beams

The beams were all prepared from the same black mild-steel plate (dimensions
17 in. X 2 in. X % in.) by cutting longitudinally (in the direction of rolling) into
strips. The small size of the beams (} in. X % in. section) made it desirable to anneal
at 900° C. and cool in air in order to reduce some of the effects of rolling and work-
hardening. The beams were bent about axes perpendicular to the plane of the
original plate.

(b) Description of tests

The tests are summarised in fig. 10. The beams EI1-6 were tested over a span
of 6-0 in. between end fittings which provided moments of resistance proportional
to the rotations of the end sections of the beam. If a moment M Ib. in. at the end
of a beam corresponded to a rotation of 6 radians, then §=KM where K had the
values for each beam given in the second column of fig. 10. The simply supported
beams EC1 and EC2 had a span of 40 in. Fig. 10 shows the positions of the dial
gauge used to measure deflections and of the mirror gauges used to measure rotations.

Tests E1, E2 and E3 were conducted to investigate the effect of various degrees
of end fixity. Beams E4, ES5 and E6 were subjected to loads at several sections (1,
2, 3 in fig. 10) in turn, each load being just sufficient according to the simple theory,
to bring about collapse.

The arrangement for testing those beams which had the highest degree of end
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Fig. 10. Summary of tests on fixed-ended beams

fixity (beams E1, E4, E5 and E6) is shown in fig. 11, the load being applied by a
chain acting through a yoke. The arrangement for testing beams E2 and E3 is
shown in fig. 12, the clamping blocks on the end fittings having been removed for
the sake of clarity. ' _

During all the tests, load increments were made at approximately two-minute
intervals until creep was first observed. Before each subsequent increment, the rate
of creep on the dial gauge was allowed to drop to 10— in. during any two-minute
interval.

(c) Test results
Beams El, E2, E3, ECI and EC2

The results are summarised in Table III, and columns 1 to 4 require no explana-
tion. The end-fixity constants for the partially fixed-ended beams are given in
_column 5, from which it is possible to calculate the theoretical ratio of end to central
moments for a central point load in the elastic range (column 6). The collapse loads
are given in column 7, from which- the lower yield stresses may be calculated by
means of the simple plastic theory (see Table III, column 7). The percentage
differences from the mean are given in column 10.

On the basis of the method suggested by Roderick and Phillipps for allowing for
load concentration, these same collapse loads give the yield stresses shown in



158 ' Al3—M. R. HORNE

Fig. 11. Arrangement for testing fixed-ended beams
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Fig. 12. Method of obtaining reduced end fixity
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column 11, and the percentage differences from the mean are given in column 13.
There is a certain improvement in the agreement between the yield stress values as
compared with those given in column 8.

Load rotation curves are given for beams E1 and E3 in figs. 13 and 14 respectively.
These curves do not indicate such definite collapse loads as obtained for the g-in.
square beams described above. This may be due to strain hardening, and in order
to obtain a consistent interpretation of test results, the collapse loads have been
determined as follows.

Taking the value for the modulus of elasticity given in column 4 of Table I1I, and
assuming some value for the collapse load, it is possible to calculate by means of the
simple plastic theory of bending the rotation at any section of the beam when it is
just about to collapse. Then the relationship between the assumed collapse load and
the rotation is obtained as a straight line OI (figs. 13 and 14), and the collapse load
is taken as the intersection of this line with the experimental load rotation curve.
The figure quoted for any beam in column 7 of Table IIT is the mean of the three
values obtained from the central deflection and the two pairs of mirrors (M,, M4 and
MZs M3)-

In the case of beam EI, the end moments were in the elastic range almost equal
to the cen*ral moments (see column 6 of Table III), and the full plastic moment was
reached at all three sections at practically the same load. With beam E3, however,
the end moments were in the elastic range less than half the central moment, and
the load rotation curves (fig. 14) indicate that full plastic moment was reached at
the centre at a load of about 200 lb. Thereafter the rotations increased almost
linearly with load up to 255 Ib., soon after which full plastic moments developed at
the ends and collapse occurred.

Beams E4, ES and E6

The results for beams E4, ES and E6 are summarised in Tables IV and V. Suffi-
cient load was applied successively to the three loading positions (see fig. 10) to pro-
duce full plastic moments at the ends and under the load. Values of the lower yield
stress calculated on the basis of the simple plastic theory are given in column 8 of
Table IV.

TaABLE 1V
| 2 | 3. 4 5 6 | 1 | 8
l i i et 1 Maximum Load Actually
i stimate - Applied
Beaii Mean Mean | Modulus Cinnitl;rl:(tlt]% Order of ‘
No Width, | Depth, | of Elas- radians/Ib. in Loading rCorresponding
: in. in. ticity, E, 10-6 x Positions | Load, | Lower Yield
tons/in.2 Ib. | Stress,
[ | tons/in.2
1 E4 0-249 0-255 13,440 14:3 C 260-0 21-5
2 D 2925 215
3 ‘ | E 292-5 21-5
4 ES | 0248 0-253 13,440 ’ 14-3 ‘D 2875 | 216
5 | E 2875 | 216
6 | C 2556 ‘ 21-6
7 E6 0-247 i 0-254 13,440 143 D 2850 213
8 C 2533 213
9 [ E 285-0 21-3
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TABLE V
1 2 3 4 5 ‘ 6 T 8 9
Ist Load Position ‘ 2nd Load Position 3rd Load Position
Beam . .
Quantity Unit Calculated Calculated Calculated
No. Observed Value at } Observed Value at Observed Value at
Maximum Collapse Maximum Collapse Maximum Collapse
1 E4 Central in.x10-3 60-0 455 66-1 872 897 100-0
deflection
2 Rotation 8; radians x 103 181 13-6 309 464 287 316
3 v 0, v 18-8 13:6 22:7 394 10-1 150
4 v 05 " 17:5 13-6 4-0 15:0 29-7 394
5 v 04 v 18-4 13:6 22-0 229 465 535
6 E5S | Central in. x 103 501 ' 631 713 837 835 863
deflection !
7 Rotation 6, radians x 10~3 29-2 396 26:8 29-7 32-8 32-5
8 " 6, . 31-4 1 39:6 75 151 113 13-7
9 6 . 93 ‘ 15-1 27-1 39-6 125 137
10 55 04 s 122 \ 15-1 356 44-1 339 35-2
11 E6 Central in.x 1073 50-3 62-1 66-2 658 779 942
deflection
12 Rotation 8, radians X 10~3 28:1 , 39:0 274 27:6 272 315
13 . 0 . 314 | 390 14-3 13-5 7-8 14-9
14 i 0 . 10-0 i 14-9 | 10 135 254 390
15 ' 04 ' 11-7 l 14:9 20°5 17-8 36'5 49-]
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It is possible by means of the simple plastic theory to calculate the theoretical
deflections and rotations at collapse for the various positions of the load. These
calculated values are compared with those observed in Table V. The rotations 4,
6,, 6; and 0, refer respectively to mirrors M, M,, M5 and M,. Except for the first
loading position practically all the observed deflections and rotations are less than
the calculated values. Hence the ability of a beam to sustain a given ultimate load
is not adversely affected by the attainment of the full plastic moment at various
sections due to other critical load distributions. This is true whatever the order in
which the loads are applied.

Tension tests

Tension tests were performed on four specimens, of diameter 0-178 in. and gauge
length 0-70 in., in a Hounsfield Tensometer. Specimens ET1 and ET2 were cut from
the ends of beam E2 after testing, and specimens ET3 and ET4 were cut from the ends
of beam E6. The upper and lower yield stresses obtained are given in Table VI.

TaBLE VI
1

g, B TRt

tons/in.2 tons/in.2
ETI 21-68 20-88
ET2 | 21-57 20-57
ET3 ; 22-70 20-56
ET4 | 21-08 | 20-17

The lower yield stresses are in good agreement with each other, and have a mean
value of 20-54 tons/in.2 Considering beams El, E2, E3, EC1 and EC2 (see Table 11I),
the method of analysis suggested by Roderick and Phillipps gives a mean yield stress
in closer agreement with the yield stress from the tension tests than is obtained when
the simple plastic theory is applied.

4. CONCLUSIONS

The general agreement between the values of the lower yield stress calculated from
the collapse loads for both the continuous and the fixed-ended beams is satisfactory
and shows that the simple plastic theory gives predictions of the collapse loads of
such beams with sufficient accuracy for practical purposes. The method of allowing
for stress concentration suggested by Roderick and Phillipps (1949) does not lead to
any distinct improvement for the continuous beams, but does lead to slightly better
agreement for the fixed-ended beams. The tension tests carried out in connexion
with the continuous beams did not establish any conclusive results, but with the
fixed-ended beams tension tests favoured the method of Roderick and Phillipps.

The tests on the continuous beams confirm that the predictions of the plastic
theory are not upset by sinking of supports, even if sinking is sufficient to cause yield
in the beam. The plastic theory is equally successful for all the load distributions
investigated, and the failure of one span does not decrease the ultimate carrying
capacity of an adjacent span.
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The tests on the fixed-ended beams show that ultimate carrying capacity is inde-
pendent of the degree of rigidity of the end connections as long as these are capable
of resisting the full plastic moment. The carrying capacity is not adversely affected
when full plastic moments are produced at a number of sections by different successive
load distributions, and this is true whatever the order in which the loads are applied.

The work described in this paper was carried out at the Engineering Laboratory,
Cambridge University, and forms part of a general investigation into the behaviour
of rigid-frame structures under the direction of Professor J. F. Baker, Head of the
Department of Engineering.
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Summary

According to the simple plastic theory, the collapse loads of mild-steel continuous
and fixed-ended beams may be calculated by considering merely the requirements of
equilibrium in relation to the external loads and the full plastic moments of resistance
of the beams. It follows that sinking of supports, order of loading and degree of
end fixity should have no influence on such collapse loads. In order to check these
deductions, tests were performed on g-in..square beams continuous over two spans
and on }-in. square single-span beams provided with varying degrees of end fixity.
The influence of various types of loading and of varying orders of application of the
loads were investigated. Control tests were performed on similar simply supported
members, and tension tests carried out at controlled rates of strain on material taken
from unyielded sections of the beams.

The results give consistent confirmation of the simple plastic theory, and show
conclusively that the collapse loads may be calculated with sufficient accuracy for
practical purposes by this means. During the loading of a continuous beam in which
one support is initially lower than the others, there is, according to the simple plastic
theory, a progressive movement of the sections of maximum sagging moments along
the beam. This is demonstrated in the tests by the appearance of Liiders’ wedges
on the polished surfaces of the §-in. square beams.
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Résumé

Suivant la théorie simple de la plasticité, les charges de rupture des poutres en
acier doux, continues ou encastrées a leurs extrémités, peuvent étre calculées par
simple considération des exigences d’équilibre corrélativement aux charges extérieures
et aux pleins moments plastiques de résistance des poutres. Il en résulte que I’af-
faissement des appuis, I’ordre de mise en charge et le degré de rigidité aux extrémités
ne doivent exercer aucune influence sur ces charges de rupture. Pour vérifier ces
déductions, des essais ont été effectués sur des poutres carrées de 7 in. (22,2 mm.),
continues sur deux portées, ainsi que sur des poutres carrées de % in. (6,35 mm.) sur
portée simple, avec différents degrés de rigidité aux extrémités. On a étudié I'in-
fluence de divers types de charges et de divers ordres de mise en charge. Des essais
ont été effectués, a titre de contrdle, sur des éléments simplement posés sur leur
appuis; on a également procédé a des essais de traction, sous des taux de tension
controlés, sur des éprouvettes prélevées sur des sections n’ayant subi aucune déforma-
tion.

Les résultats obtenus fournissent une bonne confirmation de la théorie simple de
la plasticité et montrent d’une maniére concluante que les charges de rupture peuvent
étre calculées avec une précision suffisante pour les besoins de la pratique, d’aprés la
méthode ci-dessus. Au cours de la mise en charge d’une poutre continue dont un
appul est initialement plus bas que les autres, il se produit, suivant la théorie simple
de la plasticité, un déplacement progressif des sections présentant les moments
maxima d’affaissement, le long de la poutre. Ceci est mis en évidence, au cours des
essais, par |'apparition de figures de Luders sur les surfaces polies des poutres carrées
de % in.

Zusammenfassung

Nach der einfachen Plastizitdtstheorie konnen die Bruchlasten von durchlaufenden
und eingespannten Balken aus Flusstahl allein aus der Betrachtung der Gleich-
gewichtsbedingungen beziiglich der dusseren Lasten und der vollen plastischen
Widerstandsmomente der Balken berechnet werden. Es folgt daraus, dass Auflager-
senkungen, Lastanordnung und Einspannungsgrad keinen Einfluss auf solche Bruch-
lasten haben sollten. Zur Ueberpriifung dieser Feststellungen wurden Versuche an
iiber zwei Felder durchlaufenden, § in. (22,2 mm.) starken und an einfeldrigen, ver-
schieden stark eingespannten, § in. (6,35 mm.) starken Rechteck-Balken durchgefiihrt.
Die Einfliisse verschiedener Arten von Lasten und verschiedener Formen der Last-
Aufbringung wurden untersucht. Zur Kontrolle wurden Untersuchungen an ent-
sprechenden einfach gelagerten Balken gemacht und unter kontrollierten Spannungen
Zugversuche an Material aus unverformten Trégerteilen ausgefiihrt.

Die ermittelten Resultate bedeuten eine gute Bestdtigung der einfachen Plasti-
zitdtstheorie und zeigen iiberzeugend, dass die Bruchlasten mit fiir praktische Bediirf-
nisse geniigender Genauigkeit nach dieser Methode berechnet werden koénnen.
Wihrend der Belastung eines durchlaufenden Balkens, bei dem ein Auflager von
Anfang an tiefer liegt als die anderen, ergibt sich, in Uebereinstimmung mit der
einfachen Plastizitidtstheorie, entlang dem Balken ein fortlaufendes Fliessen der Zonen
grosster Momentenbeanspruchung infolge Einsenkung. Dies zeigt sich im Versuch
durch das Auftreten von Fliessfiguren von Liiders auf den polierten Oberflichen der
% in. Rechteckbalken.
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Calcul du coefficient de sécurité
Safety factor calculation

Die Berechnung des Sicherheitsbeiwertes

Profr. DRr. h.c. E. TORROJA et ING. A. PAEZ
Madrid : Madrid

Dans le domaine de la construction, peu de problémes peuvent présenter autant
d’intérét économique et théorique que celui du juste établissement des coefficients de
sécurité. Leur importance justifie par elle-méme la nécessité de quelques principes
- fondamentaux et d’un processus mathématique qui conduisent & I'établissement
logique des valeurs de ces coefficients, avec ’approximation suffisante compatible
avec les exigences pratiques et avec I’inéluctable variabilité des données du probléme.

11 existe, sans aucun doute, une discontinuité accusée dans la rigueur avec laquelle
se développe le calcul d’une structure. Aprés une étude mécanique minutieuse et
une déduction détaillée des régimes de contraintes & l'intérieur des divers éléments
résistants, on adopte un coefficient de sécurité empirique qui, sans justification
préalable, s’applique comme facteur a une étude fonctionnelle scrupuleuse et précise.

L’opportunité de lier les résultats définitifs & des considérations économiques
objectives empéche de développer I’étude sur des valeurs et des erreurs moyennes.
Elle oblige a calculer la probabilité pour chaque variable d’atteindre une valeur déter-
minée, c’est-a-dire de produire une certaine réduction des caractéristiques de résistance
des matériaux employés, ou une augmentation déterminée des sollicitations prévues,
comme dans le cas des surcharges accidentelles. D’autre part, si I’on fait abstraction
d’une corrélation explicite entre le coefficient de sécurité et la probabilité d’effondre-
ment, ce coefficient ne peut étre déterminé que lorsque cette probabilité a été fixée au
préalable, ce qui enléve toute objectivité au résultat puisqu’il est lié a une probabilité
qui, suivant ce critérium, est arbitraire.

Il est certain qu’a chaque systéme de charges qui sollicite un ouvrage correspond
toujours une répartition déterminée des contraintes dans chacune des diverses sections
des différents éléments qui la composent. Si le taux maximum dans une section est
inférieur au taux de rupture du matériau, cette section ne subira de rupture dans
aucune de ses fibres. _

Le champ d’application de la présente étude est limité au cas le plus.fréquent ou
’effondrement de ’ouvrage est dii au fait que la contrainte maximum résultante
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dépasse la charge limite du matériau. L’effondrement peut se produire quand il
intervient simultanément une combinaison malencontreuse de causes en quelque sorte
imprévisibles.

Ces causes dérivent de I’ensemble de phénomeénes fortuits et ne répondent a
d’autre loi qu’a celles du hasard. L’une d’entre elles est la présence d’une surcharge
exceptionnelle capable par elle-méme, ou bien de détruire I’ouvrage, ou bien de con-
tribuer indirectement a son effondrement.

D’autres causes qui peuvent étre a ’origine de la ruine d’un ouvrage parfaitement

congu sont, I’existence d’un défaut grave dans le matériau (vides du béton, bulles ou
soufflures de ’acier, etc.) ou dans I’exécution méme en chantier (mise en place défec-
tueuse des éléments, mauvaise disposition des armatures ou dosage inadéquat du
béton). : '
D’autre part, le calcul réalisé peut ne pas correspondre a la réalité, soit que 1'on
ignore les lois qui régularisent le comportement réel de I’ouvrage, soit que la com-
plication qui résulte de leur application soit trop grande et rende impossible leur
développement.

En dernier lieu, le processus de calcul lui-méme est exposé, comme toute ceuvre
humaine, a des erreurs ou a des fautes de calcul, d’autant plus susceptibles de surgir
et de passer inapergues que sera plus grande la complication de ce calcul.

En définitive, les différentes variables qui interviennent dans le phénoméne peuvent
étre classées en cinq groupes:

(1) Dépassement des surcharges prévues (variable x),

(2) Défauts dans les bases théoriques du calcul (variable y),
(3) Erreurs numériques dans le calcul (variable z),

(4) Insuffisance de résistance des matériaux (variable u),

(5) Défauts d’exécution (variable 7).

Chacune de ces variables aléatoires doit étre représentée sous forme de fonction
statistique déduite des expériences réalisées.

Dans le but de simplifier dans la mesure du possible les opérations ultérieures, il
convient d’affecter a ces variables la forme de coefficients de correction.

S’il était possible de connaitre la réalité des faits, on pourrait calculer les erreurs
unitaires commises dans les cinq points énumérés. Par exemple, on saurait qu’au
cours de la période de service de 'ouvrage, I’effort maximum appliqué a une section
déterminée, produit par la présence d’une surcharge maximum S,, devrait étre s, au
lieu de I'effort s, théoriquement déduit de la surcharge S’, admise.

L’effort calculé s, aussi bien que I’effort réel s, différeront a leur tour de I'effort sg
nécessaire pour rompre une fibre de la section considérée. En général, les trois
sollicitations appliquées s,, sg et s, seront inégales, le fait que

Sy)<SR  « « o+ e e e oo (D

étant la condition nécessaire pour qu’aucune des fibres ne se rompent pas.
La relation

SR
Cim— & & s % v &8 3 % & w I
— @
a été appelée coefficient de sécurité efficace réel et le quotient
SR S
C==—"7" . . . . .. .. ..0
Sp

coefficient de sécurité efficace prévu, ou simplement coefficient de sécurité efficace.
Dans cette expression, s, représente 'effort maximum qui, appliqué a la section,
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pourrait .&tre supporté par celle-ci si les matériaux employés avaient les mémes
caractéristiques et les mémes propriétés que I’on a supposé dans le calcul et qui, en
général, sera différent de leur valeur réelle sg.

Suivant ces principes, si S, représente le train réel de charges le plus lourd ou le
systéme de forces maximum appliqué extérieurement a la piece et S’, est la surcharge
admise dans le projet, I'erreur relative en supposant connue la réalité, serait:

S,—S8'%
Ex=—g—
X Slx
positive ou négative selon que le critérium établi est insuffisant ou excessivement
conservateur.

En conséquence, pour corriger les résultats théoriques, il serait nécessaire de com-
mencer par appliquer, pour cette seule raison, un coefficient de correction:

Sy
5. e
qui, appliqué a la surcharge admise comme probable, donnerait comme produit le
systeme réel des efforts qui agissent sur la piéce ou sur ’ouvrage que 1’on considére.
Les divergences naturelles entre le comportement réel de ’ouvrage et son com-
portement théorique font que, méme en partant d’'un méme systéme final de forces
extérieures S’,, les efforts s', déterminés par le calcul dans une section déterminée
de la piece que 'on étudie different des s, que I'on obtiendrait réellement pour la
méme surcharge S’,. Pour que le premier s’identifie avec le résultat véritable, il est
nécessaire d’appliquer un deuxi¢me coefficient de correction:

(4)

x=14e=

Sy
= A T -
y=y ()
Enfin, les erreurs numériques sont la cause de nouvelles erreurs qui, pour étre
éliminées, exigent I'introduction d’un troisiéme coefficient:
SZ

Z=S——...........(6)

&

Par conséquent si s, est la sollicitation propre d’une piece, déterminée par le
calcul suivant un certain processus numérique, basé sur certaines surcharges et hypo-
théses approximatives, la sollicitation que I’on devrait faire intervenir dans ce calcul
pour obtenir des résultats en accord avec la réalité est

Sy=XYZSp . . v v e v oo (D

De méme, si s, est la sollicitation de rupture assignée aux matériaux et sz leur
véritable sollicitation' limite, on peut écrire:

&
Tu.t

ou u et 7 sont les deux facteurs de correction a faire intervenir, le premier pour com-
penser les divergences entre les caractéristiques mécaniques réelles des matériaux et
celles qui ont été adoptées dans le calcul et le second pour tenir compte des anomalies
ou défauts introduits sur le chantier. En divisant (8) par (7), on obtient:

SR S 1

ey P e

Sy u.1° xyzs,

L. ®

SR
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Selon les égalités (2) et (3), ’expression (9) se transforme en:
' C

ce qui, écrit de la fagon suivante:
&
Cvxyztu—y........(ll)

suggére un concept plus ample et plus rigoureux de la signification de ces facteurs de
correction, en ce sens que chacun de ces facteurs représente la relation entre les
coefficients de sécurité prévu et le réel, se rapportant 4 n’importe lequel des cing
concepts de base, lorsque les autres sont satisfaits d’une maniére compléte et parfaite,
c’est-a-dire si les quatre autres coeflicients correspondants sont égaux a I'unité.

Quant au produit

' PRV uBelolh » » 2 58 w 5 &5 & Lld)

sa signification est immédiate, chaque fois qu’il représente la relation entre les coeffi-
cients C et C, a la suite de I'intervention globale de toutes les causes d’erreur.

Etant donné que la condition de permanence ou de non-rupture de I'ouvrage
s’exprime par I'inégalité:

= P i €
on en déduit que la valeur du coefficient de sécurité adopté doit étre:
E3% o s « s s » ¢ n 8 w 3 ()

On comprend logiquement que les valeurs des cing facteurs de correction soient
essentiellement inconnus. Toutefois, & 'aide d’une statistique adéquate on peut
relier & chaque fluctuation de ces facteurs, entre deux limites établies arbitrairement, la
probabilité d’occurrence d’un fait semblable.

Ce concept qui.interprete les facteurs de correction, non comme un nombre plus
ou moins certain, mais comme une fonction de probabilité, pose le probléme de
[’établissement d’un critérium mathématique a I’aide duquel on puisse développer les
opérations qu’il est nécessaire de réaliser avec ces variables aléatoires.

Dans les grandes lignes, si X(x) et Y{(y) sont deux fonctions de probabilité, il
devient nécessaire d’établir un procédé opératoire a I’aide duquel on puisse obtenir la
loi de.probabilité d’une nouvelle variable w liée aux variables antérieures par la
relation '

w=f(x,y) . . . . . . . . . . (15
ou ce qui revient au méme, au moyen de 1’équation:
=X, Wl . = « & : « s » s = {16

A cet effet, (fig. 1), considérons un systéme d’axes cartésiens rectangulaires.
En prenant comme origine des coordonnées le point O, on peut représenter, sur
le premier quadrant, la fonction

P=lm W) « 5 5 & & ¥ 4 w s W (LT

qui relie la variable x & la y, au moyen de la fonction ¢ qui doit étre uniforme
pour les différentes valeurs w; que la variable w peut prendre.

En supposant que la variable x varie entre une limite inférieure x=a et une
limite supérieure x=A et que, de méme, la variable y soit comprise entre deux limites
b<<y<<CB on peut dessiner sur les quadrants II et III, les fonctions X(x), Y(») 1epre—
sentatives respectivement, de la probabilité pour x d’atteindre une valeur comprise
entre a et x et pour y de prendre une valeur comprise entre b et y.
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Etant donné que la probabilité de x,>>x>>a est toujours plus grande que celle de
x>x>>a quand x,>>x,; et que
dX=X'(xydx . . . . . . . . . (13
a toujours et seulement une solution, dans tout l'intervalle compris entre a et 4, la
fonction X'= X(x) est non seulement monotone, mais aussi continue, de méme que sa
dérivée premiére dans cet intervalle; on peut en dire autant de la fonction analogue
Y= Y(y) dans l'intervalle de b a B.

Fig. 1

Selon ce qui a été exposé antérieurement, a tout valeur OJ arbitraire de x, corres-
pondra toujours une seule valeur OH de la fonction X(x).

D’autre part, en vertu de 1’hypothése admise sur I'uniformité de la fonction
y=¢(x), a toute valeur OJ de x correspondra aussi une seule valeur OL de y, telle que
y=¢(xs wl)
et par conséquent, une valeur

; OC=Y(y)y=o=P(x, wy), . . . . . . . (19
qui jointe a OH, définit le point N dans le quadrant IV, établissant ainsi une cor-
respondance univoque, entre chacun des points » de la courbe y=4¢(x, w,) et chacun
des points N de la courbe W;.

En vertu de la propriété commune aux fonctions X et Y d’étre monotones dans
tout I'intervalle considéré, tout point générique m, du systéme I, situé entre la courbe
y=¢(x, w,) et les axes coordonnés, aura toujours un point réciproque M et seulement
un, dans le systéme IV, entre la courbe W, et les axes OF et OF.

Puisque le systeme N a été construit en rapportant aux axes coordonnés OF et OF
les probabilités d’occurrence de certains phénoménes, ce systéme correspondra a un
domaine d’égale probabilité; par conséquent la probabilité pour un point générique
M d’étre situé dans la zone comprlse entre la courbe W, et les axes OF et OF sera
exprimée par le rapport des aires:

aire OEW,FO

aire OEQFO
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x.et y étant des variables qui sont comprises entre les limites extrémes aet 4, bet B, la
probabilité de vérification des inégalités:

A>x>a B>y>b . . . . . . . (20
sera, sans aucun doute, la certitude; c’est-a-dire que ’on aura:

X(A)=YB)=O0E=0F=1 . . . . . . . (2D
et aire OEQFO=1 . . . . . . . . . . (22)

c’est-a-dire que la probabilité pour le point M d’étre a I'intérieur du contour OEW,FO
sera la valeur de cette aire qui, selon 1’égalité (19), est:

A
aire 0EW1F0=[ D(x,z)dX . . . . . . (23)

Puisque la fonction y=¢(x) est, par hypothése, une fonction uniforme pour toutes
les valeurs paramétriques que peut adopter w, les valeurs extrémes g et G de ce para-
metre seront obtenues pour deux des quatre combinaisons auxquelles peuvent donner
lieu les quatre limites des deux variables aléatoires x et y (a, 4, b et B).

Soit, a cet effet, g la valeur extréme que peut atteindre sa valeur minimum a
et soit de méme G la limite extréme du parameétre w, quand x arrive a4 sa valeur
maximum A.

Dans ces conditions, les fonctions y=¢(x, g) et y=¢(x, G) du premier quadrant
représenteront les limites des valeurs possibles de w.

Etant donné la correspondance univoque entre les points M du systeme IV et les
points M du premier systéme, la probabilité pour le point M d’étre compris dans la
zone limitée par les courbes représentatives des fonctions #(x, w;) et (x, g) et com-
patible avec les domaines de fluctuation des variables x et y, c’est-a-dire la probabilité
pour la variable w d’étre limitée par les valeurs g et w, sera la méme que celle pour le
point M d’étre situé entre W, et les axes DE et OF.

Par conséquent la probabilité pour la variable w d’étre limitée par la valeur get
la valeur particuliére wy, sera:

4
W= W(w1)=f Ox, w)dX . . . . . . . (29
De méme, pour une valeur arbitraire w de wy,
, ,
W= W(w)=f P, wdX . . . . . .. (25

Et finalement, en différenciant sous le signe intégral, on aura la probabilité pour
la variable w d’étre comprise entre une valeur générique w et une valeur w+dw qui
sera:

4 69
szdwf —a—dX % o+ 0w & ® & = 120)
En dérivant, par rapport a w, la fonction (19) deviendra:
o0 _o¢ dY_sg(dY -
ow ow ' do 8wdyy¢xw) coe e e . (2D)

En reportant cette expression dans I’équation (26), il restera enfin:

¢
dW=df dX( ) R 1
Y aaw dy y=¢(x, w) ( )
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Dans'le cas particulier auquel se référe ce rapport, les variables w, x, y sont reliées entre
elles par la relation w=x . y; c’est-a-dire que:

W
y=¢(x, w =T e e e (29)
d’ou I'on déduit:
éd 1
BwTY e (30)

D’autre part, le caractere fortuit des coefficients de correction Xx, y, z, ¢, u oblige a
étendre la domaine de fluctuation de ces variables a tout le champ réel positif:
O<<x<< o0, 0<<y<<oo, O0<Zu<<oo
conditions qui, tenant compte de I’équation (30), transforment I’égalité (28) en

P’expression:
dX (dY
dW=J ( ) s i om o om o« ow A3
ay Jy—w:x S

qui, comme (28), exprime la probabilitc pour la variable w=x .y d’étre comprise
entre w et w+dw.

L’opportunité d’opérer avec les fonctions X(x), Y(y), ..., déduites directement
de I’expérimentation, au lieu de considérer les lois gaussiennes similaires, oblige a
developper cette méthode selon des procédés graphiques, pour ne pas altérer le
caractére véritable des distributions expenmentales par des 51mp11ﬁcat10ns addition-
nelles qui pourraient diminuer leur précision.

Pour cela, il suffit de dessiner & une échelle convenable les fonctions X(x), Y(»)
ainsi que le réseau des hyperboles:

_ Wy

T X
représentatives de la condition de lien imposée aux variables w=x . y.

Suivant la méthode indiquée dans la fig. 1, a chaque valeur particuliére wy, cor-
respondra une courbe W, dans le quadrant (IV) qui délimitera un contour OF W1
dont I'aire

W

Q=| " dw=Wowy)
0

définit 'ordonnée W;=W(w;) correspondant a I’abscisse w;. En répétant ce
processus autant de fois qu’on le juge nécessaire, on peut dessiner, par points, la
fonction W=W(w). Une fois trouvée la fonction W= W(w), représentative de la
probabilité pour la variable w=x . y d’étre comprise entre une valeur O et une autre
valeur générique w, on peut déterminer la nouvelle distribution W'=W’'(w") de la
variable auxiliaire w': |
' w=w.z

ainsi que les fonctions de probabilité W'=W"(w") et I'=I'(y) correspondant aux
variables:

w=w'.u

y=w"'.t=xyztu

Puisque, selon I’équation (14), la probabilité de non-effondrement est conditionnée

par I'inégalité C>y, on en déduit que la probabilité pour un ouvrage calculé avec un
coefficient de sécurité égal a C, de s’effondrer est:

¢
F,,:l—f dl'=1-I'(C),
0
chaque fois que I'(0)=0
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I’on ne prétend pas, avec ces méthodes, établir un nouveau théoréme mathé-
matique destiné a résoudre d’une fagon académique le probléme général de la
composition des variables de probabilité. 1’on essaie seulement d'établir un critérium
pratique qui permette d’obtenir, d’une fagon suffisamment précise et générale, la loi
de distribution du produit:

y=Xx.y.z.t.u,
ou, ce qui est équivalent, la probabilité¢ d’effondrement:
r=1-rc) . . . . . . . . . (3

en fonction du coefficient de sécurité C. On peut facilement comprendre que la
fonction I', n’est pas unique, mais qu’elle varie selon les conditions de surveillance en
chantier, le type de surcharge qui agit sur la structure, la rigueur qui a présidé au
développement des calculs ou le genre de matériaux employés. Bref, elle varie avec les
diverses circonstances qui modifient les distributions individuelles correspondant aux
cinq variables énumérées. '

Dans le but de faciliter aux théoriciens la tiche fastidieuse de determiner la fonc-
tion de probabilité qui correspond aux caractéristiques particuliéres de I’ouvrage en
projet, on a calculé, au cours d’expériences que nous décrirons plus loin, les distribu-
tions individuelles relatives aux cas de plus fréquente utilisation pratique, ainsi que
les 75 différentes fonctions de probabilité I'; correspondant aux diverses combinaisons
auxquelles donnent lieu les différentes sous-classifications (calculs rigoureux, normaux
ou approximatifs, surcharges dans les maisons, les ponts ou les édifices industriels,
ouvrages métalliques, ou de béton, trés contrdlés, normalement ou peu contrdlés, etc.).

Au moyen d’un jeu d’abaques calculés a cet effet, on peut connaitre par leur
simple lecture la probabilité d’effondrement relative & un coefficient de sécurité
déterminé, dans le cas concret que 1’on envisage.

D’autre part, tout ouvrage implique le risque inhérent de son effondrement,
origine de dommages déterminés. Si ’on considére » ouvrages identiques en tous
points, avec une probabilité 1/n d’effondrement et dont les dommages totaux, pour
cette cause improbable, seraient égaux a D pour chacun, on peut espérer que, dans un
délai équivalent & la période habituelle de service de ces ouvrages, un d’entre eux
s’effondrera, et que cette catastrophe donnera lieu a des pertes humaines et matérielles
équivalentes & D. Si P est le colit du premier établissement dans I’ensemble des n
ouvrages, chacun réalisés, la perte totale sera P+ D. FEtant donné que I'on ignore
a priori quelle sera ’ouvrage qui s’effondrera, puisque tous ont la méme probabilité,
on en déduit qu’il correspond a chaque ouvrage des dommages virtuels égaux a
1/n(D+P); c’est-a-dire, équivalents au produit de la probabilité d’effondrement
I'y=1/n par les dommages totaux occasionnés, en y incluant le colit du propre ouvrage
détruit.

Dans un critérium de vaste économie nationale, la perte économique virtuellement
consécutive 4 la destruction possible de I’ouvrage est représentée suivant le raisonne-
ment précédent, par I’espérance mathématique de I'effondrement, c’est-a-dire, par la
quantité:

\ %(D+P)..........(33)

ol 1/n représente la probabilité d’effondrement, probabilité qui, antérieurement, a
été désignée par [}.

En ajoutant a cette partie le colit P du premier établissement, on constate que,
dans le sens économique général, le débours total affectué par le propriétaire et les
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sinistrés, c’est-a-dire le cofiit total que suppose pour la collectivité la construction de
I’ouvrage précité, est: ‘

P+Iyx(D+P)=R . . . . . . . . (3
ou le deuxieme terme du premier membre, c’est-a-dire la quantité I(D+P), a la
méme signification conceptuelle et quantitative qu’une prime d’assurance de la con-
struction pour couvrir les risques et les pertes de son effondrement improbable.

La solution la plus économique est par conséquent celle ou 1’expression (34) est
minimum. D’une fagon plus précise, on peut énoncer le principe précédent en
disant que, dans le champ des solutions infinies que ’on peut imaginer en faisant
varier seulement le coefficient de sécurité d’'un méme ouvrage en projet, la solution
logique parce que la plus économique, est celle pour laquelle le colt d’ensemble de
I’ouvrage en lui-méme et de la prime d’assurance des dommages possibles qui peuvent
étre occasionnés par l’effondrement (en y incluant la reconstruction de 1’ouvrage)
atteint une valeur minimum.* Une fois établi ce principe économique, le processus
opératoire qu’il convient de suivre pour la détermination du coefficient de sécurité
résulte immédiatement, comme conséquence logique, de la condition de minimum
imposée. A cet effet, on essaiera plusieurs coefficients arbitraires qui, introduits
premie¢rement dans la fonction de probabilité I, et ensuite dans la relation (34),
conduiront & une série de résultats numériques représentatifs des frais totaux d’ouvrage
assurés, dont la valeur minimum définira la solution la plus économique. Le coeffi-
cient de sécurité C, qui correspond a cette solution de valeur minimum, sera le
coefficient qu’on devra adopter pour ’ouvrage étudié, la probabilité d’effondrement
apparaissant comme une fonction dépendante de C.

Pour le développement et I’application pratique des principes et de la théorie
exposée, il est nécessaire d’établir, en se conformant le plus possible a la réalité, les
fonctions individuelles de probabilité correspondant aux cinq groupes précités, en
partant des données statistiques. Une des difficultés qui se pose ici est celle qui
résulte de la forte interférence et de la connexion étroite de certaines variables avec
d’autres. Cette dépendance mutuelle fait que les résultats expérimentaux permettent
rarement [’établissement direct d’une distribution déterminée. Ils sont trés fréquem-
ment troublés par des phénomenes de caractére étrange, soit qu’il soit impossible de
les éliminer, soit que les données publiées ne soient pas aussi adéquates que le ferait
désirer I’objet fondamental de cette étude.

Une des distributions qui peut étre déterminée directement est celle qui se rapporte
aux erreurs numériques qui s’infiltrent dans le calcul. En partant d’une révision
méticuleuse des opérations intervenant dans le calcul des efforts et des contraintes de
116 éléments différents d’ouvrages industriels, de batiments, de ponts et de tribunes,
on a pu tracer la loi de probabilité Z=2Z(z) de ces erreurs numériques qui, comme
conséquence de son caractere fortuit et libre d’erreurs systématiques, affecte une
forme nettement gaussienne, avec valeur la plus probable pour z=1.

Les lois de probabilité U(u) correspondant aux coefficients de correction « dans les
bétons et dans les aciers ont été déterminées a partir des séries étendues d’essais
réalisés sur ces matériaux par I'Institut Technique du Batiment et des Travaux Publics
de Paris pendant la période 1935-1947. De méme que dans le cas antérieur, I’expéri-
mentation groupe directement les éléments cherchés, c’est-a-dire la concentration
des résultats, autour de la valeur moyenne pour les différentes séries essayées.

Il n’en est pas de méme pour la détermination de la loi de probabilité Y(y) repré-
sentative des erreurs ou des défauts de précision dans les hypothéses de calcul. Un

* Ce principe a été formulé par le Professeur E. Torroja lors du IIéme Congrés International
des Ponts et Charpentes, a Lieége, en 1948.
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calcul parfaitement idéal est celui qui reproduit, avec une fidélité absolue, les déforma-
tions et les contraintes qui se manifesteraient rigoureusement dans un ouvrage
construit avec des matériaux exactement identiques a ceux que I’on a envisagés dans
le calcul comme €léments de départ.

Or, tout ouvrage présente certaines divergences avec les dimensions stipulées et,
dans de nombreux cas, d’importants défauts de construction qui altérent son com-
portement. Seuls les modeles a échelle réduite ou naturelle construits dans un
laboratoire et étroitement surveillés pourraient servir de point de comparaison.

Méme ainsi, il est nécessaire d’effectuer quelques corrections. Si I’on mesure des
déformations ou des fleches, les résultats peuvent étre affectés par le manque de con-
cordance entre les modules d’élasticité et de déformation supposés et ceux que le
matériau posséde réellement. Si I'on étudie les charges de rupture, leurs écarts
propres et leur hétérogénéité peuvent fausser la comparaison avec le calcul.

Pour essayer d’éliminer tous ces phénoménes perturbateurs dans I’étude présente,
on a corrigé par les méthodes mathématiques, de la fig. 1, les lois de variabilité des
modules indiqués et des résistances antérieurement déterminées, en établissant que
la loi Y(y) cherchée doit étre une fonction statistique telle que la loi Y,;(y,), ou
y1=y . m, coincide avec la fonction de probabilité donnée par I'expérimentation
quand la distribution M(m) représente la loi de variation des modules d’élasticité ou
des résistances.

Ces fonctions de probabilité Y,(y;) ont été déterminées en se basant sur les effets
exercés sur des poutres droites, sur des dalles et sur des ponts réalisés par I’Engineering
Experiment Station de I'Université d’Illinois, sur les épreuves réalisées sur le Pont de
Djedeida, sur les résultats obtenus a I’aide des modéles du Fronton Recoletos de
Madrid et sur I’expérimentation effectuée sur des ouvrages déterminés, en Suisse, par
le Eidgenossische Material Priifungs-und Versuchsanstalt fiir Industrie und Bauwesen
de Ziirich.

Mais c’est dans la détermination de la distribution 7(¢) des coefficients de correc-
tion pour des défauts introduits pendant la construetion de I'ouvrage que se manifeste
la plus grande complication.  D’un c6té, il est nécessaire de décomposer la variable
t en deux facteurs, dont I'un ¢, représente les erreurs de piquetage, de mise en place
des armatures, de liaisons défectueuses, etc. (c’est-a-dire, qui n’affectent pas la
résistance intrinséque du matériau); I'autre 7, exprime la possibilité de défaut qui
’affecte, par exemple gachage ou dosage défectueux du béton.

Pour déterminer le premier de ces facteurs, on a eu recours a ’expérimentation
réalisée sur divers ouvrages et sur des ponts suisses, par le Laboratoire Fédéral de
ce pays, en ¢éliminant par les méthodes mathématiques de composition de variables
antérieurement décrites, les causes d’erreurs dues aux imperfections possibles du
calcul développé et aux écarts entre les modules d’élasticité réels et supposés.

Le second facteur a été déterminé en se basant sur les expériences réalisées par
A. R. Collins et publiées dans le n° 3 de la Revue Road Research et sur les références
fournies par M. Billiard, de I'Institut Technique du Batiment et des Travaux Publics,
sur les résultats des essais effectués sur des ouvrages contrélés par le Bureau Securitas,
dans les années 1947 et 1948.

Ces références permettent de déterminer I'importance statistique des défauts
d’exécution dans des chantiers rigoureusement, normalement et faiblement controlés,
au moyen des combinaisons opportunes entre les lois de distribution partielles.

Enfin, la variabilité des surcharges a été déterminée en se basant sur les données
publiées par M. A. Freudenthal* et sur I’examen comparatif ‘des critériums adoptés

*¥Trans. Amer. Soc. Civ. Engrs, 112, 125, 1947.
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dans les instructions des divers pays pour fixer les surcharges estimées maxima.
Lorsque ces données n’ont pas été, méme de loin, aussi abondantes qu’on
Paurait désiré, elles ont été malgré tout suffisantes pour prouver qu’en tablant sur
elles, la théorie exposée permet d’arriver a des résultats pratiques. Bien que les
développements théoriques soient compliqués et laborieux, il a ét€ possible d’établir
des tables et des abaques auxiliaires, au moyen desquels et en fonction du prix de
I’ouvrage que I’on étudie, calculé avec un coefficient de sécurité quelconque, on peut
déduire les prix correspondants aux divers coefficients que I'on essaie. En classant
les calculs selon des cadres-types et & I’aide des tables ou abaques précités, I’ensemble
des Opérations requises dans un cas concret se réduit a des additions et des multi-
plications qui peuvent étre effectuées en peu de minutes:

Comme on devait logiquement ’espérer, les coefficients de sécurité que ’on obtlent
en appliquant ces procédés a des pieces différentes ou a des groupes fonctionnels d’un
méme ouvrage sont différents d’un élément & un autre. Leur variation dépend de la
plus grande ou de la plus petite importance de la piéce considérée, de I'influence
relative de la surcharge comparée avec son poids propre et de 'amplitude des dom-
mages qui pourraient étre occasionnés par la rupture possible.

De méme, le coefficient de sécurité propre d’un élément déterminé oud’un ensemble
de piéces de caractéristiques égales, varie quand on modifie les conditions primitives
supposées en ce qui concerne la surveillance du chantier ou quand on remplace le
calcul par un autre calcul plus rigoureux.

Le critérium économique qui sert de base a la détermination de ces coefficients de
sécurité et la subordination de ceux-ci au degré de surveillance prévu et a la précision
avec laquelle ont été effectués les calculs du projet, permettent de poser objectivement
le probléme du degré de contrdle auquel doivent étre soumis les travaux de bétonnage
et de construction, ainsi que 'opportunité d’une étude minutieuse du batiment. Une
surveillance étroite et un calcul précis supposent des réductions déterminées dans la
valeur du coefficient de sécurité et, par conséquent, une économie dans les matériaux
employés. Selon que ces économies sont supérieures ou non au surplus que 'une ou
Pautre solution exige, il est nécessaire ou anti-économique de recourrir a4 une plus
grande surveillance de I’ouvrage ou & employer un plus grand nombre d’heures a
préciser les dimensions des différents éléments.

Enfin, il convient de signaler le fait que les résultats définitifs auxquels on arrive
par l'application de cette méthode coincident avec ceux auxquels ’humanité est
parvenue lentement jusqu’a I’époque actuelle, peut-étre sans raison apparente.

On pourrait penser que cette coincidence enléve un intérét a ce théme, puisque son
étude semble servir seulement de justification a des coutumes établies selon un
critérium purement subjectif. Néanmoins, cette méme conclusion sert a mettre en
valeur les résultats; en effet d’une part, elle apporte garantie a la méthode elle-méme
et d’autre part, elle indique, dans ’ordre, des chiffres que les techniciens utilisent,
’opportunité d’introduire des variations bien définies d’un cas a I’autre, en fonction
des différentes variables. Ces modifications n’avaient pu &tre appréciées et mises en
valeur jusqu’a présent et on ne pouvait seulement qu’en avoir une intuition vague, sans
possibilité de les libérer de dangereux critériums personnels, ni de les utiliser avec la
précision raisonnée que 1’économie et la sécurité des ouvrages exigent en méme temps.

Il ne convient pas ici et nous ne disposons pas de la place suffisante, d’exposer le
développement complet de la théorie, ni les résultats numériques que I'on peut
obtenir, puisqu’ils sont différents pour chaque cas concret, avec des variations qui
atteignent aisément par exemple 4209, et mé&me plus et aussi parce que les auteurs
espérent pouvoir présenter bientdt un mémoire assez long en anglais.
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Ils ne prétendent pas que la présente étude épuise la question ou lui apporte une
solution définitive. Ils estiment seulement avoir établi un processus permettant de
déterminer le coefficient de sécurité sur des bases objectives et de résoudre ainsi le
probléme-en fournissant des résultats d’intérét pratiqué. On peut en déduire des
directives susceptibles d’orienter les recherches ultérieures, dans les multiples aspects
du probléme. Les auteurs attirent enfin ’attention sur l'intérét qu’il y a a pousser -
I’étude statistique de tous les facteurs qui interviennent ici, c’est-a-dire de toutes les
causes d’erreurs, de défauts ou d’autres, dont la conjonction est susceptible de produire
I’effondrement des ouvrages.

Résumé

Le but principal de cette étude est I’établissement d’une méthode de calcul générale
qui permette d’arriver a connaitre la valeur numérique du coefficient de sécurité dans
un cas déterminé. Ce résultat doit étre complétement dégagé de toute subjectivité et
doit dépendre exclusivement des données concrétes qui caractérisent ’ouvrage projeté.

Le développement du probléme a été établi sur des principes mathématiques. Les
lois de la probabilité, déterminées sur la base de I’expérimentation existante, sont
combinées en vue de la détermination de la probabilité d’effondrement.

La condition de prix minimum de I’ouvrage assuré suppose une nouvelle équation
qui, associée a la précédente, permette de déterminer la valeur la plus appropriée du
coefficient de sécurité, compatible avec la sécurité nécessaire et exprimée par la proba-
bilité d’effondrement qui est ainsi également définie.

Summary

The main purpose of this investigation is to establish a general method of calcula-
tion which, in any particular case, will enable the determination of the numerical value
of the factor of safety. The calculated value obtained must be free from arbitrary
or subjective factors. It should be entirely derived from the factual circumstances
appropriate to the particular work or design.

The problem has been approached mathematically. Laws of probability, based
on existing experimental data, have been suitably applied and manipulated to work
out the probability of a structural failure.

A further equation can be formulated from the condition that the insured cost of
the work shall be a minimum. This condition, in conjunction with accident proba-
bility, enables the most appropriate value for the design safety factor to be calculated,
compatible with a suitable margin of safety. This safety margin will bg expressed by
the accident probability, which, by this procedure, will become automatically defined.

Zusammenfassung

Die vorliegende Studie macht sich zur Aufgabe eine allgemeine Berechnungsweise
aufzustellen, die zu einer ziffernméssigen Festsetzung des Sicherheitsbeiwertes fiir
einen gegebenen Fall fiihrt. Diese Festsetzung muss in jeder Hinsicht objektiv sein
und darf sich nur auf konkrete Angaben stiitzen, die den Besonderheiten des frag-
lichen Entwurfes oder Bauvorhabens entsprechen.

Diese Aufgabe wird auf mathematischer Grundlage entwickelt. Die aus vor-
handenen Erfahrungen und Versuchen abgeleiteten Gesetze der Wahrscheinlichkeit
werden miteinander in Verbindung gebracht und zur Bestimmung der Wahrschein-
lichkeit des Versagens eines Bauwerks herangezogen.

Die notwendlge Festsetzung eines Mindestgestehungspreises fiir ein ver51chertes
Bauwerk bedingt eine weitere Gleichung, welche zusammen mit der vorangehenden, die
Bestimmung des geeignetsten Sicherheitsbeiwertes im Einklang mit der erforderlichen
Sicherheit ermdglicht, der somit gewissermassen automatisch zum Ausdruck kommt.
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INTRODUCTION

L’évolution dans le domaine constructif entraine automatiquement un progrés
des méthodes de calcul ou, plus généralement, des méthodes d’investigation du jeu
des forces.

Ce progrés, cependant, n’accuse pas une allure réguliére et ne suit I’évolution des
constructions qu’avec un certain décalage. Une des raisons, et non des moindres, est
le fait que I'ingénieur est placé, parfois, devant des problémes que I’analyse mathé-
matique rigoureuse proprement dite n’est pas a8 méme de résoudre.

Aussi bien, I'ingénieur se trouve dans I’obligation, aujourd’hui plus que jamais,
de rechercher de nouveaux moyens d’investigation et d’établir des méthodes et des
critéres qui, sans avoir le caractére de solutions rigoureuses au sens mathématique, ne
garantissent pas moins une approximation suffisamment exacte du jeu des forces a
déterminer.

Cette constatation n’enléve rien de leur valeur, nous tenons a y insister particuliére-
ment, aux solutions mathématiques rigoureuses, quand elles sont possibles et acces-
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sibles, tant qu’elles n’exigent pas une ampleur de calculs disproportionnée avec le
but & atteindre. Les solutions rigoureuses de la théorie de I’élasticité s’imposent,
dans un grand nombre de cas, par trois avantages marqués:

Elles sont d’une portée générale, par opposition, p. ex., aux méthodes
expérimentales qui ne traitent que des cas particuliers; -

Elles fournissent une image étonnament fidéle du jeu des forces, pourvu que les
charges de I’ouvrage correspondent a son domaine d’utilisation.

Elles servent de critére pour juger de l'efficacité des méthodes de calcul ap-
prochées et permettent d’en déterminer le degré d’approximation aussi bien que
I’étendue du domaine d’application.

Ces méthodes d’analyse mathématique, cependant, ne sont pas a méme, a elles
seules, de résoudre d’une maniére suffisamment simple de multiples problémes
nouveaux, aussi bien pour les constructions métalliques qu’avant tout dans le domaine
du béton armé.

Dés que le probléme sort du cadre simple et classique d’un “cas fondamental,”
I’ingénieur est amené a considérer des moyens d’investigation mieux adaptés a son
but. Sans vouloir établir des catégories trop rigides, nous en citerons trois:

Les méthodes numériques et graphiques de la statique appliquée;
Les méthodes de calculs approchés;
Les méthodes expérimentales.

Les deux premiéres ressortissent, en fin de compte, au domaine de ’analyse mathé-
matique, mais elles différent des méthodes classiques a solution rigoureuse aussi bien
par leur portée que par leur technique particuliére de calcul. Il en est dont ’origine
se situe, non pas dans les mathématiques, mais dans la statique elle-méme, et dont
I'idée fondamentale, d’essence purement statique, donne lieu a des méthodes de
calcul nouvelles. Ceci revient a dire que, dans certains cas, 1'ingénieur se substitue
au mathématicien et crée, en quelque sorte, son propre langage mathématique.

Quant aux méthodes expérimentales, dont 1’essor a é€té remarquable depuis un
certain nombre d’années, elles remplacent, dans une large mesure, le calcul par
I’observation et présentent, par l1a-méme, des possibilités d’investigation d’une tout
autre nature.

Les méthodes expérimentales sur modéles jouissent actuellement d’une grande
faveur qui, cependant, parait exagérée dans la mesure ol la tendance de les considérer
comme moyen d’investigation de portée générale se fait jour. En effet, les méthodes
expérimentales sont précisément caractérisées par le fait que leur domaine d’applica-
tion est, en général, limité a la résolution de cas particuliers.

Nous ne pensons pas qu’il soit utile de créer une opposition entre les méthodes
expérimentales et analytiques, si différentes I'une de I'autre, et qui, & cause de la
diversité de leurs possibilités, sont prédestinées a se compléter.

L’ingénieur ne peut que se louer de cette diversité de moyens d’investigation qui
sont a sa disposition et dont le développement ne fait que croitre. Il peut choisir
judicieusement la méthode appropriée a chaque probléme et ne craindra pas, le cas
échéant, d’associer la méthode analytique a celle expérimentale, ce qui lui permettra
d’établir des comparaisons d’une grande utilité et d’assesoir ses résultats sur une base
d’autant plus solide qu’elle est I’effet d’'un recoupement par des voies essentiellement
différentes.

Nous ne voudrions pas omettre de souligner ici la valeur considérable des
méthodes expérimentales sur les ouvrages terminés. Sans faire partie des méthodes
de calcul proprement dites, leur utilité est double: d’une part, elles permettent une
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vérification des hypotheses et bases de calcul et, d’autre part, elles fournissent des
indications précieuses et indispensables pour mieux adapter les méthodes d’investiga-
tion aux ouvrages futurs.

Les contributions au théme AIl ne donnent pas une image trés compléte du
développement des méthodes de calcul, ce qui, d’ailleurs, n’enléve rien a leur valeur.
Il y en a, parmi elles, qui illustrent trés clairement certains points particuliers fort
intéressants auxquels nous nous attacherons dans les chapitres suivants.

Que les auteurs des contributions veuillent bien trouver ici ’expression de notre
gratitude qui va également a tous ceux qui, lors de la discussion du théme AII au
Congrés, voudront bien témoigner leur intérét a ce domaine si fondamental et captivant
de la science de I'ingénieur,

1. METHODES ANALYTIQUES DE LA THEORIE DE L’ELASTICITE ET DE LA PLASTICITE

Dans notre Rapport général sur les dalles, voltes et parois en béton armé, lors du
Congrés de Liége en 1948, nous avions donné un apergu sur le développement de la
théorie de 1'élasticité bidimensionnelle et formulé quelques conclusions quant aux
méthodes analytiques. Nous indiquerons trés bricvement quelques points importants
de I’évolution de la théorie de I’élasticité sans prétendre épuiser le sujet.

Choix approprié du systéme de coordonnées

Il est essentiel de souligner I'importance fondamentale que présente une adaptation
judicieuse du systéme de coordonnées a la résolution des problémes de la théorie de
I’élasticité, définis par une ou plusieurs équations aux dérivées partielles accompagnées
de conditions aux limites. Il s’agit, en ’occurence, d’exprimer le contour d’un
domaine par une valeur constante des coordonnées. C’est ainsi que les coordonnées
polaires ont été utilisées dés le début pour les problémes se rapportant & la circonfé-
rence, a I’anneau circulaire, au secteur circulaire, etc.; ils forment un cas particulier de
la grande famille des coordonnées curvilignes a trajectoires orthogonales, parmi
lesquelles nous citerons encore les coordonnées elliptiques-hyperboliques.

Des progreés ont été réalisés depuis quelques années par I'introduction de nouveaux
systémes de coordonnées. Citons les coordonnées bipolaires introduites par Foppl
et permettant de résoudre les problémes ou figurent I’anneau circulaire excentrique,
le demi-plan troué d’un cercle, etc.

Le Professeur Favre et I’auteur de ces lignes ont introduit et généralisé I’emploi
des coordonnées cartésiennes obliques pour les dalles et parois minces obliques sur
la base des équations de la théorie de I’¢élasticité convenablement transformées.

Citons également les ““coordonnées polaires généralisées’ de Grammel fournissant
une approximation du contour des dalles et parois carrées par une courbe continue,
défine par un seul paramétre.

Il est clair que I'introduction de nouveaux systémes de coordonnées est appelée, a
I’avenir, & traiter des problémes aujourd’hui encore insolubles.

Orthogonalisation de systémes de fonctions

Les fonctions orthogonales, en particulier les fonctions trigonométriques, sont un
moyen efficace pour établir des solutions rigoureuses. Les progrés dans ce domaine
restent trés modestes, I’orthogonalisation de familles de fonctions étant une opération
trés laborieuse. :

Malgré cela, il est utile d’insister sur I’avantage qu’il y aurait d’établir des familles
de fonctions orthogonales une fois pour toutes en indiquant sous formes de tableaux
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les coefficients d’orthogonalisation. Avec les machines a calculer actuelles, I'ampleur
d’un tel travail peut étre limité a des proportions raisonnables.

Emploi des imaginaires

Dans les probléemes de dalles encastrées, de parois minces a bords libres, de
problémes de valeurs propres, etc., on est souvent conduit a des solutions rigoureuses
en donnant des valeurs complexes a certains paramétres et en utilisant comme
solutions les parties réelles et imaginaires des fonctions complexes ainsi établies.

C’est 12 une fagon fort originale de satisfaire a certaines conditions aux limites
qui exigent que I'intégrale ainsi que certaines dérivées d’ordre pair et impair s’annullent
sur les bords. On est conduit, pour les valeurs propres des paramétres, a des équa-
tions transcendantes qui ont I’avantage d’étre résolues une fois pour toutes pour le
genre de probléemes considéré.

Cette idée est appelée a étre généralisée a d’autres problémes.

Problémes particuliers

Le calcul des dalles a été systématisé par M. Pucher qui vient de publier un recueil
contenant des tables et planches des surfaces d’influence des grandeurs caractéristiques.
Ces calculs ont été établis une fois pour toutes et permettent de prendre facilement en
compte un nombre quelconque de charges concentrées.

Des progrés ont été en outre réalisés dans la solution de problémes se rapportant
aux dalles, parois et voiles minces. Il s’agit avant tout de cas particuliers d’importance
et de portée limitée.

Contributions

M. T. van Langendonck, dans son mémoire ““L’emploi de fonctions orthogonales
spéciales pour la solution du probléme de la torsion,” établit I'intégrale de 1’équation
de Laplace au moyen de séries de puissances (polyndmes harmoniques) et déduit une
famille de fonctions orthogonales de ces polyndmes pour le contour considéré. Cette
méthode est appliquée au probléme de la torsion des sections en losange ainsi qu’a la
recherche des contraintes de cisaillement dans les piéces fléchies.

La méthode est efficace; il elit cependant été intéressant que I'auteur tire des
conclusions de son procédé et qu’il indiquét de maniére plus détaillée la généralisation
a laquelle il fait allusion pour résoudre les problémes plus généraux soumis & ’équation -
biharmonique du quatriéme ordre.

M. A. Kuhelj publie un mémoire intitulé ‘“Beitrag zur Elastizititstheorie der
Schalen™ et établit les équations fondamentales de la théorie des voiles minces sur la
base trés générale de la géométrie différentielle classique en utilisant 1’écriture
vectorielle. Les premiére et deuxiéme *‘formes fondamentales” de Gauss y jouent
un rdle essentiel. L’auteur retrouve les expressions pour les déformations et les
efforts intérieurs et établit des formules approchées dans le cas de constructions trés
minces.

L’intérét principal de ce travail réside dans le fait que la théorie des voiles minces
est mise en rapport direct avec la géométrie, ce qui permet de prendre en compte de
maniére immédiate certaines propriétés géométrique caractéristiques des voiles
considérés.

M. A. Holmberg présente, dans son mémoire “An approximate method for
treatment of some plate bending problems,” deux exemples de dalles rectangulaires
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traités par un calcul approché qui consiste a ne satisfaire qu’en un point du bord aux
conditions aux limites. '

2. METHODES NUMERIQUES DANS LA STATIQUE APPLIQUEE

Pour les raisons que nous avons exposées dans I'Introduction, il est indispensable
que I'ingénieur dispose, a c6té des méthodes de I’analyse mathématique, de méthodes
de calcul numériques adaptées au probléme particulier a résoudre. Il suffit de con-
sidérer le calcul d’une poutre, dont le moment d’inertie ainsi que les charges sont
discontinus ou varient suivant des lois qui ne sont pas susceptibles d’une interprétation
mathématique simple, pour se rendre compte que les moyens habituels de I’analyse
mathématique ne sont plus adaptés au probléme.

On est dés lors, en songeant aux discontinuités des données du probléme, conduit
a des méthodes de calcul elles-mémes ““de caractére discontinu,” en tout premier lieu
au ‘“‘calcul aux différences finies,” ou les expressions différentielles sont remplacées
par celles définies avant le passage a la limite.

Nous reviendrons au théme 3 a des applications de ce calcul qui peut rendre de
précieux services a I'ingénieur a condition qu’il soit complété par des considérations
sur ’exactitude du résultat.

Si le calcul aux différences, en tant que calcul analytique approché, peut étre
considéré comme une méthode numérique adaptée a certains problémes de la statique
appliquée, il en est cependant d’autres dont la caractéristique essentielle est que leur
origine est située dans la statique appliquée. Leur technique de calcul découle des
notions fondamentales de la statique et, pour cette raison, ces méthodes présentent
un haut degré d’adaptation aux problémes considérés.

Le Prof. Stiissi de ’E.P.F. a Zurich a créé une méthode de calcul basée sur
“I’équation du polygone funiculaire” et en a démontré I’efficacité par un grand nombre
d’applications trés variées de problémes aux limites. L’auteur part de la relation
générale (relation entre une fonction et sa deuxiéme dérivée) qui permet de déterminer
le polygone funiculaire pour un systéme de charges données, ce qui conduit a un
systéme d’équations linéaires ternaires dont la résolution numérique définit le polygone
funiculaire cherché.

L’idée est généralisée pour des charges continues et discontinues par I'introduction
de ‘“‘charges de neeuds™ qui entrainent un haut degré d’exactitude du résultart final.

Si la méthode du Prof. Stiissi présente certaines analogies avec le calcul aux
différences, il y a cependant un point fondamental qui la caractérise et la distingue
clairement: la méthode, basée sur la construction du polygone funiculaire, est
rigoureusement exacte et les équations qui en découlent représentent le probléme tel
quel, tandis que le calcul aux différences ne donne, par définition, qu’une solution
approchée.

Indiquons les applications aux problémes suivants:

Résolution de I’équation différentielle générale du second ordre, avec différents
cas de conditions aux limites (problémes de déformations du second ordre,
problémes d’oscillations, problémes de valeurs propres);

Résolution de I’équation différentielle du quatriéme ordre par combinaison de
deux polygones funiculaires;

Application aux dalles et parois par combinaison de deux groupes de polygones
funiculaires.

Par son haut degré d’exactitude et par son adaption aux problémes statiques
dans des conditions trés générales, la méthode du polygone funiculaire est appelée a

~
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_rendre de. grands services 4 I'ingénieur. Elle peut étre qualifiée d’autochtone,
puisqu’aussi bien son idée fondamentale que sa technique de calcul est inspirée de
la statique appliquée exclusivement.

M. W. J. Van der Eb, dans sa contribution ““Some special cases of buckling,”
traite deux cas de flambement, I’'un de poutres a barres accouplées, ['autre de poutres
supportées latéralement par des appuis élastiques. Au moyen du calcul aux diffé-
rences, ’auteur établit des tableaux et des graphiques pour les applications pratiques.

3. AUTRES METHODES (METHODES DE CALCULS APPROCHES, METHODE DE RELAXATION,
CALCUL A LA RUPTURE, STATIQUE EXPERIMENTALE, ETC.)

Méthodes de calculs approchés

L’emploi des méthodes de calculs approchés, par opposition aux méthodes dites
rigoureuses, est souvent chose trés délicate. Il est nécessaire de donner & une telle
méthode des bases solides, ce qui exige I’évaluation de I’ordre de grandeur de I’approxi-
mation aussi bien que la détermination de son domaine d’application. Elle ne sera
efficace qu’en mesure ol il sera possible de pousser I'approximation aussi loin que
I’exige la nature du probléme.

Ces considérations sur la qualité de I’approximation sont d’autant plus nécessaires
que les méthodes de calculs approchés sont indispensables la ou les solutions rigoureuses
restent encore inaccessibles.

Ces méthodes sont de nature fort variée. Des progrés ont été réalisés pour
quelques problémes particuliers de dalles, de parois et de voiles minces, pour des
problémes particuliers de stabilité (flambement, déversement), ou I'on constate un
emploi fréquent du calcul aux différences.

Citons spécialement le développement remarquable de la méthode de relaxation,
appliquée a la résolution de systémes d’équations linéaires de la statique ou a ceux
obtenus par le calcul aux différences. Cette méthode, due a Southwell, posséde des
avantages marqués sur les autres méthodes procédant par approximations successives
(voir le mémoire de I’auteur sur le calcul des barrages-poids).

On peut adapter la méthode de relaxation a diverses structures de systémes d’equa-
tions linéaires et établir dans chaque cas la technique de calcul appropriée. Le point
le plus important, mais aussi le plus délicat, est celui de la convergence rapide du
calcul. De sérieux progrés ont été réalisés précisément dans cette direction, de méme
que dans I’adaptation de la méthode aux équations harmoniques et biharmoniques
de la théorie de I’élasticité, transformées par le calcul aux différences en systémes
d’équations linéaires de structure spéciale et caractéristique.

De nouvelles possibilités de calculs numériques ont été créées par les machines a
calculer modernes, qui permettent d’affronter actuellement la solution numérique de
problémes inaccessibles aux moyens habituels. Leurs possibilités sont loin d’étre
épuisées par les solutions de cas particuliers. Nous voyons, au contraire, les machines
a calculer mises au service de problémes plus généraux, dont les solutions, calculées
une fois pour toutes et mises en tables, constitueraient en quelque sorte des archives
auxquelles I'ingénieur pourrait se référer a tout instant. Citons comme exemples:
I'orthogonalisation de certaines familles de fonctions, I’élaboration numérique de
certaines fonctions fondamentales, I’établissement systématique de fonctions d'in-
fluence générales ou en rapport avec le calcul de relaxation, et bien d’autres!

L’auteur de ce rapport traite, dans son mémoire ““ L’influence de I’élasticité du sol
sur les contraintes des barrages-poids,” le probléme délicat de I’altération des con-
traintes dans les barrages-poids et le sol de fondation quand I’élasticité de ce dernier
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est prise en compte. Renongant a élaborer numériquement la solution mathématique
rigoureuse qui met en connexion un triangle et le demi-plan, I'auteur exprime les
équations du probléme au moyen du calcul aux différences et utilise la méthode de
relaxation, dont la technique a été adaptée a la structure particuliere des équations
biharmoniques. Les résultats soulignent 'importance que prend I’élasticité du sol
de fondation dans la répartition des contraintes et démontrent I’efficacité de méthodes
numeériques appropriées a des problémes inaccessibles & toute autre solution analytique.

M. C. D. Williams, dans “ The limit of stress in the compression flanges of beams,”
indique une méthode de calcul pour déterminer la limite des compressions dans les
ailes de poutres, méthode appelée a remplacer les résultats empiriques. Partant d’une
nouvelle définition de I’état d’équilibre stable, ’auteur procéde par approximations
successives conduisant a la ligne élastique caractéristique. La distribution des
charges sur la poutre, le mode de fixation des extrémités ainsi que les variations de la
section de la poutre sont pris en compte.

M. K. Bentley présente une €tude, * Lateral stability of beams,” sur le déversement
des poutres. Il généralise le probléme en ne négligeant pas le rapport des moments
d’inertie des axes principaux et en traitant également le cas de déformations plastiques.
L’auteur établit, pour différents cas d’encastrement, les formules pour les charges
critiques de déversement et montre que celles-ci englobent les résultats connus établis
dans des conditions moins rigoureuses. Il conclut a la concordance des résultats
théoriques et expérimentaux décrits en fin de mémoire.

M. J. Dutheil remplace, dans son mémoire ‘“ Théorie de I'instabilité par divergence
d’équilibre,” la notion classique de * bifurcation d’équilibre” par celle de *““divergence
d’équilibre.” L’auteur insiste sur le fait que la définition classique d’instabilité a un
caractére abstrait et ne tient pas compte des conditions réelles. Il étudie le flambement
et le déversement en introduisant une notion nouvelle, la *“préfléche conventionnelle,”
qu’il définit par plusieurs conditions, La sécurité au flambement est déterminée par
une probabilité. L’auteur obtient, par sa théorie, un raccordement du flambement a
la flexion simple et raméne le déversement au flambement en milieu élastique. La
vérification expérimentale établit une concordance satisfaisante entre la théorie et les
nombreux essais effectués au Laboratoire de I'Institut Technique du Batiment et des
Travaux Publics.

Dans “Method of elastic compatibility in the solution of beams of finite length
on elastic foundations,” M. S. P. Banerjee expose une méthode de calcul approché
pour les poutres sur sol élastique en superposant deux systémes de contraintes, le
premier linéaire, se rapportant & la poutre supposée rigide, le second (contraintes
‘“‘additionnelles’’) tenant compte de I’élasticité de la poutre. L’auteur obtient des
expressions simples pour les fléches et les moments de flexion et illustre d’exemples
sa méthode de superposition.

M. R. Pascal présente un mémoire, *‘ Etude théorique, expérimentale et pratique
des encastrements de flexion,” dans lequel il part des équations de Boussinesq pour
une charge concentrée au bord du demi-espace élastique. Il généralise ses calculs a
I’étude de I’encastrement d’un solide prismatique dans le demi-espace et compare ses
résultats a des essais sur caoutchouc et sur ““plexiglas.” L’auteur analyse la notion
d’encastrement et traite des exemples choisis dans le domaine du génie civil.

Statique expérimentale ¥

Nous avons essayé, dans I’Introduction, de délimiter le rdle que joue la statique
expérimentale comme moyen d’investigation du jeu des forces dans les ouvrages.
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Cette méthode, pourtant ancienne, a pris ces derniéres années un essor remarquable
et se trouve étre, aujourd’hui, un auxiliaire précieux de I'ingénieur.

L’évolution dans le domaine des essais sur modéles bénéficie avant tout des progrés
réalisés dans le perfectionnement des méthodes et des instruments de mesure. De
plus en plus, les mesures par moyens mécaniques sont remplacées par des méthodes
électrique et optique.

D’autre part, les ouvrages réfractaires aux méthodes de calcul sont utilisés sur une
grande échelle et exigent des recherches particuliéres.

A c6té des méthodes et des instruments de mesure, le matériau utilisé & la confection
du modéle joue un role prépondérant par ses propriétés élastiques et plastiques, par
les variations de ces propriétés en fonction du temps ainsi que par les valeurs absolues
de ses constantes d’élasticité caractéristiques.

Le point le plus délicat reste I’interprétation adéquate des mesures permettant de
tirer des conclusions suffisamment sfires quant au comportement de ’ouvrage terminé.

M. M. Rocha, dans son mémoire ‘‘ General review of the present status of the
experimental method of structural design,” présente une vue d’ensemble sur I’état
actuel des méthodes de la statique expérimentale par essais sur modéles. Aprés une
comparaison sur l’utilité respective des méthodes analytiques et expérimentales,
I’auteur établit, de maniére trés générale, les bases de la similitude mécanique et for-
mule les lois qui font passer du modeéle a I’original. Des indications utiles sont
données sur les matériaux appropriés 4 la confection des modéles, sur les échelles
optimales, sur la maniére d’appliquer les surcharges, sur les mesures effectuces, etc.

Les conclusions de M. Rocha ont un grand intérét. Il insiste sur le fait que les
questions de sécurité peuvent étre étudiée sur le modéle, les déformations pouvant
aisément étre poussées au dela de la limite élastique et reléve que, dans certains cas,
I’échelle peut étre choisie trés réduite, ce qui entraine une économie appréciable.

L’auteur donne quelques exemples trés suggestifs des méthodes variées qui sont a
sa disposition et qui requiérent, il ne faut pas I’oublier, une installation et un outillage
trés perfectionnés au service de spécialistes particuliérement qualifiés.

Sachons gré 2 M. Rocha de son exposé si détaillé et du fait qu’il préconise, comme
nous nous plaisions a y insister dans I’Introduction, une synthése entre les méthodes
analytique et expérimentale.

MM. M. Rocha et F. Borges traitent trois exemples caracterlsthues de la méthode
par photoélasticité dans leur mémoire “ Photoelasticity applied to structural design.”
Cette méthode expérimentale, qui donne directement les trajectoires des contraintes
principales, est particulierement adaptée a I’investigation d’éléments de béton armé,
ou les armatures suivent les trajectoires des contraintes de traction.

Bien que limitée aux états de contraintes bidimensionnels, la méthode photo-
¢élastique peut rendre de précieux services.

M. C. Benito, dans son mémoire ‘‘ Nouvelle méthode d’analyse tridimensionnelle
sur modeles réduits,” expose une méthode originale appliquée a des modeles en
gélatine. Le modéle, chargé a 20° C., est refroidi a 2° C. et coupé en tranches. En
revenant a la température initiale, on mesure les déformations *‘libérées™ et on en
déduit les contraintes.

Deux exemples illustrent le procédé qui s’avére des plus délicats et exige les soins
les plus minutieux.

M. J. G. Hageman présente, dans ‘‘ Experimental and theoretical investigation of
a flat slab floor,” les résultats d’une analyse expérimentale trés soignée sur un modéle
de dalle-champignon et réalise ainsi un veeu exprimé lors du Congreés de Liége en 1948.
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L’auteur base ses essais sur la récente théorie de M. A. M. Haas et expose en détail la
technique des essais.

Dans ses conclusions, 'auteur indique les écarts avec la théorie et avec d’autres
essais du méme genre et montre, entre autre, que l'influence d’une charge isolée au
centre d’'un panneau ne va pas au dela du panneau considéré.

Les résultats de M. Hageman sont établis avec beaucoup de soins et ses indications
présentent un intérét indéniable pour le constructeur de dalles-champignon.

Dans le méme ordre d’idées, MM. Kist, Bouma et Hageman donnent, dans leur
exposé ‘““Measurement of strains in a slab subjected to a concentrated load,” les
résultats d’essais sur une dalle chargée de maniére concentrée et indiquent en par-
ticulier I’importance de la surface d’appui de la charge sur sa répartition, probléme
particuliérement important pour les tabliers de ponts.

CONCLUSIONS

Dans ce rapport général, nous nous sommes assignés la tiche de dégager les grandes
lignes de I’évolution des méthodes de calcul ou, plus généralement, des méthodes
d’investigation du jeu des forces dans les ouvrages.

On constatera que des progres sensibles ont été réalisés sur différents points et que
I’évolution des méthodes d'investigation est en plein essor.

Cette évolution peut étre, dans ses grandes lignes, caractérisée par un fait fonda-
.mental: elle s’oriente dans le sens d’une adaptation de plus en plus parfaite des
moyens d’investigation aux problémes considérés. Il s’agit 1a d’un processus d’adé-
quation qui va en s’intensifiant 3 mesure que le nombre et la complexité des nouveaux
problémes augmentent.

L’ingénieur doit s’efforcer de garder une vue d’ensemble sur la diversité des moyens
a sa disposition. Il les coordonnera, le cas échéant, et évitera la spécialisation ou
il serait conduit par I’emploi abusif et unilatéral d’une seule et unique méthode.

C’est 13, a notre avis, la seule fagon possible de donner aux méthodes d’investiga-
tion du génie civil leur vraie valeur et de garantir, sur la base de la plus large objectivité,
leur évolution et leurs progrés futurs.

Résumé

Aprés une introduction ou les différentes méthodes de calcul sont caractérisées et
comparées dans ce qu’elles ont d’essentiel, ’auteur traite, dans les chapitres suivants,
de I’évolution et des progrés réalisés dans les trois grands domaines définis par les
sous-titres du théme AII. Les grandes lignes aussi bien que les points particuliers,
ou les progrés ont été le plus sensibles, sont mis en évidence et les contributions au
théme AII sont sommairement analysées.

Le rapport se termine par des conclusions d’une portée générale.

Summary

After an introduction in which different methods of calculation are described and
compared in their essential features, the reporter considers the development and
progress made in the principal fields coming under the sub-titles of theme AIl. Im-
portance is attached to the broad lines of development, as well as to those points
which allow progress to be more clearly recognised. A short appreciation is given
of the contributions submitted under theme AII.

The report concludes with some deductions of a general nature.
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Zusammenfassung

Nach einer Einfiihrung, in der die verschiedenen Berechnungsmethoden in ihren
wesentlichen Ziigen beschrieben und verglichen werden, behandelt der Verfasser in
den folgenden Abschnitten die Entwicklung und die Fortschritte in den durch die
Untertitel des Themas AII bezeichneten Hauptgebieten. Es wird Gewicht auf die
grossen Linien, wie auch auf diejenigen Punkte der Entwicklung gelegt, welche die
Fortschritte besonders deutlich erkennen lassen. Die Beitrige zum Thema AII
werden kurz gewiirdigt.

Der Bericht schliesst mit einigen Folgerungen von allgemeiner Tragweite.
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L’emploi de fonctions orthogonales spéciales pour la solution du
probléme de la torsion )

The use of special orthogonal functions for solving the torsion
problem

Anwendung von besonderen orthogonalen Funktionen fiir die Losung
von Torsionsproblemen

Pror. TELEMACO VAN LANGENDONCK

Ecole Polytechnique, Université de Sao Paulo, Brésil

GENERALITES
Le probléme de la torsion d’une piéce prismatique de section pleine, S, consiste

a resoudre I’équation aux dérivées partielles:

62w+82w

ox2 "oy
avec w=0 sur le contour. Les composantes de la contrainte de cisaillement parall¢les
aux axes des x et des y sont données par

owT owT

-2 dans S. . . . . . . . (1

sz:_a; 7’-, ‘T),z= '—a 7' . . . . . . . . (2)
ol T est le moment de torsion et J, est le “moment d’inertie a la torsion”:
J,=2ffwdxdy B )
s

avec lequel on peut calculer I'angle 8 de torsion, par unité de longueur de la piece
(G est le coefficient d’élasticité transversale):
T

b=gr « - @

% B
Si I'on pose z=w+x -2|—y 5w s ® & ®m 8 & ¥ & 3)
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la condition (1) devient:

0%z 822_0 6
: ax : by
qui est I’équation de Laplace, avec z=—p (7)

sur le contour.*
La solution générale de I’équation (6) est

z=fi(x+)+Lx—iy) . . . . . o . L. (8)
qu’on peut écrire, en developpant en série de puissances: »
z-_~?a”m(x+iy)"'+Zb”,,,(x—iy)"' T )
‘m_=(J) m=0

ou les coefficients a”,, et b”,, sont déterminés par la condition au contour (7).
On obtient la solution réelle du probléme en combinant les termes des séries (9)
de fagon a avoir:

o0

'_Z , G ip) - (x—ip)™ i D) — (=)
= 2o 2 + > b, -
m=0

2i

m=0

qu’on peut écrire:

z=za’mUm+Zb’me R ¢ 1)

m=0 m=0
ou Up=3%[(x+iy)"+(x—iy)"] et V,,=%i[(x+iy)"—(x—iy)"] sont les expressions trés
connues: :

Upy=1 Vo=0

U1=x Vl =y
U,=x2—y2 Vs=2x%
Us=x3—3x)2 Vi=3yx2—y3
Uy=x*—6x2p24p* Vi=4x3y—4x)3

lesquelles sont des polynomes homogenes de degré m. Par suite, I’égalité (10) ne
perdra pas sa généralité si on groupe les U, et les V,, de fagon & avoir, en posant
W2m= Um’ I/V2n1-}»1=1/ma C’2m=a’m et C’2m+1=b'ml

=
Z=ZC’me=Zam(Clo, mWO+C'1,mW1+ « o

m=0 m=0 0
+C,m-—1: me—1+ WM)=ZaMPm P (1 1)
m=0

les coefficients ¢’y ,, pouvant étre des nombres réels finis quelconques. On peut les

n=m

choisir de fagon que les polynémes Z ¢'n, mWn (avec ¢’y m=1) soient—quand on

n=0
* Dans quelques cas, il serait plus convenable de poser
z=w+x2 ou z=w+)?
- Péquation (6) restant valable, avec z=x2 ou z=y2 sur le contour.
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change, dans W,, y en f(x)—des fonctions orthogonales pour le contour C caractérisé
par I’équation y=f(x). On aura:

fP,,Rds:i:O et, si mn, fpmp,,ds=o 12
C C

Pour que z satisfasse a la condition (7) au contour, il faut que

242 =
(x +y) =ZamP,,, N (),
2 Jy—rw

m=0
c’est-a-dire, qu’il faut développer I’expression du premier membre en fonction des P,
ce qui est possible, car les P, sont des fonctions orthogonales. En conséquence, les
coefficients a,, resteront determinés et la valeur de z sera connue (11); on pourra,
alors, calculer w (5) et J, (3. En fait, d’aprés la théorie des séries de Fourier, on

aura. * 42 2
J p -;—y P,ds
PR . IS (14)
f P2,.ds
C

La solution obtenue convergira peut-étre quelquefois plus lentement que la
solution qu’on pourrait obtenir avec le procédé Ritz-Rayleigh; mais elle présente
I’avantage de dispenser de la résolution d’équations simultanées pour le calcul des
coefficients et de donner la solution avec une précision croissante avec le nombre des
termes qu’on prend, et qui converge en moyenne vers la solution exacte, en vertu de
la propriété des séries de fonctions orthogonales.

La solution décrite s’applique, évideminent, a tous les problémes de la physique
mathématique qui consistent a résoudre 1’équation de Laplace a deux dimensions, avec
certaines conditions sur des contours préfixés (probléme de Dirichlet).

Comme exemple d’autre cas d’application, nous terminerons en donnant la solu-
tion d’un probléme de calcul de la distribution des contraintes de cisaillement dans des
piéces fléchies. Le probléme de la plaque librement appuyée sur le contour peut étre
ramené a la solution de deux équations de Laplace et alors étre résolu par le procédé
indiqué. L’auteur étudie maintenant I’application d’une méthode semblable au calcul
des plaques avec conditions quelconques d’appui et a la résolution de I’équation
d’Airy y4w=f(x, y), en utilisant la solution générale de I’équation sans second membre:

w=f(x+ )+ r(x+ip)+f(x— )+ yfalx—iy)

APPLICATION AUX SECTIONS EN LOSANGE

Pour résoudre le probléme de la torsion d’une pi¢ce prismatique avec section en
forme de losange, on prend pour axe des coordonées, dans le plan de la section, les
diagonales du losange (fig. 1). On peut ainsi prendre seule-

ment, pour le développement (10) de z, les fonctions paires de x Ay

et de y, c’est-a-dire seulement les fonctions U, avec m pair.

L’égalité (11) sera valable si on pose W, =U,,,: ) 4
WO= 1 l o
W1=x2—y2 -G
Wo=x4—6x2y2 4 y*
Wy=x6—15x%24 15x2p4— 6
' —b

Fig. 1
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Les intégrales (12) peuvent s’étendre, a cause de la symétrie, a un seul coté du
losange. Si on prend le coté x=>5b(1—y/h), il vient ds=dy/cos « et I'intégrale sur le
contour du terme général xPy? est:

, Ay bR plg!
P Jo — rl1—_2 = N ST e A
fcxy i of 4 (1 /1) COS o COS o f d—nFmay=s> h( +q+1)!
Avec cette formule, on calcule toutes les intégrales 1, ,=[cW,W,ds et

X2 2
—-f 1Y ——=—W.ds, pour les valeurs entiéres de p et g entre O et le plus grand m que

I’on désire employer dans le développement (11) de z.  On calcule aussi, pour trouver

J. (3), les intégrales I” —ff W,dx dy, en notant que

f X"yt dy= f ydy fb i) sedy=apr 11— P
(p+q+1)!

Soit le cas du losange avec b=0,44; on dispose le calcul comme on a fait sur le
tableau I, qui finit par une colonne 01‘1 se trouvent déja les valeurs successives des
termes qui somment J,, et I’on s’arréte deés que la précision voulue est atteinte.

Dans la premiére colonne, se trouvent les valeurs des m qui correspondent a chaque
terme du développement (11) de z, dont le calcul est fait sur la ligne respective. Sur

24 12
Pyds=| Wy2dsetde f ng Y ds
c c c 2

la premiére ligne (m=0) on trouve les valeurs def

-2 2
— f Wy ;Ly
C

quantités donne a, (14), qui figure dans le tableau. Dans la colonne suivante, on

trouve ff Pydx dy=ff Wydx dy=1", et, dans la derni¢re, le deuxiéme terme du
s s

développement de J,, c’est-a-dire, le double du produit des nombres qui se trouvent
dans les deux colonnes précédentes 2x 2 x0,193333=0,773333; le premier terme de
ce développement est donné au-dessus du nombre 0,773333 et correspond a la difference

entre z (5) et w, qui est (3):
2 )2
= U - ';} dx dy=—0,386667
S

En général, sur la méme ligne, on trouve successivement m, o4, 14m . . . ,
m-1Ams m—1Bms m-2Bms - « -5 0Bms Cm (précédé dans la méme colonne par C,,_;, C,, 5,
etc.), D, En, F,, G,,. Ces valeurs sont obtenues de la fagon suivante, en fonction
des quantités déja calculées:

OAna:Im, 0
1Am=1Im, 1F+04m - 0B
2Am=1n, 2t0Am . 0B2+14m . 1B2

ds, déja calculées (I, o et Iy, parce que Py=W;); le quotient de ces deux

m-lAm

m—le=_

m-1

B _ m—ZAm
m-2Pm=——

Cm 2
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A

02m

OBm""_ CO

Cm=Im. m+m—1Am £ m—le+m—2Am € mk23m+ L +0Am . OBm
Dm=I,m+m—le . Dm—1+m-ZBm . Dm—2+ LI I +0Bm . DO

B, —Dm

m— Cm '

-Fm—_-lﬂm'i__m—le s En—1+m—ZBm ¢ Fm—-2+ LA +OBm : FO
Gn=2E,F,

Pour le calcul de J;, dans I’exemple du tableau I, il suffit de s’arréter a la ligne
m=3, ce qui donne, en faisant la somme
des nombres de la derniére colonne (dans %% |,

la ligne m=4, on trouverait —0,000572): T/\! s-26¢
J:=0,1666h3=0,415b2h? 3 S bhrbany

La répétition de ce calcul pour d’autres g5} I-8% ,i-2h o —
valeurs de la relation b/h permet de tracer Pl
le graphique de la fig. 2, ol est établie la A~
comparaison des valeurs de J, avec les 2# T |
valeurs obtenues par les formules usuelles s Sormule (15
(formule de St. Venant: J,=S54/40J,, et ,, A 4SI2 467 |
formule des sections allongées: ' i ’ \ jl,, ”6; ;ba/:ik

J,=41S12[(SI2+161). IR

On y trouve aussi les résultats de I'ap- o g2 o4 a6 o8 r e %
plication de la formule proposée, a la suite ‘
des calculs faits, pour I'usage pratique : Fig. 2

14 b3h3
.I',_-5 S Bh o N ¢ &)

APPLICATION AUX SECTIONS COMPOSEES DE DEUX OU TROIS RECTANGLES

Pour la détermination des J; des sections en croix, en T, en L, en U, etc. (fig. 3),
il y a des formules pratiques, qui toutefois s’appliquent & des cas ou la largeur des
rectangles est d’un ordre de grandeur plus petit que la longueur. Malgré la présence
des angles rentrants la méthode générale décrite permet de trouver la solution cherchée
pour des rectangles quelconques.* Par exemple, pour le cas de L symétrique (fig. 3),

Fig. 3

* Pour le cas de deux rectangles, I’auteur a proposé ailleurs une méthode dont la solution converge
plus rapidement, mais dans laquelle on ne peut pas éviter la résolution d’équations simultanées pour
trouver les coefficients des termes de la série. Cette solution est obtenue par deux séries trigono-
métriques, une pour chaque rectangle, dont les termes satisfont a ’équation (1). Les coefficients de
ces termes sont determinés par la condition de continuité sur la limite des deux rectangles.

C.R.—13



TABLEAU I
P —W, fx2+):2
mePodS IWmPIdS IWszdS m=Wm+ mezdS ‘ 2 am HPmdx d,}’ Ji
m =g p2m | =5 . j2m+2| =5 h2m+4 =5 . hm Puds =h2=2m | =ph2am+1 =hh3
Pm—lhz Pm—zll4 P.rn—3h6 =g . ham+2
—0,386667
0 — — — — — — — — |1,0000000 |+0,1933333|40,193333 [42,000000 |+-0,773333
1 {—0,2800000 — — — |+40,2800000 — ! — — 0,1160533 |—0,0433067|—0,373162 |+0,280000 |—0,208971
2 (40,1731200|—0,0848384 — — |4+0,7310294 [—0,1731200 — — 10,0129241 |+0,0021738({+0,168196 |—0,026138 |—0,008793
3 |—0,1230720 |+0,0675240 | —0,0144580 | — |+1,1186871|—0,5818361 |4+0,1230720| — [0,0016040 |+ 0,0002346|+0,146259 —0,007547 |—0,002208
m 0Am 1Am 2Am 3Am m—18Bm m—2Bm m—3Bm m—a4Bm Cm Dm Em Fon Gm
— v N v -
m colonnes m colonnes
TABLEAU 1
2+‘12
P =Wn (X - 0
m [WinPods [WmPds [WinPads " vk [Pm2ds . 2 am 1 {fa_:sdxd)' %.I:h“
=g . h2m =5 . R2m+2 | =5 . f12m-+4 — =5 . him Pds =h2-2m ’ -—],'?.m-! 2
I’mn--]h2 Pm-—zh“ }).rn'——-jh6 =5 .h2mit2 -
—0,066667
0 — — — — —— — 1,0000000 |+0,2666667 | +0,266667 | +0,500000 | +0,133333
1 —0,3333333 -— — +0,3333333 — — 0,3555556 |4-0,2088889 | +0,587500 | +0,166667 | +0,097917
2 +0,2000000 |—0,0761905 — +0,2142857 |—0,2000000 -— 0,2071655 |—0,0123810| —0,059764 | —0,030952 | +0,001850
3 —0,1428571 {+0,1269841 |—0,0351268 |+0,1695590 |—0,3571429 | 0,1428571 | 0,1024435 |+0,0026626| +0,025991 | 4-0,006657 | +0,000173

14!
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on prendra les fonctions W, en combinant les fonction U et ¥V de fagon a obtenir des
polyndmes symétriques en x et y:

Wo=1, Wi=x+y, W,=2xy, Wy=x3—3xy2—3yx2+)3, Wy=x%—6x2p24+)4 . . .
A cause de la symétrie les intégrales sur le contour s’étendent sur le parcours OABC,
ce qui donne, pour le terme générale x?y7+ x7y?:

(BRI _pgmentl pmy gl gmnd]
P.,4 q —_pym+n+1
fc(x Y+ xYP)ds=b ( g + = )

APPLICATION A LA DETERMINATION DES CONTRAINTES DE CISAILLEMENT DANS LES PIECES
FLECHIES
La théorie de I’élasticité donne, pour les composantes des contraintes de cisaille-
ment (le plan de la flexion contient ’axe des x):

b0 (a¢_ E yz)Q

Ky e Vi Fav Y

ol v est le coefficient de Poisson, Q I’effort tranchant, J le moment d’inertie de la
section par rapport a ’axe des y et ¢ une fonction qui satisfait & y2¢=0 et qui, au

contour, permet d’écrire
dy dx -
=Ty g 0 - 213

Pour le cas du losange (fig. 4), la fonction ¢ est impaire
en y et paire en x. On peut, en conséquence, la développer
en série suivant les fonctions ¥ avec indice impair:

3 , Voms1
"S“Z" "2m+1
m=0

.4

.. _ v X
La condition au contour s’écrit (en posant k=l +V) : Fig. 4
o o4 %
—_—— [ —— 2—— 2= !
oy Pax=x"—ky zamWn.
m=0
L (Vams1  2Vomir s
avec W, = 2m+1( 2y —B B =U,,,— BV, Cest-a-dire:

Wo=1, Wy=(x2—y?)—B(2xy), Wa=(x*—6x2y2+ %) —f(dxy—4xp?), . . .

A partir de ces W, on calcule, comme auparavant, les fonctions P,, orthogonales
pour le contour et on développe le bindme x2—ky?2:

o f o
(x2=ky?),_fi= Ea,,,P,,, avec a,,= <
m=0 ( szds
C

[

2 ky?))P, ds

Toutes les opérations sont faites, sans difficulté, comme pour le tableau I et le pro-
bléme est résolu. ‘Dans le tableau II, est donnée la solution pour le cas du carré
(losange avec f=1). La derniére colonne; qui contient les termes dont la somme
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doit étre égale a 1/6 pour que I’effort tranchant soit égal a 'intégrale des contraintes
Txz, permet de déterminer la précision obtenue. Sur la fig. 5 sont indiquées les valeurs
des 7x; pour les diagonales x=0 et y=0, pour le contour y=1—x et pour y=0,5,
valeurs obtenues avec les termes de la série jusqu’a m=3 (auquel correspond, dans la

—— valeurs calculdes

=\

s ﬂrmu/e classigue

' z =i/'_75_¢
£ xz™ g7

L 1 / \\"\
L — 7} &
A 1/
[ ’Ql 1 1 [ ‘g‘ /
I —
/:,"::5:l 'F?
83— '} S
i aT— I 'Q§ //
L 1 | h =
1 -
Lk %
\\ — o Y ] ’
g T || y
 J
x T,z pour x=0
2] |
pd —4 4 e o S b —— | +— 7 ﬂﬂﬂﬂﬂﬂﬂﬂﬂ J
1150
Fig. 5

derniére colonne, la somme 0,166.606 au lieu de 1/6). Le calcul de 7., a été fait, en
employant les divers coefficients, de la méme fagon que le calcul des deux derniéres
colonnes des tableaux I et II, suivant ’exemple du tableau III, pour x=y=0 et pour
x=0, y=0,6.

TaBLEAU III

formule générale y=0 y=0,6
0|1 1,00000 1,00000
1 | (x2—y2)+0,333.333f, 0,33333 —0,02667
2 | (x4—6x2y24y4)+0,214.286f1 —0,2/p —0,12857 —0,07614
3 | (x2—15x42415x2y4—y6)+40,169.559/2—0,357.143f
+0,142.857f 0,00201 0,09282
2—‘Irxz’5(0,266.667fo +0,587.500/1 —0,059.764/>4+0,025.991£3)
Q —x2+40,2p2= 0,4702 0,3300
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Résumé

Une nouvelle méthode est proposée pour la solution du probleme de la torsion;
elle consiste a utiliser certaines fonctions orthogonales spécialement choisies. La
méthode peut étre adoptée a la solution des problémes de la physique mathématique
consistant 4 résoudre 1’équation de Laplace, a deux dimensions, avec des conditions
données au contour. Un exemple d’application est indiqué pour le cas de la torsion
d’une piéce de section en losange et un autre au cas des contraintes de cisaillement
dans les pieces fléchies.

Summary
A new method for the solution of the problem of torsion is proposed. It consists
of the use of special orthogonal sets of functions. This method is extensible to the
problems of mathematical physics which involve the solution of Laplace’s equation
with given boundary conditions. Two examples are shown: one, the torsion of
a bar with rhombus-shaped section and the other, the distribution of the shearing
stresses in beams under bending.

Zusammenfassung

Eine neue Methode fiir die Lésung der Torsionsaufgabe wird vorgeschlagen. Sie
besteht in der Anwendung von besonderen orthogonalen Funktionssystemen. Diese
Methode ist anwendbar auf die Losung der Fragen, die in der mathematischen Physik
auftreten, wenn man eine Laplace’sche 2-dimensionale Gleichung mit gegebenen
Randbedingungen l6sen will. Zwei Beispiele werden angefithrt: eines fiir die Torsion
eines Stabes mit thombusformigem Querschnitt und das andere fiir die Verteilung der
Schubspannungen in Stiben, die durch Biegung beansprucht sind.
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Beitrag zur Elastizitiitstheorie der Schalen
Contribution to the theory of elasticity of shells

Contribution a la théorie de P’élasticité des voiites minces

A. KUHELJ

Ljubljana, Jugoslawien

EINLEITUNG

Die Ausgangsgleichungen der Biegetheorie diinner Schalen sind auch bei Benut-
zung der Bernoulli’schen Annahme iiber das Ebenbleiben der Querschnitte noch
immer ziemlich undurchsichtig (vgl. z.B. Schrifttum 7). Auch haben sich bei erneuter
anschaulicher Ableitung dieser Gleichungen einige Unstimmigkeiten ergeben
(Schrifttum 8), so dass das Auftreten einiger Glieder daselbst nicht vollkommen
begriindet erscheint. In diesem Beitrage wird versucht, einen neuen Rechnungsgang
bei der Aufstellung der Grundgleichungen anzudeuten, welcher von bekannten
Formeln der elementaren Differentialgeometrie der Flichen ausgeht und verhilt-
nismissig schnell und sicher zu eindeutigen Resultaten, dhnlich wie sie in neuerer
Zeit fiir spezielle Schalenformen aufgestellt wurden, fiihrt. Weiter werden auch
einige Vereinfachungen vorgeschlagen, welche bei allgemeinen Schalenformen und
Parametern zwar noch immer zu ziemlich verwickelten Formeln fiihren, welche aber
z.B. bei Anwendung auf zylindrische Schalen beliebigen Querschnittes verhiltnis-
massig einfache Resultate ergeben.

ZUSAMMENSTELLUNG EINIGER RESULTATE DER ELEMENTAREN FLACHENTHEORIE

Die fiir die Verzerrung der ganzen Schale massgebende Mittelfliche soll durch
zwei krummlinige Gauss’sche Koordinaten gegeben sein, die wir hier in Anlehnung
an A. E. H. Love (Schrifttum 7) mit « und B8 bezeichnen, und zwar sollen die beiden
Scharen der Koordinatenlinien («-Linie bei konstantem S, B-Linie bei konstantem o)
der Einfachheit halber Kriimmungslinien der Mittelfliche sein. Wir verwenden als
Hilfsmittel durchwegs die Vektorrechnung und benutzen dabei die im Lehrbuche
von R. S. Burington und C. C. Torrance (Schrifttum 3) angewandten Bezeichnungen
mit dem Unterschied, dass wir die Vektoren einfachheitshalber nur mit einem Quer-
striche bzw. Querpfeile andeuten. Die Hauptsdtze der elementaren Differential-
geometrie entnehmen wir dem Lehrbuche von W. Blaschke (Schrifttum 2, vgl. auch
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das entsprechende Kapitel in Schrifttum 3), dessen Bezeichnungen sich iibrigens von
unsrigen nur wenig unterscheiden.

Der Ortsvektor zu einem beliebigen Punkte P der Schalenmittelfliche sei als
Funktion von « und B durch

r=x(x, Bi+y(, Aj+z, Ak . . . . . . (D
gegeben, wobei x, y, z Kartesische Koordinaten von P bedeuten, wihrend i, j, k die
Einheitsvektoren in Richtung der Koordinatenachsen sind. Alle im folgenden
gebrauchte Ableitungen von 7 bzw. x, y, z nach «, bzw. 8 seien iiberall endlich und
stetig. Um die Uebersichtlichkeit auch in verwickelten Ausdriicken moglichst zu
wahren, wollen wir weiter verabreden, dass unten angesetzte Zeichen o bzw. B
ausschliesslich Ableitungen nach diesen Parametern bedeuten sollen, so dass z.B.

. _or _ ér o
ra::a—a, rﬁ:a'g, raa:-azz usw. s e s e . (2)
sein soll.

Die in (2) angegebenen Ableitungen r, und r; bedeuten bekanntlich Vektoren in
Richtung der Tangenten zu beiden Koordinatenlinien. Um zu Einheitsvektoren e,
bzw. e; in diesen Richtungen zu kommen, fithren wir nach A. E. H. Love (Schrifttum 7)
die positiv genommenen Wurzeln der beiden Koeffizienten £ und G der ersten Funda-
mentalform ein

A="VE="V7?, . %y, B="VG="V7i.7% . . . . (3
und erhalten
_fa, _Ts
=" e=p . . . . 4
wihrend der Einheitsvektor in Richtung der Flichennormale durch
e3=e1Xe€e . . . . . .+ .« 4 . s (5)

gegeben ist.

Die Ableitungen dieser Einheitsvektoren nach « und B sind im wesentlichen
durch die Ableitungsgleichungen nach Gauss und Weingarten (Schrifttum 2, S. 108
und 114) gegeben; es ist z.B.

fax . Au

€1a™ A _"az
Alle Ausdriicke vereinfachen sich wegen der Benutzung der Kriimmungslinien als
Koordinatenlinien sehr, weil dann bekanntlich
F=Fy.73=0 und M=r,,.e;=0
ist. Unter Benutzung der Ableitungsgleichungen erhilt man dann

A A A A
€1a=——B§€2+EC3, e2a=§ﬁe,, €3a=—E£’1 ©  w e (63.—C)
B, B ' B
“—’15=er’ e23=—fel+k—ze3, ep=—pe€ . - . (7a-c)

wobei statt der Koeffizienten L, M, N der zweiten Fundamentalform die beiden

Hauptkrimmungshalbmesser R; und R, mit
1 L L 1 N N -
EI.:E:Z_Z und E_E_E—Z e e e e e (8)
eingefiihrt worden sind. Dabei ist zu beachten, dass R, und R, als positiv zu nehmen
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sind, wenn die Kriimmungsmittelpunkte der Kriimmungshinien auf der positiven
Seite des Einheitsvektors e; liegen.

Mit diesen Formeln lassen sich, wie im folgenden gezeigt wird, verhdltnismassig
einfach alle Resultate der Biegetheorie der Schalen ableiten. Zur Vereinfachung der
Gleichungen brauchen wir nur noch folgende Beziehungen zwischen obigen Grossen,
die sich durch Vergleich der auf verschiedenen Wegen erhaltenen gemischten Ablei-
tungen von r, bzw. 7g ergeben. Aus Gaussens Theorema egregium (Schrifttum 2,

S. 117) erhélt man
Ag B\ 4B
(E)ﬁ(z);‘m  ws s w s )

wihrend die beiden Mainardi-Codazzischen (Schrifttum 2, /.c.) Gleichungen in unserem
Falle folgende einfache Form annehmen

A\ A, (B) B,
AV 4 (Z) B .. (0ab
(RI)B Ry \RyJq Ry - (10s, b)

VERFORMUNG DER SCHALENMITTELFLACHE

Die bei der Belastung der Schale entstehenden Verschiebungskomponenten eines
beliebigen Punktes P der Schalenmittelfliche in Richtung der Einheitsvektoren ey,
e,, ey seien mit u, v, w bezeichnet; der Ortsvektor 7’ zum Punkte P’, wohin der Punkt
P nach der Belastung verschoben wird, ist also durch

F'=r+p=rdue;+vey+we; . . . . . . (1]
gegeben. Unter Benutzung der Gleichungen (4), (6) und (7) erhilt man sehr leicht
die Ableitungen von 7' nach « und B, die natiirlich wieder Vektoren in Richtung der
Tangenten zu den Koordinatenlinien auf der verformten Mittelfliche darstellen. So
erhilt man z.B.

Fly=TFytuye, +vye,+wyes+tue o, +vey, +wes,
oder nach (6) und (7)
., A A A A :
F ch'= (A+ua+v§B—wE)el + (va—u—Bf)ez-}- (wa+uz)e3 . (12a)
und dhnlich

B B B B
el st

Durch abermalige Anwendung dieser Regeln lassen sich verhiltnismaéssig leicht auch
Ausdriicke fiir die zweiten Ableitungen von 7’ berechnen, auf deren Wiedergabe wir
aber verzichten, weil wir sie im folgenden nicht brauchen werden. Aus Gleichungen
fiir 7, und 7'g erhdlt man natiirlich auch sehr leicht entsprechende Ableitungen des
Verschiebungsvektors p, indem man von obigen Ausdriicken die, Ableitungen von 7
abzieht. :

Die Verzerrungen in der Schalenmittelfliche lassen sich nun mit Hilfe der ersten
Ableitungen von 7' sofort berechnen und zwar auch bis zu den Gliedern hdherer
Ordnung in den Verschiebungen. Da wir aber auf Stabilititsprobleme an dieser
Stelle nicht eingehen konnen, wollen wir uns im folgenden nur auf die Glieder erster
Ordnung beschrianken. Die Dehnung ¢; in Richtung der «-Linie ist z.B. bekanntlich
durch

_ds'—ds A'—A

qa=— —— mit A'=VF L Fe . . . (13a)
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gegeben, wobei ds’=A’.dx das Bogenelement dieser Linie nach der Verzerrung
bedeutet. Fiir die Scherung 'ylz des Flichenelementes mit den Léingen Ad«, BdS
erhélt man (vgl. Schrifttum 1, 4, 5, 9 und 10)

Feo. .l
_y12=°"’*.........(13b)

und durch Einsetzen entsprechender Ausdriicke aus (12a, b) erhilt man endgiiltig
fiir die Komponenten des Verzerrungstensors bis auf die Grossen von hoherer
Ordnung in den Verschiebungen

_Ua AB W h

AB R,
By w
E+“E_F2 > « e e e (14a—c)

Ausserdem werden wir bei folgenden Ausfiihrungen noch Ausdriicke fiir die
Einheitsvektoren e’;, e’, in Richtung der Tangenten zu den beiden Koordinatenlinien
nach der Verformung, sowie den Einheitsvektor e’y in Richtung der Flachennormale
brauchen. Es ist bis auf die Glieder héherer Ordnung

e (2o (P )
¢1=gr=ert|g—ugple A R,)¢
, F's (ug By v
e'r=p= (B AB)e1+e2+(B+R) m > (15a—c)
’ Cdd B4 ! / ’ w u- ‘ ?)
=X PIVEG—Fim— (24 £ )er— (o 1 Jertes
~

Mit diesen Gleichungen und unter Benutzung von (6) und (7) lassen sich leicht auch
- Ableitungen dieser Vektoren nach « und B berechnen. So erhilt man z.B.

. | Ba, (us B B, B2 B Y], )
o= |5+ (5), (73),Jort [, R
B v Wg
+ _+ E + B €3
B
|4 [u We Ag > (16a, b)
€ 3q="— R1+ R a Vi -}~'¢v—+wﬁB2

(z) +(w_s Ao, As [i+w_a
R).\B), 7 “Br, T "*aB|% " [“R2TR,|%

und ganz dhnliche Ausdriicke wiirde man auch fiir die {ibrigen Ableitungen erhalten.

VERFORMUNG EINES BELIEBIGEN SCHALENELEMENTES

Aehnlich wie bei der Plattentheorie beschrinkt man sich auch bei Untersuchung
der Schalen auf die Verzerrungen parallel zur Tangentialebene der Schalenmittel-
fliche. Wir nehmen daher auf dem Normalenvektor e; durch den Punkt P der
Schalenmittelfiiche (Abb. 1) einen Punkt P, an und legen durch diesen im konstanten
Abstand z von der Schalenmittelfliche eine neue Fliche. Alle Grossen in bezug
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Abb. 1. "Verschiebungen der Schale

auf diese Fliche wollen wir mit demselben Zeichen wie entsprechende Gréssen der
Mittelfliche bezeichnen, versehen sie aber noch mit dem Index ,.
Aus der Gleichung dieser Fliche

r:=r+ze; P N )

liesse sich nun nach allgemeinen Regeln der Differentialgeometrie leicht beweisen,
dass auch hier die Koordinatenlinien e=const. und B=const. Krummungshmen
sind und dass die Fliachengrossen folgende Werte haben

Rl— z Z
i —A(I—E), BZ—B(I—R—Z) . . (I8a, b)
z z
R1z=R1—Z=R1 (I-E), R23=R2(1—ﬁ"2) s w (19&, b)

was iibrigens anschaulich auch unmittelbar einleuchtet (Abb. 1). Weiter sind die
Einheitsvektoren dieser Flache zu Vektoren ey, e,, e; der Schalenmittelfliche parallel
und man kann deshalb die Formeln fiir die Verzerrungen in der Mittelfliche unver-
dndert auf unsere neue Fldche iibertragen, wenn wir nur die Verschiebungen u;, v,,
w, eines beliebigen Punktes P, unserer Flidche kennen.

Um nun diese Grossen zu bestimmen, gehen wir auch hier wie bei der Biegung
diinner Balken und Platten von der Bernoulli’schen Annahme aus, dass ebene Quer-
schnitte auch nach der Verformung eben bleiben und senkrecht zur verformten
Mittelfliche stehen. Fiir die Verschiebung p, erhilt man dann (vgl. Abb. 1) folgende
Gleichung

PP =z.e3+p,=p+z.e5
oder P:=p+z(e's—es) S ¢214)]
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oder in Komponentenform und unter Beachtung der Gleichungen (11) und (15c)

geschrieben
Wy  u\ )
u_-—u—z(? E)
Wg O - (21a—)
o3 )
We=w J

Zur Berechnung der Verzerrungskomponenten in der Tangentialebene wendet
man Gl. (14a—c) auf die neue Fldche an und erhilt z.B.

lﬁg_'_ Azﬂ W-
%0 B. Ry

Wenn man nun fiir Grossen rechts die Werte (18), (19) und (21) einsetzt und dazu
noch GI. (10a) beachtet, erhdlt man fiir €,

—ZK
=L L (@)

i

1——

R,

“wobei €; durch (14a) gegeben ist, wihrend man fiir die erste Kriimmungsdnderung «,

automatisch
1 (wy u Ag (wg )
KI_Z(I"-ITI)&_{'AB(B-'-RZ SRIRIE o

bekommt. Auf dieselbe Weise erhidlt man fiir die Dehnung e,. in Richtung der
zweiten Koordinatenlinie

S (22b)
=R,
. o ' 1(wsg B, ‘
mit Kz_.E( B“'"E)ﬁ' AB( +—) .. . . . (23b)

Achnlich verfihrt man auch bei der Berechnung der Scherung y;,.. Hier erweist es
sich am einfachsten, wenn man die mit dem Faktor z behafteten Glieder in zwei
Anteile zerlegt und man erhilt :

Z.Al Z.Az

VB eowowow e ow (220)
| -z 1-%
wobei die zweiten Krilmmungsédnderungen durch
1 (wg v Yo Ag
AI_Z(E-*-E)Q_A—Rl_Wd s m i e s s @ (230)
_l(wy  u U B,
und . AZ_B(Z“LRI) ~BR,” "¢ 4B (@3

gegeben sind. Gleichungen (22) und (23) stimmen vollkommen mit entsprechenden
Gleichungen von Love (Schrifttum 7, G1. 26 und 30, S. 524 bzw. 527) iiberein. Unsere
Kriimmungsénderung A, ist bei Love mit = bezeichnet, wihrend A, durch A; und y,,
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ausgedriickt wird, weil, wie sich leicht mit Hilfe der Mainardi-Codazzischen Glei-
chungen (10) direkt beweisen lasst,

1 1

i (i
ist. Trotz der neuerdings erhobenen Zweifel (vgl. Schrifttum 8, GIl. 6 und 7) ergeben
sich also obige Gleichungen zwangsldufig aus der Bernoulli’schen Annahme. Etwas
anders gebaute Ausdriicke erhidlt man, wenn man bei ihrer Ableitung von den Love-
schen Gleichungen fiir die Drehungen (Schrifttum 7, Gl. 24 und 25 auf S. 523)
ausgeht, wobei aber dort bei ¢’, und r’, augenscheinlich Versehen unterlaufen sind,
wie man sich leicht durch Vergleich von ¢, mit p’; und r’, mit r’; iiberzeugt. Aus
unseren Ausdriicken (16a, b) und dhnlich gebauten Gleichungen fiir andere Ablei-
tungen der Einheitsvektoren auf der verformten Mittelfliche konnte man iibrigens
auf Grund von bekannten Gleichungen fiir die Geschwindigkeitskomponenten bei
Drehung verhiltnisméssig leicht Ausdriicke fiir alle sechs Drehungskomponenten
erhalten, die vollkommen symmetrisch gebaut sind und von denen wir glauben, dass
sie bis auf die Glieder zweiter Ordnung in den Verschiebungen u, v, w korrekt sind.
Der Kiirze halber aber wollen wir darauf nicht ndher eingehen.

SCHNITTKRAFTE UND SCHNITTMOMENTE. GLEICHGEW ICHTSBEDINGUNGEN

Wir gehen nun zur Berechnung der den Verformungen ¢, €,:, ;- entsprechenden
Spannungen iiber. Wir vernachldssigen die Normalspannung o3. in Richtung von
e; und erhalten dann bekanntlich aus dem Hooke’schen Gesetze

E

E E
°'lz=1___v'2(€lz+"'522): Uzz=‘1_—vz(€zz+l’€1z), 712z=2(1—+v))’12z .. . (2420

wobei mit E der Elastizititsmodul und mit v=1/m die Poissonsche Konstante
bezeichnet ist. Bei der Aufstellung der Gleichgewichtsbedingungen erweist sich
weiter die Einfiihrung der resultierenden Kraft und des resultierenden Momentes der
Spannungen iiber die Schalendicke als vorteilhaft, wenn man sie auf die Lingenein-
heit der «- bzw. der B-Linie bezieht. Der Kiirze halber benennen wir diese Grossen
einfach als Schnittkréfte bzw. Schnittmomente und erhalten fiir diese Grossen in der
Schnittfliche a«=const. (Abb. 2) in der von Fliigge (Schrifttum 4) herriihrenden
Bezeichnung folgende Gleichungen (alle Integrale sind zwischen —#/2 und +4/2 zu
nehmen)

Abb. 2. Schnittkrifte und Momente
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In diesen und in dhnlich gebauten Gleichungen fiir den Schnitt S=const. miisste
man statt R; bzw. R, eigentlich die Werte der Kriimmungshalbmesser R’; und R’»
nach der Verformung einsetzen. Ebenso miisste man spdter auch die Gleich-
gewichtsbedingungen eigentlich fiir das verformte Schalenelement aufstellen und
deshalb statt der urspriinglichen Grossen 4, B die nach der Verformung enstandenen
Werte A, B’ usw. beniitzen. Wenn wir von Stabilititsuntersuchungen absehen,
konnen wir sowohl die auf die Lingeneinheit der unverformten Schalenmittelfiiche
bezogenen Schnittkridfte und Momente als auch die fiir das unverformte Schalenele-
ment angesetzten Gleichgewichtsbedingungen in erster Ndherung als richtig ansehen.
Durch Entwicklung von (1—z/R;)~! bzw. (1—z/R,)~1 in eine Potenzreihe und
Vernachlissigung aller hoherer Potenzen von der dritten ab erhidlt man fiir die
Krifte und Momente folgende Gleichungen

Ry—R,  Ry—Ry\)
_D(el—{—vez)—{—K(el " "R2R, +x; R.R,
R,—R, R,—R,
Nz—D(€2+V€1)+K(€2 “RRp? + RR,
1—v l—v_ R;—R,
le—“‘z““Dylz'i'TK R.R, Ay
1—v 1—v_R,—R
Nyy=—5—Dynt+—5— Kﬁ/\z _ ,
F (25a-h)
R,—R, ,
M,=—K|x4+vey+ R.R, €
RZ_RI
M _—K K2+VK1+ R R
1 —
M12=—“2‘3K( 1+,\2+'ﬂ%)
1—
M21=— 2V (1+A2+‘y’2)
J
Eh EhR3 K h2
i = e a——— 2 =
mit D=1—=0 K=pa—z *¥=p~1 (26)

Die verhiltnismissig kleinen Einheitskrifte O, und Q, berechnen wir dhnlich wie
bei Platten nicht aus den Forménderungen, sondern erst spiter aus den Gleich-
gewichtsbedingungen.

Auf die bei Fliigge (Schrifttum 4) auftretenden Sonderfille angewandt, stlmmen
obige Ausdriicke vollkommen mit den Fliiggeschen iiberein. Gegeniiber den
Loveschen Gleichungen (Schrifttum 7, Gl. 39, 42 und 44 auf S. 531, 532 bzw. 533)
bestehen Unterschiede, die aber zum Teil darauf hinzufiihren sind, dass bei Love
auch die fiir das Verschwinden von €;: notwendige Normalspannung o3, in Betracht
genommen wurde.

Mit den Schnittkridften und Momenten lassen sich die Gleichgewichtsbedingungen
am Schalenelement verhdltnismissig einfach ausdriicken. Wenn man—wie erwihnt
—einfachheitshalber die Gleichgewichtsbedingungen am unverzerrten Schalenelement
annimmt, die Aussenkraftkomponenten je Fldcheneinheit der Mittelfliche in
Richtung der Vektoren e;, e;, e; mit X;, X,, X; bezeichnet und die Momente der
Aussenkraft um die drei Achsen durch den Mittelpunkt des Schalenelementes ver-
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nachldssigt, dann lautet in vektorieller Form die Gleichgewichtsbedingung gegen
Verschiebung

[B(N\e;+ N2+ Q1e3)ly+[A(N21e1+ Naea+ 0e3)]g

+AB(X1€1+X2€2+X393)=0 . (273)
und die Gleichgewichtsbedingung gegen Drehung
ABle; X (Nzea+ Q1€3)+e; X (Naje+ Qqe3) ]+ [B(— M ze,+ M e))],

+[A(—Mye,+ M31e)][g=0 . (27b)
Unter Benutzung der Gl. (6a—) und (7a—c) erhélt man daraus sechs Gleichungen in
skalarer Form

~

AB
(BN )y +(AN21)g+AgN 2 — By N, — EQI +ABX,=0
AB
(BN12)y+(AN3)g—AgN |+ By N>, —‘RTZQ2+ABX2=O

i N, N
(BQI>a+(AQ2)B+AB(fi+ 172) +ABX,=0 L (28a-)

—(BM 5)q—(AM3)g+ AgM | — B, M+ ABQ,=0

(BM )+ (AM;)g+AgM 1 ;—B,M,— ABQ =0
M, My,

R TR

. Um nun die endgiiltigen Gleichungen fiir die Verschiebungen zu bekommen,
driickt man aus GI. (28d, e) die beiden Querkrifte Q; und Q, durch Momente aus
und setzt sie in Gl. (28a—c) ein. Unter Benutzung von Gl. (25a-h), (14a—c) und
(23a—d) erhilt man daraus ein System dreier partieller Differentialgleichungen fiir die
drei Verschiebungen u, », w, durch deren Integration bei Beriicksichtigung gegebener
Randbedingungen das Problem der Verschiebungen, und damit auch das der Span-
nungsbestimmung, prinzipiell gelost wird. Auf eine explizite Hinschreibung dieser
Gleichungen fiir den allgemeinsten Fall miissen wir allerdings verzichten, weil sie
ausserordentlich uniibersichtlich sind und ihre Aufstellung sich nicht lohnt. Die
letzte skalare Gleichgewichtsbedingung (28f) félit weg, weil sie schon in den Grdssen
€1, €2, Y12, K1, k2, A} und A, identisch befriedigt wird, wie man sich leicht durch
Einsetzen der Ausdriicke aus (25¢, d, g, h) iiberzeugt.

+Nj;—N;=0

J

NAHERUNGEN BEI DUNNEN SCHALEN

Aus der elementaren Elastizitdtstheorie ebener Spannungs- und Dehnungs-
zustinde ist bekannt, dass die Bernoulli’sche Hypothese nur bei einigermassen diinnen
Scheiben zutrifft und dass die Zusatzglieder bei Verschiebungen annidherend mit der
zweiten Potenz des Verhiltnisses Trdgerhoéhe : Trédgerldnge zunehmen. Daraus
kénnen wir schliessen, dass auch bei Schalen die Bernoulli’'sche Annahme nur dann
zutreffen wird, wenn das oben genannte Verhiltnis nicht zu gross sein wird. Wir
wollen weiter annehmen, dass das Verhéltnis der Schalendicke zu den beiden Haupt-
kriimmungshalbmessern klein gegeniiber eins sei und dass man es deshalb {iberall
vernachlissigen darf. Bei vielen praktischen Ausfithrungen betrigt dieses Verhiltnis
hochstens ein paar Prozent und ein solcher Fehler in der Spannungsberechnung ist
im Hinblick auf die Unsicherheiten bei der Bestimmung der Schalendicke, des
Elastizititsmoduls und anderer Grossen sicher zuldssig.
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Mit der Annahme, dass die Schalendicke klein gegeniiber den beiden Kriim-
mungshalbmessern sei, vereinfachen sich aber unsere Gleichungen ziemlich stark.
So sieht man z.B., dass schon in GIl. (21a-b) rechts die Verschiebungen » und v
einmal mit dem Faktor eins und das andere Mal aber mit z/R; bzw. z/R, auftreten.
Wir konnen also diese letzten Summanden streichen und erhalten fiir die Verschie-
bungen ausserhalb der Mittelfliche einfach dieselben Gleichungen

~

Wy
U=U—2. 7

Wy > (29a—c)
V:=V—2Z. B .
W;=w

J

wie bei Platten.. In Gleichungen (18a, b), (19a, b) und (22a—c) fiir die Gréssen A.,
B:, Rz, R,; und fiir die Verformungen ausserhalb der Mittelfliche streichen wir
ebenfalls iiberall die Verhiltnisse z/R; bzw. z/R, und erhalten so

€1z=€]—ZK)| )
€3:—€r—ZKy . e s . » . e . (3021—0)
Y12:=Y12—22A
mit etwas verdnderten Ausdriicken fiir die Kriimmungsdnderungen
1/wg) A )
“l—z(j)ﬁA—Bzwﬂ
1/w B
KZ:E(F;),B_*_Z%W“ > . . (3la—c)
1 WB AB 1 Wy BOL
AI_AZ"A"Z(E)"‘_AZBW““B(A ;T AB"?

Wenn man dann weiter noch in den Gleichungen fiir die Schnittkrifte und Schnitt-
momente dieselbe Vernachldssigung zuldsst, erhélt man statt (25a-h)

11—y
Ni=D(e;+vey) Ny=D(e3+ve,) N12=N21=—'2—D712 } .. (32a-0)
Mi=—K(k,+vry) My=—K(ka+ve;) Mpp=M, =—(1—v)KA

In den Gleichungen (25a-h) sind also jetzt alle sogenannte Zusatzglieder weggefallen.
Man konnte aber auch unmittelbar von Gl. (25) zu (32) gelangen unter der Voraus-
setzung, dass 4/R; und //R, klein sind gegen eins und dass es sich um einen Biegespan-
nungszustand handelt, bei welchem die grossten Biegungsverformungen 4, x»h und
Ah von derselben Grossenordnung sind wie €, €; und y,,. Jedes Glied in (25),"
welches in (32) nicht mehr auftritt, ist ndmlich mit dem Verhéltnis #/R; oder h/R,
multipliziert gegeniiber anderen, der Gréssenordnung nach gleichen Gliedern, und
kann deshalb vernachlissigt werden.

Auch die Gleichgewichtsbedingungen konnen bei kleinen 4/R; und A/R, etwas
vereinfacht werden. Wenn man nidmlich die durch Q; und Q, in Gl. (28a, b)
eingefiihrten Glieder néher betrachtet, findet man dass sie in diesen Gleichungen bei
Schnittkrédften N;, N, und N;, ausnahmslos vernachldssigt wurden. Man kann also
in beiden ersten Gleichungen (28) auch die Summanden (4BQ;)/R; bzw. (4BQ,)/R,
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streichen und erhilt so die fiir die Berechnung des Verschiebungs- und Spannungs-
zustandes massgebenden flinf Gleichungen aus (28a—e)

(BN )y + (AN )+ AgN 32— By N+ ABX, =0 )
(Ble)a-i-(ANz)B—AﬂNl +B,N, +4BX,=0

(BQ1)1+(AQ2)3+AB(%+%)+ABX3=0 f . . (33a-e)

ABQ\=(BM )y +(AM;\)g+AsM,— B, M,
ABQy=(BM3)q+(AM3)g— AM+ B, M5, |

Was nun die letzte Gleichgewichtsbedingung (28f) betrifft, so erweist sie sich nicht
mehr als Identitit. Aber wir konnen doch annehmen, dass sie durch unsere Aus-
driicke geniigend genau befriedigt wird, weil beim Biegespannungszustand die
Grossen M ,/R; und M,,;/R, klein sind gegeniiber N,,=N,, und deshalb gestrichen
werden konnen. Indem man ndmlich fiir die in (28f) auftretenden Krifte und
Momente die Ausdriicke aus (32) einfiihrt, erkennt man, dass in den beiden ersten
Summanden grossenordnungsmadssig gleiche Glieder wie bei den letzten zwei
auftreten, die aber dort noch mit 4/R; bzw. A/R, multipliziert sind.

Gleichungen (33a—e) bilden den Ausgangspunkt fiir die Aufstellung der Differen-
tialgleichungen fiir Verschiebungen. Dazu braucht man wieder nur die Grossen Q,
und Q, aus den letzten zwei Gleichungen in (33c) einzusetzen und dann alle in
(33a—) auftretenden Schnittkridfte und Schnittmomente durch Verschiebungen
mitiels der Gleichungen (14), (30), (31) und (32) auszudriicken. Im allgemeinen
erhdlt man zwar auch mit allen diesen Vereinfachungen noch immer sehr uniiber-
sichtliche Gleichungen; aber durch entsprechende Wahl der Koordinaten ¢ und B
erhélt man in vielen, praktisch sehr wichtigen Sonderféllen verhéltnismissig einfache
Ausdriicke, die sich fiir numerische Berechnungen viel besser eignen als die in voriger
Nummer erwihnten allgemeineren Beziehungen. Wir wollen dies ganz kurz am
Beispiel der Zylinderschalen zeigen, wo die Verhiltnisse besonders einfach sind. '

BIEGESPANNUNGSTHEORIE DUNNER ZYLINDERSCHALEN

Bei zylindrischen Schalen nehmen wir als Gauss’sche Koordinate « die Linge der
Erzeugenden auf der Schalenmittelfliche von einem gewissen Querschnitt und fiir 8
die Lange der Leitlinien von einem bestimmten Axialschnitt ab. Dann hat man

1 1 .
A=B=1, =0, =f®) . .. ... (9

Gleichungen (14) und (31) fiir die Verzerrungen und Kriimmungsinderungen
nehmen dann eine sehr einfache Form an und ergeben fiir die Schnittkrifte und
Momente folgende Ausdriicke

w =
=it (o)
1 Uy +v|vg R,
=(o o
=D|\vg— 5 +wvu
2 TR, iy
1—

14
Ni;=N; = TD(”.a‘l'?)a)

M= _K(Waa'l_vwﬁﬂ)
M2=_"‘K(Wﬂ3+ywaa)
M12=M21=—(1—1’)K. waﬂj

(35a-f)

—

C.R.—14
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wihrend die Gleichgewichtsbedingungen (33) nun folgendermassen lauten
Nig+Nopt+X;=0
Niz2y+Nypg+ X>=0

N
Q1a+ng+ff+X3=0 S . . . . . . (36ae)

O1=M,+Myg
Or=M >, + Mg J
Aus den letzten zwei Gleichungen erhilt man mittels (35d—e) Ausdriicke fiir Q,

und @, in der Verwolbung w und Gl. (36a—c), in Verschiebungen u, z, w ausgedriickt,
lauten daher

1—v I+v Wy X1 )
Yaat 3 Ut Vus VR, D=
14v 1—v ’ W X,
Tua5+7vaa+vﬁﬁ_(E)B 32=0 & . (373.—C)
1 w X3
— —_— | —k2 s 8
Rz(vlla""vﬁ Rz) k2 . AA”+D

-

mit Adw=“;aaaa+23vaaﬁﬁ+H’ﬁﬁﬁs . . . . . . (38)

Gleichungen (37) stellen die auf Schalen beliebiger Querschnittsform ausge-
dehnten, etwas vereinfachten Fliiggeschen Gleichungen (71) (Schrifttum 4, S. 118) dar.

Statt die Spannungsverteilung auf dem Umwege iiber Verschiebungen zu berech-
nen, ist es manchmal vorteilhafter, unmittelbar die Schnittkrifte zu bestimmen.
Indem wir in der Gleichgewichtsbedingung (36c) Q; und Q, durch w ausdriicken,
bekommen wir ndmlich aus (36a—) und aus der Vertraglichkeitsbedingung zwischen
N,, N,, N1, und w folgende Gleichungen

Njg+Nyp+ X,=0 1
Nizg+Nypg+ X5=0
N _
EZ—K. Adw+ X;=0 > (39a-d)
Z .
, Eh
NlﬂB_VNICXC(_i_Nde_VNzﬁﬁ_z(l +V) F NlZaB+ szad=0

Bei der Integration solcher Gleichungssysteme baut man aber gerbhnlich die
Losung aus Summen von Gliedern auf, in denen alle unbekannte Grdssen als
Produkte gewisser Funktionen einer unabhingigen Veridnderlichen mit unbekannten
Funktionen der anderen Verdnderlichen auftreten, wobei natiirlich die willkiirlich
gewihlten Funktionen gewissen Randbedingungen geniigen miissen. In solchen
Fillen tritt in den iibrigen Randbedingungen eine Schnittkraft nicht auf und es ist
daher ratsam, sie aus (39a-d) zu eliminieren. Wenn wir z.B. die Schnittkrifte und
die Verwolbung w als bekannte Funktionen von o« annehmen, tritt in den Schnitt-
ebenen B=const. die Schnittkraft N, nicht mehr auf; wir driicken sie also aus (39a)
durch andere Grossen aus und eliminieren sie dann aus (39d). Aus (39b-d) erhilt
man so drei Differentialgleicnangen fiir N5, N, und w

Njog+Nopg+ Xo=0

NZ—K' Rz i AAW+R2X3=O (403_0)

Eh
Nzaaa—VNzaﬁa“‘szﬁp‘—(2+V)N21aaa+§‘7waaa +rX g —X1g=0
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Mit unseren Annahmen kénnen wir aber unser Problem auch auf eine einzige
Differentialgleichung fiir die Verwolbung w zuriickfithren. Aus (40a—c) eliminiert
man N, und N,, und bekommt

Eh
K a AA(.RZ . AA}V)'}‘EZ'}Vaiaq'*‘VXIaau—leBB
+(2+V)Xzomﬁ+ XZBBB—AA(R2X3)=0

Auf Einzelheiten bei der numerischen Durchfiihrung der Rechnungen konnen

wir an dieser Stelle nicht eingehen, sondern verweisen auf das Schrifttum 6.

(41)
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Zusammenfassung

Aus Gauss’schen und Weingartenschen Ableitungsgleichungen der Flichen-
theorie und unter Benutzung der Bernoulli’schen Annahme iiber das Ebenbleiben der
Querschnitte lassen sich sehr leicht Ausdriicke fiir die Verzerrungen eines beliebigen
Schalenelementes ableiten. Lovesche Gleichungen fiir diese Grdssen werden
bestdtigt. Zur angenédherten Behandlung diinner Schalen wird die Vernachldssigung
der Schalendicke gegeniiber den beiden Hauptkriimmungshalbmessern der Mittel-
fliche vorgeschlagen. Daraus ergeben sich vereinfachte Ausdriicke fiir die Kriim-
mungsdnderungen und auch der Einfluss der Querkréfte auf das Gleichgewicht in
der Tangentialebene kann vernachlidssigt werden. Mit dieser Annahme lassen sich
bei zylindrischen Schalen verhiltnismissig einfache Gleichungen sowohl fiir die
Verschiebungen als auch fiir die Schnittkrifte angeben.

Summary

From the formule of Gauss and Weingarten for the theory of surfaces and under
Bernoulli’s assumption that plane sections remain plane, the expressions for the
strain in the shell are derived. On the above assumption, Love’s equations for the
components of strain are correct. To simplify the analytical treatment of thin shells,
it is proposed to neglect their thickness, when compared with the main radii of
curvature of the middle surface. This assumption gives simplified expressions for
the changes of curvature, and the influence of the stress-resultants normal to the
. middle surface in the equations of equilibrium in the tangential plane can be neglected.
In the case of a cylindrical shell, comparatively simple equations are derived both
for the components of displacement and for the stress-resultants.
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Résumé

A partir des équations établies par Gauss et par Weingarten pour la théorie des
surfaces et en utilisant ’hypothése de Bernoulli concernant la conservation de Ila
planéité des sections, on peut établir trés aisément des expressions donnant les
déformations d’un élément de volite mince arbitraire. Les équations de Love con-
cernant ces grandeurs sont ici confirmées. Pour traiter le probléme des vofltes
minces, il est proposé de négliger leur épaisseur par rapport aux deux rayons de cour-
bure principaux. Il en résulte des expressions simplifiées pour les variations de
courbure; I'influence des efforts de cisaillement sur les conditions de I’équilibre dans
le plan tangentiel peut également &tre négligée. Dans ces conditions, on obtient des
équations relativement simples pour les volites cylindriques, tant en ce qui concerne
les déformations que les efforts dans les sections.
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An approximate method for treatment of some plate bending problems

Méthode approchée pour I’etude de quelques problemes concernant la
flexion des dalles

Eine Niherungsmethode zur Behandlung einiger Probleme der
Plattenbiegung

AKE HOLMBERG, D.S.C.S.E.

Consulting Engineer, Lund, Sweden

Consider a rectangular plate, fig. 1, simply supported along the edges x=0 and
x=a, whereas the other edges are either simply supported or rigidly clamped. Sup-
pose, furthermore, that this plate is submitted to a load
which can be expanded into a Fourier series in x. Then
any quantities relating to the plate can be calculated using
the well-known method involving simple corrections of
the corresponding quantities for a simply supported x
beam. When, however, the boundary conditions at x=0 T | ’ ’
and x=a are changed, the calculation is considerably
complicated by time-wasting numerical computations,
which can seldom be managed when a design problem
calls for a rapid solution. Some cases have been treated 1
in publications. Reference is made to S. Timoshenko,* 4 2
and D. Young.f Special mention is also made to v
S. Levy,f the immediate source of inspiration for the Fig. 1.
present paper.

In the following paragraphs a very simple but somewhat rough-and-ready method,
which is applicable under any arbitrary boundary conditions, is given. The easiest
way to demonstrate this method is to adduce two examples which permit comparison
with previously known “exact’ solutions.

—

N e

oo

* “Bending of Rectangular Plates with Clamped Edges,” Proc. Fifth Int. Congr. Appl. Mech.,
1939, _

t “Deflection and Moments for Rectangular Plates with Hydrostatic Loading,” J. Appl. Mech.,
1943.

1 “‘Square Plate with Clamped Edges under Normal Pressure producing Large Deflections,”
N.A.C.A. Report, No. 740.
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ExaMPLE No. 1 /P
A triangular load, two opposite edges clamped IDIDID]ID};E., X
the third edge clamped, and the fourth edge free. ! |
Consider the corresponding beam, fig. 2. g -
w_pf X\_p x Fig. 2.
e 5(1 5)—5[A(1—r) “‘”] ?
(24p N 1. mmx 44=1)p 1 nmx
) —SDA a 7D nSIHB.a
. n=1.2.3. n=1.3.5...
x=0 x=a
@w _ pa 5 and &Pw —0 yields
ox3 2D ox3
—2424+3(4—1)B=—3
2426 N 1 nm 4A—DBpa N 1 mm_
T @D Z n2 S 4 w2 D n2 €057g =0
=2t 23 winen n=I.3.5.
and hence A=3; B=I.

2mr\

1
The summation of Z e

n=].2.3...

is carried out

and by inserting x=0, x=3a/2, and x=3a.

02 W
axz

27/?02
" 4m3D

n=1.2.3...

1

]?—3' Sin

2nmx  2pa
3a " =3D

x=0
02w pa2
ox2 6D

xX=a
and 92w
6x2—-0

2
yields C=2%

x=0
ow

T 0

11
gives F= — whence,

10

n=

_2pa2
6D 3aD

by substituting Sy+ S;x+S>x2

For these values, the sum is known.

1

n_3 sin ——+C

>

123235,

n=1.

finally,

243pat

~1675D
n=J.2.3...

1
n’

2nmx  2pat
3¢ =D
121pat

~ 15073D Z

n=J].3.5...

[~ -]
sin E
n=1.3.5...

1
n

10nmx
1la

sin

This is the equation of the elastic curve, which is
generally assumed to be known. The third term
represents the influence of the restraining moment.

For the plate shown in fig. 3 with the loading
as indicated in fig. 2, the elastic surface is chosen:
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243pat N 2nmx  2pat = .
WD Z 15(1+ Yy )sin —— 32 5D z 5(1+ Y,,) sin —

n=1.2.3... n=1.3.5.

lOnm\

+M z 3(1+Y3")sm T

n=1.3.5..

where Y, are functions of y.
Y, is determined by:

2
44Y, sin 77X —0 and
n 3a
b
y=z35
l+ Y]n_ y —0
From
b
44Y, sin G——O when HZL—oc,,
is thus generally obtained:
Ga, cosh Go,+sinh Go,, nwy
I+ Y"_l—sinh G, . cosh Go, 4 Goy, " © sl G_
sinh G, nmy . nmy
+sinh Ga, . cosh Go,+ Go,, G a ’ sinh GT o &)
On the other hand, if the boundary conditions are:
b
y= :Ei
52 Y
=0
" then
Guay, . sinh Go,+2 cosh G, nwy
I+ ¥,=1- 2 cosh? Ga, -€oRh 6 = =
) 1 nmy

] nwy
| il
T2COShGOCnG p sinh G P 4)

In this example, M i$ determined by the condition:

x=0) ow
yzo}ax—mo..........(S)

The approximation consists in assuming that the function in y represented by the
first two terms in &w/éx is affined to the function represented by the third term. This
is not the case, and the angular deviation at the boundary becomes zero at one point
only. In the remaining region, the angular deviation becomes negative.

M being determined, all requisite quantities can be calculated from eqn. (2).
Suffice it to say that, for x=0, y=0, ¥,=0can be put in the calculation of 92w/0x2.
When x is small, contributions to Y, are furnished by the terms where 7 is large only,
and for these terms Y,=0. The calculation can be made rapidly by using the func-
tions shown in figs. 4 and 5, and the summations given below:
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£ £
a9 ro9
08 a8
p-cosh g rsmh g
47 simnhg-coshp+p a7
a6 @-coshg —smh g Los
2 simhg-cosgey £=
. z
. R : L
£ snhy-coshg -y _ gesimhg
7 smhy-coshgrp 7 2cosh?y

p-sinh @p=2cosh ¢
/= >
2eoshty

For b/a=1, 2, and 3, some quantities have been computed on the assumption

that Poisson’s ratio is equal to zero. In fig. 6, they are compared with previously

known “exact’’ values.

ExaMpPLE No. 2

A uniformly distributed load; all edges clamped. For the corresponding beam

Fig. 4.
11,1 ]
1—3+5—7...

1 1 1 1

1 1 1 1
1—2+3_2+§E+
1 1 1 1
TRt TE

ﬁ...

Fig. 5.

T 1 1 1 1
=2 ittt - - - g
_m 1,1, 1.1
6 Wratata - =
72 1 1 1 1
~% TTFETETE

w3

=3

shown in fig. 7, the equation is:

4pat

W=——
mD

n=1.3.5...

o0
1 . nox  pat 1 . nax
— sin — —: ; —sin —
n3 a 33D L, n a

n=1.3.5...

For the plate shown in fig. 8, the following is chosen:

1 . hmx e 1 . NTX
E(I-{—Y,,)sm—a——l-M Z ’?(I-PY")SIHT- .

n=].3.5...

14 Y, is determined from eqn. (3) and M from eqn. (5).

" 71536
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Just as in Example No. 1, some quantities have been calculated for Poisson’s
ratio=0, and are compared in fig. 9 with previously known “exact” values.

_Or% Y4
X
-—
a
,‘,z Fig. 7.
- 009
- — _
o0
Pt oy
y=0
=S x=g72
/ T —— e _Y=08/2
=
——

accurate

o Spproximale

302

Summary

If arectangular plate (fig. 1) is simply supported or clamped along theedges y=454/2
and simply supported along the edges x=0 and x=a, and if this plate is submitted
to a load which can be expanded into a Fourier series in x, then all quantities relating
to the plate can be calculated in a simple manner by means of generally known
methods. When, however, the boundary conditions at x=0 and x=a« are changed,
the numerical computations are time-wasting. In this paper, the author demonstrates
an approximate method which is characterised by the fact that the latter boundary
conditions are satisfied on one point only. The calculations are very simple, and
the results are sufficiently accurate for most design problems.
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Résumé

L’auteur considére le cas d’une dalle rectangulaire suivant figure I, portant libre-
ment ou totalement encastrée sur les bords y=45/2, portant librement sur les bords
x=0 et x=a et soumise a une charge se prétant 4 un développement en série de
Fourier par rapport a x. Il montre que toutes les grandeurs qui caractérisent la dalle
peuvent étre calculées d’une mani¢re simple, & 'aide de méthodes généralement
connues. Les calculs numériques sont toutefois fastidieux lorsque 1’on fait varier
_ les conditions marginales sur les bords x=0 et x=a. L’auteur expose une méthode
approchée caractérisée par ce fait que les conditions marginales latérales ne sont
remplies qu’en un point. Les calculs sont trés simples et la précision obtenue est
généralement suffisante pour les besoins de la pratique.

Zusammenfassung

Fiir den Fall einer Rechteckplatte nach Abb. 1, die an den Réndern y=4-5/2 frei
aufliegt oder total eingespannt ist, an den Ridndern x=0 und x=a frei aufliegt und
einer Belastung unterworfen ist, die nach einer Fourier-Reihe in x entwickelt werden
kann, konnen alle die Platte betreffenden Grossen auf einfache Weise mittels aligemein
bekannten Methoden berechnet werden. Die numerischen Berechnungen werden
jedoch zeitraubend, wenn die Randbedingungen an den Rindern x=0 und x=a
gedndert werden. Im vorliegenden Aufsatz wird eine Ndherungsmethode beschrieben,
die durch die Tatsache charakterisiert ist, dass die seitlichen Randbedingungen nur
in einem Punkt erfiillt sind. Die Berechnungen werden sehr einfach und es wird eine
fiir praktische Probleme meist geniigende Genauigkeit erzielt.
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Some special cases of buckling
Une étude du flambage en certains cas particuliers

Einige besondere Knickfille

Ir. W. J. vaAN DER EB
Research Engineer, T.N.O., Delft, Holland

BUCKLING OF LATTICED STRUTS WITH LONG BATTENS ONLY

When the lengths of the battens are not neglected, the system of the latticed strut
may be supposed to consist of coupled parts having a moment of inertia 7/, and a
length 2e, and parts to be coupled whose two components are self-supporting *“single
sections,” each having a moment of inertia /, and a length ¢. The distance between
the centres of the battens is termed /, so that equation /=c+2eis valid. Furthermore,
the angular displacement of the centre of the pth batten is indicated as i,, whilst the
difference between the angular displacements of the ends of this pth batten is referred
to as 4¢, (figs. 1 and 2).

In considering any given (p+ 1)th element (of a single section) of the parts to be
coupled, it is found that the following differential equation must be applied:

branch of the dellection curve

Fig. 1
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d%y P + M,

dx2— _H}y Erl,
whilst for the coupled parts
d?y 2P
axt B}
is valid. With the boundary conditions that must hold for the parts to be coupled:
where x=pl+e: Y'=dpriyn
x=(p+1)l—e: Y =0+
and for the coupling parts:
where x=pl—e: Y =4dp
x=pl+te: : Y'=bptm

(/ and r denoting ““left”” and “right”).
In this way, after introducing the conditions of equilibrium and continuity, the
equation of finite differences by which the problem is defined is found to be:

L2(1—
{Pc c?s a,e cos ale]42¢p+ [Pc ( cqs a,c)cos ae
d,C S1n asc Ui a,C S1n ajc .
2Pe . 2(1 —cos 2a,e) cos ae Pe 114 —4
+ ( 1 ) 1 ]pr_l_[ + ] ¢p+l qsp—~1=0

2ae sin 2a,e acsin a,c = 7 .

in which a;=2P/FErl,, a,=+/P/FErl,, 2P=total buckling force, n=4C/ErF,h2, F,=
cross-sectional area of the single section and ~=distance between the centres of gravity
of the single sections. As large battens, having great rigidity with respect to
“Vierendeel” deformation, are being dealt with, their deforming effects may be
assumed to be infinitely small and are therefore neglected.

An exact solution of this equation of finite differences which also satisfies the
boundary conditions, not to be mentioned here, is obtained at such a state of buckling
deformation that the deflection curves of the centre lines of the battens are all situated
on sinusoidal curves of the same form, displaced in a parallel sense with respect to
each other, of which only that with one wave between the bar-ends will, of course,
represent the least favourable condition. Introducing the solution indicated, the
general buckling condition is found to be:

2&17[ ﬁw( m om) ™ (1—0()77]+a(1—a)/3_7r C Br . o

m

cos —|cos - —cos— | —sin - sin "
m n m n 2n 2 m

) owr[ ,817'( 17) - w (l—oa)'rr:'
sin —|cos — [ 1—cos — | +sin —sin
m m n n 2n
in which a=c¢// and f=3(1—a)\/21,/I, and n=number of panels, whilst m is the
coefficient of the virtual buckling length defined by the equation:
m2FEr],
~ m2z

=
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and . h
’ 2i,2
This formula takes into account all extreme cases, for if ¢=0, that is, 2e=]/, then «
becomes 0, whilst B2=4I./I,, Moreover, cosom/m approximates to unity and
sin awr/m approximates to am/m.
The buckling condition is reduced to:

or B T
[3Z+1].cos -n—1=—[-;-Z+]] - €08 -
ﬁrr_ T T
€OS — = —COS 5-=C0S 7~
or fr_2n
m v
therefore m=28n

-Thus the total buckling force becomes, under condition g>=%1./1;:

2m2Erl, w2 . E.7.1,
4222~ ,12[2

2P=

which is correct.
When c¢=/, that is, e=0, then =1, B=0, and the following is obtained:

s o o
2-;1 cos ;—cos o
Z -

o ., ks
sin —| 1—cos —
m N

being the simple formula already found by several authors.
When the battens are very narrow, their * Vierendeel” deformation is no longer
negligible and it is necessary to equate for Z as follows:

h2
;2
7= 2
o
ErF,h3 (1 —CoS ;)
=T,

where I, is the moment of inertia of the battens with respect to their *Vierendeel”
effect. If the battens are infinitely weak, [,=0, and in that case Z=0. It is then
found from the buckling condition that m=n, and the total buckling force is then:



222 All2—W. J. vaN Der EB

2m2F7l,
e

which is also correct.
Therefore, as has already been shown, all the extreme cases have been taken into

account in the formula.

When transposing the above-mentioned buckling condition, a fortunate fact
appeared, viz. that in practical cases the effect of 8 is very slight. Thus, for example,
values were found as in the following table:

n=3 a=06 n=6 a=06
o =002 p=012 . p=002 | ﬁ;(iiz
07 29-39 28-41 0-9 49-80 49-36
1-1 523 521 14 15-26 1522
1-9 0-176 0172 2.7 230 2:29

The values of B applied in the above table were based on boundary values for
V2L/1; equal to about 0-1 and 0-6. This quantity varies in practice between ap-
proximately these amounts. It may be seen from the values shown above that
if tables are compiled for the average value, i.e. for 4/21,/1;=0-35, the error in-
curred in Z will at most be 1%, and furthermore this error rapidly diminishes if m
increases (i.e. with Z decreasing).

This affords considerable simplification in the numerical tables and in the appli-
cation of the theory. In computing Tables I to IV, a value of B based on 1/2L/I,
=(0-35 has been introduced. Furthermore, five values of « have been introduced,
viz. 0-6, 0-7, 0-8, 0-9 and 1. The various lines (figs. 4 to 7) have been plotted in ten
points, intermediate values being established from curves drawn as accurately as
possible.

Method of calculation

Calculate: Z=h?/2i,2 and a=c// in which c=/—2e.

The corresponding value of m can immediately be found from Tables I to IV.
Then the virtual ratio of slenderness of the strut is:

ml
/\w‘rr =
e

in which:

i, =radius of gyration of the single cross-section;

h =distance between centres of gravity of the component sections;

! =distance between centres of battens measured along centre-line of bar;

¢ =the length to be taken into account of the sections to be coupled;

2e=Ilength of battens minus twice the distance between two rivets in the case
of riveted constructions. In the case of welded constructions the entire
length of the batten is allowed to be taken into account.

The virtual ratio of slenderness being known, the required admissible compressive
stress oy can immediately be found in Table VI according to V.O.S.B. requirements.*

* V.0.5.B.=Netherlands Standards for the Designing of Steel Bridges.
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Hence the admissible compressive force=2F, . o4, in which 2F,=total gross cross-
sectional area.

‘Numerical example (fig. 3)

h=14-6 cm.; i,=2:02 cm.; (=695 cm.; ¢=90 cm. and /=120 cm., whilst n=4
and F,=28-0, so that:

14-62
Z=—+—7=—=26'1
: 2x2-022
whilst «=90/120=0-75, m is found to be about 1-05; hence
1-05x120
vit=—77 — =03
2:02
50 2&3% €=90 x C 18 <14.6
- N i —— i L :
S -z o
o 120 i 120 e 1=120cm 120 N
b [ =480 cm. .
Fig. 3
TaBLE I (fig. 4)
ZzZ VA Z Z A
m a=0-6 a=0-7 a=0-8 x=09 a=1
n=3 n=3 n=3 n=3 n=3
0-60 ~
0-65 48-10
0-70 29-00 ~
0-75 21-00 65-00
0-80 15-40 3690 ~
0-85 12:20 23-40 79-50
0-90 10-10 17-40 41-00 ~
0-95 8-40 13-70 27-90 97-30
1-00 7-05 11:25 20-30 48-80 ~
1-05 6-05 9-40 16-00 32-:00 119-70
1-10 5-20 8-05 13-00 23-85 59-20
1-15 4-60 695 10-85 18-70 38-90
1-20 4-05 6-05 9-35 15-20 28-60
1-25 3-40 5-20 8-00 1270 22-30
1-30 2-90 4-50 6-90 10-85 17-80
1-35 2-55 4-05 6-05 9-40 15-20
1-40 2-:20 3-50 5-30 8-10 12-90
1-50 1-70 2-65 4-10 6-30 9-65
1-60 1-:20 2:05 330 5-00 7-50
1-70 0-80 1:55 2:50 395 595
1-80 0-50 1-10 1-95 3-10 4-80
1-90 0-17 0-75 1-50 2-:50 3-85
2:00 .0 0-40 1-20 2-05 315
2:10 0-20 0-95 1-75 2-55
2:20 0-10 0-70 . 1-55 2:05
2-30 1-30 1-65
2-40 1-10 1-30
2-50 1-00
2-60 0-75
2:70 0-55
2-80 0-35
290 015
3-00 0
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The admissible compressive stress according to V.0O.S.B. requirements is then

1,021 kg./cm.2, so:
(P)=2x28-0x1,021 kg.=57-2 metric tons.

The ratio of slenderness with respect to the x direction is:
_ 480
T 695
and the admissible compressive stress is then 952 kg./cm.2, so

(P)=2x28-0%x952 kg.=53-2 metric tons.

The latticed stryt therefore appears stronger with respect to the y axis than the x axis.
If the length of the battens had been neglected, a virtual ratio of slenderness of
Avir=82 and an admissible compressive stress of 800 kg./cm.2 would have been

found. In this case P=44-7 metric tons, whilst according to Engesser’s formula
Avire=285 and P=42-7 metric tons.

Ax 69,

TaBLE II (fig. 5)

Z VA zZ VA ZzZ
m a=06 a=0-7 a=0-8 =09 =1

n=4 n=4 n=4 n=4 n=4
0-60 ~
0-65 97-60
0-70 57-50 ~
0-75 41-00 129-20
0-80 30-55 67-25 ~
0-85 24-80 45-10 157-00
0-90 20-30 34-75 79-70 ~
0-95 17-40 27-05 53-50 179-00
1:00 14-70 22-95 40-25 95-50 ~
1-05 12-75 ~19-65 32-:00 63-70 232-50
1-10 11-15 16-70 26-35 47-25 115-40
1-15 9-95 14-75 22-30 37-70 76-10
1-20 8-90 12-90 19-00 30-90 56-25
1-25 7-90 11-40 16-60 25-90 44-30
130 7-00 10-05 14-60 22-20 3625
1-35 6-20 895 12:90 19-30 30-35
1-40 5-55 8-00 11-50 17-00 26-05
1-50 4-40 6-50 9-55 13-60 19-95
1-60 3-50 5-40 8-:00 11-05 15-80
1-70 295 4-40 6-75 9-00 12-90
1-80 2:40 3-70 5-65 7-60 10.70
1-90 2:00 3-05 4-70 6-40 895
2:00 1-65 2-55 3-75 5-40 7-60
210 1:35 2-10 3-15 4-60 6:50
2:20 1-05 1-65 2-60 3-95 5-55
2-30 0-80 1-30 220 3-30 4-80
2-40 0-60 1-05 1-80 2-80 4-15
2:50 0-40 0-75 1-45 2-40 3-55
260 0-15 0-60 1-20 2:05 3-10
2-70 0 0-40 1-00 1-75 270
2:80 0-25 0-80 1-45 2:30
290 0-10 0-60 1-20 2-00
3-:00 —0-05 0-50 1-00 1-70

BUCKLING OF BARS ELASTICALLY SUPPORTED AT INTERMEDIATE POINTS

The second case refers to the calculation of the stability of the upper chord of a
low-truss bridge. There are already many publications on this subject. Thus, the
C.R;_ls =
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TasLE 1II (fig. 6)

227

Z Z VA zZ ZzZ
m a=0-6 a=0-7 a=0-8 a=09 a=1

n=>5 n=>5 n=>5 n=>5 n=3>5
0-60 ~
0-65 174-90
0-70 95-50 ~
0-75 65-40 212-30
0-80 50-50 110-60 ~
0-85 40-60 77-05 257-10
0-90 33-50 57-00 130-50 ~
0-95 28-20 46:05 89-05 311-40
1:00 24-60 37-90 66-00 156-50 ~
1-05 21-50 32-00 52-80 105-50 378-00
1-10 18-90 2770 43-50 77-40 178-80
1-15 16-85 24-20 37-00 62-00 123-95
1-20 15-05 21-50 31-90 50-90 91-85
1-:25 13-40 19-00 27-80 42-75 72-45
1-30 12-10 17-00 24-60 36-90 59-40
1-35 10-90 15-30 21-80 32-00 50-10
1-40 9-90 13-90 19-60 28-4Q 43-05
1-50 8-30 11-60 16-40 22-70 33-15
1:60 6:90 970 13:60 18-50 26-50
1-70 5-80 8-10 11-25 15-50 21-75
1-80 4-90 7-00 9-55 13-15 18-25
1-90 4:20 5-95 820 11-30 15:50
2-00 3-50 5-10 7-10 9-70 13-30
2-10 3-05 4-50 6:20 8-50 11-55
2-20 2-60 3-80 5:40 7-40 10-10
2-30 2-10 3-30 470 6:50 8-85
2:40 1-80 2-80 4-10 5-70 7-80
2:50 1-55 2-35 3-60 5-05 6-90
2:60 1-30 -2-00 315 4-50 6-15
270 1-05 1-75 270 3-90 5-50
2-80 0-90 1-50 2:40 3-50 4-90
2-:90 0-70 1-25 2-10 3-10 4-40
3-00 0-60 1-05 1-80 2-75 3-90

case of a bar elastically supported at intermediate points with hinged ends has already
been dealt with by Dr. Ing. Fr. Bleich in Theorie und Berechnung der eisernen Briicken
(Theory and Dimensioning of Steel Bridges), whilst the same theme was subsequently
treated by Prof. P. P. Bijlaard in De Ingenieur, No. 4, 1932, in an article entitled
“Knikzekerheid van de bovenrand van open wandbruggen’ (Buckling Resistance
of the Upper Chord of a Low-Truss Bridge). . -

The same problem is dealt with below,
but in this case with hinged elastically
supported ends. Fig. 8 shows the con-
dition for any given number of waves.

With a2=P/EI, the differential equa-
tion of any given .pth curve will appear
in the general form:

ay_
dx2~

in which S, and R, are values depending on the elastic reactions p; . .

_02y+

b las B, g g P“
, i
5, P y _/f ]
2 B fo iy as
A X |
Fig. 8

Spx+ Rpe
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TABLE 1V (fig. 7)

zZ VA VA Z Z
m a=06 a=0-7 o=0-8 =09 a=1
n=6 n=6 n=6 n=6 n==6

0-60 ~
0-65 258-80
0-70 144-00 ~
0-75 96-40 311-60
0-80 7300 163-30 ~
0-85 59-00 112-50 379-50
0-90 49-70 84-50 192-50 ~
0-95 42-50 68-05 131-50 458-90
1-00 36-50 56-50 97-60 229-70 ~
1-05 32:10 47-85 77-50 155-00 555-70
1-10 28:20 41-30 64-45 114-30 276-10
1-15 2520 36-60 54-90 89-50 182-40
1-20 22:65 32:20 4720 73-50 134-45
1-25 20-30 28-60 41-40 63-40 106-90
1-30 18:50 25-50 37-05 54-90 87-85
1-35 16:95 23-05 33-:00 4805 74:15
1-40 15-25 21-10 29-40 42-30 63-80
1-50 12-80- 17-70 24-50 33-05 49-30
1-60 10-80 14-90 20-30 27-20 39-60
1-70 9-30 12:70 17-25 23-55 32-70
1-80 7-95 11-10 14-85 20-30 27-50
1-90 6:90 9:65 12:90 17-50 23-50
2:00 6-00 830 11-20 15-10 2030
2-10 5:20 7-30 9-90 13-20 17-70
2:20 4-50 6-40 870 11-65 15-60
2-30 4-00 5:65 770 10-30 13-80
2-40 3-50 5-05 6-85 9-15 12-30
2-50 3-05 4-45 6:15 820 11-00
2:60 2:65 3-90 5-50 7-35 9-90
2:70 2:30 345 4-90 660 8:90
2-80 2:05 3-10 4-40 6-05 8-00
2:90 1-75 2:70 4-00 5-40 7-25
300 1-50 2:40 3-55 4-90 6-60

The boundary conditions for any given pth curve are as follows:

where
where

pP=pcC:

x=(p+1)c:

Y=Yp+1n
Y=Ye+1)r

(! and r again denote “left’” and “right™).
Introducing the conditions of equilibrium and continuity, the following system
of simultaneous equations of finite differences is obtained:

aP . 2aP(l1—cos ac)y,
Pp:sin ac” sin ac
and Azn,,=A2y,,+§P,,

. . C
in which np=yp—l;[PSp_1+Rp_1]

In the case of hinged elastically supported ends, the following equation is valid:
' Pp=A(yp—3)

where A4 is the force giving any elastic support a deflection of unity, and §;, is the
lateral movement of the left end, that is, for p=0.
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Now buckling of the bar is possible in two distinct ways. In the case of symmetric |

buckling, whereby 8,=39,, the following conditions are valid:

For p=0 and p=n, it follows that y,=y,=0 and ny=7,=0 and also ZP,=0

or, consequently, 2(y,—8;)=0.
In the case of reversed symmetric buckling §y=—3,.

In this case y,=0; y,=28,, and it follows that ny=1x,=0, furthermore

cEpP,=2PS,.

After several reductions the buckling condition is finally obtained, which can be

written in both cases in the general form:
14_IC]
[B] [D]

in which, in the case of symmetric buckling:

[A]=cosh (n+1)¢y—cosh (n+1)¢+cosh ¢ cos ng—cosh np cos ¢
[B]=sinh ny sin ¢—sinh ¢ sinh né

and in the case of reversed symmetric buckling:

[A]=cosh (n+ 1)$+cos (n+ 1)¢—cosh i cos ng—cosh np cos ¢
[B]=+sinh m sin ¢+sinh ¢ sin n¢

while in both cases:

[C]=[2(cosh y—cos ¢)]>+2B[cosh ¢ cos ¢—1]
[D]=2B sinh ¢ sin ¢

In these formulae ¢ and ¢ are given by
cos p=—1v/B+3v/B+4a+16
cosh $=+3v/B+1v/B+4e+16
in which:

a=B[n;1 sin %— l] -2 [1 —Cos %]
Ky
ﬁ=2B[1 —Cos$ ;1]
m representing the coefficient of virtual buckling length defined by the formula:
m2ETl

~ m2c?

hilst furth P
whilst furthermore = 2Ed Y

_WZETI
T Ac3

so that

In these equations:

A =the force required for giving any elastic support a deflection of the unity

(1 cm.);
n =the number of panels of the strut;
¢ =the length of a panel of the strut;
Er=modulus of buckling;

I =the moment of inertia valid for the buckling direction under consideration.
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In this way the most general expressions for buckling condition are given; they are
valid in any given number of panels.

iy and ¢, however, can be eliminated in a fairly simple manner, and, for any given
value of » in each particular case of buckling, two equations of higher degree in terms
of B as a function of m, are obtained, viz. one in the case of symmetric buckling and
the other in the case of reversed symmetric buckling. With

a=(1—T sin E) b=2(l—cos Z)
m m m

the values are found as follows:

where n=2:
3b—6
b—2a

symmetric buckling: B=

reversed symmetric buckling:

B=1 ... (fig.9)
where n=4:

Fig. 9

symmetric buckling: B2(b2—4ab+2a2)— B(5b2—Tab—13b+10a)+(5b2—20b+4+10=0
reversed symmetric buckling: B2%(b2—2ab)+ B(ab+ 5b—3b2)+(b2—2b)=0
where n=6:
symmetric buckling: B3(b3—6ab2+9a2b—2a3)+ B2(—7b3+19b2—52ab—11a2b+ 14a?
+23ab?)+ B(14b3 —68b2— 16ab2+ 70b+ 56ab—28a)+(—7b3+42b2— 63b+14)=0
reversed symmetric buckling: B3(3a2b—4ab2+ b3)+ B2(—a2b+9ab2—5b3— 14ab
+1162)+ B(—2ab2+6b3 +4ab—22b2+ 14b)+ (— b3 +4b2—3b)=0
The accompanying two graphs (figs. 10 and 11) give the results, established point
by point, for m ascending by 0-1, where n=4 and n=6. All roots have been deter-
mined, so that curves for all wave forms could be plotted. It will appear that in each
case only two wave forms are possible. The other wave forms are fairly possible,
but can only be produced ““with assistance.” Table V gives the maximum B values
as a function of m for n=4 and n=6, whilst Table VI represents a set of buckling
stresses determined in accordance with V.0.S.B. requirements (Netherl. Standards
for the Designing of Steel Bridges), the admissible compressive stresses and safety
factor given as functions of the ratio of slenderness A, A ascending from unity. In cal-
culating the rigidity of the elastic supports (determination of A4), the two deformation
possibilities of the cross-section of the low-truss bridge are to be taken into account.
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The following formula is recommended (fig. 12):

1
A=)y (H—Ih)%
3EIL 2EL

How can the theory given above be applied? One possibility is to require the
same safety factor in both the x and the y directions in the upper chord (the x axis
is horizontal, the y axis is vertical). In general the radius of gyration with respect
to the vertical axis (in this case, the y axis) will be larger than with respect to the x axis.

Then the following condition is valid:

A=A,
c m.c
hence =
) ix Iy
i
50 ==
Ix

The required value of B corresponding to m can then be found at once in Table v,
hence: '
_B . Pbuckling___B .. Pac!ual

C c

A
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n in this equation denotes the required coefficient of safety against buckling under
the condition A,=A,. This value can at once be found in Table VI, where A,=A4, is
known, which will obviously be the case.

The ratio m=1i,/i, will generally be fairly small, varying between about 1 and 1-5,
and will seldom be more. The corresponding values of B are then usually rather
high, so that rigid vertical members are required in order to ensure the same resistance
against buckling with respect to both x and y axis. This, particularly in the case of
high bridges without upper bracing, leads to heavy constructions. In such cases it
will be found more advantageous to construct the upper chord somewhat heavier
with regard to the y direction, considering the last direction decisive (the x direction
being safe). The procedure then is as follows.

The actual compressive stress is given by:

P actual

£

where F is the gross cross-sectional area of the upper chord; Table VI at once gives
the corresponding required ratio of slenderness with respect to the y axis. This value
being A,, the required m value will be:

ag=

m=iy . /\—cy
The corresponding value of B can now be found in Table V; moreover:
B.n. Paclual
¢
n denoting the required factor of safety against buckling according to A,, also to be
found in Table VI.

The most advantageous use of material can, of course, only be found by trial, that
is, by comparing various possibilities with regard to their total weight.

A=

TABLE V
B B

n m

n=4 n=>~6 n=4 n=6
1-0 3-62 3-80 23 0-99 0-81
1-1 2-39 2:50 2:4 0-95 073
1-2 217 2-055 25 0-90 0-695
1-3 1-96 1-855 2:6 0-85 0-68
1-4 173 1-655 27 0-81 0-6635
1-5 1-51 1-46 2:8 0-75 0-65
16 127 1-31 29 0-70 0-635
1-7 1-19 1-24 3-0 0-65 0-62
1-8 1-15 1-17 31 060 . 0-605
19 1-12 1-105 32 0-54 0-59
20 1-095 1-035 33 0-46 0-575
2-1 1:075 0-96 34 0-37 0-56
2:2 1-03 0-89 3-5 0-37 0-545

Method of calculation

Calculate o=P/F. Find in Table VI the required ratio of slenderness A, corre-
sponding to o. Hence:
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i, being the radius of gyration with respect to the y axis and ¢ being the length of a
panel. Then in Table V the corresponding value B to m can be found. Now, oy
corresponding to A, also known in Table VI, 4 can be calculated according to

_B e P buckling

A
C
so here Pbuck!inng . Ok
TABLE VI

A G’k n O'd A Uk n Ud A U'k n 0{1 A Uk n O‘d
0-30 2390|1703 | 1400( 73 |2276|2:52 | 904 | 116 | 1539] 35 | 440 | 159 | 820 | 35 | 234
31 |2379| 1713 [1388| 74 [2272|2:55 | 892 | 117 |1515| ,, | 432 | 160 | 810 | ,, | 231
32 |2377| 1726 | 1377] 75 | 2268|258 | 880 | 118 |1490| . | 425 | 161 | 800 | . | 228
33 |2376( 1740 | 1365| 76 |2263|2:61 | 869 | 119 |1465| . | 417 | 162|790 | . | 226
34 (2375|1754 [1354| 77 |2259|2-63 | 857 [ 120 |1440| . | 411 | 163 | 781 | . | 223
35 [2374| 1769 | 1342| 78 |2254|2-66 | 846 | 121 |1415| . | 404 | 164 | 771 | . | 220
36 (2373|1782 | 1331| 79 [2250|2:69 | 834 | 122 [1392| . |397 | 165|761 | . | 217
37 |2372| 1798 | 1319| 80 [2245|273 | 823 | 123 [1370| . | 391|166 | 752 | . | 215
38 |2370|1-811 | 1308| 81 [2239|276| 800 | 124 |1347| I | 385|167 | 743 | . | 212
39 |2369(1-827 [1296| 82 [2234|2:80| 800 | 125 |1327| . | 379 | 168 | 735 | . | 210
40 |2368|1-844 | 1284| 83 |2229|2:83 | 788 | 126 |1307| . | 373 | 169 | 726 | . | 208
41 |2366|1-858 | 1273| 84 |2223|2:87| 777 | 127 | 1286] . | 367|170 | 717 | . | 205
42 [2364|1-874 | 1261| 85 2218|290 | 765 | 128 |1266| . | 361 171 [ 700 | . | 203
43 |2362|1-890 | 1250 86 |2211|2:94 | 753 | 129 | 1245| . [355| 172 | 701 | . | 201
44 |2361|1-907 | 1238| 87 |2205|298 | 741 | 130 |1228| . |350 [ 173 | 692 | . | 198
45 2359|1922 |1227| 88 (2198|301 | 730 | 131 |1207| . | 345|174 | 684 | . | 196
46 |2357(1-940 | 1215| 89 |2192|305| 719 | 132 | 1189] . | 340|175 | 676 | . | 193
47 |2355|1-958 | 1204| 90 |2185|309 | 707 | 133 | 1171| . |335|176 | 669 | . | 191
48 |2353[1-975|1191] 91 (2176|313 | 694 | 134 | 1155| . |[330.[ 177 | 662 | . | 189
49 [2352(1-993 | 1180| 92 2167|316 | 684 | 135 | 1137| . | 325|178 | 654 | . | 187
50 [2350|2:011 |1169| 93 |2158(3-20 | 673 | 136 [1122] . |320| 179 | 674 | . | 185
51 |23a7|2:028 | 1157] 94 |2149[325 | 661 | 137 [1103| . | 315|180 | 640 | . | 183
52 |2344|2:045 | 1146| 95 |2140[3-29 | 650 | 138 [1080| .. | 309 | 181 | 633 | .. | 181
53 |2341|2:062 | 1134] 96 |2125[3-33 | 638 | 139 [1072| . | 305|182 | 626 | . | 179
54 |2338|2:082 | 1123| 97 |2110[3-36 | 627 | 120 |1056| .. | 301|183 | 619 | . | 177
55 (2335/2:10 |1111| 98 |2095|3-40 | 615 | 141 [1043| . | 297 | 184 | 612 | o | 175
56 |2332(2:12 |1100| 99 [2080(3-44 | 603 [ 142 [1027| . | 293 | 185 | 605 | .. | 173
57 (2329|214 |1085| 100 |2065|3-48 | 592 | 143 [1014| . | 289|186 | 599 | . | 171
58 |2326(2-16 |1077] 101 [2028|3-50 | 580 | 144 | 998| . | 285|187 | 593 | . | 169
50 |2323[2:18 |1065| 102 | 1990|3-50 | 569 | 145 | 985| . | 282|188 | 587 | . | 167
60 |2320(220 |1054| 103 |1954| ., | 558 {146 | 971| o | 278 | 189 | 581 | . | 166
61 (2317|222 |1042| 104 [1917| . | 547 | 147 | 958| . | 274|190 | 575 | . | 164
62 |2314|2:25 |1031| 105 |1880| . | 536 | 148 | 94s| . .| 270 [ 191 | 569 | . | 163
63 [2311|227 |1021] 106 |1845| . | 527|149 | 93a| . '| 267 [ 192|563 | o | 161
64 [2308|2:30 |1007{ 107 |1881| . |517|150 | 921| I | 263|193 |557| 2 | 159
65 (2305|232 | 994| 108 [1777] . | 507 [ 151 | 909| I | 259|194 | 551 | L | 157
66 |2302(2:34 | 984|109 [1751] . | 500|152 | 897| . | 256|195 |5a5| . | 156
67 2299|236 | 973| 110 [1714| . | 490 | 153 | 886| . |253 | 196 | 540 | . | 154
68 |2296|2:39 | 960| 111 |1682| . |480 | 154 | 874| . | 249|197 | 534 | I | 153
69 (2293|241 | 952|112 |1653| . |472|155| 862| o | 246|198 | 529 | I | 151
70 [2290|2:44 | 938| 113 [1623| . | 469 | 156 | 852| . | 243|199 [523| 7 | 129
71 |2286|2:46 | 927| 114 |1593| . | 546 | 157 | 841| . | 240|200 | 518 | I | 148
72 |2281|2:49 | 915| 115 |1566| . | 447 | 158 | 831| . | 237
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Numerical example

B No. 425 low-truss bridge of the State Railways in the former Netherlands
Indies; theoretical length 6x435 cm. Trapezoidal main girder. Upper chord
extending over four panels.

The data then are:

n=4; c=435cm.; i,=14"7 cm.;

F=178-6 cm.2 (gross cross-sectional area of upper chord);

Ppax=—141 metric tons (having A=0-550 metric tons/cm.);
141

178-6
Corresponding ratio of slenderness found in Table VI, A,=92.
Required coefficient of virtual buckling length:
92x14-7
=35 1

In Table V is found B=0-604 according to n=4 and m=3-1. To A,=92 corresponds
ox=2,140, hence Ppyckiing=178-6 X2,140=382 metric tons (Table VI).

0604 382
=485

Having 4A=0-550 metric tons/cm., the actual factor of safety is therefore somewhat
larger than calculated.

Actual compressive stress o= =0-789 metric tons/cm.?;

m

Required: =0-530 metric tons/cm.

Summary

This paper deals with the results of a theoretical study of two cases of buckling,
both of them under application of the theory of equations of finite differences.

The first case refers to the buckling of latticed struts with long battens only, the
lengths not being neglected. It proved possible to deduce an exact buckling con-
dition, in which all extreme cases are unequivocally included. .

The second case deals with the buckling of bars elastically supported at any
number of intermediate and equidistant points, while the two end supports are also
elastic, permitting lateral movement and having the same rigidity as the others. In
this case also it proved possible to deduce an exact buckling condition valid for any
given number of panels.

Both cases are documented with graphs, tables and calculation methods, enabling
easy application in practice. Two numerical examples are given by way of illustration.

For detailed information see: Ir. W. J. van der Eb, “Over enige bijzondere knik-
gevallen,” Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft Nederland.

Résumé

L’auteur expose une recherche théorique sur deux cas de flambage, effectuée en
appliquant le calcul des différentielles finies aux deux cas.

Le premier cas porte sur le flambage des barres en treillis, avec éléments d’as-
semblage relativement longs dans le sens de la longueur de la barre. On a pu arriver
a une condition de flambage exacte, qui englobe sans équivoque tous les cas extrémes.

Le second cas porte sur le flambage de barres supportées latéralement par un
nombre quelconque d’étais concentrés élastiques et équidistants, les deux étais d’ex-
trémité étant également élastiques, c’est-a-dire latéralement déplagables et de la



236 All 2—W, J. vxN DER EB

méme rigidité que les autres. Ici encore, on a pu établir une condition de flambage
valable pour n’importe quel nombre de panneaux.

Les deux cas sont complétés par des graphiques, tableaux et méthodes de calcul,
permettant une application simple en pratique. Deux calculs sont effectués a titre
d’exemples.

Pour I’étude détaillée, voir: Ir. W. J. van der Eb, “Over enige bijzondere knik-
gevallen,” Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft, Nederland.

Zusammenfassung

Im vorstehenden Aufsatz wird das Endergebnis einer theoretischen Abhandlung
iiber zwei Knickfille unter Anwendung der Differenzrechnung ndher untersucht.,

Der erste Fall bezieht sich auf die Knickung von Rahmenstdben mit in der Stab-
richtung verhiltnismissig langen Bindeblechen. Es gelang, eine exakte Knick-
bedingung abzuleiten, in der alle extremen Fille eindeutig eingeschlossen sind.

Im zweiten Fall handelt es sich um die Knickung von Stidben, die in einer beliebigen
Anzahl gegenseitig gleichtweit entfernter Zwischenpunkte elastisch quergestiitzt sind,
wobei auch die beiden Endabstiitzungen elastisch, also seitlich verschieblich sind und
gleiche Steifigkeit wie die iibrigen Abstiitzungen aufweisen sollen. Auch in diesem
Fall gelang es, eine exakte und fiir beliebige Felderzahl giiltige Knickbedingung
abzuleiten.

In beiden Fillen wird die praktische Anwendung durch graphische Darstellungen,
Tabellen und Rechenvorschriften; sowie zwei numerische Beispiele erleichtert.

Die vollstindige Abhandlung einschliesslich allen Zwischenrechnungen ist zu
finden in: Ir. W. J. van. der Eb, “Over enige bijzondere knikgevallen,” Rapport
No. 21: Commissie inzake Onderzoek van Constructies T.N.O., Postbox 49, Delft,
Nederland.
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Measurement of strains in a slab subjected to a concentrated load

La mesure des contraintes dans une dalle soumise a une charge
concentrée

Spannungsmessungen an einer Platte unter Einzellast

Ir. H. J. KIST, Ir. A. L. BOUMA and Ir.J. G. HAGEMAN
Chief Engineer, Rijkswaterstaat  Research Engineer, T.N.O., Delft  Research Engineer, T.N.O., Delft

INTRODUCTION

For designing reinforced-concrete slabs it is desirable to know the stress distri-
bution produced by concentrated loads.

In the theory of plates as it has been developed up to now, the material is usually
supposed to be ideal: homogeneous, isotropic and elastic and meeting the require-
ments of Hooke’s law.

In order that the results of the measurements can be compared with these existing
theories, measurements have to be made on a practically ideal material. This is one
of the reasons why a steel model was chosen. Moreover a steel model can be con-
structed on a fairly small scale, and besides it is possible to make a great number of
observations on such a model for many different schemes of loading.

In order to interpret the results of the measurements on reinforced-concrete con-
structions it will be necessary to carry out tests on reinforced-concrete slabs during
which the specific behaviour of this material will be observed. Only part of the
investigation has been completed, however, several results have already been obtained
and some conclusions can be drawn.

DESCRIPTION OF MODEL AND TESTS

The model (fig. 1) contains two rectangular slabs for testing. The upper slab is
the web of a beam DIN 100, length 580 cm. Rotation of the flanges is prevented,
so that the sides of the web are practically fixed. The web has a thickness of about
19 cm. The lower slab (about 96x1-9x 506 cm.) has a hinge-bearing along the
entire length of each long side. The distance between these hinge-bearings is 92 cm
and is called the span.

One short side of each slab is completely fixed and the other short sides have
hinge-bearings. In the future these hinge-bearings may be removed in order to
make these short sides entirely free.
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DIN 100 LG. 580 C

+
+
B +
Hydraulic
Jack
Distribution Dynamomeler
Piece \ with
\ electric
[ . resistance
.5 i 5 straingauges
* +
| - [p| - < |8

\m96x1,9x506C m

Span=92cm

Fig. 1. Cross-section of model

The model is rigidly united by vertical and diagonal members.

The load is applied by a hydraulic jack placed between the slabs. The magni-
tude of the load is measured by a dynamometer provided with electrical resistance
strain-gauges and is kept limited to assure the validity of Hooke’s law.

The load was concentrated on a circular area with a varying diameter D (7-6—5-4
—3:6—1:6 cm.) or transmitted by a ball with a diameter of 1 cm.

- The influence of different packing such as 3 mm. of cardboard and 3 mm. of rubber
between the slab and the distribution piece was also tested.

Up to now, measurements have been taken only in the middle part of the lower
slab. It may be supposed that the supports along the short sides of the slabs do not
influence the stress distribution in the central part; in other words, in this case the
slab may be considered to be infinitely long. The load is placed respectively in
different points of this central part, while the strains are measured in several places.
Because no strain-rosettes were used, a special scheme had to be designed for fixing
the strain-gauges and placing the load, so that for a point at a certain distance from
the load the values of ¢, and ¢, could be determined in a simple way.

Philips strain-gauges mostly were used with a measuring length of 12 mm. In
some places Baldwin strain-gauges were used with a measuring length of 12 and 3 mm.

RESULTS

From the strains measured (ex and ¢,) for a certain magnitude and position of the
load P, the bending moments M, and M, are determined by means of the formulae:

E
M= . (e, 4v. c) . b2

E
M}'=-l—_1/2 ety . ey) . +h?
in which the modulus of elasticity is assumed to be E=2-15.106 kg./cm.2, and
Poisson’s ratio v=0-3.
M, is the bending moment transmitted by sections perpendicular to the span, and
M, the bending moment transmitted by sections parallel to the span.
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‘The relation between elongation and load (e, ¢, and P) was fairly linear. For
that reason it was possible to use one certain magnitude of P for calculating.

Fig. 2 shows the values of M, /P and M,/P at several points of sections below P,
one in the direction of the span and the other parallel to the long side of the slab.
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Fig. 2. Moment-load ratio from measured strains

In this case the load P is placed without any packing in the centre of the span.

In the neighbourhood of the load, and especially below the load, the influence of
the concentration of the load proves to be very important. This influence, however,
may be neglected when the point is chosen at a greater distance from the load. The
influence of the packing also appears to be limited to the close surroundings of the
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load. Generally the results of the formulae concerning the elementary theory of
plates! agree well with the T.N.O. results.

Fig. 2 also shows the values of M,/P and M, /P at points in sections below P, one
parallel and the other perpendicular to the span. In this case a concentrated load
with diameter D=1-6 cm. without any packing is placed respectively at different
points of the span.

When the load is moved from the centre to the vicinity of the supports it appears
that in the beginning the values of M, /P and M,/P decrease only slightly.

Fig. 3 again shows the values of M,/P below the load as a function of the con-
centration of the load in the case where the load P is placed at the centre of the span.
The observations obtained with three different kinds of strain-gauges and with two
different packings and without any packing show a certain deviation. During
loading without any packing, generally lower values are found, and during loading

06 , ;
M Mle'menfariy fheni‘y of ﬁ)lafes l(Iir. 1)
Mx 1,
P T~ average computed from measurements
0.5 :}2 1 D g J d | |
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with a rubber packing of 3 mm., higher values of M,/P are found. For comparison
the values according to the elementary theory of plates ! and those from the formula
of Westergaard 2 are also given. Those of Westergaard also agree well with the test
results when the load is concentrated on a very small area.

The T.N.O. results also agree with those of tests on rectangular slabs of aluminium
made by R. G. Sturm and R. L. Moore.3

The tests will be continued. The load will be placed at different points of the
lower slab near the short sides (different boundary conditions: hinged, fixed, free).
Thereafter tests will be made on the upper slab.

Fig. 3 also shows the maximum moments according to the Netherlands Code
(G.B.V. 1950).

When the load is concentrated on a small area, the moments determined from the
observations are considerably bigger than those according to this code. However,
it must be taken into consideration that a reinforced-concrete construction that is
loaded up to the limit of its bearing capacity does not follow Hooke’s law. Usually
the thickness of a reinforced-concrete slab is, in relation to its span, bigger than for

1 For references see end of paper.
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the T.N.O. model. For this reason the results of this investigation are compared
with those of the tests of Prof. Dr. Ing. Mérsch.4

During these tests on reinforced-concrete slabs (span 200 cm., thickness 14 cm.,
and sides perpendicular to the span 300 cm.) a load is applied that is distributed over
an annular area with an outer diameter of 10 cm. He concludes that it is allowable
to take into account a co-operating width in the slab equal to or bigger than the span.
This means that the moment is equal to or smaller than 0-25P. In the tests of Morsch
the diameter of the loaded area amounted to 0:05 of the span. In the steel model
the diameter would thus be 46 cm. From the results of the steel-model tests a maxi-
mum moment of 0-40P to 0-47P would then be found (fig. 3).

It remains to be decided how far the difference between these values and 0-25P
is due to the differences in the relation between the thickness of the slab and the
span or to the differences between the properties of steel and those of reinforced
concrete.

Another problem which arises is what moments must be taken into account for
the design of reinforced-concrete slabs that are very thin in relation to their span
and carry a load that is concentrated on an area as small as possible.

More data concerning the above problems can be obtained by testing reinforced-
concrete slabs upon which dead loads as well as live loads are applied.
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Summary

The purpose of these experiments is to obtain data for designing reinforced-
concrete floor slabs for bridges and other structures, subjected to concentrated loads.

The tested model was a steel slab which had been stress-relieved.

Electrical resistance strain-gauges have been used.

The results have been compared with some existing theories, other experiments
already made on this subject and the reinforced-concrete code of the Netherlands
(G.B.V. 1950).

Résumé

Le but des présentes recherches est de réunir des données en vue du calcul des
dalles de tablier en béton armé, pour ponts et autres ouvrages, dans le cas d’une
charge concentrée.

C.R.—16
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Le modele qui a été soumis aux essais était constitué par une dalle en acier ayant
subi un traitement d’égalisation. Les mesures ont été effectuées a I’aide d’extenso-
metres électriques a résistance.

Les résultats obtenus sont comparés avec certaines théories, avec ceux qui ont
été fournis par d’autres recherches expérimentales antérieures sur la méme question,
ainsi qu’avec les prescriptions néerlandaises concernant le béton armé.

Zusammenfassung

An einer spannungsfrei gemachten Stahlplatte, die durch eine konzentrierte Last
beansprucht wurde, sind Messungen ausgefiihrt worden, um Unterlagen fiir die
Berechnung von Stahlbetonplatten bei Briicken und sonstigen Konstruktionen zu
erhalten. Beniitzt wurden Dehnungsmess-streifen.

Die Ergebnisse wurden mit einigen schon bekannten - Theorien, mit weiteren
Forschungen auf diesem Gebiete, sowie mit den niederlindischen Stahlbetonbestim-
mungen verglichen.
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Experimental and theoretical investigation of a flat slab floor
Recherches théoriques et expérimentales sur une dalle-champignon

Experimentelle und theoretische Untersuchungen an einer Pilzdecke

Ir. J. G. HAGEMAN
Research Engineer T.N.O., Delft

INTRODUCTION

It is known that a three-dimensional stress distribution in a homogeneous elastic
material, which is moreover isotropic and meets the requirements of Hooke’s law, is
established by three linear simultaneous differential equations with linear boundary
conditions. Only a few exact solutions of these equations are known and the pro-
cedure of finding the approximations by iteration is complicated and takes a lot of
time. '

The economical use of monolithic reinforced-concrete construction could be
improved by a clear insight into the occurring three-dimensional stress distributions.

Reinforced concrete does not meet the premises leading to the above three simul-
taneous differential equations.

It appears that the development of the technique of reinforced concrete sur-
passed the existing calculation methods. These have even failed in such a way
that the general application of scientific concrete structures, e.g. flat slab floors, is
hampered or rather involves a waste of material which, if the insight into the occurring
stress distribution had been clearer, could in many cases have been limited.

EMPIRICAL RESEARCH

In order to be able to determine if the differences between theory and practice are
caused by the adopted premises, which refer to the properties of the materials, or by
the methods of calculation which are applied to this kind of construction, it was
- decided to use a steel model for the investigations, because, it may be supposed, steel
does follow the premises made in the theoretical considerations.

The floor slab (4,500 x 2,940 X 9 mm.), consisting of 15 square panels, is supported
by 24 steel columns (figs .1), each with a column capital shaped as anequilateral hyper-
boloid rotated on its vertical asymptote. This shape may be considered as the average
column capital.
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The overhanging length has been chosen in such a way that the occurring moments
due to a uniformly distributed load in the floor slab approximate to the moments in a
flat slab floor infinitely stretched in both directions.

The connections in the column and in the floor slab are welded electrically. To
limit the resisting welding stresses as much as possible, the floor slab was annealed
twice.

The floor slab also acts as the bottom of a tank. Into this tank water can be
pumped to gain a uniformly distributed load.

Deformation of the floor due to action of sides of the tank during loadmg is
counteracted by means of a flexible connection between sides and bottom. These
sides are fixed to a frame. By jacking against this frame a concentrated loading on
the floor slab is accomplished.

The model is mounted on a rigidly constructed base of reinforced concrete, which
also serves as a storage tank for the water.

UNIFORMLY DISTRIBUTED LOADS

First the deflection plane of the central panel due to a uniformly distributed load
was determined by means of dial gauges with a measuring precision of 0-01 mm.
These gauges are mounted on a structure revolving round a column (fig. 2).

The exactness of these measurements was about 2 to 3 % of the greatest deflection.

hypnrb&. lesy diat gauqas/

| | e |
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Qégejl
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0 200 400 600 800 1000 mMm

Fig. 2



246 All 3—J. G. HAGEMAN

However, by determining the bending moments by differentiating the deflections
twice, the inexactitude may be great.

A more accurate determination raises the practical difficulty that, generally, very
accurate dial-gauges command only a very small measuring range, so that the dial-
gauges must be adjusted several times during the test. Therefore a specially designed
instrument is used for the determination of the bending moments. This instru-
ment gives the size of the curvature, namely the term w;+w;—2w,. Itis known that
the curvature k at the point A, provided the values for 4x are not too high, equals

W1+ W2—2W0

Due to a special design it is possible to determine simultaneously the curvatures
in two directions (fig. 4) at right angles to each other.

Fig. 4

A dial gauge with a measuring accuracy of 0-:001 mm. was used. The value dx
amounted to about 7 cm. The bending moments M are determined from the
formula:

M.=K(k.+vk))
in which K stands for rigidity of the slab and » for Poisson’s ratio. This was done at
different points of the flat part of the slab under uniformly distributed loading.

In the centre of the panel in which the greatest positive moment occurs, the
measurements were controlled by means of strain-gauges and Huggenberger tenso-
meters (fig. 5).

It is clear that with the use of these curvature-meters it is not possible to determine
the bending moments in the neighbourhood of the column capital. For that reason
the stress distribution along the boundary of the column capital is measured by means
of strain-gauges with a measuring length of 2-5 cm. The negative moments thus
determined are controlled by means of Huggenberger tensometers.

CONCENTRATED LOADS

By several characteristic positions of the concentrated load (in the centre of the
panel and in the middle between the columns at the boundary of two panels) the
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Fig. 5

influence of this load on the bending moments in the flat part of the floor was measured
by means of the curvature-meters. The stress below the load was also determined
by strain-gauges with a measuring length of 3 mm.

In this way an impression was obtained of the stress distribution in the neighbour-
hood of the concentrated load.

The bending moments at the boundary of the column capital were established in
the same way as with a uniformly distributed load.

The influence of the size of the area over which the concentrated load was dis-
tributed was also examined.

RESULTS

It appeared that with a uniformly distributed load the greatest positive moments
in all 15 panels differed only slightly from each other. The greatest difference
amounted to about 10 % of the average.

Owing to the correct choice for the overhanging length, which measured 3 of the
distance between two columns each panel thus approximated to the so-called ideal
central panel. The other measurements could be limited to the central panel of the
test slab.

Fig. 6 shows, among other things, the outstanding results of the deflection measure-
ments by a water-load of 150 cm. height. The greatest deflection amounted to
0:77 mm. in respect to the column capital.

Fig. 6 also depicts the radial and tangential bending moments (M,.s and M,,,,)
measured also by a water-load of 150 cm.

The greatest positive moment (point B) amounted to 21 kg.-cm./cm.; for the
negative radial bending moment at the boundary of the column capital (0-4a from
the column axis, in which @ stands for half the panel length) an average of —47
kg.-cm./cm. was found.
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The bending moments A, and M, in point D (fig. 6) amounted to +25 kg.-cm./
cm. and —8 kg.-cm./cm. respectively.

During the concentrated loading it appeared that the overhanging length also
indicated that the behaviour of all panels approximated to that of the central panel.

The load was concentrated on a circular area with a diameter 4 (fig. 7). To deter-
mine the influence of the size of this diameter on the stresses below the concentrated
load, d was chosen as 1:6, 3:6, 5-4 and 7-4 cm. respectively.

Beiow the concentrated load the curvature-meters indicated about 159% lower
values than the strain-gauges with a measuring length of 3 mm.

Fig. 8 shows graphically the influence of the concentration of the load on the stress
distribution underneath in the case when the load is situated at point B. It appears
that the proportion M/P in which M stands for the bending moment and P for the
size of the concentrated force, follows from the formula o=M/W (c=measured
stress, W=h2/6=moment of resistance, h=thickness of the slab), diminished from
0-26 to 0-22, d increasing from 1-6 cm. to 7-6 cm.

TABLE T
[
Concentrated load Concentrated load
Influence of at B at D
concentrated loads
T.N.O. EM.PA,| T.NO. E.M.P.A.
ayx at B y ] +0-022 —
oy at B +0-263 +40-182 20006 _
ox at D +0-026 - +0-219 +0-099 to +0-192
ay at D —0-015 — +0-177 +0:054 to +0-137
axat L +0-001 — +0:028 —
oy at L —0-008 — +0-002 —
- orat H —0-056 — —0:017 —
arat E —0-028 — —0-100 —_

ax=Mx/P ay=My/P o =0Uradial = M;|P.

Table I shows the bending moments at the points B, D, E, H and L, the load being
in position B or D.

If the concentrated load is at B (fig. 9) the greatest bending moment at D amounts
to about % of the bending moments below B. At L some influence can be noticed.
The greatest moment at the boundary of the column capital amounts in this case to
3 of the moment at B.

Wlth the concentrated load at D, the bending moments are at B (=L) and E
about 75 and about 1% respectively of the moment at D.

A few results of the tests made by Prof. Ro§ (E.M.P.A.) are given in the table
to make comparison possible.

THEORETICAL RESEARCH

The measured results are particularly compared with the results of the calculation
method of Dr. Ir. A. M. Haas.! In this method, just as in the model, the most usual
shapes of column capital and drop panel are replaced by hyperboloids.

Haas approximates the stress distribution in the column supposing the stress
distribution to be axially symmetrlcal in this hyperbolmd by means of the formula
for a circular slab in which inertia is inserted varying only with the radius.

1 For references see end of paper.
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- TaBLE II

The numerical sum of the positive and negative bending moments ( pa3)

l | Nichols
Measured . . . . 0-47 ‘ 0-51
Haas . . 0-51 0-51
A.C.IL

0-52 l 0-72

The flat part of the floor is shaped as shown in fig. 10. To calculate the part
ABG, minus the included part of the column capital, Haas applies, in imitation of
Tolke,? the solution in polar-co-ordinates of the biharmonic differential equation
A4w=p/K according to Clebsch 3 (in which p stands for load per unit area).

. L 2
W—K[64+A0+B0]n +C0r +Dor ln04

+Z (Aur¥"+ Bur ="+ Cr¥"* 24 Dr=41+2) cos 4na]

The above coeflicients are determined by co-ordinating along the inside boundary
the average of the moments and shearing forces to those in the column capital and to
demand along the outer boundary the boundary conditions in a number of connecting
points (if more connecting points are chosen, more coefficients have to be added to
the calculation). _

Fig. 6 shows the deflections and bending moments of the steel model found in
this way. The greatest deviation between the theoretically and experimentally
determined values for both the deflections and the bending moment appears to be
about 159 at maximum, the theory providing higher absolute issues than the test.

As the model test gives only values for the negative moment in the column capital
at a distance of 0-4a from the column axis the negative bending moment at a distance
of 0-225a from the column axis is calculated by means of the theory of Haas, which
has appeared to be sufficiently exact. Thus the theoretically determined results for a
practical case could be compared to those according to the requirements of the
American Concrete Institute and those found by the Eidgenossische Material Priifungs

Anstalt.
Fig. 10 also shows the course of the bending moments found from:

(a) the empirical research T.N.O.

(b) the theory of Haas,

(c) the American requirements (A.C.I. 318- 51) 4

(d) the empirical investigation of Prof. Ro§ (E.M.P.A.).5

For the purpose of control, the theoretical total amount of the moments for
c¢=0-45a and for c=0-8a is also given according to the formula of J. R. Nichols 6:

IM=pat| 144 £ %
=pa Yoz 8a3™ 2ma
A theoretical investigation which has not yet been completed gave the following
results:

(a) Tolke, who imagines the slab to be immovably fastened at a distance r=0-2a,
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as well as Haas, does not take into account the coefficients B; . . . B, and
D, ... D, Now this appears not only to be allowable but even desirable.

() When the number of connection points along the outer boundary increases,
all stress quantities in the slab approach a limit, provided the calculation was
done very accurately. When three connection points and the coefficients
Ay up to and including .45, Cy up to and including C,, By and D are used
the deviation from the limit amounts to 2 % in the centre of the panel.
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CONCLUSIONS

As a result of the above investigations the following conclusions concerning flat
slab floors having square panels may be drawn.

1. The calculation method of Haas provides that by a uniformly distributed load,
bending moments in the ideal central panel are maximal about 159 higher than those
found during the investigation of the model. A satisfactory explanation of this
discrepancy has not yet been found. Partly it might have been caused by the cir-
cumstance that in the steel model the ideal central panel has been approximated but
not fully realised. In any case the conclusion may be drawn that the above theory
gives results that are sufficiently correct for practical use.

2. The measured results achieved by Prof. Ros with a uniformly distributed load
agree sufficiently with the results of T.N.O. so that these T.N.O. results can be applied
in practice directly to reinforced concrete, though found on a steel model.

3. Except at the boundary of the column capital the results found with the A.C.I.
requirements agree fairly well with those found by T.N.O. The negative bending
moments at the column capital, as found according to the theory of Haas, are con-
siderably greater than those of the A.C.I. The A.C.I. condition that, for determina-
tion of the compressive stress in the concrete at the boundary of the column capital,
the width of the column strip must be decreased to # of its value does point in this
direction.

4. From T.N.O. experiments as well as from those of Prof. Ros it follows that,
for the bending moment below a not too strongly concentrated load, a value of % or
1P may be taken into account. If this concentrated load is placed in the centre of
the panel, the value of the negative moment at a distance 0-4a from the column axis
amounts to 3gP and the negative as well as the positive moment right between the
columns amounts to about z%P. In the surrounding panels the influence of the
concentrated load can be neglected. When the load is placed right between the
columns on the boundary of two panels, then the moment below the load, near the
column capital and in the centre of the adjacent panel, amounts to +P, 5P and %
respectively.

5. When a flat slab floor with an overhanging length of 2 of the span length of
support is used, all panels will behave as ideal central panels, with a uniformly dis-
tributed load as well as with a concentrated load. In this way it is possible to diminish

the quantity of reinforcement in the concrete and to simplify the calculations and the
construction.
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Summary

By means of a steel model the Committee for Research on Constructions T.N.O.
investigated the conduct of an ideal square central panel of a flat slab floor with
uniformly distributed and concentrated loads.

The theoretical investigation was based on the theory of Dr. Ir. A. M. Haas, who
took into account the influence of the column capital on the stress distribution in the
- floor.

The results of the T.N.O. investigation were compared with the latest American
Building Code Requirements for Reinforced Concrete (A.C.I. 318-51) and with tests
made by Prof. Dr. Ing. h.c. M. Ros.

Résumé

A l'aide d’un modeéle en acier le Comité de Recherches sur les Constructions
T.N.O. a examiné le comportement d’une zone centrale carrée et idéale d’une dalle-
champignon soumise a une charge uniformément répartie, puis & une charge con-
centrée.

La recherche théorique était basée sur la théorie du Dr. Ing. A. M. Haas, qui,
dans ses calculs, a tenu compte de l'influence du chapiteau des colonnes sur la
répartition de la tension.

Les résultats des recherches de la T.N.O. sont comparés avec les nouvelles pre-
scriptions sur le béton armé de I'Institut Américain du Béton (A.C.I 318-51) et avec
les recherches effectuées par M. le Prof. Dr. Ing. h.c. M. RoS.

Zusammenfassung

Der Ausschuss fiir Eisenbeton- und Stahlbauten T.N.O. hat an einem Stahlmodell
das. Verhalten eines quadratischen ideellen Mittelfeldes einer Pilzdecke unter gleich-
maéssiger Belastung und unter Einzellast untersucht.

Die theoretische Forschung baut auf der Theorie von Herrn Dr. Ing. A. M. Haas
auf, der in seinen Berechnungen den Einfluss der Pilzkopfe auf die Spannungsverteilung
beriicksichtigt hat.

Die Ergebnisse der T. N. O.-Forschungen wurden mit den neuesten Forderungen
der Amerikanischen Betonanstalt (A.C.I. 318-51) sowie mit den Untersuchungen
von Herrn Prof. Dr. Ing. h.c. M. Ros verglichen.
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The limit of stress in the compression flanges of beams
Contraintes limites dans les membrures comprimées des poutres

Die Grenzspannung in den Druckgurten von Trigern

Pror. CLIFFORD D. WILLIAMS

Chief Structural Engineer, Patchen and Zimmerman, Augusta, Georgia, U.S.A.*

Specifications for the design of structural metal beams usually limit the stress in
the compression flange by consideration of its unsupported length, its width, and in
some instances by its thickness and the depth of the beam. Most specifications do
not consider the type of loading which produces the flange stress nor the end conditions
which may affect the limit of that stress. A specification which provides one working
formula for all conditions of loading, for all conditions of end restraint, and for
‘flanges that may vary in section along their length, cannot provide constant factors
of safety for all of the possible conditions.

The work of S. Timoshenko, as summarised in the Theory of Elastic Stability,t has
been notable in the analysis of the elastic problem that is involved in the flanged beam
subjected to bending. Karl De Vries’ paper, ** Strength of Beams as Determined by
Lateral Buckling,” with the several discussions,} has summarised the present status
of the problem. Further consideration of the flange buckling problem seems justified
with the objective of simplification and more general application to the varying
conditions that may exist.

The following items are among the considerations that may affect solution of the
problem:

(1) unsupported length of the compression flange,
(2) horizontal moment of inertia of the compression flange,
(3) torsional resistance of the beam,
(4) restraint to end rotation of the compression flange,
(5) thickness and width of the compression flange,
(6) variations in section of the flange,
(7) resistance of the tension flange, and
(8) point of application of load to the beam—whether at the top flange, bottom
flange, or intermediate between the flanges.
* Formerly Head Professor of Civil Engineering, University of Florida, Gainesville, U.S.A.

t S. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Co., 1936.
1 Trans. Amer. Soc. Civ. Engrs., 112, 1245.
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Some comparison has been made between the compression flange of a beam and
a column, considering that the flange tends to buckle transverse to the web of the
beam. The flange is considered to receive its load by shear transfer from the web.
The manner in which this shear transfer is accomplished is a function of the manner
in which the beam is loaded. For example, if a beam is subjected to pure bending
the flanges receive full load at their ends; when the load is concentrated at the centre
of the beam span the shear transfer is uniform per unit of length; and when the applied
load is uniform the shear transfer is uniformly decreasing from the ends to the centre
of the span. Thus the compression flanges may receive their load under conditions
that vary from end loading to loading uniformly distributed along the length of the
members.

The effect of the distribution of beam loading on the limit of stress may be
demonstrated by comparison of similar loading conditions on a slender column.
The classical Euler loading on a column of uniform section and having its ends free
to rotate is expressed as P==2El/12=9-87FI/L2. It may be shown that the same
column having uniform increments of load per unit of length has a limiting load of
P=31-6E1/L2, and when loaded with uniformly decreasing increments from the end
to the centre, P=20-8E7/L2. Thus it would appear that the manner of loading is a
major consideration affecting the limiting load by as much as 317 times.

Again, the effect of end restraint to rotation of the compression flange may be
demonstrated by consideration of the free end and the fixed end Euler limits, which
are in the ratio of 1 to 4. Degree of end restraint would affect values falling between
these two.

Variation of the cross-section of a column along its length becomes an important
consideration in establishing its limiting load. It is very difficult to assign an average
value to the moment of inertia of a column which will fully account for the manner of
variation. For example, a column may have a heavy mid-section or it may have
heavy end-sections. In these cases the average moment of inertia may be the same
but the limit of load would te different.

The torsional resistance of a beam to buckling of the compression flange might
also be compared to a slender column having a spring placed to resist lateral deflec-
tion. Let fig. 1 illustrate a column with a spring which has zero load when the
column is straight. When the column is bent toward the spring the restraining force
is dependent upon the amount of deflection. Similarly, the simply supported beam
illustrated in plan view in fig. 1(b) will have each cross-section throughout its length
rotated through some angle 8. The amount of the deflection a will determine the
magnitude of the angles 8 along the length of the beam and consequently the amount
of the torsional resistance. It would appear that the column of fig. 1(a) and the com-
pression flange of the beam of fig. 1(b) would each have increasing loads required to
maintain deflections of increasing magnitudes. However, in each case the restraining
lateral force is zero when the member is straight and the critical load for the straight
condition is the same whether or not the restraint is pending. In order to evaluate
the effect of the torsional restraint of the beam for various amounts of lateral deflec-
tion of the compression flange it is necessary to assign values to the maximum angle
of rotation of the beam and to define the law of variation of that angle along the
length of the beam. The amount of torsional resistance must be small indeed when
the flanges of the beam are straight or nearly straight. A condition of neutral
equilibrium must exist while the beam flanges are straight. Higher values of load in
the compression flange are likely, possibly because of torsional restraint that develops
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with increasing angles of torsional rotation. The least value of load that will produce

neutral equilibrium would seem to be'that which occurs when the flanges are straight.
' It has been assumed that the vertical load applied to the top flange of a beam tends
to increase the torsional angle, resulting in a lowered limit of load. On this basis, a
load applied to the bottom flange increases the limit of load. It follows that, if the
flanges are straight, the vertical load would be in the plane of the web and considera-
tion of top or bottom location would be eliminated.

If the designer is concerned with the load that will produce neutral equilibrium
while the compression flange is straight, then a much simplified method may be used.
In this case full consideration may be given to the effects of end restraint, variations
in type of loading, and variations in the section of the compression flange.

It is not the intention of this paper to discuss buckling phenomena in the plastic
range, that is, when the computed stress in the flange is greater than the proportional
limit of the material. Also, it is assumed that the thickness of the compression flange
is sufficient so that local crippling of the flange does not precede lateral buckling.
For the purpose of this discussion it is considered that there are two limiting values
of stress, either of which may control. One of these limits is the stress which compares
with the yield point of the material and the other is the stress in the extreme fibres of
the beam when a state of neutral equilibrium exists in a straight compression flange.
It is acknowledged that higher stress values may be obtained before collapse of the
beam, but it is believed that a factor of safety should be maintained with respect to
the lower of these two defined critical stress values.

c.R.—17
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In order that the critical stress may be found for any given compression flange, it
is assumed that the load will maintain a small lateral deflection of the flange. The
amount of this deflection is immaterial so long as it does not produce an appreciable
torsional resistance from the beam. The amount of the flange load is then such that
any decrease would permit the flange to straighten-and any increase would cause
greater lateral deflection. The amount of the deflection that is assumed to be main-
tained is further assumed to be small enough so that it is immaterial whether the load
is applied to the top flange or to the bottom flange of the beam. These assumptions
are consistent with determination of the critical load for the straight flange.

The assumption of a small lateral deflection of the compression flange is a tool
to be employed in evaluating the critical load in the compression flange. It is required
that the load maintain the deflection in amount and the deflection curve in shape.

.
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Since the shape of the deflection curve is usually not known in advance, a process of
iteration may be used to approach evaluation of the true curve. Fortunately, the
series is rapidly converging so that the work is minimised. Again, the analogy of a
column loaded at its ends may be used as an example. Assume that the deflection
1s @ and that the shape of the curve is parabolic (while it is known that the curve is
sinusoidal). Fig. 2(a) shows the ordinates to the parabolic curve for the centres of
five equal divisions of the half length. The load P produces bending moments along
the length of the column. The deflection at the centre may be computed from these
bending moments and is expressed as y=0-1037Pal?/El. Since y=a, then
P=9-64E1/L2. If integrated continuously, the value of P would be found to be
9-60EI/L?. These values are about 3 9; less than the accepted value of P=9-87E1/12,
because of the assumption that the curve is parabolic. This approximation will
normally be sufficiently accurate in view of the fact that the value of E will vary by
more than 3% from any assumed value. However, if deflections were computed at
the centres of the five divisions, a new closer curve shape might be developed as shown
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in fig. 2(b). When the new curve is used in the same manner as the first approximation
it is found that y=0-1025Pal?/EI, from which P=9-77FI/L2. This value is now
about 1% below the accepted value. Continuation of the same process will yield
results with an even greater degree of accuracy. If the sinusoidal ordinates of fig. 3
were used, the resultant value of y=0-1009PaL?/EI produces P=9-91EI/L2, The
only reason this value differs from the value of 9-87FI/L2 is that the integration was
performed in five finite parts rather than continuously.

Fig. 3

In the case of pure bending in a flanged beam the flange stress is applied entirely
at the ends of the beam. If the ends of the compression flange are free to rotate and
the flange is of constant section, then the critical flange load is F=9-87EI/L?; the
average stress in the flange is F/4=9-87FEI/AL2?, when A is the area of the flange and I
is the moment of inertia of the compression flange about the axis along the web (for
constant section rolled beams [ is one-half of the Iy—y value givenin steel handbooks);
the extreme fibre stress is f=9-87EIc/AL2y, when c is the distance from the neutral
axis of the beam to the extreme fibres and y is the distance to the centre of the flange.
Since f=M/S, in which S is the section modulus of the beam about its major axis, the
critical value of M=9-87EIcS/AL?y.

Fig. 4(a) represents a flanged beam of uniform section simply supported and
loaded with a concentrated load P placed at the centre. Itis desired to find the load P
which will induce a critical flange load F. If the half-span is divided into five equal
divisions, the increment of load F that is applied to each division is 0-2F. Assuming
that the compression flange deflects laterally in a parabolic shape with a maximum
deflection of a, fig. 4(c) represents the column loading. Bending moments at the
centre of the divisions are computed as follows:

-~
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0 Point 5
0-2Fx0-32a=0-064Fa Point 4
0-2F
0-4F x0-24a=0-096Fa
0-2F 0:-160Fa Point 3
0-6Fx0-16a=0-096Fa
0-2F 0-256Fa Point 2

0-8Fx0-08a=0-064Fa
0-320Fa Point 1
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These bending moments are plotted in fig. 4(d). The horizontal deflection of the
centre of each division from the tangent to the elastic curve at the centre of the span
may be computed by the use of the Moment-Area principles in the following manner:

0-0320FaL/EIx0-10L=0-0032Fal?/EI Point 2

0-0256
00576 X010 =0-00576
0-0160 0-00896 Point 3
0-0736 %x0-10 =0-00736
0-0064 0-01632 Point 4
0-0800 x0-10 =0-00800

0-02432 Point 5
0-0800 % 0-05 =0-00400

0-02832FaL?/ET End -

Since the deflection of the end from the tangent to the elastic curve at the centre is
0-02832Fal2/EI, the deflection of the centre will be y=0-02832FaL?/El. The require-
ment is that y=a. Hence, 0-02832FL2/El=1, and F=35-3EI/L?, when I is the
moment of inertia of the compression flange about its vertical axis. This value of the
limiting load is approximate because it is based on an assumed shape of deflection
curve. A closer value will result from a curve that is nearer the true shape of the
deflection curve. Such a curve may be developed from the computed deflection at
each point, when each such deflection is divided by 0-02832FL2/ET and the quotient
is subtracted from 1-Oa as in the following computation:

1-00a—g%§;a= End
I-OOa—g:g—ig%gzo-Ma Point 5 s
. 1'00"_((;:((;;_23?1:0'42“ Point 4
I-OOa—g_‘gg—ggga=0-68a Point 3
1-00a——8:gg§§;=0-89a Point 2

The new curve is plotted in fig. 4(¢). A closer value for the limit of the force F
may be found by repeating the calculations for bending moment and deflection, using
this last curve:

0-2Fx0-284=0-056Fa Point 4
0-2F
0-4Fx0-26a=0-104Fa
0-2F 0-160Fa Point 3
. 0-6Fx0-21a=0-126Fa
0-2F 0-286Fa Point 2
0-8Fx0-11a=0-088 Fa
0-374Fa Point 1
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0-0374FaL/EIX0-10L=0-00374FaL?/EI Point 2

00286 ,
0-0660 % 0-10L=0-00660
0-0160 001034 Point 3
00820 x 0-10L=0-00820
0-0056 0-01854 Point 4
00876 x 0-10L=0-00876

002730 Point 5
00876 x 0-05L.=0-00438

0-03168Fal?/EI End

The new closer value for the limit of F is then found from the equation y=a.
Thus, y=0-03168FaL2/EI, or 0-03168FL2/EI=1, and F=31-6EI/L2.

The process might be continued, and it is found that a slight change in the value
of F will occur, resulting in a final value of F=31-3EI/L2. Then f=31-3EIc/AL2y
and since f=PL/4S, P=1252EIcS/AL3y.

It is noted that the critical load in the top flange is expressed as F: —KI*LI/L2 when
K varies with the manner in which the loads are applied to the compression flange, or
the continuity of the ends of the beam.

In the case of a uniformly loaded beam, the shear transfer from web to flange is
uniformly decreasing from the end.to the centre. Fig. 5(c) illustrates an assumed
parabolic deflection curve with maximum ordinate a. The length of the beam is
divided into ten equal divisions. The load applied to the flange per unit of length
varies from a maximum value at the end to zero at the mid-span. The average value
of ¥ Q/I for division 5 is 9/10 of the value of ¥ Q/Ifor the end of the beam; the average
value is 7/10 for division 4, 5/10 for division 3, 3/10 for division 2, and 1/10 for
division 1. Fig. 5(c) shows the distribution of the force F to the five divisions with
F/25 at division 1, 3F/25 at division 2, 5F/25 at division 3, 7F/25 at 4, and 9F/25 at 5.
The bending moment at point 4 will be 0-36 Fx (0-51a—0-194)=0-1152Fa. The cal-
culations for the bending moment at each point and the deflection of each point
from the tangent to the elastic curve at the mid-span follow:

0:36Fx0:32a=0-1152Fa Point 4
0-28F

0-64F x0-240=0-1536Fa
0-20F 0-2688Fa Point 3

0-84Fx0-16a=0-1344Fa
0-12F 0-4032Fa Point 2 .

0-96F x 0-08a=0-0768 Fa
0-4800Fa Point 1
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0-04800FaL/EI X 0-10L=0-004800FaL?/EI Point 2 0-89a
0-04032
0-08832 x 0:10L=0-008832
0-02688 0-013632 Point 3 0-69a
0-11520 x0-10L=0-011520
0-01152 0-025152 Point 4 0-43a
0-12672 x0-10L=0:012672
0-037824 Point 5 0-l4a
0-12672 % 0:05L=0-006336

.0-044160FaL?/EI End O

Since the maximum deflection is found to be y=0:04416Fal?/El and y=a, then
=22-6EI/L2. This value of Fis approximate, since a parabolic curve was assumed.
The ordinates for a closer curve were found by dividing each deflection value by
0-04416FaL?/EI and subtracting these quotients from a. These new ordinates are
shown in fig. 5(d).
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By using the ordinates of (d), new values of bending moment, new deflections, and
still another deflection curve are computed as follows:

0:36Fx0:294=0-1044Fa Point
0-28F :

0-64F x 0-26a=0-1664Fa

0-20F 0-2708Fa Point 3

0-84F x 0-20a=0-1680Fa

0-12F 0-4388Fa Point 2

0:96F x 0-11a=0-1056Fa .
0-5444Fa Point 1

New
ordinate
0-05444FaL/EIX0-10L=0-005444FalL?/EI Point 2 0-89a
0-04388 -
. 0-09832 x0-10L=0-009832
0-02708 0-015276 Point 3 0-68a
0-12540 X 0-10L=0-012540
0-01044 0-027816 Point 4 0-42a
0-13584 X 0-10L=0-013584
0-041400 Point 5 0-14a
0-13584 X 0-05L=0-006792

0-048192FaL?/EI End 0

From this results the closer value of F=20-8E1/L2, which is 2-11#2EI{L2, when I is
the moment of inertia of the compression flange about the vertical axis.

Table I gives values of K for simply supported beams of constant section which
are supported against lateral movement only at their ends.

TABLE 1
Values of K
Type of loading K
Plane bending - . . ’ : . 987
Uniform load . . . . . 20-8
Concentrated load at 0-1L . . . 209
Concentrated load at 0-2L . .. . 238
Concentrated load at 0-:3L . . . 279
Concentrated load at 0-4L . . . 304
Concentrated load at centre . . . 31:3
Equal loads at 0-1L and 0-9L . . . 121
Equal loads at 0-2L and 0-8L . ; . 151
Equal loads at 0-3L and 0-7L . . . A
Equal loads at 0-4L and 0-6L . . . 23

The method that has been applied to the constant-section beam may be expanded
to become applicable to the variable-section beam. Fig. 6(a) illustrates a welded beam
with varying flange thickness, loaded with a single concentrated load at the centre
of the span. The shear diagram is shown in fig. 6(b), and the moment of inertia of
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the entire beam about its horizontal axis is shown in fig. 6(c). The shear load
between the web and the flange at any point is equal to VQ//, Ib./in. Since the
numerical value of V is constant throughout the length of the beam, the shear
transferred to the flange of the beam from the web must be proportional to Q/I..
After the distribution of the flange loading from the web is determined, a
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parabolic horizontal deflection curve is assumed and corresponding bending moments
are computed. The deflection curve may be computed by the Moment-Area method,
areas of the M/EI diagram being used. The resulting deflection curve will be more
nearly the true curve of deflection maintained by the flange loads. When a value of
the maximum deflection is expressed in terms of the initial deflection and E, a value
for F may be found.

Fig. 6(e) shows values of VQ/I, and the percentage of the flange load that each
60-in. length of the web transfers to the flange. The half-length of the compression
flange is divided into six sections of 30 in. each for the computation, and the centre
of each length becomes a working point. These centres are numbered from 1 to 6 in
fig. 6(f). The sum of the increments of F that are shown applied to the centres of
these sections is equal to F, and these increments correspond with the VQ/I, values
in fig. 6(e). Ordinates to the assumed parabolic curve are shown in fig. 6( /) and are
used to compute the bending moments at points 1 to 5 in the following manner:

Bending Moments

0 Point 6
0-144F x0-27a=0-03888Fa Point 5
0-144F
0-288F x0-22a=0-06336Fa
0-173F 0-10224Fa Point 4
0:461 Fx0-17a=0-07837Fa
0-173F 0-18061Fa Point 3
0:634Fx0-11a=0-06974Fa
0-183F 0-25035Fa Point 2
0:817F x 0-:05a=0-04085Fa
0-183F 0-29120Fa Point 1
1-000F x 0-01a=0-01000Fa
0-30120Fa Centre

Computation of Deflection

M dx/I Mdx/I x  Mxdx/I Deflection New
at ordinate
(1) 0-29120Fa x 30/15:6=0-5600Fa 30 16:-800Fa Point 2 0-93a
(2) 0-25035Fax30/15:6=0-4814Fa

1-0414Fa 30 31-242Fa

(3) 0:18061Fax 30/10-4=0-5210Fa 48-042Fa Point 3 0-80a
1:5624Fa 30 46-872Fa

(4) 0-10224Fax 30/10-4=0-2949Fa 94-914Fa Point 4 0-6la
1-8573Fa 30 55-719Fa

(5) 0-03888Fax30/52 =0-2243Fa 150-633Fa Point 5 0-38a

2-:0816Fa 30 62-448Fa

213-081Fa Point 6 0:13a
2:0816Fa 15 31-224Fa

244-305Fa End 0



LIMIT OF STRESS IN COMPRESSION FLANGES 267

In the foregoing computations it is found that the deflection of the end of the
beam from the tangent to the elastic curve at the centre is y=244-305Fa/E. By
definition, the force F must just maintain the small deflection . Hence, y=a and
F=E/244-305=122,800 1b. The average flange stress at the centre of the beam will
be F/A, or 122,800/7-5=16,375 1b./in.2. The extreme fibre stress will be greater than
the average flange stress, being equal to 16,375% 10-5/9:75=17,6351b./in.2  The load
P on the beam for which Mc/I=17,635 1b./in.2 will be such that 90P x 10-5/1,663=
17,635. Thus P=31,030 lb.

These values were computed on the assumption that the shape of the deflection
curve that would be maintained by the force Fis parabolic. If each of the deflections
(times E) that were computed for points 2 to 6 is divided by 244-305FA4 and the
quotients are subtracted from a, a new shape of curve will be indicated which would
be closer to the true curve.

The new ordinates in the foregoing computations are these values. The com-
putations may now be repeated to obtain a closer value of F:

Bending Moment
0-144F x 0-25¢=0:03600Fa Point 5

0-144F

0-288Fx0-23a=0-06624Fa

0-173F 0-10224Fa Point 4
0461 Fx0-19a=0-08759Fa

0-173F 0-18983Fa Point 3
0-634Fx0-13a=0-08242Fa

0-183F 0-27225Fa Point 2
0-817Fx0-07a=0-05719Fa

0-183F 0-32944Fa Point 1

1:000Fx0 =0
0-32944Fa Centre

Computation of Deflections

M dx/I Mdx/l x  Mxdx/I Deflection New

at ordinate

(1) 0-32944Fax30/156=0-6335Fa 30 19-005Fa Point 2 0-93a
(2) 0-27225Fax 30/15:6=0-5236Fa

1-11571Fa 30 34-713Fa

(3) 0-18983Fa x 30/10-4=0-5476Fa 53718Fa Point3  0-80a
1.7047Fa 30 51-141Fa

(4) 0-10224Fa x 30/10-4=0-2949Fa 104-859Fa Point4  0-60a
 19996Fa 30 59-988Fa

(5) 0-03600Fa x 30/5-2 =0-2077Fa 164-847Fa Point 5  0-38a

2-2073Fa 30 66:219Fa

231-066Fa Point 6 0-13a
2:2073Fa 15 33-109Fa

264-175Fa End 0
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Since y=264-175Fa/E or 264175F/E=1, then F =113,561 1b. Also, F/A=
113,561/7-5=15,141 1b./in.2, and the maximum flange stress at the centre of the span
is 10-5/9-75x15,141=16,306 1b./in.2 Then Mc/I=90P x10-5/1,663=16,306 1b./in.2
or P=28,695 Ib.
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It will be noted that the new values differ from the values first computed by less
than 10%,. Ordinates to a second new curve appear to be almost identical with those
used for the second computation. Hence it would seem unnecessary to carry the
computation further. '

Fig. 7(a) illustrates the plan view of a simply supported beam of constant section.
The top flange is assumed to be restrained from rotation in a horizontal plane.
Fig. 7(d) shows the half-span divided into ten equal divisions and an assumed reverse
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parabolic deflection curve. The beam is loaded with a centrally placed concentrated
load P as shown in fig. 7(b), hence an increment of 0-1F will be applied to the com-
pression flange at each division of the length.

Using the assumed curve shape, the simple bending moments are calculated in
the usual manner. Since the end tangents to the elastic curve are prevented from
rotating, the total M/EI area between the end and the centre of the span must be zero;
hence, end moments must be of the magnitude that will accomplish this result. The
sum of the simple moments at the ten divisions divided by 10 will then equal the end
moment and the bending moment at any point will be the difference between the end
moment and the simple moment at that point. |

Bending Moments

M
0 Point 1  —0-207

0:1Fx0-:04a=0:004Fa Point2 —0-202

O-1F

0-2Fx 0-07a=0-014Fa

O-1F 0-018Fa Point3 —0-189

0-3Fx0-12a=0-036Fa

0-1F 0:054Fa Point4 —0-153

0-4F x 0-16a=0-064Fa. |

0-1F O118Fa Point5 —0-089

0-5F % 0:20a=0-100Fa"

0-1F 0218Fa Point6 -+0011

0-6F % 0-16a=0-096Fa

O1F  0314Fa Point7 +0-107

0-7Fx0-12a=0-084Fa

0-1F 0-398Fz Point8 40191

0-8F x 0-07a=0-056Fa

0-1F 0454Fa Point9  +0-247

0-9F x 0-04a=0-036Fa

0-1F 0-490Fa Point 10 +0-284

10F

- Deflections from the tangent to the elastic curve at the end may now be calculated
as follows: ‘
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M _ Deflection New curve
—0-207Fa x 0-05L x 0-05L=—0-0005FaL? Point 2 0-038a
—0-202Fa
—0-409Fa —0-0010FaL
—0-189Fa —0-0015FaL? Point3 0-116a
—0-598Fa —0-0015FaL?

—0-153Fa —0-0030FzL? point4 0-232a
—0-751Fa —0-0019FaL?

—0-089Fa —0-0049Fal? Point 5 0-380a
—0-840Fa —0-0021FaL?

+0011Fa —0-0070Fal? Point 6 0-543a
—0-829Fa —0-0021 FaL?

+0-107Fa —0-0091FaL? Point7 0-705a
—0-722Fa —0-0018FaL?

+0-191 Fa —0-1009Fal? Point8 0-845a
—0-531Fa —0-0013FaL?

+0-247Fa —0-0122Fal? Point9 0-946a
—0-284Fa —0-0007FaL?

+0-284Fa —0-0129FaL? Point 10 1:000a
0

Since y=0-0129FalL?/El and y=a, F=77-5EI/L2. The next approximation,
using the curve developed from the first approximation, results in F=75-5EI/L2,

It will be seen by the illustrative examples that the procedure for finding the limit
of stress in the compression flange of a beam follows a very definite plan. The step-
by-step procedure may be outlined as follows:

(1) Identify the conditions of end restraint that affect the shape of the elastic
curve for lateral buckling of the compression flange.

(2) Assume a nominal finite lateral deflection of the compression flange and a
shape of curve that is in general agreement with the conditions of end
restraint.

(3) Define the manner of loading of the compression flange consistent with the
manner in which the beam is loaded.

(4) Compute bending moments along the length of the compression flange
caused by the flange load and the assumed lateral defiections, and con-
sistent with the conditions of end restraint.

(5) Compute the magnitude of the lateral deflection of the flange from the
values of M, E, I, and the length of the beam, and expressed in terms of the
magnitude of the assumed lateral deflection.
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(6) A new deflection curve may be developed from the above step (5) and com-
pared with the assumed shape of curve.

(7) When the assumed shape of deflection curve and the shape of the deflection
curve found by use of the assumed curve agree, an equation between the
computed maximum deflection and the assumed deflection will yield an
expression for the limit of load in the straight compression flange of the
beam.

Experimenters are familiar with certain phenomena in the testing of flanged
beams. Load may be applied gradually to the beam with no apparent tendency for
the compression flange to buckle sidewise until a certain load value has been reached.
Once this critical value of flange stress has been reached, the compression flange may
exhibit a tendency to bend principally in one lateral direction. Upon reaching a
second critical value of flange stress, the compression flange may be easily moved
from one deflected position to a deflected position in the opposite direction. Then,
as increasing values of load are placed on the beam, the amount of lateral deflection
that will remain placed in either direction increases also. The ultimate result occurs
when the beam has been loaded so that lateral deflection in one direction continues
to complete collapse.

It is noted by the experimenters that when a given load is suspended vertically
from the bottom flange of the beam, the amount of lateral deflection of the com-
pression flange is smaller than when the same load is placed on the top flange. This
fact is consistent with principles developed by previous investigators pertannng to
action after certain bending has taken place in a lateral direction.

It would seem that it should be possible experimentally to measure the angle of
rotation of the central portion of the beam span that agrees with any value of super-
imposed load; then, with a sufficient number of measurements of such relations, the
load at zero angle of rotation could be projected. Such measurements have been
carried out successfully for several types of loading, but certain phenomena are
troublesome to the experimenter.

The lateral deflection of the compression flange is sensitive to conditions of end
restraint, It is not easy to obtain a truly simply supported beam with lateral support
of the compression flange not restrained from end rotation. Also, it is found that
the immediate past history of stress in the flange appears to affect the magnitudes of
rotation angles of the beam cross-section that will be maintained by any given vertical
load. The probable reason for this variation is that the experimenter is unable to
control the maximum amount of rotation and the beam flange is subjected to stresses
above the yield point in certain fibres. A different number of fibres have stress
above the yield point with each value of rotation angle.

The following procedure has been found to produce satisfactory results experi-
mentally. A load is placed upon the beam which does not cause general yielding but

“which is known to be well above that producing critical stress while the beam is
straight. While the beam is under this load the compression flange may be moved
in a lateral direction by a pressure of the hand, say to the left, and will stay in some

~ such deflected position. Now the load may be gradually reduced and a record made
of angles of rotation and corresponding loads. If the same procedure is repeated by
rotating the beam to the right and recording the loads and angles, two sets of load-
angle values will have been produced. Now, if these data are plotted, curves defining
the two sets of data will intersect at a value of load checking very well the value of
loading that produces critical flange load, while the beam is straight. A second set
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of data may produce a new set of different angle-load values, but the intersection of
the two such curves produced continuously will usually give the same result for the
critical point. Whether the load is applied to the top flange or to the bottom flange,
and whether the load is vertical or inclined from some centre of loading, will affect
the magnitudes of the angles maintained by any given loads on the beam. But it is
of interest that any set of data produced from the same conditions of loading appear
to project to the same critical value for the compression flange—while straight.

Summary

Determination of the limit of stress in the compression flanges of beams involves
many considerations. Factors that are important in the literature on the subject
include such items as the distribution of the load causing stress, the torsional resistance
of the beam, the lateral stability of the compression flange, and others. Because of
the complicated nature of a complete solution in the general case, specifications for
design contain empirical formulae guiding the designer. The effects of the distribu-
tion of the loading, the type of end restraint, and variations in the section of the beam
are known 10 have large effects but are not included as considerations in the design
formulae.

It is herein presented that a revised definition of the neutral state of equilibrium
will greatly simplify the considerations and provide the designer with a logical pro-
cedure for analysis. In this way he will not be dependent upon empirical formulae
that must be conservative to a large degree. It is proposed that the neutral state of
equilibrium for design purposes be defined as that having the smallest value; this
value occurs while the flange is straight but buckling is imminent. Such a definition
eliminates the necessity for consideration of the torsional resistance of the beam and
of the loading position, that is, whether the load is on the top or bottom flange of the
beam. The definition permits full attention to be given to the large factors affecting
solution of the particular case considered. These large factors include the distribu-
tion of the loading on the beam, the condition of end restraint, and variations of
section. '

Special cases illustrate a general method of solution involving the use of common
iteration processes and in some cases successive approximations.

Résumé

Le calcul des charges limites des membrures de compression des poutres fait
intervenir plusieurs considérations. Les points importants traités dans la littérature
spécialisée sont la distribution de la charge, la résistance a la torsion de la poutre,
la stabilité latérale de la membrure de compression, etc. Par suite de la complexité
d’une solution compléte du cas général, les spécifications de détail font intervenir des
~ formules empiriques destinées 4 guider le dessinateur. On sait que la distribution de
la charge, le mode de fixation de I’extrémité de la poutre et les variations de son profil
jouent ici un grand role, mais ne sont pas pris en considération dans les formules
de dessin.

Nous montrons qu’une révision de la définition de 1’état d’équilibre stable sim-
plifiera sensiblement la question et fournira au dessinateur un processus logique
d’analyse. Il n’aura ainsi pas a se fier & des formules empiriques qui sont nécessaire-
ment tres conservatrices. Nous proposons de définir, pour le dessin, I’état d’équilibre
stable comme celui qui a la moindre valeur; cette valeur se manifeste lorsque la mem-
brure est droite, mais sur le point de se déformer. Une telle définition élimine la
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nécessité de considérer la résistance a la torsion de la poutre et de faire intervenir le
mode d’application de la charge, suivant qu’elle est placée sur la membrure supérieure
ou sur la membrure inférieure. Cette définition permet de concentrer toute I’atten-
tion sur les facteurs essentiels qui déterminent la solution dans le cas particulier étudié.
Ces facteurs comprennent la distribution de la charge sur la poutre, le mode de
fixation de I’extrémité de cette poutre et les variations de sa section.

Des cas particuliers illustrent une méthode générale de résolution qui entraine le
recours a des procédés d’itération courants et parfois 4 des approximations
successives. ’

Zusammenfassung

Die Bestimmung der Grenzspannung in den Druckgurten von Trdgern umfasst
zahlreiche Ueberlegungen. Die in der Fachliteratur behandelten wichtigen Punkte
sind die Lastverteilung, die Torsionssteifigkeit des Trégers, die seitliche Stabilitdt des
Druckgurtes, u.a. Wegen der komplizierten Form der vollstindigen Losung im all-
- gemeinen Fall finden sich in den Entwurfs-Normen empirische Formeln als Weg-
leitung fiir den Konstrukteur. Die grosse Bedeutung der Einfliisse der Lastverteilung,
der Form der End-Festhaltung und der Verdnderlichkeit des Querschnitts ist bekannt,
doch sind diese Faktoren in den Entwurfsformeln nicht beriicksichtigt.

Der Verfasser zeigt, dass eine verbesserte Definition des neutralen Gleichge-
wichtszustandes das Problem stark vereinfachen und dem Konstrukteur eine ver-
niinftige Berechnungsmethode in die Hand geben kann. Er ist damit nicht mehr auf
empirische Formeln angewiesen, die weitgehend veraltet sind. Der Verfasser
schldgt vor, den neutralen Gleichgewichtszustand fiir den Entwurf dahin zu definieren,
dass er den kleinsten Wert aufweisen soll; dieser Wert ergibt sich bei geradem Flansch
unmittelbar vor dem Ausknicken. Die vorgeschlagene Definition macht die Not-
wendigkeit einer Beriicksichtigung der Torsionssteifigkeit des Tréigers und der Lage
der Belastung, d.h. ob die Last am oberen oder unteren Flansch des Trégers wirkt,
iiberfliissig. Die Definition erlaubt uns, unsere volle Aufmerksamkeit den ent-
scheidenden Faktoren, die die Losung des betrachteten, besonderen Falles beein-
flussen, zuzuwenden. Diese entscheidenden Faktoren sind die Verteilung der
Belastung iiber dem Triger, die Festhalte-Bedmgungen an den Enden und die Verin-
derlichkeit des Querschnitts.

An Hand von Sonderfillen wird ein allgememes Losungsverfahren aufgezeigt, das
die iiblichen Iterationsvorgédnge und in gewissen Fillen auch successive Appromma-
tionen umfasst.

Cc.R.—18
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Théorie de Pinstabilité par divergence d’équilibre
The theory of instability through disturbance of equilibrium

Instabilitéitstheorie durch Storung des Gleichgewichts

JEAN DUTHEIL
Dijon

Les solutions classiques données aux problémes d’instabilité déterminent, en
général, une charge critique qui correspond a la limite entre deux états d’équilibre
différents: il y a bifurcation d’équilibre.

L’expérience ne fait pas apparaitre un tel changement d’état d’équilibre. En
général, dés le début de I’application de la charge, on constate une forme d’équilibre
stable, qui subsiste jusqu’a la ruine.

Il s’agit en fait d’un simple phénomene de statique dans lequel 1’état de con-
trainte du matériau et sa déformation interviennent pour déterminer |’affaissement.
A partir d’'une certaine contrainte, le caractere inélastique de la déformation est tel
que les moments extérieurs et intérieurs varient suivant des lois divergentes, il n'y a
plus d’équilibre possible, on dit qu’il y a instabilité par divergence d’équilibre.

On sait enfin que, théoriquement, la charge critique classique peut étre dépassée,
et le second état d’équilibre étre stable.

Dans les cas les plus défavorables, il ne peut y avoir, en tous cas, instabilité pour
une charge inférieure a la charge critique. Or, expérimentalement, la ruine se produit
pour des charges toujours inférieures aux charges critiques.

Si le rapport de la charge critique a la charge de rupture peut étre voisin de 1 dans
certaines zOnes, il peut aussi tendre vers l’'infini dans d’autres zones.

Cette contradiction entre la théorie et ’expérience n’est pas surprenante. L’allure
idéale d’un phénomene est toujours plus ou moins influencée, en pratique, par de
multiples causes qui peuvent le déformer au point de n’en laisser subsister qu’une
caricature.

Dans les problemes d’instabilité, la théorie ne considére que des éléments parfaits,
tant de forme que de structure et indéfiniment élastiques et résistants.

Les éprouvettes d’essai, comme les éléments mis en ceuvre, sont trés loin de cette
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perfection: les matériaux sont inhomogeénes, et ils ne sont élastiques qu’approximative-
ment, et dans certaines limites. Il en résulte que la déformation théorique est pro-
fondément altérée, et comme elle joue dans les problemes d’instabilité un réle
prépondérant, le phénoméne est lui-méme profondément altéré, au point qu’il
paraisse ne plus avoir de rapport avec son allure théorique.

- La notion classique d’instabilité par bifurcation d’équilibre est donc purement
abstraite. Elle ne peut évidemment suffire a 1’établissement de régles pratiques
rationnelles, qui doivent s’axer sur une concordance expérimentale étendue, et
s’inspirer d’'une conception cohérente de la sécurite.

Mais, quoique purement abstraite, cette notion conserve cependant une significa-
tion essentielle, et il est important de se pénétrer du caractére dualiste de la notion
d’instabilité.

Il est également important de remarquer qu’en raison du caractere aléatoire des
perturbations qui influent sur la stabilité, une conception rationnelle de la sécurité ne
peut étre que probabiliste. C’est sur ces deux principes essentiels que s’appuie la
théorie que nous exposons brievement dans son application aux deux problémes
fondamentaux d’instabilité: le flambement et le déversement.

. I LE FLAMBEMENT

LE FLAMBEMENT DES BARRES DROITES A SECTION CONSTANTE

Le probléme de la stabilité d’'une barre prismatique droite, articulée a ses deux
extrémités et soumise a une compression axiale est fondamental.

La théorie bien connue d’Euler le résoud dans le cas idéal d’une barre parfaite et
indéfiniment élastique et résistante: le bifurcation d’équilibre se produit pour la valeur
critique de la charge calculée par Euler:

w2 EI
c=“'l_2"

Pour une charge inférieure, 1’équilibre stable est rectiligne; pour une charge
supérieure, il est fléchi.

Il faut ensuite passer de la pi¢ce idéale & la piéce réelle. Au début, on a simplement
considéré que, puisque les barres utilisées en construction ont des proportions telles
que leur contrainte de rupture qui correspond a une courbe déformée trés tendue est
atteinte pour une charge trés peu supérieure a la charge critique d’Euler, celle-ci cor-
respondrait pratiquement a la rupture par flambement. Le fait d’avoir ainsi négligé
les déformations plastiques des matériaux et notamment de ’acier, a eu comme con-
séquences de nombreuses et retentissantes catastrophes et les controverses bien con-
nues entre Eulériens et non-Eulériens.

Ces controverses n’ont abouti qu’a des formules empiriques de raccordement se
substituant a la formule d’Euler, dans les zones ou elle est inapplicable.

Un certain nombre de chercheurs ont cependant essayé d’échafauder une théorie
du flambement par divergence d’équilibre, se basant sur le fait expérimental incon-
testable que I’équilibre fléchi apparait pour une valeur de la charge trés faible et large-
ment inférieure a la charge critique d’Euler.

Nous pensons avec eux que ces constatations montrent que la théorie par blfurca-
tion d’équilibre est une abstraction. L’expérience reste notre grande maitresse, et il
serait vain d’aller contre ses enseignements. ,

L’instabilit¢ de flambement se produit réellement par divergence d’équilibre, et
c’est cette constatation qui doit étre a la base de toute solution réaliste.
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Quelles sont donc les causes de cette apparition prématurée de 1’équilibre fléchi?
Elles peuvent se classer en deux catégories:

(1) Défectuosités de structure: Les matériaux sont inhomogenes, leurs propriétés
mécaniques variables dans leur masse, ainsi que leur état de contrainte
interne.

(i1) Defectuosztes de forme: Défaut de rectitude, de centrage pour ne citer que
les principaux.

Quoi qu’il en soit, le probleme réside dans la recherche d’une interprétation des
effets de ces différentes défectuosités, au moyen d’une hypothése les rendant acces-
sibles au calcul.

On est ainsi amené a supposer la piece en matériau parfaitement homogene, doué
de propriétés élasto-plastiques bien définies, mais présentant initialement certaines
défectuosités de formes.

Partant de I’hypothése ainsi posée, on peut calculer la contrainte maximum dans
la barre. Une certaine valeur de cette contrainte amenant l’affaisement, on peut
calculer la charge correspondante, ou charge critique probable. Une comparaison
avec les essais, renseigne sur la validité de I’hypothése admise.

Des tentatives de ce genre ont été faites par de nombreux auteurs. Surtout pour
Pacier, la nature de I'imperfection initiale a été, suivant le cas, une fléche initiale ou

.une excentricité initiale ou une combinaison des deux.

Toutes les hypothéses émises présentent le caractére commun de n’exprimer
I'imperfection initiale qu’en fonction de certaines dimensions caractérjstiques des
piéces, telles que: longueur, demi-hauteur de la section droite, rayon du noyau central,
etc.

Il est certain qu’une telle conception ne peut avoir qu’une validité tres limitée. On
peut considérer, en effet, que dans le cas d’éprouvettes usinées, les défectuosités de
forme: courbure initiale et excentricité de charge, peuvent étre suffisamment réduites
pour n’avoir que des effet absolument négligeables. La flexion prématurée est donc
dflie & peu prés uniquement, aux défectuosités de structures.

Ces défectuosités de structures ne pouvant se manifester que sous contrainte, il
est clair que la défectuosité conventionnelle qui interpréte leurs effets, doit étre fonc-
tion de cette contrainte.

Toute expression d’une fleche initiale, ou d’une excentricité initiale qui n’est fonc-
tion que des dimensions de la piece, ne peut donc étre considérée comme valable que
pour un matériau bien déterminé, car elle admet implicitement que la contrainte qui
lui correspond est la limite d’écoulement du dit matériau.

Ces considérations éliminent donc ’excentricité en tant que moyen d’interprétation
des défectuosités inévitables. On ne voit pas bien, en effet, comment on pourrait
justifier la variation nécessaire de la dite excentricité avec la nature du matériau.

Il reste donc la fléche initiale, avec la nécessité d’affecter son expression d’un coeffi-
cient variable avec le matériau, ou les nuances d’un méme matériau. Ceci laisse
prévoir les difficultés qui surgiraient dans le cas de I’application a des barres a treillis,
et a des problémes plus complexes.

Ces considérations préliminaires suffisent & expliquer I'insucceés des différentes
tentatives connues.

Elles montrent également que les hypothéses d’une fléche initiale ou d’une ex-
centricité initiale doivent étre abandonnées, en leur substituant celle d’une preﬁéche
conventionnelle, fonction de la contrainte.

L’expression de cette préfléche conventionnelle ne sauralt étre quelconque si ’on
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veut aboutir 2 une solution générale; elle doit satisfaire a certaines conditions que
nous allons examiner successivement.

Elle doit satisfaire aux lois de la flexion sinusoidale

Dans les essais de flexion simple, opérés sur des poutres d’acier doux par exemple,
on peut constater des fluages locaux qui ont comme conséquence une certaine majora-
tion de la déformation. On constate d’ailleurs que, pour I’ensemble de la poutre, la
loi déformation/allongement reste sensiblement linéaire tant que la contrainte maxi-
mum reste au-dessous de la limite d’écoulement, et méme un peu au-dessus en con-
séquence du phénoméne d’adaptation dans la section.

On pourrait donc, pour déterminer la fleche réelle, calculer d’abord la fieche
élastique théorique, et lui ajouter une fléche complémentaire d’inhomogénéité,
Puisque la déformation reste sensiblement linéaire, I’expression de cette fleche com-
plémentaire aurait, a un coefficient pres, la méme expression que la fleche théorique
d’élasticité pure.

En flexion sinusoidale, la fleche élastique d’un poutre de longueur /, de moment
d’inertie 7, coefficient d’élasticité E, sous moment maximum au milieu M, s’exprime par:

M, 12
S=m2Er
La fleche complémentaire d’inhomogénéité s’exprimerait donc par:
M, 12 W
f CZ—EI—CHfN e e e e e e e . (1)

dans laquelle:
C=constante expérimentale
ng=contrainte maximum de flexion au bord de la section médiane
W=module de section (I/¥ pour une pi¢ce pleine)
N.=n2EIfI2, charge critique d’Euler.

En flexion simple, cette fléche complémentaire est pratiquement sans importance.
Quand il s’agit de flambement, il n’en est plus de méme. L’inhomogénéité du
matériau crée dés le début de I’application des charges, une dissymétrie des déforma-
tions qui provoque une flexion influant directement sur la contrainte au bord de la
section médiane, et ’on ne peut négliger cette conséquence.

Il résulte de notre exposé préliminaire, qu’on ne peut rationnellement interpréter
les effets de cette défectuosité que par la considération d’une préfléche conventionnelle

fonction de la contrainte.
Les considérations suivantes précisent la forme a donner a cette préfleche con-

ventionnelle.

On sait que la flexion de flambement suit trés sensiblement la loi sinusoidale. Or
a mesure que I’élancement augmente, le flambement se rapproche de la flexion simple,
puisque la contrainte de compression diminue. A la limite pour un élancement
infiniment grand il faut donc que ’expression de la préfiéche conventionnelle tende
vers ’expression (1).

Cette condition est indispensable si I’on veut aboutir a une solution générale qui
raccorde le flambement a la flexion simple.

La contrainte maximum 7, au bord de la section médiane étant la somme d’une
contrainte de compression simple » et d’une contrainte de flexion #y, il en résulte qu’il
n’y a d’ores et déja, que deux expressions possibles de la préfléche conventionnelle:
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w
fo=Cnm7v—c

w
fa= Cnf E .

Elle doit étre théoriquement correcte

Nous entendons par la que, si ’on suppose nulle
la préfleche conventionnelle, la piéce redevenant ainsi
parfaite, les charges critiques de la théorie par diver-
gence d’équilibre doivent devenir identiques a celles de
la théorie par bifurcation d’équilibre. En supposant
un matériau parfaitement élastique jusqu’a sa limite
d’écoulement »,, le diagramme idéal de la contrainte
critique de flambement est représenté en ABC sur la
figure 1.

Dans la théorie par divergence d’équilibre, on
admet que l’affaissement se produit lorsque la con-
trainte maximum au bord de la section médiane est
égale a la limite d’écoulement du matériau. En fait,
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c’est pour une contrainte légérement supérieure que l’affaissement se produit du fait
de I’adaptation de plasticité, mais dans le flambement pur, I’erreur commise, en se

limitant a n. est négligeable.

Tenant compte qu’en flexion sinusoidale le facteur d’amplification de la fléche

sous la contrainte axiale n;, est:
e
nc_n:

la contrainte d’affaissement n, se calculera en posant:

n S,

ne

n,+

dans laquelle:

Q=surface de section de la barre
n.=contrainte critique d’Euler
w2 E

y2

Yo
Q

He=

/
y=élancement=;

I=longueur de la piece

T =He .
W nf_nz ¢

r=rayon de giration dans le plan de flambement.
Avec I’expression (2) de f,, on arrive a I’équation du second degré:

n2—n. [nc+n. (C+1)]4+nen.=0 .

dont la solution est:
ny=n4—V n2—ncn,

avec: na=% [ne+n. (C+1)]

}

@

)

(6)

Pour une valeur déterminée de C, la variation de » en fonction de y se fait suivant

une courbe ayant I’allure AD indiquée en pointillé sur la figure 1.

Si I’on fait C=0,

ce qui revient a supposer la piéce parfaite, on voit qu’on a bien:
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n.=n, pour n.n,
n.=n, pour n.Mn,
L’expression (2) satisfait donc a la condition posée: la courbe de #. en fonction

de y coincide avec ABC. _
Avec 'expression (3) de f,, on arrive a I’équation:

n2(C+1)—n; n. (C+D+nJ+n.n=0 . . . . . (7

On voit qu’en faisant C=0 dans les équations (5) et (7), elles deviennent identiques.
L’expression (3) satisfait donc également a la condition posée.

Elle doit assurer la concordance expérimentale

Le caractere aléatoire des imperfections, les variations constatées dans la valeur
de la limite d’écoulement d’'un méme matériau, 'influence de I’adaptation de plasti-
cité, sont autant de causes de dispersion dans les essais de flambement. Pour vérifier
une concordance expérimentale, il faut donc disposer, autant que possible, d’un grand
nombre de points d’essais. Les essais de Tetmayer sur I'acier doux sont, a ce point
de vue, parmi les plus intéressants.

La valeur de la limite d’écoulement 7, & prendre en compte, doit étre la valeur
moyenne d’un grand nombre d’essais.

Il résulte des essais de traction, effectués récemment sur dix mille (10 000)
éprouvettes en acier doux ordinaire, par la Chambre Syndicale des Entrepreneurs de
Construction Métallique de France, et la S.N.C.F., que cette valeur moyenne ressort
a 28,6 kg./mm.2 En prenant cette valeur pour n, et C=1/12 dans la formule (6) don-
nant n, en partant de ’expression (2) de la préfleche conventionnelle on voit que la
courbe de n., en fonction de I’élancement y passe sensiblement par la moyenne des
points d’essais de Tetmayer (courbe | fig. 2). La concordance expérimentale de
I’expression (2) peut donc étre considérée comme aussi bonne que possible pour
I’acier doux ordinaire. Yo

Toujours avec C=1/12, elle parait d’ailleurs 5 |-
aussi bonne pour l'acier 4 haute résistance, le N
duralumin, le bois de construction (sapin blanc). 2« ;-U%
(Essais de RoOs, Publication Préliminaire du ler :
Congrés de ’'A.I.P.C.). 2 e

Partant de I’expression (3) de f,, on peut égale- m \ 7\
ment tracer la courbe de variation de #; en fonction o\
dey. Avec C=1/12, la concordance semble bonne ;» \
pour les grands élancements mais beaucoup moins
bonne pour les petits et moyens; la courbe calculée & N R
passe nettement plus haut que la moyenne des NS N
points d’essais. On ne peut trouver de valeur de ¢ * ~]
donnant une concordance aussi bonne qu’avec /
C=1/12, et I’expression (2). Il y a donc ici nette- 20 60 w00 o w80 220 T
ment avantage en faveur de 'expression (2). Fig. 2.

AN AT T

Elle doit permettre une conception probabiliste de la sécurité

La conception de la sécurité est évidemment le point le plus faible des méthodes
de calcul au flambement dérivant directement de la théorie par bifurcation d’équilibre.
On ne peut obtenir en effet autre chose que la valeur d’une contrainte critique de
flambement concordant plus ou moins avec les essais. De ces valeurs critiques, on
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passe aux valeurs admissibles par I’application d’un coefficient de sécurité. Mais
c’est 1a que se présente la difficulté, on ne peut prendre un coefficient de sécurité
unique pour tous les élancements. Pour I’acier doux par exemple, si I’on prend 2,5 ou
3 par rapport a la charge critique d’Euler, on ne peut conserver ce chiffre pour les tres
petits élancements car on arriverait a ne travailler qu’a 8 ou 9 kg./mm.2, en compres-
sion simple. Inversement, le coefficient de sécurité normalement admis en compres-
sion simple étant de 1,66, qui oserait I’appliquer aux grands élancements par rapport
a la charge critique d’Euler? On s’en tire donc en faisant varier empiriquement la
valeur de ce coefficient de sécurité avec 1’élancement.

Cependant, en toute rigueur, si les contraintes critiques calculées sont bien réelles,
les coefficients de sécurité différents aménent évidemment a I’inverse du résultat qu’on
se propose normalement d’obtenir, et qui est ’homogénéité du degré de sécurité entre
les différents éléments d’une construction; il ne viendrait pas a 1'idée de mettre dans
une chaine de levage des maillons de différentes résistances.

Il ne faut pas étre difficile pour admettre un procédé qui, contraite a toute logique,
consacre en fait I’échec de la théorie par bifurcation d’équilibre.

Cet échec est inévitable si I’on ne veut pas considérer, malgré leur évidence, les
perturbations apportées par les défectuosités.

Ces perturbations étant aléatoires, la conception de la sécurité ne peut étre que
probabiliste. Une contrainte critique calculée ne peut étre qu’une contrainte critique
plus ou moins probable qui ne peut constituer la base d’une conception rationnelle
de la sécurité.

Le probléme du flambement n’est qu’un probléme de résistance des matériaux
comme les autres, et de ce fait, justiciable des mémes méthodes.

En traction simple par exemple, la contrainte critique est la limite d’écoulement.
Sa valeur, pour I’acier doux, varie de 22 4 35 kg./mm.2, et sa valeur moyenne a été
calculée a 28,6 kg./mm.2 sur 10 000 essais. On n’applique cependant pas le coefficient
de sécurité par rapport a ce chiffre, mais par rapport a 24 kg./mm.2, car on estime que
la probabilité de se trouver devant une valeur inférieure est suffisamment faible.

De méme le cas du flambement, n, étant la contrainte probable d’affaissement, il
faut déterminer ns, contrainte limite d’affaissement, telle que la probabilité d’observer
une valeur inférieure, soit suffisamment faible. Et c’est par rapport a n; que le coeffi-
cient de sécurité doit étre appliqué et non par rapport a n,; enfin, ce coefficient de
sécurité doit étre unique et valable pour tous les élancements.

n; doit se déduire de »;, par le jeu d’'une majoration du coefficient expérimental C,
en tenant compte d’autre part, des deux conditions suivantes:

Pour un élancement nul, il faut prendre pour #. la valeur limite et non la
valeur moyenne, par exemple pour I’acier doux, il faut prendre 24 kg./mm.2 et
non 28,6 kg./mm.2

Pour un élancement infiniment grand, il ne faut pas que la valeur de n, tende
vers n., le rapport n./n; de la contrainte critique d’Euler a la contrainte limite
doit tendre vers une valeur finie, plus grande que 1 quand I’élancement croit

~ indéfiniment. :

Partant de I’hypothese (2), la valeur de s, est donnée par la méme expression (6)
que 7., étant entendu qu’on donne a #n, la valeur limite, et qu’on substitue a C un
coefficient C'’>C.

La valeur de n; peut donc se mettre sous la forme:

l—n.n,
ns=ny 1— T
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Quand I’élancement devient trés grand, . tend vers zéro, on peut développer le
radical en série et ne conserver que les deux premiers termes, d’ou:

— [1_ (l_nc ne)] _Me Me
: 2n,42 2n4
Conen, ne
~(+Chn. 1+C

don: :1—15=1+C’...........(8)

En prenant C'=5C=1/2,4, on ne constate aucun point d’essai en dessous de la
courbe de n; en fonction de y.  Cette courbe est tracée pour I’acier doux en 2 sur la
figure 2.

Partant de I’hypothése (3), on obtiendrait encore pour un élancement infiniment
grand:

S

s

Elle doit permettre I’ établisement de formules pratiques suffisamment simples

L’examen des équations (5) et (7) montre immédiatement que I’avantage de la
simplicité est entiérement en faveur de ’hypothése (2) qui reste donc finalement la
seule a retenir.

CONCLUSION

Une opinion répandue jusqu’a présent était qu’on pouvait faire, sur les imperfec-
tions initiales, un nombre a peu pres illimité d’hypothéses valables. Effectivement, il
y en a eu beaucoup d’émises; un certain nombre d’entre elles sont énumérées par M. le
Prof. Massonnet dans son article “Réflexions concernant I’établissement de prescrip-
tions rationnelles de flambage des barres d’acier” (Ossature Métallique, No. 7-8,
juillet-aolit 1950); d’autres par M. le Prof. Campus dans son article ‘“ Réflexions sur
la Méthode de M. Dutheil pour le calcul des pieces comprimées et fiéchies’ (Ossature
Métallique, No. 1, janvier 1951).

De toutes ces hypothéses, aucune ne répond a toutes les conditions posées, et ne
peut sérieusement étre opposée a notre hypothese (2) qui semble, seule, permettre une
solution simple, génerale et cohérente du probléme. Elle illustre bien notre opinion
que la théorie du flambement par bifurcation d’équilibre, tout en n’étant qu’une
abstraction, conserve cependant une signification essentielle: I’expression (2) de la
préfleche conventionnelle, renfermant en effet le terme »n., charge critique d’Euler, et
dans toutes les formules qui en découlent on retrouve la contrainte critique d’Euler 7,
et la limite d’écoulement #,. Elle est donc fondamentalement Eulérienne.

FORMULES D’APPLICATION
Pour tous les élancements, on peut calculer #; par:
ny=ny—V'ng2—n, n,
avec: ng=% [n.+n. (C'+1)] } ce e O
En posant: k=n,[n,, on peut aussi donner un tableau ou une courbe des valeurs de &

en fonction de I’élancement.
La condition a vérifier sera alors:
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nk<R |. « o v . . . . .. @0

dans laquelle:

R=contrainte admissible
n=contrainte de compression simple
k=coefficient de flambement.

C’est la méthode suivie dans les Reégles d’Utilisation de I’acier, applicable en
France, aux Travaux dépendant du Ministére de la Reconstruction et de I’Urbanisme,
et aux Travaux Privés. (Reégles CM 46).

Notons que, dans ces Régles nous avions exprimé la fléche initiale par:

, Ne 1?2
f;=C7T2E7 w ® w « » & 3 & & K11

' Cette fleche initiale n’était que la préfléche conventionnelle correspondant a une
contrainte au bord de la section médiane égale a n,, soit une valeur particuliére de:

W
fo=Cltmgr o (12)

qui peut étre considérée comme une généralisation de (11). Cette généralisation
présente des avantages dans certains problémes complexes de flambement et pour
l application a différents matériaux.

PROBLEMES COMPLEXES DE FLAMBEMENT
Poutres composées de membrures assemblées par treillis ou barrettes

Une telle poutre composée, comprimée axialement se comporte du point de vue
de la forme d’équilibre, comme une poutre prismatique, c’est-a-dire qu’elle prend, dés
le début de ’application de la charge, une position d’équilibre fiéchi. Il en résulte
que les trongons de membrures sont inégalement comprimés, et qu’il y a certainement
danger a considérer que la charge se répartit également, comme on doit logiquement
le faire dans la méthode par bifurcation d’équilibre. Ce danger, confirmé par
I’expérience, est apparu d’ailleurs a un certain nombre d’ingénieurs qui ont essayé d’y
remédier par I’emploi de formules empiriques.

Notre méthode donne une solution immeédiate a ce probléme: la contrainte maxi-
mum au bord de la section médiane et déterminant I’affaissement, ne doit plus étre
prise égale a n,, mais a n,, contrainte limite d’affaissement du trongon de membrure
qui est connue puisqu’il s’agit d’une barre prismatique.

Partant de I’expression (12), on exprime la contrainte n,, par:

ne—on
ou, en posant:
k":#j—c’) avec: p=
n,=nk,
Alors que dans une poutre prismatique, la condition a vérifier serait:
nk,<R

dans le cas de la poutre a treillis, elle devient:
nko<nme |. . . . . . . . . . (13




284 All 3—J. DUTHEIL

ny étant la contrainte limite admissible du trongon de membrure soit:

np=nc

Prise en compte de la déformation d’effort tranchant
Dans les poutres simplement fléchies, on néglige en général cette déformation qui

n’a pas grands inconvénients.
Dans les poutres comprimées axialement, la flecche complémentaire qui en résulte
provoque une augmentation de la contrainte au bord de la section médiane, elle a

donc une influence directe sur la stabilité.
Considérons d’abord le cas ou la raideur propre des membrures est négligeable

devant celle de I’ensemble de la poutre.
La déformation d’effort tranchant peut s’assimiler & une diminution du module de

raideur EI de la poutre, ce module devenant: -
' EI/X avec A>1
On établit facilement la valeur de A:
n. £
A=] +E 0.
dans laquelle:

G=module d’élasticité transversal
2=section totale des membrures
Q,=section de I’ame équivalente.

Il en résulte immédiatement que la contrainte critique d’Euler 7. devient:
n'c=nA
et le facteur d’amplification de la fleche:
i’
nc

n’c‘—n
(ces deux propriétés pouvant s’établir d’ailleurs directement par ’analyse).
Le probléme est ainsi simplement résolu, il suffit de remplacer ». par »'; dans les
formules qui précédent, et la condition a vérifier devient:
nk'o<n1,|.........(l4)
Si la raideur des membrures est appréciable, on établit facilement que le module
de raideur devient:

: E (I/]x+2Zi)
dans laquelle:
Zi=somme des moments d’inertie des membrures
I=moment d’inertie de l’effet poutre, c’est-a-dire calculé sans tenir compte

des i des membrures.
On en déduit:

, 1 i

nc—nc(/\-l——f) 2 % B 3 % @ % 8 u 12}

Remarquons en passant qu’a notre connaissance cette valeur de la contrainte
critique d’Euler n’a jamais été calculée. Timoshenko, dans son ouvrage Théorie de la
Stabilité Elastique, ne considére que le cas ou la raideur des membrures est négli-
geable. L’influence de cette raideur est cependant, dans certains cas, importante;
l’erreur commise en la négligeant peut étre supérieure a 20 %;.
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Détermination de I’effort tranchant de flambement

Ce probléme a fait couler beaucoup d’encre et donné naissance a de nombreuses
formules plus ou moins empiriques mais la plupart trés divergentes.

11 se trouve ici résolu immédiatement.

En négligeant la déformation d’effort tranchant, n &, représente la contrainte totale
au bord de'la section médiane. La contrainte de flexion est donc:

nko—n=n(k,—1)
et comme il s’agit de flexion sinusoidale, I’effort tranchant maximum est:

T=W"—;n(ko—1) N ¢ 1)
L |
Dans le cas ou déformation d’effort tranchant est appréciable, il suffit de remplacer
n. par n’, et de substituer a k,, dans I’expression (16), la valeur correspondante de k'.

Poutres fléchies et comprimées

La prise en compte de la préfleche conventionnelle permet de donner a ce probléme
une solution rationnelle, et d’obtenir le raccordement total entre la flexion simple et
le flambement.

Par crainte d’abuser de la place qui nous est réservée, nous renvoyons le lecteur
au texte de la conférence que nous avons eu I’honneur de présenter & la Tribune de la
Société Royale Belge des Ingénieurs et Industriels, le 3 mai 1950, et publiée dans le
Bulletin No. 3, 1950, de cette société. '

Ce texte sert de base a la révision du texte concernant le flambement dans les
Regles CM 1946, révision demandée par la Chambre Syndicale des Entrepreneurs de
Construction Métallique de France. Le nouveau texte marquera d’importants pro-
gres et sera plus simple.

Nous espérons que les exemples qui préceédent suffiront cependant pour donner une
idée des possibilités de cette méthode.

Par elle, et du fait de sa conception probabiliste de la sécurité, le probleme du
flambement cesse de présenter le caractére particulier qui le distinguait des autres
modes de sollicitation, et la Résistance des Matériaux y gagne en cohérence.

II LE DEVERSEMENT
LE DEVERSEMENT DES POUTRES DROITES FLECHIES

Une poutre droite fléchie dans un plan de symétrie peut étre instable sous une con-
trainte maximum trés inférieure a sa limite d’écoulement. Suivant ses proportions,
il arrive qu’elle flambe latéralement on dit qu’elle se déverse.

Il s’agit d’un probléme d’instabilité qui présente de grandes analogies avec celui
du flambement.

La théorie bien connue de Timoshenko (Annales des Ponts et Chaussées, fasc. 111,
IV et V, 1913, et son ouvrage—Théorie de la Stabilité Elastiqgue—lui donne une solu-
tion dans le cas d’une poutre parfaite, et en matériau indéfiniment élastique et résistant.
La bifurcation d’équilibre doit se produire théoriquement pour la valeur critique du
moment calculée par Timoshenko dans différents cas de charge, et différentes formes
de section.

Pour un moment inférieur, I’équilibre stable reste plan; pour un moment supérieur,
il devient gauche. Mais cette théorie n’est pas plus confirmée expérimentalement que
celle d’Euler.
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En fait, le gauchissement apparait dés le début de I’application de la charge, et
I'instabilité se produit par divergence d’équilibre, comme dans le flambement. A ce
point de vue, les expériences de déversement effectuées courant 1951 par I’Institut
Technique du Batiment et des Travaux Publics, sur des I.P.N. soumis & moment con-
stant, sont caractéristiques. Les formules de Timoshenko présentent d’ailleurs les
mémes dangers que celles d’Euler.

Hormis quelques formules empiriques, la plupart sans grand fondement, il n’y a
pas eu de tentative qui mérite d’étre rapportée en vue d’établir une théorie de déverse-
ment par divergence d’équilibre; c’est cependant bien ainsi que se produit I'instabilité,
et c’est cette constatation qui doit étre a la base de toute solution réaliste.

S’il n’y a pas eu de tentative sérieuse, alors qu’elles ont été si nombreuses dans les
cas du flambement, c’est que le probléme est ici infiniment plus complexe.

Considérons une barre rectangulaire étroite, rectangulaire, fléchie dans son propre
plan sous un moment constant M. Sur les appuis, il y a une seule liaison des sections
terminales: toute rotation est impossible autour de I’axe OX (fig. 3).

e

L} 12
& f A8
e
4 b l
l —"ér‘—

Fig. 3.

Supposons une position d’équilibre accompagnée d’un légef fléchissement latéral.
La méthode de I’énergie permet de déterminer la forme d’équilibre; on sait que le
déplacement latéral du centre de gravité de la section est a variation sinusoidale.

. T
de méme que I’angle de torsion:
d=d, sin 7—; x

Considérons dans la section, et sur toute la longueur / de la barre, une tranche
infiniment mince AB a la partie supérieure de la zone comprimée. Cette barre pris-
matique €élémentaire uniformément comprimée, tend a flamber latéralement, mais les
réactions élastiques de la barre entiere s’opposent & ce flambement. Ces réactions

qui proviennent de la raideur de flexion d’une

1 Y _H part, et Fle la raideur de 'for.sion d’gutre part,
. sont évidemment & variations sinusoidales
7 4_19_ _____ L /1} puisque proport.ionne'lles aux déformations.
| / La barre prismatique élémentaire se trouve
held | |1 X ____xdonc exactement placée dans les conditions d’une
= of % /16 barre soumise au flambement dans un milieu
' o /_ . €lastique. On sait, en effet, que dans ce cas, la
2% Te T ligne élastique en position d’équilibre fléchie est
0, sinusp%’dale et que, par conséquent, les réa‘lctions
Ly a du milieu élastique sont elles-mémes & variations

Fig. 4. sinusoidales.
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Si nous connaissions la constante du milieu élastique correspondant a la barre
élémentaire, le probléme pourrait étre considéré comme résolu.

Du fait de la variation de la contrainte dans la section le long de I’axe OZ, le calcul
de cette constante est inextricable. La difficulté peut étre tournée au moyen de I’arti-
fice suivant: On peut délimiter, dans la section de la poutre, deux membrures fictives
(fig. 4) d’épaisseur e, qui seraient soumises 4 une contrainte uniforme:

.
/14
dont le moment résistant serait égal a M.
Il suffit d’écrire:
bh?
T3 n=eb(h—e)n
d’ou: g e=0,212A

On peut concevoir une poutre composée idéale, dont les membrures seraient celles
que nous venons de définir, et dont les liaisons entre ces membrures seraient telles que
la raideur de torsion et la raideur de flexion latérale de la poutre composée soient les
mémes que celles de la barre réelle.

La poutre composée idéale ainsi définie posséde la propriété remarquable d’avoir un
contrainte critique de déversement égale a celle de la poutre réelle.

Nous en donnons ci-dessous la démonstration.

On congoit immédiatement la simplification apportée au probléme tel que nous
I’avons posé, et il ne s’agit plus que de la stabilité au flambement d’une barre pris-
matique déterminée, dans un milieu dont on connait les réactions élastiques. Ce
probléme est classique, au moins si ’on reste dans I’hypothése de piéces parfaite est
indéfiniment résistantes.

Considérons (fig. 5) la section médiane de la z
poutre dans une position d’équilibre légérement |
fléchie. Nous ne faisons aucune hypothése sur o
la forme de section que nous supposons seule- 1—4
ment doublement symétrique. Nous ne la |
représentons rectangulaire que pour fixer les |
idées. |

La zbne 1 correspond a la membrure com- ;
primée de la poutre composée idéale; cette | |
membrure a un moment d’inertie transversal 7|, I
et une section £2,. 4

Les mémes valeurs s’appliquent a la mem- ——
brure tendue 2, a la zéne neutre 3 correspon- . -

dent i’ et £, & I’ensemble de la section i et £2. L_’—>
Fig. 5.

éo=valeur maxima de la rotation

f=fléche de la membrure comprimée

f'=fieche de la membrure tendue

po=Vvaleur maxima de la réaction de raideur de torsion

ro=valeur maxima de la réaction de raideur de flexion
/=longueur de la poutre

E=module d’¢élasticité de traction

G=module d’élasticité transversal

I,=moment d’inertie de torsion de la section

i

>

1

8

I I S
]

1
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ney=tension critique d’Euler de la membrure tendue (ou de la membrure
comprimée)
d=coefficient de majoration du moment d’inertie de la membrure tendue:
o=1 +n/ Ney
T/=module de résistance de la section (dans le sens vertical)
d=distance entre c. d. g. des membrures
M,=valeur maxima du moment de torsion.

Les équations d’équilibre donnent entre les différentes valeurs maxima définies

ci-dessus:
' I o YR . - i
=g ['=gpn =00
- d
M,=P,,d+roi=a¢o

expressions dans lesquelles a, b, ¢, sont des constantes: )
2 : ]4 [4

o
o =Gl Y=5Ey CoE
De ces expressions, on tire la relation:
. . A—B
J f8+A+B x i
ab b
avec: . | A=Ei—2 B=:12’

Le moment par rapport a la section médiane des réactions €lastiques s’opposant au
flambement de la membrure comprimée est:

12
Mo"—"(po"{“ro)w_z
’iT Ell

Or: Po =f =M

_f+f’_ 1+)\7r4 Ei'
o= 3 TH

o 2 Ei,8 A+1w2Ei
d’ou: ‘Mo—f(,. 11+ 5 wl, )—N]f
" |
d’ot: b—1=n1=nﬂs/\+(l\+1)nﬂu. v ww &8 oa po@h
1
. _7
avec: u—2ll

La tension critique de la membrure comprimée, qui est aussi celle de la piece réelle,
est donc:
H—= nl-}—nq—ncl(S/\—l—1)+(A+I)n¢1 s « « & e (18

équation du 2° degré en n qui, résolue, donne:

n=naV2A+1) (u+1) l. N (1)
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1 GI I? i’ w2 Ei,

avec. A= 2E11 d2 u=-2—i1 ﬂcl=m51“

Cas d’une section rectangulaire en acier doux

. ’ G 2 w2 Ei
i1=0.212i, d=0,188h, z=%, ny=n-=—rr0, u=136
La formule (19) devient: »
| n=ng LS3SV2AHL | . ... ... (0)
I, 12
avec: A=0,308 ',2

Cas d’une section en double té en acier doux

On a sensiblement: u=0 d=h
_71'2 Eil_ 0 V2_ V\2
ncl—m_nc 7—nc o

p ¢tant le rayon de giration dans le plan de I’dme et ¥'=x, n. étant la tension critique

2’
d’Euler de la barre dans le sens de son plus petit moment d’inertie.
La formule (19) devient:

Ry E T I ¢))
I 12
avec: : A= 00812—’]—2

Comparaison avec les formules obtenues par les méthodes classiques

Pour la section en double t¢, M. Timoshenko arrive & I’expression suivante de la
tension critique:

14
n=s 777\/51' G IV 1+ a2

' m2a? h? Ei w2 6165 [ h?
avec: ~ 12 - 1222G1 112

On peut vérifier que cette expression est identigue a (21)

Pour la section rectangulaire, I’expression de la tension critique obtenue par
M. Timoshenko est:

Vo
i’l=“1' 7'\/El G I,
expression identique a: B
n=n, 1,535v/24

donc différente de (20) par la suppression du chiffre 1 sous le radical.

Cette différence s’explique aisément. Dans une barre rectangulaire étroite, ayant
une extrémité encastrée et I’autre soumise a un moment de torsion, I’encastrement
s’oppose au gauchissement d’une tranche mince quelconque située a une distance d du
c.d.g. Ellesubit de ce fait une déformation de flexion qui influe sur I’angle de torsion.

C.R—19
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Cette déformation complémentaire de flexion est d’autant plus importante que la
distance d est plus grande et la longueur de la barre plus petite.

Ce phénomeéne n’a pas échappé a M. Timoshenko. Pour la section en double té,
il a donc évalué aprés coup, la raideur de flexion des ailes et 1’a introduite dans les
équations différentielles d’équilibre, ceci d’ailleurs au prix de certaines complications
mathématiques. Pour la section rectangulaire, il a négligé cette raideur de flexion
complémentaire, alors que par notre méthode elle est automatiquement prise en
compte dans tous les cas, et se traduit par le chiffre 1 sous le radical dans notre
formule (20).

En conclusion, nous pouvons dire que non seulement notre hypothése simplifica-
trice se trouve confirmée, mais encore qu’elle présente un avantage évident sur les
méthodes classiques puisqu’elle permet d’aboutir & une formule générale unique,
valable pour toutes les formes de section, et qu’elle prend automatiquement en compte
le phénoméne de raideur de flexion complémentaire que nous venons de signaler.

Remarquons que nous n’avons jusqu’ici, considéré que le cas
fondamental du moment constant mais on sait que les autres cas de
charge s’en déduisent par application de coefficients déterminés par
Timoshenko. Il n’y a donc aucun intérét a traiter directement ces
autres cas de charge. L’important est d’avoir ramené le probléme
du déversement a celui du flambement en milieu. élastique ce qui
rend possible ’application au déversement de la théorie par diver-
gence d’équilibre.

Avant d’établir les formules pratiques d’application, il est cepen-
dant nécessaire de préciser une particularité importante du probléme
fondamental du flambement d’une barre prismatique dans un milieu

Fig. 6. élastique.

Considérons une barre prismatique AB (fig. 6) parfaite de forme et de structure,
de longueur /, en position d’équilibre légérement fléchie, dans un milieu élastique
de constante B.

L’équation de sa ligne élastique peut étre considérée sans erreur appréciable comme
sinusoidale:

y=fsin177x

La compression axiale N correspondant a I’équilibre, se compose de deux parties
distinctes:

(1) N charge critique d’Euler équilibrée par le potentiel interne de la barre fléchie.

(i1} N; charge axiale complémentaire équilibrée par les réactions du milieu
élastique. Ce deuxiéme systéme de forces ne produit aucun moment fléchissant dans
la barre car le travail de la force N, dans son déplacement est égal au travail des
réactions élastiques, en négligeant bien entendu, comme habituellement, I'augmenta-
tion de potentiel interne dans la barre diie 2 son raccourcissement.

On peut donccalculer N, en écrivant que le moment dans la section médiane est nul.

La réaction du milieu élastique sur un élément dx de la barre est:

By dx=pf sin Zrl-x dx

La somme des réactions élastiques est:

_— 5
P=f. ﬁfsini;x dx=ﬁfl

™
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et le moment de ces réactions par rapport a la section médiane est:

Pl 12
M0=2_1r =ﬁf;2

On aura donc:

d’ot:  M=8—

et la charge critique totale de la barre sera:
N= NI +Nc

Il est important de remarquer que sous une charge axiale <N, seule la position
d’équilibre rectiligne est possible.

Si la caractéristique du milieu élastique B est suffisamment grande, la barre pourra
atteindre sa limite élastique sans flamber, ce qui revient & dire qu’elle travaille dans
ce cas en compression simple. 11 en résulte qu'une poutre fléchie peut ne pas étre
soumise au déversement et c’est 1a une différence essentielle avec le cas d’une barre
prismatique comprimée en milieu libre, qui se trouve toujours soumise au flambement
quel que soit son élancement.

Il en résulte également qu’il serait inexact d’appliquer un méme coefficient de
sécurité aux deux termes N; et N, dont se compose la charge critique totale, I’'un cor-
respondant a de la compression simple et I'autre a du flambement élastique. C’est
la I'une des circonstances qui rendent impossible tout systéme cohérent de sécurité,
dans la théorie par bifurcation d’équilibre.

Signalons enfin qu’il est inutile de considérer toute autre forme d’équilibre fléchi,
avec plusieurs demi-ondes, car dans le déversement, ces formes d’équilibre se tradui-
raient par une augmentation de la constante du milieu élastique a laquelle cor-
respondrait une charge critique plus élevée.

Passons a la barre prismatique réelle, et voyons comment s’applique la théorie
par divergence d’équilibre.

Tant que la contrainte de compression reste inférieure a la valeur limite:

la barre travaille en compression simple, le fléchissement est faible car les réactions du
milieu élastique s’opposent a toute amorce de flexion; il ne peut y avoir flambement.

Mais, lorsque la contrainte de compression est supérieure a ny, il y a équilibre
fléchi de flambement, et ’affaissement se produit pour une contrainte au bord de la
section médiane égale a:

n'e=n,—n,

Le probléme se trouve ainsi ramené a celui d’une barre soumise au flambement

libre, et la condition de stabilité & satisfaire s’écrit:

@—ﬁ)@+ﬂ<Rl N 7))
a g

avec: k,=

o coefficient de sécurité=n,/R
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L’expression ci-dessus n’est d’ailleurs valable qu’autant que:

ny
>

g
Pour<n . ny/o, il y a compression simple et I'inégalité & vérifier se réduit a:
n<R

Le probléme étudié est donc une combinaison de la compression simple et du
flambement. Dans la solution que nous lui donnons, la conception de la sécurité est
cohérente puisqu’a la contrainte critique de flambement, nous appliquons le coefficient
de sécurité de notre théorie de flambement, et & la contrainte de compression simple,
le coefficient de sécurité o=n,/R.

Ces considérations montrent comment s’applique la théorie par divergence
d’équilibre, au déversement.

ny étant la contrainte de flexion simple dans la poutre, résultant de sa charge, en
valeur d’exploitation, on peut poser immédiatement la condition de stabilité a
vérifier:

} (nf—%l) kot <R ' L@

g

p—1 Aecq
“u—+c) FTon—n,
la valeur de n, étant donnée par la formule précédemment établie:
ny=nc OA+(A+1) n,y u

Dans le cas d’une section en double té, ces formules se simplifient.
On a sensiblement:

avec: ko

u=0 d’ou n;=n. 8A
V2 w2 Ei
nﬂ=nc(;) avec nc=12—9
dans laquelle:

V=demi-hauteur de la section

p=rayon de giration dans le plan de I’dme
i=plus petit moment d’inertie

f2=surface de section

_,om 1 GLRE
8_1+n¢-1 A—_‘TTZE i ‘}TZ
A
A=5¥aA

VERIFICATION EXPERIMENTALE

Sur Dlinitiative de la Chambre Syndicale des Entrepreneurs de Construction
Métallique de France, des essais ont été effectués par le Laboratoire de I'Institut
Technique du Batiment et des Travaux Publics, en octobre 1950.

Ces essais ont porté sur cing poutres en I.P.N. 100 dont les longueurs sont indi-
quées dans le tableau I (colonne 1). Ces poutres ont été soumises & une flexion
circulaire, avec dispositif empéchant toute rotation des sections terminales autour de
I’axe longitudinal. Les rotations étaient libres autour des deux axes de symétrie de
la section. ‘
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TABLEAU [
M (2) (3) (4) (5)
Longueur des ner ner Erreur Ner
poutres calculée mesurée % pieces idéales

3m.00 16,4 16,10 +1,7 17,06

2m. 00 23.7 23,8 —0,4 26,4

1 m. 50 : ‘27.5 27,7 ' —0,8 37,1

1 m. 00 30,5 30,0 +1,6 61,8

O m. 50 flexion simple 31,0 165,7

Les contraintes critiques calculées (colonne 2) résultent de ’équation:

(np—ny) ko+ny=n,

. _Ll__ . M
avees ko_,u,—l,()83 #_nf—n
1. _ 4

b=1+" =3

Cette équation n’est autre que (23) appliquée a I’état critique, au moment de
l’affaissement, étant entendu que pour la vérification expérimentale, on remplace
c¢’'=1/2,4 par ¢c=1/12, ce qui donne 1+c¢=1,083.

On a pris pour #, la moyenne des valeurs mesurées dans 1’aile comprimeée.

Dans la cinquiéme colonne 4 droite, on a calculé les contraintes critiques relatives
aux piéces supposées parfaites, par nos formules équivalentes a celles de Timoshenko.
Ainsi qu’il fallait s’y attendre, ces valeurs s’écartent trés sensiblement des valeurs
mesurées, alors que dans notre théorie par divergence d’équilibre, ’écart n’est que de
2% au maximum.

De plus, des mesures précises de déformation ont été faites pour chacune des
valeurs progressives du moment appliqué. Ces mesures ont permis de constater,
pour les quatre premiers essais, que la forme d’équilibre est déja gauche pour de trés
faibles valeurs de la contrainte, ce qui contredit la théorie par bifurcation d’équilibre.

Dans le dernier essai, (poutre de Om. 50), notre calcul donne n;=n,, ce qui signifié
que la membrure comprimée travaille en compression simple et n’est pas soumise au
flambement. Effectivement dans cet essai, il n’a pu étre mesuré de déformation
latérale appréciable.

On passerait du moment constant, cas fondamental, & toute autre sollicitation par
Papplication des coefficients de la théorie classique.

Toute autre liaison des sections terminales se traduirait également par ’application
de coefficients connus.

On résoudrait également sans difficultés le probléme des piéces simultanément
fléchies et comprimées. En raison du manque de place, nous renvoyons a4 Conférence
de Bruxelles déja citée. ‘

Ce qu’il est important de retenir, c’est que, par cette théorie, confirmée expéri-
mentalement, le raccordement entre le déversement et le flambement se trouve réalisé
pour la premiére fois.

Il en résulte des conséquences importantes pour I’homogénéité du degré de sécurité
et ]la cohérence de la Résistance des Matériaux.
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Résumé
Flambement ,

La théorie d’Euler ne s’applique qu’au cas idéal d’une barre parfaite et indéfiniment
élastique (flambement par bifurcation d’équilibre). L’expérience montre qu’il y a
équilibre fléchi dés le début de ’application de la charge, et la rupture d’équilibre
dépend de la contrainte au bord de la section médiane: il y a instabilité par divergence
d’équilibre.

Il a été proposé beaucoup d’hypothéses pour interpréter les défectuosités
inévitables qui sont la cause du fléchissement prématuré. Une analyse serrée des
conditions a remplir montre qu’il y en a peu de correctes. Une seule semble convenir
pour aboutir 4 une solution cohérente et générale des problémes simples et complexes
de flambement (piéces prismatiques, ou composées de membrures assemblées par
treillis ou barrettes, simplement comprimées ou simultanément fléchies, prise en
compte de la déformation d’effort tranchant, etc.).

Déversement (ou flambement latéral des poutres soumises a la flexion)

Les théories classiques connues (notamment celle de Timoshenko) ne s’appliquent
qu’a des picces parfaites et indéfiniment élastiques (déversement par bifurcation
d’équilibre). En réalité, il y a, comme dans le cas du flambement, déversement par
divergence d’équilibre. A notre connaissance, ce probléme n’a pas regu de solution
pratique. Nous en proposons une en montrant que le déversement d’une poutre
fléchie s’identifie avec le flambement d’une barre prismatique dans un milieu élastique.

Cette théorie conduit pour les piéces supposées parfaites, a des expressions de la
charge critique identique a celles de Timoshenko, avec ’avantage d’une prise en
compte automatique de la raideur latérale de flexion. Ceci étant acquis, la théorie
du déversement par divergence en découle immédiatement.

Les essais récents exécutés au Laboratoire de I'Institut Technique du Béatiment et
des Travaux Publics confirment cette théorie.

Summary

Buckling

Euler’s theory holds good only for the ideal case of a perfectly straight and per-
fectly elastic bar (buckling through deviation of the equilibrium). Experience shows
that a bent equilibrium condition exists right from the beginning of the loading and
that the disturbance of equilibrium is dependent on the edge stressing of the middle
section: there arises an instability through disturbance of the equilibrium.

Many hypotheses have already been advanced to account for the inevitable defects
that cause premature bending. A compendious investigation into the conditions
that have to be fulfilled shows that only a few are correct. One alone appears to be
suitable to allow of obtaining a comprehensive and general solution of the simple and
of the complex problems of buckling (prismatic members or built-up grid or frame
bars, bars that are only compressed or at the same time also bent, takmg account of
the plastic deformation in consequence of a transverse force, etc.).

Lateral buckling (lateral buckling of beams subjected to bending)

The well-known classic theories (especially that of Timoshenko) hold good only
for perfect and perfectly elastic beams (lateral buckling through deviation of the
equilibrium). In reality, there occurs, as in the case of buckling, lateral buckling
through disturbance of the equilibrium. As far as we are aware, this problem has
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never been solved practically. The author proposes a solution, in that he shows that
the lateral buckling of a beam subjected to bending is identical with the buckling of a
prismatic bar in an elastic medium.

For bodies that are assumed to be perfect, this theory leads to expressions for the
critical Toads which agree with those of Timoshenko but have the advantage, however,
of automatically taking the lateral bending-stiffness into consideration. From this
there follows directly the theory of buckling through deviation of the equilibrium.

The most recent tests carried out in the laboratory of the Institut Technique du
Batiment et des Travaux Publics confirm this theory.

Zusammenfassung

Knicken

Die Theorie von Euler gilt nur fiir den Idealfall des vollkommen geraden und
vollkommen elastischen Stabes (Knicken durch Verzweigung des Gleichgewichts).
Die Erfahrung zeigt, dass schon vom Beginn der Belastung an eine ausgebogene
Gleichgewichtslage existiert und dass die Stérung des Gleichgewichts abhidngt von
der Randspannung des Mittelschnitts: es entsteht eine Instabilitat durch Stdrung des
Gleichgewichts.

Um die unvermeidlichen Mingel zu erkldren, die die Ursache der friihzeitigen
Ausbiegung sind, wurden schon viele Hypothesen aufgestellt. Eine gedréngte Unter-
suchung der Bedingungen, die zu erfiillen sind, zeigt, dass nur wenige korrekt sind.
Eine einzige schien geeignet, um zu einer zusammenhidngenden und allgemeinen
Losung der einfachen und der komplexen Probleme des Knickens zu gelangen (pris-
matische Korper oder zusammengesetzte Gitter- oder Rahmenstidbe, nur gedriickte
oder gleichzeitig auch gebogene Stibe, Beriicksichtigung der Verformung infolge der
Querkraft, usw.).

Kippen (oder seitliches Knicken der Biegebalken)

Die bekannten klassischen Theorien (namentlich diejenige von Timoshenko)
gelten nur fiir vollkommene und vollkommen elastische Balken. (Kippen durch Ver-
zweigung des Gleichgewichts). In Wirklichkeit kommt es, wie im Knickfall, zum
Kippen durch Stdrung des Gleichgewichts. Dieses Problem ist unseres Wissens bisher
nie praktisch gelost worden. Der Verfasser schlégt eine Losung vor, indem er zeigt,
dass das K:ppen eines Biegetrédgers identisch ist mit dem Knicken eines prlsmatlschen
Stabes in einem elastischen Medium.

Diese Theorie fiihrt fiir die vollkommen vorausgesetzten Korper auf Ausdriicke
fiir die kritischen Lasten, die mit denjenigen von Timoshenko iibereinstimmen, jedoch
den Vorteil haben, die seitliche Biegesteifigkeit automatisch zu beriicksichtigen.
Hieraus folgt unmittelbar die Theorie des Kippens durch Abweichung des
 Gleichgewichts.

_ Die neuesten im Laboratorium Institut Technique du Batiment et des Travaux
Publics durchgefiihrten Versuche bestiitigen diese Theorie.
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I. ACTION D'UN EFFORT CONCENTRE APPLIQUE SUR LE PLAN LIMITANT UN SOLIDE

INDEFINI (fig. 1)

Boussinesq puis Flament ont étudié I’action d’une force concentrée agissant en un

point du plan limite d’un solide ¢lastique indéfini.

Grice a I'utilisation des solutions générales données par Boussinesq on obtient
sans difficulté notable les valeurs des déplacements w, v, w, et des contraintes N, N,,
N,, Ty, T», T, en tout point du solide élastique. Les notations étant celles qu'indique
la figure 1, nous avons abouti aux résultats suivants pour le point m (x, y, o) du plan

limite:

Déplacements :

'_‘__(H-n)(l—-Zwy) L) (1=27) y w_

?

n- 2nEp? n_ 2nEp? " n

Contraintes normales :

Nl 1 2 .2 , )2
7_27r_;)2[l-;{.\ (1=3)—} n}]
N, 1

2
e L L R }]
Ny _

n

_(=-m)
wEp
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Contraintes tangentielles :

3 (1-29)
Tl=0, T2=O: ;=_ ,n.P4 Xy
Y
: Je d
E : module de yo_un‘g_ m(xy0)
s
0 -— . L
T =
Yn
+)
vl: coefficient de Foixon. w vt '
O‘Z u® _ _ deplocementes

* Ny M2
" Ni 5 controinleS normales

5 A Tng_

— T2
4 il . controintes de cisaillement
T

Fig. 1. Action d’un effort » normal au plan limite au point o. Action d’un
effort f porté suivant ox et agissant en 0. Notations pour les déplacements et les
contraintes normales et tangentielles suivant le triedre o, x, y, z

Un calcul du méme genre pour ’effort horizontal f agissant en o, suivant ox,
nous a donné pour le point m (x, y, 0):

Déplacements:
y_l+77( o) v_1+7 w_(14+9) (1—29)
f mEp? PR f—ﬁEp3n ¥ f 2nEp?

Contraintes normales :

1 x . xp? 2(1—n)x<p+n‘x)] »
et | ({2 s S i [
ﬂ(1—2n)92[( B )P Tp3 +y(1=m) (1—27) p?

N — 2

P 0 2]
Ns__ 1
f m(1—=2n)p?

N
7=

p2—2x2 xyz]
33
P

(=72

Contraintes tangentielles :
Iy = Sxp
[ 2mpt
‘Tz 1. x x2
7—-%_;)2[—’7;_'_;&-'_”)]
T, y [ x 3x2]

= R P



ETUDE DES ENCASTREMENTS DE FLEXIONS 299

L’examen de ces deux groupes montre que les déplacements sont inversement pro-
portionnels & E. Il prouve aussi que les contraintes dépendent du coefficient de
Poisson.

II. CALCUL DES DEPLACEMENTS NORMAUX: W PROVENANT D’UNE SECTION RECTANGU-
LAIRE APPARTENANT AU PLAN LIMITE ET A UN PRISME ENCASTRE NORMALEMENT
DANS LE SOLIDE INDEFINI (fig. 2)

Nous supposerons que la piéce prismatique améne un effort normal N, un moment
fléchissant M, correspondant a une rotation autour d’un axe parallele & oy et un effort
tranchant T paralléle 4 ox. Nous admettons que la répartition des efforts élastiques
correspondants, a l'intérieur du rectangle de contact, est celle que donne la résistance
des matériaux. Les efforts normaux sont représentables par un plan:

_2M N 6M( 2a\ .o
n_abx+ab+a2b + a soit n=Ax+

AY T
+b "; /
2 r}
x Ly
~ |
IH(I—“”") =
——”#A T} :
d
N . 3 H_ﬂ ’
2 : "dx :
a4 | a= (g2-41) ]
|
|
a2z ol

Fig. 2. Contour rectangulaire d’encastrement.
(Vecteur de flexion parallele 4 Py)

Le déplacement vertical du point P et provenant de la flexion composée est,
d’apreés ce qui précéde, donné par I’expression:

1_,72J‘02J‘+b/2 Ax+B de d
= — ——dx
mE —b2 VX242 4

On peut écrire W;=W;;+ W,,; la premicre intégrale correspond & Ax et la
seconde A B.
W11 est une expression impaire:

l—nzA[c_z_zz b+Vb2+4a2 a2 b+Vb2+4a?
=E 7| 2 2la;) 2 2lay/

Wi=—

b
+§(\/b2+4022—\/_b2+4a12)]
W1, est une expression paire:
1—n2 B[ b++b2+4ay? b+vb2+4a2 b 2d2+\/b2+4a22]
aL———F—

We=—"% I TP A S PIRRY/ <wwvae
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Le déplacement vertical W, du point P provenant de l'effort tranchant s’obtient
d’une fagon identique en partant de la fonction:

(x—ay) (x—a,)
a3b

expression conforme aux régles de la résistance des matériaux. On obtient ainsi:

3(1+7) (1—27) TR e (x—ay) (x—ay)
W2= 3b B T, =) 2

asbm —bj2J a (x24y2)
On trouve, apres intégration, 1’expression impaire W5:

_3(1+47) (1—27) b\ a? a b\ a? a;
W= PhnE T, arc’cgz—a2 R Gl e —(arctgz—al c a2h§)

b b2 4a,2+b2| b2 2a, 2a,1 b

+21 (al a,— 1—2) wels 3 A#ibz +§ (a1+ay) [arc tg —b~'—arc tg TIJ —a(azz—alz)]

On s’aper ¢oit que le déplacement total W= W+ W, ne correspond pas a la droite de
Navier, méme en cas de compression pure. En étendant les calculs aux points du plan
situés de part et d’autre de ’axe ox, on peut obtenir la déformation du rectangle
d’appui telle qu’elle ressort de I’application de la théorie de I’élasticité et des
principes de la résistance des matériaux. L’allure du rectangle T; déformé fait I’objet
de la figure 3. Les calculs sont faits rapidement & partir de ceux qui précédent par
un procédé de contours superposés.

On remarque que la surface T, contient I’axe oy, elle n’est symétrique, par rapport
a oy qu’en 'absence d’effort normal.

Elle est toujours symétriques, avec les bases adoptées par rapport au plan y=0.

Le résultat auquel nous venons d’aboutir est caractérisé par une anomalie rigou-
reusement établie dont 1’existence nécessite le recours a la méthode expérimentale.

f=6T

dy dx

To . conlour initial

’I‘1 : contour lransforme

Fig. 3. Déplacement et déformation du contour rectangulaire T.
(Vecteur de flexion pure suivant oy)

III. PROBLEME DE L’ENCASTREMENT PLAN ‘ETUDIE A PARTIR DES MEMES BASES QUE
PRECEDEMMENT—RECHERCHE DES CONTRAINTES DANS LE SOLIDE INDEFINI (fig. 4)

En utilisant les études de Boussinesq et de Flament, nous avons obtenu sans grandes
difficultés les expressions donnant les valeurs des tensions Nz et N; agissant au point m,
de coordonnées («, o, ¥) ainsi que les valeurs 7, du cisaillement correspondant. On
sait que No=n (N+N’).
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Les résultats qui, sauf pour N,, sont indépendants de E et de 7, peuvent étre
résumés ci-dessous en coordonnées bipolaires, les poles étant les extrémités de la péné-
tration de la lame indéfinie.

X = compression pure

F= flexion pure

|
|
|
' .
' |
| A i A
+ “3 TITrrrryryree ! FIFTTITITE7T
) = cdsaillement pur :

£ 3T (a*-x%) g (d-7)
4 a3

Fig. 4. Encastrement plan d’une lame normale au solide indéfini

ler cas: compression pure (résultat classique)

Les tensions principales correspondant aux bissectrices de I’angle AMA’ ont pour
expressions :

N=:—:[(0'—€)+sin @ —0)]

N'==[(0'—6)—sin (&' —6)]

et N,=n (N+N’) en épaisseur indéfinie.

2éme cas: flexion pure

~On obtient la valeur des tensions principales et leur orientation par la construction
de Mohr, a partir des résultats suivants (avec K=3M/ma?, y étant déterminé par 6 et 6"):

Nl ’ o . . ’ l+tg29 ) 2 R
T = (CE )—i(sm 20—sin 20")—vyL m_y (cos2 f—cos? ')
N-
f:a (0—8")+o (sin 20—sin 26')+y (cos? §—cos2 &)
T, ; Bl s ' o
=" (cos2 8—cos2 8 )—y (6—0 )+§~ (sin 260—sin 28")

et Ny=7 (N;+N;) en épaisseur indéfinie.

3éme cas: cisaillement pur

On procédera comme ci-dessus pour obtenir ¥, N’ et leur orientation a partir des
résultats suivants (avec K'=3Ty/4na3):
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N, cos ¢ 1 1
' 9 3 e B - - R_ —
=7 (cos?2 —cos2? 8')—4yL o5 0 y[cosz 7 cos? 0] +4a (tg 0'—tg 9)
6a (0'—6)+a (sin 26’ —sin 26)
N, Iz _ .
=(c0s? §'—cos? 6)—2yL | — | —2a (6"~ 0)-+a (sin 20'—sin 26)
T 4ar|% Y | _ 24 (cos? 8 —cos? 8)+ 2y (tg & —tg 8)— 3y (6'—6)+ Lsin 26’ —sin 26)
g =daL| g —2a (cos? 8'—cos2 0)+ 2y (tg g y 3 i

et N,=n (N;+ N;) en épaisseur indéfinie.
Ces formules n’ont été indiquées que parce que nous les avons utilisées plus loin.

EXPERIENCES PRELIMINAIRES SUR UN MODELE EN CAOUTCHOUC (DEFORMATIONS REVER-
SIBLES MAIS FINIES)—EXPERIENCES DE M. TESAR—EXPERIENCES DE MM. FAVRE
ET BEREUTER

La nécessité d’un recours a I’expérience découle du résultat trouvé pour I’encastre-
ment 4 la flexion d’une piece prismatique. O le calcul est insuffisant, parce que trop
simplifié dans ses bases, |’expérience éclaire, parce qu’elle contient les données intactes
du probleme étudié.

Afin d’avoir une idée sensible du phénoméne, nous avons procédé a des expériences
purement démonstratives de déformations finies. Pour cela nous avons découpé une
éprouvette dans une lame de caoutchouc et celle-ci recouverte d’une laque blanche a
¢été soumise a trois sortes de sollicitations:

1° traction pure dans la partie de largeur constante
2° flexion pure dans la partie de largeur constante
3° flexion et cisaillement dans la partie de largeur constante

La photo n° 1 correspond & I'effet de la traction, la photo n° 2 correspond & celui
de la flexion pure, et la photo n° 3 & celui de la flexion alliée au cisaillement et 4 une
légére traction.

Sur la laque nous avons tracé un quadrillage et chaque carré contenait un cercle
inscrit. La déformation du quadrillage et des cercles inscrits renseigne parfaite-
ment sur le sens des efforts et montre aussi les déformations finies dont les proportions
correspondent a celles d’un modele a déformations infinitésimales. La fissuration de
la laque, comme la déformation des cercles, pourrait donner lieu a des mesures, mais
ce domaine n’est pas celui de I’élasticité, puisque les déplacements et déformations qui
sont bien reversibles, ne sont pas en méme temps infinitésimales.

Ces essais n’ont qu’une valeur démonstrative.

Examen de la photo n° I (fig. 5)

Les résultats obtenus valent pour la compression pure au signe preés. La courbe
des déplacements W, que nous avions tracée pour le cas du béton (»=0,20, E=
220 t./cm.2) se retrouve ici, trés nette. On voit aussi une légere différence entre les
tensions principales du centre de la zone de transition et celles des parties latérales.
Cette différence concerne leur valeur et leur orientation. L’intensité des efforts de
traction doit étre vraisemblablement proportionnelle au nombre de fissures par unité
de longueur. On constate que les directions principales de traction s’épanouissent a
peu pres a 45°, un peu plus bas que le congé. Les déformations sont encore sensibles
a une profondeur égale a la largeur de la piece. Sauf pour les régions extrémes, les
sections droites restent droites.
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Examen de la photo n° 2 (fig.6)

La flexion est circulaire, c’est-a-dire qu’il n’y a pas d’effort tranchant. On retrouve
ici avec la méme netteté que précédemment la courbe de déplacements W, symétrique
par rapport a sa tangente inflexionelle. Les cercles sont déformés d’une fagon trés
nette. Malheureusement, la pellicule de laque parait avoir flambé dans les régions
comprimées, mais le phénoméne est clair et confirme bien les résultats de notre
premier calcul, du moins au point de vue qualitatif. Les sections droites sont trans-
formées en courbes inflexionelles & proximité de ’appui, mais les rayons de ces courbes
sont tres grands.

Examen de la photo n° 3 (fig. 7)

Ce cliché correspond 4 un cas rencontré fréquemment dans la pratique. La droite
de transition est encore inflexionelle, mais elle subit un déversement dii & I'importance
du cisaillement. La dissymétrie corrélative des contraintes se lit sur les ellipses dont
les excentricités sont nettement différenciées autour de la déformée de transition.
Celle-ci semble bien étre le résultat d’'une addition des courbes W, W, et W,, dont
les formules ont été données au début et pour lesquelles une application numérique a
été faite.

Fig. 7. Photon°3

Les sections droites ne restent droites que dans la partie centrale de la bande.

Ces expériences pourraient étre reprises avec un matériau moins déformable et
dont le coefficient de Poisson se rapproche de celui du béton (n=0,20) ou de l’acier
(n=0,30). Il faudrait procéder avec des objectifs spéciaux et réaliser un quadrillage
beaucoup plus ténu. Les excentricités des ellipses seraient d’ailleurs moins grandes
que pour 7=0,50.
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La conclusion de ces expériences démonstratives, c’est que les hypothéses simpli-
ficatrices de la résistance des matériaux, qui sont parfaitement vérifiées & mi-distance
des masses d’encastrement, ne le sont aucunement autour de la droite de transition.

Rappel des expériences de M. Tésar *

Sous le titre “Section d’encastrement d’une voiite épaisse a retombée normale,”
M. Tésar a décrit les expériences de photoélasticimétrie qu’il a entreprises en 1936 et
1937 au Laboratoire de I’Ecole des Ponts et Chaussées.

En soumettant un modele de xylolithe a une série de trois efforts différents cor-
respondant donc a trois montages différents, M. Tésar a obtenu par combinaison
linéaire des résultats recueillis (opération légitime en élasticité pure) les actions
séparées d’un effort normal, d’un effort tangentiel et d’une flexion apportés par la
voute.

Les résultats publiés par M. Tésar concernent les tensions agissant sur la droite de
transition entre les extrémités horizontales des congés.

En analysant ces résultats et en les comparant avec ceux qu’un calcul habituel
aurait donnés, ’expérimentateur a trouvé des différences considérables dont quelques
unes proviennent certainement du fait que la piéce encastrée présente une forte cour-
bure. Nous avons comparé les résultats de I’action du moment avec celui que don-
nent les formules de Ribiére (C.R. 1889 et 1891) et non pas de Navier comme [’avait
fait M. Tésar.

La divergence entre les résultats mesurés et ceux du calcul est moins considérable,
mais reste sensible.

En tragant les cercles de Mohr pour I’extrados dans le cas de la compression pure,
de la flexion pure et du cisaillement pur, nous sommes arrivés aux résultats graphique-
ment représentés sur la fig. 8. Le résultat de la comparaison est suggestif pour le
cisaillement pur, dans le cas du béton.

-
Gmpression pure NI cercle de Mobr calcule N2, cercle dc/ﬁabf obleny

Fig.8. Expérience de M. Tésar.—Comparaison des cercles.de Mohr correspondant
au point E, d’aprés les résultats publiés

* Annales des Ponts et Chaussées, 1937.
Cc.R.—20
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Rappel des expériences de MM. Favre et Bereuter *

Les auteurs des essais ont utilisé un verre spécial dit ““optique™ et sur lequel ils ont
d’abord évalué les tensions originelles. Utilisant la méthode d’examen optique que
M. Favre a mis au point a Zurich, ils ont cherché I'influence de I'angle d’inclinaison
d’une console encastrée dans une masse indéfinie, sur la distribution des contraintes.
Dans chaque cas la console était sollicitée par un effort paralléle au plan limite de
situation et d’intensité identiques. De la sorte, I'éprouvette était soumise a une trac-
tion normale, a un cisaillement et & une flexion. :

Les résultats a retenir de ces expériences sont la concentration des efforts aux
congés et particuliérement aux congés rentrants & mesure que l’angle d’incidence
augmente, I’amortissement assez rapide des contraintes a l'intérieur de la masse
d’encastrement et enfin la présence d’un point singulier du spectre isostatique que
nous retrouverons plus loin et que nous désignerons sous le nom de péle d’encastre-
ment. Ce point légérement au-dessus de la ligne des raccords supérieurs des congés
se déplace vers I'angle rentrant a2 mesure que I’angle ¢ augmente. Le congé extérieur
supporte des tensions décroissantes avec ¢. C’est le contraire pour le congé intérieur.
La somme des deux maxima est a peu pres indépendante de I’angle.

On remarquera que si I’encastrement avait été parfait, le point singulier aurait été
situé sur la droite limitant la masse d’encastrement quelle que soit la valeur de ¢.
Nous notons ce fait en passant, car nous reviendrons sur la notion d’encastrement
parfait.

ESSAIS DE L’AUTEUR ENTREPRIS AU LABORATOIRE DE LA S.N.C.F. sOUS LA DIRECTION
EFFECTIVE DE M. KAMMERER, INGR. DR. ES SCIENCES, ASSISTE DE M. CANAL,
Ingr. P.C. (1947)

Ces expériences ont été faites avec le soin et la précision que M. Kammerer et son
assistant ont toujours montré dans leurs travaux du Laboratoire de Levallois Perret.
Le but des essais et des mesures entrepris a été d’étudier dans ses détails, I’encastre-

Fig. 9.
*EP.Z 44
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ment d’une piéce fléchie encastrée dans une masse indéfinie. Cette étude d’élasticité
plane a été faite avec deux rayons de congé et sans congés.

Nous avons procédé a une comparaison des résultats fournis par le calcul avec
ceux qui ont été trouvés aux essais.

La figure 9 montre le modéle étudié dans son cadre. La piéce aboutissant a la
masse d’encastrement lui ameéne uniquement un effort de flexion. La matiére utilisée
était du Plexiglass d’un module élastique de 29.000 kg./cm.2 avec un coefficient de
Poisson égal a 0,30 et un coefficient photoélastique K=41. L’épaisseur du modéle
était de 10 mm. et le couple agissant avait été mesuré avec toute la précision utile.

Le banc de photoélasticité utilisé était celui de la S.N.C.F. dont M. Kammerer a
donné la description dans son excellent livre intitulé Recherches sur la photo-
élasticimétrie (Edition Hermann). On a déterminé d’abord les isoclines, ce qui
fournissait les points de tension maxima aux contours puisque ce sont ceux pour les-
quels I'isocline arrive normalement. On a pu tracer ensuite les isochromes et grice
au compensateur mesurer les tensions. '

Les résultats a retenir sont tous contenus dans le spectre chiffré des isostatiques.

Nous avons montré les résultats obtenus sous forme de triptyque. (Figs. 10,
11 et 12).

VARIATIONS SUIVANT LE LONG DU
CONTOUR DE LA PIECE DE LA CONTRAINTE
 NORMALE PARALLELE AU CONTOUR

w1755 PO AL L SR

Couple _ sppligué
150 Kmm

_____ o 1%35 «i%ss) ___J

1578

TTe2Xes 2%

* 219 -2Y9s

Fig. 10 (b). Partie 1. Angle vif
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Chacune des trois planches fournit les dimensions du mod¢le et le spectre des iso-
statiques. Les données numériques sont indiquées sur les épures jointes. Ce sont
les répartitions des contraintes dans la piéce fléchie et sur la droite d’appui.

Les résultats ont été reproduits avec la méme représentation pour faciliter les
comparaisons. .

" L’examen comparatif de ces planches est facilité par I’examen du tableau ci-dessous
et du graphique des contraintes agissant sur la droite de transition.

+ 1158

\.,,-.' VARIATIONS des CONTRAINTES

X N3, N1, T2, LE LONG DES SECTIONS
AB_CD_EF

Variations de N3:

12

1758

fxy

2793

Fig. 10 (b). Partie 2. Angle vif—Couple appliqué 150 kg-mm.
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Grand congé—Tensions
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Moment appliqué: M=15 kg.-cm.—Contraintes exprimées en kg./mm.2

Angle vif: r=0 Petit congé: r=3 mm. | Grand congé: r=6 mm,
Situation des points sin- | 1 point singulier de | 1 point singulier vir- | 1 point singulier vir-
guliers: léere espéce aux tuel de chaque coté tuel de chaque coté a
angles. 4 Pextérieur et dans Pextérieur et dans le
le quadran du congé. quadran du congé?
Hauteur du péle d’encas-
trement (point singulier
de lére espéce) . 121 mm. 145 mm. 174 mm.
Tensions maxima et dia- 2,95 kg./mm.2 2,30 kg./mm.2 1,95 kg./mm.2
métre maximum du _2,95_1 90 _2,30_1 48 _ 1,95_l 25
cercle de Mohr coeffi- P=155" > P=155~ P=155
cient d’augmentation. '
Contrainte maximum
dans la piéce au-dessus
du pole 1,55 1,55 1,55
Coeeniition: Fan e | =150 N max. =0,192 N max.=0,115
des contraintes princi- ! 3 ey 3 | ox iy 3 | ox K 5
pales (sur les congés) aN; g./mm.= | o N &./mm.= | o N g./mm.
5, max. =0,425 5, max. =0,250 >, ™max. =0,120
y kg./mm.3 | % kg./mm.3 | ¥ kg./mm.3

COMPARAISON DES RESULTATS DU CALCUL ET DES RESULTATS EXPERIMENTAUX POUR LA
PIECE ESSAYEE

Possédant des données numériques précises pour le plexiglass, nous avons pensé
qu’il serait intéressant de procéder au calcul des efforts en plusieurs points de la masse
d’encastrement choisis a proximité de I'encastrement et de les comparer avec les
résultats des calculs. Les figures qui précédent suffisent a montrer I'importance des
différences dans la section de transition avec et sans congeés.

A Tlintérieur de la piéce encastrée, celles-ci s’atténuent jusqu’a devenir pratique-
ment nulles, & mesure que I’on se dirige vers le pole d’encastrement.

La figure 13 montre d’abord la position des points choisis: A, B, C, B’, A’, puis
le résultat de chacun des essais pour chacune des trois éprouvettes analysées. On
observe que la présence d’un congé et son rayon ont une certaine influence en des
points situés a une demi-hauteur des piéces a I'intérieur de la masse d’encastrement.
Cette influence se traduit par une diminution des contraintes pouvant atteindre 20 %,
et une légére rotation de I’ellipse, des torsions dans certaines régions.

En utilisant les formules du Paragraphe III et en suivant les régles habituelles du
calcul pour I'évaluation des contraintes sur la droite limite, les congés étant supposés
absents, nous avons obtenus des résultats, ceux que le calcul ordinaire laisserait pré-
voir comme provenant d’un moment de 15 kg.-cm. agissant linéairement sur un seg-
ment de 24 mm. de longueur de la droite limite.

La comparaison de ceux-ci pour les points choisis dans le cas de I’angle vif avec
les résultats expérimentaux est explicitée dans la figure 14.

On notera une différence marquée pour les points A et A’, accompagnée d’une
divergence de directions principales. Cette différence s’attenue & mesure que I’on se
dirige vers I’axe vertical.

Ces expériences 4 deux dimensions, nous avions envisagé de les étendre a trois
dimensions.
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Fig. 13. Position des points étudiés dans la masse d’encastrement

La premiére idée consiste a utiliser le procédé nouveau de figeage. Mais il faudrait
attendre que cette sorte de mesure soit définitivement entrée dans la technique des
laboratoires spécialisés. L’étude détaillée de la distribution des efforts dans les pieces
prismatiques montre, d’aprés le tracé des surfaces de cisaillement dans les piéces
symétriques, suivant la théorie de Saint Venant, que les résultats recueillis ailleurs que



316 All 3—R. PASCAL

L 12 mm 12 mm ; 12 mm

calcul’ l
|

2mm

! calcul | obvervalion

observalion

B

Echelle des lengrond :

| ekt

Q 920 040 080 o080 100
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modele 4 angle vif. (Ellipses des tensions)

dans la région médiane sont faussés & cause de la grande inclinaison de ces surfaces
par rapport au plan moyen dés que ’on s’approche de ’extrados ou de I'intrados.
Si, par exemple, une excentricité a/b=1/5 est satisfaisante pour les mesures, 1’excen-
tricité inverse b/a=>5 ’est beaucoup moins.

D’autre part, la différence des coefficients de Poisson conduit & une répartition
différente des contraintes autour de points homologues a cause de la présence d’un
facteur 5/(1—27) dans les formules donnant les efforts normaux en fonction des
déformations. Ce facteur=0,75 pour le plexiglass, peut varier de 0,25 a 0,50 pour
le béton.

Nous aurions voulu construire des modéles en béton armé en utilisant une échelle
acceptable. Nous avions pensé a des piéces de I’ordre de 20 X 40 encastrées dans des
massifs de ’ordre de 1,00 X 2,00 m. et d’au moins 1,00 m. de profondeur.

En faisant varier la proportion des c6tés et le pourcentage d’armatures, on
aboutirait a une collection de résultats intéressants. Les mesures des déplacements
angulaires et linéaires pourraient étre faites avec des cordes vibrantes et celles des
contraintes a ’aide de strain-gauges placés sur la périphérie contre les armatures et a
Pintérieur du béton. Ce travail expérimental étant terminé, il resterait & comparer
les résultats que I’on en retirerait avec ceux qu’on obtiendrait grice a ’emploi des
formules que nous avons données au Paragraphe I.

ZONE DE TRANSITION: INFLUENCE DES CONGES: ROTATION SUPPLEMENTAIRE

Il existe donc une zOne de transition pour les encastrements de fiexion pure ou de
flexion composée et celle-ci est comprise entre la droite limitant la masse d’appui et le
pdle d’encastrement. Ce pdle ou cette droite polaire est toujours située dans ’axe
de la piéce pourvu que I’angle d’incidence soit droit. ~ S’il varie, le pdle d’encastrement
se déplace vers le coté correspondant a I’angle fermé mais en restant & peu prés au
méme niveau.

La figure 15 montre I'importance du tracé des congés. 1/ suffit donc d’un supplé-
ment de matiére insignifiant pour améliorer la sécurité dans des proportions importantes.
On peut compléter le role du congé par un traitement localisé de la région critique, telle
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qu’elle est définie dans la figure 15, et I'on peut dire qu’elle est limitée par I’isochrome
correspondant a la tension maximum réalisée au niveau du pdle d’encastrement.

Voici, résumés, les enseignements de nos essais:

(1) Le diamétre maximum du cercle de Mohr et-par suite le cisaillement maximum
varient en raison inverse du rayon du congé. Un rayon convenable permet de réduire
beaucoup la majoration de contrainte et I’étendue de la région critique.

(2) L’absence de congé peut conduire a I’apparition d’une région critique relative-
ment étendue et présentant une grande concentration de tensions au point singulier,
principalement sur la droite extérieure d’appui. .La majoration des contraintes a
atteint 909, dans nos essais (voir tableau précédent). Au point singulier, on a:
N1=MN, le rayon du cercle de Mohr est nul, mais il suffit de s’écarter trés peu de ce
point pour que I'une des deux tensions soit négligeable, ’autre restant peu variable.

(3) Le pdle d’encastrement est situé dans les essais entrepris a une hauteur approxi-
mativement égale a la demi-largeur de section au-dessus du centre du congé. Cecin’étant
indiqué que pour fixer les idées n’est évidemment pas une régle. D’ailleurs, les essais
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de Zurich indiquaient une hauteur relative plus faible, mais avec accompagnement de
cisaillement. On remarquera enfin que I’encastrement est d’autant moins imparfait
que la distance du pdle & la droite limite est plus faible (nous reviendrons sur ce point)

(4) A ces remarques, il faut ajouter I’'un des enseignements des expériences de
Zurich. Celles-ci montrent clairement que la valeur de la contrainte maxima et celle
de la concentration de tension varient pour un effort extérieur égal, en raison inverse
de la mesure du diedre.

Ces renseignements sont utilisables dans la construction mécanique et en fonderie
aussi bien que pour les ossatures de constructions et I’étude des cordons de soudure.

Il est probable que I’arc de cercle n’est pas le tracé optimum de raccordement.
Rien ne s’opposerait, en fonderie ou en construction métallique a lui substituer un
tracé & courbure progressive. Pour cela, on peut employer des arcs de lemniscate,
de radioide ou de clothoide symétriques par rapport a la bissectrice de I'angle qui
serait une normale commune.

D’aprés ce qui a été vu et mesuré, on sait que la zéne située entre le pole et la droite
d’appui est une région a déformations angulaires importantes. Cette observation est
intéressante car elle peut donner lieu a un calcul de correction utile pour les ouvrages
importants. Dans cette région les sections droites ne restent pas tout a fait droites.
Elles paraissent transformées en sections inflexionelles a trés faible fléche, symétriques
ou non, suivant que la flexion est simple et composée. On pourrait évaluer la rotation
élémentaire correspondant a une longueur ds de la fibre neutre (en cas de flexion pure)
en la choisissant comme la demi-somme de la rotation calculée d’aprés les contraintes
extrémes et de la rotation calculée comme d’habitude avec I’hypothese de la linéarité
des tensions celles-ci étant déduites du moment effectif. Le supplément de
déformation angulaire entre la droite d’appui et le péle d’encastrement dont la situa-
tion peut étre décelée soit par ’examen d’un enduit de laque fissurable soit sur modéle
serait alors facile a obtenir. Pour le faire, le mieux est d’employer la méthode
graphique. A ce supplément de rotation il faudrait ajouter celui qui provient de la
. rotation de la droite d’appui. Quand il est possible de construire un modéle bien
étudié, il est facile de calculer cette derniére rotation, soit par intégration graphique,
soit par observation sur le modéle.

Ces remarques n’intéressent, bien entendu, que les ouvrages importants.

Nous examinerons plus loin le calcul de correction correspondant.

En procédant a un calcul numérique sur le modéle de plexiglass nous avons trouvé,
comme rotation supplémentaire totale, compte tenu de la déformation de la masse
dans la région de I’encastrement, un supplément de rotation entre la droite de transition
et le centre d’encastrement s’élevant a 6/10 environ de la rotation calculée d’aprés la
méthode habituelle entre ces deux points. Mais ce calcul a été fait en ne tenant
compte pour les déplacements que des contraintes extrémes. C’est pourquoi il con-
stitue une limite supérieure ou si I’on veut un ordre de grandeur maximum. D’autres
essais nous paraissent indispensables pour aboutir & un résultat utilisable dans la
pratique.

L’étude d’une piéce prismatique encastrée dans une masse indéfinie doit d’ailleurs
faire ressortir une valeur plus faible de la rotation du plan d’appui, en raison de
I'importance plus grande de la masse d’encastrement, dans la direction perpendiculaire
au plan de figure.

EVOLUTION PLASTIQUE ET RUPTURE D’UN ENCASTREMENT DE FLEXION (BETON ARME, ACIER)

Dans la pratique, on dimensionne les encastrements pour que les contraintes
données par le calcul soient inférieures a des limites bien déterminées par la connais-
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sance des matériaux. Mais il est utile d’examiner I'influence d’une majoration des
efforts sur I’ouvrage, afin de suivre la variation des coefficients de sécurité locaux par
rapport a la limite élastique ou par rapport a la limite de rupture.

L’application du théoréme de M. Colonetti, lorsqu’elle est facile a faire et lorsque
les conditions nécessaires qu’il requiert sont satisfaites, aboutit a un systéme d’équa- .
tions indépendantes, dont le nombre est égal au degré d’hyperstaticité du systéme.
Parmi les variables indépendantes figurent les réactions d’appui qui, pour I’encastre-
ment, sont au nombre de trois (moments de flexion, réaction complémentaire verticale
et poussée). Mais si l’on s’apergoit en faisant ce calcul que I’'une des régions plastifiées
intéresse le voisinage de I'un des appuis, le résultat obtenu est douteux. Il faudrait
d’abord avoir une idée exacte du comportement de ’appui considéré du point de vue
des déformations et surtout de la déformation angulaire.

Dr’apres ce qui précede, nous pouvons donner quelques indications d’ordre général,
mais qui cernent le probléme numérique a résoudre pour chaque cas particulier.

(i) La rotation élastique aux naissances varie en raison inverse du rayon des
congés, quand ils sont circulaires, cette rotation étant définie comme on I’a indiqué
précédemment et concernant la région limitée par le pdle d’encastrement.

(i1) La phase plastique dans la région considérée prendra naissance dans la région
du congé et, s’il n’y en a pas, a I’angle vif.

(iii) L’étendue de cette phase dépend du matériau et du rayon du congé, probable-
ment de la forme de celui-ci, toutes choses égales d’ailleurs. Un tracé judicieux du
congé suffirait pour réduire beaucoup cette étendue et pour augmenter la sécurité
d’autant plus que le déclanchement de la période des grandes déformations irréversibles
ne semble se manifester suivant certaines expenmentatlons que si une zone minimum
est sollicitée au-dessus de la limite élastique.

(iv) Pour les matériaux dits plastiques ou a élasticité retardée, les déformations
dont il vient d’étre question sont fonctions croissantes du temps. Le type de ces
fonctions a été donné par divers expérimentateurs et notamment per M. L’Hermitte.

A la lumiére des essais que nous avons décrits on peut prévoir, sous réserve bien
entendu d’un contrdle expérimental, I’attitude évolutive d’un encastrement de flexion
pour deux cas différents, I’acier et le béton armé.

Pour I’acier, matériau considéré comme isotrope, ou supposé tel, on verra
apparaitre les premiéres lignes de Hartmann en relief au point le plus sollicité du

. congé comprimé ou a ses environs immédiats et en creux dans la région correspondante
du congé tendu. Le tracé des courbes de glissement déduit de la considération de la
courbe intrinséque de la limite élastique est commode, soit en partant des isoclines,
soit en partant du réseau des isostatiques, puisque ces courbes sont des trajectoires a
45° des isostatiques. [En se reportant a I’'une ou a I’autre-de ces catégories de courbes,
on voit que le secteur plastique de Hencky qui est de 90° dans le cas de ’effort normal
est d’environ 60° pour nos trois essais de flexion pure. Il s’en suit une variation
d’environ 30° moins grande des contraintes le long des trajectoires de glissement
tournant autour de I’angle vif ou du congé. L’amorce de rupture partirait probable-
ment d’un point voisin de la tension élastique maxima en suivant le tracé d’une
courbe de glissement.

En continuant & augmenter I’effort extérieur, la phase des grandes déformations
suivant la phase élastique aboutirait a la plastification d’une surface importante et a
la rupture généralisée.*

Pour le béton armé, il est plus difficile de prévoir en dehors de I’expérience directe.

* Nous comptons entreprendre prochainement une série d’essais de rupture sur modéles métalliques.
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Les essais de M. Chambaud, qui ont suivi en 1947 les expériences préliminaires
que nous avions faites sous sa direction, ont jeté¢ pourtant quelque lumiere sur I'évolu-
tion de rupture d’un encastrement des picces fortement armées et armées dans un seul
sens. _

La région centrale pouvait €ire a peu de chose pres considérée comme un double
encastrement a cause de la symétrie des efforts et des structures et de la faible distance
des charges jumelles concentrées.*

DIVERS TYPES D’ENCASTREMENTS: TRAVAIL D’ENCASTREMENT: ENCASTREMENT PARFAIT
A LA FLEXION: PROPOSITION DE SYMETRIE ET METHODE DES MODELES DOUBLES:
CRITERE DE VIBRATION POUR APPRECIER LA VALEUR D’UN ENCASTREMENT A LA
FLEXION

La notion d’encastrement ayant donné lieu a des expressions incertaines de-
mande a étre précisée. Disons brievement que I’on peut classer les encastrements
d’apres leur nature constructive. Il y a d’abord ceux analogues a celui des essais a
lumiére polarisée qui proviennent de la solidarité d’une piéce prismatique ou d’une
plaque ou d’une coquille avec un massif beaucoup plus important par son étendue et
sa masse. C’est le cas de nombreux ponts encastrés et dont ’appui est constitué
par une culée a peu pres indéformable.

Un autre exemple plus fréquent est celui des nceuds de charpente triangulée ou
a échelle. Ces encastrements comportent un déplacement linéaire et un déplacement
angulaire trés faibles généralement et communs a toutes les barres aboutissant au
nceeud. Ce déplacement peut conduire a des hypo-encastrements ou a des hyper-
encastrements suivant les sens de rotation du nceud considéré et de ceux qui I’entourent.

Citons enfin I’encastrement par pénétration réalisé souvent en mécanique comme
pour la charpente tubulaire et assez fréquemment dans les travaux publics. Encastre-
ment d’une volite de barrage dans le rocher, encastrement d’un rideau de palplanches
ou d’un massif de pyléne, d’un pieu ou d’un scellement fléchis. Ces trois derniéres
sortes de réalisations ont fait I’objet d’une étude que nous avons récemment publiée.

Nous désignons sous l'expression de ‘““Travail d’Encastrement” celui qui est
développé dans la masse de ’appui. Il se décompose dans le cas que nous traitons en
trois parties, dont la derniére est généralement la plus importante:

(a) Travail di a ’action de la force normale.
(b) Travail di a I’action de la force tangentielle ou effort tranchant.
(¢) Travail di a I’action de la flexion au moment d’encastrement.

Si I’appui était infiniment dur 1l n’y aurait pas de travail d’encastrement parce que
les contraintes d’appui ne se déplaceraient rigoureusement pas. Au contraire, le
travail d’encastrement sera d’autant plus grand que ’appui est plus déformable.

En procédant a la comparaison d’un encastrement parfait et d’un encastrement
sur une masse, nous avons pu vérifier pour I’essai entrepris que le travail d’encastre-
ment était trop faible pour étre appréciable avec les moyens de mesure que nous avions
adoptés. Il s’agissait de deux pieces découpées dans le méme échantillon de métal,
I’'une constituée par une poutre de 7x 7 et de 40 cm. de portée chargée en son centre,
I’autre issue du méme bloc et usinée pour en laisser un massif de 200 x 100 x 100 et
une console de 7x 7 et d’une longueur de 20 cm. Le métal avait été recuit avant
usinage et les déformations avaient été observées a I’aide d’un comparateur donnant
le 1/100 de mm. Le module élastique avait été déterminé d’apres la fléche de la

* L’analyse détailée des expériences précitées a fait 'objet de deux notes parues I'une en février
1949, I’autre en novembre 1949, sous la signature de M. Chambaud.
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premiére poutre en utilisant la formule exacte dela fiéche, c’est-a-dire en tenant compte
de la hauteur de la piéce.

Nous avions réalisé avec la poutre un encastrement parfait et avec la console un
encastrement également parfait, et ceci nous améne a la notion d’encastrement parfait
de flexion qui est essentielle pour certaines applications.

Si nous nous bornons au cas général des structures a section symétrique, on peut
énoncer ce qui suit:

“Il y a encastrement parfait de flexion lorsque la section d’appui ne tourne pas
sous I’action du moment qu’elle supporte. Ce cas est rigoureusement réalisé pour
toutes les structures planes de forme quelconque lorsque la forme et le systéme de
Jorces les sollicitant sont symétriques par rapport au méme plan et que, de plus, la
distance des points d’intersection de la structure avec le plan de symétrie restent
invariablement distants.”

Notons que dans ce cas, le pdle d’encastrement de chaque section défini par le plan
de symétrie est contenu dans ce plan.

Une poutre simple posée sur appuis et symétriquement chargée peut étre considérée
comme encastrée par rapport & sa section médiane si elle est & section constante.

Supposons que nous voulions apprécier la déformabilité par rotation d’un appui
pour une structure déterminée. On pourrait y arriver en réalisant un modéle simple
et un modele doublé et en comparant les isoclines et les isochromes aux appuis pour
chacun des cas les sollicitations étant bien entendu les mémes. Dans le premier cas
on observerait un pdle d’encastrement & proximité de la ligne d’appui et dans I’autre
il serait sur cette ligne d’appui. L’éloignement du pdle d’encastrement renseignerait
au moins approximativement sur la valeur de ’encastrement ou, si ’on veut, sur sa
rigidité,

Le critére de la valeur d’un encastrement de flexion pour une poutre a section con-
stante comme 1’est un mat ou un pyldne sans fruit, peut étre défini avec précision en
comparant la période calculée et la période observée. M. Y. Rocard dans son ouvrage
assez récent intitulé Dynamique Générale des Vibrations a traité du probléme de la
tige imparfaitement encastrée pour laquelle il désigne par 4w ’amplitude angulaire de

48m2Q
= ]It (8 désignant

EIT?
la densité, 2 et I la section et I'inertie, T la période, E le module de Young).
L’élongation y du point d’abcisse x a pour expression:

la base. En désignant par « I’expression sans dimension: /X [

y= {A ch ot;+B sh 1)7(+C cos oz)lf—l-D sin oc%‘]
1 .
avec: A=wa2a tlFoh @ 605 a)x(smach oo—sh « cos &)
B= id. X (ch o sin a—sh « sin a)
C= id. X (sh o cos ae—sin o ch )
D= id. X (14ch o cos oe+sh « sin o)

Supposons I’encastrement parfait, alors dw=0, il en résulte nécessairement
’identité: ch o cos a+1=0, d’ol1 I’on tire la valeur de la période fondamentale @ cor-
respondant a I’encastrement parfait:

5,55 Y]

— 2 =
2 71'1 EJ

En comparant la fréquence correspondante a celle d’'un vibrometre, on aura déja
c.r.—21
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une idée de I’encastrement sans aucun calcul. L’évaluation de la période réelle don-
nera o et la mesure de y en un point convenablement choisi fournira la valeur de dw.
Bien qu’il conduise & des calculs compliqués pour des structures moins simples qu’un
mat a section constante, il semble que le critére de vibration puisse donner lieu 4 des
considérations utiles, en opérant, par exemple, sur un modc¢le.

DEPLACEMENTS DES APPUIS D’ENCASTREMENT DANS LES GRANDS OUVRAGES (DALLES,
ARCS OU COQUES)

Bien que dans la pratique les déplacements des appuis d’encastrement soient tres
faibles, leurs conséquences, surtout quand il s’agit de variations angulaires, ne laissent
pas d’étre appréciables dés que les ouvrages sont rigides et de grande portée. Il
suffit d’ailleurs de se reporter aux formules de Bresse pour le saisir. La mesure des
contraintes dans les ouvrages exécutés et celles des déplacements en ont déja donné
des indices et il semble que si ’on devait entreprendre pour de grands ouvrages une
note de mesures et de calculs, aprés exécution, on y trouverait assez souvent I'influence
de 'imperfection de certains encastrements. Citons par exemple la communication
de M. Dantarella au congrés de 1930 et concernant deux ponts de chemin de fer, d’une
méme ligne, franchissant la Brambilla et le Rino, les ouvrages en arc encastré et
presque identiques, ayant subi les mémes efforts aux mémes époques ont donné des
lignes d’influence de déformation assez dissemblables et différent sensiblement ['une
et I'autre des lignes calculées. Nous pensons que la raison de la dissonance constatée
doit provenir de la nature des enrochements. C’est le pont franchissant le Rino, plus
massivement encastré que I’autre, qui a donné en clé déplacements les plus faibles et
pour lequel les variations de ces déplacements en fonction du temps étaient les moins
élevées.

Dans un arc, les déplacements de ’appui a considérer sont: dx, 4y et 4w. Nous
passons sous silence les efforts de torsion diis au vent et ceux qui sont accidentels
comme, par exemple, les effets d’une implantation défectueuse. Pour les grands
ouvrages, les variations verticales 4y, toujours faibles, sont sans intérét pratique.
Une variation positive ou négative 4x équivaut, soit a un refroidissement soit & un
allongement de la portée, c’est-a-dire, tout compte fait, a I'influence d’une variation
de température, ce dont on peut tenir compte dans.les calculs en augmentant la marge
habituelle a considérer en fonction du climat et des prévisions de retrait. Le déplace-
ment le plus a craindre est le troisiéme, c’est celui qui correspond a ’encastrement de
flexion pure ayant fait I’objet de nos calculs et de nos essais.

Dans ce qui précede, nous avons examiné les causes de perturbation provenant de
I'imperfection des méthodes de calcul, mais nous n’avons rien dit de celles qui trouvent
leur origine dans la nature du sol et dans la constitution méme des massifs d’encastre-
ment. Et ce sont, sans doute, les plus importantes.

Qu’il s’agisse d’un pont arqué ou d’un tablier droit encastré ou d’une coquille de
barrage, les caractéristiques du rocher mesurées en place (par exemple par la méthode
acoustique mise au point récemment par MM. Chefdeville et Dawance sous la
direction de M. L’Hermitte) son ou ses modules de Young, son ou ses modules de
Poisson, son anisotropie, ses clivages ou ses failles, variables d’une rive a une autre, et
d’une couche géologique a une autre, ont une importance évidente. En laissant au
bureau le soin de deviner les conditions aux limites, on produit une note de calculs
fallacieuse. Si, de plus, un organe intermédiaire existe, que ce soit une culée de
pont ou bien des blocages massifs latéraux, il y a une nouvelle cause de variation
de dw a ajouter a celles qui précédent.
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De nombreux ponts encastrés le sont sur des massifs de répartition. Les déplace-
ments des culées devant étre considérés sont ceux qui accompagnent et ceux qui
suivent le décintrement. Si celui-ci est exécuté avec des vérins, on ne doit retenir
dans les calculs que I’action des efforts ultérieurs correspondant a 'achévement de
I’ouvrage, aux surcharges qu’il doit subir et a I’ensemble des variations en fonction
du temps, affectant soit ’ouvrage soit le terrain de fondation.

L’évaluation a priori de ces déplacements qui s’ajoutent a ceux que nous avons
envisagés nous parait nécessaire pour les grands ouvrages a moins qu’on préfere
adopter un dispositif de réglage. Grace a une méthode d’assujetissement il est facile
de procéder a ce calcul pourvu que I’on connaisse les efforts extérieurs de premiére
approximation, les caractéristiques du terrain en place, en particulier ses coefficients
de compressibilité verticale et horizontale.

Il est bien entendu que ces coefficients peuvent varier avec le temps et que les déter-
minations sur place ne doivent pas uniquement concerner des résultats instantanés.

Nous voyons l1a un nouvel exemple d’association entre le bureau d’études, le
chantier et le laboratoire, en vue d’une construction rationnelle.

CALCUL DE CORRECTION EN VUE DE TENIR COMPTE DES ROTATIONS Awo ET Awl AUX
NAISSANCES D’UN ARC ENCASTRE

M. Chambaud a publié en 1941 une importante €tude intitulée: ““Le rdle des
théories élastiques du second ordre dans le calcul des ponts en arcs de grande portée.”
Elle avait pour but la recherche, dans les grands ouvrages, des efforts secondaires
provenant des déplacements de la fibre moyenne. Il a supposé les appuis immuables.
La méthode de calcul que nous allons exposer pour les arcs encastrés dérive en somme
du méme souci, mais ne concerne que I'influence des déplacements généralement tres
faibles de ces appuis sur la valeur des réactions. Elle est généralisable.

Soit que I’on se contente d’une évaluation des déplacements W,,, W, et W5, soit
que I’on ait évalué approximativement les déplacements linéaires des massifs extrémes
Ax,, dyy, dx,, 4y, et les déplacements angulaires dwy, dw; généralement plus im-
portants que les déplacements w, on peut alors évaluer I'importance des contraintes
secondaires dues a ces six déplacements. Les déplacements 4y, et 4y, n’auraient
généralement pas d’importance pratique. Les déplacements 4x, et 4x; donneraient
lieu a un calcul identique a celui de I’effet d’un refroidissement, ou du retrait d’en-
semble, probléme classique généralement aisé a résoudre. Restent les déplacements
angulaires, d’ailleurs tres faibles, des sections d’encastrement: G, et Gj. '

Pour effectuer le calcul des réactions secondaires, nous imaginerons un arc de
méme définition que le précédent et chargé identiquement mais dont les naissances
Gy et G, sont articulées. On commencera par calculer les angles de rotation aux
naissances £2;, et £2; de cet arc sous I’influence des charges et surcharges supportées par
I’arc encastré. Puis, on assujetira ’arc articulé a ’action de deux moments arbitraires
M, et M, appliqués aux naissances pour ramener £, a dw, et £2; a dw,;. On déter-
minera les coefficients‘a et B fournissant les rotations en Gy et G; dues aux moments
MO et Ml'

On aura, dans le cas d’un arc symétrique les valeurs de M, et M, grice aux
relations: :

Moo+ M\ B+(£2p—dwg)=0
MO,B‘I‘M](X_(Q[_AU)]):O

S’il n’ya pas de symétrie, il y a quatre coefficients «, o', 8, 8’ & déterminer aussi

simplement.
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Si M et MM, désignent les moments correspondants a I’encastrement parfait de
I’arc étudié, les moments correctifs seront (eMy— M) et (M —M,).

Les réactions verticales secondaires sont obtenues sans difficultés ainsi que la
poussée secondaire qui est la différence entre la poussée théorique de I'arc
encastré et celle de I’arc articulé soumis aux moments M, appliqué en G,, et M,
appliquée en G, ainsi qu’a tous les efforts de charge et de surcharge agissant sur I’arc
encastre.

Pour fixer les idées, nous avons considéré 'un des deux arcs encastrés du pont
faisant I’objet de la figure 16. Avec les indications numenques contenues dans la
figure, un premier calcul donne:

Poussée de I’arc encastré: . 4875 tonnes (appliquée en Gy)
Réactions verticales en Gy et Gy: 2600 tonnes
Moments en Gy et Gy . .+1659 t-m.
2
La rotation d’appui arbitrairement choisie a été en Gy : dwy=(—=— 1000 et en

2
G;: Aw1=—m), elles sont faibles.

Arc articulé correspondant, poussée: 4781 tonnes

Réactions verticales: . ) . 2600 tonnes
. . - 32
Rotation des appuis: 20X ( —— I OOO Q= I—OTOD

32 4 .
Les va-leurs des moments M, et M, réduisent cette rotation de 1000 a— 1000° soit:

32—-2
=+41659 x 3 =1556 tonnes.
1659 x 2
Moment secondaire : e7l/.fo—Mo=T= —103,60 t-m.

Le moment d’appui a retenir est donc: +1555,40 t-m. au lieu de 1659 t-m.

Les réactions verticales secondaires sont nulles a cause de la symétrie et un calcul
facile nous donne a partir des angles (£2y—dwy) et (2, —A4w,) la valeur de la réaction
horizontale a retenir. Elle est donnée par I’égalité.

Q0=4781 tonnes+0,0285 (My—M,)=4781 tonnes+0,057 M,=4869,70 tonnes
au lieu de 4875 tonnes.

MESURES POUVANT ETRE EFFECTUEES SUR LES APPUIS DES GRANDS OUVRAGES, MODIFICA-
TION ET REGLAGE DE CEUX-CI

L’influence appréciable de I'imperfection de ’encastrement de flexion pour les
portées importantes fait penser qu’il y aurait intérét a vérifier la tenue des appuis des
grands ouvrages encastrés, qu’il s’agisse de barrages, de vofites de tunnels ou de ponts.
Ces vérifications opérées a intervalles réguliers et avec des surcharges parfaitement
connues seraient surtout utiles au début du fonctionnement des structures. Elles
donneraient des précisions sur la variation des conditions d’appui avec le temps, et
du méme coup, on aurait le plus souvent sans difficultés, la répartition exacte des con-
traintes entre appuis.

On dispose de clinométres trés précis et de témoins sonores, noyés ou extérieurs
insensibles & I’humidité ambiante et fournissant, compte tenu de la variation de tem-
pérature des fréquences traduisant avec fidélité et 4 n’importe quel moment les dé-
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formations des régions auscultées. La récente mise au point de ’auscultation sonore
par les ingénieurs de 'L T.B.T.P. permettrait d’avoir & tout moment la mesure du
module élastique du béton ou de la magonnerie en place.

Nous croyons d’ailleurs que I’auscultation méthodique des grands ouvrages per-
mettrait de rédiger des notes de calcul a posteriori plus convaincantes et plus pré-
cieuses que celles que I’on exige ordinairement des bureaux d’études.

Une autre idée qui se présente a I'esprit, c’est celle de 'amélioration des appuis
existants par les procédés de synthése statigue qui, comme la précontrainte mais d’une
fagon plus générale marque la trace de la volonté de I'ingénieur sur la tenue des con- .
structions. Nous avons pour cela a notre disposition des boucliers de butée, des
dalles sur pieux ou pendules droits ou inclinés, des ancrages du type Coyne et des
vérins plats du type Freyssinet.

Ces diverses sortes de dispositifs utilisés isolément ou associés entre eux per-
mettraient de modifier d’une fagon arb1tra1re les déplacements d’appui et, partant,
les réactions correspondantes.

On peut d’ailleurs stabiliser les efforts malgré de faibles variations élastiques ou
plastiques, des cdbles ou des terrains, grice a I’emploi de tensiostats (lire: “Les ten-
siostats et leur application a la synthese statique”).*

On peut enfin envisager un troisiéme parti comme variante du précédent, celui de
construire les appuis pour en rendre le réglage trés facile sans ancrages ni butées.

Résumé

Partant de formules déduites de celles de Boussinesq et Flament qui concernent
I’action de charges ponctuelles sur le plan limitant un solide indéfini, on passe a
I’étude des déplacements du plan limite dans la région d’encastrement d’une piéce
prismatique qui est solidaire du solide indéfini et aboutit perpendiculairement au plan
qui le limite.

Ce calcul conduit a une contradiction et celle-ci ne peut étre réduite que par la
méthode expérimentale.

Apres avoir rappelé les résultats des essais de M. Tésar (1936) et de MM. kavre et
Bereuter (1944) on déduit des expériences démonstratives sur un modeéle en caoutchouc.

Ensuite on expose les résultats des essais d’encastrement de flexion pure entrepris
au laboratoire de la S.N.C.F. sur mod¢les en plexiglass soumis a la lumiére polarisée.

L’analyse de ces résultats montre I'insuffisance localisée des regles de la résistance
des matériaux. Il conduit a la notion de pole d’encastrement et a 1’étude de 'influence
d’une z6ne de transition située entre la section normale du pdle et le plan limite. Le
role des congés circulaires et I'influence de leur rayon sur llmportance de la zOne
critique a été mis en évidence et chiffré.

Les renseignements recueillis ont permis de décrire [’évolution plastique jusqu’a
la rupture des encastrements de flexion pour le béton peu ou abondamment armé et
pour I’acier doux.

Apres avoir trés rapidement passé en revue divers types courants d’encastrements,
on étudie le travail d’encastrement et I’on donne une définition de I’encastrement par-
fait a la flexion. Enongant une proposition de symétrie on en tire une conclusion
pratique pour I’étude sur modele des dispositifs d’encastrement des structures planes.
On propose ensuite un critére de vibration sur modéle ou sur ’ouvrage pour juger de
la valeur des encastrements d’appui.

On examine ensuite les causes de déplacement d’appuis d’encastrement dans les

* Techmque Moderne—Construction, juin, 1949.
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constructions (dalles, axes ou coquilles) et ’on propose une méthode de calcul pour
tenir compte des rotations aux appuis des arcs ou des poutres encastrés.

On envisage enfin ’examen, le contrdle, 'amélioration éventuelle et le réglage des
appuis d’encastrement pour les grandes constructions.

L’exposé ne concerne pas d’applications étrangéres aux travaux publics et les
encastrements de torsions n’ont pas été étudiés.

Summary

The author starts with equations derived from the formulae of Boussinesq and
Flament regarding the influence of a point load acting on the boundary plane of a
semi-infinite area. He investigates the effect on its surroundings of a prismatic,
rectangular body fixed in this semi-infinite area at right angles to its boundary plane.
The calculations lead to a contradiction which can only be solved by tests.

After mentioning the results of the tests of Tésar (1936), Prof. Dr. Favre and
Dr. Bereuter (1944), investigations made on a rubber model are described. These
tests alone were of instructive and demonstrative significance.

Next, the results are given of tests carried out with polarised light on models of
plexiglas in the laboratory of the S.N.C.F. The conclusions drawn from these results
lead to the conception of the *‘ fixing pole’” and to the consideration of the influence
of a transition zone. The importance of radii and of the influence of the dimensions
of the radii on the size of the critical zone is emphasised and explained.

The experience collected has made it possible to describe the plasticity up to rup-
ture of reinforced concrete and steel.

After mentioning current practice for fixed-ended beams, the author investigates
the fixing effort and gives a definition of perfect fixing for bending.

He thereby comes to a conclusion, from which he gives useful directions for model
tests with fixed foundations and abutments. Further, he suggests the adoption of a
vibration criterion for forming a judgment on the value of fixed supports. .

In addition, the causes of the displacements of housings and abutments are
investigated, a simple method of calculation being given for considering the slight
twisting occurring at the end points of fixed arches.

Finally, the inspection, any necessary lmprovement and the regulating of fixed
supports of big structures are dealt with.

The paper considers only applications in the field of structural engineering.
Various extensions of the investigation are possible which are not discussed here.

Zusammenfassung

Der Verfasser geht von Gleichungen aus, die aus den Formeln von Boussinesq und
Flament iiber den Einfluss einer punktférmigen, auf die Begrenzungsebene des Halb-
raumes wirkenden Belastung abgeleitet sind. Er untersucht die Wirkung eines
prismatischen, rechteckigen, senkrecht zur Begrenzungsebene des Halbraumes in
diesen eingespannten Korpers auf seine Umgebung. Die Berechnungen fiihren zu
einem Widerspruch, der nur durch Versuche gelost werden kann.

Nach Erwidhnung der Ergebnisse der Versuche von Tésar (1936), Prof. Dr. Favre
und Dr. Bereuter (1944) werden Untersuchungen an einem Modell aus Gummi
beschrieben. Diese Untersuchungen waren einzig von instruktiver und demon-
strativer Bedeutung.

Es werden darauf die Resultate von Versuchen angegeben, die im Laboratorium
der S.N.C.F. an Modellen aus Plexiglas durch Priifung mit polarisiertem Licht
durchgefiihrt wurden. Die Schlussfolgerungen aus diesen Resultaten fithren zum
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Begriff des “Einspannungspols” und zur Betrachtung des Einflusses einer Ueber-
gangszone. Die Bedeutung der Ausrundungen und des Einflusses ihres Radius auf
die Grosse der kritischen Zone wurde hervorgehoben und abgeklirt.

Die gesammelten Erfahrungen haben die Beschreibung der Plastifizierung bis zum
Bruch unter Biegeeinspannung fiir Eisenbeton und Stahl ermoglicht. '

Nach Erwidhnung verschiedener geldufiger Ausfithrungen von Einspannungen
untersucht der Verfasser die Einspannungsarbeit und gibt eine Definition der vollkom-
menen Einspannung bei Biegung.

Er kommt damit zu einem im {ibrigen ziemlich offensichtlichen Schluss, aus dem er
eine fiir Modellversuche mit Einspann-Fundamenten und Widerlagern niitzliche
Folgerung zieht. Er schligt weiter die Anwendung eines Vibrations-Kriteriums zur
Beurteilung des Einspanngrades vor.

Es werden zudem die Ursachen der Verschiebungen von Einspannstellen und
Widerlager untersucht, wobei eine einfache Berechnungsmethode zur Beriicksichti-
gung der an den Endpunkten der eingespannten Bogen auftretenden kleinen Ver-
drehungen angegeben wird.

Schliesslich wird noch die Kontrolle, ev. Verbesserung und Regulierung einge-
spannter Auflager grosser Bauwerke behandelt.

Der Artikel umfasst nur Anwendungen auf dem Gebiete des Bauingenieurwesens.
Es sind verschiedene Erweiterungen der Untersuchung moglich, die hier aber nicht
erortert worden sind.
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EXPERIMENTAL AND ANALYTICAL METHODS OF DESIGN

When considering the experimental method of structural design, the problem
arises of knowing its position in relation to the analytical methods of the Theory of
Elasticity and Strength of Materials. These methods sum up the knowledge on the
behaviour of solid bodies subject to loadings which could be interpreted and expressed
quantitatively, that is, dealt with theoretically.

The analytical methods of design, like all physical theories, have the great advan-
tage of providing knowledge of all the phenomena in a given domain. A theory fills
the gaps existing in the knowledge of the isolated cases which led to its creation; it
even permits the observed phenomena to be surpassed to an extent which reveals the
audacity of the theory.

Thus, the bending theory of Strength of Materials, which has been of so great a
service to mankind, both in relation to safety of structures as well as to economy of
materials, has allowed the prediction of the behaviour of a very large number of
structural members which had never been observed before, as regards either materials,
shape, dimensions or loading.

In contrast with the analytical methods, the experimental methods provide know-
ledge about isolated cases, since each structure to be studied requires the construction
and observation of a model. This does not strictly hold, since there is always, at
least qualitatively, an application of theory to the phenomena which permits the
behaviour of structures not very different from others previously studied to be
foreseen.

With regard to analytical methods, the question which arises is as follows: do
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they permit, in their present status, the behaviour of structures to be foreseen with
the accuracy demanded in practical engineering ?

The analytical methods give results applicable to solids of given shapes and sub-

mitted to certain loadings. Besides this, except in a very few cases, they are established
on the assumption that the materials are homogeneous, isotropic, and obey Hooke’s
law. Since they are theories, they are open to the possibility of being applied beyond
the field for which they were established, which will result in a loss of accuracy, and
extremely unreliable results may even be obtained.
- Thus, with regard to the shape of structures, which are of an infinite variety, the
designer constantly applies theories to solids of shapes very. different from those for
“which they were established. Besides this, he divides the structure in parts whose
reciprocal reactions he at times ignores and at other times fixes arbitrarily, considering
them as hinged, built in, etc. :

With regard to loadings, it is also very often necessary to make considerable
simplifications so as to convert the real loadings into others the effect of which can be
calculated.

It was mentioned that the analytical methods are in general developed in the
hypothesis that the materials obey Hooke’s law. In the concept of safety which is
generally followed today, by which, for given loadings, known as working loadings,
the stresses developed should not exceed the safety stresses, this hypothesis has not,
as a general rule, an important effect on the results of the calculations compared with
that derived from the simplification of the shapes and of the loadings. This is
because with common building materials the curvature of the stress—strain diagrams,
up to values of stresses generally adopted as safe stresses, is small. Also up to these
stresses the creep of the materials does not often influence the stress distribution to a
degree which need be taken into consideration.

However, either in the application of the probabilistic concept of safety, at present
awakening great interest, - 2 or of the concept of safety in relation to failure, which is
already frequently applied, the hypothesis of the materials following Hooke’s law
takes all the value from nearly all the existing analytical methods of design.

In fact, within the probabilistic concept it is necessary to predict the behaviour of
structures for all possible intensities of loading, even for those which are not very
probable, for which the structures may suffer deformations which go far beyond the
elastic range or even suffer failures. The dimensions to be chosen for a structure are
those which minimise the sum of the initial cost of the structure and the cost of main-
tenance; in the latter there should be included the repair expenses due to the action of
loadings of great magnitude, and also the expenses due to any damage, such as exces-

-sive deformations, personal accidents, etc.

For the application of the concept of safety with regard to failure it is only neces-
sary to determine the magnitude of the loadings which cause failure.

It can safely be said that the possibilities of the analytical methods are very limited
in relation to the behaviour of structures for great deformations. This results from
the great analytical difficulties which arise when non-linear relations between strain
and stress have to be considered; the situation is made worse by the need to consider
simultaneously the dependence of the phenomena on time.

It was just the difficulty of establishing non-linear theories associated with the fact

“that the structures suffer, in general, deformations too great for their use when the
elastic range is well passed, which led to the deficient concept of safety based on the
consideration of working loads.

1 For references see end of paper.
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As the designer, up to a few decades ago, besides the knowledge of the behaviour
of similar structures and his intuition, only had at his disposition analytical methods,
he had to establish the necessary hypotheses, however extraordinary they may have
been, so that the problems he had to solve fell within the theories at his disposal,
having at times to choose, not the most convenient solutions, but those which could
be handled by those methods.

This situation, with the difficulty of comparing the predictions of the analytical
methods, especially with regard to the values of strains and stresses, and the real
behaviour of the structures, has led to an excessive confidence in the precision of those
methods, and even to a certain conventionalism in their application.

The progressive improvement of the techniques for measuring strains and stresses
and the appearance of new materials suitable for building models have led to a great
development of the experimental method of structural design, especially in the last
decade.

When the analytical methods are not satisfactory, it is in general possible to predict
with the necessary accuracy and within reasonable time and expense the behaviour of
structures by the use of models.3

In the following paragraphs the similarity conditions which the models should
satisfy are presented briefly.

MECHANICAL SIMILARITY

(a) Models made from the same materials_as the prototype

" Let us consider a prototype (fig. 1) made from any materials, homogeneous or
heterogeneous, isotropic or non-isotropic, which, for the loadings applied, do not
obey Hooke’s law. Suppose that the prototype is in static equilibrium under the
action of surface forces F'p, F”p, . . . (generally represented by F}), and of the reactions
of supports, fixed or movable, R',, R"p, . . . (generally represented by R)).

Fig. 1

Let us build a model geometrically similar to the scale of 1/A, made from the same
materials as the prototype, bound in the same way, and supported by homologous
supports of the same type. ~Subject it to homologous forces, F,,, to a scale of 1/A2,
F,,=F,/X?, so that the surface stresses, f,, equal the homologous stresses of the

prototype, fo, fn=/p. _
It can be shown that the displacements of homologous points of the prototype
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and of the model, 8, and 3, the strains of homologous segments, ¢, and ¢,,, and the
stresses in homologous elemental surfaces, 7, and #,,, are related by.

15
B==18,
AL LW
€m=¢p (
In=1p J

whatever may be the deformation, even if failures take place, either for stable or
unstable equilibriums. The reactions of the supports of the model are given by
R,,=R,/A2, that is, the homologous reaction stresses, r, and r,, are equal, r,,=r,.

It has been said that the supports would have to be of the same type; that is, for
fixed supports, either hinged or built in, there would have to correspond fixed supports
of the same type, and for supports which suffer displacement there would have to
correspond suppoits such that their displacements, under the loading R,,= R,/A2, or
rm=rp, would be 1/A of the displacements suffered by the supports of the prototype
when submitted to the action of R, or r,.

It is obvious that the similarity condition presented demands that the initial states
of strain and stress of the model be the same as in the prototype.

As for body forces, such as the weight, similarity does not exist unless steps be
taken to convert the homologous body forces to a scale of 1/A2, that is, in the case of
the weight, the equivalent of multiplying the specific weights of the materials of the
model by A. For this purpose appropriate forces may be applied to the model or it
may be subject to a rotation which produces convenient centrifugal forces.

Also in the case of dynamical equilibriums there is not similarity even when the
surface forces only are considered.

As to the effects of loads which tend to produce change in volume, such as tem-
perature or contraction in the case of concrete, the relations (1) hold as long as the
unit volume change is the same, which implies, in the case of temperature, subjecting
the model to variations of temperature equal to those suffered by the homologous
points of the prototype.

The similarity conditions presented so far demand that it be assumed that if the
elements of volume of a model are subject to the same state of stress (in general
varying with time) as the homologous elements of the prototype, the state of strain
will also be the same even for strains in the neighbourhood of failure. The state of
stress of the model being the same as that of the prototype, two homologous points
are immersed in media whose states of stress are analogous but where the stress
gradient, in any direction, is A times greater in the model.

Hence the conclusions presented were derived on the assumption that the relation
between strain and stress of an element of volume does not depend on the stress
gradient which exists around this element. In the case of solids in elastic deformation,
the Theory of Elasticity even admits the hypothesis, which has been amply verified,
that the relation between strain and stress of an element of volume does not depend
on the state of stress around the element.

However, it is conceivable when leaving the elastic range, especially when dealing
with ductile materials, that that relation depends on the state of stress which exists
around the element of volume, and that it may vary even when only the gradient of
the state of stress varies.

The experimental verification of the influence of stress gradient has frequently led
to results which do not agree. In the case of steel, which has been the material most
studied, the results which show the existence of this influence are more numerous.% 3
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It should be noted, however, that the influence of the stress gradient on the
similarity relations will only be important in the case of very large strains and of scale
values under certain limits, the equilibrium studied and the degree of accuracy required
for the model study having to be taken into account.

Another objection to the conclusions presented results from the consideration of
the influence of the volume on the probability of failure,® which has been observed in
brittle materials? and in the brittle rupture of ductile materials 8 subject to tensile
stresses. The mean tensile strength varies with the volume of the piece, a reduction
occurring when volume increases.

Hence when wishing to study models in which failures are produced by tension it
may be necessary to take this effect into consideration, especially as there exists the
possibility of the results not being on the side of safety. But, as in the majority of
cases the structures built from brittle materials are designed in such a way that tensile
failures do not expose them to risk, the objection which has just been raised is not of
great significance.

In an¥ case, to verify if there does exist any influence due to the scale and what the
influence would be, observations can be made on models of different scales and com-
parison of the results made by means of the expressions (1).

Except for special cases, we think that those influences of the stress gradient and
volume do not limit the conclusions arrived at with regard to similarity to the point
of having practical interest.

(b) Models made from materials different from those of the prototype 3

It often happens, as will be seen later, that it is not possible or even convenient
to make the models from the same materials as the prototype.

Consider the general case of the prototype of fig. 1 built from any materials.
Let ¢, be the extensions undergone by an elemental parallelepiped of any of the
materials when subject at its surface to the stresses 7, in equilibrium.

In a geometrically similar model, in order to observe displacements, strains and
stresses proportional to the homologous ones of the prototype, it is necessary, in the
first place, that the materials of the model be such that when an elemental parallel-
epiped is subject to stresses #,,=1,/a, the strains developed be ¢,,=¢,/B, o« and B being
constants. When the creep of the materials has to be taken into consideration, if the
stresses #, be reached at the time 6, the stresses 7,, will have to be reached at the time
0,,=0/7, 7 being a constant. Therefore, for the materials of the model there will have
to be scales for stresses 1/a, for strains 1/8, and for time 1/7.

The condition which we have just stated implies that, for any of the materials of
the model, the uni-axial loading o (tension, compression) curve as a function of the
strain € (fig. 2) be obtained from the curve of the homologous material of the
prototype by multiplying the ordinates and abscissae, respectively, by 1/« and 1/8,
that is to say, by a change of scales of the axes. When it is necessary to take the creep
of the materials into consideration this relation between the diagrams has to be veri-
fied whichever way the stresses applied to the prototype material change with time;
as was seen, the stresses of the model material can be applied according to a certain
scale of time.

The above-mentioned relation between the uni-axial loading diagrams is not suffi-
cient to verify the general condition stated before, which refers to any loading.
However, it is sufficient that in the majority of cases this relation holds to allow us to
assume, with sufficient accuracy, that the materials of the model satisfy the general
condition. Besides this, it should be noted that in the case where it is not demanded
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‘that the relation holds up to failure, it is sufficient that the development of the curves

be similar to be able to determine the factors 1/ and 1/8 with reasonable accuracy.
If it is desired to foresee the behaviour of the prototype even after failures have

appeared, the materials of the model should satisfy the condition stated, even for
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Fig. 2

stresses which bring about failure of the parallelepiped. It will be necessary there-
fore that in the curves of fig. 2 the ultimate strengths of homologous materials be in
the relation of 1/« and that they correspond to strains in the relation of 1/8.

Conditions have so far been considered which should be satisfied by the materials
of the model. In the case of the prototype being submitted to surface forces F, in
static equilibrium, if homologous forces F,,=F,/A2x, that is, stresses f,=fp/et, be
applied to the model of scale 1/A at homologous times, the relations

1 =
emzée,,>..........(2)
t '—lt

m—ap

J
are verified in homologous times provided that the displacements are small,

The model has to be supported on homologous supports of the same type. To
the supports of the prototype with displacement there will have to correspond supports
such that under the action of forces R,,=R,/A2x or r,=rp/a, they will undergo dis-
placements 1/A8 of those undergone by the homologous supports of the prototype
when subject to R, or r,.

In the case of 1/8=1, that is, of a parallelepiped of any of the materials of the
model having the same strains as a parallelepiped of the homologous materials of
the prototype for the loading #,=1,/x, the relations (2) hold even for large displace-
ments. It is possible then to study by models equilibriums in which phenomena of
instability appear, the scale of 1/A2« being that of critical homologous loads.
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In the general case of the prototype in dynamical equilibrium under the action of
surface forces and body forces, especially the weight, in order that the relations (2)
should hold for homologous times, it is necessary that, besides the surface forces
satisfying the relation F,,=F,/A%x, or f,,=/,/«, the following relations should hold:

1 A

}—)=;- e (3)

%ﬂ/%----------(“)

where 1/p=d,/dp, d» and d, being the specific weights of the materials of the model
and prototype respectively. In general it is not possible to satisfy all these conditions.

When dealing with vibrations, the scale of the homologous periods of vibration is
given by (4).

In the particular case where the effects of weight are negligible, it will only be
necessary to verify relation (4). If, besides this, it is not necessary to take the effects
of creep into consideration, then the material does not demand a time scale, from
which it results that for each value of the scale of the model there is one value of the
time scale.

In the case of static equilibriums in which the effect of weight has to be considered,
it will only be necessary to verify the condition (3). For the current values of the
scales this condition demands that the model materials have high specific weight and
high deformability.

With regard to the effects of the temperature and other loads whlch tend to produce
changes in volume, the relations (2) hold provided that the model is subject to tem-
perature changes 4,, given by

A,,,:%A,,

where 4, is the temperature change at the homologous point of the prototype and 1/X
is the scale of the coefficients of thermal expansion.

All the conclusions presented are obviously subject to the same objections pre-
sented in section (a).

(c) Prototype under elastic deformation
Consider a prototype made up of various elastic materials with moduli of elasticity

E'y, E”,, . . ., and Poisson’s ratios v'p, vp, . . . From the results presented in (b)
it is concluded that for similarity to exist it is necessary that a geometrically similar
model be made of elastic materials whose homologous constants £, Ep, . . .,
and v'p, v'm, . . ., satisfy the relations .

E’ﬂ! E”"l 1

El E”p = e . . _‘U-
and

ro 7 noo___ "
Vm=Vp, Vm=Vp « ..

where 1/u is the scale of the moduli of elasticity. Since the influence of Poisson’s
ratio on the states of stress and strain is often negligible, the conditions of equality
for these ratios may often be ignored. In this case if the prototype be made of only
one material it is sufficient that the model material be elastic.

When the prototype is only submitted to the action of surface forces, the scale
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of these forces 1/¢, may be given any value, provided that the elastic limit is not sur-
passed, the relations (2) taking the form

A N
8,,,-'_—,11.;8‘0
A2
€m=}1';€p
A2
tm=7+?tp

S ).

on the condition that the displacements be small and the model be supported in a way
analogous to that of the prototype. To the supports with displacement have to
correspond supports which undergo displacements to the scale uA/é, when subject
to reactions R,=R,/¢ or r,=2A%r,/¢. :

When it is assumed that the materials of the prototype and of the model follow
Hooke’s law up to failure, in order to be able to study the effects of loads which
- produce failures, it is necessary that the ultimate stresses, o, and o, satisfy the
conditions (6,m/p) rension =(Om/0p) compression =A%/¢ which fix the value of the scale
of forces. In the case of studies in which failures occur, since the superposition of the
effects of loads does not hold, it is generally necessary to apply all the loads
simultaneously.

In the case of large displacements, the conclusions arrived at in this section hold
as long as the scale of forces be

1
Fa= =% ~—F, or fu= f,,
and the relations (5) will take the form

1
8m =

X P
Em=¢p

1
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We thus see that the model has to remain geometrically similar to the prototype
after deformation.

Phenomena of instability can then be studied on models, the critical homologous
loads being to the scale of 1/A2u.

In the more general case of the prototype being in dynamic equilibrium under the
action of surface and body forces, especially the weight, it is necessary that the materials
of the model satisfy the conditions stated and also that

l_l
$ Alp
T A p :

That is, once the scale 1/A and the materials of the prototype and the model have been
defined, the values of the force and time scales are fixed; the homologous forces have
then to be applied at times to the scale of 1/r. The relations (5) will hold when the
model, supported in a manner similar to the prototype, starts from a position in which
the displacements are to the scale of uA/¢ and the velocities to the scale of pir/é.
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When dealing with vibrations, 1/r is the scale of the homologous periods of
vibration.

In the particular case when it is not necessary to consider the weight, only the time
scale will be fixed. Once the force scale has been fixed, the first of the relations (5)
fixes the scale of displacements, and hence also the initial position of the model, from
which the velocities, to the scale already referred to, have to be applied.

In the case of static equilibriums where the effect of surface forces and weight have
to be taken into consideration simultaneously, the first relation of (6) will have to
be verified.

For the common scales of the models it is often difficult to study the effect of
weight due to the low value of the strains. Hence at times recourse is taken to the
methods already mentioned, equivalent to increasing the specific weight.

(d) Elastic equilibrium in two dimensions and equilibrium of structures consisting of bars

The Theory of Elasticity shows that in a homogeneous plate in two-dimensional
elastic equilibrium, the state of stress does not depend on Poisson’s ratio, unless the
plate has holes, and that in the boundary of each hole or in the outer boundary of the
plate, forces act whose resultant is not equivalent to zero or to a couple.

Hence the conditions referred to in the section (c) for the model material are sim-
plified in the present case; for the determination of the state of stress it is sufficient
that the material of the model be elastic.

When the materials of the prototype and the model have different values for
Poisson’s ratio, the homologous strains and displacements are not proportional.
Therefore, when there are statically indeterminate supports, even the proportionality
of the stresses ceases to hold.

For the same reason if the plate be made of different elastic materials there will
only be similarity when the homologous Poisson’s ratios are equal.

If a plate is subject to body forces acting in its plane, the state of stress is still in
general independent of Poisson’s ratio when the body forces are of constant intensity,
which condition is satisfied by the weight.

In two-dimensional equilibriums it is easy, in view of the small thickness of the
plate, to apply to the model complementary forces equivalent to the increase of specific
weight.

By the use of Biot’s analogy it is possible to determine the effect of weight and in
general the effect of body forces, substituting these forces: for forces acting in the
boundary of the plate.? '

If the plate is subject to variations of temperature or other causes of change in
volume, as it is necessary to introduce conditions relative to the strains, in order to
have similarity it is necessary that v, =v,.

It should be noticed that in the cases mentioned in which the state of stress depends
on Poisson’s ratio, the influence of this ratio is generally small and in the majority of
cases may be ignored.

In solids subject to plane strain the determination of stresses can be easily made
from a plate in two-dimensional equiibrium, which frequently has a considerable
practical interest.

Finally, consider the case of structures consisting of straight or curved bars
existing, or not, in a plane.

Within the simplifying hypotheses of the Strength of Materials it is generally
possible to analyse these structures on models in which the cross-sections of the bars
are not geometrically similar to those of the prototype.3 This possibility has great

C.R.—22
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practical interest, as it permits the substitution of the shapes of these sections, often
very complex, for others easier to reproduce in the models.

When models whose sections are not geometrically similar are used, proportion-
ality can only hold between homologous shearing forces, normal forces, and bending
moments.

In the particular case of plane structures consisting of bars in static equilibrium
under the action of forces acting in their plane, for such a proportionality to exist it
is in general sufficient that, along all the bars, the moments of inertia /, and 7, of the
homologous cross-sections of the prototype and of the model be proportional,
Inllb=1]C.

This permits the construction of models with rectangular sections of constant
thickness, which greatly simplifies the construction of models.

The forces may be applied at any scale, 1/¢, which will be the scale of the shearing
and normal forces developed; 1/A¢ will be the scale of the moments, denoting now by
1/A the scale of the axes of the bars.

In the dynamic equilibriums under the actions of surface forces and of the weight
it is in general sufficient that, besides the mentioned proportionality between the
moments of inertia, the areas S, and S,, of the homologous cross-sections be propor-
tional, S,,/S,=1/C,, the constant C, being of any value. The scale of the applied
forces and of the time must have the values : '

1.1
¢ ApC

1 JE_ﬁ
T NN

The model should start from a position in which the displacements are to the scale
Cu/A3¢ and the velocities of the scale 7Cu/A3¢. When the weight can be neglected
the forces scale can assume any value.

CONSTRUCTION OF THE MODELS

Mechanical similarity, as has just been seen, requires certain conditions in the
models with regard to shape, materials and loadings. Let us see what are the possibil-
ities to fulfil these conditions.

(a) Scales

Except in special cases similarity demands that the models be geometrically similar
to the prototype, but without fixing the scale value.

A scale near unity has the advantage of permitting the reproduction in the model
of the characteristics of the prototype, such as shapes, joints between parts, residual
stresses, etc.

However, in the case of large structures, which are the most common in civil
engineering, such a scale cannot generally be adopted, both for economic reasons and
the time needed for the construction of the models. Furthermore the application of
loads in large models demands very expensive equipment, and the observations,
besides taking a lot of time, are more difficult and less accurate, especially if they have
to be made in the open air.

The reduction of the scale is accompanied in general by economy, rapidity and
ease of model studies. In the majority of cases these factors vary greatly with the
change in scale.



EXPERIMENTAL STRUCTURAL DESIGN 339

On the other hand, the smaller the scale the greater is the difficulty of reproducing
the shapes. As a rule, however, it is possible to simplify the shapes considerably,
either by omitting some details or by replacing parts for others of a convenient deform-
ability, without prejudicing the precision of the results. In the case of structures of
large dimensions with simple shapes, at times scales of about 1/500 are adopted.

In fixing the minimum possible scale it is necessary to bear in mind:

the smallest parts to be reproduced in the model, which should not be so
small as to make their construction and observation difficult;

the accuracy with which it is possible to set up the equipment for applying
forces and other loading;

the accuracy, dimensions and way of placing -the measuring apparatus,
especially the magnitude of the bases of the extensometers in view of the
gradients of strains which are anticipated.

(b) Materials

The materials chosen for construction of models should, in a general way, obey
the following conditions:

have the mechanical properties demanded by similarity which should not be
appreciably affected by the common ambient variations of temperature and
humidity;

be easily worked and joined;

have such deformability that, under the action of easily obtainable loading
intensities, the accuracy demanded for the measurement of displacements and
-strains be reached;

allow the measuring apparatus to be easily mounted either on the surface
as inside;

be economical.

When it is wished to study by a model the behaviour of a prototype in which
complex mechanical properties have to be taken into consideration, such as non-
linear relations between stresses and strains, non-reversible strains and creep, it should
be seen in the first place if it is possible to build the model with the same materials as
the prototype.

This is at times difficult even for scales that are not very small. Thus in the case
of models of structures of reinforced concrete the difficulty often arises of the aggre-
gate being too large; when using the same concrete for the model it may also be
necessary to take into consideration the variation of wall effect and rate of drying.
In metallic and in reinforced-concrete models, it is difficult to find on the market sec-
tions, plates and bars with the necessary dimensions and with the same properties as
those of the steels used in the construction. For this reason it is necessary at times to
make the sections specially from plates laminated to the appropriate thickness (fig. 3).
In reinforced-concrete models it is, in general, possible to substitute a single bar for
groups of bars and thus use commercial sizes.

The plates and bars of small dimensions which exist on the market are often
annealed, but it is as a general rule possible to give them properties analogous to
those of the steels of construction by stretching them.

It is,.however, possible to use materials in the models different from those of the
prototype. Thus for concrete structures it is easy to find mortars satisfying the
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Fig. 3. Part of a steel model to a scale of 1/6 of a high-voltage steel mast 33 m. high. Huggenberger
extensometers were used for strain measurements

Fig. 4. Reinforced-mortar model to a scale of 1/50 of a guide wall of a spillway dam. Used for
studying up to failure the forces exerted by the gates
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conditions stated (fig. 4); it is advisable that 1/« be small and 1/8 be great so as to
obtain, for small magnitudes of loading, deformations measurable with accuracy. In
the case of reinforced-concrete structures the steel should be replaced by a material
for which 1/« and 1/B8 have the same values as for the mortar.

When choosing a material for a model different from that of the prototype, it is
sufficient, in general, to verify if the similarity condition stated is satisfied in uni-axial
loading. Tests may also be carried out on pieces geometrically similar, made from
the materials of the prototype and the model, which are submitted to homologous
loadings to scale in order to determine if the relations (2) are satisfied. It is con-
venient, as is obvious, that the shapes of the pieces and the loadings be chosen to
obtain equilibriums analogous to those to be studied.

When the prototype is in elastic equilibrium there are many materials available
for the construction of models, among which can be mentioned celluloid, plastics,
plaster of Paris, metals and cork agglomerates.

In the choice of the material for a given case consideration should be given in the
first place to facility of construction. In the case of complex and curved shapes it is
convenient as a rule to make use of mouldable materials, such as plaster of Paris or
some plastics.

In the second place attention should be paid to the advantage of the material
having a high proportional limit and a low modulus of elasticity, to measure strains
accurately when applying small forces. The materials with these properties have, in
the majority of cases, an appreciable creep; however, in general, it can be assumed,

Fig. 5. Perspex model (laid horizontally), to the scale of 1/200, of a monument about 100 m. high
to be built in concrete. Electric strain gauges were used for both static and dynamic strain
measurements
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without affecting the accuracy, that the materials referred to above have a modulus
of elasticity which is a function of time when under the action of constant load; thus
the relations of similarity established for elastic materials will hold.

Of the materials mentioned the most used at present are plastics which together
with celluloid have the advantage of a high proportional limit, generally above 1%,
both in tension and compression. They are, also, easily workable.

Celluloid and the majority of plastics in use today, such as those known by the
trade names of perspex, plexiglas and lucite, which consist of polymethyl methacrylate,
and those known as bakelite, marblette and trolon, which are phenolformaldehydes,
have moduli of elasticity ranging from 15,000 to 45,000 kg./cm.2 Poisson’s ratio
varies between 0-30 and 0-40.

Celluloid and the three plastics first mentioned have the great advantage over the
other plastics of being easily glued (fig. 5).

Fig. 6. Alkathene model to a scale of 1/200 of a 35 m. high arch dam. The model was subjected
to mercury hydro-static pressure and the strains were measured by means of electric strain
gauges specially built for use on alkathene ’

Another plastic now used in the Laboratorio de Engenharia Civil (Lisbon) is
alkathene, a commercial name for a polythene. It has a very low modulus of
elasticity, about 2,000 kg./cm.2, and can be moulded at about 140° C. (fig. 6). This
plastic cannot be glued but the surfaces to be joined can be welded. This is done in
a way similar to the welding of metals, using a bar of alkathene and a jet of hot air.

The fact that alkathene can be welded, together with the great facility with which it
can be cut, even with wood working tools, permits the shapes of the models to be
modified at will in the search for the most convenient forms for the structure being
studied.

Another material mentioned, plaster of Paris, with which diatomite is often mixed,
has the advantage of being easily moulded and very economical (fig. 7).10- 11 It has,
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however, the grave inconvenience of being brittle and often develops invisible cracks
which can completely upset the field of stresses. Its mechanical properties vary
between wide limits with the water content and its humidity at the time of use. Its
modulus of elasticity may vary between 5,000 and 80,000 kg./cm.2, the lowest values

Fig. 7. Model to a scale of 1/300 of a 130 m. high arch dam and its foundations. It was built
from plaster diatomite mix and electric strain gauges were used for strain measurements

being obtained with the addition of diatomite. The strains at the proportional limit,
however, vary very little, having values of approximately 0-1 9, which at times upsets
the accuracy of the measurements of the deformations. Poisson’s ratio varies
between 0-15 and 0-25.

(c) Application of the loads

, Concentrated loads are easily applied to models by means of weights, jacks or
springs. As the values of the forces to be applied to produce the same deformation
diminish as the square of the scale, it is very convenient to use the lowest scale, since
the equipment for the application of the forces can become much more simple and
economical.

The distributed loads are at times substituted by concentrated forces, more or less
near each other according to the precision required and the space needed to be free
for observing the loaded surface.

When the distributed forces act normally to the loaded surface they can be applied
by means of fluids. When the intensity of these forces is very high, use can be made
of flexible cushions into which the fluid is introduced under the necessary pressure.

Referring to the determination of the effects of weight in models, it was mentioned
that in general it is necessary to use complementary forces or subject the model to a
rotation. The application of complementary forces does not present any difficulties
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when, as is common, dealing with structures with small thickness, since these forces
can be substituted by surface forces. However, when the forces have to be applied
to the interior of the models, the arrangements needed become very complicated ;12
the use of centrifugal forces is also not easy.

With alkathene it is already frequently possible to determine the effect of weight
on models of moderate dimensions.

The study on models of the effects of temperature presents two difficulties, the
application of given temperatures and the influence of these temperatures on the
measuring apparatus. For this reason very few studies have been made on this
aspect.13

OBSERVATIONS ON THE MODELS

To predict the behaviour of a structure by means of models implies, in a general
way, the determination of displacements, strains and stresses.

Following the common concept of safety, it is particularly important to determine
the stresses developed under the action of working loads, as it is from these stresses
that the structures are designed.

In the design in relation to failure it is only of essential interest to determine the
intensity ef the loadings which produce failure.

In design by the probabilistic concept there will be above all the need to measure
the displacements and the characteristics of the failures caused by the action of various
loadings with all possible intensities. From these measurements it will be possible
to evaluate the damage, such as that resulting from excessive deformation, the need
of repair, etc., which will occur in the prototype.

(a) Measurement of displacements, strains and stresses 14

The measurement of displacements in the models is carried out by means of
deflectometers with a sensibility of 1/10 and 1/100 mm. and, rarely, of 1/1,000 mm.

The measurement of strains is in the majority of cases the most important deter-
mination, as this permits the determination of the stresses once the relation between
strain and stress is known. For materials in elastic deformation it is sufficient to
know the modulus of elasticity and Poisson’s ratio.

The measurement of strains in models is made almost exclusively at points on the
surface. Measurements in the interior present besides the difficulties inherent in such
measurements, those originating in the reduced size of the models. However, as the
greatest strains and stresses appear in general at the surface, such difficulties are as a
rule of little importance.

Among the extensometers used in the measurements of strains on models, we
can mention the Huggenberger and Johansson mechanical extensometers. These
extensometers have a satisfactory accuracy on short bases, which, in general,
have to be used on models. The Johansson extensometers can be applied on
a base of 3 mm. Like all mechanical extensometers they only permit measure-
ments at the surface and they have the drawback of requiring, together with the
accessories, an excessive space; besides this they often require considerable time to
mount. )

The vibrating wire extensometer is also sometimes used.!! The minimum length
of the wires is about 2 cm., which at times is excessive; besides, the placing and obser-
vation of the wires is a prolonged operation. They permit, however, being read at a
distance, which is an advantage when there are inaccessible parts in the model or when

-
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the model is large. The wire extensometer is the most reliable for observations over
long periods.

Finally, electrical resistance extensometers!4 are, without doubt, the most appro-
priate for measurements on models and are almost exclusively used today. In fact,
they occupy least space and are the lightest, they are easily mounted without requiring
any accessories, and can be observed at a distance. The measuring bases can be of
any value above a few millimetres and their precision is satisfactory. Above all,
when, as is usual, it is necessary to determine a large number of strains, the electrical
gauges give results most rapidly and economically. The only inconvenience of the
electrical extensometers is their instability with time, though there are already some
types in which this inconvenience is reduced.

Fig. 8. Electric strain gauge inside a prism of a plastic. In a compressive test the values given
by this strain gauge were in full agreement with those placed on the surface

The electrical extensometers, due to their small dimensions, lend themselves to
the measurement of strains in the interior of models. In the case of mouldable
materials they can be placed in position at the time of moulding (fig. 8), and con-
veniently protected against humidity if necessary. With the appearance of the
electrical gauges it can be said that the difficulties in measuring strains in models have
almost ceased to exist.

The accuracy with which the extensometers measure the strains depends largely,
as is obvious, on the magnitude of the strains to be measured and on the experimental
conditions. All the extensometers referred to permit, as a general rule, measurements
to be made to within an error of de=10x 106,
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Assuming this value, the table below gives the approximate values of relative
errors within which the strains and stresses can be measured in materials most com-
monly used in model construction when they are strained to the proportional limit.
The influence of the error in the modulus of elasticity on the error in the stresses is
not considered, as in general it has no importance.

X Strains Relative error of the
Materials assumed strains and stresses
€ (%) defe (%)
Celluloid and plastics . 1 01
Plaster of Paris . 0-05 2
Mortars and concretes 0-02 5
Metals . 0-2 0-5

It can be seen that the strains and stresses can be obtained with an entirely satis-
factory accuracy. :

The determination of the isostatics, that is, of the principal directions on the
surface of models of celluloid, plastics and metals, can be made very easily, in view
of the great deformability of these materials, by the use of brittle coatings !4
(fig. 9). It is possible to obtain the appearance of cracks for strains of about 10—4.
The method is particularly advisable when dealing with models of complex shapes;
it can be applied in dynamic equilibriums. The knowledge of the isostatics has the
great advantage of permitting a reduction in the number of observations to be made
with the extensometers for determining the states of strain.

_ Fig. 9. Application of the brittle coating metho(;i to the determination of the isostatics in a spillway
guide wall



EXPERIMENTAL STRUCTURAL DESIGN 347

Techniques for the application of the brittle coating method for the measurement
of the magnitude of the strains and stresses are being developed, and have already
reached some interesting results. The development of methods which may give
results over an area is of great interest as it avoids readings having to be taken at
various points, which is necessarily a prolonged operation, and the probability of
making errors is reduced.

When the relation between strain and stress is not linear and the creep has to be
considered, it is not generally possible to determine the stresses from the measurement
of strains.

Recently a property was brought to light !5 which permits the direct determination
of the stresses. This property is the following: if at a point in a solid made of any
" material, an elastic solid of small dimensions be introduced and intimately joined to
that solid, the stresses developed in the elastic solid only depend on the state of stress
in its neighbourhood as long as its modulus of elasticity be sufficiently small in relation
to that corresponding to the deformations of the surrounding solid. Thus by measur-
ing the stresses set up in the elastic solid, for example by means of its deformation
(fig. 10), it is possible to determine the state of stress in the solid made of any material.

Fig. 10. Small magneto-striction cells to be left inside models for direct stress measurements

(b) Photoelastic method

The determination of the stresses in two-dimensional elastic equilibriums can be
done by photoelasticity.16- 17 Compared with the general method of determining
the stresses from the measurements with extensometers, the photoelastic method has
the advantage of being more rapid and economical, and also reaching, in general,
greater accuracy. The fact that models with greatly reduced dimensions can be used
appreciably contributes to this economy. In the case of the study of high stress con-
centrations, this fact makes the use of this method very convenient, as the use of
extensometers in this case requires the use of large models.

The photoelastic method has the advantage of making observations all over an
area. The attempts to apply photoelasticity to three-dimensional equilibriums have
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not yet reached results of practical value. At present it is preferable to study such
equilibriums by leaving extensometers in the interior of mouldable models.

(c) Models of structures consisting of bars

The models of structures consisting of bars, which we will call briefly linear
structures, may be studied by using the general methods just referred to.

Before the appearance of electrical strain-gauges the measurement of strains was
made difficult by the extensometers and their accessories having excessive dimensions
and weight compared with the dimensions and rigidity which it is convenient to give
to the models of linear structures.

When the sections of the model are not geometrically similar to those of the profo-
type, the measurement of the strains permits the determination of the shearing and
normal forces and of the bending moments in the model, which can be transferred
to the prototype.

For the study of linear structures many special methods have been developed.
The methods most used are those which permit the determination of the influence
lines of the statically indeterminate forces (exterior and interior) from the reciprocity
theorem of Maxwell-Betti.18: 19 Obtaining the influence lines by this way has the
great advantage of avoiding the application of forces to the models, which is parti-
cularly important in the case of structures having a large number of members. In
spite of this determination of the influence lines being in principle possible for any
linear structure, the experimental difficulties have limited its application to structures
in plane equilibrium.

The various methods based on that theorem differ from each other in the mag-
nitude of displacements imposed on the model, in the technique of applying these
displacement and in the technique of the measurement of the displacements corres-
ponding to the forces whose effect it is desired to determine.

The methods which use large displacements have the advantage of making it
possible to observe directly the functioning of the structures, and to measure the
corresponding displacements easily. They have, however, the grave disadvantage of the
results being affected by the redistribution of stresses due to the large displacements
imposed; for this reason the methods today have little more than pedagogic value.

However, at times the inconvenience referred to is not important; thus in the case
of continuous beams, for the determination of the influence lines of the reactions of
the supports, these can be displaced even to one-fifth of the spans without errors of
more than a few per cent resulting. Itisin such a case a method to be recommended.

Of the methods based on the theorem of reciprocity, the one most employed is
that of Beggs,20 in which small displacements are imposed by means of a special
device and the measurement of corresponding displacements is made by means of
microscopes.

The application of this method is only advisable for the determination of the
influence lines corresponding to external indeterminate forces. In fact, for the deter-
minations corresponding to interior indeterminate forces in complex structures, which
are those requiring experimental study, there is not, in the majority of cases, room
enough to mount the device for imposing the displacements. Besides this they cannot
be imposed to the edges of the section but only at a distance which is often excessive.
On the other hand, time taken for mounting is prolonged and awkward and, fre-
quently, the rigidity of the model does not permit the imposition of sufficiently large
displacements.
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The measurements of the displacements, either small or large, are made very con-
veniently by the photographic method.2! In this method the model is photographed
on the same plate before and after a displacement is imposed; the displacements can
be measured with a microscope or on a screen on which the plate is projected (fig. 11).
This method permits rapid readings to be made and its accuracy even for small dis-
placements is the same as that obtained by direct readings on the model with a
microscope.

Fig. 11. Photograph obtained in studying a linear structure by the photographic method

The photographic method supplies a record of the results of the test and of the
conditions under which it was carried out. It can reveal certain causes of error, such
as deficient design of the model, accidental movements of built-in members, deficient
working of the device for imposing the displacements, etc.

In brief, in the experimental study of linear structures, it is advisable to apply the
general method, measuring the strains by means of electrical strain-gauges, except in
the determination of the influence lines corresponding to external indeterminate
forces when the structure is in plane equilibrium. For this determination it is advis-
able to use the Beggs method and measure the displacements by the photographic
method.

CONCLUSIONS

The essential aspects of the problem of experimental design of structures have
been presented in this paper. _

The conclusion is reached that the choice of shapes and determination of the
dimensions of any structure can be made, as a general rule, from observations on
models, even when it i1s wished to take into consideration its behaviour beyond the
elastic range. Models also lend themselves to the determination of the influence of
the variation of the properties of the materials throughout a structure.

At present it is in the choice of materials for models and in their construction that
difficulties are at times met with, whilst previously, before the appearance of electrical
strain-gauges, it was in the observation of the models that the greatest difficulties were
met, and which were frequently insoluble.
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It can be truly said that a model, even on a very reduced scale, is in general a much
more faithful image of the prototype than the hypotheses adopted by analytical
methods, either from the point of view of the shape, or the material or even of the
loading. This does not, of course, minimise the value of analytical methods, which
have the great advantage of being, except in very special cases, more rapidly and
economically applied, of not requiring equipment and also of furnishing results which
are easily checked.

These advantages indicate the use of the analytical methods in the primary design
- of a structure, in which phase it is necessary to obtain a rough estimate of the possible
solutions, which, as a general rule, are numerous. For the final design of small and
medium structures the analytical methods are also generally the most adequate.

It is in the design of important structures, with, say, a value of over £10,000, that
the studies on models, whose cost is in the region of some hundreds of pounds, is
recommended, unless completely reliable analytical methods are available.

The analytical and experimental methods should not be put in opposition, as at
times is the tendency, but rather be considered as tools to be wisely used in the safe
and economical resolution of structural design problems.

It should be emphasised that to obtain results in periods compatible with those
usually required for the elaboration of plans and to win the confidence of the author-
ities interested in the plan, it is necessary to have specially equipped and organised
laboratories. For the laboratories to work economically they need to have an
important volume of permanent work.

The use on a large scale of the experimental method as a routine method of design
gives valuable opportunities for perfecting the knowledge and formulating theories of
the behaviour of structures. It often happens that when studying a model certain
effects which had not been considered are found to be the most important. The diffi-
culty and high cost of the observation of the prototypes is a further reason Wthh
weighs in favour of a wider use of models as a research instrument.
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Summary

The aim of the paper is to give a general view of the present status of the experi-
mental method of structural analysis within both the elastic and non-elastic ranges.

The requirements of mechanical similarity to be met for model shape, materials
and loading, for static or dynamic equilibriums are presented and the actual possibil-
ities are then indicated for such requirements being fulfilled.

Finally, the possibilities and the exigencies of the experimental method of struc-
tural analysis are mentioned.

Résumeé

Le présent rapport a pour but de donner un apergu de I’état actuel de la méthode
expérimentale de calcul des ouvrages, soit dans le domaine élastique, soit au dela de
ce domaine.

A cet effet, 'auteur commence par présenter les conditions auxquelles doivent
répondre les formes, les matériaux et les sollicitations des modéeles, en équilibre
statique ou dynamique; il expose ensuite les possibilités actuelles d’observation de ces
conditions.

En conclusion, il mentionne les possibilités et les exigences de la méthode expéri-
mentale de calcul des ouvrages.

Zusammenfassung

Mit vorliegendem Bericht wird versucht, einen Ueberblick iiber den heutigen
Stand der experimentellen Methoden zur Tragwerksuntersuchung, sowohl innerhalb
wie auch ausserhalb des elastischen Bereiches zu geben.

Dafiir wird zunichst auf die Bedingungen mechanischer Aehnlichkeit hingewiesen,
denen die Durchbildung, Baustoffe und Beanspruchungen der Modelle bei statischem
bezw. dynamischem Gleichgewicht geniigen miissen. Im weiteren werden die heutigen
Moglichkeiten, solche Bedingungen zu schaffen, dargelegt. _

Zum Schluss wird auf die Moglichkeiten und Anforderungen der experimentellen
Methode eingegangen.
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Photoelasticity applied to structural design
La photoélasticimétrie appliquée au calcul des ouvrages

Spannungsoptische Bemessung von Tragwerken

MANUEL ROCHA and FERRY BORGES
Chief Research Engineer, 2nd Department Engineer
Laboratodrio de Engenharia Civil, Lisbon

INTRODUCTION

This paper presents some experimental studies for the design of structures, carried
out in the Laboratério de Engenharia Civil (Ministério das Obras Publicas), Lisbon,
in which the photoelastic method was used.

Asis known, it is possible, in general, to reproduce the real behaviour of structures
in models even when very reduced dimensions are chosen. Once the model is built,
the general test method consists of the application of loads and the measurement of
displacements, stresses and strains.

In order to measure the stresses, extensometers or the photoelastic method are
commonly used. _

The advantage of the photoelastic method is the ease, rapidity and economy with
which it permits the determination of the fields of stress. The fact that photo-
elasticity supplies images in relation to the complete field of stress, besides avoiding
errors, allows the rapid localisation of the regions of important stresses. The small
scale to which the models can be built is one of its principal advantages; in fact, the
construction of models is simplified and the forces to be applied are small.

On the other hand photoelasticity requires the use of transparent materials and
it is only practicable to study plane states of stresses. The numerous attempts which
have been made to extend this method to the study of three-dimensional states of
stress have not reached a degree of real practical interest; in such cases the authors
think it advisable to use extensometers, left in the interior of mouldable models.

The restrictions mentioned considerably limit the field of application of photo-
elasticity. Besides, photoelasticity only serves to determine the state of stress within
the elastic limit.

The application of photoelasticity, like other experimental methods, is only
advisable when there are no analytical methods which furnish results with the desired
accuracy, or when their application is less economical.

c.R.—23
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The authors believe that the studies which follow show well how photoelasticity
can be used to advantage in solving problems of structural design.

STUDY OF THE INFLUENCE OF THE DEFORMABILITY OF THE FOUNDATIONS ON THE
BEHAVIOUR OF AN AQUEDUCT

The problem of studying the stress distribution in a concrete aqueduct for different
mechanical properties of the soil appeared in the study of the new Lisbon water supply.

The greater part of the aqueduct will be built in a trench.

Fig. 1 shows the shape of the cross-section initially proposed for the conduit,
together with some modifications which were tested. To carry out the tests the loads
were taken as those obtained from the usual design theories for the thrust of earth fills.

258 m

370m

Fig. 1. Cross-section of the aqueduct

I. Section initially proposed
11. Section with base of double thickness
II1. Modified section

A bakelite plane model was built to the scale of 1/20 with a thickness of 1-0 cm.
The distributed loads applied to the prototype were replaced by adequate concentrated
loads, which were applied by jacks as shown on fig. 2. In order to maintain a con-
stant load, the oil-pressure tube, common to all jacks, was connected to another jack
the piston of which was loaded by a weight.

Loadings corresponding to the following hypotheses were considered:

(a) full conduit, earth filling with an angle of fiiction of 35° and 4 m. thick at the
crown of the aqueduct;
(b) empty conduit, earth filling 8 m. thick with an angle of friction of 25°

These hypotheses had led to the highest stresses in analytical calculations, con-
sidering the upper part of the conduit as a built-in arch. An asymetric loading
was also considered, which corresponded to loading half the arch. Successive tests
were made on the model supported by foundations with different mechanical
properties.

For studying the hypothesis of the aqueduct and the foundation having the same
mechanical properties, the soil was reproduced from the same bakelite from which the
model was made. Afterwards, the model was supported on bases of cork agglo-
merate and rubber, materials which reproduce foundations respectively 30 and 300
times more deformable than the material of the conduit.
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To reproduce soil of much greater deformability than that of the structure, the
model was supported on a tube so as to obtain a uniform pressure on its base. For
this a rubber tube of 1-8 cm. external diameter was used, filled with water and closed
at the ends.

In order to compare with the analytical calculation previously made, a test was
carried out in which the arch was built-in by placing the model between two roughened
steel plates tightly joined together by bolts.

'{’ ;
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Fig. 2. Test arrangement Fig. 3. Isochromatics
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Fig. 4. Stresses in the prototype for different values of the foundation deformability
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For the structure dealt with it is sufficient to know the stresses at the boundaries.
These stresses were determined from the order of the isochromatics, one of which
1s shown in fig. 3.

The stresses at the crown and at sections near the springing points for model I
(fig. 1), when subject to loading a, are shown in fig. 4. Thus it will be seen that the
analytical results obtained for the built-in arch agree with those obtained experi-
mentally for the same condition.

As the deformability of the ground increases, the absolute values of the stresses
increase. Thus, at the crown, when the modulus of elasticity of the foundation
material, Ey, is 399 of that of the structure, E,, the compressive stresses rise from
6 kg./cm.2, the value obtained in the case of the built-in arch, to about 20 kg./cm?2; at
the same time tensile stresses of approximately 16 kg./cm.2 develop at the internal
face. In the section near the springing, for the same conditions, the compressive
stresses at the internal face increase from 4 to 17 kg./cm.2 and tensile stresses of about
10 kg./cm.2 appear at the external face.

The increase of the deformability of the foundation beyond that mentioned above
does not lead to any appreciable variation in the maximum stresses.

For loading b the influence of the deformability of the foundation is similar. The'
maximum stresses observed are not very different.

It should be noted that for common soils and particularly for those crossed by the
aqueduct, the stresses developed in the structure should correspond to the relation
E./E; of several hundreds.

With regard to the base of the aqueduct the increase of stresses in the middle of
its upper face is particularly important as the deformability of the foundation
increases. ‘

For the relation E./E;=300 the tensile stress reaches 25 kg./cm.2 for loading @ and
31 kg./cm.2 for loading b, stresses that would require considerable reinforcement in
the base.

A model was tested in which the base had double the thickness (fig. 1). The
solution of increasing the thickness of the base, though giving a reduction in the tensile
stresses when the foundation deformability is large, is not economical. In order to
“decrease the stresses at the base the authors also studied the solution of leaving the
central zone free (fig. 5) by means of a channel beneath the central part of the conduit,

Fig. 5. Aqueduct with the central zone of the base free
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which could be also used for drainage. Thus the uplift pressures would be avoided,
which otherwise might induce cracking at the base.

For a width of the channel of 1 m. the tensile stresses, which, as already mentioned,
were about 30 kg./cm.2 for the hypothesis of E./E;=300, become nearly nil. The
stresses in the arch were also reduced due to the channel.

The distribution of stresses observed in the tests carried out led to a modification
of the cross-section as shown in fig. 1. Tests similar to those already described were
carried out on this new cross-section.

In spite of this solution corresponding to a reduction of 209 in the volume of
concrete, the maximum stresses developed did not suffer any appreciable change.
The opening of a channel under the central part of the base reduced the stresses as in
the previous case.

It is of interest to mention that some years ago the authors carried out some
photoelastic tests on another conduit, in which the deformability of the foundation
was also taken in account. The results of these tests, which also showed a large
influence of the deformability of the foundation, were later fully confirmed by the
behaviour of the structure.

STUDY OF STRESS DISTRIBUTION AROUND THE SPILLWAY OPENINGS OF AN ARCH DAM

When designing the reinforcement to be placed around the flood-discharge
openings of Castelo do Bode Dam (fig. 6) it was found impossible to calculate the
reinforcement.

Fig. 6. Upstream view of the spillway openings of the Castelo do Bode Dam

To determine the stresses developed the experimental method was used. Measure-
ments were taken on three-dimensional plaster of Paris models, which faithfully
reproduced the dam and the rock of foundation.* These models were used not only
to study the stresses around the spillways but also those developed in the entire dam.

* ‘“Note on the Studies of Dam Problems carried out in the Laboratério de Engenharia Civil,”
Publication No. 13, Laboratério de Engenharia Civil, Lisbon, 1950.
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Fig. 7 shows the diagram of the normal stresses acting at the edges of the hori-
zontal section which passes at middle height of the openings, when the dam is subject
to the full hydrostatic pressure.

For the interpretation of these diagrams that are far from simple, photoelastic
tests were carried out.

Plane models to a scale of 1/500 of constant and variable thickness were used
(fig. 8), by which it was possible to study the influence of the thickness change on the
distribution of stresses around the spillway openings.
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Fig. 8. Photoelastic models

Fig. 7. Normal stresses in horizontal mean
section of the spillway openings
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Forces which reproduced the mean compressive stresses in the arches of the dam
were applied to these models. The values of these mean stresses were determined by
by the tests on the three-dimensional models.

Two models of constant thickness were made, one of bakelite to determine the
isochromatics, and another of celluloid to determine the isoclinics. Forces were
applied to these models to produce a uniform stress field in the region not affected by
the spillway openings.

The model of variable thickness was made by cementing together sheets of celluloid
so as to obtain steps of thickness corresponding in a simplified way to the shape of the
spillway and reproducing the increase of sectional area around the openings. Forces
were applied to this model which were proportional to the normal forces in the arches
at different levels and which also corresponded to an approximately uniform distribu-
tion of stresses in the area not affected by the spillway openings.

It was desired to determine, above all, the normal stresses along section I-1' (fig. 8).

The difference of the principal stresses was obtained from the isochromatics and
from the readings taken with a Babinet-Soleil compensator. To confirm the values
of the stresses at the faces of the spillways openings, measurements were carried out
with Johansson strain-gauges of a 0:3 cm. base.

Knowing the isoclinics and the difference of principal stresses along section I-I,
the normal stresses were calculated by integration along the section concerned. As
this section may be regarded as symmetrical the calculation was quite easy.

The diagrams of the normal stresses along the section I-1” for the models of con-
stant and variable thickness are shown in fig. 9. These stresses were calculated on
the assumption that the mean compressive stress developed in the arches of the dam
is 21 kg./cm.2 '
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Fig. 9. Normal stresses along the section I-1’, transferred to the prototype

1. Determined from the constant thickness model
11. Determined from the variable thickness model
111. Determined from the three-dimensional model (mean values of the stresses at corresponding
points of the upstream and downstream face). (Left bank)
IV. Determined from the three-dimensional model (mean values of the stresses at corresponding
points of the upstream and downstream face). (Right bank)
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The value of 18 kg./cm.2 for the tensile stress at the face of the spillway openings
obtained from the constant-thickness model is, as was to be expected, greater than
the value of 125 kg./cm.2 obtained from the variable-thickness model.

It is interesting to note that the maximum stress obtained from the variable-
thickness model agrees with the mean stress developed along the face of the spillway
opening measured on the three-dimensional models. It should be emphasised that
this mean stress is not far below the maximum stress developed at the face of the
spillway opening. This stress is in turn the maximum tensile stresses in the spillway
area.

In fig. 9 are also presented diagrams of the mean values of the stresses at cor-
responding points of the upstream and downstream faces obtained in the three-
dimensional models.

The agreement between these diagrams and that obtained from the variable-
thickness model is quite satisfactory. The photoelastic vatiable-thickness model, of
course, does not take into consideration the bending and other effects which were
determined by the three-dimensional model. However, the photoelastic method was
of good service to solve the proposed problem.

Fig. 10. Test arrangement

In order to eliminate the tensile stresses and the resulting cracks, which were incon-
venient specially due to the high velocity of the water at the spillways openings, the
use of prestressed concrete in this area was tried.

The distribution of the stresses due to the prestressing was studied on the variable-
thickness model using the test arrangement shown in fig. 10. It was also easy to
determine the stresses due to the weight and to the hydrostatic pressure on the upper
face of the openings. Fig. 11 shows the diagrams of the stresses thus obtained.

It is interesting to note that, at section I-I’, the effects of the prestressing and of
the weight of part of the dam over the spillways openings are distributed through a
large area, and so the vanishing of the tensile stresses is not attained.

Due to this fact it was thought advisable to limit the stress distribution area by
creating a vertical joint located about 3 m. from the openings (fig. 12).

Experimental tests made accordingly showed that the weight alone was enough
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Fig. 11. Normal stresses along section I-1’ transferred to the prototype
1. Tensile stresses due to normal stresses in the arches
II. Compressive stresses due to the weight
III. Total compressive stresses due to the weight and a prestress of 4,000 tons
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Fig. 12. Normal stresses along the section I-I", transferred to the prototype, on the hypothesis of
leaving a joint during construction

I. Compressive stresses due to weight (open joint)
II. Tensile stresses due to normal stresses in the arches

to produce a compression stress of 6-5 kg./cm.2 (fig. 12). Therefore, after grouting
the joint the maximum tensile stress in service will be 6 kg./cm.2; to absorb the tensile
stresses, which develop only in a small area, normal reinforcement was used. So it
was possible to achieve a considerable economy.

STUDY OF THE REINFORCEMENT OF THE GUIDE WALLS OF DAM SPILLWAYS TO SUPPORT
THE FORCES TRANSMITTED BY THE GATES

In Castelo do Bode dam the flood discharge called for two gates (fig. 13), each one

having to support 2 maximum thrust of about 4,000 tons. It was therefore necessary
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to provide the guide walls with reinforcements capable of transmitting this thrust to
the body of the dam.
For designing this reinforcement a photoelastic test was carried out on a bakelite

Fig. 13. Spillway of Castelo do Bode Dam

model to a scale of 1/200 (fig. 14). A force which reproduced the thrust was applied
to the model. '

In fig. 15 are shown the isochromatics obtained.

The isostatics plotted from the isoclinics are shown in fig. 16.

Fig. 14. Test arrangement
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The stresses were calculated using the method of integration along straight sec-
tions. Inthe fig. 17 are shown the values of these stresses transferred to the prototype.

The static equilibrium of several sections of the model was satisfied to within
errors of 39, which are fully satisfactory.
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Fig. 17. Normal stress transferred to the prototype

The reinforcements were placed following the isostatics and the area of their cross-
sections was established according to the stresses given by the model.

A similar problem arose in the Mabubas Dam (Portuguese West Africa), whose
guide walls are shown in fig. 18. The thrust of the gates is transmitted to the guide
walls by means of cantilevers and the maximum thrust in each wall is 1,200 tons.
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Fig. 18. Guide walls of Mabubas Dam

As in the previous case a bakelite model was made to a scale of 1/200. To deter-
mine the principal stresses in the wall a graphic integration was made along the
isostatics indicated in fig. 19.

Based on the results obtained the walls were reinforced as shown in fig. 20.

In order to study the local effect of the loads transmitted by the cantilevers to the
guide walls, a reinforced-concrete model was built to a scale of 1/10. Fig. 21 shows
a view of the test.

Stresses were measured on this model not only near the beam but also at some
points where the stresses had been determined by the photoelastic model. In fig. 22
are compared, along one of the isostatics, the stresses obtained in the photoelastic
test with those obtained on the concrete model when working in the elastic range.
As was expected, the stresses agree closely.

The test on the concrete model was carried beyond the elastic range and gave
" valuable information about the behaviour in the neighbourhood of the failure. The
first cracks, which were detected for a load equal to twice the working load, appeared
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Fig. 21. Reinforced-concrete model to a scale of 1/10

Fig. 22. Stresses along one isostatic

I. Determined from the photoelastic model
II. Determined from the concrete model
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near the upstream flange of the cantilever.
whole wall and led to the failure.
The results of this test suggested the need to strengthen the reinforcement near the
cantilever, as shown in fig. 20.
In order to study the legitimacy of undertaking tests until failure on small rein-

forced models, another model was built to a scale of 1/50 (fig. 23). In both models
the development of the failure was absolutely identical.

These cracks later spread through the
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Fig. 23. Concrete model to a scale of 1/50
CONCLUSIONS

The studies presented show well how advantage can be taken of photoelasticity
in spite of its only being applicable to plane elastic states of stress.

As was seen, it permits not only the choice of the best shapes but also, in the case
of reinforced concrete, to define the directions of the reinforcement from the iso-
statics and its sectional area from the tensile stresses observed.

However, as to the design of reinforced concrete from homogeneous and elastic
models there are two objections.

In the first place it should be noted that for the reinforcement to function under
stresses for which it is commonly designed, it is necessary for the concrete to crack;
from these cracks there will result a redistribution of stresses.

A second objection, and as a general rule a more important one, is that an elastic
behaviour analysis is being considered; that is, the behaviour of the structure for
loadings which cause large deformations or even ruptures are not taken into
consideration.

These same objections arise, however, in relation to the usual design of reinforced-
concrete structures from the results of the Theory of Elasticity and Strength of
Materials, obtained on the hypothesis of the materials being homogeneous and
elastic.

To reproduce perfectly the behaviour of reinforced-concrete structures it is advis-

able to use reinforced mortar or concrete models. In one of the studies mentioned,
models of this type were additionally used.
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Summary
The paper deals with some studies carried out at the Laboratorio de Engenharia
Civil, Ministério das Obras Publicas, Lisbon, in which use was made of the photo-
elastic method for model stress analysis.
The following studies are reported:
Influence of the deformability of the foundations on the behaviour of an
aqueduct.
Stress distribution around the spillway openings of an arch dam.
Reinforcement of the guide walls of dam spillways to support the forces trans-
mitted by the gates.
In each case the solution for construction resulted from the conclusions drawn

from the experiments.
Reference is also made to the position of the photoelastic method in relation to
the other methods of experimental stress analysis.

Résumé
Les auteurs exposent quelques études exécutées au Laboratorio de Engenharia
Civil, Ministério das Obras Publicas, Lisbonne, dans lesquelles la méthode photo-
élastique a été utilisée pour la détermination des contraintes sur des modéles
d’ouvrages.
Les études exposées sont les suivantes:
Influence de la déformabilité des fondations sur le comportement élastique d’un
aqueduc.
Distribution des contraintes autour des ouvertures du déversoir d’un barrage-
. voiite.
Ancrage des vannes aux gu1deaux des déversoirs de barrages.
Dans chaque cas, la solution constructive a été choisie d’apres les conclusions des

essais.
Les auteurs étudient également la position de la méthode photoélastique, par
rapport aux autres méthodes expérimentales de détermination des contraintes.

Zusammenfassung
In der vorliegenden Arbeit werden einige Untersuchungen beschrieben, bei denen
das spannungsoptische Verfahren zur Spannungsermittlung bei Modellen gebraucht

wurde.
Die erwidhnten Studien, die im Laboratorio de Engenharia Civil, Ministério das

Obras Publicas, Lisboa, durchgefiihrt wurden, betreffen:
Den Einfluss der Nachgiebigkeit des Baugrundes auf das elastische Verhalten
einer Wasserleitung.
Den Spannungszustand um die Oeffnung des Ueberfalls einer Bogenstaumauer.
Die Verankerung der Schiitzen an den Leitmauern des Ueberfalls einer Bogen-
staumauer.

Die konstruktive Ausbildung wurde in allen Féllen auf Grund der Versuchser-

~ gebnisse gewihlt.
Es wird auch auf den heutigen Stand der spannungsoptischen Verfahren gegeniiber

anderen experimentellen Methoden eingegangen.

C.R.—24
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Method of elastic compatibility in the solution of beams of finite
length on elastic foundations

Méthode de calcul élastique appliquée au calcul des poutres de
longueur finie reposant sur des bases élastiques

Methode zur Berechnung von endlichen Balken auf elastischer
Unterlage

SANTI P. BANERIJEE, ASSOC.M.AM.SOC.C.E., A.M.I.STRUCT.E.

Chartered Structural Engineer, London

L]

I. BEAMS AND FOUNDATION PRESSURES

1. Introduction

When a “rigid” beam carrying loads rests on elastic material, it develops pressure
underneath, which is uniform throughout when centrally loaded or uniformly varying
in a straight line if eccentrically loaded. If, on the other hand, the beam is *semi-
rigid,” i.e. one capable of resisting bending with certain amount of deflections, the
pressure is proportional to the deflection occurring at each point. This is because
the supporting soil below beams carrying engineering structures is considered to
behave elastically, which tends to recover from the relative settlements when the
superimposed loads on the beams are removed.

If the soil proves to be flowing plastically under loading, as may be the case with
very soft clay, the beam necessitates designing as “rigid” as if floating on liquid of
heavy density. On similar arguments an absolutely “flexible” member may be
sufficient to bear loads lying on rather rigid supporting medium, such as rock. The
appropriate stiffness required for a beam therefore depends upon the nature of the
soil below. The theory also gives easy means of determining the correct value of
stiffness required for a beam (Section V, examples 2 and 3).

2. Elastic line of a semi-rigid beam and the soil pressure

Fig. 1(b) shows the pressure distribution under a rigid beam LR loaded non-
centrally as in (a), the straight-line variation being represented by ¢d from the average
line LCR. If, instead, the beam is semi-rigid and rests on elastic material such that
the loaded points are made to remain in one plane (not necessarily horizontal), the
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beam would produce deflections between the points as in (c) denoted by 84 (termed
“local deflections”) and the pressure would vary as shown in (d), there being relief
between the loads and increase under.

If it is now considered that according to the loading the loaded points move out
of the plane so as to take different levels, the axis LCR of the beam would deflect to
~ take the form LC’R similar to a bow of some shape either indicating “hog”’ or “sag”
shown in (e¢). These deflections, represented by 8z (termed *“bow deflections ™), are
measured from a line connecting the ends of the beam. The deflections at various
points along the beam would therefore be the algebraic sum of 34 and 8z, asin (/). It
will be noticed that the values of 8, are negligible as compared with 8.

With these deflections taking place throughout the beam, additional variation in
earth pressure below comes into effect such that the lowest point in the beam exerts
the highest upward pressure and the highest point has the maximum relief or reduction
in upward pressure. These pressures would have at the same time the effect of reduc-
ing the deflections 8,4+ 83 by a certain amount and adjusting themselves accordingly.
The variations from the straight line ab of pressure distribution, which may take the
two possible forms corresponding to the two deflection forms in (f), are indicated in (g).

Finally, these additional pressure variations ghk due to beam deflections, when
superimposed on the average straight line ab of pressure distribution in (4), would give
the two possible pressure diagrams shown in (h)—one giving maximum pressure at
the ends and the other in the middle. It is therefore considered sufficient to check up
pressures at the ends and at the section of maximum deflection in the middle of a
beam. It should be realised, however, that the deflections referred to are only relative
and are additional to the general settlement of the beam as a whole.

II. FORCES ACTING ON A BEAM AND THE PRINCIPLE OF ANALYSIS

3. Forces acting on a beam in equilibrium

The forces are considered to be divided into two systems:

(a) System 1 _

From the superimposed loads on a beam and its bearing area the average earth
pressure wy per unit area is obtained. The pressure w per unit run of the beam is
uniform for a beam of constant width or varying accordingly. Only the prismatic
beams would be dealt with at present. Cases with non-prismatic sections will be
considered in Section V, para. 13.

Consider the forces acting on a beam, as if rigid, comprising the superimposed
loading above and w per unit run of earth pressure below as represented by LRba
in fig. 1(b). If the beam is centrally loaded, this would be in equilibrium or else these
forces would have an unbalanced resulting moment. This has to be balanced by an
assumed straight-line variation of earth pressure from positive (acting upward) at one
end to negative (acting downward) at the other, similar to that represented by line
cd in fig. 1(b). These pressures are termed ““balancing pressures” (B.P.).

The system of forces comprising these, such as would occur on a loaded beam if
it were perfectly rigid, is termed F,. The moments produced by F, throughout rhe
beam are M, and the deflections measured from a line connecting the ends 3,, which
are approximately equal to 84+ 85 referred to in fig. 1(f). The maximum deflection
occurring in the middle of the beam in particular is termed Y,.

(b) System 2
Due to the deflections throughout a semi-rigid beam, deviations from the straight-
line distribution of pressure, referred to in System 1, come to operate, having increased
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values at the lower points and relieved at the higher, such that the straight line repre-
senting w indicates the average of the deviations as in fig. 1(4), wherein ghk was the
deviated form from line ab. '

The increase and the relief of pressure involved in the deviations comprise the
“additional variation of pressure” and such a variation, similar to that in fig. 1(g), is
shown in fig. 2(a) in typical form, in which the increase is shown at the ends and relief
in the middle, consequent upon the middle of the beam deflecting upwards under
force system F,. The vice-versa would be the possible alternative.

These forces in the additional pressure variation, which tend to restore the beam
from the elastic deformations or deflections due to system F,, are called “‘elastic
restoring forces” and are comprised in a system termed F,. © The moments produced
by F. are M, and the related deflections 8,—in particular Y., the maximum in the
middle. - :

It would be realised from fig. 1 that it is the bow deflections 8 which are the essen-
tial factors in the development of the force system F, and the consequent deflections
d,, the influence of 84 being negligible. A

4, Principles of analysis

A centrally loaded beam, if rigid, would exert uniform pressure LRba shown in
fig. 2(b), where La equals w, and pressure LRkhg when semi-rigid. The eccentricity
of superimposed loading would only

1 introduce the balancing pressuies in

Relief of pressure 4 | _ addition. Since the line abinfig. 2(a)
2 T T ﬂf”’ represents the average of the forces F,,

( ")” _,L{ : >,L w the areas above and below the line
e 9 A tionall prediures k should therefore be equal. To sim-

plify calculations for moments and

L 4 1 ‘ deflections, the variation in F, is
w replaced by the straight dotted lines
(6) , 2 4 shown and drawn symmetrically a-

bout the centre of the beam, in lieu of
9 & line ghk. The maximum ordinates,
both above and below the line ab, in
the variation are represented by fw
per unit run or fw, per uhit area, f being a factor or coefficient. The maximum and
minimum pressures developed are therefore wy+/wy and wy— fw, respectively per unit
area.

It would be observed that the force system F, gives a deflection 8, always opposite
to 8,. The total deflections throughout a beam would therefore be the sum of 8§,
and 38, algebraically, and the final maximum deflection in the middle of the beam

Y=Y, +Y. . . . . . . . . (4D

considering the maximum deflections Y, and Y, to occur approximately at the same
section. (It may be worth noting that the shift of the position of the maximum
deflection in a prismatic beam, simply supported at the ends with a bending moment
diagram of one sign, can never exceed 1/13th of the length from the centre.) The
deflections are represented in fig. 3 for the beam under the system of forces in fig. 2.
The original deflection is Y, from the loading and the pressure I.Rba of system F,,
which reduces to Y due to the forces F, having pressure ordinates fw at the centre
and the ends (fig. 2(a)).

Fig. 2
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For the purposes of analysis, it is necessary to ascertain the value of fw so as to
obtain the pressures and the bending moments throughout a beam. To obtain the
value of f, the final maximum deflection Y is to be considered first, which is dependent
upon

(a) the elastic properties of the beam and
(b) the elastic properties of the soil,

so that the higher the ‘““flexural rigidity” (EI) or the ‘“modulus of foundation™ (ky),
the lesser is the deflection. The value of Y should be such as to be compatible with
the conditions for both (a) and (b).

beneral seltlement
Spngtvel %

RSN 27
- k

Fig. 3

The value of £, related to Y, having been ascertained, the bending moment diagram
for system F, can be obtained with its maximum ordinate M, at the centre, where
shear is nil. The moments throughout the beam would then equal ZM,+ M..

) For the purposes of maximum and minimum pressures underneath, the positions
of fw under system F, would be considered at the ends and in the middle of the beam
where maximum deflection occurs.

ITI. PRESSURES AND RELATED DEFLECTIONS

S. Signs
The signs in the operations will be considered as follows:
(1) “Moments”’ are positive when tension is created on the underside of beams.
(1) ““Deflections’ are positive given by positive moments.
(1) “f-system” is positive in the positive force system F, causing positive
moments M., and forces act upwards at the ends and downwards in the

middle of a beam. e
| b
6. Forms of pressure variation and the . [7—_¢f|]33 !
related deflections Y. ily” éhe), . |_imw
The value of deflection Y, for a | L J
beam is connected to the force system | l |

F,, which in turn depends on the value (67"
of f. Therefore the equations for de-
flections can be expressed in terms of f.
(A) Form of pressure distribution
in system F, with equal maxi-
mum ordinate above and below (g "
average

Fwl?
Yo = 0.00365 =

A positive force system F, with °

maximum ordinates fw above and below 8

. s . 't N ~

the average line is shown in fig. 4(a), SRS
with consequent positive deflection ¥, 3.8

at (b). The f-system at (a) is therefore Fig. 4
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positive. The arrangement could be of opposite kind with negative values. With
these forces acting on a beam, the moments M, at any section distant x from an end

is given by
= 2%
Me= [E_E:I fw,
and at centre, where x=L/2, the maximum value

M.=0-0416wL2f . . . . . . . . (6:1)

The deflection at any section distant x from an end
¥ x dLex ULP e
36=Er [2_4_@“% +ﬁ)] , where E7/=flexural rigidity
and the maximum deflection at centre, where x=L/2
wL4

Ye=0-00365E,—f i & ¢ om s o® s w (0E2)
shown at (). The maximum and minimum pressures are w-+fw and w—jfw per unit
run of beam respectively.

It would be observed from fig. 4 that the maximum ordinate fw of pressure

reduction can never exceed w in value and thus also the maximum ordinate of pressure
increase; in other words f can never exceed 1.

(B) Other forms of pressure distribution in system F,

R S
N

4 N

mrnjz_'b'/':/zu: HH\\L‘,’ Tw DR i 41 :{%;V
i !

PF
i (2) [mtp=2] (6)

Fig. 5

There may be other cases of distribution such that the maximum ordinates of
reduction and increase have unequal values. This would also be obvious from
figs. 5(a) and (b) with positive and negative f-systems respectively, where some parts
of the beams do not bear on the soil due to upward deflections.

For the purposes of analysis let mfw and pfw be the ordinates of the maximum
reduction and increase respectively below and above the average, so that their sum

mfw+pfw=2fw . . . . . . . . (6:39)

m+p=2 . . . . . . . . . (6:3b)

With such forms of pressure distribution as in fig. 5, mfw would be controlled by
the value of w, so that mfw=w or mf=1. Then from eqn. (6:3a),
14+pf=2f, or pf=(2f—1), or

as before, or

1 =
P=2_]~ . . . . . . . . . . . . (6:4)
The eqn. shows that
when f=1, p=1
J<l, p<l and

>1, p>1
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Since the areas of pressures under the force system F, above and below the average
lines should be equal, it is clear from the diagrams that the ordinates pfw have to be.
greater than mfw, i.e. from eqn. (6:3a),

pw>Q2—p)fw,orp>1 . . . . . . . (6:9
This shows therefore from eqn. (6:4) that the cases would involve values of />1.

The maximum and minimum pressures developed are 2fw and zero respectively
per unit run, as would be observed from fig. 5 also.

(C) Practical considerations
To serve all practical purposes, it is assumed that: -

(i) when /<1, the variation should be considered with equal maximum ordinates
fw above and below the average, and
(i) when f>1, the maximum reduction mfw has the limiting value w.

Some possible forms of pressure distribution and the connected diagrams for the
force systems F, are shown in Table I, in which the deflections Y, are shown represented
by the form

wL?
Ye:N'E' N (H))
The “deflection coefficients N against the values of ffor all the cases can also be taken
from fig. 6. Itis to be noted that the cases 2 and
6 in Table I, having unequal ordinates mfw and

pfw, would be covered by the cases 1 and 5, 4 | I
since mfw are not the limiting values w. l Numbers in circles
The foregoing assumptions give safe results, , . d ”;‘,’,’”;:z e s
as the values of N for Y, are on the higher side \ \af Table I
(see also para. 8). \
When 7, is negative, Y, is positive with pos- 1
itive f~system. Cases 1 to 4 are some of the /% 00 BN @
possible forms shown in Table I. Case 2 7\ N b S
represents an ideal fourth-degree curve in view ,___@r_’ d._‘_@:‘:\_ 2N
of the deflection being the fourth integral of g 2 &~ )
loading and is absolutely theoretical. Under ‘\ KN
normal conditions case 1 for f<I1, and case 3 % Q)
for f>1 would be apparent. 0602 \
When Y, is positive, Y, is negative with \
negative f~system, such that some of the possible h-n- Ly &N
forms may be as shown by the cases 5 to 8. N
Case 5 is the case 1 inverted and case 6 repre- 7% S
sents the theoretical fourth-degree curve. Under
normal conditions case 5 for <1, and case 7 for -

f>1 would be apparent, but a case with f>1 ¢ : :
will not occur in practice when Y, is positive ' ]
(para. 7(2)(6)). Fig: &

7. Factors affecting the final deflection Y in a beam

These will be considered in the following treatment of the deflections from the
elastic properties of the beam and the bearing soil (para. 4):

(1) Deflections from elastic properties of beam
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LA !
From eqns. (6:6) and (4:1), Y.=N. -%7 fand Y=2Y,+Y,, remembering that

Y, and Y, are always of opposite signs.

Fig. 7

(i) When Y, is negative, Y, is positive with positive f~system (ﬁg T(a)):

wL4
Y=—Y+N. 5 H)==Y+N. —f .. . (B
(i1) When Y, is positive, Y, isrnegative with negative f-system (fig. 7(b)):
LA
Y=+4+Y,—N. "—"(—f) +Y+N ... (B

These equations stand for all values of f, whether greater, equal or less than 1.

(2) Deflections from elastic properties of soil

Since the soil reaction per unit area of foundation is assumed proportional to the
pressure per unit area p .

settlement .S
is known as the “modulus of foundation.”” The above relation gives

settlement (para. 1), the ratio is a constant, termed kg, which

pmkoS o e W e w e e w (71)
_P :
Also = e (D)

The modulus may vary under a beam in various ways depending upon the nature
of the soil and the depths to which they occur. Let the minimum value under a beam
be ky and the maximum nk, per unit area, so that #=>1. In the analysis, the variations,
when taken into account, will be considered symmetrical about the centre line of the
beam such that ky and #nky occur under the ends and the centre or vice versa, the
variation being linear. Such variations are considered to cover the limits of all
possible cases.*

In the derivation of the deflection equations, the distribution of pressure under
force system F,. will be considered under two groups as follows:

(a) Force system F, when /<1
This system includes cases 1 and 5 of Table I, and under this group the pressure
variation has equal maximum ordinates fw above and below the average (para. 6(C)).

* Advantage can also be taken of such variations in the moduli in an attempt to take account of
the usual pressure variations experienced in cohesive and non-cohesive soils under engineering
structures.
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(i) When Y, is negative, f-system is positive (fig. 8):

|~ Jrworv
' ’ . . Fwa }
™ P J I/‘nq, (85 " [+ve F-system]

W, + Fry W, -J Fw, w,+fuy  (c) Unit pressures p*
|
| I
”ro /T ”Lt’ (d) Case-7 Found?
oduly
A nk, b (e)case-2 | """
Fig. 8

In the final position of the beam the deflection (ignoring the little displacement of
the position of maximum defiection from centre),

Y =settlement at centre minus settlement at ends

Case 1: if kg is the modulus at centre and nk, at ends, then from eqn. (7:2):
_WO—'fH’Q W0+fW0_ Wy 17 Wo 1
R it 1+;!_ f+?0 e N 5

Case 2. if nky is the modulus at centre and k. at ends, then:
Y=w0—fw0_w0+fw0_ wo[l-l-l _%)[ IJ
0

Y

n_

1—-
n

nko ko ko
(i) When Y, is positive, f~system is negative (fig. 9):

(S2)

E Fu, (6) “Fg”["}’é' F-system]

Hy = Fiw, W, ]fw,, W,-fi, (c) Unit pressures p*
; ' o '
nky /li,, nllro d) Case -7 Found?
moduli
ko nk, by (e) Case -2
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In the final position the maximum deflection,
Y=settlement at centre minus settlement at ends

Cuse 3: if kg is the modulus at centre and nk, at ends, then:

=w0+(—f)w0 wo—(— f)'Vo_F“_’[l+ }H_wo[]_l] . (Sy)
H

ko ﬂko ko
Case 4: if nkg is the modulus at centre and k, at ends, then
_wot(=fwy  wo—(=N)wg_ o Wo l]
Y=k kKol f‘ ok - (S
Case 5: when kg is uniform throughout, n=1 and all the above equations become:
2"'0
Y— —TO . . B . . . . . . (Ss)

(b) Force system F, when f>1
The cases 3, 4, 7 and 8 in Table I are covered by this group, where the maximum

ordinates of pressure reduction and increase are w and (2f— 1)w respectively (para. 6).
It is to be realized that since some

parts of the beams do not bear on the
soil due to the upward deflections when
f>1, the values of Y given by the soil
equations would not be the true values
of the maximum deflections occurring
in the beams, but would only represent
the values measured up to the ground
Fig. 10 lines as shown in fig. 10 by Y. The
relationship of this ¥; with true ¥ may
be approximately obtained by considering the deflection curves of the beams of at least
the fourth degree and are as follows when kj; is uniform:
(i) when Y, is negative,
for f=2, Y,=0-938Y
/=3, ¥,=0-803Y

(i) when Y, is positive,
‘ for /=2, ¥,=0-0625Y
f=3, ¥,=00124Y
Representing the number coefficients above by C, therefore, a soil equation would
take the form:
Y,=deflection value from derived equation=CY

1
Y=E (deflection value from derived equation) . . . (7:3)

The value of C on soil with variable foundation modulus may be very different and
difficult to judge. However, the value in a case can be ignored if the difference
obtained between Y and Y is limited to, say, 10-129%, and for this purpose it is
essential that for beams

(1) with negative Y,, f must not exceed 2-5, and

(i1) with positive Y,, f must not exceed 1-0.
Then the appropriate soil equations can be used without any reference to C.

It would normally be seen in practical problems that the above conditions are ful-

filled, since the maximum pressures below would control the designs calling for the
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appropriate stiffnesses for the beams. If in a certain problem either of the above
values of fis exceeded within the limiting pressure, the beam has to be made stiffer to
bring in more of the unsupported portions to bear on soil (fig. 10) and thus reduce
the value of . Alternatively, for beams with positive Y,, an effective shorter bearing
length may be considered (i.e. the portion of beam actually bearing on soil in fig. 10(5))
. in a revised design for both beam and soil equations.

The deflection equations when f>>1 are derived as follows, bearing in mind that

mf=1 and pf=2f—1:
(i) When Y, is negative, f-system is positive:
Case 1: kg at centre and nk, at ends:

0

ko d nko ko n
2 _ Wy 2f—l Wy 1 _ 2W’0 7
S L £ L - S

Y—

Wo—mfwo_WO'l'PfWo: Wo[ _{_T]f_wo[ 1]

nko ko kop n k_o n
W 1T wy 1 % ,
_—ko[zf—1+n}—k0[1—n]_—kof. LSy

(ii) When Y, is positive, f~system is negative:
A case with f>1 will not occur in practice as stated before.

Case 5: kg is uniform, i.e. n=1:

2
The above equations also give Y= —TWO /, as eqn. (Ss).
0

8. Values of final deflection Y and coefficient f

As stated in para. 4, the final deflection Y should satisfy conditions for both beam
and soil properties. Therefore for a particular case, a beam equation and an appro-
priate soil equation for deflections have to be solved simultaneously to obtain the
values of Y and f with proper signs.

In connection with the deflection Y, in a particular beam equation, it is evident

LA : .
that when /<1, Y,=0-0037 WE_If This value of N=0-0037 may therefore be used in

all practical cases as a trial value for solving the equations. If from the solution the
absolute value obtained for fis <1, the result would be satisfactory; and if >1, a
revision in the coefficient would be necessary, which can then be judged easily from
fig. 6, bearing in mind the probable nature of distribution of F,.

It may be worth while to note that a higher value of N than anticipated for a beam,
if adopted, should normally give safer results, as the solution would yield lesser values
of fand Y. In doubtful cases, however, a problem may be solved with two beam
equations representing possible upper and lower limits in the values of Y,, and the
worse values of obtained moment and shear taken care of at each section. Similarly
in a case of doubtful variation in the foundation modulus along a beam, the solution
may also be carried out with two soil equations representing the upper and the lower
limits.
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IV. FINAL MOMENTS AND PRESSURES

9. Moments M,

These are obtained from force system F, when the value of fis determined from
the solution of the deflection equations. Referring to the Table I it would be clear
that even when the value of fis known, the moments M,, with central ordinate M.,
would depend upon the nature of distribution of force system F, in a particular case.

The M,-curve was considered in fig. 4 with value of f <1 and was of the third
degree. With the increase in the value of f, the shape of the curve tends to change
only slightly. For the convenience of obtaining values at intermediate points along
the length of a beam, it is sufficient to consider an M .diagram as triangular with the

010 - =
1
: -
e
= (‘v/ /
008 > /4
ol

o007+

006 f
N « « « Numbers m circles mdicale
Y N ~ 7 o the cases of pressure
3} E3 X by distribution of Table I
28 3 2 © ;
S 8 8 3 004 2
XS 5 S
[ .S SN .

Mg = d/a_gram 003+
Mo=Q wi?
Fig. 11 0oz o)
o001+, s
0 L 1 £
0 ! 2 3
Fig. 12

ordinate M, at centre. Such a dlagram is shown in fig. 11 replacing the thu'd—degree
curve when f<<1. The differences in the ordinates are only little.

The values of A, under various cases are given in Table I in the form M,=Q . wL2,
where Q is a function of f. The values of Q under different cases can also be taken
from fig. 12 against the values of f. As stated in para. 6(C), cases 1, 3 and 5 of Table I
would normally cover all practical cases.

10.. Final moments M

At any section of a beam, the final moment M=2M,+4+ M, (para. 4), M, and M,
being opposite in signs. Note that M, would carry the sign of f.

11. Final pressures under a beam and settlements

From the value of f obtained, the pressures would be as follows (para. 6):
(1) when f<1, pn.x=wy+/Wy per unit area \
Pmm—wo_fwo 3 3 3]
(ll) Whenf>l pmax—szO ”» 23 93
pﬂ”ﬂ _0 bR 2 2
These would be clear from the pressure distributions shown in Table I. The balancing
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pressures B.P. due to the eccentricity of loading on a beam from force system F, are

also to be taken into account. 7
The settlements at various points in a beam can then be obtained from the related

pressures, employing eqn. (7:2).

V. ExaMPLES
12(a). Beam on soil with constant foundation modulus

Example 1*¥. A weightless beam 10 inches by 8 inches with the loading shown
in fig. 13(a) is resting on an elastic foundation having a modulus of 200 1b./in.3 The
elastic modulus of the beam material is 15. 106 1b./in.2 Obtain the moments and
pressures throughout the beam.

Thus, L=120 in., I=426-7 in.4, E=1-5. 106 Ib./in.2 and k(=200 Ib./in.3
Total load=P+489=>5,000+4,800=9,800 1b.

Bearing area of foundation=120. 10=1,200 in.2

?;2%:8-16 1b./in.2, and w=8-16 . 10=81-6 Ib./in. run.
Unbalanced moment and balancing pressures B.P.:

Considering w acting below and taking moments about point 6, unbalanced mo-

ment=>5,000 . 90+44,800 . 44—9,800 . 60=73,200 in.-1b.

Section modulus of foundation area

10. 1202
Z= 6 =24,000 in.}

73,200
24,000

Wo=

= 43-05 1b./in.2
=4-30-5 Ib./in. run

End pressures in BP.=4+-——

Moments M,
With the supenmposed load above and w and B.P. below values of moments

obtained are shown in Fig. 13(b).
Deflection ¥, :

From the M, diagram, the value of maximum deflection Y, is found conveniently
by the “Conjugate Beam Method™ at a section 54 in. from the left end as 0-0810 in.,
which is positive in value. (Approximation of the M, diagram by straight lines,
shown dotted, is permissible for this purpose.)

Beam equation:
Since Y, is positive eqn. (B,) of para. 7 applies,

81-6 . 1204
Y=+7Y, +N— f=+00810+0:0037 z—55—5e=

=4+00810400980f . . . . . . . . . . . (D

Soil equatlon
Since kg is constant and Y, is pos1t1ve eqn. (Ss) of para. 7 applies,

2w°f=—2 816f_-oosmf )

Solution: .
Solving eqns. (1) and (2) above, f=—0-45 and Y=+40-0368 in. The value of f

* The example is taken from Beams on Elastic Foundation, by M. Hetenyi, University of Michigan
Press, Ann _Arbor, 1946, p. 47.
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obtained is <1, which shows that the value of N adopted in beam equation is suitable
(para. 8). Note that the value is in the negative system.
Moment M, :
Since f<<1 and Y, is +ve, case 5 of Table I applies. From fig. 12, 0=0-0187
against f=0-45.
—QOwL2=—0-0187 . 81-6 . 1202=—22,000 in.-1b.
This is the central ordmate of the triangular M, diagram.

Final moments M (in.-1b.):

Section M, Me M I Hetenyi’s values of M
2 +48,040 —11,000 +37,040 ' + 35,460 (calculated)
3 +29,700 —19,100 + 10,600 l

Centre + 30,000 —22,000 + 8,000 + 9,623
4 +27,870 i —16,150 +11,720
5 +10,880 — 7,340 + 3,540

These are shown in fig. 13(c), with the M, and M, diagrams superimposed.
Final pressures p (Ib./in.2): fwy=0-45.8-16=3-67

Section Wo Jfwo ~ BP. p ] Hetenyi’s values of p
1 +8:16 —3-67 +3-05 + 754 | + 607 '
Section of J |
max. defin. +8:16 +3-67 +0-31 +12:14 | +10-39 (centre)
6 1816 —3-67 —3-05 + 144 | 4 126
1

These are shown in fig. 13(d).
Settlements (inches): From eqn. (7:2), S=p/k,

Section S - ‘ Hetenyi’s values of S
1 7-54/200=0-038 | 003036
Near centre 12-14/200=0-061 0-05193
6

1-44/200=0-0072 0-00628

Settlements at intermediate pomts may be found by obtaining the relatwc deflections.
Fig. 14. shows the beam in its final position.

G.L.

Frnal position of beam
Fig. 14

12(b). Value of I for beam to control deflection

Example 2. What should be the value of I for the beam in example 1 if the
maximum deflection Y is not to exceed 0-02 in.?

Using the soil eqn., - Y=-—0-0816f,

+0-02=—0-0816f, L. f=—=0-245
C.R—25
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34-6 41 8
Withdrawing the value of I, the beam eqn. is expressed as Y=+— 7 f and
substituting the appropriate values
1 1 24-4
+0:02=7[346+41'8(—0-245)]=7(346—10:2)="F
24-4 '
—_——= in.4
I 002 1,210 in.

121 12.1,210 .
With 10 in. width, depth d= / J =11-32 in.

12(c). Value of I for beam to control pressure _
Example 3. 'What may be the value of I for the beam of example 1 if the maximum
pressure underneath is not to exceed 14 Ib./in.2?

We have seen that in the middle of the beam
Pmax=wy+/wy+B.P.=+8164+8:16/+0-31=+8-47+8-16/
14=+8-474-8-16f, .. =g—:%§=0-675 (in negative system).
From the soil equation, therefore, |
Y=—0-0816f=—0-0816(—0-675)=+0-055 in.
Withdrawing the value of I from the beam eqn.,

1
Y=3[346+418f]

and substituting the approprlate values

6-4
+0- 055——[34 6+41-8(—0- 675)]—7
6-4
o7 4
I= 0055 116 in.
With 10 in. width, depth d=N/12 i0116=5-18 in.

12(d). Beam on soil with variable foundation modulus

Example 4. Solve the problem in example 1 assuming that the modulus varies
from 200 Ib./in.3 at centre to 350 1b./in.3 at ends. Then, the beam equation, as before

Y=+40-0810+0-0980 . . . . . . . . (1)
Soil eqn.:
350
Y, is 4 ve, and in anticipation of <1, eqn. (S;) applies.
8:16 1 816 |
Y=—50"6 [H_FS] f+m[l_ﬁ] =—00683/+00135 . . . . . . (2)

Solving (1) and (2), f=—0-405 and Y=+0-0413 in. From fig. 12, case 5, Q=0-0168.
. M.=—00168 . 816 . 1202=—19,700 in.-Ib.
The diagram is represented by M., in fig. 13.
M, 19’;OO=+38,190 in.-Ib.
Dmax at middle  =+8164(0-405 . 8:16)4+0-31=11-77 Ib./in.2
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13. Beam with non-prismatic section having constant width

The procedure is the same as shown before except for a little adjustment involved
in the value of Y,. For this purpose an equivalent “constant moment of inertia’ is
obtained for the same amount of maximum deflection within the beam. The example,
which follows, will clarify the problem.

Example 5*. A continuous footing 30 ft. wide, having a cross-section as shown
in fig. 15, restson soil with a modulus of 300 kips/ft.> There is a line load of 150 kips/ft.
Tun at the centre and the elastic modulus of the material may be taken as 432,000
kips/ft.2 The weight of the beam is neglected.

300,000
Thus, ko=—=— 12 ——5—=173 1b./in.3 (uniform),
432,000,000
E=——>"—=3,000,000 Ib./in.2,

P=150 kips/ft.=150,000 1b./ft.
Considering 1 ft. length of footing as width of beam, bearing area=360 in. X 12 in.
Also ,

150,000 416
—— ; — e A in. 2
w=— 416 1b./in. run, and wy 2 34-8 1b./in.

The system F, is shown in (a). The loading being symmetrical about the centre
there is no B.P.
M,:

With the load P above and w acting below, the moments developed in the beam are
shown in (¢). The variations in the moment of inertia are shown in (b).

Y,:

To obtain the maximum deflection Y,, a diagram for M,/I is obtained first as in
(d). From this the maximum deflection at centre, ¥,=-40:196 in.

Y.:

Equivalent constant moment of inertia /. for the beam to give the same amount
of maximum deflection in the middle under force system F, is to be considered first.
For this purpose the beam is to be considered loaded at the centre with a concentrated
unit load when supported at the ends. This is reasonable, since the M, diagram is
nearly triangular, which is corresponding to the above condition of loading.

Let the moment diagram from the unit load be called M, and the maximum
deflection Y. Then the central ordinate of M diagram

— w.L 1.360
M=+ 7 =+ 7] =49 in.-lb. . . . . (13:1)
shown in (¢). The maximum deflection with I,
1 WL 1 1.3603 0-324
Yi=+=.—=+==. =+ in-lb. . (13:2)

48 ° El, 48 * 3,000,000 . I, I,
With the present variable 7, the maximum deflection Y is found from M, /I diagram
as in (f), and the value at centre

=+0-00,000,365in. . . . . . . . (13:3)
From eqns. (13:2) and (13:3),
0-324
Py — in 4 .
15_0_00’000’365—89,000 in. e e . (13:9)

* The example is taken from ‘‘Successive Approximation for Beams on Elastic Foundations,”
by E. P. Popov, Proc.A.S.C.E., May, 1950, vol. 76, Separate No. 18, p. 5.
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The procedure hereafter is as for a prismatic beam with constant moment of inertia /.

Beam equation:
Since Y, is +ve, eqn. (B,) applies.
416 . 3604

Y=+40-19640-0037 . 3,000,000 . 89, 000f—+0-196+0-097f i s w s m Tk
Soil equation:
ko being uniform eqn. (Ss) applies.
2.34-8
Y=— 73 f=-=0402f . . . . . . (@
Solution:
From eqgns. (1) and (2) above, f/=—0-392 and Y=+0-158 in.
M.:

Since case 5 of TablE I applies, from fig. 12, Q=0-0163.
e=—0-0163 . 416 . 3602= —880,000 in.-lb.

M (in.-1b.):
These are shown in (g).
p (Ib./in.2):
Swy=0:392 . 34-80=13-65
Section Wo i Swo P ’ Popov’s values of p
1 +34-80 —13-65 +21-15 ’ +18:85
4 : +34-80 +13-65 +48-45 +45-00

These are shown in (/).

VI. REMARKS

14. Remarks

Comparing the present method with that developed mathematically from differen-
tial equations for elastic lines, the solution is reliable for a beam having a value of
Al>}27, when Y, is negative, and
M7, when Y, is positive,

4 [bk
where A= 7 EOI and b=width of beam.
With higher value of Al the pressures are in error, as the deflection curve of the

beam develops reverse curvatures at distant points from the loads. The maximum
possible bending moment will not, however, exceed the value obtained by this method,
and in practical designs with reinforced concrete foundation beams, recourse may have
to be made to nominal reinforcements in the compression faces.

Summary
The forces acting on a beam are considered to be divided into two systems:
System 1, comprising the superimposed loads on the beam and the pressure
underneath such as would occur if the beam were perfectly rigid, due considera-
tion being given to the eccentricity of loading, if any, involving straight-line
variation of pressure, and



390 AIl 3—S. P. BANERJEE

System 2, comprising only the additional variation of pressure under the
beam due to deflections throughout from the average straight-line variation ob-
tained in System 1.

The additional pressure variation of System 2 related to the deflections is obtained
from consideration of

(a) the elastic properties of the beam, and
(b) the elastic properties of the soil.

This being known, the corresponding moment diagram is readily approximated.
This diagram, when superimposed on that due to System 1, gives the final moment
values throughout the beam.

The advantage of the method lies in obtaining readily

(1) the final bending moment diagram,
(2) the maximum deflection occurring in a beam, and
(3) the maximum and minimum pressures underneath.

Other advantages available from the theory include the determination of the
appropriate moment of inertia of a beam to control

(a) maximum deflection, and
(b) maximum pressure underneath.

The method can be applied to beams, prismatic or non-prismatic, with any kind
of loading and solutions give with comparative ease results which are reasonably close
to those obtained by accurate analysis. The paper includes illustrative examples
already solved by other methods.

Résumé
On considére que les forces agissant sur une poutre se divisent en deux systémes:

ler Systeme: comprenant les charges appliquées a la poutre et la pression
s’exercant en-dessous, telles qu’elles se présenteraient si la poutre était parfaite-
ment rigide, compte tenu éventuellement de I’excentricité de la charge, impliquant
variation de pression en ligne droite.

2¢éme Systéme: comprenant uniquement la variation additionnelle de
pression sous la poutre, due aux déviations d’un bout a I’autre, a partir de la
variation moyenne en ligne droite obtenue dans le ler systéme.

La variation additionnelle de pression du deuxiéme systéme, relative au déviations,
est obtenue par la prise en considération:

(a) des propriétés élastiques de la poutre,
(b) des propriétés élastiques du sol.

Celles-ci étant connues, on obtient sans difficulté une approximation de la courbe
du moment correspondant. Cette courbe, lorsqu’on la superpose a celle qui résulte
du premier systéme, donne les valeurs définitives du moment d’un bout a ’autre de la
poutre.

L’avantage de la méthode réside dans le fait qu’on obtient instantanément:

(1) la courbe définitive du moment de flexion,
(2) la déviation maximum se produisant dans une poutre,
(3) les pressions maximum et minimum en-dessous.
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Parmi les autres avantages offerts par cette théorie, il fait mentionner la détermina-
tion du moment d’inertie d’'une poutre permettant d’équilibrer:

(a) la déviation maximum,
(b) la pression maximum au-dessous.

La méthode peut étre appliquée aux poutres prlsmathues ou autres, avec
n’importe quelle sorte de charge et les solutions donnent, avec une facilité rclatwe des
résultats qui sont suffisamment proches de ceux que I’on obtient par une analyse
rigoureuse. L’exposé contient des exemples explicatifs déja résolus par d’autres
méthodes.

Zusammenfassung
Die auf einen Balken wirkenden Krifte werden in zwei Systeme eingeteilt:

System 1 umfasst die auf ihn wirkenden Nutzlasten sowie die auf der
Unterlage entstehenden Pressungen fiir den Fall, dass der Balken vollkommen
steif ist. Eine etwaige Exzentrizitit der Belastung wird dabei im Sinne eines
geradlinigen Verlaufs der Pressungen beriicksichtigt.

System 2 umfasst lediglich die zusitzlichen Aenderungen dieser Pressungen
entsprechend den Durchbiegungen, die von der fiir das System 1 gewihlten
mittleren geradlinigen Verteilung abweichen.

Die zusétzliche Aenderung der Pressungen im System 2 ergibt sich aus der Betrachtung

(a) der elastischen Eigenschaften des Balkens,
(b) der elastischen Eigenschaften des Untergrundes.

Diese Eigenschaften als bekannt vorausgesetzt, ldsst sich die entsprechende
Momentenlinie schnell und in guter Annidherung ermitteln. Sie ergibt, nach Ueber-
lagerung derjenigen des Systems 1 den endgiiltigen Momentenverlauf im Balken,

Der Vorteil der Methode besteht darin, dass

(1) der endgiiltige Momentenverlauf im Balken,

(2) die grosste Durchbiegung des Balkens,

(3) die grosste und kleinste Pressung der Unterlage schnell und leicht ermittelt
werden kann.

Als weiterer Vorteil ergibt sich aus der Theorie die Méglichkeit, das Tragheits-
moment eines Balkens zweckmaissig so festzulegen, dass
(a) die grosste Durchbiegung,
(b) die grosste Pressung im Untergrund innerhalb bestimmter Grenzen bleiben.
Das Verfahren kann auf Balken prismatischen oder nicht prismatischen Quer-
schnitts und fiir jede Art von Belastungen angewandt werden. Es liefert auf ver-
hiltnismaéssig einfache Weise Ergebnisse, welche mit den genauen Losungen gut
libereinstimmen. Der Aufsatz enthilt Beispiele, die zum Vergleich auch mit Hilfe
anderer Methoden geldst wurden.
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L’influence de Pélasticité du sol sur les contraintes des barrages-poids
(Théorie et solution numérique)

The influence of the elasticity of the soil on the conditions of stress in
gravity dams
(Theory and numerical method)

Einfluss der Baugrundnachgiebigkeit auf den Spannungszustand von
Gewichtsstaumauern
(Theorie und numerische Methode)

Pror. Dr. P. LARDY ’
Secrétaire général de I’A.I.P.C., Ecole Polytechnique Fédérale, Zurich

INTRODUCTION -
Généralités

La prise en compte de I'influence de 1’élasticité du sol sur les contraintes des bar-
rages signifie un progreés dans leur investigation par le calcul. Les études effectuées
aussi bien sur les barrages arqués que sur les barrages-poids démontrent suffisamment
I'importance de la coaction du barrage et du sol de fondation.

Il s’agit 1a d’un probléme éminemment difficile de la théorie mathématique de
I’élasticité.

Ce travail donne avant tout un apergu trés succinct sur une méthode appropriée
de calcul numérique. L’exemple calculé montre avec suffisamment de clarté I'in-
fluence remarquable de I’élasticité du sol sur les contraintes, qui se trouvent grande-
ment altérées a la base et le long des parements amont et aval des barrages-poids.

Position du probléme

Nous nous bornons au cas le plus simple et ne considérons, comme forces
extérieures, que I’action du poids-propre et de la pression latérale de I’eau (bassin
rempli) sur le barrage-poids de section triangulaire sur sol €lastique, en négligeant les
effets de la sous-pression et de la température.

Le mur est défini par:
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-

i<

Fig. 1.

Le parement amont est supposé vertical

h=hauteur du barrage
A=tg w (w=angle d’ouverture du mur)
b=A. h=largeur du barrage
ym=poids spécifique du mur
E,,=module d’élasticité du mur
vn=coefficient de contraction du mur

Le sol de fondation est assimilé a un demi-plan, défini par les constantes:

yr=poids spécifique du sol
Ey=module d’¢élasticité du sol
vs=coefficient de contraction du sol

Les contraintes sont désignées par:

o=contraintes normales
r=contraintes de cisaillement

Les déplacements sont:

u=déplacements horizontaux
v=déplacements verticaux.

Le sol de fondation est supposé élastique, homogene et isotrope. Le mur sera
calculé en état de contraintes planes (tranche isolée), le sol par contre en état de
déformations planes (étendue indéfinie du sol).

Le probléme est défini par les trois groupes de conditions suivants:

(1) Conditions d’équilibre et de compatibilité, données par la théorie de 1'élas-
ticité, dans le triangle (mur) d’une part et dans le demi-plan (sol) d’autre
part. _

(2) Conditions aux limites pour les efforts normaux o et les efforts tranchants =
sur le contour ABCDE. :

(3) Conditions de continuité des contraintes et des déplacements sur le bord
BD, commun au mur et au sol.
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Difficultés principales

La difficulté principale du probléme réside dans I’établissement de la connexion
entre le mur et le sol, c’est-a-dire dans I’expression de la continuité des contraintes et
des déplacements le long du bord commun BD. Cette difficulté se trouve accrue du
fait que les deux éléments en coaction, le mur et le sol, ont des caractéristiques
différentes:

Le mur: forme triangulaire, avec E,, et v,
Le sol: demi-plan, avec Ey et v;.

Chacun des deux domaines est caractérisé par une fonction d’Airy (fonction
“‘potentielle”” des contraintes), dont I’expression mathématique différe essentiellement
d’un domaine a ’autre, d’ou la difficulté de la connexion sur le bord commun BD.

Une autre difficulté apparait quand on exprime les conditions aux limites sur les
parements, ou les efforts tranchants =, ainsi que les efforts normaux o sur le parement
aval s’annullent. On est conduit & un probléme de ‘““valeurs propres’’ défini par des
arguments complexes et donnant lieu a des familles de “fonctions propres” dont
I’établissement est singuliérement laborieux.

Ce sont la les deux difficultés essentielles et caractéristiques du probleme.

Solutions analytiques

Tolke* a donné une solution analytique rigoureuse du probléme. Cependant,
cette solution est présentée de maniére a décourager le lecteur, tant les grandes lignes
de sa démonstration sont enfouies dans un fatras analytique inutile. Deux autres
critiques seront formulées ultérieurement.

Tolke décompose le probléme en deux parties et procéde en principe de fagon
analogue a celle utilisée dans le calcul des systémes hyperstatiques en statique
appliquée. !

Une coupure effectuée a la base BD permet de calculer le mur comme systéme
‘““1sostatique,” ce qui conduit a la régle du trapeze généralisée, c’est-a-dire a une réparti-
tion linéaires des contraintes. La coupure entre le mur et le sol, ouverte dans le
systeme isostatique, doit étre, pour satisfaire aux conditions d’élasticité, refermée au
moyen d’un systéme de contraintes “ hyperstatiques’’ (contraintes * propres ’). Il faut
donc exprimer que les déplacements relatifs effectifs # et v sont nuls en chaque point
de la base du mur.

Les calculs, extraordinairement laborieux, conduisent a des séries qui ne conver-
gent que lentement. La détermination des constantes d’intégration d’aprés la
méthode de Ritz n’est pas effectuée de maniére correcte dans le mémoire de Tolke.

On peut envisager d’autres solutions analytiques par un choix différent des
systemes de coordonnées, par exemple, mais "ampleur des calculs reste immense.

Pour ces différentes raisons, nous avons envisagé une solution pratique au moyen
du calcul aux différences qui conduit, en principe, toujours a une solution numérique
Cet avantage reste, bien entendu, lié a I'inconvénient qu’un tel résultat ne peut pré-
tendre a une solution de caractére général.

Dans notre probléme, le calcul aux différences s’est révélé extrémement fertile,
gréace au fait qu’il a été combiné avec la ‘““méthode de relaxation’ pour la résolution
des équations linéaires.

Quelques indications sur le principe de cette méthode numérique, ainsi que sur
les conclusions d’ordre pratique qui découlent de I’exemple traité, forment I’objet
principal de cet exposé.

* Tolke: Wasserkraftanlagen, Handbibliothek fir Bauingenieure, Verlag Springer, Berlin, 1938.
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CALCUL AUX DIFFERENCES ET METHODE DE RELAXATION
Remarques générales

Le calcul aux différences transforme les expressions différentielles en *“différences
finies,” dont la forme et la structure sont celles avant le passage a la limite (intervalle
de base tendant vers zéro), qui caractérise le calcul différentiel.

Les fonctions inconnues dépendent ici des deux variables mdependantes xety
et sont définies, dans notre probleme, par des équations aux dérivées partielles du
quatriéme ordre (équations biharmoniques) ainsi que par d’autres équations aux
dérivées partielles aux limites et sur la coupure entre le mur et le sol.

L’exactitude de la solution augmente en principe quand on diminue l'intervalle
de base, donc quand on augmente le nombre des points du réseau de base, mais le
nombre des équations linéaires a résoudre augmente, lui aussi, rapidement; I"ampleur
des calculs numériques peut devenir prohibitive et ’exactitude finale peut en souffrir.
Il existe en quelque sorte un optimum dans le choix de I'intervalle de base.

C’est pourquoi, les avantages du calcul aux différences ne peuvent étre jugés de
maniére absolue, mais uniquement en relation avec la méthode de résolution des
équations linéaires choisie dans chaque cas. .

Ayant a résoudre, dans notre probléme, quelques centaines d’équations linéaires,
nous avons renoncé aux méthodes classiques de résolution. D’autre part, il serait
illusoire de calculer les solutions des équations linéaires avec une exactitude exagérée,
alors que I’erreur provenant du fait que les intervalles de base sont finis, peut étre non
négligeable.

Nous avons donc adopté une méthode de résolution par approximation successive,
dite méthode de relaxation. '

M éthode de relaxation

Cette méthode, due a Southwell, posséde des avantages marqués sur les autres
méthodes procédant par approximation successive.

En désignant par L; (i=1, 2, . . . n) les membres de gauche d’un systeme de n
équations linéaires, on nomme ‘“résidu” de I’équation la valeur de L; quand on
assigne aux inconnues des valeurs quelconques. La solution du systéme correspond
a L;=0 pour chaque équation.

. Si dés lors on commence par un systéme de valeurs approchées pour les inconnues
(ce qui est toujours possible), les L; seront différents de zéro. La méthode de relaxa-
tion consiste a réduire, par opérations successives sur les inconnues, tous les résidus a
zéro. '

La maniéere d’opérer cette réduction forme précisément la technique de la méthode
de relaxation. Ces opérations peuvent étre effectuées aisément sur la base de schémas
géométriques, appelés ‘“Relaxation pattern’; ceux-ci sont caractéristiques de la
structure des équations et contiennent de maniére simple et claire le principe des calculs
numériques a effectuer.

Le Prof. Stiefel de I’Ecole Polytechnique Fédérale a Zurich a généralisé cette tech-
nique de la relaxation pour les équations biharmoniques de notre probléme en appli-
quant le principe de réduction par variation simultanée de plusieurs inconnues et en
établissant des méthodes appropriées pour accélérer la convergence de I'itération.

L’avantage principal de la méthode de relaxation réside dans le fait que le calcul
numérique est limité au calcul des résidus, ceci sans ’obligation de calculer directe-
ment les valeurs intermédiaires des inconnues, comme c’est le cas pour les méthodes
ordinaires d’itération.
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Les calculs effectués ont démontré le grand avantage de la méthode de relaxation,
adaptée de maniére appropriée aux problémes du genre traités ici.

EXEMPLE NUMERIQUE
Données
Les données sont celles de la fig. 1 avec les valeurs numériques suivantes:
h=1 (normée)
b=0,8
ym=yf=2,5 t./m.3

1
Em=4Ef, Vm=8, llf=Z

Le mur est soumis au poids-propre et & la pression latérale de [’eau, le sol aux
réactions du mur et a la pression verticale de 1’eau.

Conditions |
Les trois groupes de conditions (voir, Introduction, Position du probléme) sont a
remplir: _ .
(1) Conditions générales d’équilibre et de compatibilité (équations biharmoniques):
Dans le mur (triangle): 44w,,=0
Dans le sol (demi-plan): 44w=0
wm, Wr=Ffonctions d’Airy pour les domaines respectifs
2 o2
4

==t Fv opérateur laplacien

(2) Conditions aux limites sur le contour ABCDE:

) . OWm
Exprimées par les charges extérieures au moyen des grandeurs W, —a;?;
- 3Wf
/> on

n=direction de la normale

(3) Continuité des contraintes et des déplacements le long de la coupure BD:
3Wf_ 0 Wm
ey oy

Pwr 4 Pw, 13 2w,

215" 32 145" ox

83wf_ 4 3w, 19 3w, +13

oy3 15" ay3 45 ox2ay ' 18

La forme de ces deux derniéres équations, due a des considérations sur I’énergie

du systéme, se préte particuliérement bien au calcul de relaxation.

Wr=Wp,

Calcul numérique

Les conditions énoncées doivent étre transposées en équations aux différences.
Pour les besoins du calcul aux différences, le demi-plan doit €tre remplacé par un
rectangle suffisamment grand. Les deux domaines, triangle et rectangle de



398 All 3—P. LARDY

remplacement, sont recouverts d’un premier réseau de points (réseau caractéristique
du calcul aux différences).

Il s’avéra trés vite que la relaxation dans le rectangle était fort laborieuse. Cette
difficulté fut résolue par le Dr. Preissmann, Zurich, qui réussit a transformer les for-
mules de Boussinesq du demi-plan pour des fonctions d’influence en expressions
appropriées au calcul aux différences et a la méthode de relaxation. Cette simplifica-
tion supprime la relaxation dans le demi-plan; dés lors, la relaxation peut étre limitée
au domaine du triangle et aux deux bords de la coupure.

Les valeurs de départ sont celles données par la régle du trapéze.

La relaxation fut grandement facilité par ’emploi de la machine a calculer avec
commandes automatiques de I'Institut de Mathématiques appliquées de I’Ecole Poly-
technique Fédérale (Direction: Prof. Stiefel). Grace aussi a I’établissement de
“relaxation pattern” appropriés, 'ampleur du calcul de relaxation a pu étre tenue
dans des limites raisonnables.

Ce premier réseau, relativement large, a permis de résoudre le probléme avec
suffisamment d’exactitude dans la zone moyenne du mur et de sa base, mais s’est
révélé insuffisant pour les zones des parements ainsi que pour les deux extrémités de
la base qui forment des domaines singuliers.

Dés lors, un réseau de densité double fut introduit. Gréce a des procédés spéciaux
pour accélérer la convergence de la relaxation, la solution numérique de ces zones
particuliéres put étre menée a bien.

Résultats

Les trois tableaux qui suivent contiennent, en comparaison, les valeurs extrémes
aux deux parements. :
TABLEAU 1

Contraintes normales verticales o,

Section Contraintes: parement c6té eaux I Contraintes: parement aval
Distance de Reégle du Calcul Différence | Régle du Calcul Différence
la coupure trapéze exact % | trapéze | exact %

en metres kg./cm.2 kg./cm.2 | kg/em.2 | kg./cm.2
6-6 | -

42,5 m. 5.4 6,6 ’ 22 9,0 ; 10,6 18
Full ,

32,5 m. 6,3 8,4 | 33 10,5 ‘ 13,6 30
8-8 - &

22,5 7,3 10,4 49 | 12,1 : 17,6 46

i 8,2 46 | 78 13,7 | 22,4 63

10-10 1 ‘

2,5 m. 9,1 18,2 ! 100 15,2 ’ 30,0 97

Degré d’exactitude; ampleur des calculs

Les calculs ont été effectués avec cinq décimales. Les contraintes, découlant
des fonctions w par 'opération de la deuxiéme différence, sont évidemment moins
exactes que celles-ci. On arrive a une estimation de I’erreur moyenne d’environ 5%,
ce qui est amplement suffisant.

- Il est clair qu’a I’avenir, ’ampleur des calculs se trouvera réduite du fait que les
essais et titonnements du début ne se répéteront plus.
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TABLEAU 11

Contraintes de cisaillement 7

' Section Contraintes: parement aval
Distance de | Régle du Calcul —_—
la coupure trapéze exact Dxﬁgl/'ence

en meétres kg./cm.2 kg./cm.2 /0
66’ 5
40 m. 7,5 9,6 28
7-T
30 m. ‘ 8,8 12,0 36
g8 10,0 14,8 48
20 m. » 4
9'-9’

10 m. 11,2 18,2 63
1010 12,5 25,0 100
TABLEAU 111

Contraintes normales horizontales o

Section Contraintes: parement aval
Distance de Régle du Calcul oa,
la coupure trapéze exact Dlﬂ'g}-ence
en meétres kg./cm.2 kg./cm.2 /0

6-6
42,5 m. 5,8 7,2 24
7-7
32,5 m. 6,8 8,8 30
8-8 '
22,5 m. 7,8 12,0 56
L 8,8 15,0 70
12,5 m. 2 2
10-10
2,5m. 9,8 19,0 94

La technique de relaxation ayant été fortement développée au cours de ces calculs,
il est possible, a ’avenir, de profiter de I’expérience acquise (Etablissement de tableaux
définitifs de fonctions pour la résolution de I'équation 44w=0). Remarquons
également que certains résultats intermédiaires de caractere assez général, se trouvant
établis une fois pour toutes (transposition des formules de Boussinesq en équations
aux différences, etc.), peuvent étre utilisés tels quels par la suite.

I reste néanmoins.clair que ce genre de calculs s’adresse a des spécialistes qualifiés.

CONCLUSIONS

Les résultats obtenus prouvent qu’il est possible de traiter, sur une base numérique
appropriée, des problémes extrémement difficiles et compliqués de la théorie de
I’élasticité, ceci avec une exactitude suffisante et une ampleur de travail raisonnable, a
condition de tenir compte des expériences faites.

Les résultats (voir tableaux et fig. 2) sont remarquables et montrent que les écarts
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entre la solution indiquée et la regle du trapéze sont beaucoup plus importants qu’on
ne pouvait s’y attendre, avant tout dans la zone de base du mur (jusqu’a 100 %).

Des écarts de 10 9 se font sentir jusqu’a prés de la mi-hauteur du mur, donc dans
un domaine trés grand.

Dans les zones médianes des sections horizontales, les contraintes sont plus
petites que celles calculées par la régle du trapéze. Dans le sol de fondation, les con-
traintes o, s’atténuent plus rapidement que les autres. :

Ces résultats soulignent la valeur de tels calculs et posent, entre autre, a nouveau
la question de la sécurité et des contraintes admissibles dans le béton, puisque, dans
certaines zones, les écarts conduisent a une majoration des contraintes d’environ
1009 sur celles du calcul ordinaire. On peut envisager la généralisation de cette
méthode pour d’autres profils que le triangle et tirer profit des résultats acquis pour
simplifier et accélérer les calculs, qui peuvent étre complétés, dans les zones critiques,
par des développements analytiques. La prise en compte de la souspression et des
effets de la température ne présente aucune difficulté.

Cet exemple démontre D’efficacité et la valeur de méthodes numériques appro-
priées, appliquées a des problémes dont la solution analytique rigoureuse est,
aujourd’hui encore, pratiquement inaccessible.

Résumé

Ce mémoire donne un apergu succinct sur une méthode numérique donnant la
solution du probléme de “l'influence de I’élasticité du sol sur les contraintes des
barrages-poids.”

La transformation des équations différentielles en équations aux différences et leur
résolution au moyen du calcul de ““relaxation’” permet de résoudre le probleme avec
une exactitude suffisante et remplace avantageusement la solution purement analytique
pratiquement inaccessible.

Les conclusions mettent en évidence la nécessité de tels calculs en établissant
’altération profonde subie par les contraintes sous l'influence de [’élasticité du sol,
ceci principalement a la base du mur.

Summary

This paper includes a comprehensive survey of a numerical method for solving
the problem of the “Influence of the elasticity of the soil on the conditions of stress
in gravity dams.”

The conversion of the differential equations into equations of difference, and also
their solution by the “relaxation method,” leads to a sufficiently accurate solution of
the problem and replaces with advantage the purely analytical method, which is
unusable in practice.

The conclusions emphasise the necessity of such calculations and throw a very
impressive light on the important influence of the elasticity of the soil on the conditions
of stress in gravity dams, particularly at the foot of the dam-wall.

Zusammenfassung
Diese Arbeit vermittelt einen gedridngten Ueberblick iiber eine numerische
Methode zur Losung des Problems: ‘Einfluss der Baugrundnachgiebigkeit auf den
Spannungszustand von Gewichtsstaumauern.”
C.R.—26
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Die Verwandlung der Differentialgleichungen in Differenzengleichungen sowie
ihre Auflosung nach der “Relaxationsmethode” fiihrt zu einer geniigend genauen
Losung des Problems und ersetzt mit Vorteil die praktisch unzugidngliche, rein
analytische Methode.

Die Schlussfolgerungen unterstreichen die Notwendigkeit solcher Berechnungen
und beleuchten sehr eindriicklich den hervorragenden Einfluss der Baugrundnach-
giebigkeit auf den Spannungszustand der Gewichtsstaumauern, insbesondere in der
Umgebung der Fundamentfuge.
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Nouvelle méthode d’analyse tridimensionnelle sur modéles réduits
A new method of three-dimensional analysis using small-scale models

Ein neues Verfahren zur drei-dimensionalen Spannungsmessung in
Modell-Konstruktionen

C. BENITO

[ngénieur, Chef de la Section des Modéles Réduits du Laboratorio Central de Ensayo
de Materiales de Construccion, Madrid

1. GENERALITES

Malgré les trés grands progres réalisés par les différentes théories employées pour
le calcul des ouvrages, de nombreux techniciens du génie civil cherchent une
méthode pour la résolution des problémes d’élasticité a trois dimensions. Les
travaux préliminaires sont établis sur la base de la théorie de I’élasticité et on
n’entrevoit pas, jusqu’a maintenant, de processus mathématique général de résolution
qui pussie étre appliqué a la pratique. Sauf en certains cas relativement rares, qui
sont d’ailleurs devenus classiques pour étre répétés dans tous les traités spéciaux, la
connaissance de la répartition des centraintes ou des déformations dans I’intérieur du
" solide spatial exige la résolution d’un systéme d’équations différentielles qui constitue
un obstacle sérieux et infranchissable.

Cependant, on peut espérer parvenir par les méthodes expérimentales au résultat
cherché. C’est ce que montrent les investigations qui ont déja été faites dans ce sens
et qui nous rapprochent progressivement de la solution du cas général.

Dans un travail antérieur,* nous avons déja exposé les méthodes photo-
élastiques adoptées pour I’étude de certains modeles tridimensionnels construits en
bakélite, en trolon ou en gélatine. Dans cette étude, nous proposions I’emploi de la
gélatine pour les problémes ou interviendraient des efforts de masse ou dans lesquels
les modéles seraient de grandes dimensions ou de formes compliquées. Mais ainsi
que nous l'avons constaté, en appliquant les méthodes photo-élastiques tri-
dimensionnelles a ['observation de tranches planes des modéles dans lesquels les
contraintes avaient été préalablement ‘“fixées,” il n’a été possible. que d’évaluer les
directions et grandeurs des trois contraintes principales, aux points ou I’on connaissait

* C. Benito et A. Moreno, “Etudes photo-élastiques tridimensionnelles sur modeles en gélatine,”
Publication No. 73 du Laboratorio Central de Ensayo de Materiales de Construccién, Madrid, 1951.
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a priori la direction de 'une d’elles. Cette condition limite dans une large mesure
I’utilité pratique de cette méthode et réduit son application aux exemples dans lesquels
interviennent des symétries de forme et de charge.

En dehors du domaine de la photo-élasticité et dans tous les cas ol I'on a essayé
des modeéles réduits tridimensionnels, les études dont nous avons connaissance ont
été limitées a ’observation des déformations de surface; il est rare que I’on ait
introduit des organes d’auscultation en certains points intérieurs.

Nous nous proposons d’exposer dans ce qui suit une nouvelle méthode avec
laquelle nous pensons avoir réussi a trouver la solution expérimentale des problemes
tridimensionnels, méme avec intervention des efforts de masse.

2. EXPOSE DE LA METHODE D’ESSAI ET DES BASES DE RECHERCHE

Dans les études que nous avons faites des caractéristiques des gélatines, études
dont les résultats figurent dans la publication citée plus haut, nous avons mis en
évidence les variations observées dans la valeur du module longitudinal de Young en
fonction de la température et nous sommes arrivés a conclure que la valeur du module
augmentait au cours du refroidissement du matériau. Ce phénoméne nous a permis
de charger le modeéle réduit a étudier a la température ambiante (a peu pres 20° C.),
puis de diminuer cette température progressivement jusqu’a 2° C.; nous avons pu
ensuite décharger le modéle, puis le couper en tranches planes et paralléles et observer
les contraintes enregistrées, comme s’il s’agissait d’un cas de photo-élasticité 4 deux
dimensions. Nous avons également constaté qu’en élevant a nouveau la température
de ces tranches, la contrainte observée disparaissait.

Pour expliquer ce processus en nous rapportant aux déformations, nous pourrons
dire que si nous chargeons un modele construit avec un matériau présentant un
module d’élasticité E, il se produira en chaque point des déformations que nous
désignerons par e. En abaissant la température, le module passe a la valeur E'>E;
en supprimant les charges extérieures, les déformations récupérées ¢’ ont un signe
contraire aux déformations antérieures et leur sont inférieures. Il subsiste ainsi des
déformations fixées qui ne subissent aucune modification (comme nous 1’avons
démontré), méme si nous coupons le matériau en prismes ou en cubes. Si la
température s’éléve ensuite jusqu’a la valeur initiale, le module reprend sa valeur
primitive et les déformations se trouvent libérées.

La méthode que nous proposons est basée sur la mesure de ces ““déformations
libérées” qui, lorsqu’elles sont connues pour chaque point de I'intérieur du modéle,
peuvent étre rapportées aux valeurs des contraintes, au moyen des constantes
élastiques du matériau a température de 1’essai.

Conformément a ce qui précéde, les différentes phases de I’application de la
méthode sont les suivantes:

(1) Préparation du modéle avec un matériau remplissant les conditions qui
seront indiquées au chapitre suivant.

(2) Application des charges extérieures a la température ambiante (environ
22° C.).

(3) Refroidissement lent du modéle jusqu’a une température intérieure uniforme
de 2° C. et retrait des charges.

(4) A ce moment, les déformations initiales sont retenues en partie dans la
totalit¢é du modéle; on le coupe donc en tranches ou en cubes, sans que
cette déformation initiale résiduelle subisse une modification, de ce fait.

(5) Mesure des ““déformations libérées” dans les tranches ou les cubes, lorsque
I’on éléve a nouveau la température jusqu’a environ 22° C,
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Si les déformations mesurées sont suffisantes, on pourra déterminer ’ellipsoide
des déformations de chaque point; a partir de cet ellipsoide, il sera aisé de passer a
I’ellipsoide des contraintes, en faisant intervenir les valeurs du module d’élasticité et
les coeflicients de Poisson a 22° et a 2° C.

Gréce a cette nouvelle méthode, nous nous proposons d’aboutir a la connaissance
en amplitude, direction et sens des contraintes principales, en n’importe quel point de
Iintérieur ou de la surface d’un modéle de forme quelconque, lorsqu’agissent sur lui
des efforts extérieurs ou de masse.

Deux questions essentielles doivent étre résolues pour la mise en pratique de cette
méthode:

(a) Disposer d’un matériau qui remplisse les conditions correspondant aux
hypothéses de base de la théorie de I’élasticité, de I’analyse dimensionnelle
et de la méthode ci-dessus elle-méme.

(b) Employer un processus de mesure qui permette de connaitre les valeurs des
déformations, avec la précision exigée par ’essai.

Nous examinons ci-aprés chacune de ces deux questions.

3. RECHERCHES CONCERNANT LE MATERIAU

La technique des modéles réduits d’ouvrages implique pour les matériaux certaines
conditions particuliéres.

Le matériau doit, en premier lieu, permettre la fabrication du modéle; il doit donc
se préter au moulage ou bien au fagonnage jusqu’a ’obtention de la forme voulue.
Dans les deux cas, il ne doit en résulter aucune contrainte résiduelle susceptible
d’altérer les résultats des essais. .

Du point de vue de la théorie de I’élasticité, le corps est supposé homogéne,
isotrope et élastique. Ces conditions doivent étre d’autant plus étroitement respectées
qu’elles seront satisfaites par le ou les matériaux que ’on projette d’employer pour la
construction effective de ’ouvrage. Par ailleurs, ’analyse dimensionnelle qui dicte
les lois de similitude & respecter entre les dimensions du modéle et celles de ’ouvrage
réel impose une série de conditions déduites du théoréme = ou de Vaschy; dans le cas
de la similitude amplifiée (échelle différente de 1), ces conditions sont exprimées par
les relations ci-aprés:

P'u_Du o = i
P'rR Dr VR

en désignant par:

les déformations,

les déplacements,

les longueurs,

les contraintes,

les modules d’élasticité,

les pressions extérieures,

les poids spécifiques des matériaux,

les densités des surcharges (par exemple I’eau qui agit sur le parement d’un

barrage),
v les coefficients de Poisson.

hjq qu

~

S TS
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Tous ces symboles sont affectés d’un indice M ou R suivant qu’il s’agit du modéle
ou de I'ouvrage réel. A I’exception de la derniére relation qu'exprime [’égalité des
coefficients de Poisson dans le modele et dans I’ouvrage, il n’est pas possible de tirer
une conclusion sans que le probléme soit plus nettement déterminé. Par suite et
afin de connaitre 1’ordre de grandeur des caractéristiques du matériau que ’on doit
utiliser, nous allons faire appel & un cas particulier d’ouvrage tridimensionnel ou, en
plus des forces extérieures, les efforts de masse exercent également une grande influence.
L’ouvrage que nous considérons comme le plus représentatif est ici le barrage-poids
a base droite ou en arc.

L’idéal serait de connaitre de régime de contraintes qui se manifeste en n’'importe
quel point de I'intérieur du barrage, de ses fondations ou de ses rives, en tenant compte
des particularités élastiques des divers éléments qui composent I’ensemble de 'ouvrage
et de I'influence de leurs poids respectifs.

Nous ne connaissons que peu d’exemples d’essais tridimensionnels sur barrages;
cependant, leur petit nombre est amplement compensé par la valeur des résultats
obtenus. Nous ne tenterons pas de les résumer ici; nous indiquerons seulement que
les plus intéressants ont été réalisés aux Etats-Unis, au Portugal et en Italie. Dans
la plupart des cas, on n’a considéré qu’ultérieurement I’influence du poids propre du
barrage et dans tous les cas, on a mesuré les déplacements des éléments de surface de
I’ouvrage. Comme nous l'indiquions antérieurement, notre but est de mesurer les
contraintes en n’importe quel point de I'intérieur ou de la surface et tout particulicre-
ment a proximité des fondations et des rives. En nous limitant a cet objet précis,
nous pouvons déduire des expressions (1) les conditions suivantes:

1. Le coefficient de Poisson du matériau constituant le modele doit étre de 1’ordre
de 0,3.

2. L’échelle des poids spécifiques doit étre la méme que celle des densités des
liquides qui constituent la charge ou, ce qui revient au méme, le poids spécifique du
matériau doit étre 2,3 fois plus grand que celui du liquide utilisé pour la mise en charge.
Si, en tablant sur ’expérience que nous avons acquise au sujet des essais photo-
élastiques, nous envisageons ’emploi d’un matériau présentant des caractéristiques
analogues a celles de la gélatine, le liquide de mise en charge ne devra pas altérer ce
matériau et, par conséquent, il sera impossible d’utiliser I'’eau. D’autre part, il
convient que [’échelle des modules d’élasticité soit faible, pour que le module
d’élasticité du modeéle soit, lui aussi, faible, ce que I’on peut réaliser en employant des
liquides plus légers que I’eau. Ceci nous amene a admettre, a titre de premier
titonnement:

.DM ~
—=0,8, donc: p'y;=0,8p'g~1,9 gr./cm.3
Dg

3. Si 'on admet que les déformations du modeéle peuvent étre vingt fois plus
grandes que les déformations réelles (hypothése adoptée aux essais du Boulder Dam?*),
c’est-a-dire:

E—M=0,04 . m
Ir

L’échelle des longueurs varie assez notablement d’un essai a l'autre; elle dépend
essentiellement des dimensions de I'ouvrage a étudier. Nous pouvons fixer comme

€ 5 .
20, il en résulte:
€R ER

* Model Tests of Boulder Dam, Bureau of Reclamation, Boulder Canyon Project, Part 5, Bull.
3, Denver, Colorado, 1939.
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limites 1/100 et 1/200, d’ou I’on peut déduire ’ordre de grandeur des modules
d’¢élasticité correspondants:

- Epn=2x%105%x0,04/200=40 kg./cm.2
dans I’un des cas et 80 kg./cm.2 dans I’autre.

En tablant sur ces données, nous pouvons résumer comme suit les principales
particularités du matériau que nous considérons comme le meilleur a employer, pour
appliquer la méthode ici proposée aux essais de barrages sur lesquels interviennent
des efforts de masse.

Le matériau doit se préter aisément au moulage ou au faconnage; il doit étre
homogene, élastique, isotrope, avec un coefficient de Poisson voisin de 0,3, un module
d’élasticité de ’ordre de 60 kg./cm.2 et un poids spécifique de 1,9 gr./cm.3 Cesderniers
chiffres indiquent seulement un ordre de grandeur, car ils ont été obtenus en partant
d’une hypothése (échelles des longueurs et des déformations) qui peut varier assez
notablement suivant chaque essai ou chaque matériau dont on dispose.

Nous n’avons pas encore mentionné une condition dont la non-satisfaction
empéche I'application du processus ici exposé. Il s’agit de la condition suivant
laquelle le module d’élasticité du matériau doit augmenter lorsque la température
ambiante diminue, la différence entre les valeurs extrémes devant étre aussi grande
que possible.

Pour trouver le matériau susceptible de satisfaire a toutes ces conditions, nous
sommes partis des études que nous avons déja effectuées sur les propriétés élastiques
des gélatines. Dans ces corps, se trouve un produit que I’on peut mouler facilement
par gravité, qui est homogene, isotrope, dans lequel la somme des déformations
élastiques et plastiques est proportionnelle a la contrainte qui les produit et qui admet
un module d’élasticité trés sensible a 'influence de la température. Toutefois, la
valeur de ce module d’élasticité est faible (nous n’avons pas réussi a dépasser 20
kg./cm.2), son poids spécifique est trés petit et il admet un coefficient de Poisson
élevé (de I’ordre de 0,5), ce qui ne nous permeét pas de I'utiliser effectivement ici.
Malgré ces inconvénients, nous avons adopté la gélatine comme matériau initial pour
la recherche du matériau qui convient le mieux. Nous ne décrirons pas ici toutes
les tentatives que nous avons faites et les nombreux petits échecs que nous avons
subis; nous nous contenterons d’indiquer le chemin qui nous a permis d’arriver 4 une
solution satisfaisante. Ces échecs, d’un intérét apparemment limité, nous ont
néanmoins permis de développer nos connaissances de certains matériaux, con-
naissances que nous mettrons a profit au cours d’études ultérieures.

Nous avons envisagé un produit de base composé de gélatine, de glycérine et
d’eau. D’autre part, nous connaissions les propriétés du mélange de glycérine et de
litharge, qui durcit et forme un corps a grande densité et haut module d’élasticité.

Nous avons donc envisagé d’ajouter de la litharge aux produits de base ci-dessus
afin de corriger ses propres défauts. Quelques essais nous ont donné ’assurance que
nous étions sur la bonne voie. Il nous a suffi de procéder a un nombre suffisamment
grand d’essais par tditonnements pour améliorer les résultats. Afin de ne pas nous
étendre trop longuement sur les différentes compositions essayées, nous indiquons
dans le tableau I les constituants de quatre mélanges, dont les modules d’élasticité
atteignent 12, 27, 34 et 70 kg./cm.2 apres 30 jours. ‘

Ces matériaux se prétent aisément au moulage et prennent au refroidissement la
rigidité caractéristique de la gélatine; ils peuvent ainsi se démouler facilement et
rapidement, ce qui permet d’observer leurs caractéristiques élastiques peu d’heures
apreés le moulage. Pour cela, on prépare des éprouvettes cubiques de 15 cm. de coté
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que ’on soumet & une compression simple aprés avoir graissé les faces pour éviter les
altérations par évaporation de I’eau intersticielle et aussi pour supprimer le frottement
sur la base de I’éprouvette au cours de ’essai. Comme il s’agit seulement de connaitre

TABLEAU I
Aen % B C D
Gélatine . . . 15 25 25 20
Bal, « & s s 30 20 15 20
Litharge . . . 40 40 40 45
Glycérine . . . 15 15 20 15

I’amplitude des constantes élastiques du matériau, les déplacements longitudinaux sont
mesurés en quatre points sur le plan de la base supérieure et aux quatre points corres-
pondants de la base inférieure; les déplacements transversaux sont rapportés au milieu
des faces latérales. Tous ces déplacements ont été déterminés avec une erreur
lnferleure a 0,01 mm. a l’aide de fleximétres placés ainsi qu’il est indiqué sur la fig. 1.
Les essais effectués comme nous venons

l H l l hl de l'indiquer ont montré que ces matéri-
/_"I aux se comportaiént élastiquement, que

N

J ] A leurs modules d’élasticité augmentaient avec
14 g ar I’age de I'éprouvette et simultanément
(T i 2 diminuait la valeur de leur coefficient de

Poisson, phénomene favorable puisque nous
sommes partis d’une valeur de »=0,50 trop
élevée. Nous nous attendions a une dimi-
nution de v corrélativement a 'augmentation
de E, puisque ces grandeurs varient ordin-
airement en sens inverse l'une de [’autre.
Nous constatons en effet que £ augmente et
que v diminue au-dessous de 0,5 (limite théo-
rique de plasticité), le comportement élastique prédominant ainsi sur le comportement
plastique. Ce processus d’accroissement de durcissement avec I’dge n’est pas
indéfini; il se ralentit lentement. Nous avons pu observer que sur tous les mélanges
essayés il cessait aprés 28 ou 30 jours, temps au bout duquel on obtenait des valeurs
stabilisées.

Pour appuyer les affirmations ci-dessus, nous reproduisons sur la fig. 2 les
diagrammes contraintes-déformations obtenus sur certains essais a 1, 2, 7 et 48 jours,
sur ’échantillon 41-11, dont la composition est indiquée en A, dans le tableau I.
Sur tous les graphiques, on constate qu’il y a proportlonnallte entre les contraintes et
les déformations.

Ayant ainsi réussi a obtenir un matériau satisfaisant aux conditions élastiques,
avec un poids spécifique voisin de 2, il importait de vérifier si ce module d’élasticité
E augmentait effectivement lorsque la température diminuait; a cet effet, nous avons
refroidi les éprouvettes et lorsque la température atteignait 2° C.*, nous avons répété
le processus de mise en charge. Dans tous les cas, nous avons obtenu I'effet prévu
et nous avons pu Vérifier que I'augmentation est d’autant plus faible que le module
d’élasticité est lui-méme plus grand; ceci parait logique, puisque la rigidité doit étre
d’autant moins sensible aux fluctuations des températures qu’elle est plus grande.

]

Fig. 1. Mesure des déformations

* Pour refroidir I'éprouvette, on la mettait, ainsi que la machine d’essai, dans une chambre froide
dans laquelle les opérateurs étaient munis d’habits de protection contre le froid.
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Sur la fig. 3, nous avons résumé les résultats des essais de mise en charge a 2° C.
sur P’échantillon 41-11 et nous les comparons avec ceux qui ont été obtenus a 22° C,
(fig. 2); nous pouvons y observer les valeurs obtenues pour E et » aux températures
citées. La connaissance des caractéristiques élastiques des mélanges a 22° et 4 2° C.
nous a fait penser qu’il était opportun d’étudier I’évolution du processus au cours du
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Fig. 2. Diagrammes contraintes-déformations

refroidissement. A cet effet, nous avons soumis trois éprouvettes identiques a 22° C.
a la méme compression simple, maintenue constante, et nous avons mesuré les
racourcissements pendant ’abaissement de la température. Les résultats des trois
essais ont été pratiquement identiques, ce qui nous a fourni une bonne preuve de leur
homogénéité et de leur reproductibilité. Ces essais font I'objet de la fig. 4. Sur
le diagramme de la partie supérieure sont portées les variations de température; 2
la partie inférieure sont portées les déformations en fonction du temps. Au moment
de I'application de la compression & la température de 22° C., il se produit presque
instantanément un racourcissement qui augmente, mais 4 une allure décroissante,
pour se stabiliser aprés 17 heures. Ce comportement est, jusqu’ici, celui méme qui
caractérise les corps élasto-plastiques (comme nous ’avons déja indiqué, la somme des
déformations élastiques et plastiques est proportionnelle 4 la contrainte qui les produit).

Cette période écoulée, nous avons

., - i

abaissé lentement la température et _ 48 Jours
nous avons constaté une augmenta- % g —
tion des déformations,alaquelle nous <~ 3 _ X
attribuons une cause d’ordre ther- 2 6 R

3 L .2 5 )93—-
mique, puisque les autres facteurs ne T 4 — L
varient pas. I‘l Yy a ici contraction s ; = i eole 022°C
thermique, suivant un coefficient < | et S V. Tronsverscle 0 2°C—

pratiquement linéaire qui peut étre 0 2 30 4 50 6 7 8 80 100 1o
déduit des deux diagrammes. A la gr/cm?
fin de ce stade, nous avons déchargé Fig. 3. Diagrammes contraintes-déformations
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les éprouvettes et constaté des déformations de signe contraire aux déformations
antérieures et a peu pres égales a la moitié des déformations produites au cours de la
période de mise en charge (ceci pouvait -étre prévu, puisque le module d’élasticité a
2° C. est a peu prés le double de la valeur pour 22° C.). Enfin, en élevant la tempéra-
ture, nous avons constaté une nouvelle déformation correspondante a la dilatation
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Fig. 4. Diagramme thermique

et a la diminution du module d’élasticité. Le diagramme met en évidence une
déformation résiduelle diie a I'intervention de différentes étapes plastiques.

De cette figure, que nous désignons sous le nom de ‘‘diagramme thermique,” il
résulte deux valeurs qui sont indispensables pour pouvoir passer des valeurs
expérimentales mesurées a la détermination des contraintes; 'une d’elle est la
déformation ““libérée”” et I’autre est le coefficient de dilatation thermique. Ces deux
valeurs doivent étre déterminées avec la précision maximum, puisqu’elles sont
essentielles pour les calculs ultérieurs.

Le matériau se comportant élastiquement a 22° C. comme a 2° C. les déformations
““libérées,” sous déduction des dilatations et contractions thermiques, apparaissent
proportionnelles aux contraintes; il est ainsi possible de parvenir a la connaissance de
ces derniéres.

Nous en avons ainsi terminé avec la premiére partie du mémoire se rapportant
aux matériaux utilisables dans I’application de la méthode proposée. Nous avons
mis en évidence les principales caractéristiques de quelques mélanges qui permettent
d’entreprendre 1’étude générale des modéles tridimensionnels avec efforts de masse.
Ceci constitue une contribution, si faible soit-elle, 4 la résolution du probléme
excessivement complexe de la détermination des contraintes a I'intérieur d’un barrage.

4. ESSAIS DE MESURE DES DEFORMATIONS

Lorsque nous nous référons & l’ellipsoide des contraintes ou a D’ellipsoide des
déformations, en un point de I'intérieur ou de la surface d’un corps, nous tablons sur
des considérations théoriques qui ne peuvent étre concrétisées sans faire intervenir
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un espace. C’est pourquoi en nous efforcant de déterminer la position, I'amplitude
et la direction des axes de ces ellipsoides en un point, nous procédons a mesure dans
un espace suffisamment petit pour pouvoir admettre que, dans cet espace, le champ
des contraintes est pratiquement constant.

Nous avons déja vu que la méthode exposée comporte la mise en charge du modéle,
son refroidissement a 2°, puis, aprés décharge, le découpage en tranches conservant
les traces des déformations. Ces derniéres sont libérées ultérieurement par élévation
de la température. Etant donné que la mesure des déformations libérées fournit les
indications de base pour le calcul des contraintes, il est tout d’abord nécessaire de
fixer la forme et les dimensions des tranches du modéle corrélativement aux mesures
a prévoir.

A premiere vue, la forme idéale parait étre la sphere, puisque par *‘libération”
des déformations, cette sphere se convertirait en un ellipsoide; toutefois, nous avons
dli renoncer a découper une sphére dans le matériau indiqué précédemment. D’autre
part, tout en réussissant a obtenir I’ellipsoide final, I'ellipsoide de déformation aurait
une forme telle qu’il ne serait pas possible d’obtenir, dans des conditions pratiques et
par mesure directe, la position et la grandeur des axes; pour cette raison, et comme
I'indique le Professeur Torroja,* il serait nécessaire de mesurer les déformations
suivant les arétes et diagonales d’un octaédre régulier, inscrit dans la sphére primitive.
Pour y parvenir, il n’est pas indispensable de partir d’une sphere; en effet, en
découpant des morceaux du modele sous la forme de cubes, ce qui est aisé, on peut
mesurer les mémes grandeurs, qui sont celles que mentionne la fig. 5. Une autre
solution plus simple et qui est suffisante pour déterminer I’état des contraintes est
celle que cite Torroja, qui consiste a mesurer les déformations selon les trois arétes
orthogonales d’un cube et les diagonales de trois faces contenant le méme sommet,
ainsi que l'indique la fig. 6. Si le cube est suffisamment petit pour que I’on puisse
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Fig. 5. Directions des mesures Fig. 6. Directions des mesures

admettre que I’état des contraintes est pratiquement constant, ces mesures permettent
de déterminer les valeurs des trois déformations longitudinales «,, «,, €, et des trois
glissements y.,, ¥xz, ¥yz; dans ces conditions, les équations de Lamé permettront de
résoudre le probléeme.

Pour mesurer d’une maniere pratique les arétes et les diagonales des faces de
chaque cube, sur de nombreux points, nous avons effectué un grand nombre d’essais
en employant des procédés et dispositifs divers. L’un des procédés, que nous
considérons comme le meilleur, consiste & découper le modéle retenant ses déforma-
tions a 2° C., sous forme de tranches planes sur lesquelles on dessine un quadrillage

* E. Torroja, ‘“El problema general de la auscultacion,” Publication No. 16 de I'Instituto Técnico
de la Construccion y del Cemento, Madrid.
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dont on observe les déformations corrélativement a I'élévation de la température.
La méthode de mesure est analogue a celle qu’appliquent Brewer et Glasco* sur des
piéces métalliques; cependant, nous n’avons pas pu reproduire photographiquement
le quadrillage sur le matériau constituant le modéle, comme ils le font eux-mémes
et nous avons di reproduire photographiquement sur la tranche de petites Croix
constituées par des traits extrémement fins. -
Pour éprouver la valeur du procédé de mesure, nous avons soumis a une com-
pression simple un prisme droit ayant une section de 10X 10 cm. et une hauteur de
20 cm.; dans le tiers central de 'une des faces latérales, nous avons reproduit une
série de croix formant un réticule de 2 cm. de c6té. L’ensemble a été photographiéf
avant et aprés la mise en charge et on a mesuré les intervalles avec une erreur de
moins de 0,01 mm., a I'aide d’un microscope micrométrique; on a ensuite déterminé
les valeurs indiquées sur la fig. 7. Les déformations longitudinales ont pu étre
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Fig. 7. Déformations et isostatiques expérimentales

déterminées avec des erreurs atteignant 109, sur la valeur moyenne et sur les points
de croisement qui ont été utilisés pour dessiner les courbes isostatiques; I'erreur
maximum a été de 2°45’. Bien que ces erreurs soient admissibles, nous pensons que
’on pourrait les réduire en améliorant la reproduction photographique et, par suite,
la précision de la mesure; nous y avons toutefois renoncé, car pour couper le modéle
en tranches planes, il nous était nécessaire d’établir et d’essayer trois modéles
identiques, pour pouvoir disposer de données portant sur trois plans perpendiculaires.

Pour tourner la difficulté, nous avons décidé de découper le modéle en cubes de
petites dimensions, puis de mesurer les distances entre les milieux de chaque paire

* Brewer et Glasco, “Determination of Strain Distribution by the Photogrid Process,” Journal of

Aeronautical Corp., Nov 1941, No. LV, 9.
1 Les photographles ont été prises avec des plaques & fort contraste.
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d’arétes ou de faces opposées. Ces points étaient matérialisés en enfongant de
petites aiguilles en acier inoxydable; le probléme se ramenait ainsi & mesurer
I'intervalle entre deux pointes métalliques; pour obtenir la précision maximum, nous

avons étudié et construit un appareil que nous décrivons ci-aprés briévement (fig. 8).

Fig. 8. Dispositif pour la mesure des déformations
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Fig. 9. Schéma électronique pour la mesure des déformations
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Cet appareil comporte deux vis micrométriques avec axes prolongés se terminant par
de petites surfaces circulaires planes. Ces micrométres sont montés sur un chassis
qui leur permet de pivoter sur deux axes, I'un vertical et I’autre horizontal. Au centre
de I’appareil, se trouve une petite plateforme A dont la position peut étre réglée en
hauteur et suivant deux axes horizontaux et perpendiculaires entre eux. La
disposition planétaire de I’appareil permet hereusement d’effectuer des mesures en
différentes positions, sans qu’il soit nécessaire de toucher le cube placé sur la plateforme
centrale. La difficulté était de déterminer le moment auquel la pointe de I’'une des vis
micrométriques vient en contact avec la pointe de I'une des aiguilles métalliques
enfoncées dans le cube. Cette difficulté a été résolue dans des conditions absolument
satisfaisantes, en mettant a profit le fait que le matériau utilisé est bon conducteur de
I’électricité. Le courant électrique passant a travers la masse du cube ne devant
nécessairement produire en lui aucune altération, nous avons adopté le montage
électronique indiqué sur la fig. 9 et dans lequel le contact entre les deux pointes
métalliques est indiqué par un signal lumineux émis par un indicateur d’accord, avec
une erreur inférieure a 0,005 mm. Dans ces conditions, le courant qui traverse le
cube est absolument négligeable et nous n’avons constaté aucune altération du
matériau lui-méme. Ce procédé permet de mesurer les déformations en neuf
directions, autour d’un point de I'intérieur du modéle; comme nous I’avons indiqué
antérieurement, ceci est suffisant pour déterminer la répartition des contraintes qui
agissent sur ce point.

Pour terminer, nous reproduisons ci-aprés les résultats de deux essais, au cours
desquels nous avons appliqué la présente méthode.

5. VERIFICATION EXPERIMENTALE

Pour vérifier une méthode expérimentale, il est nécessaire de I’appliquer 4 des
exemples ou a des problemes dont on connait a priori 1a solution. En considérant
comme valables les résultats de la théorie d’élasticité, nous avons réalisé plusieurs
essais dont deux sont décrits ci-aprés:

La premicre expérience consistait a charger un cube en compression simple avec
une charge connue et a lui appliquer la méthode indiqués en

' découpant intérieurement deux petits cubes orientés comme

1 l l ‘ [ l l J J \ l Iindique la fig. 10. Il s’agissait de vérifier si la direction
et 'amplitude des contraintes principales dans les deux
cubes, obtenues d’apres les résultats des mesures des défor-

z o O mations libérées, présentaient la concordance voulue avec
la charge initiale qui, comme nous l’avons déja dit, était
connue.

Ainsi qu’il a été indiqué a la fin de la troisiéme partie,
avant d’appliquer la méthode au modéle, c’est-a-dire au cube,
il était nécessaire de déterminer le coefficient de dilatation
thermique du matériau au passage de 2° a 22° C. et, a ’aide
d’un diagramme thermique analogue a celui de la fig. 4, de
rapporter les déformations libérées aux contraintes initiales.
Pour déterminer le coefficient de dilatation ou de contraction
thermique, nous avons utilisé les procédés classiques et
constaté qu’il était de 0,00031 entre 2° et 22° C.; pour rapporter les contraintes
initiales aux déformations libérées, nous avons déterminé les diagrammes thermiques
longitudinaux et transversaux d’une éprouvette de compression apres six jours de

T

Fig. 10. Position des
cubes intérieurs
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moulage; ensuite, et en appliquant a ce cas connu les équations de Lamé, nous avons
obtenu les valeurs suivantes:

G=2,3 kg./cm.2 (module de rigidité ou d’élasticité transversale),

Ae=0,046 kg./cm.2, en désignant par e la valeur de la dilatation cubique et avec
vE
=T aa—zy

En tablant sur ces valeurs caractéristiques du matériau que nous nous proposions
d’utiliser, nous avons entrepris 1’essai du cube comme suit:

Nous avons moulé un cube de 7 cm. d’aréte, puis nous I’avons mis en charge en
compression simple, aprés six jours, la salle de travail étant a 22° C. Aprés avoir
atteint I’équilibre, nous avons fait descendre la température a 2° C. et nous avons
retiré les charges, ce qui a amené la récupération d’une partie de la déformation, la
déformation résiduelle étant retenue. Nous avons ensuite découpé les deux cubes
comme l’indique la fig. 10 et nous avons mesuré les distances entre les points au
milieu de chaque paire d’arétes ou faces opposées en adoptant la méthode indiquée
dans la quatriéme partie. Toutes ces opérations ont été faites & 2° C. Les mesures
étant terminées, nous avons relevé la température a 22° C. et nous avons répété les
mesures. Les valeurs des glissements et des déformations libérées aprés élimination
de la dilatation thermique sont indiquées dans le tableau II.

TaABLEAU II
€x €y €; Yxy Yxz Yz
Cubel . 0,0103 0,0104 —0,0199 —0,0001 —0,0012 0,0020

Cube IT . -=0,0090 0,0115 —0,0043 0,0027  —0,0289 0,0004

En partant de ces résultats et 4 I’aide des équations de Lamé, nous avons calculé
les valeurs des contraintes en kg./cm.2 qu’indique le tableau III.

TaBLEAU 1]

Con-

traintes Oy ay o, Tay Txz Tyz
Cube I . 0,002 0,002 —0,138 0 —0,002 0,004
Cube I . —0,087 0,007 —0,065 +0,006 —0,066 -0

d’ou nous avons déduit les contraintes principales suivantes, en kg./cm.2, que nous
comparons dans le tableau IV avec la pression moyenne réelle.

TABLEAU 1V

Contraintes principales en kg./cm.2

a1 a1 410
CubeI . . . . . . 0,002 0,002 —0,138
CubelIl . . . . . . 0,008 —0,010 —0,143

Pression moyenne réelle . 0 0 —0,123
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En déterminant les cosinus directeurs des contraintes principales du cube I, nous
avons obtenu des résultats qui différaient de moins de 1° des valeurs exactes; pour

L o

—_ VY Gx

T

T

Fig. 11.

Position du cube intérieur

le cube II, ’erreur maximum a été de 4°. Ces
derniers résultats, ainsi que ceux du tableau IV,
constituent une excellente confirmation de la
valeur de la méthode.

Un autre essal a consisté 4 soumettre un
cube a une double compression et, en appli-
quant la méthode décrite, & en faire sortir un
petit cube (fig. 11). Dans ce cube, nous avons

-mesuré les déformations libérées, puis nous en

avons déduit les contraintes principales et nous
avons procédé a une comparaison avec les
charge extérieures. Nous n’indiquerons pas
ici tout le détail de I'opération qui, d’ailleurs,
est semblable a celle que nous venons de
décrire pour le cas précédent. Nous nous

bornerons a indiquer les résultats obtenus en les comparant aux valeurs réelles tirées

des charges extérieures connues.

TABLEAU V

Contraintes principales en kg./cm.2

Valeurs expérimentales .
,,  Tréelles

Valeurs expérimentales

9y R\ ¢ o
0 —0,32 —0,63
0 —0,29 —0,61
TABLEAU VI
Cosinus directeurs de oy
_ 1 m n
0,70 0 0,70
0,707 0 0,707

,,  Téelles

TABLEAU VII

Cosinus directeurs de oy

+ Valeurs expérimentales .
,,  Téelles

1 m n
0 1 0
0 _1 0

TABLEAU VIII

Cosinus directeurs de oy

Valeurs expérimentales .
,,  réelles

| m n
0,68 0 0,75
0,707 0 0,707

Les résultats ci-dessus exposés fournissent, dans tous les cas, une approximation

acceptable.
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6. CONCLUSION

A T’aide des exemples que nous venons de décrire, nous pensons avoir mis nettement
en évidence les qualités d’une méthode qui permet d’étudier les ouvrages sur trois
dimensions, malgré I'intervention des efforts de masse, en utilisant des modeles
réduits dans lesquels il est possible de déterminer la répartition des contraintes autour
de n’importe quel point, que ce soit & I’intérieur ou a la surface.

Pour y parvenir, il est nécessaire de construire ce modéle avec un matériau tel
que celui qui est indiqué en troisiéme partie et qui, non seulement, satisfasse aux
hypothéses de base de I’élasticité, mais soit en outre tel que son module d’élasticité
longitudinal augmente lorsque la température ambiante baisse. Ceci étant réalisé,
on peut mettre le modéle en charge a 22° C., le refroidir a 2° C., le décharger et le
couper en cubes ayant un volume suffisamment petit pour que ’on puisse admettre
que dans chacun de ces cubes le régime des contraintes en tous points est constant.
Ceci fait, il suffit de mesurer les déformations libérées dans les cubes par I’élévation
de la température a 22° C. (comme il est indiqué dans la quatriéme partie), puis de les
rapporter aux constantes élastiques du matériau pour pouvoir, a ’aide des équations
de Lamé, déterminer les valeurs en grandeur et en direction de chacune des contraintes
principales correspondant a chacun des points ayant fait I’objet de I’essal.

L’auteur est heureux d’exprimer ici sa gratitude a Mr. A. Moreno, Perito
Industrial, du L.C.E.M.C. de Madrid, pour la collaboration qu’il a bien voulu
apporter a la mise au point de cette étude.

Résumé

L’auteur expose une méthode expérimentale pour I’étude de la répartition des
contraintes en un point quelconque de l'intérieur ou de la surface d’un ouvrage
tridimensionnel, méme dans le cas ol en plus de forces extérieures, on fait intervenir
I'influence des efforts de masse.

L’auteur propose que I’étude de I’ouvrage soit effectuée au moyen d’un modele
réduit a construire dans un matériau dont il indique la composition. Il expose
également les caractéristiques de ce matériau ainsi que le procédé original désigné
sous le nom de “libération des déformations” et décrit les appareils utilisés pour
mesurer ces déformations. Il termine en exposant les résultats obtenus au cours de
deux essais effectués avec la méthode proposée, avec une conclusion satisfaisante.

Summary

In this paper an experimental process has been devised for the study of stress
distribution at any internal or surface spot of a three-dimensional structure, even in
the case where the influence of mass forces is considered, besides outside forces.

The author proposes the study of a structure by means of a small-scale model
made with a given material, the composition of which is indicated by him. He also
describes the characteristics of the said substance and the original process named
“liberation of deformations” and the apparatus he uses to measure the changes of
form. He ends up by showing the results obtained from two examples where he has
applied the proposed method with satisfactory results.

Zusammenfassung
Die vorliegende Abhandlung beschreibt ein experimentelles Verfahren zur
Untersuchung der Spannungsverteilung in irgend einem gegebenen Punkte im Innern
oder an der Oberfliche einer Konstruktion mit drei Dimensionen, auch fiir den Fall,
C.R.—27
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dass ausser dusseren Krafteinwirkungen auch der Einfluss der Massenkrifte in
Betracht gezogen wird.

Der Verfasser schldgt vor, die Untersuchung einer Konstruktion an einem
verkleinerten Modell vorzunehmen, das aus einem Material hergestellt ist, dessen
Zusammensetzung angegeben wird. Er beschreibt ebenfalls die Eigenschaften dieses
Materials, sowie das Originalverfahren, genannt ‘‘Befreiung von Verformungen,”
und die Apparate, die zum Messen dieser Verformungen dienen. Die Abhandlung
schliesst mit der Beschreibung der Ergebnisse, die bei zwei Probemessungen erzielt
wurden, wobei die vorgeschlagene Methode mit zufriedenstellenden Ergebnissen zur
Anwendung kam. '
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‘Lateral stability of beams
La stabilité latérale des poutres
Kippstabilitit von Trigern

K. BENTLEY, M.A.
Cambridge

INTRODUCTION

The problem of lateral stability of beams is not new: the solution for the case of
elastic buckling of a beam subjected to a pure bending moment was first given more
than half a century ago. This solution, however, was for a thin deep beam and
Timoshenko later extended the theory to include I-sections. The mathematical solu-
tions are, however, rather complicated and Timoshenko gave an approximate energy
method for an I-girder subjected to a central load. In this theory, however, he neg-
lected the ratio of principal moments of inertia as being small and the theory is only
applicable to I-girders. In the following paper it is proposed to give approximate
energy solutions for beams subjected to pure bending and to a central concentrated
load and no assumption is made as to the size or shape of the member except symmetry
about the major axis. '

The case of lateral buckling of beams when stressed above the proportional limit
has been considered very little. Timoshenko* suggests a possible method of pro-
cedure. The problem is considered in more detail in this paper and a method is
suggested for calculating the critical loads when the curvature of the stress—strain
relationship is taken into account.

ENERGY METHOD FOR OBTAINING THE CRITICAL MOMENT FOR LATERAL BUCKLING OF
BEAMS SUBJECTED TO PURE BENDING

Consider a beam of length L subjected to a pure bending moment M about the
major axis. Let the bending rigidity about the major axis be 4 and about the minor
axis B. Then due to the bending moment M the beam will take up a curvature of
M/A in the plane of bending. The stability of the beam may be considered by
supposing that it undergoes some small displacement from this position of equilibrium.
If consequent on this small displacement a decrease of energy take place, the beam is

* See Timoshenko, Theory of Elastic Stability.
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unstable. The critical condition such that the beam is in neutral equilibrium may
be found by finding the value of M so that there shall be no gain or loss in energy.

At a distance z from one end of the beam let the lateral deflection be u and the
angle of twist 8. There is thus a lateral bending moment of M sin § and a bending
moment of M cos 6 about the major axis. Thus for an elemental length of beam dz
there is an increase of strain energy of bending of :

MZ2cos28 M?2sin28 Mzd_le B 20 d
24 T 2B 24)%T2p\! T4) sl
If 8 is small, the total increase of strain energy is:
L M2 A
R —_—— 2
fOZB(I B)B.dz i w8 ® & % =« @ Y3

[t has been shown by many writers* that the torque acting at this cross-section may
be written as:

Cdf d3f
dz  ldz3
do . ) ) d3e
where CC?Z' is the torque according to the usual St. Venant solution and the term C; 7

allows for non-uniform torsion and warping of the cross-section and may be cal-
culated according to the method given by Timoshenko. :
The strain energy due to torsion is thus:

e R

Thus the sum of (a) and (b) at the critical condition will be equal to the work done
by the applied moments M when the beam is allowed to deflect. The work done
by M may be calculated by finding the angle through which it turns.

The lateral bending moment A sin & causes the ends of element dz to rotate

0 ) " :
. dz relative to each other. This occurs in a plane at an
M sin2 0
B

Due to bending about the major axis the ends of the element dz rotate by an amount

A_fd M cos2 8
=g T

the deflection 6 was given and the second term after. Thus the total relative rotation
of the ends is:

M sin
through an angle 3

angle ¢ to the horizontal and the relative rotation in a vertical plane is L.

. dz relative to each other, the first term being the angle before

. 3 Ldz—— .dz+ Y

The work done by M is therefore, for small :
L M2 B
el | 1R s
fo 5 (1 A)G . dz=(a)+(b)
Substituting for (a) and (b) and noting that the beam is symmetrical about the centre,
the equation from which the critical moment may be obtained is:

Liz pp2 B Liz. (d6\2 L2 do d3o
—(1—==162 . dz= i — = :
JO 2B(1 A)B .dz fo C(dz) .dz fo Cldz T dz' . . (1)

* See Timoshenko, Journal of the Franklin Institute, March, April, May, 1945.

ff- (M sin2 6 M M cos2 0 )
— . dz
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If the relationship between 6 and z were known exactly the equation (1) would give
an exact value for M., the critical moment causing lateral instability. Usually an
exact relationship is not known, but if a relationship satisfying the end conditions
is assumed, then an approximation to the answer is obtained.

Thus when the ends of the beam are held in such a manner that they are free to
2

; : s d2
warp, 9=a, sin — satisfies the end conditions that f=>—-=0 at both ends of the

L dz2
beam. Substitution of this in equation (a) gives a value for the critical moment with
ends free to warp of: -

T BC w2 C4
M"l_i mJ1+EE : B 0% B & B (2)

This agrees with Timoshenko’s solution for an I-girder when the value of C; for an
I-girder is substituted and the value of B/A is neglected. The ratio of B/4 may be
as high as 0-4 in practice and in those cases its neglect would give appreciable error.
The value of the critical moment given in equation (2) is exact because in this case
the value of 6 assumed is exact.

In a practical case it is almost impossible to apply a moment at the ends without
preventing warping and so the case when the ends are completely restrained against

2
warping will now be considered. In this case =5, ( 1—cos %z) satisfies the end con-

do :
ditions that §=—=0 at both ends. When this value of 6 is substituted in equation (1)

dz
- it is found that the value of the critical moment Mc,2 is given by:

P BC [ 4x2
MC,Z—IISEA/I_B/A.J1+ﬁ.f N )

This solution is not exact due to inaccuracies in the assumed value of 6. By
taking 0 of the form (see Timoshenko, Theory of Elastic Stability):

6
9=b1(1—cos 2[‘12)+b2(1—cos 4%Z)—f-b3(l—cos lz)+ 4 @

L

a more accurate answer may be obtained. It can be shown that equation (3) is in
error by the order of 2 %, negligible for all practical purposes. One noticeable point
about (3) compared with (2) is that complete restraint against warping increases the
critical moment by more than 15 Y%,.

ENERGY SOLUTION FOR A BEAM SUBJECTED TO A CENTRAL CONCENTRATED LOAD THROUGH
THE SHEAR CENTRE

Suppose that a central load P is applied at a distance y above the shear centre so
as to produce no twist. The stability is considered as for the case of pure bending
by assuming the beam to deflect. Let 8, be the angle of twist at the centre.

Then in the manner already given, the strain energy due to lateral bending is:

L. P B
—(1=2)02,2
Jo %.45(1 A)H z2dz

and the strain energy due to torsion is:

L Cde Cdﬁ dJBd
o*[ (az)‘ a‘zr]
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The work done by the central load may be found by. considering it in two parts.
If the load is applied at the shear centre, the work done by it may be found in a manner
similar to that already described for the pure moment. Due to lateral bending the
Pz . d ) :
ends of element dz rotate through an angle EZ sin 0 —Bf relative to each other. Since
this bending occurs in a plane at angle 6 to the horizontal it causes a lowering of the
Pz sin 0

load of zsin 6. g dz. Similarly due to bending about the major axis the

P .
load rises by an amount >4 z2sin2 6, dz. Thus, if 8 is small, total work done by P is:
L2 p2 B
Z (1=2)62,2
Jfo 23(1 A)G z2dz

Due to the load being applied at a distance y above the shear centre there is an
additional work done of Py(l1 — cos 8,,)=Pyb,,2/2 approximately. Remembering the
symmetry about the centre of the beam, the energy equation then becomes:

L2p2/ B Py8,2 (L2 _(dh\2 L2 4§ 436
—{1==1)02 il Ak I i 7 — — . dr.
R TR PP T S L L
The solutions of this may be found as for the pure bending case and are given below:

_ ) 17-1 BC 72 C
When y=0 and ends free to warp: P, = 72 JI—B/A(1+E . ?) N )
18-3 BC 4n2 C,
When y=0 and ends ﬁxed.r Fopp= 72 4/1—8/A(1+? .—E) ... (6)

When the load is applied distance y above shear centre the critical load of equation (5)

is reduced to:
2

X
Pc,11=Pc,1(1—X+7) approx. -+ . . . . . . (M

where
30By

~ P, L3(1—BJA)

The theory considered so far has been concerned with beams of material which
behaved elastically. For beams of, say, aluminium alloy the range of elastic behaviour
is small and so the elastic critical loads will not give a good approximation to the
failing loads of the beams. Attempts have been made in an empirical fashion to
allow for this effect, among others, by assuming some initial imperfection for the
beam or some eccentricity of loading. The effect of this is that lateral deflections of
the beam occur from the first application of the load becoming infinite, theoretically,
near the critical load. The failing load is then determined as that load which causes
the stress in the beam to exceed the yield stress of the material or some other pre-
determined value. A value of the initial eccentricity is then chosen to give good.
agreement with experiment. This method, whilst giving reasonable agreement
between calculated and actual failing load, covers up the essential fact that much of
the reduction in failing below the elastic critical load is due to the relationship between -
stress and strain being non-linear. In this paper it is proposed to give an approach
which is dependent only on this fact.

The method follows that originally proposed by Engesser for struts in which the
curved stress—strain relationship may be- allowed for by an effective modulus of

X
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elasticity. For the problem of lateral stability of beams, the method is more com-
plicated due to the fact that there are four factors, 4, B, C and Cj;, in which the
modulus of elasticity plays a part. Since I-beams are most frequently used in practice
and are also the simpler to deal with theoretically, the following discussion will be
restricted to beams of I-section. The usual proportions of I-section will be taken, so
that it is possible to assume that the web has a small effect on the bending and that
in bending about the major axis there is a uniform stress in the flanges.

Let us assume the theoretical approach of a beam which remains straight until
buckling and then fails by bending laterally and twisting. Before buckling the stress
distribution in the I-girder may be considered to be very nearly a uniform compressive
stress in one flange and an equal tensile stress in the other. The strain of the flanges
will be that corresponding to the stress for the material concerned, and the curvature
of the beam will be the strain divided by the distance to the centre of the section. If
the stress is greater than the limit of proportionality this curvature is greater than the
elastic value given by M/A. It 1s fairly easy to see that the curvature is increased in
the ratio E/E; where E;, the secant modulus, is the actual ratio of stress to strain.
As will be seen from equation (a), it is the curvature in the plane of bending which
introduces the factor 4, and it is therefore proposed to allow for this by assuming 4
to be factored in the ratio E/E. This, of course, has no effect when the stress is
below the limit of proportionality.

At the critical load,- when the beam suddenly deflects laterally and twists, the
direct stresses due to lateral bending and the shear stresses due to twist both increase
rapidly, whilst the mean direct stress due to the applied moment remains constant.
Thus at some points in the beam the direct stress will decrease below that caused by
the applied moment, and if the mean direct stress is above the elastic limit, then the
reduction in stress will occur as an unloading from the plastic region. Thus the stress

Bending stress fb//aw/ny tangent
modulus law

Mean stress Mean stress
in flange in Flang

Stress

AN

Unloading

Bending stres.

Stram

Following
Hookes law

Fig. 1

distribution across a flange will be somewhat as shown in fig. 1, where the increase of
loading follows the usual stress-strain curve, but unloading from the plastic region
follows the usual Hooke’s law.

For small lateral bending moments the increase of stress can be approximated
to by a straight line whose gradient E; is that of a tangent to the stress—strain curve
at the point considered. E,is called the tangent modulus. This effect was first men-
tioned by Engesser for struts, and it has been suggested that for small lateral bending
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stresses the effective lateral bending modulus may be taken as a reduced modulus E *
where:

E, 4E\|E E,

E-(+VE/EY E
The effective value of B to be used in formulae is then the elastic value factored by
E./E.

In this purely theoretical case of a beam which remains straight until buckling,
the shear stress due to twisting increases rapidly as the direct stress remains con-
stant. There is a certain amount of evidencet that for this case the shear modulus
1s unchanged and the value of C remains unaltered.

Let us now consider the more practical case where the beam undergoes lateral
deflections and rotations before the critical load is reached. These lateral deflections
are due to inevitable imperfections in the beam. In this case the deflections first of
all occur gradually and then more rapidly when near to the critical load. Thus the
shear stress due to twisting increases gradually as the bending moment is applied.
When the shear stress increases very gradually in this way while the direct stress
increases more rapidly there is evidence{ to show that the shear modulus is very
nearly the elastic value G factored by E;/E. Accordingly the torsional stiffness C
will be factored in the ratio E;/E. For more rapid increases of shear stress the
effective modulus would be higher and closer to the elastic value which applies when
the increase of stress is very rapid. In a similar manner, lateral bending occurs
gradually and the direct stress distribution in a flange will change somewhat as shown

|

/{Mean stress
- A 8
7
#"
L~ 8¢
Stress He I
7,
/  ——
7 | ¢ 0
Failing load
Momen/

Fig. 2. Variation of stresses in beam with small eccentricity

in fig. 2. The stresses continually increase and the direct stress distribution due to
lateral bending of small magnitude is such as to approximate to that given by a
tangent to the stress—strain curve.

The effective value of modulus B is thus its elastic value factored by E,/E. The
effective value of the major stiffness 4 will be the same as that already discussed,
that is, A X E5/E. Since the warping rigidity of an I-girder is provided by differential
bending of the flanges, this also will be modified in the ratio E,/E.

Thus it will be seen that in the more practical case of deflections occurring below
the critical moment, the effective values of B and C are lower, giving a lower value
of the critical moment. In practice therefore it is to be expected that the values of

* S. Timoshenko, Theory of Elastic Stability, McGraw Hill.
T S. Batdorf, “Theories of Plastic Buckling,” Journal of Aeronautical Sciences, July 1949,
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the critical moment will approximate to this lower limit. The value of the critical
moment for a beam is now dependent on the material of the beam and not only on
the modulus of material as given in equations (2), (3), (5) and (6).

In order to find the critical moment for a beam the stress—strain curve of the
material must first be obtained and the values of E,/E and E;/E noted for various
values of the stress. The value of the critical moment may then be most easily found
from (2) and (3) by a trial and error procedure. A value for the stress in the flange
caused by the critical moment is assumed so that the values of Ej/E and E,/E are
known. When these values are substituted in the equations a value of the critical
moment will be obtained which will probably differ from the originally assumed value.
A second approximation to the correct value can then be made until agreement is
reached.

The case of the centrally applied load is rather more difficult, since the stress and
therefore the effective moduli vary along the beam. Numerical methods of integra-
tion are required for the solution. With the assumptions made, the stress in the
flange varies linearly from zero at the end of the beam to a maximum p at the centre.
The value of P in equation (4) may thus be replaced by 4p/ZL where Z is the modulus
of bending about the major axis. Equation (4) may then be rewritten for the case
where load is applied through the shear centre:

4p2 [LI2 11 L2 ige\: (H2 g8 438
i’ il 27222\ g, — N 60 2
Zszfo »z (B A)dz J-o C(dZ) dz fo e dz

where 4, B, C and C; are functions of p.

Assuming some value of p, the effective values of 4, B, C and C; may be found
and each of the integrals of equation found by numerical integration. The solution
gives a value of L which agrees with the chosen value of p and hence the value of the
critical load for a given L. This procedure may be repeated until the relationship
between P and L is found. Of course, in the above the value of Z to be used should
not be the usual elastic value but one which allows for the form-factor due to the
curved stress—strain relationship. For the usual I-section this correction is small.

EXPERIMENTAL RESULTS

Some experiments have been carried out at the Engineering Laboratory, Cam-
bridge, with the support of the Aluminium Development Association to check the
above theory. The beams had an I-section 21 in. deep, by 14 in. wide by # in. thick

Yltimate _
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0.2
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Fig. 3. Stress-strain curves Fig. 4. Moduli for M.G.5
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and two materials were used, one to specification D.T.D. 364 and the other M.G. 5,
typical stress—strain curves and effective moduli being shown in figs. 3 and 4.

The specimens were supported under conditions of simply supported ends, the
beam being free to deflect in vertical and horizontal planes but the ends prevented
from twisting. For the case of pure moment the load could not be applied so that
the ends were completely free to warp and the method of end fixing is shown in figs. 5
and 6. The blocks bolted to the flanges (fig. 5) located the specimen in the end fittings

Fig. 6. 50-in. beam at failure

(fig. 6) and also provided some restraint against warping. The blocks were clamped
tightly in the end fittings. End moments were applied by means of cantilevers pro-
jecting beyond the ends of the specimen. ,

With the central loading the ends were allowed to warp by supporting the I-section
through the web only. With the higher strength alloy, D.T.D. 364, restraint against
warping was provided for as in the pure bending case, but with the M.G.5 the ends
were welded to 4-in. thick blocks of aluminium in the hope of providing full restraint.

The results of the tests together with the calculated results are shown in figs. 7, 8,
9 and 10.

It will be seen that for long slender beams the failing load may be greater than
the critical load. This is to be expected since in this region the critical load falls
below the minimum strength of the beam. For the end fittings of type shown in fig. 5
the experimental results lie consistently between the two calculated curves showing
approximately the same amount of restraint against warping and that full restraint
was not obtained.
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On the whole the experimental results seem to agree well with the theory; the
largest discrepancies appear in the neighbourhood of the proportional limit, where
the ““elastic” curve diverges from that calculated by the use of effective moduli. Itis
in this region that the greatest divergence might be expected, due to the rapid change
in slope of the stress—strain curve. For example, consider a practical beam in which
there is inevitably some small deflection near the critical load, and let us suppose that
the length is such that the critical load just produces a stress equal to the proportional
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limit. Any small lateral bending therefore produces stresses which extend into the
region of curved stress—strain relationship and the ratio. E,/E is less than 1. The
simplified theory so far considered gives the effective modulus at this point as £ and
hence it is to be expected that in practice the failing load will be less than that cal-
culated. This difference will be greater, the greater the initial imperfections which
produce the lateral deflection, and it is only in this region that the initial imperfections
would be expected to have much effect.

Nowhere in the theory has any mention been made of the size of the initial
eccentricities which must be present in any practical beam. Some eccentricity was
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assumed in the theory, in order to produce small deflections below the critical load,
but no specific magnitude was attached to it. The basic assumption was that the
lateral deflections were small, so that the bending stress distribution could be approxi-
mated to by a straight line. It was also assumed that no unloading of the fibres
occurred. This second assumption is not strictly true. Measurements of deflection
which were taken enabled an estimate to be made of the point at which unloading
occurred and it appeared that unloading usually occurred but never below 95%, of
the failing load. This is sufficiently close to failure to make the assumption reason-
able. In this region the lateral bending becomes so large that the first major assump-
tion is no longer tenable and the bending stresses no longer follow a reasonably
straight-line law. It can be shown that the effect of unloading and this effect tend
to cancel each other and hence the reasonable agreement of the theory with experiment.

CONCLUSIONS

On the basis of the experimental data presented it seems that the calculated critical
load for lateral buckling does give a good approximation to the failing load of beams
in bending, even when the magnitude of the initial eccentricities is neglected.

Summary

The usual mathematical solutions for-the problem of lateral stability of beams
are long and complieated, particularly when allowance is made for the ratio of the
maximum and minimum bending stiffnesses. An approximate energy solution is
presented in this paper for the two cases of a beam in pure bending or under a central
concentrated load.

The theory is extended to allow for beams fabricated from materials whose stress—
strain curve is non-linear, which is the case with aluminium alloys. The method used
for this follows that originally presented by Engesser for struts when the usual elastic
modulus is replaced by an effective modulus. Experimental results are given for
I-beams fabricated from two different aluminium alloys. These results show good
agreement with the theory.

Résumé

Les solutions mathématiques habituelles du probleme de la stabilité latérale des
poutres sont longues et complexes, tout particulicrement lorsque le rapport entre les
valeurs maximum et minimum de la rigidité a la flexion est variable. L’auteur pré-
sente une solution approchée, basée sur des considérations énergétiques, dans les
deux cas de la flexion pure et de la concentration de la charge au milieu de la poutre.

La théorie est élargie aux poutres constituées en un matériau dont le diagramme
d’allongement est non-linéaire, comme c’est le cas par exemple pour les alliages
d’aluminium. La méthode employée suit celle qui a été indiquée initialement par
Engesser, dans laquelle le module habituel d’élasticité est remplacé par un module
efficace. L’auteur reproduit des résultats expérimentaux obtenus sur des poutres
constituées par deux alliages légers différents. Ces résultats présentent une bonne
concordance avec la théorie.

Zusammenfassung
Die liblichen mathematischen Losungen des Problems de seitlichen Stabilitdt von
Trdgern sind lang und kompliziert, besonders bei verdnderlichem Verhiltnis der
grossten zur kleinsten Biegesteifigkeit. Dieser Aufsatz bringt eine Ndherungslosung
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auf Grund einer Energiebetrachtung fiir die beiden Fille der reinen Biegung und
der Einzellast in der Mitte des Trédgers zur Darstellung.

Die Theorie wird erweitert auf Trager aus Material mit nichtlinearem Spannungs-
Dehnungsdiagramm, wie zum Beispiel Aluminiumlegierungen. Die dabei verwendete
Methode folgt der urspriinglich von Engesser fiir Streben angegebenen, bei der der
iibliche Elastizititsmodul durch einen effektiven Modul ersetzt wird. Es werden
Versuchsresultate fiir Triger aus zwei verschiedenen Aluminiumlegierungen angege-
ben. Diese Resultate zeigen eine gute Uebereinstimmung mit der Theorie.



Leere Seite
Blank page
Page vide



	A: General questions
	I: Bases of calculations; safety
	General report
	AI1: Loading of bridges and structures (influence of wind, earthquakes, etc.)
	An investigation of the oscillations of suspension bridges in wind

	AI2: Dynamic problems
	Die Dämpfung von Brückenschwingungen
	Dynamic increments in an elementary case

	AI3: Consideration of the actual conditions for deformation (plasticity, creep, etc.)
	The calculation of plastic collapse loads for plane frames
	Plastic analysis and design of steel-framed structures
	Determination of the shape of fixed-ended beams for maximum economy according to the plastic theory
	Sur la plastification de flexion des poutres à âme pleine en acier doux
	Experimental investigations into the behaviour of continuous and fixed-ended beams

	AI4: General conclusions regarding safety of structures
	Calcul du coefficient de sécurité


	II: Development of the methods of calculation
	rapport général
	AII1: Analytical methods of the theory of elasticity and plasticity
	L'emploi de fonctions orthogonales spéciales pour la solution du problème de la torsion
	Beitrag zur Elastizitätstheorie der Schalen
	An approximate method for treatment of some plate bending problems

	AII2: Numerical methods in applied statics
	Some special cases of buckling

	AII3: Other methods of calculation (approximation methods, relaxation method, calculation regarding rupture, experimental statics, etc.)
	Measurement of strains in a slab subjected to a concentrated load
	Experimental and theoretical investigation of a flat slab floor
	The limit of stress in the compression flanges of beams
	Théorie de l'instabilité par divergence d'équilibre
	Étude théorique expérimentale et pratique des encastrements de flexions
	General review of the present status of the experimental method of structural design
	Photoelasticity applied to structural design
	Method of elastic compatibility in the solution of beams of finite length on elastic foundations
	L'influence de l'élasticité du sol sur les contraintes des barrages-poids: théorie et solution numérique
	Nouvelle méthode d'analyse tridimensionnelle sur modèles réduits
	Lateral stability of beams




