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The various subjects in the theme AI, although apparently quite independent,
are none the less related by a common interest. This common link is the philosophical
idea of safety, and it is interesting to notice how at present there is a growing tendency
to focus these problems in a manner entirely disparate from that which served initially
to establish the nominal concept of safety factor.

Whilst, according to classical theory, structures are designed so that extreme
working stresses fall within the limiting permissible stresses, the modern tendency
is to refer most definitely to the final breaking loads, or to loading conditions immedi-
ately prior to failure.

The idea of permissible stress derives from the supposition that, under a certain
system of loading, the members behave in a certain way. Modern criteria on limiting
conditions of loading are based on the system of externally applied forces that will
cause the collapse of the structure.

According to the first of these two methods, the factor of safety is a number which
divides certain yield or breaking stresses.
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In the second method the external applied forces, or the set of forces acting on a
section, are multiplied by the factor of safety, and the structure is then designed so
that it will just fail at the resulting values.

Each procedure has its pros and cons. The first of these methods is widely
accepted, and there are few codes that do not specify it in a more or less direct manner.
The second method has the advantage of expressing the conditions of failure more
rigorously. The first one is more easy to apply in most cases. The latter provides a
more generalised description of the concept of safety. It can be applied both to
problems of buckling and to modern prestressed structures.

If building materials exactly satisfied Hooke's Law, it would be satisfactory to
apply either of the two methods. The exaet linear correspondence between stress and
strain implied by this law means a close proportionality between stresses and applied
loads, and so both methods will be identical. Conversely, if this proportionality
cannot be extended up to the point of failure, there is no longer a linear correlation
between cause and effect, and the two coneepts of safety mentioned will differ.

In strict rigour, the real Solution has something of both criteria. To allow for
the natural uncertainty in the mechanical properties of the material and inevitable
defects in the process of manufacture, it is wise to rely on a yield or breaking stress
that is.lower than the estimated value. This will provide some margin of safety to
cover the possibility of these aforementioned defects. Thus the limiting stress should
be lowered, and it seems logical to divide this stress R by a partial safety factor C„
so that the probability that the estimated design stress R will not surpass the value
R/Cr is sufficiently small.

Furthermore, any unforeseen increase in the overload, any error in the layout of
the structures or in the sizes of the structural parts when actually made, any calculation

mistakes, either in the arithmetical work or in the initial hypotheses, may result
in actual or Virtual increase of the estimated applied forces acting on a given section.
This uncertainty necessitates that a factor of safety be accepted which, on multiplying
the design forces by it, will give the structure the required measure of safety. By
this means the chance that a set of sufficiently unfavourable circumstances shall
eoineide will be rendered small enough to meet the particular requirements of the case.

Often this distinetion between factors of safety which multiply loads and those
which divide top stresses is unnecessary, and it suffices to design the structure for a
produet of both factors. But in other cases it is necessary to make this distinetion
to reduce the cost without sacrificing safety.

Lack of sufficient experimental work has made it impossible to calculate the
distribution of these two factors in metal structures. Tests on the change in strength
of concrete if there is an excess of water or deficient proportioning of cement have
made it possible to obtain a Statistical law relating the magnitude of the defects and
their probable incidence. In constructional work there will be several sources of
error: variations in the quality of materials, mistakes in the actual construction,
errors in dimensioning, arithmetical mistakes and faulty hypotheses, fluctuations in
the overload, etc. These various sources of error have been expressed in the form of
probability laws.

By means of successive compositions and eliminations of these laws, it was possible
to obtain the relationship between the safety factor Ce by which loads should be

multiplied and the total factor C*
* This relation is, with fair approximation, equal to one plus the third of the total factor of safety,

namely: Ce l + CJ3, and Cr=C/Ce is the partial factor of safety by which maximum stresses
should be divided.
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These two partial factors of safety Ce and Cr provide a more precise description
of the problem. The former describes the possibility that external loads should
increase unforeseeably. The second describes the measure of confidence that can be
placed on the materials selected for the work.

The paper submitted by B. G. Neal and P. S. Symonds on "The calculation of
plastic collapse loads for plane frames" is a magnificent example of the diversity of
these concepts. The authors advocate the adoption of a factor of safety of 1-75 as
the factor by which dead-weight and foreseeable loads are to be multiplied; design
calculations being based on the effect of such a system of externally applied loads.
Having obtained their final results, they adopt the same procedure for external
forces and wind load. For this set of forces they take a factor of safety of 1 -4, as an
indication of the lesser likelihood that the most adverse loading conditions shall
operate simultaneously.

This manner of estimating maximum loads enables one to calculate stresses in
hyperstatic structures, based on the elasto-plastic behaviour of the metal. Only
under loadings that are 75 % or 40 %—according to the case—greater than those
estimated will the structure begin to yield slowly. Such collapse occurs when a
sufficient number of plastic hinges have formed to transform the statically indeterminate
structure into a mechanism.

Thus the final condition of failure is clearly indicated by the previous "yielding"
phase of the material. Apart from involving more laborious calculations, the method
of permissible stresses enables one to describe only the distribution of stresses within
the structure. It cannot correctly describe its safety against the danger of collapse
with the vigour, clarity and simplicity of the theories initiated and developed under
the direction of Prof. J. F. Baker.

This subject, novel and capable of rational analysis, involves the arduous, complex
problem of the safety of hyperstatic structures. Both in the previously mentioned
paper and also in the paper submitted by J. Heyman, "Plastic analysis and design of
steel-framed structures," it is remarked how the initial measure of redundancy of the
structure tends to impede the general movement of the system.

If these ideas are applied to the simple case of a pitched-roof portal frame, it will
be noticed that the structure would collapse if the steel were to reach the point of
yield prematurely. A defect in rolling, an internal air bubble or a defective weld
would suffice for a given section to fail to withstand the forces for which it is designed.
The section becomes plastic and a plastic hinge appears at a given point.

If the structure is statically determinate, failure will occur more or less suddenly.
Conversely, if the system is highly redundant, the conditions of safety vary. Before
a highly redundant multi-bay portal frame can collapse laterally, under the action of a
horizontal force, all the vertical members have to become plastically hinged and
rotate. A local defect in one of them implies a point of weakness, but the danger of
collapse becomes notably reduced by the supporting strength of the other vertical
members. Only at the final moment, when the externally applied forces are very
severe, does the whole structure fail. Each member, fully strained under excessive
loading, cannot render further assistance to its neighbours, and these, unable to
withstand the load, subdivide and collapse.

In this sense, pin joints and other flexible joints seem to limit the capacity of the
system to resist. They are veritable boundaries, or barriers, forcing adjacent members
to depend only slightly on other members. This isolation and great autonomy are
sometimes prejudicial, sometimes advantageous. Flexibility is an inestimable advantage

in all those instances where it is to be anticipated that foundations will subside.
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The fact that a structure may have to withstand a given set of loads effectively,
as well as the strains arising from subsidences, makes it difficult to establish general
conditions of safety for this dual form of loading.

Perhaps one of the most important points arising from the work inspired by Prof.
J. F. Baker relates to the new concept of safety. The whole structure fails although
at the instant when it begins to collapse the most loaded fibres have not reached their
ultimate failing stress.

This new idea, this mutation of the concept of ultimate strength in order to
Substitute it for the critical instant at which the steel begins to yield, sets new problems.
The nature of failure is shown, not as a sudden phenomenon but as a steady State of
transition towards instability. In this Situation the rheological behaviour of the
material acquires a predominant importance. If failure requires that loads shall be
kept applied for a certain time, i.e. if the collapse is not sudden, then damage due to
accident will be less severe than in the case of a brittle collapse. If damage is less,
the required factor of safety will diminish. The structure can be designed with a
smaller margin of safety than if a sudden collapse is anticipated.

This effect of the time-variable leads to a new aspect of the behaviour of the
material during the critical phase in which the creep phenomenon appears. In tests
in which the load has been rapidly applied, it has been found that the moment at
which plasticity begins may differ, according to the definition of J. F. Baker, from the
critical moment at which, if the load is applied during a certain interval, the member
yields. All will depend on the position within the stress-strain diagram of the
theoretical or conventional creep limit.

Tests by Prof. Campus in which steel has been subjected to tensile stresses at
ordinary temperatures have revealed the different behaviour of various kinds of steel
and the influence of rolling or strain on the point of the limit of creep. This position
does not seem to be directly related to the real, or conventional, yield point, nor
to the arbitrary proportional limit.

This behaviour of the material under sustained loading sets two problems that so
far have not been satisfactorily overcome, and which can be enunciated briefly as
follows:

What is the bending moment which, if applied indefinitely, leads to considerably
larger strains than those due to a slightly smaller moment In tests in which loads are
maintained over a long period, is there any indication of discontinuity, or is there a
point at which steel suddenly begins to strain rapidly? In these circumstances has
the previous history of cyclic loading any influence

It cannot be overlooked that, rheologically, short-time tests only illustrate one
facet, a partial aspect, of the strain problem. The loading processes which the structure

will have to withstand involve conditions entirely different from those under which
tests are often conducted. These begin with a rapidly increasing loading, until failure
occurs. But the collapse of a structure is usually preceded by a long, uncertain history
during which there may have been many unforeseeable loading cycles. Sometimes
the collapse is due to the violent action of an external system of forces; these, acting
statically or dynamically, sometimes after repeated cycles, are capable of causing
failure either suddenly, or slowly or by successive steps. On other occasions some
important defect in one or several sections of the structure imposes severe working
conditions. The member, being stressed nearly to its ultimate capacity under normal
loading, is strained to a point close to its creep or yield limit. Strains grow continu-
ously under design loads, and failure may even occur for smaller strains than the
maximum strains attained during a short-time test. The material, prematurely aged,
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is not able to resist any further. It withstood the initial loading, but time was the
direct cause of its final failure.

In a sense, the effect of permanently applied loads is akin to the phenomenon of
alternating or cyclic loading. A single cycle of loading and unloading does not
suffice to break a structural member, but continuous repetition of loading cycles may
lead to fatigue failure. The endurance limit seems to have some relationship with the
critical load the material can withstand indefinitely. This critical load, according to
tests on concretes by J. R. Shank, is 86 % of the instantaneous ultimate strength.

For the present very little can be said about a possible correlation between fatigue
and ageing phenomena due to loads permanently applied. The urgent problem faced
by high-pressure-steam plant makers regarding the rheological behaviour of steel at
high temperatures has been only partly classified, in spite of great efforts and advances
made in this field. Nor is the similarity of the strain-time diagrams for constant
stress, at various temperatures to the strain-time diagrams for various stresses at
constant temperature of much help in formulating a satisfactory relationship between
these two types of phenomena. There is a remote possibility that a relationship
may exist between the behaviour of steel under sustained loading over a long period
at a given temperature and a similar behaviour at a different temperature, by making
some corresponding, but so far obscure, compensation in the time factor. But such
a Suggestion, for all its interest, cannot be formulated with any pretence to scientific
rigour.

Only experimental research can clear up the complex strength behaviour of
materials under permanently applied loads. New results on the behaviour of material
under repeated loading can only be obtained by a systematic programme of tests.

All estimates about the future are tinged with uncertainty. As a first approximation
the designer may guess intuitively, or may estimate the limiting value of certain

loads to be statically applied. If he wants to get nearer the truth, he may take aecount
of their effect on the structure when applied over a certain time span. Dead weights
and permanent overloads constitute a system of forces which never cease to operate.

But additional to these, and concomitantly with accidental overloads which may
operate over long periods, phenomena of the opposite type may supervene. Two
examples of intermittent loading are the wind, with its gusts of capricious intensity,
and the regulär cadence of a train crossing a bridge. Its action endures hours or
minutes, but in contrast to permanent loading which remains uniform, the magnitude
of loading is modulated, varying according to arbitrary laws, and is always dependent
on many variables which are difficult to estimate.

At times such intermittent loading may induce oscillations, which, if the structure
is very flexible, will merely cause discomfort to users. A typical example of this is
the Whitestone Suspension Bridge, near New York. The structure was capable of
withstanding hurricanes and gusty winds, but when these attained a given intensity,
the amplitude of oscillations at the centre of the main span was sufficiently large to
cause justifiable qualms among those travelling over it. The magnitude of these

displacements did not imply the slightest risk to the stability of the structure, but the
heavy traffic and the adverse psychological condition induced in those who normally
used it became an adequate motive for widening the deck as well as correcting its
exaggerated flexibility, by increasing the depth of the stiffening beams. This is a
complex matter, difficult to aecommodate within normal safety criteria, though un-
doubtedly it requires attention for the sake of the peace of mind of those who use
such a structure.

In this connection the paper submitted by Prof. Dr. E. Friedrich is very interesting.
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The considerable oscillations caused by all types of traffic over the bridge at Villach
necessitated the restriction of speed of wheeled traffic. The consequence of this,
which from a functional aspect was logical, was an interference with the movement of
traffic so that at certain times of day the difficulty became acute.

Starting from this particular case of statically determinate beams Prof. Friedrich
has investigated the resonance of a simply supported beam, and has inferred that the
best way to eliminate an unfavourable combination of oscillations is to suspend a

longitudinal mass, like a beam, from the main stringers by means of Springs and dash-
pots. This will avoid resonance. The additional mass will only aecount for 10%
of the total weight of the bridge, and the calculations for the design of this device
are easy, using the formulae worked out by him.

In order to simplify calculations and arrive art practical results, Prof. E. Friedrich
has substituted a somewhat equivalent mechanism for the actual system. Even in its
most simple case, the investigation of the effects on a simply-supported girder over
which a single load moves smoothly at a constant speed involves enormous
difficulties of calculation. These difficulties have been pointed out by Dr. A. Hillerborg.
The contribution he has submitted is a summary aecount of the results announced in
the publication Dynamic Influences of Smoothly Running Loads on Simply Supported
Girders. This work has been published by the Royal Institute of Technology of Stockholm,

under the direction of Prof. Wästlund.
The theoretical merit of the work done by Dr. Hillerborg is evident. The mathe-

matical work is developed with much ability and scientific rigour, but the practical
consequences are disappointing due to the vast amount of work necessary to ascertain
the dynamic factors applicable to even the most simple and elementary case.

The difficulties met in analysing a particular case are technically almost insur-
mountable. Actual conditions are such that for the time being they seem to defy
direct calculation. The applied loads move with variable speeds. The hypothesis
is made that effects are to be superimposed. The structure will consist of one or several

spans, straight, or curved, independent, or not. The cross-section of the members
changes frequently in aecordance with functional requirements. The damping of
the oscillations is closely linked with the rheological mechanism of the material.

But in spite of all this the engineer has to keep on construeting. It is not right to
avoid the use of a particular type ofstructure, which intuition informs us to be adequate,
simply because its dynamic behaviour is unknown. Theoretical research must
continue, but until the desired aim is attained new resources have to be devised that will
reveal the stability of the structure. It is not prudent to ignore the evidence of
phenomena, even if they cannot be fully grasped by our reason.

In the present State of technology, it appears that only experimental work can lead
to cogent results. Scale-model tests make it possible to study the most complex cases.
By such means the influence of given phenomena can be measured, and the structure
can be subjected to Systems of forces very similar to the actual antieipated overloads.

The experimental work by C. Scruton at the National Physical Laboratory, on
behalf of the British Ministry of Transport, is an example of this kind of attempt
to study the behaviour of a structure subjected to the dynamic action ofwind operating
continuously or in gusts. The model was placed in a wind tunnel suitable for this
type of test. By turning it conveniently around, it was possible to observe the effects:
first on the structure as a whole, then separately on the deck.

As it was practically impossible to reproduce the structure so that similarity would
be maintained in density, elasticity modulus, damping and speed and viscosity of the
wind, this last factor was ignored because of its negligible influence. The test on the
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füll model served to compare results with tests on sectional modeis, suitably mounted.
These latter tests also served to measure in a simple manner different types of decks,
so that by a process of trial and error, the most satisfactory deck was evolved, careful
aecount having been taken ofthe results obtained with some of these decks in relation
to the füll model.

As so often happens the experiment by-passes the obstacles ofcalculation and solves
problems that lie beyond the reach of theory. Sometimes it serves to determine the
effect of imposed loads. At other times it reveals the behaviour of the material
employed and corrects or checks the truth of the hypotheses, which often are too
idealised to be correct.

Model research and work on test-pieces performs two distinet functions, both
most valuable. The former overcomes problems beyond the scope of mathematical
computation, and the latter reveals properties and defines qualities that broaden or
limit the strength and mechanical possibilities of a given material.

Both are most valuable aids to technical research. Methods of calculation based
on the plastic behaviour of materials, when applied to the dimensioning of reinforced-
concrete sections, and by Prof. F. Baker to metal structures, are the result of good
Observation of the mechanical properties of steel.

The advantages of this procedure are not only that it provides a method more
simple to apply, but also that it corresponds more closely to the actual behaviour of
the material.

But to solve the stress-strain laws, as well as their evolution in the course of time
under different kinds of loading, it is necessary to return to the basic material and to
observe all its changes, its elongations and contractions.

With this end in view, Prof. J. F. Baker has undertaken a series of tests. These have
been done in the Engineering Laboratory of Cambridge University by M. R. Hörne.

Simultaneously, A. Lazard has arranged another set of tests, also on mild steel
full-web double-T girders, and has compiled valuable data from other experimental
centres.

As A. Lazard points out, the interest ofthe subject is such that there appears to be
justification for a vast systematic research programme, not only into the behaviour
of beams under an increasing bending moment, but also on structural pieces subjected
to cyclic loadings, either in the form of repeated loadings, or of alternating or oscil-
lating forces.

Other interesting aspects of this subject are buckling phenomena of the
compression flange, the influence of shear stresses, rivet holes, and internal stresses due
to rolling or welding. Further, this investigation should include tests on simply-
supported beams, fixed-ended girders, continuous beams over several supports,
portal frames, etc., and it should include rolled and built-up sections. It will be
realised how vast is the field that awaits systematic exploration. The synoptic table
prepared by A. Lazard gives a clear idea of the magnitude of the problem, to which it
would probably be necessary to add the series of tests on strains and failures due to
the action of permanently applied loads.

The task is enormous, but the consequences and the advantages that would result
in reduced cost would far outweigh the effort made. Firstly, sizes could be eut down,
since the behaviour of the material would be better known. In the investigation
presented by M. R. Hörne on the most efficient shape of fixed-ended beams it is
shown that a saving of 16 % can be achieved. A study into the Optimum values that
should be given to the safety factors which multiply loads and divide limiting stresses
could lead to an additional saving of between 10% and 20%.
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If to these percentages is added the reduction in the value of the safety factor due
to the extensive research into the behaviour of structural members under long-acting
dynamic loads, and due to the better estimation and precise functional Operation of
the structure, it can be well understood that those figures can be increased even more.
So the safety factor might be lowered even further, all this as a result of a better
knowledge of the materials and more accurate design hypotheses.

For these reasons, based on the highly promising results implied by Prof. J. F.
Baker's theory, as expounded by B. F. Neal, P. S. Symonds, J. Heyman and M. R
Hörne in its various aspects, the general reporter seconds the proposal of A. Lazard, and
takes great pleasure in communicating this most interesting proposal to the Congress—
a proposal that is füll of difficulties, and that will involve many hours of hard work,
but which leads him to hope for a technological evolution from which all engineers
will benefit.

Summary

In the general report concerning the contributions to theme AI, the different
criteria are first explained on which the coneeption ofthe safety of structures is based.
For this purpose it is suggested that the factor of safety C should be split into two
partial factors Ce and Cr whose produet is C. With one partial'factor, the calculated
shearing forces are to be multiplied; with the other, the strengths or limiting stresses

are to be divided. The relation between these two partial coefficients results also
from mathematical-statistical considerations.

The general reporter describes the special points of the various papers submitted.
According to the above considerations, these are divided into two groups. To the
first belong the papers on the deduetion of the shearing forces from the dynamic
or static loadings. In the second group are summarised the papers for extendnig
the knowledge of materials with the help of experimental research on the behaviour
of materials under the influence of static and dynamic loads.

Finally, the economic advantages which would result from these studies are
explained. The materials would be better utilised when one or other of the partial
factors of safety is reduced, so that the fundamental assumptions underlying the
calculations are improved and a more accurate knowledge is obtained of the mechanical
properties of the materials that are used.

Resume

Dans ce rapport general, qui sert d'introduction ä la discussion des travaux
presentes ä la Section AI, le rapporteur general expose les differents criteres sur lesquels
est base le concept de la securite des structures. A cet effet, il suggere la decompo-
sition de la valeur numerique C du coefficient de securite, en deux coefficients partiaux
Ce et Cr, dont le produit est egal ä C. L'un d'eux est destine ä multiplier les moments
flechissants, les efforts tranchants et les efforts normaux prevus; et l'autre, ä diviser
les resistances ou contraintes limites. La relation entre ces deux coefficients partiaux
est basee sur des considerations de mathematique statistique.

Ensuite, le rapporteur expose sommairement les particularites qu'offrent les differents

travaux presentes. Conformement aux idees anterieures, il les classe en deux
groupes. Le premier groupe est forme par les themes qui traitent de la deduetion
des efforts produits par les surcharges, soit dynamiques, soit de type statique. Dans
le deuxieme groupe, il inclut toutes les contributions destinees ä completer la
connaissance des materiaux au moyen de l'etude experimentale de leur comportement
sous l'action de charges statiques, dynamiques et permanentes.
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Enfin, le rapporteur indique les avantages economiques qui resultent de ces
travaux et portent sur une meilleure mise en valeur des materiaux et sur la reduction de
Fun et l'autre des coefficients de securite partiaux, par l'amelioration des hypotheses
de base de calcul et par la connaissance plus exacte des caracteristiques mecaniques
des materiaux employes.

Zusammenfassung

Im Generalbericht über die eingereichten Arbeiten der Abteilung AI werden
zunächst die verschiedenen Kriterien dargelegt, auf die sich der Begriff der Sicherheit
der Baukonstruktionen gründet. Zu diesem Zweck wird die Aufteilung des
Sicherheitsfaktors C in zwei Teilfaktoren Ce und Cr, deren Produkt C ist, nahegelegt. Mit
dem einen sind die berechneten Schnittkräfte zu multiplizieren, durch den andern
die Festigkeiten oder Grenzspannungen zu dividieren. Die Beziehung zwischen
diesen beiden Teil-Beiwerten ergibt sich aus mathematischstatistischen Betrachtungen.

Sodann beschreibt der Generalberichterstatter zusammenfassend die Besonderheiten

der verschiedenen eingereichten Arbeiten. Gemäss den vorstehenden Ueber-
legungen werden diese in zwei Gruppen eingeteilt. Zur ersten gehören die Beiträge
über die Ableitung der Schnittkräfte aus den dynamischen oder statischen Belastungen.
In der zweiten Gruppe sind die Beiträge zur Vervollkommnung der Materialkenntnisse

mit Hilfe der Versuchsforschung über das Materialverhalten unter dem Einfluss
statischer und dynamischer Lasten zusammengefasst.

Schliesslich werden die wirtschaftlichen Vorteile dargelegt, die sich aus diesen
Arbeiten ergeben, welche erlauben, die Materialien um soviel besser auszunützen,
als es gelingt, den einen oder den andern der Teilsicher.heitsfaktoren zu verkleinern,
indem die grundlegenden Rechnungsannahmen verbessert werden und eine genauere
Kenntnis der mechanischen Eigenschaften der verwendeten Baustoffe erreicht wird.
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An investigation of the oscillations of Suspension bridges in wind

Etude sur les oscillations de ponts suspendus sous l'effet du vent

Eine Untersuchung über die Schwingungen von Hängebrücken
infolge Winddruck

C. SCRUTON, B.Sc, A.F.R.Ae.S.

National Physical Laboratory, Teddington, England

1. INTRODUCTORY

The paper gives a brief review of experiments on the aerodynamic stability of
Suspension bridges which have been carried out by the National Physical Laboratory on
behalf of the Ministry of Transport. The specific purpose of the investigation was to
give guidance on the aerodynamic design aspects of a proposed bridge over the River
Severn with a centre span of 3,240 ft. (987 m.) The experiments were commenced in
1946 and were concluded early in 1951 by tests which provided a final confirmation
of the stability of the preferred design for the bridge.

Although in the time available no fundamental research could be undertaken to
elucidate the root causes of the aerodynamic oscillations, much information of a
general nature was gained which should be helpful in the design of future Suspension
bridges. A previous paper* submitted by the author to the 3rd Congress sum-
marised the preliminary stages of the work.

The wind-excited oscillations which have oecurred on long-span Suspension
bridges (notably the "original Tacoma Narrows Bridge) have been basically either
vertical bending or torsional motions. In vertical oscillations the suspended plat-
form moves up and down and the two cäbles displace equally and in step. In
torsional oscillations the platform twists about a spanwise axis and the cäbles displace
equally but in opposite directions. Both types of motion can occur at various
frequencies and in a variety of modes. The instantaneous shape of a spanwise reference
line during an oscillation is termed the wave form of the oscillation and is either

* C. Scruton, "An Experimental Investigation of the Aerodynamic Stability of Suspension
Bridges," Preliminary Publication for the 7>rd Congress I.A.B.S.E.
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"Symmetrie" or "antisymmetric" with respect to the centre of the bridge according
as the displacements of the two half-spans are in the same phase or in anti-phase.

In the investigation to be described the oscillatory behaviour of bridges was studied
experimentally by tests bf modeis in wind-tunnels. The two types of model used were
similar to those used by Farquharson, Vincent and others* at the University of
Washington (U.S.A.) in the extensive investigations which followed the collapse of
the Tacoma Bridge in 1940. These were:

(a) Sectional modeis

A sectional model is a short rigid model of a sample length ofthe suspended structure

and is mounted across the wind-tunnel (with its span horizontal and normal to
the wind-stream) with freedom to oscillate against spring constraints. In the present
investigation the model mountings permitted vertical translatory motions and pitching
motions.f These motions, which were the two-dimensional equivalents of the
vertical bending and torsional motions of the complete bridge, could take place at the
same time for coupled motion tests, or could be isolated for tests with a single freedom.

In general the wind tests of these modeis involved no more than the Observation
and measurement of the critical wind speeds and frequencies bounding the ranges over
which oscillations were maintained by the wind. Occasionally the damping rates of
oscillations in the wind-stream were measured. The tests were made in transverse
winds with inclinations varying between ^15 degrees. It was not considered prac-
ticable to test sectional modeis in horizontally inclined winds.

(b) Füll modeis

A füll model is a replica of a complete bridge so constructed that its behaviour in
a wind-stream is similar to the full-scale bridge. The füll model used in this investigation

was installed in a large wind-tunnelf specially built by the Ministry of Transport
for the investigation. The direction of the tunnel wind-stream could not be varied
but the effect of inclined winds, both horizontally and vertically, was simulated by
inclining the model. Critical wind speeds, frequencies and oscillation modes were
recorded.

In the early stages of the investigation it was uncertain whether the stability of a

complete bridge could be predicted satisfactorily from experiments on a sectional
model alone, since with this method of test the influence of several factors cannot be

represented directly. Such factors include, for example, the tower stiffnesses and
inertias, the longitudinal camber, the oscillation wave form and the horizontal
inclination of the wind. However, it was also clear that füll modeis were unsuitable
for routine comparisons between different forms of suspended platform, owing to the
length of time required for construction and the high cost. To provide a practical
Programme it was therefore deeided to depend on tests of sectional modeis for an
indication of the most promising structural forms. Whilst the tests were in progress,
the design and construction of a füll model was also put in hand, with a view to tests
of the correlation between the two different experimental methods. This füll model'
was necessarily based on a very early design for the bridge, and it became available
for wind-tunnel tests in 1948. The results obtained with these two types of modeis

* "The Aerodynamic Stability of Suspension Bridges with special reference to the Tacoma
Narrows Bridge," Bulletin No. 116 of the University of Washington Engineering Experiment Station.

t A few tests were also made with lateral motion (i.e. translation normal to the span and in the
plane of the decks).

% The wind-tunnel is briefly described in Appendix II.
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led to the conclusion that sectional model tests were sufficient for reliable full-scale
prediction, and accordingly the construction of a further füll model based on the
design finally preferred for the bridge was considered to be unnecessary. A final
verification of the stability of this design was, however, provided by tests of a large-
scale sectional model. An increase ofthe linear scale from 1/100 to 1/32 was
considered advisable, because previous tests had shown that the stability was sensitively
influenced by details of the structural form which could not be copied with sufficient
accuracy on a small-scale model.

2. Notation
P air density
v kinematic viscosity of air

B width of bridge between stiffening trusses

g acceleration due to gravity
er typical material density
E typical elastic modulus
6 angular torsional displacement of suspended platform at any instant of

oscillation (radians)
z linear vertical displacement of structure at any instant of oscillation

I$ torsional moment of inertia per unit spanwise length
Iz mass per unit spanwise length

Ne and Nz natural frequencies of oscillation in torsional and vertical bending
modes respectively

ee and ez elastic stiffnesses corresponding respectively to Ig, Ng and Iz, Nz.
8 natural logarithm of the amplitude of successive cycles of oscillation

(logarithmic decrement)
Sa and 8^ logarithmic decrements for torsional and vertical oscillations in still air

respectively
logarithmic decrements due to still air damping
logarithmic decrements due to structural damping
logarithmic decrement of torsional oscillations due to the wind-stream
wind speed and critical wind speed respectively
frequencies of oscillation corresponding to V and Vc respectively

Vr= V/NB reduced velocity
Vs= V/NeB
«. angular inclination of wind to the bridge platform in a vertical plane

—upwinds positive (degrees)
ß angular inclination of the wind to the bridge in a horizontal plane

(ß=0 and 90 degrees for transverse and longitudinal winds)

3. Model and full-scale similarity
(0 Füll modeis

The motions of similar-shaped Suspension bridges in wind may be influenced by
the bridge size (B), by the density, damping and elasticity of the bridge structure
(o-, 8S, E) and by the viscosity, density and velocity of the air (y, p, V).

><m and SzA

Ses and S„
"ew

V and Vc

N and Nc
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By the usual principles of dimensional analysis these parameters can be grouped
in the following independent non-dimensional combinations:

(a) (r/p (density)
(b) E/pV* (elasticity)
(c) 8* (structural damping*) y (1)
(d) gB/V2 (gravitational)
(e) VB/v (viscosity)

Füll dynamic similarity between model and full-scale is achieved if the model
is geometrically similar to full-scale and the above numbers are equal for both
Systems.

For tests in atmospheric wind tunnels of practicable dimensions and wind speeds
the full-scale value of (e) cannot be achieved. The velocity scale would moreover be

incompatible with that required by (d). However, there is evidence that the
aerodynamic forces acting on bluff bodies such as bridge structures depend mainly on
pressure action and only indirectly on viscous action and hence the validity of full-
scale prediction by model testing is not seriously impaired by incorrect scaling of the
viscous forces.

The design and construction of a model to accord with the similarity numbers (a)
to (d) presents considerable difficulties. It will be found generally that materials of
construction do not exist which possess the requisite combinations of density and
elastic moduli, and that even were such materials available, the exaet small-scale
reproduction of details might be impracticable. However, it is sufficient if the correct
overall inertias and elastic stiffnesses are reproduced in the model. Equivalent
similarity numbers to those given in (1) but using inertia and elastic stiffness terms
are:

(a) IelPB\ IJpB\ etc. ^
(b) eelpVW, e-JPV\ etc. [
(c) Ses, 8« etc. f w
(d) gB/V2 J

With a linear scale of \jn the foregoing numbers yield a velocity and a frequency
scale of l/V« and \/n respectively. The values of Vr and Vs are therefore the same
for the full-scale bridge as for the model.

(//') Sectional modeis

With strict inertial scaling

True similarity conditions are obviously not observed in the sectional model
method of test. The use of the method for full-scale prediction assumes that oscillations

of a complete bridge arise from the aerodynamic action on the suspended
structure alone and that the other components (e.g. cäbles) contribute to the dynamic
properties only. It also implies that critical values of Vr are not influenced by oscillation

wave form.
The inertial coefficients of sectional modeis represent the total contribution of

suspended structure and cäbles. The model stiffnesses are merely those which pro-
vide the required oscillation frequencies and need not, as in the case of füll modeis, be
derived from correctly proportioned gravitational and elastic forces. When (d) is

* It is shown in Appendix I that when the influence of viscosity is negligible values of Boa are the
same for model as for full-scale provided strict inertial scaling is observed. Hence, for the füll model
tests and for the sectional model tests with strict inertial scaling 89 may be used in place of SBs.



OSCILLATIONS OF SUSPENSION BRIDGES 41

omitted and expressions for natural frequencies are substituted in (b), the similarity
numbers for sectional modeis become:

(a) Ig\PB\ IZ/PB2 1
(b) V/NgB, V/NZB [ (3)
(c) 8es, 8ZS J

where Ig, Iz now represent overall values.
Thus the actual velocity and frequency scale for sectional modeis are inter-

dependent but one or other may be chosen at convenience.

Inertial scaling not attempted
In the writer's previous paper* tests of sectional modeis involving isolated motions

only were considered. The requirements for similarity were then approached through
the Solutions of the equations of motion. Similarity conditions equivalent to those
given in (3) were, of course, obtained; but in addition, it was shown that when Ne=Nc
approximately, strict inertial scaling is not essential and the critical values of Vr
depend only on the geometric shape of the structure and on the product of (a) and (c)
i.e. on Ig. Sgs/pB4 and L. B^/pB2 for angular and linear motions respectively.

Procedure for prototype prediction from sectional model test data

Some remarks may be useful on the procedure in the two cases where strict
inertial scaling of the model is observed, or is not attempted and Nc=Ne approximately.

+ The critical values of Vr obtained from the modeis by both these methods
are applicable to the prototype, provided the values of SSj satisfy the stated conditions.

% Strict inertial scaling is essential for values of Vs (and Nc) to be applicable:
critical speeds are then determined from critical values of Vs or Vr by either of the
relations Vc=NeBVs or Vc=NcBVr. The value of Nc required by the latter relation
is not given by the other method, and it is therefore necessary to use the approximation
Vc=NeBVr. Experience with various types of bridge sections indicates that this
approximation introduces no serious discrepancies within the ränge of normal winds.

4. The füll model Experiments
Model construction

A photograph of the 1/100-scale füll model is reproduced in fig. 1. The model
was designed to give wide scope for modifications both to the elastic properties and
to the form of the suspended structure. It represented a truss-stiffened bridge of
width 107 ft. (32-6 m.) and of total span 5,040 ft. (1,535 m.); the centre span of length
3,000 ft. (914 m.) had a sag ratio of 1/10. The two roadways of width 39 ft. (11-9 m.)
were separated by an 8-3 ft. (2-53 m.) wide reservation.

The required stiffness and inertial properties of the suspended structure were
obtained by the use of light rigid components with steel interconnecting Springs. These
rigid components were mainly of aluminium-balsawood sandwich construction and
each component spanned one bay of 60 ft. (18-3 m.). The use ofspring interconnections
enabled the stiffnesses to be altered and also had the advantage that the structural
damping was kept to a sufficiently low value, since the deformations oecurred mainly

* L6c. cit.
t For convenience, pitching oscillations only are discussed here. The procedure applies equally

well to other motions.
t See note at foot of page 40.
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through flexing of the Springs. Both the elastic and inertial properties of the towers
were variable, but it was not considered necessary to reproduce the correct external
shape of either the towers or the anchorages. The model cable consisted of piano
wire of diameter 0024 in. (0-61 mm.), which provided the equivalent of a full-scale
cross-sectional area of about 450 in.2 (2,900 cm.2) with a 1/100 reduction of Young's

&£
Li./

/

Fig. 1. The 1/100-scale füll model mounted in the wind-tunnel

modulus. To obtain the correct mass and external shape, hollow brass cylinders
were spaced along the wire and fixed to it by a single grub screw. The model
suspenders were made of fishing line which had been prestretched and treated with a
beeswax coating to reduce the effect of humidity changes on its length.

The model was mounted on the horizontal turntable which fitted flush with the
floor of the wind-tunnel test Chamber (see Appendix II and fig. 7). Changes of the
horizontal wind direction were reproduced by rotation of the turntable and the effect
of vertically inclined winds was simulated by tilting the whole model about a spanwise
axis near the wind-tunnel floor.* In the second case, the correct representation of
the gravitational forces was then restored by attaching suitably angled and spring
tensioned cords at several points along the span. The additional elastic stiffnesses
contributed by this arrangement were rendered small by the use of long cords and
very weak Springs.

Test procedure

In still air tests resonance modes and frequencies were observed by exciting the
model through weak Springs driven by a reciprocating motion. The logarithmic
decrements ofthe artificially excited oscillations were measured in the usual way from
Photographie records.

In wind tests the tunnel speed was gradually increased from zero to a maximum
corresponding on full-scale to a little over 200 ft./sec. (61 m./sec.). The critical wind

* The provision made for tilting the model is not shown on fig. 1.
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speeds and frequencies for maintained oscillations in the various modes were noted.
In general the modes were observed visually, but cinematograph records were taken
of certain typical oscillations.*

Results and conclusions

Tests on the füll model were carried out for various vertical wind inclinations a and
horizontal wind inclinations ß. The effective angle a produced by a given tilting
inclination a' of the model depended on the value of ß and was given to a close
approximation by <x=a' cos ß. Except for longitudinal or near longitudinal winds,
the values of vertical inclination attained ranged between ±15 degrees.

Tests were made on the influence of several design variations such as grade-line
camber, tower stiffness and cable loading; and also on the effects of modifications to
the external shape ofthe suspended structure. By covering the stiffening truss panels
with paper it was possible to simulate the aerodynamic effect of a plate-girder-
stiffened bridge. In this condition the model reproduced many of the modes of
oscillation which oecurred on the original Tacoma Bridge.

The inore important results and conclusions are given below.

(a) Coupling between vertical bending and torsional motions

Each wind-induced oscillation observed corresponded in mode and in frequency
to a natural oscillation induced by resonance tests in still air. From this experimental

evidence, and from independent visual observations, it was concluded that
coupling effects between the vertical bending and torsional motions had little influence
on the oscillations. However, it should be noted that the natural frequency ratio
NejNz for corresponding wave forms was approximately 2 and was therefore more
appropriate to a bridge with a double rather than a single plane of lateral bracing.
There was no means on the füll model of substantially reducing this ratio. The
effect of a close approach to equality of the natural frequencies in sectional model
tests is described later.

(b) Influence of oscillation form
With a given wind inclination and model condition all the different types of

torsional oscillation appeared for approximately the same constant value of Vr. A
similar conclusion applied for vertical bending oscillations. This indicates that the
influence of oscillation wave form is unimportant.

(c) Influence of shape ofsuspended structure

The stability depended on the shape and arrangement of the components of the
suspended structure. The model with plate-girder stiffening exhibited a high degree
of instability in both vertical bending and torsional oscillations. No instability in
vertical bending motion was found in any test with a truss-stiffened model. Torsional
oscillations oecurred for certain arrangements of the truss-stiffened model.

The influence of shape is discussed in more detail in the description of the sectional
model tests.

* Some of these records have been incorporated in a short silent film entitled "Oscillations of a
Model Suspension Bridge in Wind."
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(d) Influence of elastic stiffnesses and naturalfrequencies
Critical values of Vr were not appreciably influenced by Variation of the stiffnesses

and natural frequencies due to structural modifications which did not involve change
of shape of the suspended structure. Such modifications included Variation of the
tower stiffnesses, unloading the sidespan cäbles, and fitting a centre tie between truss
and cable.

(e) Influence of wind inclination
The highest degree of instability was found in transverse winds (j9=0) and the

stability characteristics improved progressively with increase of ß. Vertical bending
oscillations of the plate-girder-stiffened model persisted, but with decreasing
amplitude, up to a value of ß between 30 and 45 degrees, while weak torsional oscillations
were still present at ß=60 degrees. No instability of any type was found in steady
longitudinal winds.

The stability was sensitive to the vertical inclination of the wind. The highest
degree of instability of the plate-girder-stiffened bridge oecurred with slight negative
vertical inclination, and that for the truss-stiffened bridges with slight positive
inclination.

(f) Effect ofgrade-line camber
The stability was not greatly influenced by variations of the grade-line camber.

The indications were that a cambered grade-line yielded very slightly better stability
characteristics than a level grade-line.

(g) Effect ofgusty winds

Some tests were attempted with several types of disturbed airflow, none of which,
however, was necessarily representative of natural gusty winds. In longitudinal, as
well as in transverse winds, irregulär vertical oscillations were set up by the buffeting
action of large-scale eddies shed from the gust-making device, but no tendency to
torsional motion was observed.

(h) Correlation between sectional andfüll model tests
The füll model tests showed that critical values of Vr for specific values of the

structural damping were determined by the shape of the suspended platform and were
not substantially affected by other structural properties or by the wave form of the
oscillation. Also in these tests the highest degree of instability was produced in
transverse winds. It was concluded that sectional model tests would be adequate for
stability prediction provided they yielded the same critical values of Vr as those given
by the corresponding füll model.

Table 1 sets out a comparison of the results obtained with the füll model and with
its sectional model copy. The alignment of the vertical motion in the sectional model
tests were not strictly correct except at zero incidence, since the direction of model
motion was not altered to correspond to the incidence change. The error in alignment

increased with incidence and hence may aecount for the lack of correlation
between the results at a=±10 degrees for vertical oscillations of the plate-girder-
stiffened section. With this exception all the results showed very good agreement
between the two methods of test and support the conclusion that reliable predictions
of the stability of proposed Suspension bridges may be based on sectional model tests
only.
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Table I
Comparative results from sectional and füll model tests

The modeis represented a mid-deck bridge of section A, fig. 3. In its Standard condition (fig. 1)
the model decks were separated by an open reservation and were fitted with paling-type handrailing
and truss-type roadway stringers. The values for the structural damping were:

Füll Model: 8^=0035, SÖJ=005
Sectional Model: Scj=006, =005

The füll model was tested up to speeds corresponding to values of Fr of 15 and 8 for vertical and
torsional oscillations respectively. Higher values were reached in the sectional model tests, but for
the purpose of this comparison the above values are taken as the limits for both types of test and a
result is given as stable when no oscillations oecurred up to these limits. Only the lowest critical
values are quoted here, since on the füll model the critical speeds for the upper limit ofthe instability
ränge were usually masked by the onset of a further mode of oscillation.

a
degrees

Lowest critical values of Vr

Model Configuration Vertical Oscillations Torsional Oscillations

Sectional
Model

Füll
Model

Sectional
Model

Füll
Model

Standard
-15, -10,

-5, 0, 5,
10, 15

STABLE STABLE

10 70 6-8

Standard but with all
handrailing removed -15, -10,

-5, 0, 5,
15

STABLE STABLE

m
0 3-4 3-8

Standard but with solid
plate handrailing -15, -10,

-5,5,10,
15

STABLE STABLE STABLE STABLE

Standard but with castellated
handrailing

-15, -10,
-5, 0, 5,
10, 15

STABLE STABLE

15 50 4-5

Standard but with the
handrailing on the inner edges

10 5-4 4-8

of the carriageways
removed and a solid cover

5 7-2 6-9

fitted over of the central
reservation 0,-5,-10,

-15 STABLE STABLE

15 STABLE STABLE 5-5 STABLE

10 STABLE 1-8 2-6 2-5

Standard but with the stif¬
5 1-7 1-7 2-4 2-7

fening trusses covered to
represent the aerodynamic

0 1-8 1-6 2-4 2-6

effect of solid plate-girder
stiffening -5 1-8 1-7 2-4 2-5

-10 STABLE 1-7 2-8 2-4

-15 STABLE STABLE 5-8 4-2
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5. Experiments with 1/100-scale sectional models
A typical 1/100-scale sectional model is shown by fig. 2. The models were of

rigid wooden construction and represented a 340-ft. (103-5 m.) length of the bridge-
suspended structure. They were tested in a wind-tunnel with a working section
measuring 4 ft. by 3-40 ft. (1 -22 m. x 1 -035 m.). Two types of mounting, here referred
to as the "original" and the "improved," were used.

¦

S *<C

Fig. 2. Typical 1/100-scale sectional model.

The original mounting
This permitted both vertical bending and pitching motions, either singly or

together. The apparatus damping was not directly variable, and the inertias of the
model on this mounting were very much greater than those required by correct scaling
of the prototype values. However, since in the tests Nc=Ne, the similarity conditions
given in paragraph 3 were applicable.

The model was attached at both ends to circular plates which were supported on
ball bearings so that pitching motion could take place against the elastic constraint
provided by helical Springs. Each bearing and spring assembly was carried on a
framework which was constrained to move vertically by a steel-strip device; helical
Springs again providing stiffness. The circular end-plates fitted flush with the walls
of the wind-tunnel.

The improved mounting
This was used for pitching motion tests with correct inertial scaling and with the

apparatus damping variable from a low initial value. As in the case of the original
mounting the model was carried between discs. Each disc was supported on a steel-
strip Suspension which maintained a fixed axis of oscillation and also provided the
required elastic stiffness. The damping due to this Suspension was very small.
Additional damping was supplied by the action of a thin segment of copper which
oscillated with the model and passed between the pole-pieces of an electromagnet.
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The damping moment produced by the eddy currents set up in the copper was proportional

to the velocity of the motion and could be readily varied by adjusting the
current through the coils of the electromagnet.

Discussion of results

The main types of bridge section tested are shown in fig. 3. They were all
stiffened by trusses ofthe single Warren type, but could be readily converted to represent
plate-girder-stiffened sections by the attachment of solid covers to the trusses. The
models were usually tested with a pitching axis placed approximately centrally with
respect to the four stiffening-truss-chords members, but some tests were made with

39*
(11-9)

-107'-
(32 6m)

Section A

lt!
2S'(7-62m)

1

1 [(TelS)I r(7M^TJ
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(33-6 m)

25 (7 62 m)

This section was also tested with B 9S'(28 Sm) and B 107'(32-6 m
Section 6

l6_ä
(5 03m

26'6",
(»•08*)

(24 4m)
Section C

p~03m) (8 si^Tjj

80

27'6" (e-Mm

J.

127'fi"(8-3Sm)

(24-4 m)

Section D

Fig. 3. Main types of bridge sections tested

other axis positions. The maximum of Vr or Vs obtainable in the tests depended on
the test conditions-, but in all cases corresponded to full-scale wind speeds of well over
100 miles/hr. (161 km./hr.).

Some of the models were tested on both the original and improved mountings.



48 AI scruton

The good agreement obtained between corresponding sets of results provided
experimental verification for the similarity conditions stated in paragraph 3 for the case
where strict inertial scaling is not attempted.

The main conclusions derived from the results of the sectional model test are
summarised below.

(a) Influence ofstructural damping
A typical diagram showing the influence of structural damping on the stability of

a plate-girder-stiffened section is reproduced in fig. 4. Similar tendencies were
exhibited by truss-stiffened sections.

a= io
a ¦ 5" s » | ¦*- is used Mien
a- oV values for Ihese
o=-sJ angles coincide

-«¦ -fS

0-100O5 015^
Fig. 4. Influence of damping on the pitching oscillations of the plate girder stiffened section A

Increase of SSi narrowed the instability ränge by increasing the critical speeds for
the lower boundary and decreasing those for the upper boundary. The magnitude of
Ses necessary to prevent oscillations for all wind speeds provided a qualitative
indication of the relative strengths of the instabilities.

(b) Influence of location ofpitching axis
The vertical position of the pitching axis was varied in tests of the mid-deck section

(B, fig. 3) and of the top-deck section (D, fig. 3). For axes lying midway between the
stiffening trusses the stability of both these sections was least when the axis was
located near the level of the deck.
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(c) Coupling between vertical bending and pitching oscillations

In sectional model tests with coupled motions particular attention was given to
ratios of the natural frequencies near unity, since it was expected that the influence of
coupling would then be most marked. Except when the frequency ratio Ns/Nz
closely approached unity, one of thcmotions was always found to predominate, and
the critical frequency and reduced velocity were in fair agreement with those obtained
in the corresponding isolated motion test. When NgjNz=\ both motions were
present in substantial proportions. In one instance coupled oscillations oecurred
when NBjNz= 1 which were absent when NgjN2>\ or when the motions were isolated.
Hence it was concluded that sectional models can be tested satisfactorily with the
vertical and pitching freedoms isolated, unless the frequencies for corresponding
modes are approximately equal.

(d) Influence ofstructuralform of suspended platform
Plate-girder-stiffened sections. These sections were considerably more unstable

than truss-stiffened ones. The majority of them were obtained by covering the
stiffening trusses of the sections shown in fig. 3 and thus the plate girders represented
were rather deeper than is usual in practice. All the plate-girder sections showed
instability in both vertical and pitching motions, generally at low wind speeds. For
example, the critical values of Vr for the section derived by covering the trusses of
A (fig. 3) were about 1-7 and 2-5 for vertical and pitching oscillations respectively
(see Table I).

Truss-stiffened sections. No vertical oscillations were excited with any of the
truss-stiffened sections. The pitching oscillations were influenced by the form and
arrangement of the structural components of the bridge, and were especially sensitive
to those of the roadway deck fittings. The results have been discussed in greater
detail in the writer's previous paper.* Only those factors which were found to have
a corrective influence on aerodynamic instability in pitching oscillations will be listed
here:

Stiffening truss chords of high width/depth ratio;
Separation of traffic lanes by open slots or gratings;
Truss-type deck stringers in preference to the plate-type;
Castellated handrailing, or other types of handrailing designed to break up the

continuity of the airflow pattern;
Sidetracks (e.g. footpaths, cycle-tracks, etc.) mounted outboard of the stiffening

truss.

By the inclusion of a number of these stabilising features in the design, a
satisfactory degree of stability was achieved for each of the types of section shown in
fig. 3. However, the stability still proved to be sensitive to other factors such as the
relative levels of the various roadways and the positioning of the roadway stringers.
These effects were only noted and not investigated systematically. In view of the

many design features which may possibly influence the stability it is considered that
model tests provide the only satisfactory basis for stability prediction.

The sections A to D shown in fig. 3 are lettered in the chronological order of the
tests and illustrate successive steps in the evolution of a design with very good stability
characteristics. Section A represented a mid-deck design with two roadways
separated by an open central reservation. The presence of the gap between the

* Loe. cit.
CR.—4
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roadways greatly improved the stability. Further improvement was obtained on
dividing the two roadways into four, provided adjacent roadways were separated by
an open reservation (section B). The two outer roadways, termed " sidetracks,"
each represented the combination of cycle-track and footpath; the inner ones
represented carriage-ways. For economy in the construction of the piers and towers the
width between trusses was reduced to 80 ft. (24*4 m.) in section C and the sidetracks
were supported outside the trusses. This change also improved the stability. The
top-deck section D was the last of this series of 1/100-scale models and it allowed
horizontal cross bracing to be incorporated in two widely separated planes. Its
stability characteristics were superior to those of the sections tested previously, and
this fact, in conjunction with the considerable increase in torsional frequency due to
the two planes of bracing, increased the estimated critical speed for torsional oscillations

of the full-scale bridge to over 250 miles/hr. (400 km./hr.). Two models of
section D were used, the second of which approximately represented the design finally
adopted for the Severn Bridge.

6. CONFIRMATORY TESTS OF THE STABILITY OF THE PROPOSED SEVERN BRIDGE

Since earlier tests had already shown sectional models to be adequate for the
prediction of the stability of a complete bridge, the construction of a füll model
representing the preferred design for the Severn Bridge was considered to be unneces-

Öfefc-

Fig. 5. Sectional model of design proposed for the Severn Bridge (1/32-scale)

sary. However, to provide a final confirmation of the stability, tests were carried
out in the large wind-tunnel on a 1/32-scale sectional model. This increase of the
linear scale* allowed a more accurate reproduction of fine structural detail.

The model (see fig. 5) represented 600 ft. (183 m.) ofthe suspended structure and
considerable care was taken in its construction to reproduce all the important features

* Preliminary experiments had indicated that the oscillations of a still larger model might be
affected by the proximity of the tunnel roof and floor.
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of the full-scale design. It was mounted on steel-spring suspensions carried by
frames which tilted to give the desired vertical incidence to the wind. The Suspension
arrangements permitted pitching combined with either vertical translation or lateral
translation motions, as well as tests with each of these motions isolated. Tests with
the lateral freedom included were necessary, since with the top-deck structure the
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Fig. 6. Damping rates of pitching oscillations due to wind (1/32-scale model
of proposed Severn Bridge)

lateral and pitching motions were inertially coupled due to the offset of the centre of
mass above the elastic axis of the structure. In all three motions viscous oil dampers
were provided to enable the amount of structural damping represented to be varied.

The inertias of the model conformed with the requirements for strict inertial
scaling. Initially the frequencies were adjusted to values 3-2 times greater than those
calculated for full-scale. This yielded a speed-scale of 1/10 and enabled the tests to
be carried out up to wind speeds corresponding to approximately 140 miles/hr.
(225 km./hr.). The minimum values of 89s and 8^ were 0-01 and 0-06 respectively.
No instability of any type oecurred in these tests.

No further tests involving the lateral and vertical motions were made. With the
more important pitching motion* Ne was reduced to allow tests to be carried out up
to wind speeds equivalent on full-scale to about 250 miles/hr. (400 km./hr.). The
value of 8es for these tests was 0-02. No instability was observed for these conditions,
but to provide further information the Variation of the damping rate due to wind
only (8gw) with wind speed was measured. The curves of 8$w against Vs for several
wind ineidences are reproduced in fig. 6. These show that for negative wind ineidences

* On models and on actual bridges with truss stiffening, instability has been recorded only in
torsional (pitching) motions.
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the damping rate became increasingly positive. For positive ineidences the damping
rate increased with the initial increases of Vs and thereafter maintained a substantial
positive value for the whole speed ränge tested. These results verified that the
design of suspended structure proposed for the Severn Bridge was satisfactory from
the Standpoint of aerodynamic stability.

In addition, the model was used to confirm some of the results found on the
1/100-scale models and also to obtain some information on the effect of the width/
length ratio of sectional models. Some unstable configurations of the model (e.g.
that obtained by covering the central reservation) were tested with model lengths
representing 600 ft. (183 m.) and 300 ft. (91-5 m.). The results obtained with these
two model lengths showed only small differences.
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APPENDIX I
Note on the Damping Properties of Bridges

The total damping rate (8) of a structure in still air is made up of the contributions
due to the structure only (S^) and that due to the surrounding air (8^). The application

of model test results to prototype prediction requires a knowledge of the values
of 8^ for both model and prototype. There is as yet no reliable method for calculating
these values for a proposed bridge, and measurements of 8 on actual bridges, which
might be used for Statistical estimates, have only been made on bridges of short span.f
The values of 8 found for short-span bridges varied from 005 to over 0-2. Model
test values are, of course, readily obtained by decaying oscillation experiments.

The aerodynamic damping arises from the effects of viscosity and pressure. For
oscillations of bridge sections, dimensional analysis yields:

PB*
SeA=2hf (1)

ß2Ne'
where 60 is the amplitude and 8eA denotes the values of 8A for pitching oscillations.

The scanty experimental evidence available supports the assumption that the
influence ofthe viscosity parameter is very small and that equation (1) can be written:

PB*
8eA=jj;[ao+aA+a2eQ2+ .] (2)

where the coefficients a0, aly etc., are approximately constant.
The equivalent expression for linear motions is:

s
pB1

M-M ©¦)+©( ©1%'•(iMi)' (3)

* Messrs. Mott, Hay and Anderson and Messrs. Freeman, Fox and Partners,
t Arne Seiberg, " Dampening Effect in Suspension Bridges," I.A.B.S.E. Publications, Tenth

Volume.
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Thus with the same inertial scaling as that required for the wind tests, the values of
8^ are the same for model as for full-scale.

Values of 8^ for complete bridges or their models will be influenced by the oscillation

wave form and may be calculated if the sectional values and the wave form are
known.

Some values of 8eA were measured during the course of the Severn Bridge investigation.

The results obtained for sections A and D shown in fig. 3 gave respectively
the relations:

89 =PB*/2Ig (0-01+0-29 60)

and 8eA=pB*/2I9 (0-05+3-40 90)

APPENDIX II
The Large Wind-Tunnel

Design and construction
The wind-tunnel (see fig. 7) was not required as a permanent structure and hence

the main considerations governing the design were that of low cost of construction
rather than that of high aerodynamic efficiency. For this reason the tunnel was of
the non-return flow type and used only one fan. It was erected in a disused aircraft
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Fig. 7. The wind-tunnel

hangar and was raised from the hangar floor only by the few feet necessary to aecom-
modate a well for the turntable. The fabric of the tunnel consisted mainly of a
timber framework lined with wallboard, and the roof was suspended from Bailey
bridge girders supported at their ends by vertical concrete pillars. The four main
components of the tunnel were:
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(j) The test Chamber, (a)fig. 1

This had a floor area of 60 ft. by 60 ft. (18-3 m.) and was 7 ft. (2-13 m.) high. The
air entered the test Chamber through a conventional bell-mouth fairing and a wire-
mesh screen for smoothing the airflow. In the centre of the Chamber was a 55-ft.
(16-75 m.) long turntable contained within a shallow quadrantal pit which allowed a
rotation of 90 degrees. The flooring over the central part of the turntable was carried
by the turntable itself and the outer annular area was filled in by wedges of 5-degree
angles constructed of boarded trestles, which were lifted successively when the model
had to be rotated relative to the wind direction.

(//) The contraction Chamber, (b)fig. 1

The contraction Chamber was 60 ft. long (18-3 m.) and in this distance the cross-
section developed smoothly from a 60-ft. rectangle to the 12-ft. (3-65 m.) diameter
circle ofthe adjoining fan annulus. A wire-mesh screen at the front of the contraction
Chamber helped to ensure even airflow in the test Chamber.

(iii) The fan and fan annulus, (c)fig. 1

The fan annulus, 12 ft. (3-65 m.) in diameter and 3 ft. (0-91 m.) in length, was of
all-timber construction and stiffened to ensure that the small clearance between it and
the two-bladed fan was maintained. The fan was driven by a concentric 130-h.p.
motor with fine speed control.

O'v) The diffuser, (d)fig. 1

This was of circular section, 30 ft. (9-14 m.) in length, and expanded from the fan
annulus to a diameter of 16 ft. (4-87 m.) at the discharge.

Performance
Tests ofthe aerodynamic characteristics were made initially on a 1/12-scale model

of the tunnel and hangar.
In the actual wind-tunnel extensive measurements of the distribution of airflow

within the test Chamber showed that at all speeds up to the maximum of 22 ft./sec.
(6-7 m./sec.) the velocity variations both along the length of the Chamber and vertically
were less than 3 %. In the horizontal direction across the test Chamber the Variation
of wind speed of nearly 10% was recorded at a distance of 5 ft. (1-52 m.) from the
sides. A Variation of this order was predicted by the model tunnel tests and was not
considered important in view of the clearance of nearly 5 ft. between the full-model
anchorages and the sides of the Chamber.

Summary

The paper presents a general review of the experiments carried out in an investigation

of the aerodynamic stability of Suspension bridges undertaken by the National
Physical Laboratory of the Department of Scientific and Industrial Research on
behalf of the Ministry of Transport. The specific purpose of the investigation was
to assist the designers of the proposed Severn Bridge, but much of the information
gained is applicable to Suspension bridges generally.

Wind-tunnel tests using both sectional and füll models are described and the
lrmitations of these two experimental techniques are discussed. The reliability ofthe
use of data obtained from sectional model tests alone for the prediction of the
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behaviour of full-scale bridges is verified by comparisons of the results obtained by
both methods. A comparison is made of the stability of various bridge sections and
the design features favourable to the promotion of stability are indicated. The
sectional models used for these tests illustrate the evolution of the design of the
suspended platform for the proposed Severn Bridge and the results show that a
satisfactory degree of stability can be attained by attention to the structural shape and
arrangement of the details of the suspended platform.

Resume

Cette communication constitue un bref expose de recherches relatives ä la stabilite
aerodynamique des ponts suspendus. Ces recherches ont ete entreprises par le
National Physical Laboratory du Department of Scientific and Industrial Research,
ä l'instigation du Ministere des Transports. Le but specifique etait de fournir des
informations aux dessinateurs charges de l'etablissement du projet de pont sur la
Severn. Toutefois, un grand nombre de renseignements ainsi obtenus s'appliquent
egalement aux ponts suspendus en general.

L'auteur expose egalement les essais qui ont ete effectues en soufflerie, tant sur
modeles complets que sur modeles partiels; il etudie les avantages et les inconvenients
de chacune des deux methodes. La valeur des resultats obtenus exclusivement sur
modeles partiels, du point de vue de la prevision du comportement des ponts reels, a
ete confirmee par la comparaison entre les deux methodes.

Differents profus de ponts fönt l'objet de comparaisons du point de vue de la
stabilite et l'auteur indique les dispositions qui permettent d'accroitre la stabilite.

Les modeles partiels qui ont ete utilises pour ces essais mettent en evidence le
developpement de la coneeption du tablier; les resultats montrent que l'etude
minutieuse de la forme et des caracteristiques de detail du tablier permet d'obtenir une
stabilite süffisante.

Zusammenfassung

Die vorstehende Arbeit gibt einen kurzen Ueberblick über Versuche, die für das

Ministry of Transport im National Physical Laboratory des Department of Scientific
and Industrial Research im Zusammenhang mit einer Untersuchung der
aerodynamischen Stabilität von Hängebrücken ausgeführt wurden.

Die Untersuchung wurde ursprünglich für den Konstrukteur der geplanten Severn-
Brücke ausgeführt, aber die Ergebnisse erscheinen von allgemeinem Interesse für die
Konstruktion von Hängebrücken.

Windkanalversuche an Teilmodellen sowohl als vollständigen Modellen werden
beschrieben, und die Vor- und Nachteile der beiden Methoden besprochen. Die
Zuverlässigkeit von ausschliesslich an Teilmodellen erhaltenen Ergebnissen für die
Voraussage des Verhaltens von Brücken in natürlicher Grösse wurde bestätigt durch
den Vergleich von mit den beiden Methoden erhaltenen Ergebnissen.

Die Stabilität verschiedener Brückenprofile wird verglichen, und Konstruktionen
werden vorgeschlagen, die die Stabilität erhöhen.

Die in den Versuchen benutzten Teilmodelle zeigen die Entwicklung der
Konstruktion der Fahrbahnplatte der geplanten Brücke; und die Ergebnisse zeigen, dass
durch geeignete Form und sorgfältig ausgearbeitete Einzelheiten der Fahrbahnplatte
ausreichende Stabilität erzielt werden kann.
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Die Dämpfung von Brückenschwingungen

The damping of oscillations in bridges

L'amortissement des oscillations des ponts

Prof. Dr. techn. DrpL. Ing. ERICH FRIEDRICH
Vorstand der Lehrkanzel für Betonbau an der Universität für Technische Wissenschaften

in Graz, Österreich.

Einleitung
Durch das Bestreben immer leichter und kühner zu bauen, wird es auch im

Betonbau erforderlich, das Bauwerk unter den Verkehrsbelastungen nicht mehr als
statisch ruhend zu betrachten, sondern den Einfluss der bewegten Belastung zu
berücksichtigen. Der alte Grundsatz, dass, je schwerer gebaut wird, um so sicherer
das Bauwerk ist, gilt nicht mehr. Wir kommen dazu, auch im Betonbau unliebsame
dynamische Einflüsse zu ergründen und, wenn erforderlich, ihnen durch bauliche
Massnahmen entgegenzutreten. Die gesamte Frage der Sicherheit von Bauwerken,
die Frage der Einführung eines «-freien Bemessungsverfahrens und die Frage, wie
man zweckmässig bestehende Bauten auf ihre Tragfähigkeit untersucht, kann durch
die Betrachtung des Bauwerkes als dynamisches Gebilde in viel umfassenderer Weise
beantwortet werden. Der Bauingenieur wird hier vielfach die bereits im Maschinenbau

gewonnenen Erfahrungen und Erkenntnisse für seine Bedürfnisse umformen und
anwenden können.* Im nachfolgenden wird auf eine dieser Fragen eingegangen,
wobei die bei dynamischen Untersuchungen bereits bekannten Verfahren auf das
Gebiet des Brückenbaues übertragen und dem Bauingenieur erschlossen werden
sollen. Bei einem Maschinenfundament hat man es in der Regel mit einer
gleichbleibenden Schwingungszahl zu tun. Im Brückenbau hingegen wird das Bauwerk
von Fahrzeugen mit verschiedener Belastung und verschiedenen Schwingungszahlen
befahren, so dass man darauf Rücksicht nehmen und die Untersuchungen auf
veränderliche Schwingungszahlen ausdehnen muss.

Bei einer bestehenden Brücke in Villach traten unter der Verkehrsbelastung
erhebliche Schwingungen auf. Man hatte daraufhin die Verkehrsbelastung
beschränkt und die Geschwindigkeit, mit der die Brücke befahren wird, herabgesetzt.
Beide Massnahmen störten empfindlich den gesamten Verkehr und wirkten sich

* I. P. Den Hartog, Mechanische Schwingungen. Deutsche Bearbeitung von Dr. Gustav Mesmer
Julius Springer, Berlin, 1936.
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vielfach nachteilig aus. So hatte die Beschränkung der Geschwindigkeit zur Folge,
dass die Brücke ständig mit der vollen Verkehrslast belastet war, weil sich die
Kraftwagen auf der Brücke zusammendrängten. Auch die Beschränkung der
Höchstbelastung wirkte sich nachteilig auf den gesamten Verkehr aus. Ausserdem ist es
praktisch unmöglich, bei dem stets zunehmenden Verkehr diese Beschränkung
aufrechtzuerhal ten.

Zunächst ist die Frage interessant, welche Schwingungen von den Kraftwagentypen

auf die Brücke ausgeübt werden. Bei der Brücke in Villach handelt es sich um
ein Bauwerk, das wohl statisch einwandfrei ist, aber mit der Eigenschwingungszahl
gerade in dem Bereich der von den Fahrzeugen ausgeübten Schwingungen liegt,
sodass die Brücke stets Resonanzschwingungen ausführt.

Vom Institut für Kraftfahrzeugbau an der Technischen Hochschule in Graz
wurden für einige Fahrzeugtypen folgende Schwingungszahlen angegeben. Im
Mittel schwanken die Schwingungen von Fahrzeugfedern zwischen 0,9 und 2,30 Hertz.

Tafel I
Ausgeübte Schwingungen in Hertz

Fahrzeugtype Belastung Vorderfeder Hinterfeder

Steyr 220 ohne Nutzlast 1,85 2,30
Steyr 220 100 kg. (1 Person) — 2,03
Steyr 220 400 kg. (4 Personen) — 1,62
Fiat Topolino ohne Nutzlast 1,77 2,23
Fiat Topolino 3 Personen 2,70 1,67
Fiat 1100 ohne Nutzlast 1,40 1,42
Fiat 1100 6 Personen 1,27 1,29

Durch den Marschtritt werden etwa 2,2 Hertz ausgeübt. Der Einfluss der
Unebenheiten der Fahrbahn verursacht beim Befahren ebenfalls Schwingungen.
Um auch hier Anhaltspunkte zu gewinnen, sei folgendes mitgeteilt: Bei Fahrbahnen
mit Kopfsteinpflaster ist der mittlere Abstand der Höcker o=10-M5 cm., bei
Fahrbahnen mit Schlaglöchern beträgt der Abstand der Schlaglöcher rd. 50-M00 cm.
Bei Landstrassen ist der Abstand der Höcker rd. 20-M00 cm. Man kann auch hieraus
auf die Stösse schliessen, die ein Fahrzeug auf die Fahrbahn ausübt.

/ (Hertz) .—r-3,6a (m.)
Bei einer Geschwindigkeit z.B. von K=16 km./h. ergibt sich hieraus bei einer
Höckerentfernung von rd. 1 m. eine Schwingungszahl von rund 5 Hertz. Die Frage,
die gestellt wird, ist die, ob es möglich ist, durch einen Einbau die Schwingungen für
die Brücke unschädlich zu machen, und weiter, wie dieser Schwingungsdämpfer
aussehen muss.

Die Eigenschwingung von Brücken
Für einen frei aufliegenden Träger mit der Elastizitätszahl £, dem Trägheits¬

moment J und der Stützweite / ergibt sich bei
konstanter Masse /x je Längeneinheit die Eigenschwingungszahl

(Abb. 1).

n2 iE!
" -./— (1)

r&p

Abb. 1 l2
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Die Schwingungsdauer T, das ist die Zeit, die der Träger braucht um von einer Lage
ausgehend wieder in die gleiche Lage zurückzukehren, ist mit w durch folgende
Gleichung gegeben.

T.w=2ir (2)

Die Zahl der Schwingungen in einer Sekunde (Hertz genannt) beträgt:
1 cu

f-r-ii (3)

Um die Rechnung zu vereinfachen, genügt es, an Stelle des wirklichen Systems
einen einfachen Schwinger zu betrachten (Abb. 2). Ein einfacher
Schwinger besteht aus einer Feder mit der Federkonstanten c und
einer darunter angehängten Masse m. Die Federkonstante c ist jene
Kraft, die erforderlich ist, um die Feder um 1 em. zu verlängern. Wird
die Masse aus der Ruhelage gebracht, indem an der Masse m nach
abwärts gezogen wird, und wird die Feder losgelassen, so schwingt das
System mit der Eigenschwingungszahl

w=Jm <4) Abb-2

Bei einem Träger ist die statische Durchbiegung 8 in Feldmitte bei gleichmässiger
Lastverteilung G=mg (g=981 cm./sec.2=Erdbeschleunigung) gegeben. Die
Federkonstante ist daher

mg t*\

l~c Vg 10 *oder cu= / — —7= =—j=- (6)V m ©8 V8
a> 5

'=*TVl (7)

Die statische Durchbiegung des Trägers unter der gegebenen Massenverteilung ist
daher ein Mass für die Eigenschwingungszahl des Trägers.

Man sollte in Hinkunft in die Brückenbestimmungen eine Vorschrift aufnehmen,
die die Eigenschwingungszahl beschränkt. Damit würde allerdings die Durchbiegung
unabhängig von der Stützweite beschränkt werden. Wenn nun eine Brücke mit der
Eigenschwingungszahl in der Nähe der durch den Verkehr auftretenden Schwingungen
liegt, so können die durch die Resonanz bedingten grossen Verformungen die
Tragfähigkeit der Brücke wesentlich herabsetzen. Die statische Durchbiegung 8S, ist mit
einem Yergrösserungsfaktor

zu multiplizieren, um die unter der Verkehrslast auftretenden Verformungen zu
erhalten. In dieser Gleichung ist Q die durch den Verkehr hervorgerufene
Schwingungszahl und u> die Eigenschwingungszahl. Wird Q\to=\ so wird SS=oo.
Eine Abminderung dieses Faktors bekommt man durch die Dämpfung D.

Setzt man die Dämpfung proportional der Geschwindigkeit, so lautet für das

Ersatzsystem (Abb. 2) die Differentialgleichung

mx+kx+cx=0 (9)
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Als Dämpfung bezeichnet man

D=:2Vcm
Bei einer Dämpfung ist die Vergrösserungsfunktion für die Durchbiegung

1

S8=

vo-en
2 Q2
+4Z)2—

(10)

(11)

An Hand von ausgeführten Versuchen, über die Oberregierungsbaurat Arthur
Lämmlein berichtet,* kann man sich ein Bild über den Dämpfungsfaktor machen. In
der nachfolgenden Tafel II ist für den Resonanzfall die Vergrösserungsfunktion
ermittelt.

Tafel II

Nr. Name Bauweise Dämpfung Vergrösserungs-
faktor Eigenschwingungs-

zahl in Hz.

1

2
3

4

Bleibachbrücke
Brücke bei Emmendingen
Brücke Oberhausen
Hügelsheim

Spannbeton
Spannbeton
Verbund
Stahlbetonplatte

0,014
0,008
0,0065
0,1213

35,7
125
154

8,2

- 4,25
3,14
6,88

10,60

Man erkennt aus diesen Zahlen, dass bei Resonanz Werte auftreten können, die für
die Brücke ausserordentlich bedenklich sind. Auch bei der Brücke in Villach ist
die Dämpfung der Brücke selbst gering. Der Wert D liegt bei 0,010, sodass der
Vergrösserungsfaktor rd. 100 ist. Um diese Brücke zu beruhigen, wird ein
Dämpfungsträger vorgeschlagen, der nun berechnet und beschrieben wird.

Die Dämpfung einer Brücke
Beschreibung der Konstruktion

Zunächst soll an Hand der Systemskizze Abb. 3 der Gedanke der Dämpfung
erläutert werden. Unter dem Brückentragwerk I befindet sich ein Träger II, der

Bruckenlragewerk I
'

A B C

*A* %e**D, $&02
E 1 ' F

Dämpfungsträgec II
Abb. 3

Dämpfungsträger genannt wird. Dieser Dämpfungsträger II ist an drei Federn A,
B, C mit dem Hauptträger verbunden. Zwischen den beiden Trägern sind ausserdem
Flüssigkeitsdämpfer D eingebaut. Natürlich befindet sich der Dämpfungsträger II
mit den Einbauten bei dem tatsächlichen Bauwerk nicht unterhalb des Hauptträgers,
sondern zwischen den Hauptträgern und ist nicht sichtbar. Der Dämpfungsträger
hat tV der Masse des Hauptträgers.

* Arthur Lämmlein, "Schwingungsmessungen an Strassenbrücken verschiedener Bauarten,"
Beton und Stahlbeton, Heft 5, 1951.
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Die Wirkungsweise des Einbaues des Dämpfungsträgers zeigt Abb. 4. Als
Ordinate ist die Vergrösserungsfunktion Sß und als Abszisse das Verhältnis der
aufgezwungenen Schwingung zur Eigenschwingung aufgetragen. Die Vergrösserungsfunktion

nimmt höchstens den Wert 4,6 an. Bis zu einer Vergrösserungsfunktion

§5

C?
.3 2

op ~~fti fc ö,6 o'.a (o 1.2 ft ie ia
Si Schwingung der fyhrzeuge
N [igenschivlngung Her Bruche

Abb. 4

von 5 kann man im allgemeinen damit rechnen, dass die dadurch hervorgerufenen
Spannungen innerhalb der zulässigen Grenzen bleiben. Die Flüssigkeitsdämpfer Di,
D2, D3 und die Federn sind leicht konstruierbar. Die nun beschriebene Wirkungsweise

und der Zusammenhang zwischen den einzelnen Grössen soll nun erörtert
werden.

Abb. 5

Ableitung der Gleichung*

Die Ableitung der Differentialgleichung ist in mehreren Schritten möglich. An
Stelle des wirklichen Systems wird das Ersatzschwingsystem untersucht.

1. Schritt. Zwei Massen mt und m2 sind mit zwei Federn Cy

und c2 mit der Decke und Fussboden verbunden (Abb. 5). Zwischen
den beiden Massen mY und m2 befindet sich eine Feder c3. Die
Ruhelage sei durch die beiden Punkte Oj und 02 gekennzeichnet.
Die Bewegungsgleichung ist aufzustellen. Wenn die Masse mx sich
nach unten bewegt, zieht die Kraft CyVx die Masse zurück. Die
Zusammendrückung der mittleren Feder ist vx—v2. Die Kraft,
die dadurch ausgeübt wird, ist c3(z>, — v2). Die Bewegungsgleichung
lautet (Abb. 6)

mv1 -civl-c3(vl-v^ (12)

Ebenso kann man eine entsprechende Gleichung für die Masse
m2 aufstellen. Die Bewegungsgleichungen lauten:

/Mi«)-r-(ci + c3)»1—c3u2=0]
m2v2+(c2+c3)w2 -c3v1=OJ

Wir stellen uns nun folgende Frage: Gibt es eine harmonische
c, v1

' Bewegung dieses Systems und wie gross sind die Ausschläge «r und
a2 der Massen mx bzw. m21 Welche Schwingungszahl liefert eine
harmonische Bewegung

Wir machen also für die Bewegung die Ansätze:

^1=f21 sin <üf\

Abb. 6 v2=a2 sin wt\
* Den Hartog, Seite 77.

u

(13)

1*0*-*;
(14)
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(15)

und bestimmen die Ableitungen nach der Zeit. Setzt man diese Werte in die
Bewegungsgleichung (13) ein, so ergibt sich:

a1(—mloj2+c1 + c3) — a2c3=0\
—a1ci+a2(—m2oj2+c2+ci)=0j

Aus der ersten Gleichung von (15) kann man den Wert aja2 und aus der zweiten
Gleichung kann man ebenfalls das Verhältnis ausrechnen. Wenn es eine Lösung
gibt, müssen beide Werte einander gleich sein. Man erhält auf diese Weise eine
Gleichung für die Eigenschwingungszahl w, die lautet:

C1 + C3 c2+ c3

mx m2
Cl£2+£2f3+£i£3_0

m\m2
(16)

P„sh,SXl
¦x"

Es gibt zwei Lösungen oij2 und w22 für die eine harmonische Bewegung möglich ist.

2. Schritt. Nun soll die Aufgabestellung etwas abgeändert
werden. Auf die Brücke mit der Masse M (Abb. 7) soll durch
die Verkehrsbelastung eine harmonische Kraft. P=Pq sin Qt
aufgebracht werden. An der Brücke sei ein zweiter Träger mit
der Masse m und der Federkonstante c befestigt. Die Frage
lautet: welche Schwingung führt dieses System aus? Man
bekommt die Bewegungsgleichungen, indem man in den
Gleichungen (13) den Wert c2=0 setzt und in der ersten Gleichung
die aufgezwungene Schwingung berücksichtigt.

Mv1+(C+c)v1-cv2=P0 sin Qt)
Abb-7 mö24-c(»2-Wl)=0 J

* ' {l)
Setzen wir vi=cti sin Qt und v2—a2 sin Qt ein, so erhält man für jene aufgezwungene
Schwingungszahl Q eine harmonische Schwingung, für die folgende Gleichungen
erfüllt sind :

a1(-MQ2+C+c)-ca2=P0\
-a1c+a2(-mQ2+c)=0

Man setzt in dieser Gleichungsgruppe die Eigenschwingungszahl der Brücke
N=VC/M, die Eigenschwingungszahl des Dämpfers v=Vc/m und das Verhältnis der
Masse des Dämpfers zu der der Brücke, \i.=m\M, ein. ¦ Die Durchbiegung der Brücke
unter der Last PQ sei 8sl=P0/C.

(18)

Man erhält aus der Gleichungsgruppe (18)

Q2\

C 'N2)
c Q2\ c

a^l +C-N2)-Ca2=Ss'

Aus dieser Gleichung erhält man

(19)

«i

Q2

s""(-?)('©4:)©
8- KIH-ÄB

(20)
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Aus der ersten Gleichung bekommt man ^=0, wenn Q=v wird. Die Brücke
bleibt dann in Ruhe, wenn die Eigenschwingungszahl des Dämpfungsträgers gleich
der aufgezwungenen Schwingung Q wird. Die Schwingung des Dämpfungstfägers
wird

a2- s
C P° £=_Po

c c

Setzt man noch v=N, d.h. die Eigenschwingungszahl der Brücke gleich der
Eigenschwingungszahl des Dämpfungsträgers, so wird

mc C c
~=17 oder 7--m M C M—p

1 —
Q2

Vi 8st. sin (Qt)

{l-%){l+^)~»
v2 8st. sin (Qt)

(21)

Fragen wir noch, ob es eine Resonanzschwingung gibt. Resonanz ist dann
vorhanden, wenn die beiden Werte v^ und v2 für eine bestimmte aufgezwungene
Schwingung unendlich werden. Dies ist der Fall, wenn der Nenner in den beiden
Gleichungen (21) null wird.

Q2
Setzt man -r Q>, so wird: <P2

vl

Woraus folgt:

(l-f)(l +M-5) -H-0 (22)

>(l+^ + l=0

*,-l+f+
^2=1 + ;

M+-

/^+C

(23)

Wenn ^=0,10 angenommen wird, so erhält man folgendes Ergebnis:

#1=1,38, 02=O,73

Durch den Dämpfungsträger wurde also folgendes erreicht:

(d) Bei einer aufgezwungenen Schwingung, die der Eigenschwingung der
Brücke gleich ist, bleibt die Brücke in Ruhe. Für diesen Fall hat der
Dämpfungsträger eine Bedeutung.

(b) Dafür ist aber bei einer Schwingung, die 27 % unter und 38 % über der
Eigenschwingungszahl des Hauptträgers liegt, eine Resonanz vorhanden.

Hätte man nur eine einzige Schwingungszahl, so könnte man in einfacher Weise
durch den Dämpfungsträger erreichen, dass der Brückenträger in Ruhe bleibt. Da
aber die Schwingungszahl der aufgebrachten Schwingung sehr veränderlich ist, muss
noch eine Dämpfung eingebaut werden, wodurch die in Abb. 4 dargestellte Wirkung
erreicht wird.
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3. Schritt. Wenn nun zwischen Brückentragwerk und Dämpfungsträger ein
Flüssigkeitsdämpfer eingeschaltet wird, lauten die Bewegungsgleichungen

\PgsinSU

u
HA"

M. ¦v\+ Cv1 + c(vl—v2)+k(v1—v2)=P0 sin Qt

mv2+c(v2—vy)+k(v2—tfy)=0

Versucht man nun die Lösung mit dem Ansatz:

(24)

v,=a1.e'a' v2=a2.eiQt

so erhält man:

vx=ax. iQ e[Qt vt -ax.Q2. eiQ'

v2=a2. iQ eiQ' v2= -a2 Q2 eiQ'

Abb. 8 Diese Werte in die Gleichung (24) eingesetzt ergeben

-Ma1Q2+Ca1 + c(a1-a2) + ikQ(a1-a2)=P0
—mQ2a2+c(a2—al) + ikQ(a2—al)=0

(25)

In den Gleichungen (25) sind ax und a2 unbekannt. Rechnet man sich den Wert a:
aus, so erhält man:

_p (c-mQ2)+iQk
01 °[(-MQ2+C)(-mQ2+c)-mQ2c] + iQk[-MQ2+C-mQ2] ' ' K '

Nun kann man hier die komplexen Grössen durch die reellen Werte ausrechnen:

2_p2 {c-mQ2)2+Q2k2
01 ° [(-MQ2+C)(-mQ2+c)-mQ2c]2+Q2k2[-MQ2+C-mQ2]2

" K '
Setzt man noch die Eigenschwingungszahl der Brücke N2=C/M, die
Eigenschwingungszahl des Dämpfungsträgers v2 c/m, die Durchbiegung der Brücke unter
der Last P0 gleich 8SI, sodass 8S,=P0/C wird, ferner das Verhältnis der Eigenfrequenz
des Dämpfungsträgers zu dem der Brücke tfi=v/N und die Dämpfungszahl D=k/2mN,
das Verhältnis der Masse des Dämpfungsträgers zu der der Brücke p.=mjM und das
Verhältnis der Schwingungszahl der aufgezwungenen Schwingung zur
Eigenschwingungszahl der Brücke t,=QjN, so wird:

(2D02+(Z2->p2)2
ül-Ss'-J(2Dl)2(l2-1+K2)2+ [p.<PH2-a2-1)(£2-«]2 ' ' (28)

Dies ist die Gleichung, die die Vergrösserungsfunktion für die statische Auslenkung
angibt:

Sß=± /
(2DQ2 + a2->P2)2

±V(2£>ö^2_1+/xC2)2+[fil/r2^2_(^2_1)(^_02)]2 ¦ • • ^)
In der beifolgenden Tafel III sind die Zahlenwerte für verschiedene Dämpfungen D
angegeben. Die Abb. 9 zeigt das Ergebnis. Setzt man die Dämpfung D=0,
so erhält man

P-+2
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Dieser Wert stimmt mit (20) inhaltlich überein. Für Z>=oo erhält man volle
Verbindung der beiden Träger, also praktisch nur einen Träger mit der Masse (M+m).
In diesem Fall ist die Vergrösserungsfunktion

•-I=räp <3I>

Der Wert stimmt mit der Gleichung (8) überein.
Man kann nun die Gleichung (29) noch weiter untersuchen und die Frage stellen,

ob es £-Werte gibt, die von der Dämpfung D unabhängig sind. Von der Dämpfung
unabhängig wird der Ausdruck 33 dann, wenn die Dämpfungszahl im Zähler und
Nenner von (29) gekürzt werden kann. Dies ist dann der Fall, wenn

l—L )2=( £=£ V (32)

Man erhält eine quadratische Gleichung

V-TJpZ 7'^ +rr-=o (33)
2+p. 2+p.

Es gibt also zwei Werte £t und £2, für die die Lösung von der Dämpfung unabhängig
ist. Dies sind die Punkte A und B in Abb. 9. Die Werte für A und B kann man aus
der viel einfacheren Gleichung (31) berechnen. Man kann nun noch—und das ist
das Ziel der Untersuchung—fragen, wie man die Eigenschwingungszahlen v und N
aufeinander abstimmen muss, um die Vergrösserungsfunktion 23 in den beiden
Punkten A und B gleich gross zu erhalten. Ist dies der Fall, so muss

l l
(34)i-£i2(i+i*) 1-©22(1+/") v

Das Minuszeichen kommt daher, dass zu einem positiven Wert von A der Punkt B'
mit negativem Vorzeichen gehört. Aus der Gleichung (34) folgt

V+tf-lf, (35)

Andererseits muss die Gleichung (33) erfüllt sein. Da die Summe der Lösungen
£i2+^22 in jeder quadratischen Gleichung gleich dem negativen mittleren Glied ist,
wird

2 2d42+ 1+f*)

Daraus ergibt sich
1+M- 2+,

(36)

<-nb (37)

Wenn man /*=0,1 wählt, d.h. also die Masse des Dämpfung'strägers zu ts der Masse
des Hauptträgers, wird

i/f=-j-j-=0,909091 (38)

Dieser Wert ist in der Tafel III gewählt worden. Der Dämpfer muss eine
Eigenschwingungszahl haben, die nur 0,91 der Eigenschwingungszahl des Hauptträgers ist.

Die Vergrösserungsfunktion 23 wird in diesem Fall

33= /l + - V21=4,58
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Nun wurde für .0=0,10, D=0,20 und D=0,16 der Verlauf der Vergrösserungsfunktion

gerechnet. Als diejenige Linie, die über die Punkte A und B nicht
hinausgeht, wurde die Linie mit Z>=0,16 ermittelt. Das Ergebnis ist somit:

(1) Der Dämpfungsträger muss eine Eigenschwingungszahl einschliesslich der
Federn, mit denen er mit dem Hauptträger verbunden ist, haben, die das
0,91-fache der Eigenschwingungszahl des Hauptträgers beträgt.

(2) Die Masse des Trägers ist tV der Masse des Hauptträgers.
(3) Die Dämpfung muss £>=0,16 sein.

Dadurch ist der Dämpfungsträger eindeutig festgelegt.
Konstruktion zeigen.

Ein Beispiel soll die

Beispiel

Der Dämpfungsträger einer vorgespannten Betonbrücke ist zu entwerfen.
Abmessungen der Brücke sind in Abb. 10 angegeben.

Die

*M IC 3E i ^y i°y "py,
so I. s.n I, .in |~nr

fci-

T

L- 33,0m-
8,00m -

•ip-imi^^^^mmsm^mmm^
Si Federn

0,35~

mmnmmz%mmmz:
I/.20

Abb. 10

¦0.60

Zahlenwerte:

Trägheitsmoment der Brücke: //=688,105 cm.4
Masse der Brücke: /x/=0,0956 kg./cm.2 see.2

Elastizitätsmodul: E= 210 000 kg./cm.2
Die Eigenschwingungszahl der Brücke ergibt sich aus (1) zu:

vV=
210 000.688.105

:1,76 Hertz
2 3300W 0,0965

Die erforderliche Masse des Dämpfungsträgers beträgt:

m=0,l 0,0956 33=0,316 kg./cm.2 see.2

Gewählt werden zwei Dämpfungsträger mit den Abmessungen:

7=25 m., b 35 cm., d=lQ cm.

/*//=©r?- =0,0126 kg./cm.2 see.2

Die erforderliche Eigenschwingungszahl der Dämpfungsträger beträgt:

v=0,91 .1,76=1,6 Hertz

Bezeichnet man mit vt die Eigenschwingungszahl der Dämpfungsträger mit starrer
Befestigung, mit v2 die Eigenschwingungszahl der starr gedachten Dämpfungsträger
mit elastischer Befestigung, mit Ju das Trägheitsmoment der Dämpfungsträger und
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mit Cf das Gesamtfedermass aller Aufhängefedern, so gilt nach Dunkerley*
angenähert:

-2=—+— (39)
v*. II, ^ v^^V*- Vj' v2~

v=l,6 Hertz
Tr EJU 1 / CF _

704

5) 7=2500 cm.
2

ergibt sich aus (39) das erforderliche Gesamtfedermass aller Aufhängefedern zu:
CF=3200 kg./cm.

Zusammenfassung

In Zukunft muss man den dynamischen Kräften auch im Stahlbetonbrückenbau
entgegnen. An einem Beispiel wird gezeigt, wie man durch den Einbau eines

Dämpfungsträgers den unliebsamen Schwingungen einer Brücke bei Resonanz
begegnen kann.

Summary

In future, means must be adopted to counteract the effects of dynamic forces in
reinforced-concrete bridges. From an example it is shown how, in a case of resonance,
the undesirable oscillations of a bridge can be obviated by adding a damping girder.

Resume

II sera, ä l'avenir, necessaire de faire face aux efforts dynamiques, meme dans la
construction des ponts en beton arme. L'auteur montre, en s'appuyant sur un
exemple, comment l'on peut s'opposer aux oscillations inopportunes qui peuvent se
manifester par resonance, ä l'aide d'une poutre d'amortissement.

* Dunkerley, Philosophical Transaclions, 1894.
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Dynamic increments in an elementary case

Les influences dynamiques considerees dans un cas elementaire

Dynamische Zuschläge in einem einfachen Fall

Dr. ARNE HILLERBORG
Stockholm

In the Preliminary Publication to the Congress in Liege in 1948, the author pre-
sented the first results of an investigation of dynamic influences of moving loads on
girders. This work was carried out at the Institution of Structural Engineering and
Bridge Building at the Royal Institute of Technology, Stockholm, Sweden, under the
supervision of Professor G. Wästlund. The final results of the investigation were
published in 1951 in a treatise,* which also describes the theoretical and experimental
methods used. A summary of the practical results will be given here.

The case that has been studied is that of a single load moving smoothly at a
constant speed along a simply supported girder. The girder has been supposed to be of
uniform section and to be straight under dead load. The following factors have been
taken into aecount:

the mass of the girder,
the mass of the load,
the velocity of the load,
spring-mounting of the load,
viscous damping of the girder (internal and external),
dry friction in the load-carrying spring.

These factors have been given a dimensionless form by introducing the notations:

mass of load

mass of girder

velocity of load

p.=

9=

2 x length of girder x frequency of girder

frequency of load

frequency of girder

spring friction force

weight of load
2-nß

e v^-^=ratio of two consecutive amplitudes in the same direction ofthe free Vibra¬
tion of the girder.
* Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.
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In the above notations, the frequency of the girder is the fundamental frequency
of the undamped girder at no load.

Two different values are used for the constant ß. One of them, denoted only
by ß, refers to an external damping force, while the other, denoted by ßi, refers to an
internal damping force.

In the investigation, a distinetion was made between two cases, viz. spring-borne
and non-spring-borne loads, but, as the former is of much greater practical importance,
only the results relating to spring-borne loads will be given here.

A dynamic increment in a quantity is defined by:
dynamical value

static value
•1

To make the definition strict, it is also necessary to know what kind of quantity
is measured and what dynamical and static values are to be used. This is indicated
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by subscripts as follows: M for moments, Q for shearing forces, and R for reaction
forces. The following definitions show what values are to be taken:

£abs~
greatest dynamical value for the girder

greatest static value for the girder
1

*max=maximum of
greatest dynamical value at any point
greatest static value at the same point -1
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The value eabs (the absolute increment) expresses the greatest influence of a given
kind (for instance, the greatest moment) on the girder, and is therefore the most
interesting value in dealing with girders of uniform strength. The value emax gives
the greatest dynamic increment at any section of the girder. This value is of great
interest in studying girders of non-uniform strength (for instance, reinforced-concrete
girders).
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Fig. 3

The most interesting dynamic increments are eM, max, eM, abs, *q, max, *q, abs,

and €r. The latter has only one subscript, as the gauge point must be at the support,
and the definition of tR is:

greatest dynamical reaction force
cr=-

It can be shown that:
greatest static reaction force

-1

*Q, abs=CR

Further, it has been shown that eß, max may with sufficient accuracy be put equal
to €M, max in this case. It is therefore sufficient to plot diagrams for the dynamic
increments eM, max, eM, abs, and eR. Such diagrams are shown in figs. 1 to 4, from
which the dynamic increments for any arbitrary values of v, ex., p,, ß, ßu and 6 (within
practical limits) can be calculated by means ofthe formula:

ß

VH-0-5
Axz+

ßl

Vv+0 ¦ 5

e

A2e+ö~i •Ai*
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In this formula e is the value taken from fig. 1, and the three Je-values are taken
from figs. 2 to 4.

The values of e which are given by this formula are approximate, as it has been
constructed in the way that is described below, but it seems always to give sufficiently
accurate values.

For studying the dynamic increments, use can be made of the theoretical methods
described in the above-mentioned treatise. In the general case, however, the
calculations are so intricate that it takes about two days to carry them out for a single
case. If complete calculations including four values of each of the six variables were
to be made, the number of calculations would be 46=4096, and the time required
would be about twenty-five years. This is obviously impracticable, and some other
method must be found in order to limit the work, even if the results will be less

accurate.
For plotting the diagrams in figs. 1 to 4 the following method has been used. To

begin with, the case v= oo has been studied, that is, the case where the mass of the

£%
so

25

concentrated had
distributed load

'

"~~~C©?""»

^ s p —ZS-tt:
10 20 ^m 30

Fig. 5

girder is neglected in comparison with that of the load. In this case the calculations
are so simple that they can be carried out almost completely. When studying the
results of these calculations, trials have been made to find simple approximate relations
between e and the variables. It was then found that the above formula gave
sufficiently accurate results in this case. This formula and the corresponding
diagrams have thus first been made for the case v=oo, in which the numbers
0-25 and 0-5 added to v are without significance. It is to be noted that, in this case,

o
the values of mx2, vjj.2, and —y are finite.

After the case v= co had been studied theoretically, a very complete series of tests
comprising v-values between 0-75 and 5 was made. The test values were then
compared with the theoretical values for v= oo, and it was found that if v was increased by
the values given in the formula and the diagrams, the agreement was sufficiently close
for all test values.

In order to give an idea of the order of magnitude of the dynamic increments
caused by the influence studied in this investigation, the diagram in fig. 5 has been
plotted on the following assumptions:

(1) The deflection under live load is 1/1250 of the span length.
(2) The velocity is 30 m./sec (=108 km./hour).
(3) The mass of the girder is neglected (this gives too small values of e).

(4) The damping is neglected.
(5) The frequency of the load is 3 cycles per second.

For comparison, a curve for a distributed load is also shown in fig. 5. The
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assumptions on which this curve is based are such that it gives only a lower limit for
the increments.

The investigation has shown that dynamic influences of moving loads of nearly
any kind on simply supported girders can be calculated theoretically, but in com-
plicated cases the calculations are very laborious. This difficulty is still more pro-
nounced when the girder is supported in a more intricate manner, for instance when
it is continuous, although the calculations are possible in principle. On the other
hand, the investigation has also shown that a comparatively simple test set-up can
give reliable test values with a small amount of work. It therefore seems advisable
that future investigations of this subject should mostly be based on model tests,
especially in relatively complicated cases. Theoretical studies are of course of great
value for the right understanding of the dynamical problems, but the number of
numerical calculations should be limited.

In addition to such studies of elementary cases, it is of course also valuable to make
tests on real bridges under real loads. However, these tests must be carried out and
treated in a scientific and methodical way, and not at random. Thanks to the
development of measurement engineering, we are today much better equipped for
making such tests than we were only ten years ago. Resistant wire strain gauges and
oscillographic recorders have made it possible to get accurate records of strains in
any points of the load-carrying structures without much work and at small costs.

It seems to the author that the conditions are now favourable for acquiring a much
better knowledge of the dynamical problems in bridge building if they are attacked
methodically.

Summary

The practical results of an investigation of dynamic problems are summarised.
A complete report on the investigation was published in 1951 in a book entitled
Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.

It is pointed out that the conditions are now favourable for acquiring a better
knowledge of the dynamic problems if they are attacked methodically.

Resume

L'auteur expose sommairement les resultats pratiques d'une etude relative aux
problemes dynamiques. Un rapport complet sur cette etude a ete publie en 1951 dans
un livre intitule Dynamic Influences of Smoothly Running Loads on Simply Supported
Girders (Influences dynamiques des charges roulantes ä allure uniforme sur les poutres
ä appuis simples).

L'auteur fait remarquer que les conditions actuelles sont favorables ä l'appro-
fondissement de nos connaissances des problemes dynamiques, si l'on aborde ces
problemes d'une maniere methodique.

Zusammenfassung

Der vorliegende Bericht enthält eine Zusammenfassung der praktischen Ergebnisse

einer Untersuchung dynamischer Probleme. Ein vollständiger Bericht über
diese Untersuchung wurde 1951 in einem Buch unter dem Titel Dynamic Influences of
Smoothly Running Loads on Simply Supported- Girders (Dynamische Einflüsse
gleichmässig beweglicher Lasten auf einfach unterstüzten Trägern) veröffentlicht.

Der Verfasser weist darauf hin, dass die gegenwärtigen Verhältnisse für eine
Vertiefung unserer Kenntnisse der dynamischen Probleme günstig sind, wenn diese
Probleme methodisch in Angriff genommen werden.
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Introduction
Plastic design methods have been developed with a view to providing a more

rational and economical approach to the design of framed structures whose members
possess a high degree of ductility.1 The methods are applicable to cases in which the
members of a frame possess a relation between bending moment and curvature of the
form illustrated in fig. 1. The important features of this type of relation are:

(i) If the curvature increases indefinitely,
the bending moment tends to a limiting value
±MP, termed the fully plastic moment, re-
gardless of the previous history of loading.

(ii) An increase of curvature is always
accompanied by an increase of bending
moment of the same sign, unless the bending
moment has attained its fully plastic value.

The behaviour of mild steel beams con-
forms quite closely to these assumptions, and
experimental investigations have confirmed
the validity of applying plastic methods of
design to framed structures of mild steel.2
As yet, little consideration has been given to
the possibility of applying the plastic methods Fig. l

i For references see end of paper.

Curvjfure
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to framed structures of other ductile materials, such as certain of the light alloys.
When the fully plastic moment is attained at a particular cross-section of a member,

the curvature at this cross-section is indefinitely large, so that a finite change of slope
can occur over an indefinitely short length of the member at this cross-section. The
member therefore behaves as though a hinge existed at this cross-section, rotation of
the hinge being possible only when resisted by the fully plastic moment. This concept

of a plastic hinge was first introduced by Maier-Leibnitz,3 and it is of great value
in considering the behaviour of framed structures under load.

For the sake of simplicity, consider first a framed structure subjected to several
loads, each load maintaining the same proportion to each of the other loads. If the
loads are steadily increased, the structure will first support the loads by wholly elastic
action. Eventually a plastic hinge will form at the most highly stressed cross-section.

If the loads are increased still further, this plastic hinge will rotate under a constant
bending moment, its fully plastic moment, and further plastic hinges will form and
rotate in other parts of the structure. Finally, a condition will be reached in which a
sufficient number of plastic hinges have formed to transform the structure into a
mechanism. The structure will then continue to deform to an indefinite extent while
the loads remain constant, until the geometry of the structure is changed appreciably.
Such changes may either check the growth of the deflections, or cause a catastrophic
collapse by accentuating the effects of the loads. In practice, strain-hardening also
checks the growth of deflections. The theoretical condition of indefinite growth of
deflection under constant loads is termed plastic collapse.

The methods of plastic design are used in conjunction with a load factor. The
structure is designed so that the most unfavourable combination of the working loads,
when multiplied by the chosen load factor, would just cause a failure by plastic
collapse. This procedure is justifiable even when the loads do not necessarily maintain
the same proportions to one another, for it has been shown that plastic collapse of a
structure will occur at the same set of loads regardless of the sequence in which the
individual loads were brought up to their collapse values. It is clear that the load
factor has a very precise meaning in plastic design, for it represents the margin of
safety which is provided against an actual physical failure of the structure.

Several methods for Computing plastic collapse loads have been suggested© 5

These methods have been capable, in principle, of determining plastic collapse loads
for framed structures of any degree of complexity. In practice, however, their
application has been limited by the amount of time required for the necessary computations.
In the present paper a method is presented which enables plastic collapse loads and
their corresponding mechanisms to be determined very simply. The method con-
sists essentially of building up the actual collapse mechanism from a certain number
of independent components, which are termed the independent partial collapse
mechanisms. Corresponding to any mechanism which is being investigated, a value
can be found for the applied load by applying the Principle of Virtual Work.6 It
has been shown that the correct collapse mechanism is the one to which there
corresponds the smallest possible value of the applied load. The method consists
therefore of combining the independent partial collapse mechanisms in a systematic
manner in order to reduce the corresponding value of the applied load to its least
possible value. In order to explain and justify the method, a sfmple example will
first be discussed. Detailed calculations will then be given for a single-bay pitched-
roof portal frame, and the calculations for a three-bay pitched-roof portal frame will
also be outlined. Calculations for a two-bay three-storey rectangular frame have
been given elsewhere.7
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Simple illustrative example
The rectangular portal frame shown in fig. 2 will be used as a basis for the

discussion of the method. All the joints of this frame are assumed to be rigid, and the
feet of the stanchions are rigidly built in. The dimensions

of the frame are as shown, and horizontal and
vertical loads W are applied at the positions indicated
in the figure. The fully plastic moment of each member

is Mp, and the problem is to find the value of W
which causes failure by plastic collapse.

For this particular type of structure it is known
that there are only three possible collapse mechanisms,
and these mechanisms are shown in figs. 3(a), 3 (b)
and 3(c). In these figures the magnitudes of the plastic
hinge rotations are all shown in terms of a single parameter 8. For reference,
the signs of the plastic hinge rotations are also given, although in the technique to
be described there is no need to take aecount of these signs. The sign Convention
adopted is that a hinge rotation is positive if the hinge is opening when viewed from
inside the frame.

7777" 7777"

Fig.2
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For each mechanism it is possible to
calculate a corresponding value of W by
applying the principle of Virtual work in the
special form that the virtual work done by
the applied loads during a small displacement
of the mechanism is equal to the Virtual work
absorbed in the plastic hinges. Considering

Fig. 3(c) the mechanism of fig. 3(o), for example, it is
seen that during the small mechanism

displacement shown, the horizontal load W does no work and the vertical load W,
displaced through a distance 18, does virtual work Wld. To calculate the Virtual
work absorbed in the plastic hinges, it is noted that the work absorbed in any
individual hinge is always positive. Since the fully plastic moment is Mp everywhere
in the frame, the virtual work absorbed in the plastic hinges is at once seen to be
48MP, since the total rotation of all the plastic hinges is 46. Applying the principle
of Virtual work:

M
W16=48MP, or W-A-^ (1)
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Similar calculations for the mechanisms of figs. 3(b) and 3(c) are readily made.
The results of these calculations are:

M
fig. i(b): W18=48MP, or W=4-j (2)

M
fig. 3(c): 2W18=68MP, or W=3-j- (3)

The correct collapse mechanism can now be distinguished by applying what has been
termed the kinematic principle of plastic collapse.6,8 This principle states that: " For
a given frame and loading, the correct collapse mechanism is the mechanism to which
there corresponds the smallest possible value of the applied loads." For the particular

problem of fig. 2, it follows that the actual collapse mechanism is the mechanism
shown in fig. 3(c), which yields the lowest value of W, namely 3Mp\l.

Examination of figs. 3(a), 3(b) and 3(c) reveals the fact that the mechanism of
fig. 3(c) is a direct combination of the mechanisms of figs. 3(a) and 3(b), in the sense
that the displacements and plastic hinge rotations of this mechanism are obtained by
summing the corresponding quantities for the mechanisms of figs. 3(a) and 3(b).
In fact, as will be seen later, these latter two mechanisms are the independent partial
collapse mechanisms for this structure and loading. In general, all possible collapse
mechanisms can be formed by combining the independent partial collapse mechanisms.
In the simple problem under consideration there is, of course, only one possible
combination to be investigated.

The particular feature of the combination of the independent mechanisms of
figs. 3(a) and 3(b) which is of interest is that for both these mechanisms the corresponding

value of W was 4Mpjl, whereas for the mechanism of fig. 3(c) which resulted from
their combination the value of f^was only 3Mp/l. This reduction of Wis due to the
cancellation of the plastic hinge at the cross-section 2 which occurs when the
mechanisms are combined. When the two mechanisms are superposed, the virtual
work done by the loads in each case may be added to obtain the Virtual work done in
the resulting mechanism. However, to obtain the virtual work absorbed in the
plastic hinges in the resulting mechanism, work 28MP must be subtracted from the

sum of the virtual work absorbed in the two independent mechanisms. This is to
aecount for the term 8MP which was included in the virtual work absorbed in each of
these mechanisms for the plastic hinge at the cross-section 2, which disappears as a

result of the superposition. The virtual work equation for the resulting mechanism
is thus obtained by adding equations (1) and (2), and subtracting 28MP from the
resulting work absorbed in the plastic hinges, giving:

W18+ Wl8=46Mp+48Mp-28Mp
or 2Wie=6eMp,
which was previously obtained as equation (3).

In general, the technique for combining the independent mechanisms thus con-
sists in selecting pairs of independent mechanisms which themselves yield low values
of W, and which can be combined so as to cancel a plastic hinge. Such a combination
may, as has been seen, result in a value for W which is lower than the value corresponding

to either of the mechanisms which were combined. Even in complicated problems,
the combinations to be tried are usually small in number, so that a Solution can be

obtained with great rapidity.
It is, of course, essential to Start an analysis with the correct number of independent

mechanisms. In fact, the number of independent mechanisms is always equal to the
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number of independent equations of equilibrium for the frame. To justify this
Statement, it is necessary to consider the statics of the illustrative example of fig. 2,

although it should be stressed that in actual applications of the technique there is no
need to write down the equations of equilibrium. However, it is recommended that
Solutions should always be checked by statics, making use of ihe principle ofuniqueness
of Solution,6'8 which states that: " If a sufficient number of plastic hinges occur in a
frame to transform the frame into a mechanism, and if a bending moment diagram
can be constructed for the frame in which the fully plastic moment occurs at each
plastic hinge position, then the corresponding load is the correct collapse load if the
fully plastic moment is not exceeded anywhere in the frame."

Examples of this form of check are given later in the paper.

The equations of equilibrium
The equations of equilibrium for the frame illustrated in fig. 2 are written down

most conveniently in terms of the bending moments at the five cross-sections numbered
from 1 to 5 in fig. 2. It will be seen from this figure that when these five bending
moments are known, the bending moment distribution for the entire frame is
determined, for between any adjacent pair of these cross-sections the shear force is constant,
so that the bending moment must vary linearly along the length of the member.
These five bending moments are denoted by Mx, M2, M5, the suffix indicating the
relevant cross-section. The sign Convention adopted for these bending moments is
that a positive bending moment causes tension in the fibres of a member adjacent to
the dotted line in fig. 2.

This frame has three redundancies, for if a eut is imagined to be made at section 1,

for example, and the values of the shear force, thrust and bending moment at this
section are known, the entire frame becomes statically determinate. These three
quantities can therefore be regarded as the redundancies of the frame. Since there
are five unknown bending moments, it follows that there must be two independent
equations of equilibrium.

The first of these equations of equilibrium expresses the fact that the vertical load
W is carried by the shear forces in the horizontal member 234. Fig. 4 shows the

M, M3 || f M3 M,
V V w-v w-v

Fig. 4

relevant forces and bending moments, the load W being carried by a shear force V in
the member 23 and a shear force W— V in the member 34. Taking moments for the
equilibrium of the members 23 and 34, it is found that

M3-M2= VI

M3-M4=(W-V)l
On adding these equations to eliminate V, it is found that

2M3-M2-M4=Wl (4)

In a similar way, an equation expressing the fact that the horizontal load W is carried



80 AI 3—B. G. NEAL AND P. S. SYMONDS

by the shear forces in the vertical members 12 and 45 may be found. This equation
is

M2-M1+M5-M4=Wl (5)

Equations (4) and (5) constitute the two independent equations of equilibrium.
In the mechanism of fig. 3(d) plastic hinges have formed at the cross-sections 2, 3

and 4, so that the magnitude of the bending moment at each of these cross-sections is

Mp. Having regard to the sign Convention, these bending moments are

M2=-Mp, M3 MP, M4=-Mp
When these values are substituted in equation (4), a value for Wis immediately found,
this value being W=4Mp/l.

It will be seen that the mechanism of fig. 3(a) corresponds to equation (4) in the
special sense that in this mechanism each of the bending moments appearing in
equation (4) takes on its fully plastic value, and that the sign of each bending moment
is such as to give rise to the largest possible value of W. In a similar way, the
mechanism of fig. 3(b) may be said to correspond to equation (5). If each of the
bending moments appearing in equation (5) is given its fully plastic value, and the
sign of each bending moment is such that the largest value of W is obtained, the
following values are found:

M\ —Mp, M2=MP, M4=—Mp, M5 MP.

These are the fully plastic moments appearing in the mechanism of fig. 3(6).
To generalise, it may be said that any mechanism corresponds in this special sense

to a particular equation of equilibrium. It follows that for any particular frame and
loading the number of independent mechanisms will be equal to the number of
independent equations of equilibrium. In the particular example under consideration

there are only two independent equations of equilibrium, namely equations (4)
and (5) and any other equation of equilibrium must be obtainable by combining
these two equations. Correspondingly, it follows that any possible mechanism will
be found to be a combination of the mechanisms of figs. 3(a) and 3(b). In this
particular example, there is only one possible combination of these mechanisms,
which is illustrated in fig. 3(c). The equation of equilibrium which corresponds to
this mechanism is obtained by adding equations (4) and (5) so as to eliminate M2,
giving

2M3-M,-2M4 + M5 2Wl (6)

This addition corresponds to the superposition of the mechanisms of figs. 3(a) and
3(b). The bending moments at the plastic hinges may be seen from this equation,
or from the mechanism of fig. 3(c), to be

Mi —Mp, M3 — Mp, M4=—Mp, M5 MP,

and the corresponding value of Wis 3Mp\l.
For convenience of discussion, the loads have previously been referred to as the

yariables, whereas in an actual design the loads will be given quantities and the
problem is to find the required fully plastic moments of the members. When viewed
in this light, the problem just discussed amounts to determining the greatest value of
Mp, rather than the least value of W, corresponding to any possible mechanism, for
it is the quantity Wl/Mp which is determined for any particular mechanism by a
virtual work analysis, and minimising W for given values of Mp and / amounts to
maximising Mp for given values of W and /.
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To summarise, then, the proposed method is as follows:
(1) Determine the correct number of independent mechanisms by calculating

the number of independent equations of equilibrium.
(2) Calculate the required values of the fully plastic moments of the members

by virtual work for these independent mechanisms.
(3) Investigate combinations of these mechanisms so as to maximise the

required fully plastic moments.
(4) Check the Solution by constructing a bending moment diagram.

An application of the method to a single-bay pitched-roof portal frame will now
be given in detail, followed by a brief indication of the application of the method to a
three-bay pitched-roof portal frame.

PlTCHED-ROOF PORTAL DESIGN

As an illustration of the practical application of the proposed method of design,
typical calculations for a pitched-roof portal frame will now be given. The dimensions

ofthe frame are as indicated in fig. 5,
the roof slope being 22^°. The working o-rei- ts2i
loads on the frame are also shown in fig.
5. These working loads, which are given
in tons, are assumed to be spread uniformly
over the purlins and sheeting rails shown
in the figure. Of these loads, the vertical
loads of 2-61 tons, acting on each rafter,
are due to dead and superimposed (snow)
loads, and the remaining loads are wind
pressures and suctions. The frame is to Fig. 5
be designed to a load factor of 1 -75 for the
case in which only the dead and superimposed loads are acting, and to a load factor
of 1-4 for the case in which the wind loads are also acting. Each member of the
frame will be taken tö have the same cross-section, with a fully plastic moment Mp.

Design for dead, superimposed and wind loads

The first design case which will be considered is the design to a load factor of 1-4

for the case in which the wind loads are acting in conjunction with the dead and
superimposed loads. The first step is to decide how many independent partial
collapse mechanisms must be considered. The number of such mechanisms for any'
given frame and loading has been shown to be equal to the number of independent
equations of equilibrium. It is therefore necessary to calculate the number of
independent equations of equilibrium, and this is done most conveniently by counting
the number of bending moments which are needed to specify the bending moment
distribution for the entire frame and subtracting the number of redundancies.

For each of the four members of the frame, the loads will be assumed to be

uniformly distributed, so that the distribution of bending moment is parabolic. Each
parabola will be completely specified if the values of the bending moment at three
sections are known. These three sections are chosen most conveniently for the

present purpose as the two end sections and the central section in each member. It
follows that the bending moment distribution for the entire frame will be specified
completely by the values of the bending moments at the nine cross-sections numbered
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from 1 to 9 in fig. 5. This frame has three redundancies, and so there must be six
independent equations of equilibrium.

It follows that there must be six independent partial collapse mechanisms. These
mechanisms are illustrated in figs. 6-11, inclusive. It will be seen that the mechanisms
of figs. 6, 7, 8 and 9-are merely simple beam failure mechanisms, and fig. 10 shows a

simple sidesway mechanism. If it were not known that there must be six independent
mechanisms, it might be concluded that these five mechanisms constituted the
independent partial collapse mechanisms, and thus a calculation of the correct number of
independent mechanisms is a vital preliminary Operation in the analysis. However,
a sixth independent mechanism must be selected, and the most convenient choiee is
the mechanism shown in fig. 11. In each figure the rotation of each plastic hinge is

given in terms of a single variable 8. There is no need to consider the signs of the
plastic hinge rotations, since the virtual work absorbed in a plastic hinge is always
positive. However, for convenience in the later stages of the calculations when the
Solution is checked by statics, the signs of the plastic hinge rotations are also given,
the sign Convention being that a hinge rotation is positive if the Joint is opening when
viewed from within the portal.

In the simple beam failure mechanisms of figs. 6, 7, 8 and 9, the plastic hinges
within the spans are all shown as oecurring at mid-span. However, the loads on
these spans are all assumed to be uniformly distributed in the first instance, so that
these plastic hinges might occur anywhere within the spans. This is because a

plastic hinge within a span must occur at a position of maximum bending moment,
and the positions at which the maximum bending moments occur are not known until
a later stage in the analysis. However, in the preliminary calculations it is
convenient to take these plastic hinges as oecurring in mid-span.

Now consider the mechanism of fig. 6. For the hinge rotations shown, the
plastic hinge at mid-span moves through a distance 68 ft. The average displacement
of the uniformly distributed load of 0-94 tons is therefore 38 ft., so that the virtual
work done by this load, taking into aecount the load factor of 1 -4, is 0-94 1-4. 38 tons-
ft. The total plastic hinge rotation involved in the mechanism is 46, so that the
virtual work absorbed in the plastic hinges is 48MP. Applying the principle of
virtual work, it is found that

46MD=Q-94. 1-4.38=3-958
(7)

The virtual work equation for the mechanism of fig. 7 is precisely the same as
M„=0-99 tons-ft.
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equation (7). Corresponding virtual work equations may be written down at once
for the mechanisms of figs. 8 and 9. These equations are:
fig. 8:

fig. 9:

40M„=l-4[2-61 4-50-0-76 4-876»]= 11 -38

Mp
48MB

2-83 tons-ft.
l-4[2-61 .4-50- l-52.4-870] 6-O86>

Af„=l-52 tons-ft.

(8)

(9)
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The geometry of the sidesway mechanism of fig. 10 is also simple. Each side load of
0-94 tons moves through an average distance of 60 ft., and the entire roof moves
laterally through a distance 120 ft. The virtual work equation is

40Mp=l-4[2 0-94 60+0-76 sin 22|°. 120] 2O-70

M„=5-18 tons-ft (10)

The geometry of the mechanism of fig. 11 is a little more complicated. If the hinge
at Joint 3 rotated through an angle —0 while the Joint 5 remained rigid, Joint 7 would
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move downwards through a distance 360 ft. Since there can be no downwards motion
of Joint 7 for a small displacement of the mechanism, it follows that the hinge at
Joint 5 must rotate through an angle 360/18 20 so as to reduce the vertical displacement

of Joint 7 to zero. This hinge rotation causes a horizontal displacement of
Joint 7 through a distance 20. 7-45 14-90 ft., so that the rotation of the hinge at
Joint 9 is 14-90/12=1-240. The hinge rotation at Joint 7 is then seen to be-2-240,
and it is found that the centre of the member 57 moves 11-20 ft. to the right and 90 ft.
downwards. The virtual work equation for this mechanism may now be written
down as follows:

6-480M/,= l-4[2 2-61 90-0-76 9-740+1-52 sin22i°.
-1 -52 cos 22i°. 90+0-94 7-450]

56-60

11-20

Af„=8-73 tons-ft (11)

Among the six independent partial collapse mechanisms,

the highest values of Mp are thus 5-18 tons-ft.
and 8-73 tons-ft. for the mechanisms of figs. 10 and 11,

respectively. The next step is thus to investigate the
combination of these two mechanisms. It is seen
that if the mechanism of fig. 10 is superposed on the
mechanism offig. 11, the rotation ofthe hinge at Joint
3 is cancelled, so that the resulting mechanism is as
shown in fig. 12. The virtual work equation for this mechanism is obtained by adding
equations (10) and (11), and subtracting 26MP from the resulting Virtual work

28
2i S

2t,S

Fig. 12
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absorbed in the plastic hinges, since a term 6MP was included in each of these equations

for the plastic hinge at Joint 3. The virtual work equation is thus:

(4+6-48-2)0Mp=2O-70+56-60
8-480Mp=77-30

M„=9-12 tons-ft. (12)

The highest value of Mp obtained from the other four independent mechanisms of
figs. 6, 7, 8 and 9 was 2-83 tons-ft. for the mechanism of fig. 8, and it is readily seen
that there is no possible combination of these mechanisms with the mechanism of
fig. 12 which will result in a further increase in the value of Mp. It is therefore con-
cluded that the mechanism of fig. 12 is the actual collapse mechanism, subject to the
proviso that no consideration has yet been given to the possibility of the occurrence
of plastic hinges at positions other than those numbered from 1 to 9 in fig. 5. When
this Solution is checked by statics it will, in fact, be found that the plastic hinge shown
at the apex of the roof in fig. 12 should be located somewhat to the left of the apex.

Check by statics

The Solution can be checked by constructing a bending moment diagram for the
frame. If the fully plastic moment is not exceeded at any cross-section, the Solution
is correct. The actual bending moment at a cross-section may be regarded as the
sum ofthe "free bending moment," produced in the frame by ihe applied loads when
a eut has been made at some cross-section so as to render the frame statically
determinate, and the "redundant bending moment" produced in the frame by the three
redundancies. For convenience, the form of the redundant bending moment diagram
will be considered first.

The three redundancies may be taken as the
bending moments, M\ and M9, at the feet of the

7-it5fi vertical members, and the horizontal thrust H,
as in fig. 13. With no external loads acting on
the structure, the vertical reactions at the feet of
the vertical members would be equal and oppo-
site, and of magnitude (M1—Mg)/36 as shown in
the figure. In drawing the bending moment
diagrams, the sign Convention will be that a
positive bending moment will cause a member
to sag inwards, and thus to produce tension in
the flange of the member which is adjacent to
the redundancies as shown in this figure, the

12ft
M,

7-,^\
7777

r 36Fi

M,-Mg

Fig. 13

the dotted line in fig. 13. With
redundant bending moment diagram is thus of the form indicated in fig. 14, in which
the members of the frame have been redrawn to a horizontal base, and positive
bending moments are plotted as ordinates below this base. In fig. 14 the dotted line

12H

Iff-iSrl
12 H

Fig. 14
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indicates the form ofthe redundant bending moment diagram for the case in which H
is zero, and the füll line indicates the effect of superposing the bending moment
diagram for the case in which H acts alone.

The free bending moment diagram refers to the bending moments produced in
the frame by the applied loads when a eut is made at any arbitrary cross-section. The
most convenient choiee of cross-section for this purpose is the roof apex. Fig. 15

shows the free bending moment diagram, consisting of three parabolas, which is
obtained in this way, the loads having been multiplied by the load factor of 1-4.

rIO
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Fig. 15

The collapse mechanism of fig. 12 has four plastic hinges at the cross-sections 1, 5,
7 and 9, so that at these cross-sections the bending moment has its fully plastic value,
which was found to be 9-1 tons-ft. To check the Solution, it must be verified that a
diagram of actual bending moments can be constructed in which the bending moment
has the value 9-1 tons-ft. at these four cross-sections, and does not exceed this value
at any other cross-section in the frame. Now the actual bending moment is equal to
the sum of the free and redundant bending moments, so that if a redundant bending
moment diagram is drawn in fig. 15 with the signs of the bending moments changed,
the actual bending moment will be represented by the difference in ordinate between
this diagram and the free bending moment diagram. The appropriate diagram is
shown in fig. 15 as ABCDE.

The construction for this diagram is to lay off from the free bending moment
diagram the calculated fully plastic moment of 91 tons-ft., with appropriate sign, at
the four cross-sections 1, 5, 7 and 9. This gives the four points A, C, D and E on the
redundant bending moment diagram. Referring to fig. 14, it is seen that the point B

may then be plotted by making the slope of AB equal in magnitude to the slope of
DE, but of opposite sign. A check can then be made by observing that the vertical
intereept between C and the dotted line in fig. 15 is 19-45 H, whereas the corresponding
intereept at D is 12 H. These ihtereepts both correspond to a value of H of 005 tons,
thus checking the Solution. However, it will be seen that although the bending
moment at the cross-section 3 is less than the calculated fully plastic moment of
9-1 tons ft., a higher value ofthe bending moment occurs at a distance of 2-8 ft. along
the left-hand rafter member from the apex Joint, this value being 9-6 tons-ft. This
does not imply an error in the virtual work calculations, for in those calculations the
choiee of plastic hinge positions was restricted to the ends and centres ofthe members.
The calculation of the required fully plastic moment could be refined by carrying out
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a fresh virtual work calculation in which the plastic hinge at the apex Joint 5 was
moved to the new position 2-8 ft. along the left-hand rafter member. However, it is

unnecessary to perform this calculation, for it will be seen that the design is, in fact,
not governed by this loading case but by the dead and superimposed loading case.

It is therefore noted that a value of Mp between 9-1 and 9-6 tons-ft. would be adequate
for dead, superimposed and wind loads in conjunction.

Design for dead and superimposed loads

The design for dead and superimposed loads to a load factor of 1-75 will now be
considered. The relevant working loads are merely loads of 2-61 tons uniformly

distributed over the two rafters, as shown in fig. 16.

Since this loading is symmetrical, the bending moment
distribution for the frame is also symmetrical, and so

only four bending moments are needed to specify the
bending moment distribution. These may be taken
as the bending moments at the cross-sections 1, 3, 4
and 5 in fig. 16. Due to symmetry, the frame has

only two redundancies, for the bending moments at
the cross-sections 1 and 9 are equal. The bending
moment at cross-section 1 and the horizontal thrust

can thus be regarded as the two redundancies. It follows that there are only two
equations of equilibrium, and therefore two independent mechanisms. Both of these
mechanisms must be symmetrical.

The two independent mechanisms are illustrated in figs. 17 and 18. Fig. 17 merely
represents failure of the two rafters as beams, and the equation of virtual work is

80MP=2 2-61 1-75 4-50=41-10

Mp=5-\4 tons-ft (13)

In the mechanism of fig. 18, the hinge rotation 0 at cross-section 1 would produce a
horizontal movement of 19-450 at the roof apex if there were no hinge rotation
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at cross-section 3. The hinge rotation at cross-section 3 must therefore be

— 19-450/7-45=—2-610 in order that there should be-no horizontal movement at the

apex. The downwards vertical displacement at the apex is thus 18 1-610=29-00 ft.
The virtual work equation is:

\0-446Mp 2.2-61 1-75

12-7 tons-ft.

14-50=132-50

(14)

It will be noted that this value of Mp exceeds the value found for the case in which
the wind loads act in conjunction with the dead and superimposed loads. It follows
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2611 2611

-1,226
-4,228

that the design must be governed by the present case in which only the dead and
superimposed loads are acting.

Considering now the combination of the independent mechanisms, it will be seen
that cancellation of the plastic hinge rotation at the roof apex can be achieved by
superposing the mechanism of fig. 17, with
all the hinge rotations and displacements
increased by a factor of 3-22/2=1-61, on
the mechanism of fig. 18. The mechanism
thus obtained is illustrated in fig. 19. The
virtual work equation for this mechanism
is obtained by adding equation (13), multiplied

by 1-61, to equation (14), and sub-
tracting 6-446Mp from the resulting Virtual work absorbed in the plastic hinges, since
a plastic hinge rotation of 3-220 in each of the mechanisms at the roof apex has been
cancelled. The resulting equation is:

(8 1-61 + 10-44-6-44) 8Mp=4\-\ 1-610+132-50

228 228

Fig. 19

16-880MD

M,= ll-
198-70

tons-ft (15)

The highest value of Mp obtained from these mechanisms is thus 12-7 tons-ft. for
the mechanism of fig. 18. This is therefore the actual collapse mechanism, subject to
possible alterations due to the occurrence of plastic hinges within the spans of the
members rather than at the joints. A statical check will reveal, in fact, that the plastic
hinge at the roof apex should be replaced by one plastic hinge in each rafter member.

Check by statics

The free bending moment diagram for the frame, eut at the roof apex, when
subjected to the factored loads, is shown in fig. 20, together with the redundant bending
moment diagram. This latter diagram is constructed by setting off the calculated
fully plastic moment of 12-7 tons-ft. from the free bending moment diagram at the
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cross-sections 1, 3, 5, 7 and 9. The value of the horizontal thrust can be calculated
from the intercepts between the redundant bending moment line and the dotted line
in fig. 20 at both the cross-sections 3 and 5. The value obtained in each case is
2-1 tons, thus checking the virtual work calculation. It will be seen that the greatest
bending moment which occurs with this bending moment distribution is 14-2 tons-ft.
at a distance of 3-7 ft. from the roof apex. Thus in the correct collapse mechanism
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there should be plastic hinges in each rafter at a distance of about 3-7 ft. from the
roof apex in place of the single plastic hinge shown at the apex in fig. 18. A fresh
calculation for these new plastic hinge positions is readily made, either by virtual work
or by adjusting the redundant bending moment line on the bending moment diagram,
and the resulting value of Mp is found to be 13-2 tons-ft. A final refinement is to take
aecount of the fact that the loads are not, in fact, uniformly distributed over the
rafters, but are carried by five uniformly spaced purlins, as shown in fig. 5. The
plastic hinges in the rafters will be located beneath the purlins which are adjacent to
the roof apex, and the corresponding value of Mp is found to be 13-0 tons-ft. or
156 tons-in.

A choiee of section can now be made. The fully plastic moment for a rolled steel

joist is known to exceed the moment at which the yield stress is just reached in the
outermost fibres by a factor termed the shape factor, which is about 1-15 for most
sections.4 Taking a yield stress of 15-25 tons/in.2, the fully plastic moment Mp is thus:

Mp=hl5. 15-25. Z= 17-5 Z tons-in.

where Z in.3 is the section modulus. The required value of Z in the present case is:

Z=156/17-5 8-91in.3

The nearest available British Standard beam section is a 7x4x 16 Ib., with a section
modulus of 11-29 in.3 This is therefore the required section. From the point of
view of stability, the purlins and sheeting rails, together with some cross-bracing,
would provide adequate stiffening for this section over the given spans.

THREE-BAY PITCHED-ROOF PORTAL FRAME

To illustrate the scope of the technique which has been described in detail,
calculations for the three-bay frame whose dimensions and loads are as shown in fig. 21

will now be outlined briefly. As before, all the loads are assumed to be uniformly
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distributed, and the vertical loads of 3-60 tons on each rafter member are due to dead
and superimposed loads, the remaining loads being wind loads. In the first instance,
it will be assumed that all the members of the frame are of the same cross-section,
with a fully plastic moment Mp.

Design for dead, superimposed and wind loads

For this loading case, a load factor of 1-4 will be used. Examination of fig. 21

shows that twenty-three bending moments are needed to speeify the bending moment
distribution for the entire frame, which has nine redundancies. There must therefore
be fourteen independent mechanisms. Eight of these mechanisms are aecounted for
by the simple beam type of failure mechanism (as in figs. 6, 7, 8 and 9, for example)
oecurring in the members AB, BC, CD, DF, FG, Gl, IJ and JK. For these mechanisms,

the highest value of Mp is obtained for the member Gl, this value of Mr being
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7-28 tons-ft. Two mechanisms must be counted for rotations of the joints D and G
in fig. 21, for it will be realised that for each of these joints there will be an equation of
rotational equilibrium between the three bending moments acting on the Joint. There
will also be one sidesway mechanism, with plastic hinges in the vertical members at
A, B, D, E, G, H, J and K, for which the corresponding value of Mp is 1 -69 tons-ft.
The remaining three independent mechanisms may be chosen in a variety of ways, but
the three mechanisms illustrated in figs. 22, 23 and 24 are probably the most con-
venient for the present purpose. It will be seen that each of these mechanisms is

basically *>f the same type, with the rafters collapsing in one bay and thus causing
sidesway of those parts of the frame lying to the right of the collapsing bay. For
reference, the plastic hinge rotations are shown in these figures in magnitude only.
It will be noted that the joints D and G remain unrotated in each of these mechanisms,
since in each case any rotation of these joints would increase the work absorbed in the
plastic hinges and so reduce the value of Mp.
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The virtual work equations for these three mechanisms are found to be:

fig. 22

fig. 23

fig. 24

1-328MP

lO-640AfD

123-50,

: 120-40,

Mp= 16-9 tons-ft.

Mp=U-
(16)

3 tons-ft (17)

13-960M„= 115-10, ^=8-25 tons-ft (18)

The highest value of Mp obtained from the independent mechanisms is thus
16-9 tons-ft. for the mechanism of fig. 22. It is easily seen that this value of Mp will
not be increased by combination with any of the simple beam mechanisms, for which
the highest value of Mp was found to be 7-28 tons-ft. It is also clear that the sidesway
mechanism, for which Mp was found to be only 1-69 tons-ft., cannot be combined
with advantage. It remains to investigate possible combinations of the three
mechanisms of figs. 22, 23 and 24.

The mechanisms of figs. 22 and 23 can be combined if the hinge rotations and
displacements in the mechanism of fig. 22 are all multiplied by a factor of 1-66, and
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then superposed on the mechanism of fig. 23. This enables a clockwise rotation, of
magnitude 1-660, to be given to Joint G, which cancels plastic hinge rotations of
1-660 in the members Gl and GH at this Joint, while increasing the plastic hinge
rotation in the member GF by 1-660. This produces a net reduction in the Virtual
work absorbed of 1 -666MP. The resulting virtual work equation for this combination
is then seen from equations (16) and (17) to be:

1-66 7-32 8Mp+l0-648Mp-l-668Mp=l-66 123-50+120-40

21-107^=3250
Mp= 15-4 tons-ft. *. (19)

This value of Mp is smaller than the value of 16-9 tons-ft. obtained for the mechanism
of fig. 22, and it is clear that no other possible combination of the three mechanisms
of figs. 22, 23 and 24 will yield a larger value of MP. It is therefore concluded that
the mechanism of fig. 22 is the actual collapse mechanism. This Solution will not be
adjusted to allow for the possible occurrence of plastic hinges at cross-sections other
than the ends and centres of the members, for when the dead plus superimposed
loading case is considered, it will be found that the wind loading case does not govern
the design.

An interesting feature brought out by this analysis is that there are only four plastic
hinges in the collapse mechanism, whereas the frame has nine redundancies. At
collapse, therefore, only the right-hand bay of the frame is statically determinate, and
in carrying out a statical check the bending moment diagram for the other two bays
could not be constructed directly. Instead, it would be necessary to carry out a trial
and error investigation to show that the six redundancies of these two bays could be
chosen in at least one way so as to produce a resultant bending moment diagram in
which the fully plastic moment was not exceeded anywhere in the frame. This
would be a tedious process, and in view of the fact that this is not the loading case
which governs the design, the check is probably not worth performing.

Design for dead and superimposed loads

A load factor of 1-75 will be used for this loading case. The loading, consisting
merely of the vertical loads of 3-60 tons on each rafter, is symmetrical, so that the
collapse mechanism and the bending moment distribution at collapse must also be
symmetrical. It will be seen that the values of eleven bending moments will specify
the bending moment distribution for the entire frame, and that owing to symmetry
there are only five redundancies. There are thus six independent mechanisms, which
must all be symmetrical. Three of these mechanisms are the simple beam type of
failure mechanism in the pairs of rafters BC and IJ, CD and Gl, and DF and FG.
For each of these mechanisms, the corresponding value of Mp is 9-45 tons-ft. One
mechanism must be counted for rotation of the joints D and G. The remaining two
mechanisms are most conveniently chosen as the mechanisms shown in figs. 25 and 26.

The virtual work equations for these two mechanisms are:

fig. 25: 14-640M„=3O2-40, M„=20-6 tons-ft (20)

fig. 26: 1O-640MP= 151-20, Mp= 14-2 tons-ft (21)
The only possible combination of these mechanisms is obtained if the hinge

rotations and displacements in the mechanism of fig. 25 are all multiplied by a factor of
0-83, and then superposed on the mechanism of fig. 26. This enables a cöunter-
clockwise rotation of the Joint D, of magnitude 0-830, to be made, thus cancelling
plastic rotations of 0-830 in the members DC and DE at this Joint, while increasing
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the plastic hinge rotation in the member DF by 0-830. This produces a net reduction
in the virtual work absorbed of O-830MP, and a similar reduction can be achieved by a
clockwise rotation of the Joint G. The resulting virtual work equation is then seen
from equations (20) and (21) to be:

0-83 l4-648Mp+10-646Mp-l-668Mp=0-83 302-40+151-20

2l-l8Mp=4028
Mp=\9-l tons-ft. (22)

This value of Mp is less than the value of 20-6 tons ft. which was found to correspond
to the mechanism of fig. 25. It may also be checked that the beam collapse mechanisms
for the rafters cannot be combined with any of these mechanisms to produce a value
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of Mp greater than 20-6 tons-ft. The mechanism of fig. 25 is thus the actual collapse
mechanism, subject to alterations due to the occurrence of plastic hinges at positions
other than at the ends and centres of the members. A statical check will now be
made which will also serve to indicate such alterations in the position of the plastic
hinges.

Check by statics

Because of symmetry, the statical check need only be made for one half of the
frame, say the left-hand half. For this portion of the frame, the free bending moment
diagram is constructed by imagining cuts to be made at the apices C and F. The
resulting diagram is given in fig. 27, for the case in which the loads have been multiplied

by the load factor of 1-75. It will be seen that there is no free bending moment
in the vertical member DE, and the diagram for this member has not been drawn.

For the members AB, BC and CD the redundant bending moment diagram may
be constructed directly, since the bending moment has its fully plastic value at A, B,
C and D. The horizontal thrust H in this bay can be calculated from the vertical
intereept between the redundant bending moment diagram and the dotted line in
fig. 27. In each case a value of 3-44 tons is obtained, thus checking the Solution.
Since the centre bay ofthe frame is not statically determinate at collapse, the redundant
bending moment diagram for the member DF cannot be constructed directly. However,

it is clear from the symmetry ofthe diagram about D that one possible redundant
bending moment line for DF is the dotted line df shown in fig. 27, where fF represents
the calculated fully plastic moment of 20-6 tons-ft. This line has a slope equal in
magnitude to the line cd in fig. 27, and this corresponds to the same value of the
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horizontal thrust of 3-44 tons which was found for the left-hand bay of the frame.
If this were the actual redundant moment line for the member DF at collapse, it
follows that there would be no resultant horizontal thrust on the vertical member DE,
which would thus have zero bending moment throughout its length. It is therefore
possible to construct a bending moment diagram for the entire frame in which the
fully plastic moment is not exceeded at any cross-section, except within the spans of
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the rafter members. This confirms that the correct Solution was found by the Virtual
work analysis.

It will be seen from fig. 27 that plastic hinges will actually occur in the rafter
members at distances of 5-9 ft. from the apices C and G, rather than at these apices.
When this is taken into aecount, the value of Mp is found to be 21-9 tons-ft.

The statical check reveals the fact that the internal stanchions DE and GH need

not be called upon to partieipate in the collapse mechanism, for it is possible to
construct a resultant bending moment diagram in which these members are free from
bending moment. These members, which were assumed in the first instance to
possess a fully plastic moment Mp, thus function merely as props which hold up the
rafter members. They could therefore be designed simply as compression members,
and made of hollow tubing.

Conclusions
The merits of the method of design described in this paper can really be appre-

ciated only by applying the method to practical examples. However, the foregoing
examples serve to illustrate some of its advantages. The outstanding feature of the
method is, of course, its rapidity. This is mainly due to the ease with which
corresponding values of Mp can be obtained by the principle of virtual work, and this
in turn is due largely to the fact that there is no need to establish sign Conventions
when applying this principle, since the virtual work absorbed in a plastic hinge must
always be positive. A further important advantage of the method is that it enables
Solutions to be found without difficulty for those cases in which the entire frame is

not statically determinate at collapse. Such cases have hitherto been somewhat
intractable.
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Summary

In suitable instances the application of plastic design methods to plane frames of
ductile material, such as mild steel, leads to more rational and economical designs.
These design methods are based on the calculation of the loads at which a structure
collapses owing to excessive plastic deformation. Such collapses occur when a
sufficient number of plastic hinges have formed to transform the structure into a mechanism,

so that deflections can continue to grow, due to rotations of the plastic hinges,
while the loads remain constant.

It is known that among all possible collapse mechanisms for a given frame and
loading, the actual collapse mechanism is the one to which there corresponds the
smallest possible value of the load. Recently, it has been pointed out that all the
possible collapse mechanisms for a frame can be regarded as built up from a certain
number of simple mechanisms. This has led to the development of a new technique
for determining plastic collapse loads, in which these simple mechanisms are combined
in a systematic manner so as to reduce the corresponding value of the load to its least
possible value. For each mechanism which is investigated, the corresponding value
of the load is determined very quickly by applying the Principle of Virtual Work.

In the present paper, the theoretical basis of this new technique is discussed, and
typical calculations for a pitched-roof portal frame are given.

Rlsume'

Dans differents cas, I'application de la theorie de la plasticite au calcul des cadres
plans en materiaux forgeables, comme l'acier fondu, conduit ä des Solutions ration-
nelles economiques. Cette methode de calcul repose sur la determination des charges
sous lesquelles un ouvrage cede ä la suite de deformations plastiques infiniment
grandes. La rupture se produit ä la suite de la formation d'articulations plastiques
en nombre süffisant pour transformer l'eiement porteur en un "mecanisme"; ä la
suite du processus de rotation des articulations plastiques, les deformations prennent
des amplitudes de plus en plus grandes, tandis que la charge reste constante.

On sait que parmi tous les processus possibles de rupture d'un cadre donne sous
l'action de conditions de mise en charge donnees, le processus decisif est celui qui
correspond ä la plus petite valeur possible de la charge. On a montre recemment
que tous les processus possibles de rupture d'un cadre peuvent etre consideres comme
composes d'un certain nombre de processus habituels. Ceci a conduit ä la mise au
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point d'un nouveau procede pour la determination de la charge plastique de rupture,
procede dans lequel les processus simples sont combines d'une maniere systematique
en vue de reduire la charge correspondante ä sa plus petite valeur possible. Les
valeurs de la charge peuvent Stre determinees tres rapidement pour chaque processus
ainsi introduit, par I'application du principe des travaux virtuels.

Les auteurs discutent dans le present rapport les bases theoriques du nouveau
procede et exposent les modes de calcul caracteristiques pour un cadre-portique avec
toit incline.

Zusammenfassung

In verschiedenen Fällen führt die Anwendung der Plastizitätstheorie bei der
Berechnung ebener Rahmen aus schmiedbarem Material, wie z.B. Flusstahl, zu
rationellen und wirtschaftlichen Lösungen. Diese Berechnungsmethode beruht auf
der Bestimmung derjenigen Lasten, unter welchen ein Bauwerk infolge unendlich
grossen plastischen Verformungen versagt. Das Versagen tritt ein, wenn sich
plastische Gelenke in genügender Zahl ausgebildet haben, um das Tragwerk in einen
Mechanismus umzuwandeln; als Folge der Drehungen der plastischen Gelenke ver-
grössern sich dann die Formänderungen weiter, während die Belastung konstant
bleibt.

Es ist bekannt, dass unter allen möglichen Bruchmechanismen eines gegebenen
Rahmens mit gegebener Belastungsanordnung derjenige massgebend ist, dem der
kleinstmögliche Wert der Belastung entspricht. Unlängst wurde gezeigt, dass alle
möglichen Bruchmechanismen eines Rahmens als aus einer gewissen Zahl von
gewöhnlichen Mechanismen zusammengesetzt betrachtet werden können. Dies hat
zur Entwicklung eines neuen Verfahrens zur Bestimmung der plastischen Bruchlast
geführt, bei welchem die einfachen Mechanismen systematisch kombiniert werden,
um so den entsprechenden Wert der Last zu seiner kleinstmöglichen Grösse zu
reduzieren. Die Werte der Last können für jeden eingeführten Mechanismus sehr
schnell durch Anwendung des Prinzips der virtuellen Arbeit bestimmt werden.

Im vorliegenden Aufsatz wird die theoretische Grundlage des neuen Verfahrens
diskutiert, und es werden die typischen Berechnungen für einen Portalrahmen mit
geneigtem Dach gegeben.
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Introduction
The methods presented in this paper for the analysis and design of rigid structures

are purely mathematical in character; that is, techniques are formulated on the basis
of certain fundamental assumptions. These assumptions may or may not be true for
any particular structure; for example, the instability of axially loaded stanchions is

ignored, as is the lateral instability of beams subjected to terminal bending moments.
While for some simple structures under particular conditions of loading these effects

may be relatively unimportant, recent work by Neal (1950a) and Hörne (1950) has
shown that the problem may in fact be critical. In addition, it will be seen below
that an "ideal" plastic material is assumed. Structural mild steel approximates to
such an ideal material, but a highly redundant frame will experience strain-hardening
which may invalidate the calculations. The
techniques presented here, in short, in no sense form a

practical design method; however, it is feit that they n

are of sufficient interest to Warrant a description of
some of the more important results.

The characteristic ideally plastic behaviour of
a beam in pure bending is shown in fig. 1. From
O to A increase of bending moment is accompanied
by purely elastic (linear) increase of curvatuie.
Between A and B, increase of bending moment is

accompanied by a greater increase of curvature,
until at the point B the füll plastic moment M0 is attained. At this moment the
curvature can increase indefinitely, and "collapse" occurs.

^—f

Curvature

Fig.
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In a general plane structural frame, a section at which the bending moment has
the value M0 is called a plastic hinge, and has the property that rotation at the hinge
can occur freely under constant bending moment. From the definition of the füll
plastic moment, the moments in the frame can nowhere exceed M0; if the component
members of a frame have different sizes, it must be understood of course that M0
refers to the particular member under consideration.

Collapse of a frame is said to occur when a sufficient number of plastic hinges are
formed to turn whole or part ofthe frame into a mechanism of one degree of freedom;
in general, the number of hinges exceeds by one the number of redundancies of that
part of the frame concerned in the collapse. For example, the simple rectangular
portal frame, of constant section throughout, subjected to loads V and H as shown
in fig. 2(o), may fail in any one of the three basic modes shown in figs. 2(b), (c) and (d).
The actual mode is determined by the values of the two loads.

(3) (i)

c

¦ -
(dl

Fig. 2

The first part of this paper deals With methods for the exaet determination of the
quantities required (location ofthe hinges, values of collapse loads, etc.); the second

part presents methods for determining upper and lower bounds on the loads, it being
possible to make these bounds as close as is considered necessary. The third part
applies the ideas to space frames, where hinges are formed under the combined action
of bending and torsion.

EXACT METHODS

The use of inequalities in the Solution of structural problems was first introduced
by Neal and Symonds (1950), who used a method due to Dines (1918). The very
'simple example shown in fig. 3 will be used to illustrate the Solution of linear sets of
inequalities.

(a) Collapse analysis under fixed loads

Suppose in fig. 3 that the two spans of the continuous beam are of length /, and
that the fixed loads P, and P2 act at the centres of the spans. The füll plastic moment
of the beam will be taken as M0, and it is required to find the minimum value of M0
in order that collapse shall just occur. (P{ and P2 may be taken to incorporate a
suitable load factor.)

The general equilibrium state of a frame of n redundancies can be expressed as

the sum of one arbitrary equilibrium State and n arbitrary independent residual states.
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By a "state" is meant some bending moment distribution, so that a State in equilibrium

with the applied loads is any bending moment distribution such that equilibrium

is attained. A residual state is a bending moment distribution that satisfies
equilibrium conditions when no external loads are applied to the frame. Thus,
confining attention to any one cross-section in the frame, the bending moment there
may be expressed as

M* + M1' +M2'+ +Mn' (1)
where M* is the equilibrium bending moment at the section and M\, M2, M„'
are the bending moments, at the section considered, corresponding to n arbitrary
residual states. Suppose that the füll plastic moment at the section (as yet un-
determined) is M0. Then

-M0<M*+M1' + M2'+ +M„'<M0 (2)

"
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Fig. 4

Since the continuous beam system under consideration has one redundancy, the
plastic behaviour can be represented as the sum of an equilibrium State and one
residual State, which may be taken as the two bending moment distributions in fig. 4.
The continued inequality (2) may be written for the three critical sections:

Under the load Pu — M0<pl + c<M<fs\
At the central support, —M0< 2c<M0 > (3)

Under the load P2, —M0<p2+c<:M0J
The set (3) may be rewritten as simple inequalities:

c+Pi+ M0>0~
c +±M0>0
c+p2+ M0>0

-c-Pl+ M0>0
-c +iA/0>0
-c-p2+ M0>0^

If now every inequality in set (4) which has a coefficient of +1 for c is added to
every inequality which has a coefficient — 1 for c, c will be eliminated, and Dines has
shown that the resultant set of inequalities (nine in number in this example) gives
necessary and sufficient conditions for the existence of a value of c in order that the
original set should be satisfied. This is exactly what is required for the present
purposes; the actual value of c is of no interest so long as it is known that a c exists
such that at each critical section of the frame the bending moment is less than the füll
plastic value.

CR.—7

(4)
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In eliminating c from the set (4), it is found that a large number of the resulting
inequalities are redundant, and if it is assumed that P, >P2, the single inequality

-/>i+fA/0>0 (5)

is found to be critical. As long as this inequality is satisfied, all the moments in the
beam will be less than M0. For collapse just to occur, the equality sign should be
taken in (5), giving M0=fp1. Now inequality (5) was derived by adding the second
and fourth of set (4); substituting this value of M0 into these two inequalities gives

(6)
C+ iPi >0]

-c-iPl>0)
i.e. -hPt>c>-\px (7)

that is, a unique value of c has been derived. Using this value of c, the bending
moment distribution shown in fig. 5 has been derived from the analysis; it will be

seen that hinges (M0=^pi) are formed under the load Pu and at the central support,
forming a mechanism of one degree of freedom for small (really, infinitesimal)
displacements.

Füll plastic moment

^P.

3 >

Fig. 5

Weighl per unil length

Fig. 6

The type of result obtained in this problem will in general be derived for any more
complicated example. For more residual states defined by cu c2, c„, each
parameter c is eliminated successively from the inequalities, and the final inequality,
if just satisfied, will generate a unique set of residual states completely defining the
collapse configuration.

The method given above may be applied to the analysis of frames collapsing under
variable loads; however, this problem will be treated with reference to the slightly
more complex condition of minimum weight design.

(b) Minimum weight design under fixed loads

The parameters used in order to determine the minimum weight of a structure
will be the values of the füll plastic moments. If a plot is made for typical structural
sections of füll plastic moment against weight per unit length, and the points joined
by a smooth curve, a non-linear relationship of the type shown in fig. 6 will be
obtained. (Owing to the methods used in this paper, the actual relationship is im-
material, but it is of interest to note that a curve given in a British Welding Research
Association report (1947) for British structural sections can be approximated by
w=2-7M0'6, where w is the weight in lb./ft. of a beam of füll plastic moment M tons
ft.) In order to develop suitable methods for design, it will be assumed that a
continuous ränge of sections is available so that a section can be used with any
specified füll plastic moment.
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The assumption is made that the moment-weight curve can be replaced in the
region which is significant for any particular problem by a straight line. For a frame
built up of N members, each of constant section, the total material consumption will
be given by the proportionality

W*t SMih (8)
i=l

where M, is the füll plastic moment of the i'th member of the frame, and /,• is its length.
Considering again the two-span beam shown in fig. 3, suppose that the left-hand

span has a füll plastic moment Mlt that of the right-hand span being M2. Since the
two spans are of equal length, proportionality (8) may be replaced by the weight
parameter

X=Ml+M2
'

(9)

The problem of minimum weight design for this problem is then reduced to choosing
values of Mx and M2 such that X is made a minimum. The work Starts in the same
manner as for the collapse analysis given above; set (3) is replaced by

-M1<pl+c<M1'
-Mi< 2c <M,
-M2< 2c<M2
—M2 <p2+c <M2

The two continued inequalities are necessary for the central support since it is not
known a priori whether Mi ^ M2.

Of the sixteen possible inequalities obtained by the elimination of c from set (3),
only five are found to be non-redundant if it be assumed that Px >P2. These are

-Pi +\M* >0~

-Pi + Af,+iM2>0
-P1+P2+ Mx + M2>0

-P2+W1+ M2>0
-p2 +iM2>0J

The material consumption parameter X will now be introduced into set (10) by the
replacement of Ml by (X— M2) from equation (9). Upon slight rearrangemenf,

-M2+X -§/>,>0"
-M2+2X-2p1 >0

M2+X -2p2>0
M2 -ip2>0_

together with X>{P\—Pt) O3)

Now for the problem of determining the minimum value of X, the value of M2 is

not required, and Dines' method may be employed again on set (12) to eliminate M2.
On performing this Operation, inequality (13) becomes redundant, and the only
significant inequality resulting is

*>Pi+iPi (W)

It should be repeated that this single inequality is a necessary and completely sufficient
condition that values of Mu M2 and c can be found to satisfy the original set (10).
Since it is required that X should be as small as possible, the equality sign will be

taken in (14), so that

X=Pi+iPz. (J5>

(11)

(12)
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Substitution of this value of X back into the previous sets gives the unique values

Ml=p1—ip2 "1

M2=ip2 \ (16)

2c=-$p2=-M2)
The bending moment distribution resulting from the analysis is shown in fig. 7, plastic

hinges being formed at all three of the critical points.
The method given above for minimum weight design

against collapse under fixed loads has been applied by
the Author (1950a, 1950b) to the Solution ofa rectangular
portal frame (cf. fig. 2), and also to derive a design
method for continuous beams of any number of spans

Fig. 7 under either concentrated or distributed loads.

^p3 ¦ '
3''*

T".

(17)

(18)

(c) Minimum weight design against collapse under variable loads

Consider the same beam in fig. 3, but with the loads varying arbitrarily between
the limits

-Qi<Pi<Qi~
-Q2<P2<Q2

ßl>ß2J
The work proceeds as before up to the derivation of set (11). Now, in this set, the
worst values of px and p2 (i.e. -Lqi, ±<72) must be inserted in each inequality, giving

-qi +iMi ><n
-qx + M,+iA/2>0
-?i-?2+ A*i+ M2>0

-q2+Wi+ M2>0
-q2 +|M2>0J

Operating on set (18) as before to find the minimum value of X, it is found that

Mi + M2= X=qi +q2 "

(0i + i02)>^i>f0i
2q2>M2>iq2

(\qt+q2)>M2
As a specific example, suppose q\=q2=q. Then

-Mt + M2=2q
fq>Ml>iq
%q>M2>iq}

and any values of Mx and M2 satisfying (20) will give a constant material consumption.
(It is perhaps of interest to note that for X=E(M)"1, where «<© the minimum
material consumption is given by Mv 2M2=%q (or vice versa), the worst case oecurring
for M{ M2=q. An asymmetrical Solution is obtained for what appears to be a
completely symmetrical problem. For «=0-6, the symmetrical Solution gives an
increase of less than 2 % in material consumption compared with the asymmetrical
Solution.)

(19)

(20)

INEXACT METHODS

The theorems concerning the existence of upper and lower bounds on the collapse
load of a structure were first proved rigorously by Greenberg and Prager (1950). It
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is assumed that the loads on a structure are all specified in terms of one load, so that
when the collapse load is mentioned, this implies the whole system of loads.

An upper bound on the collapse load

Suppose that enough hinges are inserted into a redundant structure in order to
turn it into a mechanism of one degree of freedom. Hill (1948) has shown that the
stress system is constant during collapse of an ideally plastic body, so that for the
frame with one degree of freedom, the equation of Virtual work may be written,
equating the work done in the hinges to the work done by the external load during a
small displacement in the equilibrium State. The work done in a hinge is equal to
the füll plastic moment multiplied by the absolute value of the change in angle at that
hinge (i.e. plastic rotation) and the work done by the load simply the load multiplied
by its displacement. There will, of course, be elastic displacements obtaining in the
frame, but these do not appear in the equations provided it is assumed that they are
small so that the Overall geometry of the frame is not disturbed.

For any arrangement of hinges in the frame producing a mechanism of one
degree offreedom, the load given by the Virtual work equation is either greater
than or equal to the true collapse load.

A lower bound on the collapse load

If a State can be found for the structure which nowhere violates the yield
condition, and which is an equilibrium State for a given value of the load, then
that value is either less than or equal to the value of the true collapse load.

In practice, Greenberg and Prager found it useful to derive a lower bound from
the mechanism giving the upper bound. The example will make the ideas clear.

Suppose the values of the loads in fig. 3 are

P1=2P2=2P (21)

and that as a first trial the mechanism in fig. 8 is assumed for failure. The rotation at
the central hinge is 8, and at the hinge under the load P, 28. Hence, by virtual work,

i.e. P=l\M0 (23)

P.-28=MQ(26)+M0(8) (22)

l2/> i P

6
©r

~M2 "ff

Fig. 8 Fig. 9

(It is taken that the beam has the same füll plastic moment M0 in both spans.) By
the upper bound theorem, the true value of the collapse load (pc) is less than fM0.
The bending moment distribution corresponding to the assumed mechanism and this
value ofp given in equation (23) is shown in fig. 9, from which it will be seen that the

yield condition is exceeded under the load 2P in the ratio 5/2. Suppose now that the
loads are reduced in the ratio 2/5. Then if the values in fig. 9 are multiplied by 2/5,
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an equilibrium bending moment distribution is obtained which nowhere violates the
yield condition. Hence the load of fM0 is a lower bound on the collapse load, i.e.

Wo<Pc<Wo (24)

It can be shown that removing one of the assumed hinges to the point of maximum
moment will improve the bounds on the collapse load; in this example, shifting the
hinge from under the load P to under the load 2P, while retaining the central hinge,
immediately gives the correct Solution pc=iM0. There is, however, no means at
present of choosing which hinge to remove, and in any case the bounds cannot be
narrowed indefinitely; either they are separated by a finite amount, which may be

quite large for even a relatively redundant frame, or the exaet Solution will be obtained.
Accordingly, Nachbar and the Author (1950) have developed more general methods
for obtaining both upper and lower bounds which may be made as close to the true
collapse value as is considered necessary.

A general methodfor the upper bound

Suppose yield hinges are inserted into the frame at any suspected critical sections.
In general a frame of N degrees of freedom will result, specified in terms of N deflection
Parameters. If the equation of Virtual work is written, then the corresponding value
of the load is an upper bound on the true collapse load. In fact, the virtual work
equation is inapplicable, since the system is not an equilibrium system, but it may be
shown that the value of the load resulting from this equation is in fact a true upper
bound, providing that the mechanism is such that the work done by the loads is

positive.
For the general mechanism in fig. 10,

i.e.

/. /.
2P.-6l+P.-82=M0(

¦=M0\-

201| + |01+02| + |202|)

20l\ + \0l + 02\ + \2e2

46x + 282
(25)

2P V

Fig. 10

-2-10 1 23 1,56
Values oF 8^/8,

Fig. 11

In equation (25), values of 6{ and 82 must be chosen to give the minimum value of p;
since p is always an upper bound on pc, the minimum value will be equal to pc. A
plot of equation (25) is given in fig. 11, from which it will be seen that pc=%M0
corresponds to ö2=0. The minimum is not a stationary value, since equation (25)
is a ratio of two linear expressions. Nachbar has shown that equations of this type
containing absolute values can be reduced by rational successive steps, and the
method has been applied to mechanisms with a large number of parameters necessary
for their specification.
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A general method for the lower bound

Suppose the members of a redundant structure are eut in such a way that a
number of separate redundant or statically determinate structures are formed. If the
collapse loads are calculated for each of these resulting structures, then the lowest
value of these loads is less than the collapse load of the structure as a whole. The
proof of this theorem follows immediately from the special lower bound theorem
above. An immediate corollary is that if a eut portion of the structure carries no
load, then that portion can be ignored in the derivation of the lower bound. In order
to make the theorem of practical use, an additional lemma is needed. The collapse
load of a structure is unaffected by any initial system of residual stresses (moments,
shear forces). That is, at a eut, equal and opposite longitudinal forces, shear forces,
and moments may be introduced in an attempt to raise the lower bound.

1

& - 5. ' A Ä
-CT A-+7A ET

Fig. 12 Fig. 13

Suppose the beam in the previous example is eut at the central support; then the
two separate beams shown in fig. 12 will be obtained. The collapse loads of the
right- and left-hand halves are respectively p—M0 and p=^M0, i.e.

pc>Wo ¦ (26)

Now if a central moment is introduced (fig. 13), it is easy to show that the collapse
loads are respectively

M+2M0 M+2M0
P= 2

and p= 4
(27)

The maximum value which M can take is, of course, M0, and hence from (27)

Pc>lM0 (28)

and the problem has been completed. For other more complicated examples (a two-
storey, two-bay portal frame has been solved under both concentrated and distributed
loads), it is found that shear and longitudinal forces as well as bending moments must
be introduced at the cuts.

Space frames
The type of space frame considered has members which lie all in the same plane,

all loads acting perpendicularly to this plane. Thus bending moments whose axes
lie perpendicular to the plane and shear forces -in the plane are zero. Any member
of the frame is then acted upon by shear forces parallel to the applied loads and by
two moments whose axes lie in the plane, that is, a bending moment (M) and a torque
(T). For ideal plasticity, hinges will be formed in exactly the same way as for plane
frames; the breakdown criterion will be some such expression as

g(M, T)=g(M0, 0)=const (29)

where M0 is the füll plastic moment in pure bending, as before. At any one hinge,
the maximum work principle of Hill (1948) shows that the moment and torque will be
constant during collapse, and that the rate at which work is done at a hinge will be a
maximum. If ß and 8 are the incremental changes in angle in bending and twisting
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respectively during a displacement in the equilibrium collapse configuration, then the

rate at which work is done is

Mß+T8 (30)
For a maximum,

ß 8M+0 ST=0 (31)

Now the breakdown criterion, equation (29), gives

^.SM+||.ST=0 (32)
dM oi

that is,

{ '-¥- (33)
8

og_

8T

This flow relationship may be solved simultaneously with the breakdown criterion to
give the moment and torque acting at a hinge during any collapse displacement.

The author (1951) has shown that for a box section, equation (29) becomes

M2+%T2 M02 (34)

For the present purposes, the circular breakdown criterion

M2+T2=M02 (35)

will be used for the sake of simplicity. The restriction in no way affects the generality
of the methods proposed for the Solution of space frames.

Equation (33) becomes
ß M

T
(36)

which, taken with equation (35), gives

M=VF+T2Mo

r- m0

(37)
8

WW+82"

together with the expression for the work done at the hinge (expression (30))

Plastic work=M0\/ß2+T2 (38)

Owing to the non-linearity of the breakdown criterion, it is not possible to set up
exaet Systems of linear inequalities to be solved by the Dines' method. However,
approximations may be made to the breakdown criterion itself; for example, equation
(35) could be replaced by the circumscribed oetagon

M=±M0 -]

T=±Mo } (39)
M±T=±V2M0]

and the moment M and torque T at any section constrained to lie within this yield
domain.

As will be shown, simple problems are best solved by a direct method; and the
Systems of linear inequalities corresponding to equations (39) become too complicated
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for practical use in the Solution of highly redundant structures. For the latter, the
determination of bounds on the collapse load seems to give the quiekest results.

Direct Solution
As an example of the direct method, consider the symmetrical two-leg right-angle

bent shown in fig. 14. The ends A and D are encastre against both torque and
moment, and the load P acts at the midpoint B of the leg AC. Suppose failure occurs
by the formation of symmetrical hinges at A and D, so that the point C moves
vertically downward for a small displacement. It is easy to see that ßA=ßD=8A=8D

6, say, so that, from equation (38), the work done in the two hinges is

2M0V262 (40)

Fig. 14

while the work done by the load P is
Pa6 (41)

Equating these two expressions, and using the upper bound theorem given above,

Pc<P=2V^Mo (42)
a

The frame is, of course, statically determinate in this collapse configuration, and, by
using equations (37) to determine the conditions at the hinges, the forces and moments
shown in fig. 15 are obtained. The yield criterion is exceeded by the greatest amount

at B, where the moment and torque are V2MQ and 7/|Mo respectively, i.e.

MB2+TB2=iM02 (43)

Hence if the load is reduced by a factor ©2/5, a lower bound will be obtained,
4 M0 4 Mn

©5 a
s c V2 a

(44)

L^ 'jo_insI 2±-M

Y V"M0 „>©fl

12 "0

272Fig. 15



106 AI 3—J. HEYMAN

In order to improve these bounds, a hinge must be inserted at B; but collapse actually
occurs with hinges at all three points A, B and D. At first sight this would appear
to be a mechanism of three independent degrees of freedom. In fact, owing to the
simultaneity of the breakdown and flow criterions (equations (35) and (36)), each
hinge as a whole has only one degree of freedom; since a continuity condition is
required at each hinge, a space frame of the type considered here may collapse with any
number of hinges formed in its members, and an extra hinge may be inserted without
actually increasing the number of degrees of freedom.

The general method for the exaet Solution of a structure with R redundancies may
be tabulated as follows:

(1) Construct a mechanism with N hinges.
(2) Specify the mechanism in terms of an arbitrary displacement (one degree of

freedom) and [2N— (R+l)] deflection parameters ocy.

(3) (2N—R) equilibrium equations may be formulated in terms of the moments
(Mi) and torques (7» at the hinges and the applied load.

(4) Mi and Tt at each hinge may be calculated in terms of the oc, from the
breakdown and flow criteria.

(5) The load may be eliminated from the (27V—R) equilibrium equations,
leaving a set of (2N—{R+1}) simultaneous equations for the determination
of the a.j.

(6) Having determined the etj, the moments and torques at each hinge may be
calculated, and hence the value of the load. This value is an upper bound
on the collapse load.

(7) If the yield criterion is violated at any point in the structure, a lower bound
may be determined.

(8) If hinges are moved or added to the points where the yield criterion is

violated, the whole process can be repeated.

Following these rules, and inserting hinges at A, B and D, the final exaet Solution
is found to be

8 M0 M0
Pc=—r= —9=2-53— (45)

VlO a a
K '

which as a check lies between the previous limits (44).

Bounds on the collapse load

In the method outlined above, it has been tacitly assumed that the theorems on
upper and lower bounds may be extended from plane to space frames; this is in fact
the case, and indeed Drucker, Greenberg and Prager (1950) have shown that the
special theorems may be applied to the problem of the continuum. The general
theorem of an upper bound determined from a non-equilibrium mechanism is also
valid for space frames, and this gives the quiekest method for the Solution of such
problems.

The advantage of the kinematic method of determining an upper bound on the
collapse load is that no reference is made to equilibrium conditions. Suppose, for
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example, the mechanism in fig. 16 (horizontal projection of frame in fig. 14) is specified
by assigning arbitrary deflections to the joints B and C, with hinges oecurring at A,
B and D. Then an upper bound may be determined simply by equating the work
done in the hinges to the work done by the load. By trial of various mechanisms,
this bound may be lowered. Alternatively, if, after a trial, the frame is examined
statically, it will be found that it is impossible to satisfy equilibrium conditions, the
total load at B being either lower or in excess of the value of P determined from the
work equation. This implies that an extra (positive or negative) force is required at
B in order to produce the originally assumed collapse configuration. The significance
of this force is best appreciated by an example.

In fig. 16, take 8B=Sc=2a, say, since the mechanism may be specified in terms of
one unknown degree of freedom. The following table gives the conditions at the
hinges.

Table I

ß 6 Moment
(xM0)

Hinge V02+ß2 Torque
(xAf0)

A
B
D

2
2
1

0-5*
0-5*
0

2062
2062
1000

0-97
0-97
100

0-24
0-24
0

The asterisked values were chosen to make the torques equal at A and B, as they
should be; this is an unnecessary restriction, and improves only slightly the value of
the upper bound, and any values of the twist totalling 1-0 could have been used.
The work equation gives

P.2a=5-124M0
M0

i.e. Pc<P=2-56- (46)

The statical analysis of the frame is shown in fig. 17. The number in a circle at the
Joint B gives the actual load required to maintain equilibrium, and it appears that a
load of 2-9\Mnja is required as against the calculated value 2-56M0/a. Since the
equilibrium load is greater than it should be, it is indicated that the assumed deflection
ofthe point B was too large; if this deflection is reduced slightly, a better bound should
result. Similarly, a negative load is required at C; the deflection should be increased.

100 Mg

(PP)
0-6ZP-

:.f.

LÜL0-97

figj)' IP
0-97N0

tmM,
I ° 0ZiiMo

&.0-62

fy
1 0-211 Mg

t'Y
0-97Mg

iv OWg KOri'Mg

Fig. 17
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In working more complicated examples, it is found that the process of adjusting
deflections at neighbouring joints bears a marked resemblance to a relaxation process,
and that a reduction in the out-of-balance forces at one Joint induces increased errors
at the ones adjacent. However, the technique is soon mastered, and the Author
(1950c) solved, with very little labour, a rectangular grid formed by a set of parallel
beams intersecting at right angles another set of 9 beams, loaded transversely at each
of the 81 joints, and requiring 108 hinges in the collapse mechanism.

When it is suspected that the upper bound is fairly good, small adjustments in the
statical analysis will produce an equilibrium system. For example, in fig. 17, if the
torque in CD is increased from 0 to 0-35M0, the other values remaining unchanged, an
equilibrium system results which, however, violates the yield condition at the hinge D
in the ratio 1 06. Hence, using the value in equation (46)

2-41-°<Pc<2-56-° (47)
a a \ j ¦

The general procedure for the Solution of space frames may be tabulated as
follows:

(1) Insert yield hinges at a large number of points in the frame, producing a
mechanism of many degrees of freedom. The hinges should be placed at
all the sections at which it is suspected actual hinges might occur in the
collapse.

(2) Assign arbitrary (reasonable) deflections to the joints of the grid, and
determine the corresponding changes in angle at each hinge. Equating the
work dissipated in the hinges to the work done by the external loads gives
a value of the load which is in excess of the true collapse load.

(3) Calculate the out-of-balance forces at each Joint that are necessary to
produce the assumed deflections. If the out-of-balance force acts in the
same direction as the actual load at a Joint, the deflection of that Joint was
estimated as too large, and vice versa.

(4) Adjust the deflections, and repeat the whole process.
(5) At any stage, if the out-of-balance forces are small, and it is suspected that

the upper bound is a good estimate of the collapse load, a statical analysis
may be made. Small adjustments are made in the values of the various
shear forces and moments in order to produce an equilibrium system, from
which a lower bound may be determined.

The Author wishes to thank Professors Prager and Drucker of Brown University
for their criticism and encouragement of the work reported in this paper.
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Summary

The preparation of this paper forms part of a general investigation into the
behaviour of rigid frame structures being carried out at the Cambridge Engineering
Laboratory under the direction of Professor J. F. Baker. The paper deals with the
mathematical analysis and design of both plane and space frames, and the ideas are
presented with reference to very simple examples in order to illustrate the techniques
developed. The first part considers methods for the exaet determination of conditions
at collapse of rigid ideally plastic plane structures. In the second part it is shown
that inexaet methods lead to upper and lower bounds on the collapse loads, and
that these bounds may be made as close as is considered necessary. The various
theorems are applied in the third part to the Solution of space frames.

Resume

Le present memoire rentre dans le cadre d'une investigation generale portant sur
le comportement d'ouvrages en cadres rigides, investigation actuellement en cours
au Cambridge Engineering Laboratory, sous la direction du Professeur J. F. Baker.
L'auteur traite de l'analyse mathematique et du calcul des cadres, tant en plan que
dans l'espace, et son expose est aecompagne d'exemples tres simples, qui illustrent
les procedes adoptes.

La premiere partie se rapporte aux methodes de determination exaete des
conditions qui se manifestent au rupture des ouvrages plans rigides idealement plastiques.
Dans la deuxieme partie, l'auteur montre que des methodes non rigoureuses permettent

de fixer des limites superieures et inferieures aux charges sous lesquelles les

ouvrages cedent; ces limites peuvent d'ailleurs recevoir des valeurs aussi etroites qu'il
est juge necessaire. Les differents theoremes sont appliques, dans la troisieme partie,
au calcul de cadres ä trois dimensions.

Zusammenfassung

Die Arbeiten zum vorliegenden Aufsatz stellen einen Teil der umfassenden
Untersuchungen über das Verhalten steifer Rahmenkonstruktionen dar, die am
Cambridge Engineering Laboratory unter der Leitung von Professor J. F. Baker
durchgeführt werden. Der Verfasser behandelt die mathematische Untersuchung
und Bemessung ebener und auch räumlicher Rahmen und entwickelt seine Ueber-
legungen an Hand sehr einfacher Beispiele, an denen er die gewählten Verfahren
darlegt. Der erste Teil behandelt Methoden zur genauen Bestimmung der Bruch-
Verhältnisse steifer, ideal-plastischer ebener Tragwerke. Im zweiten Teil wird gezeigt,
dass durch Näherungsmethoden eine obere und untere Grenze der Bruchlast ermittelt
werden kann und dass diese Grenzwerte so nahe zusammengebracht werden können,
wie es für notwendig erachtet wird. Die verschiedenen Theorien werden im dritten
Teil zur Berechnung räumlicher Rahmenwerke angewandt.
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Determination of the shape of fixed-ended beams for maximum
economy according to the plastic theory

Determination de la forme ä donner aux poutres encastrees d'apres
la theorie de la plasticite en vue du maximum d'economie

Bestimmung der wirtschaftlichsten Querschnittsform eingespannter
Balken nach der Plastizitätstheorie

M. R. HÖRNE, M.A., Ph.D., A.M.I.CE.
Cambridge University

1. Introduction
In the design of structures according to the plastic theory, the members are so

proportioned that collapse would not occur at a load less than the working load
multiplied by a "load factor." The plastic theory provides a means of estimating the
collapse loads of ductile structures by considering their behaviour beyond the elastic
limit. It has been shown1 that, in the absence of instability, these collapse loads

may be calculated simply by reference to the conditions of equilibrium, without
considering the equations of flexure. Hence the design process is essentially reduced to
the selection of members with plastic moments of resistance sufficient to withstand
the bending moments imposed by the "factored loads"—that is, by the working loads
multiplied by the load factor.

The direct nature of the design of structures by the plastic theory facilitates the
relative proportioning of the members such that the total weight is an absolute
minimum. A method of proportioning simple structures composed of prismatic
members for minimum weight has already been presented.2 Further economy of
material can, however, be achieved by using members of varying cross-section, and

may be sufficient to compensate for the increased cost of fabrication. It is thus worth
while investigating the maximum, saving in material theoretically attainable by this
means. No consideration will be given to the increased cost of manufacture of such
members compared with those of uniform section, since this must depend primarily
on the quantities required; for this reason, it is impossible to arrive at any conclusions
regarding possible overall economies.

1 For references see end of paper.
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The relationship to be assumed between weight per unit length and füll plastic
moment of resistance is discussed in 2 below; 3 contains a discussion of a member of
continuously varying section fixed at the ends and supporting a uniformly distributed
load; while the case of a similarly loaded member in which the cross-section is only to
be varied by one or two discrete intervals is discussed in 4.

The term "fixed at the ends" is not here intended to imply complete flexural
rigidity at the supports, but rather that the members to which the beam under
consideration is attached are together capable of resisting the füll plastic moment of the
end sections of that beam.

2. The relationship between füll plastic moment and weight per unit length
The füll plastic moment of a member (denoted by Mp) is the moment of resistance

when the whole section is undergoing plastic deformation. If fy is the yield stress,
at which pure plastic deformation can occur, then for a beam of rectangular cross-
section, of width b and depth 2d (see fig. 1),

T
d

©

r-ip
Tension

Compression

Cross-seclion

N

h-*-
(3)

Slress distribution
when fully plastic

(b)

Fig. 1. Fully plastic stress distribution for a rectangular beam

Mp=bd2fy (1)

Let the weight per unit length of the beam be w, and let the density of the material
be p. Then

w=2bdP (2)

If b is constant and d varies, then
wccMpi (3)

If d is constant and b varies,
wccMp (4)

while if b and d both vary such that bjd remains constant
wozMp* (5)

Hence, however the section is varied,
w=kMpn (6)

where k is a constant and |<;«<1.
Arguments similar to the above may be applied to sections other than rectangular,

and thus equation (6) gives a general relationship between Mp and w. This formula
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pisfactory in that it takes no aecount of the effect of shear forces.
lear forces have little effect on the value of the füll plastic moment,3

lesisting shear forces will prevent the section of a beam being allowed
Ithe applied bending moment at collapse is zero. Hence it will in
red that

w=w0+kMp" (7)

.orstant.

*ENDED BEAM OF CONTINUOUSLY VARYING SECTION

Load q/unit length

Ta
(a)

*W1"<"ÄW

(b

Fig. 2. Bending moment distribution for a beam of continuously varying section
(uniformly distributed load)

The beam AB (see fig. 2(t3)), of length 21, is fixed at the ends and carries a uniformly
distributed load at collapse oft? per unit length. Let the hogging bending moments
at the ends (MA and MB) be assumed equal at collapse, and let Mc denote the sagging
bending moment at the centre. Let M, be the central bending moment which would
be induced in a similar simply supported beam. The bending moment distribution
at collapse in the fixed-ended beam may be obtained by superimposing on a parabolic
bending moment diagram acb of height M, (fig. 2(b)) the bending moment distribution
aa'b'a due to the terminal moments MA and M giving the resultant shaded area.
Let s denote the distance of the points of contraflexure from the centre of length of
the beam.

ql2
' 7

Then Air-

l2-s2
MA=MB=—n-Ml >

P

Mc=j2Ml

(8)

CR.—8
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Ifx denotes the distance of any section from the centre of length of
then the minimum füll plastic moment at that section becomes

when OOO,

when s<2.x<.l,

-M,Mp=—ß

x*—sz
Mp= -ß M,

Hence if W denotes the weight of the beam,

Mi
W=2w0/+2k-}2,l \(s2-x2)"dx+\(x2-s2)"dx

The most economical design will be obtained with that value of j for which
minimum, i.e. putting dW/ds=0, when

j(s2-x2)"''dx=j(x2-s2)"^dx (11,'

If Mp' and W' denote the füll plastic moment and weight respectively of the least
prismatic beam sufficient to carry the load, then

M,

W' 2wQl+2k ("')"<

(12)

(13)

When 71=0-5, the most economical value of s is given by

-.= sech ^=0-3986

The corresponding minimum weight is

W=2wcll+<J-9\12kM,^l

while F*"=2w0/+1-4142A:M,*/

The percentage saving of material depends on the ratio of w0 to kM,*. If the requirements

of resistance to shear are ignored (w0=0), an economy of up to 35T % of the
weight of the uniform beam can be achieved. When the effect of shear is allowed for,
the percentage economy will become less.

When n=l-0, the economical value of s is s/l=0-5,

whence W=2w0l+0-5kM,l
while W'=2w0l+kM,l
In this case therefore a maximum economy (ignoring shear) of 50 % is possible.

When ^0<1, it may be shown from equation (11) that the most economical
value of .s is given approximately by the formula

-=2+1-2467L m (14)

Values of s/1 for various values of n are given in Table I.
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Table I

115

n Sil

10 0-5000
0-9 0-4835
0-8 0-4651
0-7 0-4447
0-6 0-4226
0-5 0-3986

Points of contraflexure for beam of continuously varying
section carrying a uniform load (see fig. 2)

Although for any given value of n the maximum economy is only achieved for
some definite value of s, the loss in economy is negligible if j//=0-45. This is demonstrated

in fig. 3, which shows the percentage economies achieved (assuming w0=0)
with various values of s/l for «=0-5 and «=1-0.

s
l 'C «5

50

\ n=10
W \
30

1 ^"""¦N.

r
3 \
§20

17'OS _/*
1

ff

10

0 i i 1 ¦ \ \ i

0-2 o-u

falue oF 4-
0-6 0-8 W

$ Dislance oF poinls oF contraflexure From centre
(see Fig. 2)

Fig. 3. Econ< mies achieved by continuously varying the section of a fixed-ended beam
(uniformly distributed load)

4. FlXED-ENDÜD BEAM WITH DISCRETE VARIATIONS IN SECTION

Due to the practical difficulties of varying the section of a beam continuously as
envisaged above, it is worth while investigating the economies which can be achieved
when the füll plastic moment is increased by discrete amounts (a) at the centre only,
(b) at the ends only and (c) at both centre and ends.

Since the füll plastic moment of resistance is nowhere reduced to zero, there will
in general be no need to allow for the effects of shear on the relationship between w
and Mp (equation (7)). In the following analysis it is therefore assumed that iv0=0.
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(a) Section increased over a central length only
Let the beam previously considered have a uniform value of Mp denoted by Mu

except over a central length 2a, where it is reinforced so that MP=M2 where M-£>MX
(see fig. 4(a)). The bending moments at collapse are shown by the shaded area in

m

/,,Äa c B

(3)

Bending moments

ff.
Füll plastic moments

^

(b)

Fig. 4. Bending moment distribution for a beam reinforced at centre only
(uniformly distributed load)

fig. 4(1}), while the moments of resistance Ml and M2 are indicated by dotted lines,
which must completely enclose the bending moment diagram. Hence

Ml MA MB=^-M, (15)

M2=Mc=-ßMt (16)

The value of a is obtained by noting that where the beam changes section, the sagging
moment is equal to Mlt and hence

c2 —«2

Mi—jT ¦Af,

It follows from equations (15) and (16) that

M1 + M2=M,
while from equations (15) and (17), putting Mi/M,=r,

a
I Vl-2r

The total weight W of the beam is given by
W=2kMl"(l-a)+2kM2"a

(17)

(18)

(19)

(20)
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It may be shown from equations (18), (19) and (20) that

W= 2kM,"l[rn( 1 -Vl-2r)+(1-rfVT^Tr]
When W has its minimum value,

(£)-" nVl-2r+(2nr-n+r)
l—(2nr—n+r)

Table II

(21)

• • (22)

n r=MJM, alt

10 0-4444 0-3333
0-9 0-4432 0-3371
0-8 0-4418 0-3412
0-7 0-4403 0-3456
0-6 0-4388 0-3500
0-5 0-4370 0-3550

Plastic moment ratio and proportion of beam to be reinforced
for beam reinforced at centre only (see fig. 4)

The most economical values of r and ajl are given in Table II for values of n
between 0-5 and 1-0. It may be noted that r represents the ratio of Mu the füll
plastic moment of the unreinforced part of the beam, to M,, the füll plastic moment
of the uniform simply supported beam which would just carry the same load. Hence
r will be termed the " plastic moment ratio." It will be seen that r and aß (the proportion

of the beam to be reinforced) are almost constant, r varying from 0-4444 to
0-4370 and ajl from 0-3333 to 0-3550. As a working rule therefore the beam should
be reinforced for about one-third of its length, the reinforced section having a füll
plastic moment some 25 % or 30 % greater than the unreinforced section.

ll-0

n -1-0
30

2-0

0-5

0-2 0-3 OH 0-5

Value oF 4-

2a • Length oF beam reinForced at centre

(see Fig. 1)

Fig. 5. Economies achieved by reinforcing the centre of a fixed-ended beam
(uniformly distributed load)
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The Variation ofthe percentage saving (as compared with a beam ofuniform section
throughout) with ajl for «=0-5 and «=1-0 is shown in fig. 5. It will be observed that
if more than about half of the beam is reinforced, there is no saving in material.
When «=0-5, the maximum saving possible is 2-03% as compared with a saving of
35-1 % when the section is varied continuously in an ideal manner. When //=10,
the corresponding figures are 3-70 % and 500 % respectively. It is therefore apparent
that no great advantage accrues by increasing the section only at the centre.

CtZZ

777

\-aA U-4
w

Füll plastic moments

i-.L-ZIL,
jsrföending moments

s—-
i

I— ©-(b)

Fig. 6. Bendihg moment distribution for a beam reinforced at ends only
(uniformly distributed load)

(b) Section increased at ends only

A beam of uniform plastic moment of resistance M: is reinforced for a distance a
from either end so that its plastic moment of resistance becomes M2 (see fig. 6(a)).
The bending moment distribution at collapse is shown by the shaded area in fig. 6(b),
while the moments of resistance are superimposed as dotted lines. If füll plastic
moments are just sufficient to withstand the applied moments, then

M^Mc^M, (23)

M2=MA MB=^-M, (24)

Since where the beam changes section the hogging moment has the value Mx,

(l-a)2-s2
Afy=- f2 M, (25)

From equations (23) and (24),

MX+M2=M, (26)

while from equations (23) and (25), if Ml/M,=r,

?=1-V27 (27)
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(28)

• • (29)

The total weight W of the beam is given by

W=2kM1"(l-a)+2kM2"a
which, by virtue of equations (26) and (27) becomes

W=2kMl"l[r"V2r+(l-r)n(l-V2i-)]
At minimum W,

/ r V-= 0+l)r
\\-rj (l-2nr-r+nV2r)

Table III

n r=MJM; all

10 0-2946 0-2324
0-9 0-2866 0-2429
0-8 0-2777 0-2548
0-7 0-2680 0-2679
0-6 0-2571 0-2829
0-5 0-2449 0-3001

Plastic moment ratio and proportion of beam to be reinforced for beam reinforced
at ends only (see fig. 6)

The most economical values of r and ajl are given in Table III for values of n
from 0-5 to 1-0. The value of r(=M1/(M1 +M2)) varies from 0-2946 to 0-2449, and
hence the reinforced section has a füll plastic moment from 140 % to 208 % greater
than the unreinforced section. The value of ajl varies from 0-2324 to 0-3001. A
satisfactory working rule would therefore be to reinforce an eighth of the length of
the beam at either end.

n i-o

ä 5

OU 0-5 0-6 0-70-1 0-2 0-3

Value oF -f-
a Lenglh oF beam reinforced al eilher end

(see Fig. 6)

Fig. 7. Economies achieved by reinforcing the ends of a fixed-ended beam
(uniformly distributed load)
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The Variation of the percentage saving (compared with a uniform beam) as all
is altered is shown in fig. 7 for «=0-5 and n=l-0. It will be seen that by taking
a/l=0-25 there is very little loss in economy in either case. When «=0-5 the maximum

saving possible is 14-1 % and for «= 1-0 it is 22-0%. These figures compare with
the ideally attainable economies of 35-1 % and 500% respectively.

The economy practically attainable by reinforcing the ends alone is therefore quite
appreciable. It should be noted, however, that the surrounding members must
provide a total moment of resistance equal to the füll plastic moment ofthe reinforced
part of the beam, and this may sometimes be a serious disadvantage.

4fe

h- H
- b V

fa)

Füll plastic moments

I
M,

i

Bending
U

moments \

©i—min
P-%

y \*-©
Ir^T

(b)

Fig. 8. Bending moment distribution for a beam reinforced at both centre and ends
(uniformly distributed load)

(c) Section increased at both centre and ends

The advantage obtained by reinforcing both centre and ends may be estimated
by considering the beam shown in fig. S(a). This is reinforced for a distance a either
side of the centre and at each end for a distance (l—b). The bending moment
diagram, shown shaded in fig. 8(Z>), is completely enclosed by the graph of the füll
plastic moments (shown dotted). The unreinforced section has a moment of resistance
Mj, the ends a moment of resistance M2 and the centre a moment of resistance M3.

Hence (31)M3-M, ^Mf
b2

Mi +M^-ßM,
M2+Mi=M, (33)

(32)
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Solving for Mu M2 and M3,

b2-a2
Mi—fg-M, (34)

2l2-a2-b2
M2= 2P

M< (35)

a2+b2
M3 2P~M' (36)

The total mass of the beam thus becomes

W=2l-"k^r[a(a2+b2)n+(b-a)(b2-a2)"+(l-b)(2l2-a2-b2)"] (37)

When Wha.s its minimum value, 3W/da=0 and 8W/8b=0.
When «=1-0 the above conditions give 3a2—al=0 and 3b2—bl—l2=0,

whence -^=1=0-3333

* I±^Lo-7676
/ o

The moment of resistance is 171-8 % greater than that of the unreinforced beam at the
ends, and 46-5% greater at the centre. The saving is 25-7%, compared with 22-0%
with end reinforcement only and 3-7% with central reinforcement only.

When «=0-5, it is found that
ab (b-a)(a+2b) 2l2+lb-a2-2b2

Va2~+b2 Vb2-a2 V2l2-a2-b2
2a2+b2 (b-a)(2a+b) a(l-b) =0
Va2+b2 Vb2-a2 V2l2-a2-b2

These equations give a//=0-3185 and b\7=0-7074. The moments of resistance at the
ends and centre are respectively 250-5% and 50-9% greater than that of the unreinforced

beam. The saving is 16-1%, compared with 14-1 % with end reinforcement
only and 2-0 % with central reinforcement only.

Hence the percentage saving with both central and end reinforcement is very little
greater than the saving with end reinforcement only.

5. Conclusions
It has been shown that the adoption of beams of varying cross-section can lead to

considerable economies in total material consumption when the basis of design is the
ultimate load which the beam will carry as calculated by the simple plastic theory. The
best shape for the beams has been calculated for the case of a fixed-ended beam carrying

a uniformly distributed load, the minimum cross-sections oecurring at about one-
fifth the length of the beam from the centre. The maximum theoretical economies
areof the order 35-50%.

Since the construction of a beam of continuously varying cross-section may have
considerable practical disadvantages, an investigation has been made into the effect
of reinforcing either the centre or the ends of the beam, or both centre and ends
simultaneously. It has been shown that there is only a negligible advantage in
reinforcing the centre, but that reinforcing the ends does lead to appreciable
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economies. The economy achieved by reinforcing both centre and ends is virtually
no greater than that achieved by reinforcing the ends alone.
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Summary

The simple plastic theory gives a direct means of determining the form of a fixed-
ended beam of varying cross-section such that the total weight of material shall be an
absolute minimum. The paper shows how this form may be deduced for a uniformly
distributed load, both when the cross-section of the beam can be varied continuously,
and when the size of the beam can only be adjusted in discrete intervals. The maximum

theoretically attainable economies of material are discussed.

Resume

La theorie simple de la plasticite fournit un moyen direct pour determiner la forme
ä donner ä une poutre encastree ä ses extremites et presentant une section non
uniforme, pour que le poids total de metal employe constitue un minimum absolu.
L'auteur montre comment l'on peut determiner une teile forme dans le cas d'une
charge uniformement repartie, aussi bien lorsque la section de la poutre peut varier
d'une maniere continue que lorsque ses dimensions effectives ne peuvent etre choisies

que dans des intervalles determines. II discute l'economie maximum de metal que
l'on peut realiser du point de vue theorique.

Zusammenfassung

Die einfache Plastizitätstheorie erlaubt uns die direkte Bestimmung derjenigen
Form eines eingespannten Balkens mit veränderlichem Querschnitt, bei der das

Gesamtgewicht des Materials ein absolutes Minimum sein soll. Der Aufsatz zeigt
die Ermittlung dieser Form bei gleichmässig verteilter Belastung, einerseits, wenn der
Querschnitt des Balkens stetig veränderlich ausgeführt werden kann und andererseits,
wenn seine Abmessungen nur in bestimmten Abstufungen verändert werden können.
Die höchste theoretisch mögliche Ausnützung des Materials wird untersucht.
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Sur la plastification de flexion des poutres ä äme pleine en acier doux
(Recents essais francais—Examen critique des essais anterieurs—Questions

restant ä resoudre)

Plastification of bending plate-web girders in mild steel
(Recent French tests—Critical study of previous tests—Problems still to be solved)

Plastifizierung der Vollwand-Biegeträger aus Flusstahl
(Neue französische Versuche—Kritische Betrachtung der früheren Versuche-

Noch zu lösende Aufgaben)

A. LAZARD
Ingenieur en Chef des Ponts et Chaussees

Chef des Divisions Centrales des Ouvrages d'Art et desEtudes d'Amenagements de la S.N.C.F.

Introduction
Les recherches sur la plastification de flexion des poutres ä äme pleine en acier

doux de construction doivent conduire ä une economie de metal et ä une economie
d'argent. Cela s'obtiendra par relevement des contraintes maxima autorisees par les

reglements officiels, bases presque tous sur l'ancienne coneeption de l'elasticite, en
sollicitant soit certaines derogations, soit des modifications permanentes ä ces
reglements. II n'y a espoir d'aboutir que si le dossier presente aux Organismes responsables
des Grandes Administrations est base sur des faits indiscutables, resultats d'experiences
nombreuses et probantes, et si les limites d'utilisation des derogations sollicitees ou
des nouvelles prescriptions proposees sont bien precisees.

Or ä la suite d'importantes experiences de flexion effectuees sur poutrelles Grey de
1 metre de hauteur (c'est-ä-dire sur les plus grands lamines du monde) qui nous a
permis d'entrevoir quantite de phenomenes de plastification peu ou mal connus, il
nous est apparu, en procedant ä un examen critique general des theories et des

experiences existantes, que les generalisations etaient souvent hätives, qu'il existait un
nombre considerable de questions non posees ou restees sans reponse, que, malgre
des tentatives isoiees dans ce sens, les limites d'utilisation des nouvelles methodes
n'etaient pas suffisamment precisees, et, qu'en definitive, il fallait proceder ä un
nouvel examen du probleme en operant avec beaucoup d'ordre.
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Pour notre part nous avons mis en train, avec la collaboration de la Chambre
Syndicale des Constructeurs Metalliques Francais, des series d'experiences dans le
domaine fort vaste, quoique tres restrictif, des

lamines I ou H
bruts *
de longueur depassant 6 fois la hauteur
sollicites ä la flexion
statiquement
et isostatiquement
jusqu'ä ruine.

Le chapitre I de la presente communication est consacre ä une description rapide
des experiences dejä realisees et au developpement des conclusions auxquelles on est
conduit, en insistant sur les points qui appellent des experiences de contröle par
d'autres chercheurs.

Compte tenu de ces conclusions, les autres essais connus de nous| sont examines
et discutes au chapitre II, en suivant la Classification qui a paru la plus adequate.
Chaque fois nous nous sommes bases sur la description detaillee des circonstances
experimentales: malheureusement les details fönt souvent defaut.

Les conclusions d'ensemble sont developpees au chapitre III. On insiste sur les
lacunes des recherches actuelles. On propose d'etablir un programme general des

experiences ä reprendre ou restant ä faire, dont on souhaite un partage entre les
membres de l'Association.

Chapitre I—Les recents essais francais sur la plastification en flexion
STATIQUE ET ISOSTATIQUE DE LAMINES I OU H BRUTS

On decrira quatre series d'essais qui tous ont ete pousses jusqu'ä la ruine.

lere Serie: Poutrelles H de 1 metre de hauteur

Ces essais, executes pour le compte de la S.N.C.F. en 1948-49, ont ete decrits en
detail par nous, dans le Xeme Volume des Memoires de l'A.I.P.C., et ont fait l'objet
d'un leger complement theorique dans Travaux, numero de mai 1950. Ils sont
schematises figs. 1 et 2.

Ils ont clairement mis en evidence les faits suivants:
(a) Les premiers signes de plastification sont apparus bien avant que les contraintes

ä la Navier (quotient du Moment M par le module de resistance de la section I/v
ou W), aient atteint la limite elastique conventionnelle du metal (ä 2 %0) determinee sur
une eprouvette prelevee dans une semelle d'un about. L'apparition de la plastification
depend essentiel lement des appareils de mesure utilises pour la deceler et du critere
choisi pour la definir. Elle semble debuter dans la semelle tendue.

II apparait que la notion de "Moment Elastique" (ou produit de la limite elastique
par le module de resistance), souvent utilisee par les theoriciens, ne correspond ä

* C'est-ä-dire sans trous. Nous mettons en route, ä l'epoque ä laquelle nous redigeons la presente
communication—juin 1951—une nouvelle serie, avec trous cette fois. Nous esperons pouvoir en
rendre compte ä l'epoque du Congres.

t II ne nous a pas toujours ete possible de nous procurer tous les articles originaux. Compte tenu
du nombre limite de pages dont nous pouvions disposer dans la presente communication, nous ne
donnons qu'un apercu des experiences. Un texte detaille paraitra dans Travaux, numeros de
novembre et decembre 1951.
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aucun phenomene physique reel.* Pour cette valeur la poutrelle est dejä partiellement
plastifiee. Cela parait etre sous la dependance des contraintes prealables, enfermees
dans la poutre par les traitements: chimique, physique, mecanique, subis anterieu-
rement (et que le preievement de l'eprouvette libere partiellement).

(b) La plastification est un phenomene essentiellement discontinu. Elle se produit
en des points tres variables et diversement localises. Ces points se mettent brusque-
ment ä fluer, la limite d'ecoulement ayant ete localement atteinte; les points voisins

* En realite c'est la limite du domaine de proportionnalite de la poutrelle qu'on a determine. II
faudrait donc la comparer ä la limite de proportionnalite du metal. A supposer que cette limite
ait un sens pour le metal in situ (etat contraint) et soit une constante en tous les points.
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modifient leur progression de deformation, dans des proportions fort variables, allant
d'un simple ralentissement ä une regression. *

Les charges augmentant, la plastification se propage graduellement, par ä coups,
en interessant des zones de plus en plus considerables. II ne se passe rien de special
dans les zones tendues; au contraire dans les zones comprimees on finit par parvenir
ä des flambements locaux äme ou semelle qui entrainent la ruine de la poutrelle.

(c) L'hypothese de Bernoulli sur la conservation des sections planes (ou sur la
proportionnalite des deformations aux distances de la fibre neutre) devient de plus
en plus inexacte, au für et ä mesure que la plastification progresse.

(d) Dans les zones tendues apparaissent des lignes de glissement, dans les zones
comprimees des rides de glissement, selon la terminologie du professeur Baes (voir
fig. 2).f Lignes et rides n'apparaissent que dans des zones fortement plastifiees.
Leur progression permet d'evaluer grossierement, et probablement avec un certain
retard, la progression de la plastification.

(e) On est amene ä en deduire l'existence de contraintes de compression agissant
sur les facettes longitudinales.

Dans l'äme c'est une consequence de Feffet de courbure de la poutre. Dans les
semelles on voit mal ä quoi cela correspond.

(/) Les dispositions ayant ete prises pour empecher l'apparition de tous les phenomenes

d'instabilite elastiques (deversement, flambements elastiques locaux) et dans
une certaine mesure les flambements plastiques locaux la ruine des poutrelles est
intervenue par plastification quasi totale. La "contrainte ä la Navier" lors de la
ruine plastique a certainement depasse 30 kg./mm.2

2eme Serie: IPN de 200 et 300 et HPN de 550

Ces essais, executes pour le compte de la Chambre Syndicale des Constructeurs
Metalliques en septembre-octobre 1949, ont ete decrits, en details par M. Dawancef
lors d'une Conference faite ä Paris le 13 decembre 1949, suivie d'une interessante
discussion (voir fig. 3).

Les prelevements d'eprouvettes ont montre que les limites elastiques dans les ämes
sont plus elevees que celles des semelles. C'est lä d'ailleurs un phenomene tout ä fait
general.

Les essais ont sensiblement confirme les conclusions de nos propres essais.

3eme Serie: Mäts encastres en poutrelles HN de 180 et 260
Ces essais ont ete executes en 1950, sur des chantiers de la S.N.C.F., ä l'occasion

de recherches sur les poteaux supports de catenaires des futures electrifications.
Les essais de Marolles (5 septembre 1950) oü des poutrelles HN de 180 etaient

profondement encastrees dans un important massif de beton sont representes ä la
fig. 4.

3 poutrelles ont ete essayees avec efforts dans le plan de l'äme seule (fig. 4(b)).
Toutes trois ont ete ruinees pour une contrainte ä la Navier de 35,2 kg./mm.2 calculee
ä la base de l'encastrement.

* Cette regression (ä laquelle nous avons donne le nom de "bec d'oiseau" quand eile apparait
similairement dans le beton tendu au moment de la fissuration) a ete egalement observe par M. Soete,
professeur ä Gand, dans des essais de traction sur eprouvettes soudees. Elle semble correspondre
aux phenomenes observes, en rayons X, par les Allemands. Toutefois Schleicher (par exemple
Bauingenieur, juillet 1950) pretend qu'on mesure par ce procede les contraintes vraies.

t Ces phenomenes ont dejä ete notes, mais avec beaucoup de prudence, par le prof. Kayser.
Congres de Berlin, Rapport final, 1938, p. 557, et Stahlbau, 26.2.1937.

% Annales de l'Institut du Bätiment et Travaux Publics, mai 1950. Construction Metallique No. 6:
"Nouvelles recherches experimentales sur la plasticite des elements de construction metallique."
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Nous avons pu suivre avec precision le phenomene de ruine plastique sur l'une
d'elles. Malgre les precautions prises Feffort n'etait pas rigoureusement exerce dans
le plan de l'äme et la poutrelle avait un aspect legerement vrille. Brusquement, au
moment oü Feffort de traction dans le cäble atteignait 1 300 kg. (mesure au dynamo-
metre), correspondant ä un moment ä Fencastrement de 14 940 kgm. et une contrainte
ä la Navier de 35,15 kg./mm.2, nous avons vu sur une des ailes de la semelle tendue se

propager vers le bas, et ä partir d'une hauteur d'environ 60 cm. au-dessus du sol,
comme une sorte de Vibration de plastification; le vrillage a disparu et la poutrelle est
alors venue, sans resistance, ä la demande du cäble. Compte tenu de la rapide de-
croissance du moment en fonction de la hauteur, la contrainte ä la Navier, dans la
zone d'oü est parti Febranlement plastique de ruine, atteignait environ 32 kg./mm.2
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Des qu'on arretait Fenroulement du cäble sur le treuil, les poutrelles cessaient de
se deformer. Nous avons alors decharge completement (les poutrelles gardant une
deformation importante) puis recharge. A partir de cette deformation residuelle, les

poutrelles se sont comportees sensiblement comme des poutrelles neuves et elastiques
tant que la charge n'a pas atteint une valeur tres peu inferieure ä celle ayant provoque
la ruine plastique; la poutrelle s'est remise alors ä se deformer exagerement au simple
appel du cäble.

Ces essais complementaires ont donc montre clairement (contrairement ä une
opinion repandue) qu'une poutrelle peut avoir ete amenee ä la plastification totale
et etre reutilisee dans certaines limites ä partir de la deformation permanente acquise.
II n'y a ruine definitive que si la sollicitation est maintenue en permanence: si la
sollicitation cesse la poutrelle peut etre recuperee dans une certaine mesure.*

Une autre poutrelle a ete essayee ä la flexion deviee (fig. 4(c)). La ruine plastique
est intervenue pour une valeur des efforts correspondant ä une contrainte ä la Navier
ä Fencastrement de Faile de la membrure la plus comprimee egale ä 33,3 kg./mm.2

D'autres essais ont eu lieu ä Vigneux avec des HN de 260 enfoncees de 3 m. dans
un massif de beton de 55 cm. de diametre et de 3 m. de profondeur.

Ils ont manifeste des phenomenes d'instabilite elastique qui sont susceptibles de
se produire chaque fois qu'on ne prend pas les precautions necessaires pour les rendre
impossibles.

4eme Serie: IPN de 200: Sollicitations cycliques
Ces essais ont ete executes, conjointement par la S.N.C.F. et la Chambre Syndicale

des Constructeurs Metalliques en 1950 et 1951, par M. Dawance et son equipe de
collaborateurs habituels.

Les troncons de 2,20 m. des poutrelles IPN 200 ont ete extraits dans des barres
de 7 m. provenant des parcs de la S.N.C.F. Les eprouvettes ont ete prelevees dans
des sections d'essai reperees en bout de chaque troncon: deux dans les ämes, une dans
chaque semelle (voir fig. 5). Le tableau suivant donne les limites elastiques con-
ventionnelles (en kg./mm.2) des sections d'essai.

Poutrelles des: lere sous-serie 2eme sous-serie 3eme sous-serie

Sections d'essais: A C B 1 2 3 4 5 6

Ä- {Ss3 : :

24,7
27

29,2
30

29
28,3

33,8
34,8

28,3
28,3

29,6
32,0

26,9
26,6

26,8
27,8

26,1
25,4

27,9
28,4

26,7
24,9

27,8
29,9

26,6
26

28
30,2

26,9
25,9

28,2
29,4

27,7
24,2

29
28,8

On notera une tres notable dispersion des resultats le long d'une memefibre du metal
ainsi que des valeurs plus elevees dans les ämes que dans les semelles.

Ces essais ont eu pour but de rechercher l'influence de la repetition de cycles de
sollicitations sur les phenomenes de plastification et notamment de determiner la
valeur des cycles ä partir desquels les deformations permanentes ne se stabiliseraient
plus.

On craignait, en particulier, que la ruine plastique intervint, dans ces conditions,
* Dix ans plus tot nous avions recu l'ordre de mettre ä la ferraille la charpente d'un pont detruit

par faits de guerre, dont nous avions propose la reutilisation partielle. C'est la raison qui nous a
pousse ä proceder ä cette contre epreuve.



PLASTIFICATION DE FLEXION DES POUTRES 129

bien avant celle qui aurait ete observee en suivant le processus des trois premieres
series d'essais.

Premiere sous-serie: Sollicitations ondulees*—Cycles 4 ä +n kg./mm.2(fig. 6) (Poutres I
et II, III)—essais des 11 et 23 mai, du 21 juin et du 1 juillet 1950

Les contraintes ä la Navier variaient, dans chaque cycle, entre 4 et +/? kg./mm.2
La valeur superieure n du cycle n'etait augment.ee que lorsque la stabilisation des
fleches etait obtenue. Deux poutrelles (I et II de la fig. 5) ont ete essayees dans ces
conditions.

On a pu tirer les conclusions suivantes:
1° La repetition de cycles de sollicitations ondulees ne modifie pas la valeur du

moment enlrainant la ruine plastique. La ruine plastique correspond pour une
poutrelle sollicitee statiquement, dans des conditions de flexion determinees, ä un
phenomene bien caracterise qui est independant du processus d'application des charges.

2° On peut "accommoder elastiquement" une poutrelle, une fois la deformation
permanente acquise. On peut, ce faisant, depasser, en contrainte ä la Navier, la
limite elastique conventionnelle.

Nous en avons concu la possibilite d'utiliser en flexion des poutrelles brutes bien
au delä des limites actuellement tolerees par les reglements, en procedant ä une
predeformation volontaire des poutrelles, sous une contrainte legerement superieure
aux contraintes maxima d'utilisation.

Mais avant de mettre en application un tel procede qui peut, naturellement, etre
conjugue avec un enrobement par du beton de la semelle tendue et deformee, en vue
de precontraindre ce beton lorsqu'on retire les charges (les deformations sont, en
particulier, tres reduites et ne limitent plus l'utilisation des hautes contraintes), ilfaut
s'assurer que l'accommodation elastique, ainsi acquise, se conserve dans le temps.

Des essais sont necessaires pour le verifier.

Deuxieme sous-serie: Sollicitations alternees—Cycles 10 kg.jmm.2 ä +n kg.jmm.2
(fig. l(a)), 20 kg.jmm.2 ä +n kg./mm.2 (fig. l(b))

Les resultats confirment sensiblement les conclusions de la premiere sous-serie;
la ruine n'a pas ete avaneee par les sollicitations alternees et eile est intervenue
pratiquement pour les memes valeurs de la contrainte ä la Navier que dans les essais

sans repetitions cycliques.

Troisieme sous-serie: Sollicitations oscillantes—Cycles entre plus et moins n kg.jmm.2
{fig- 8)

L'essai a montre:
(a) que la stabilisation etait assez rapidement acquise ;f

* Nous adoptons ici la Terminologie que met au point actuellement une sous-commission de
l'A.F.N.O.R., presidee par M. Prot:

Une sollicitation periodique est ondulee lorsque les forces varient entre deux limites de meme
signe.

Une sollicitation periodique est alternee lorsque les forces varient entre deux limites ayant
des signes opposes.

Une sollicitation periodique est oscillante lorsque les forces varient entre deux limites ayant
des signes opposes et une meme valeur absolue.

Une sollicitation periodique est repetee lorsque les forces varient entre zero et une limite.
t Toutefois le nombre de repetitions (20) n'a peut-etre pas toujours ete süffisant. La fleche

pouvait paraitre stabilisee puis brusquement, par exemple ä la quinzieme repetition, s'aecroitre ä

nouveau.
CR.—9
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(b) que les cycles d'hysteresis devenaient de plus en plus marques, la diagonale
s'inclinant de plus en plus sur Fhorizontale;

(c) que l'effet Bauschinger jouait ä plein, c'est-ä-dire que les dechargements
etaient ä peu pres lineaires, mais que les rechargements (dans un sens ou
dans Fautre) montraient au contraire une courbure prononcee;

(d) qu'enfin la ruine est intervenue sensiblement pour la meme contrainte ä la
Navier que dans les essais precedents.

Quatrieme sous-serie: Poutrelles A et D—Essais des 9 et 11 mai 1951 (fig. 9)

Nous nous sommes pose la question suivante: reste-t-il quelques traces, decelables,
d'une plastification plus ou moins totale d'une poutrelle? II est bien certain, en effet,



PLASTIFICATION DE FLEXION DES POUTRES 131

que lorsqu'une poutrelle est livree par les forges eile a subi, au cours de son elaboration
tant chimique que thermique que mecanique, d'innombrables plastifications. Or le
contröle consiste ä mesurer les caracteristiques mecaniques d'une eprouvette prelevee
dans Ie metal; si elles sont satisfaisantes on utilise la poutrelle dans les limites
reglementaires. Comment distinguera-t-on une poutrelle "vierge" d'une poutrelle plus
ou moins " outrageusement plastifiee" qui, apres redressement, aura ete remise sur
parc.

32kg/mm3lkg/mm2
1 lokg/mm2

29M
28kg/mml

26kg/,mm
2Ukgl,mm

Fleches (mm)

'-50

Poutre 0A

-21 kg/mm

32kg/mm

Fig. 8

•fc

-

•^20
-*>

s
-5
5 10-

a
0

20

10

5

n

1
¦5?

I5kg/mm2

/ Flec/ies(mm)

I

|i w

0

20

to-

5-

0

S 2t'kg/mm2

* //tlkg/mm2//

// 1-rChargement/i\ le 6Juin 1951

// \roirFig.S)

y Fleches(mm)

-5

/S-tti

yr-lSkg/inm1' -20

Chargementä -
apres ruine ä *

////' -5

-10-

Vkg/
11(»

5

a)Poutre A

mm2

lir Fig. 7a)

-5 /
/ yPip

/ y<l5kg/mm2

AP -20-

-2ikg/mmz

' -5

-10

5
"

b) Poutre D

Fig. 9

A cet effet nous avons demande qu'on soumette ä nouveau ä des essais de flexion,
jusqu'ä des contraintes de 15 kg./mm.2, la poutrelle A de la 2eme sous-serie et la
poutrelle D de la 3eme sous-serie qui toutes deux avaient ete plastifiees jusqu'ä la ruine
dans des cycles Bauschinger (contraintes positives et negatives).

Selon le sens dans lequel Feffort serait applique on pouvait penser que ces poutrelles
se comporteraient elastiquement ou manifesteraient la courbure caracterisque de

l'effet Bauschinger, sous reserve que le temps n'ait pas modifie les proprietees acquises.



132 AI 3—A. LAZARD

Les essais ont eu lieu le 9 mai 1951. Les poutrelles etaient au repos depuis 2 mois

i pour A et 1 mois 2 jours pour D. Ils sont schematises par les fig. 9(a) pour des
essais sous + ou —15 kg./mm.2 et fig. 9(b) pour des essais sous + ou —24 kg./mm.2

II semble qu'on puisse conclure de ces deux essais (qui meritent d'etre renouveles):

1° qu'apres un repos de plusieurs semaines* des poutrelles meme severement
plastifiees (et tordues) ont recupere leurs qualites elastiques (fig. 9(a)): les
phenomenes de plastification ne se manifestent ä nouveau que sous des
sollicitations importantes voisines de la limite elastique (fig. 9(b)).

2° il n'existe pas de moyen de determiner les plastifications anterieures© au
vrai cela devient sans interet ä cause du 1° ci-dessus.

Tous ces essais nous conduisent ä conclure comme suit:

Conclusions du chapitre I
(1) A la precision des essais et compte tenu de Fextreme dispersion des

caracteristiques mecaniques du metal on peut dire que le moment produisant la ruine
plastique d'une poutrelle brüte sollicitee statiquement et isostatiquement est une
donnee physique independante du processus de chargement (chargement continu,
chargement par paliers avec dechargements, sollicitations cycliques: ondulees,
repetees, alternees ou oscillantes).

(2) Si l'on supprime I'application des charges des que se produit la ruine, la
poutrelle est encore reutilisable elastiquement dans un domaine fort etendu qui parait
depasser largement le domaine des contraintes reglementaires generalement admises.
Le temps semble jouer, ä ce sujet, un röle tres important, et encore mal defini.

(3) Le moment de ruine plastique est plus eleve, de plusieurs pour cent, que celui
qui est determine par l'hypothese du materiau idealement plastique, la limite elastique
etant determinee sur une eprouvette de traction prelevee dans une semelle.

(4) Les contraintes prealables ne jouent aucun röle dans la valeur du moment de
ruine, car leur moment est nul (systeme en equilibre). Par contre elles interviennent
certainement dans le declanchement local des premieres deformations plastiques. A
ce sujet la consideration du "moment elastique" est pratiquement denuee de sens.

(5) II semble qu'on puisse utiliser les poutrelles brutes ä des contraintes tres
elevees, si l'on prend bien soin d'eviter les phenomenes de deversement et de flambe-
ment locaux des zones comprimees (äme et semelle). Les dispositions ä prendre
doivent varier d'ailleurs avec le profil des lamines; ces phenomenes perturbateurs sont
d'autant plus ä craindre que le lamine est plus haut ou plus grele.

(6) La predeformation volontaire en vue d'obtenir Faccommodation elastique,
permet le relevement des contraintes.

La question n'est, toutefois, pas encore completement resolue.

Chapitre II—Autres essais sur la plastification en flexion des poutres
Ä äme pleine

Nous distinguerons les essais statiques et de fatigue; dans chaque sous-chapitre
les essais isostatiques et hyperstatiques: d'oü quatre paragraphes.

On traitera d'abord des lamines bruts, puis perces, ensuite des poutres composees
et enfin des poutres dissymetriques. On decrira d'abord les essais oü le moment
flechissant joue le röle prineipal, ensuite ceux oü intervient Feffort tranchant, enfin

* 11 pourrait etre interessant de preciser ce delai.
t II serait interessant de verifier si l'approvisionnement des lamines sur parcs ameliore leurs

qualites elastiques.
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on s'attachera aux phenomenes d'instabilite. On insistera sur le processus de chargement.

Ces considerations ont amene ä prevoir systematiquement dix sections dans chacun
des quatre paragraphes envisages, avec pour les systemes hyperstatiques une
subdivision supplementaire des sections en quatre sous-sections, afin de bien mettre en
evidence les conditions d'appui. De nombreuses reponses "Neant" fönt mieux
ressortir les lacunes des recherches actuelles, ainsi qu'il ressort du tableau schematique
ci-joint.

Essais statiques Essais de Faligue

0 £ isoslahques hyperstah-
ques

h Lammes Oruls

Lammes perces
de trous

%Poutres composee
de plats soudes

o
Poulres composees

ie plats rives

0
Pieces rapportees sur

' /essemellesde lamines

influence de feffort
tranchanl &
Phenomenes de
Hambemenl

Seclions
dissymetriques

Sollicitahms tipeUes
ou ondulees

Sollicilanons oscillanles

ou alternees

A Isostaliques 8 Poutres confinues sur 4 appuis • C Poulres continues sur 3 appuis

D Pootres encastrees ¦ E Portiques

Tableau Schematique

Suivant Dutheil* nous distinguerons Vadaptation dans la section en comparant
le moment de plastification vrai au moment calcule d'apres la theorie elementaire du
materiau idealement plastique que nous designerons comme moment plastique
theorique, de Vadaptation entre sections dans les systemes hyperstatiques, en comparant
les resultats ä la theorie de Fegalisation des moments.

La quasi totalite des essais ont porte sur des lamines ou des poutres de petites
dimensions. La prudence s'imposera quand on voudra generaliser aux poutres de

grandes dimensions.

* Annales de l'Institut Technique du Bätiment et des Travaux Publics—Theories et Methodes de
Calcul No. 2, janvier 1948: "L'exploitation du phenomene d'adaptation dans les ossatures en acier
doux"; et Ossature Metallique, 3, 1949, p. 143.
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sous-chapitre i—essais statiques

Paragraphe 1: Essais isostatiques
lere Section: Lamines bruts

On a etudie divers essais de Maier-Leibnitz; d'autres de Stüssi et Kollbrunner,
Kazinczy, Hendry, Wilson, et Graf (aciers mi-durs) qui n'ont pas ete tous pousses
jusqu'ä la ruine, chargements croissants ou par paliers et dechargements. A Fexcep-
tion de l'essai de Wilson oü la contrainte ä la Navier a ä peine depasse la limite
elastique, les autres montrent, comme nous Favons trouve au chapitre 1er, que le

moment de ruine depasse nettement le moment plastique theorique: un essai de
Kollbrunner donne un depassement de 32 %.

lerne'Section: Lamines perces de trous

On che deux essais de la Chambre Syndicale des, Constructeurs Metalliques
Francais oü la section mediane etait affaiblie par deux trous dans chaque semelle.
Dans Fun les trous etaient fores; il y eut ruine plastique et peu de difference avec un
lamine sans trou. Dans Fautre les trous etaient poinconnes sans alesage. II y eut
cette fois rupture, brutale, dans la semelle tendue ä partir d'un trou, avec cassure
brillante; l'essai est donc plus defavorable.

Les contraintes ä la Navier, calculees en section brüte et en section nette sont
donnees dans le tableau ci-apres en kg./mm.2 oü elles sont comparees aux limites
de rupture R de l'acier des semelles tendues.

Trous Section 1er I (tres doux) 2eme 1 (assez dur) Ruine

fores brüte
nette

28,8 ou 0,90i?
41,2 ou 1,29-R

35,8 ou 0,90/?
51,2 ou 1,28/? Plastique

poinconnes sans alesage brüte
nette

28,0 ou 0,84Ä
40,0 ou 1,20Ä

31,5 ou 0,79Ä
45 ou 1.12Ä

Rupture
brutale

3eme Section: Poutres composees de plats soudes

On a etudie: un essai de Kayser oü la poutre a peri par voilement de l'äme et
pour une contrainte ä la Navier superieure ä la limite de rupture de l'acier des semelles
(mais l'acier de l'äme etait beaucoup plus dur); des essais de Hendry et des essais

remarquables de Patton et Gorbunow sous chargements repetes cycliquement, avec
ou non introduction de contraintes prealables.

Ces essais montrent que ces poutres se comportent aussi bien, sinon mieux, que
des lamines bruts de meme section et de meme acier. Les contraintes prealables
sont sans influence sur la valeur de ruine.

4eme Seclion: Poutres composees de plats rives

On a note un essai peu concluant de Kazinczy et un essai de la Chambre Syndicale
des Constructeurs Metalliques Francais sur deux poutres oü les trous etaient
poinconnes sans alesage et oü il y a eu rupture, brutale, de la semelle tendue ä partir d'un
trou de rivet.

Les contraintes ä la Navier, en kg./mm.2, calculees en section brüte et en section
nette, sont donnees dans le tableau ci-apres et comparees aux limites de rupture R de
l'acier des semelles tendues.
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1

Section lere poutre 2eme poutre Ruine

brüte 28,8 ou 0,61 R
nette 39,2 ou 0,83Ä

30,8 ou 0.67.R
42,0 ou 0.91Ä Rupture brutale

Ces resultats paraissent inferieurs ä ceux de poutres soudees ou d'I bruts.

5eme Section: Pieces rapportees sur des semelles de lamines

On cite quelques essais comparatifs de Bryla et Chmieloviec et un ensemble tres
remarquable d'essais de Wilson qui semblent marquer l'influence defavorable de
semelles additionnelles partielles soudees et au contraire la superiorite des semelles
additionnelles soudees de toute la longueur du profile, les semelles rivees s'inscrivant
entre les deux.

6eme Section: Influence de Veffort tranchant ou d'une petite portee (L<ßh)
On cite deux essais de Kayser oü la ruine est intervenue par voilement de l'äme

sans que puisse intervenir une semelle additionnelle soudee, deux essais d'Albers sur
poutre de 1,86 m. de haut oü la ruine est egalement intervenue par voilement de l'äme
malgre un delardage tres important des semelles tendues, qui ont ainsi supporte des
contraintes ä la Navier considerables, un essai de Wilson et une serie d'essais tres
interessants d'Hendry ä la suite desquels cet auteur a essaye de fixer des regles pratiques
pour savoir quand faire intervenir Feffort tranchant; malheureusement il s'agissait
de tres petits lamines. Son etude pourrait servir utilement de base ä des essais

systematiques.

lerne Section: Phenomenes de flambemenl
On cite des essais systematiques, un peu speciaux, d'Hendry, sur des cadres en

forme de L ä deux branches egales. L'auteur donne, dans la limite de ses essais,
des regles pratiques interessantes.

8eme Section: Sections dissymetriques

Patton et Gorbunow ont montre que la theorie habituelle de Fadaptation dans la
section s'appliquait parfaitement aux sections dissymetriques en essayant des profiles
en 17 composes de plats soudes ou des profus en caissons avec appendices longitudinaux
soudes. Sollicitations ondulees.

La ruine, plastique, intervient pour des contraintes ä la Navier depassant largement
la limite elastique (1,81 et 1,54 fois).

Cependant Patton et Gorbunow, en vue d'eviter Fapparition de deformations
elastiques trop importantes ou de deformations permanentes, prescrivent de verifier
que la contrainte ä la Navier ne depasse pas la limite elastique.

On pourrait sans doute aller plus loin, gräce ä Faccommodation en utilisant
la predeformation.

II semble qu'il y ait le plus grand interet, contrairement aux idees heritees des
lecons de Navier, ä utiliser en flexion des pieces dissymetriques. En theorie, ä
quantite de matiere donnee, il serait preferable d'utiliser des pieces rectangulaires car
les centres de gravite des sections comprimees et tendues sont alors les plus eloignees
possible (bras de levier maximum); mais, pratiquement, compte tenu des phenomenes
d'instabilite en compression, il faut s'orienter vers des sections dissymetriques en
forme de T ou FT.



136 AI 3—A. LAZARD

D'autant plus qu'ä Favenir la Construction Metallique va devoir utiliser largement
les töles minces et abandonner de nombreux lamines symetriques.

En particulier on pourrait renforcer commodement des ouvrages par des appendices
soudes s'ecartant le plus rapidement possible de la fibre neutre.

II est regrettable que ces experiences n'aient pas connu le retentissement qu'elles
meritaient et qu'elles n'aient pas ete systematiquement poursuivies.

9eme Section: Sollicitation ondulees ou repetees

On a dejä mentionne, ä diverses reprises, les essais de Patton et Gorbunow.

lOeme Section: Sollicitations alternees ou oscillantes. Neant.

Paragraphe 2: Essais hyperstatiques
C'est ici qu'il a paru necessaire de subdiviser chaque section en quatre sous-

sections pour tenir compte des conditions speciales d'hyperstaticite et etudier si la
plastification debutait sous les points d'application des charges ou sur les appuis et
comment se faisait Fegalisation des moments que postule la theorie elementaire.

Herne Section: Lamines bruts

lere sous-section—Poutres continues sur quatre appuis

L'analyse d'un essai bien connu de Maier-Leibnitz nous a conduit aux conclusions
suivantes (voir fig. 10):

Dans une lere phase les phenomenes sont purement elastiques (jusqu'ä 107";
contrainte ä la Navier en travee, 26,2 kg./mm.2).

Une 2eme phase—de transition—de 10T ä 11,2T correspond au debut de la
plastification de la section mediane (contrainte croissant de 26,2 ä 29 kg./mm.2).
Elle est caracterisee par la formation d'un jarret permanent sous la charge.

Une 3eme phase—de 11,27 a 177, qui correspond ä Faccroissement lineaire du
moment sur appuis, est marquee par la tendance, conforme ä l'hypothese classique,
vers Fegalisation des moments en travee et sur appui. Cette egalisation se produirait
pour la valeur du moment plastique vrai.

Mais cette egalisation ne peut se produire. Elle est entravee par Fapparition (ä
partir de 177) des phenomenes de plastification dans la section sur appui: contrainte
ä la Navier sur appui 23,3 kg./mm.2 pour une limite elastique des semelles voisine
de 24-25 kg./mm.2 Cette plastification de la section sur appui, avec jarret, se poursuit
difficilement; la section mediane est alors obligee de se plastifier ä nouveau avec
entree dans le domaine de raffermissement de l'acier.* C'est la 4eme phase, qui
s'acheve par la ruine de la poutre ä 20,77, caracterisee par Fapparition de nouveaux
jarrets dans la travee mediane et meme dans les travees extremes.

On note par rapport aux essais isostatiques les trois differences essentielles
suivantes:

(a) il se forme un jarret sous la charge des le debut de la plastification de la section
mediane;

(b) les sections sur appuis eprouvent de la difficulte ä se plastifier completement f
il se forme egalement un jarret;

* C'est le seul cas, ä notre connaissance, oü le raffermissement ait ete indubitablement observe.
t II est probable que la surplastification de la section mediane, avec raffermissement, est plus

facile que la plastification des sections sur appui. II n'est pas exclu que le contraire se produise dans
d'autres conditions d'essai.
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(c) la section mediane est contrainte d'entrer dans Je domaine de raffermisse¬
ment*

L'essai, bien connu lui-aussi, de Stüssi et Kollbrunner, confirme cette analyse.
Nous pensons toutefois que la charge de ruine est superieure ä celle que propose
Stüssi ä cause du depassement de fait du moment plastique theorique dans la section.
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Fig. 13

1.2

zmf
300 400

Tons

ty/
iY A$>

r$

'/Aifi//*

*f H
intens

2 4 6 S 10 12 14 IS IS 2022 24

ans

Ki¬

lo-

IP\O.S

(das

,.ww
s/s&y.

*Zf >r£7/W/./Si*

in Ions
20 40 SO SO 100

10 20 30 40 SO

Ions
4SI

*VI
Courbes theoriques

possi6ies^__
' I

is

A6

Courbes reelles

mums

Fig. 11

(Portique

A2)

Fig. 14

7.17 2.0 3.0 4.0 5,0

* II est probable que la surplastification de la section mediane, avec raffermissement, est plus
facile que la plastification des sections sur appui. II n'est pas exclu que le contraire se produise dans
d'autres conditions d'essai.
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2eme sous-section—Poutres continues sur trois appuis
On cite des essais de Maier-Leibnitz, Hartmann et Patton et Gorbunow qui

systematiquement montrent un depassement de la charge calculee (ä cause, semble-t-
il, d'une mauvaise estimation du moment plastique vrai dans la section) et la non
influence sur la ruine d'une quelconque denivellation d'appui. Par contre la succession

des plastifications a rarement suivi la theorie elementaire.

3eme sous-section—Poutres encastrees

On ne cite qu'un essai de Maier-Leibnitz pour lequel on peut repeter sensiblement
ce qui a ete dit ä la lere sous-section quoique Fegalisation ait failli ici etre parfaite.

4eme sous-section—Portiques
La question semble avoir particulierement attire les Britanniques. On cite

plusieurs series d'essais d'Hendry. Dans Fun—voir fig. 11—on trouve une egalisation
des moments avant la ruine pour laquelle le moment du genou depassait notablement
le moment sous la charge.

Conclusions pour la 11 eme section

II semble qu'on peut conclure comme suit:
A condition de compter avec les moments de plastification vrais, la theorie de

Fegalisation des moments est verifiee dans les portiques (hyperstaticite interne); eile
ne Fest pas entierement dans les poutres continues (hyperstaticite exterieure): dans
ce cas il se forme des jarrets des le debut de la plastification d'une section.

I2eme Section: Lamines perces de trous. Neant.

\3eme Section: Poutres composees de plats soudes

On cite une serie d'essais de portiques dus ä Hendry pour lesquels la ruine est
intervenue au moment de Fegalisation des moments pour la valeur du moment
plastique vrai.

\4eme Section: Poutres composees de plats rives

On ne peut citer qu'un essai de Kazinczy avec poutre continue sur trois appuis
mais pour lequel on manque par trop d'eiements de details.

ISeme Section: Pieces rapportees sur les semelles des lamines. Neant.

I6eme Section: Influence de l'effort tranchant
On cite plusieurs series d'essais de portiques, dus ä Hendry, dont quelques resultats

sont representes aux figs. 12, 13 et 14. Elles montrent:
fig. 12, des variations lineaires des diagrammes: charges-moments;
fig. 13, un huit ferme, c'est-ä-dire ruine par egalisation des moments apres une

egalisation prealable;
fig. 14, un cas oü la charge etant tres pres du genou, le moment sous la charge

n'a pas pu se developper completement et oü la ruine est intervenue quand
le moment du genou a atteint la valeur du moment plastique vrai dans la
section.

Herne et ISeme Sections: Phenomenes de flambemenl et sections dissymetriques.
Neant.
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\9eme et 20eme Sections: Sollicitations cycliques

On aborde un point capital concernant Fadaptation de plasticite dans les poutres
hyperstatiques quand les charges sont variables ou mobiles: II s'agit du probleme du
"cumul des deformations plastiques" analogue ä celui que nous avons traite dans le

chapitre 1er avec les essais de la 4eme serie.
Un examen serre de la proposition theorique bien connue de Hans Bleich nous a

conduit aux conclusions suivantes:
La methode de H. Bleich tend ä ameliorer le procede de Fegalisation des moments

elastiques; en fait cela ne doit etre possible que dans certaines conditions qu'il reste
ä preciser. II faut distinguer au moins deux cas:

1° La disposition des travees et des charges est teile que Fintervention des
contraintes residuelles les plus favorables modifie peu Fegalisation des moments selon la
methode habituelle: autrement dit les moments aux points les plus charges, calcules
en elasticite, sont tres voisins.

Dans ces conditions il est probable qu'on atteindra assez aisement un etat voisin de
Fegalisation des moments plastiques vrais, cela dependra d'une part, comme on Fa

vu dans les essais des 1 lerne et 13eme sections, des repartitions de travees et d'autre
part de Fetendue du domaine dans lequel les moments ondulent.

2° Au contraire les moments aux points les plus charges sont assez differents pour
que les contraintes residuelles de H. Bleich modifient assez sensiblement Fegalisation
habituelle. Dans ce cas, on peut concevoir que le point le plus charge se plastifiera
entierement avant que n'intervienne la plastification de soulagement d'un point moins
charge, sauf pour les sections ä grand coefficient de forme (marge de plastification
elevee). Autrement dit Fegalisation envisagee ne se produira probablement pas pour
des sections telles que I ou H et il y aura sans doute ruine par divergence des deformations

pour des valeurs des charges plus faibles que celles calculees. Au contraire
pour des sections ä grand coefficient de forme on tendra vraisemblablement vers
Fegalisation des moments plastiques vrais et les valeurs calculees seront sans doute
depassees. De nombreux parametres sont susceptibles d'intervenir et, a priori, la
question n'est pas simple ä resoudre.

Le 1° est sensiblement confirme par un essai de Klöppel oü la valeur de Bleich a
ete depassee d'au moins 35 %; le 2° par des essais de la Chambre Syndicale des
Constructeurs Metalliques Francais destines ä verifier une theorie corrective due ä Dutheil.

Le tableau, ci-apres, donne en fonction des valeurs des limites elastiques de l'acier
des profiles:

colonne 2: les valeurs du moment elastique, en cm. 7;
colonnes 3, 4, 5: les valeurs theoriques, en 7, des charges pour lesquelles le

moment sur appui egalerait: le moment elastique, le moment critique de
Dutheil,* le moment plastique theorique;

colonnes 6, 7, 8: les valeurs theoriques, en 7, des charges donnant Fegalisation,
dans le cas de charge le plus defavorable, des moments sur appuis et sous la
charge fixe avec: le moment elastique, le moment de Dutheil, le moment
plastique theorique;

colonnes 9, 10: les valeurs theoriques, en 7, des charges donnant Fegalisation des
valeurs extremes des moments sur appui et sous la charge fixe avec: le
moment elastique (methode de H. Bleich), le moment critique de Dutheil
(methode Bleich corrigee par Dutheil);

* Le moment critique de Dutheil est Ie moment elastique majore d'un coefficient de forme egal
ä 1,20; 1,425; 1,10 et 1,10 respectivement.
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colonne 11: les valeurs experimentales, en 7, de la charge marquant la fin du
domaine de proportionnalite.

colonnes 12, 13: les valeurs experimentales, en 7, des charges pour lesquelles la
divergence semble s'etre produite; d'apres l'estimation du Laboratoire et
d'apres la notre.

1 2 3 4 5 6 7 8 9 10 11 12 13

¦ recuit 249,1 10,7 12,9 16,1 15,5 18,6 23,3 12,2 14,6 11 18 17
recuit 173,7 7,5 10,7 15,0 10,8 15,4 21,6 8,6 12,1 12,5 17 15

i 238,0 10,2 11,3 11,9 14,8 16,3 17,2 11,7 21,8 9 11,5 10

i recuit 227,7 9,8 10,8 11,4 14,2 15,6 16,5 .1,2 12,3 9,5 11,0 10

On voit qu'au point de vue des premieres plastifications les previsions de la
colonne 3 ne sont pas (sauf pour le losange) trop eloignees de la realite, par exces

pour les H comme souvent dejä vu.
Au point de vue de la ruine par divergence on voit nettement apparaitre les deux

groupes que la discussion laissait prevoir:
(a) Pour les H, les charges sont tres voisines de celles pour lesquelles le moment

sur appuis egale le moment elastique ou le moment critique de Dutheil (cols. 3 ou 4)
et legerement inferieures au calcul de Bleich (col. 9).

(b) Pour le carre et le losange, au contraire, les charges sont voisines de celles

pour lesquelles le moment sur appui est egal au moment plastique theorique (col. 5) et
tres superieures aux calculs de Bleich ou de Dutheil (cols. 9 ou 10): cela tient evidemment

ä Fenorme reserve de plastification.
En conclusion, pour les cas de la pratique, tels que I et H, on voit qu'ici le calcul

de Bleich est probablement trop optimiste, alors que dans Fexemple de Klöppel il
etait excessivement pessimiste.

La question est donc bien aussi compliquee que notre raisonnement permettait
de Fenvisager: ilfaut tenir compte de la forme des sections, de la repartition des travees,
de la position des charges et des rapports entre les valeurs des differentes charges.

II est souhaitable que de nombreuses experiences soient systematiquement
entreprises.

Sous-chapitre II—Essais de fatigue
On ne trouve que des essais de Graf et de Wilson plus un essai de la Chambre

Syndicale des Constructeurs Metalliques Francais sur un assemblage par soudure bout
ä bout.

A part les essais isostatiques sur lamines bruts oü Fauteur allemand n'a obtenu
qu'une ruine plastique tandis que Fauteur americain obtenait des ruptures, les autres
essais sont complementaires et laissent beaucoup de lacunes. Les experiences les

plus completes sont celles de Wilson sur des semelles additionnelles soudees sur des
lamines: il nous semble que l'on peut en tirer confirmation de la superiorite de
semelles additionnelles de toute la longueur du lamine soudees par cordons Continus
d'une part, et de Finferiorite de plaquettes ou de semelles partielles soudees ainsi que
de soudures sur des zones tendues, d'autre part.

Pour le reste les limites d'endurance, par exemple ä 2 millions de repetitions,
presentent une teile dispersion des valeurs qu'il est difficile, en l'etat actuel, de tirer
de conclusions nettes. Tout ce qu'on peut affirmer c'est que, des qu'il y a une entaille
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quelconque, la ruine survient par rupture et pour des valeurs des contraintes ä la
Navier nettement inferieures ä la limite elastique de l'acier utilise. On ne peut plus
des lors envisager, ä proprement parier, de theorie de Fadaptation en flexion basee

sur la plastification.

Chapitre III—Conclusions

On traitera d'abord des points qui paraissent acquis, ensuite de ceux qui pretent
encore ä discussion ou n'ont pas ete suffisamment traites.

1 ere Partie—Points acquis
Si l'on met ä part les essais de fatigue sur poutres presentant des entailles (le mot

etant pris ici au sens le plus large) pour lesquelles Fadaptation de plastification ne
semble pas jouer au sens oü l'on entend generalement ces termes, les essais francais
et etrangers analyses aux chapitres II et III permettent de tirer les conclusions
suivantes, en distinguant par nature de poutres:

1° Lamines bruts

(a) La plastification commence pour des valeurs des contraintes ä la Navier
inferieures ä la limite elastique. Ceci n'empeche pas le lamine de se comporter
elastiquement une fois la deformation permanente acquise et stabilisee; dans les

poutres continues cette deformation se manifeste par des jarrets sous les charges ou
sur les appuis.

(b) Si les precautions sont prises pour eviter les flambements locaux des semelles
et des ämes comprimees et s'il n'existe pas de fortes charges concentrees ä proximite
d'appuis, la ruine intervient par plastification totale. Le moment atteint dans la
section la plus exposee, ou moment plastique vrai, depasse de plusieurs pour cent
(10 ä 20 en moyenne) le moment calcule d'apres la theorie elementaire du materiau
idealement plastique.

(c) Dans les systemes hyperstatiques les moments sous les points les plus charges
et sur les appuis ou les genoux ont bien tendance ä s'egaliser, la valeur commune
etant celle du moment plastique vrai. Cette egalisation peut etre atteinte dans les

portiques; eile Fest rarement d'une maniere parfaite dans les poutres continues: il y
a lä des circonstances defavorables dues probablement aux appuis. Enfin dans les

cas de solücitations conduisant au cumul des rotations plastiques, il n'est pas exclu

que, dans certaines circonstances encore mal connues, la ruine survienne, par divergence

des deformations, pour des valeurs relativement faibles.
(d) En definitive il semble qu'au regard des questions de securite les contraintes

maxima reglementaires pourraient etre fixees ä des valeurs elevees dependant:
de la dispersion des valeurs des limites elastiques conventionnelles (et non des

limites de rupture) en differents points des lamines,
de la forme des sections,
eventuellement de la taille des lamines,
de Fisostaticite ou de Fhyperstaticite du Systeme (poutres continues ou portiques),
dans certains cas de la nature des sollicitations (par exemple possibilite du cumul

des rotations plastiques dans les systemes hyperstatiques).
Des dispositions constructives appropriees, variables avec la taille des lamines,

telles que raidisseurs dans les zones comprimees, devraient alors etre prises pour
eviter des flambements locaux des semelles et des ämes comprimees.
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2° Poutres composees de troncons de lamines bruts assembles par soudure bout ä bout
Si les soudures sont convenables et le mode de soudage approprie, il semble que

de telles poutres peuvent etre utilisees exactement comme des lamines bruts.
Celä est bien net dans les systemes isostatiques. Les essais manquent dans les

systemes hyperstatiques; il semble toutefois que les conclusions peuvent etre etendues
dans ce cas ä condition de ne pas disposer les soudures sur les appuis. Teile est, du
moins, la tendance francaise: eile ne semble pas etre generale ä Fetranger.

3° Poutres, ä profil constant, composees de plats assembles par soudures longitudinales
continues

Compte tenu du nombre limite d'essais probants il semble que les conclusions
du 1° (lamines bruts) peuvent etre egalement adoptees, tout au moins dans les systemes
isostatiques.

Toutefois ici le moment plastique vrai dans la section est sensiblement egal au
moment calcule d'apres la theorie du materiau idealement plastique.

4° Lamines perces de trous, poutres chaudronnees (rivees), lamines completes par des
semelles additionnelles rivees

II n'existe pas d'essais hyperstatiques. En isostatique la question n'est pas encore
suffisamment eclaircie pour permettre des conclusions nettes. Sauf les cas bien
precises oü les trous etaient poinconnes sans alesage et oü la ruine a ete provoquee par
une rupture brutale, il semble que Fadaptation de plastification joue; mais les

domaines d'utilisation restent ä preciser.

5° Poutres composees de plats soudes et lamines completes par des semelles additionnelles

soudees

La question est loin d'etre eclaircie.
II semble bien que le seul cas net soit celui oü, en isostatique, ces semelles ont la

longueur totale du lamine: la plastification est alors integrale. Au contraire les
semelles de longueur partielle semblent etre nettement defavorables: celä depend de
plusieurs facteurs qui sont mal precises.

2eme Partie—Questions Restant ä resoudre
En plus des points de la lere partie encore mal precises on aura remarque que de

nombreux points restent ä etudier, tels que:
l'influence de Feffort tranchant,
les phenomenes de flambement,*
l'influence du temps sur certaines accommodations elastiques,
le cumul des deformations plastiques dans les poutres continues.

De nombreux essais n'ont meme pas ete tentes. La plastification des sections
dissymetriques n'a ete realisee qu'une seule fois. II n'y a pas d'essais avec semelle
partielle soudee sur un seul cöte, soit tendu, soit comprime. II n'y a jamais eu
d'essais de fatigue commences par une plastification lente: ces essais seraient pourtant
de premiere utilite pour essayer de resoudre le conflit qui oppose les ecoles opposees
affirmant ou niant l'existence des phenomenes de fatigue dans les ponts et dans les
charpentes metalliques, sans que les arguments avances de part et d'autre soient
reellement convaincants.

* A cet egard les nouvelles recherches theoriques et experimentales de Stüssi sur le flambement des
plaques seront sans doute du plus grand secours.
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Enfin l'essai le plus interessant ä realiser, malgre son evidente difficulte, celui de

poutres continues sous charges roulantes: ici intervient au minimum les phenomenes
hyperstatiques, le cumul des deformations plastiques, l'influence de Feffort tranchant.

En conclusion il apparait qu'il reste de nombreux essais systematiques ä entre-
prendre. La täche depasse les possibilites d'un seul organisme ou d'un seul pays.
C'est pourquoi nous souhaiterions qu'ä Fissue de la discussion du Theme AI3 de ce
Congres, une sous-commission etablisse un vaste programme de recherches (base ou
non sur la Classification adoptee dans le cours du present memoire) et le repartisse
entre les Membres de notre Association. Rendez-vous serait pris dans quatre ans,
au prochain Congres, pour tirer les conclusions.

Nous insistons sur la necessite de detailler minutieusement les circonstances de
chaque experience.
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Resume

Se basant sur les derniers essais francais sur des lamines bruts I et H de differentes
tailles sollicites isostatiquement jusqu'ä la ruine dans des conditions tres diverses, et
etudiant la dispersion des aciers, les contraintes prealables, la non-conservation des
sections planes, l'importance des volumes plastifies, l'existence de compressions
transversales, le flambement des zones comprimees, Farticle conclut que, pour des lamines
bruts sollicites isostatiquement:
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la ruine plastique survient, si les precautions necessaires sont prises contre le
flambement, pour une valeur superieure ä celle qu'on peut calculer en
admettant la plastification totale d'un acier idealement plastique;

le lamine s'accommode elastiquement apres un nombre tres faible de repetitions
des sollicitations. II est possible d'en deduire un procede systematique de

predeformation en vue de travailler sous contraintes elevees. A ce sujet le
temps semble jouer un röle important mais encore mal defini.

Elevant le debat ä toutes les poutres ä äme pleine en acier doux et passant en
revue les essais anterieurs generalement executes sur petits echantillons, Farticle
cherche ä distinguer les points definitivement acquis de ceux qui pretent ä discussion
ou n'ont pas encore ete suffisamment traites. Parmi ces derniers on releve plus
particulierement:

Feffet de Feffort tranchant,
l'effet des surcharges roulantes sur poutres continues,
les etudes sur profus dissymetriques.

En conclusion Farticle propose qu'une sous-commission du Congres dresse un
programme des essais restant ä realiser et les repartisse entre les divers membres de
l'Association Internationale.

Summary

Based on the latest French tests with piain rolled I and H joists of various sizes,
isostatically loaded up to failure under very different conditions, and by studying the
dispersion of the steel, the residual stresses, the non-conservation of plane sections,
the size of the plastified volumes, the existence of transverse compressions and the
buckling of the compressed zones, the author of the paper comes to the conclusion
that, for piain rolled joists isostatically loaded:

if the required precautions against buckling are taken, plastic failure' happens
for a load which is higher than that which can be calculated by supposing the
total plastification of an ideally plastic steel;

the rolled joist adapts itself flexibly after very few repetitions of the loads. It
is possible from this fact to deduce a method of systematic prestraining in
order to work under high stresses. Time seems here to play a part which is

important but has not yet been clearly defined.

By extending the discussion to all plate-web girders in mild steel and by surveying
previous tests which generally were made on joists of small cross-section, this paper
tries to distinguish the points which are definitively established from those which are
still disputable or have not yet been sufficiently treated.

Among the latter, particular emphasis is put on:
the effect of shearing-stress,
the effect of rolling loads on continuous girders,
the studies on unsymmetrical sections.

It is finally proposed that a sub-committee of the Congress should assume the
task of establishing a programme for the tests which are still to be made and allotting
these to different members of the International Association.

Zusammenfassung

Der Aufsatz stützt sich auf die neuesten französischen Versuche an unbearbeiteten
normalen und Breitflansch-I-Walzträgern unterschiedlicher Grösse, die bei statisch



PLASTIFICATION DE FLEXION DES POUTRES 145

bestimmter Anordnung unter sehr verschiedenen Bedingungen bis zum Versagen
beansprucht wurden und untersucht die Streuungen in der Stahl-Qualität, die inneren
Spannungen, das Nicht-Ebenbleiben der Querschnitte, das Ausmass der plastifizierten
Querschnittsteile, das Auftreten von Quer-Kontraktionen und das Ausknicken der
Druckzonen. Für statisch beanspruchte und statisch bestimmt gelagerte unbearbeitete

Walzträger kommt der Verfasser zu den nachstehenden Schlussfolgerungen:
Wenn die notwendigen Vorkehrungen gegen Ausknicken getroffen sind, tritt das

plastische Versagen für einen Wert ein, der höher ist als derjenige, den man
unter der Voraussetzung totaler Plastifizierung eines ideal-plastischen Stahles
errechnen kann.

Der Träger erfährt nach einer sehr geringen Zahl wiederholter Beanspruchungen
eine elastische Anpassung. Daraus kann ein systematisches Vorverfor-
mungs-Verfahren zwecks Zulassung höherer Nutzspannungen abgeleitet
werden. In diesem Zusammenhang scheint der Faktor Zeit eine wichtige,
aber noch ungenau definierte Rolle zu spielen.

Durch Erweiterung der Diskussion auf sämtliche Vollwand träger aus Flusstahl
und an Hand eines Überblicks über die früheren, hauptsächlich an kleinen
Probeträgern durchgeführten Versuche wird versucht, die endgültig gelösten Fragen von
denjenigen zu trennen, die noch umstritten oder ungenügend untersucht sind. Unter
den letzteren werden insbesondere erwähnt:

der Einfluss der Querkraft,
der Einfluss der beweglichen Lasten auf durchlaufende Träger,
die Untersuchung unsymmetrischer Profile.

Als Schlussfolgerung schlägt der Verfasser vor, dass ein Unter-Ausschuss des

Kongresses ein Programm der noch durchzuführenden Versuche aufstellen und diese
unter verschiedene Mitglieder der Internationalen Vereinigung verteilen soll.

CR.—10
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Experimental investigations into the behaviour of continuous and
fixed-ended beams

Recherches experimentales sur le comportement des poutres
continues ou encastrees ä leur extremites

Experimentelle Untersuchungen über das Verhalten durchlaufender
und eingespannter Balken

M. R. HÖRNE, M.A., Ph.D., A.M.I.C.E.

Cambridge University

1. Introduction
The behaviour beyond the elastic limit of mild-steel beams subjected to pure

bending moments or bending moments combined with shear forces has been studied
by Ewing (1903), Robertson and Cook (1913) and many others. The various theories
suggested and the experimental evidence relating to them have been reviewed by
Roderick and Phillipps (1949). It appears that, when considering annealed beams,
the most satisfactory theory is that in which it is assumed that initially plane sections
remain plane during bending, the longitudinal stress being related to the longitudinal
strain as in a tension or compression test (see Roderick, 1948). Good correlation
between bending and tension tests may be obtained if due regard is paid to the upper
yield stress and to the rate of straining in the plastic ränge. The influence of shear
forces has been investigated experimentally by Baker and Roderick (1940) and
Hendry (1950) and theoretically by Hörne (1951). It has been shown that, for
practical purposes, shear forces have negligible effect on the behaviour of a beam.
The stress distributions are also modified in the vicinity of concentrated loads, and
this has been investigated experimentally by Roderick and Phillipps (1949) and
theoretically by Heyman (unpublished). The simple plastic theory has also been
found to apply approximately to rolled steel sections (Maier-Leibnitz, 1936), although
correlation between bending and tension tests is here more difficult due to the
Variation in properties of the steel over any cross-section.

The simple plastic theory leads to important deductions regarding the behaviour
of continuous and fixed-ended beams and rigid-jointed unbraced structures such as
building frames. Due to the considerable pure plastic deformation which mild steel
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can undergo (of the order of 1 % strain, or ten times the strain at the commencement
of yield), the curvature of the longitudinal centre line of an initially straight beam
increases rapidly with practically no increase of bending moment as the section
becomes fully plastic. The bending moment then approaches the " füll plastic" value
(see Roderick, 1948), and although at extremely high curvatures the beam may
develop a higher moment of resistance due to strain hardening, the füll plastic
moment may be regarded as the highest moment to which the beam may be subjected
and still retain its usefulness. When beams are continuous over a number pf
supports or encastre (i.e. fixed in position and direction at their ends), the high curvature
which occurs in the vicinity of fully plastic sections enables the applied loads to be
increased until the füll plastic moment is reached at a sufficient number of sections
for a "mechanism" to be formed, these sections being regarded as "hinges" with
constant moments of resistance. Similar considerations apply to rigid-jointed
unbraced frames as long as axial forces are small enough to have negligible effect on
the bending moments in the members in which they occur. The application of such
results to the calculation of collapse loads has been considered extensively by Bleich
(1932), Baker (1949), Neal and Symonds (1950), Hörne (1950) and others.

The above theoretical developments have been achieved by making certain extensions

of the simple plastic theory as established by tests on simply supported members.
The "plastic hinge" concept is only an approximation to the truth, corresponding
as it does to infinite curvature at the assumed fully plastic sections. It is thus essential

that these theoretical deductions should be tested experimentally. In the case
of continuous beams, the simple plastic theory indicates that the order in which the
spans are loaded, or the sinking of one support relative to the others, should have
no effect on the value ofthe collapse load. In beams partially fixed against rotation
at the ends, the degree of end restraint should similarly have no effect on the collapse
loads as long as the moment of resistance of the end supports is at least equal to the
füll plastic moment of resistance of the beam. Moreover, the fact that füll plasticity
has been produced at some section or sections of a beam for one set of loads should
not reduce the carrying capacity of that beam for any subsequent set.
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While certain investigations on continuous beams have already been made by
Maier-Leibnitz (1936) and Volterra (1943), no attempt to check these deductions
systematically has yet been reported. It was for this reason that the investigations
here described were undertaken.

2. Tests on continuous beams

(a) Preparation of beams

The beams were taken from 1-in. square bars of rolled mild steel in the "as
received" condition, the bars being eut according to the scheme shown in fig. 1. All
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the beams were roughly planed to the required dimensions (i in. square) and finished
by surface grinding, thus imparting a polished surface which, as described below,
enabled Lüders' wedges to be observed during the tests.

(b) Description of tests
The tests are summarised in fig. 2, which shows for each beam the positions of

the supports, loads and dial gauges used to measure deflections. Some lengths were
tested from each bar as continuous beams, while other lengths were tested as simply
supported in order to obtain direct measurements of the füll plastic moments. In
some ofthe tests on the continuous beams, the central support was set a certain depth
below the outer supports, and this is also indicated. Increasing loads were applied
simultaneously to both spans of all the continuous beams except beam C5, in which
span AD (see fig. 2) was loaded to collapse with only a small load on span DG. For
all beams, when collapse had oecurred in one span, the load on the other span was
further increased until it also collapsed.

The tests were performed in a dead-load testing frame, a füll description of which
has been given by Baker and Roderick (1942). The arrangement for testing the
continuous beam Cl is shown in fig. 3, in which A is the beam supported on knife-
edges and B is a block by means of which it is possible to adjust the height of the
central knife-edge. The load is applied by the levers C and D whose fulcra react
against the member E, while the dial gauges for measuring deflections are supported
on an independent frame of which F is a member. The simply supported beam CC7
was tested as shown in fig. 4, which also shows the linkage used to distribute the load
from the lever equally to four knife-edges acting on the upper surface of the beam.

During the tests, as long as the beams remained elastic, finite increments of load
were added at intervals of approximately two minutes, the dial gauges being read
between each increment. After the first signs of creep had been observed, the addition

of each load increment was delayed until no dial gauge showed a rate of increase
greater than 10~4 in. per minute. Loading was continued until collapse oecurred,
this being characterised by a large increase of deflection for a small increase of load.

(c) Test results
The test results for all the beams are summarised in Table I, and are grouped

according to the bar from which the beams were eut. The mean dimensions are
given in columns 3 and 4. In the case of the simply supported beams, the values of
the modulus of elasticity E calculated from the linear portions of the load deflection
curves are given in column 5. The values of E quoted for the continuous beams are
the mean of the values obtained for the simply supported beams eut from the same
bar. Column 6 gives the collapse loads. In the case of the continuous beams, the
mean of the values for the two spans is given; in no case did the difference between
these values exceed 3-3 %. Values of the füll plastic moments may be deduced from
the collapse loads by means ofthe simple plastic theory, giving the lower yield stresses
quoted in column 7 of Table I. Assuming that each bar is of uniform material, the
agreement between these stresses for beams eut from the same bar is a check on the
accuracy of the simple plastic theory. The percentage variations of these yield
stresses as compared with the average for the bar are given in column 9.

It has been shown by Heyman (to be published) that the assumption made in the
simple plastic theory that there is no restraint in directions perpendicular to the
longitudinal axis of a beam is invalidated in the vicinity of heavy load concentrations.
This tends to increase the füll plastic moment except where the maximum moment



152

AI
3—M.

R.

HÖRNE

IN
Analysis

in
which

allowance

is
made

for

the
effect

of
load

concentration

Per cent

Difference

_i
—
i>r-

1

1

r-
tJ-

fl
On

n66(n
1

1

oo
-<d-

vi
vo

666"1

1

1

00

on

O
<n-^

¦<t

6
6
<n

6
fi
6

III

1

~

Mean Lower

Yield Stress

for bar,tons/in.2

16-71

17-48

14-21

16-60

O

Lower

Yield Stress,

tons/in.2

m
fN
On

On

>n

r--

vi
os

NÖNONÖNO

voinncoo\
in
Tt
on

"3-TT

-^f

Tl-

\0«nr^f>v0^trf

ĈS
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occurs uniformly over some length of the beam. This explains the lower than
average yield stresses obtained for beams CC3, CC6 and CC7 (Table I, column 7).
Roderick and Phillipps (1949) found that in their tests a satisfactory empirical allowance

could be made for this effect by assuming that collapse was delayed until the füll
plastic moment had been reached at a section a distance away from the concentrated
load equal to half the depth of the beam. The yield stresses fer all the beams
corresponding to this assumption are shown in column 10 of Table I, and the percentage
variations from the mean values for separate bars are given in column 12.

There does not appear, from the figures given in columns 9 and 12 of Table I, to
be any distinet advantage in aeeepting the complications introduced by Roderick
and Phillipps. In either case the agreement is as good as could reasonably be
expected, taking into aecount probable variations in yield stress in the bars. Ignoring
signs, the mean values of the percentage variations given in columns 9 and 12 are
1-87 and 1-18 respectively. The application ofthe "t" test for the difference between
means gives /= 1-646, corresponding to a probability of 0-12 that the difference
between the means is due entirely to random causes. The improvement achieved
with the second method of analysis, although discernible, is not therefore outstand-
ingly significant. In their tests on simply supported beams, Roderick and Phillipps
(1949) obtained much improved agreement by using this method, but it is to be
noted that while these investigators tested carefully heat-treated beams, the tests
here described were performed with the steel in the "as reeeived" condition.

In a further attempt to decide between the two methods of analysis, tension tests
were carried out on three specimens. Since the mean yield stresses given by the
second method (column 11, Table I) are lower than those given by the first (column 8),
it should thus be possible to reach some significant conclusion. The first two specimens

(CTl and CT2) were taken one from each end of beam C8, while the third
(CT3) was taken from one end of beam C9. The specimens had a gauge length of
2-00 in. and a diameter of 0-282 in., and were tested in the Quinney Autographic
Machine (see Quinney, 1938). The upper and lower yield stresses and the rates of
strain in the plastic ränge are given in Table II. Calculations show that, during the

Table II

Tension
Specimen

Upper Yield
Stress,

tons/in.2

Lower Yield
Stress,

tons/in.2

Rate of Strain
in Plastic

Range/sec.
IO"« X

CTl
CT2
CT3

22-48
19-53
22-31

17-99
17-32
1816

18-20
0-767

18-20

beam tests, the mean rate of strain in the extreme fibres of the most highly stressed
sections varied between 0-7 xlO-6 and 2-OxlO-6 per see. Hence the appropriate
lower yield stress for bar 4 (see fig. 1) would be about 17-40 tons/in.2 Since the
values obtained by the two methods of analysis were 17-84 and 16-60 tons/in.2
(columns 8 and 11 of Table I), the result is again inconclusive.

As an example of the load-defiection curves obtained, those for beams Cl and
C2 are presented in figs. 5 and 6 respectively. In the case of beam C2, a theoretical
load-deflection curve for dial gauges 3 and 5 has been calculated by means of the
simple plastic theory, and is seen to be in good agreement with the observed values.
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Fig. 6. Load-deflection curves for beam C2

In testing beams Cl, C4, C8 and CIO, the central support was set at such a distance
below the outer supports that yield stress under a sagging bending moment was
reached in the extreme fibres of the central section of the beam before contact
oecurred. As the loads on these beams were further increased, the central bending
moment first decreased to zero and then increased until at collapse füll plasticity
under a hogging bending moment oecurred over the central support. Simultaneously
the position of the maximum sagging moment moved along the beam, as can be seen
most clearly in the cases of beams C4 and C8. Thus in beam C4 (see fig. 2), a
certain amount of yield under sagging moment oecurred first at C and E, and finally
at B and F, where füll plastic moments developed at collapse. This may be traced
in the appearance of Lüders' wedges on the side face of part of beam C4 after testing
(fig. 7), in contrast to the absence of such wedges except at B and D on the face of
beam C3, for which the supports were initially level. It will be observed from
Table I that the sinking of the support and the oecurrence of Lüders' wedges along
the beam did not lead to any significant decrease in the carrying capacity of beam
C4 as compared with beam C3. Similar remarks apply to beam C8, in which the
maximum sagging moment moved first to sections E and G (see fig. 2), then to
sections D and H, until finally füll plastic moments were reached at collapse at
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sections C and I. The side faces of parts of beams C7 and C8 after testing are
compared in fig. 8. The theoretically deduced values of the moments at various sections
of beam C8 at all stages of loading up to the collapse load are shown in fig. 9, and
the progressive movement of the positions of the maximum sagging moments is

apparent.
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Fig. 9. Theoretical bending moment curves for beam C8

In test C5, the supports were at the same level, and equal loads of 0-50 tons were
applied to each span. The load on span DG (fig. 2) was then kept constant while
that on span AD was increased until collapse oecurred at 1-20 tons. Finally the
load on span DG was increased until this part of the beam also failed at a load of
1-25 tons.

3. Tests on fixed-ended beams

(a) Preparation of beams

The beams were all prepared from the same black mild-steel plate (dimensions
17 in. X 2 in-. X \ in.) by cutting longitudinally (in the direction of rolling) into
strips. The small size of the beams (\ in. x \ in. section) made it desirable to anneal
at 900° C. and cool in air in order to reduce some of the effects of rolling and work-
hardening. The beams were bent about axes perpendicular to the plane of the
original plate.

(b) Description of tests
The tests are summarised in fig. 10. The beams El-6 were tested over a span

of 6-0 in. between end fittings which provided moments of resistance proportional
to the rotations of the end sections of the beam. If a moment M lb. in. at the end
of a beam corresponded to a rotation of 6 radians, then 9=KM where K had the
values for each beam given in the second column of fig. 10. The simply supported
beams EC1 and EC2 had a span of 4-0 in. Fig. 10 shows the positions of the dial
gauge used to measure deflections and ofthe mirror gauges used to measure rotations.

Tests El, E2 and E3 were condueted to investigate the effect of various degrees
of end fixity. Beams E4, E5 and E6 were subjected to loads at several sections (1,
2, 3 in fig. 10) in turn, each load being just sufficient according to the simple theory,
to bring about collapse.

The arrangement for testing those beams which had the highest degree of end
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Fig. 10. Summary of tests on fixed-ended beams

fixity (beams El, E4, E5 and E6) is shown in fig. 11, the load being applied by a
chain acting through a yoke. The arrangement for testing beams E2 and E3 is
shown in fig. 12, the clamping blocks on the end fittings having been removed for
the sake of clarity.

During all the tests, load increments were made at approximately two-minute
intervals until creep was first observed. Before each subsequent increment, the rate
of creep on the dial gauge was allowed to drop to IO-4 in. during any two-minute
interval.

(c) Test results
Beams El, E2, E3, EC1 and EC2

The results are summarised in Table III, and columns 1 to 4 require no explanation.

The end-fixity constants for the partially fixed-ended beams are given in
column 5, from which it is possible to calculate the theoretical ratio of end to central
moments for a central point load in the elastic ränge (column 6). The collapse loads
are given in column 7, from which the lower yield stresses may be calculated by
means of the simple plastic theory (see Table III, column 7). The percentage
differences from the mean are given in column 10.

On the basis of the method suggested by Roderick and Phillipps for allowing for
load concentration, these same collapse loads give the yield stresses shown in
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Table III

1 2 3 4 5 6 7 8 9 10 11 12 13

Analysis by simple plastic Iheory Analysis in which allowance is

End Ratio ignoring the effect of load made for Ihe effect of load

Mean Mean
Estimated

Modulus of
Fixity

Constant
of End

Moment Collapse
concentration concentration

Beam
No. Width, Depth, Elasticity K, to Central Load, Lower

Mean
Lower
Yield

Stress,
tons/in.2

Mean
in. in. E, radians/ Moment lb. Lower Per cent Lower Per cent

tons/in.2 lb. in. in Elastic Yield
Stress,

tons/in.2

Yield DifferYield DifferIO"«

x Range Stress,
tons/in.2

ence Stress,
tons/in.2

ence

1 El 0-254 0-253 13,440 14-3 0-912 258 21-3 -3-4 20-4 -2-6
E2 0.-249 0-255 13,440 49-4 0-746 263 21-8 -1-2 20-9 -0-3

3 E3 0-250 0-256 13,440 148-6 0-490 269 220 22-1 -0-3 21-1 210 0-7
4 ECI 0-246 0-252 13,140 — — 199 22-8 3-4 21-4 2-2
5 EC2 0-247 0-250 13,730 — 194 22-4 1-5 210 0

300

Collapse load • 258 ib

Fig. 13. Load rota¬
tion curves for
beam El
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Mean rolalwn ofmirrors 1 ti*
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Fig. 14. Load rotation curves for beam E3
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column 11, and the percentage differences from the mean are given in column 13.
There is a certain improvement in the agreement between the yield stress values as

compared with those given in column 8.

Load rotation curves are given for beams El and E3 in figs. 13 and 14 respectively.
These curves do not indicate such definite collapse loads as obtained for the 1-in.
square beams described above. This may be due to strain hardening, and in order
to obtain a consistent interpretation of test results, the collapse loads have been
determined as follows.

Taking the value for the modulus of elasticity given in column 4 of Table III, and
assuming some value for the collapse load, it is possible to calculate by means of the
simple plastic theory of bending the rotation at any section of the beam when it is
just about to collapse. Then the relationship between the assumed collapse load and
the rotation is obtained as a straight line Ol (figs. 13 and 14), and the collapse load
is taken as the intersection of this line with the experimental load rotation curve.
The figure quoted for any beam in column 7 of Table III is the mean of the three
values obtained from the central deflection and the two pairs of mirrors (Mu Ms, and
M2, M3).

In the case of beam El, the end moments were in the elastic ränge almost equal
to the central moments (see column 6 of Table III), and the füll plastic moment was
reached at all three sections at practically the same load. With beam E3, however,
the end moments were in the elastic ränge less than half the central moment, and
the load rotation curves (fig. 14) indicate that füll plastic moment was reached at
the centre at a load of about 200 lb. Thereafter the rotations increased almost
linearly with load up to 255 Ib., soon after which füll plastic moments developed at
the ends and collapse oecurred.

Beams E4, E5 and E6

The results for beams E4, E5 and E6 are summarised in Tables IV and V. Sufficient

load was applied successively to the three loading positions (see fig. 10) to
produce füll plastic moments at the ends and under the load. Values of the lower yield
stress calculated on the basis of the simple plastic theory are given in column 8 of
Table IV.

Table IV

1 j 2 3 4 5 6 7 8

Beam
No.

Estimated
Modulus
of
Elasticity, E,
tons/in.2

End Fixity
Constant K,

radians/lb. in.
IO"' x

Order of
Loading

Positions

Maximum Load Actually
Applied

Width,
in.

Depth,
in. Load,

Ib.

Corresponding
Lower Yield

Stress,
tons/in.2

1

2
3

E4 0-249 0-255 13,440 14-3 C
D

1 E

2600
292-5
292-5

21-5
21 5

21-5

4
5

6

E5 0-248 0-253 13,440 14-3 ' D
E
C

287-5
287-5
255-6

21-6
21-6
21-6

7
8

9

E6

•

0-247 0-254
i

|

13,440 14-3 D
C
E

285-0
253-3
2850

21-3
21-3
21-3
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Table V

1 2 3 4 5 6 7 8 9

Beam
No. Quantity Unit

Ist Load Position 2nd Load Position 3rd Load Position

Observed
Calculated

Value at Observed
Calculated
Value at Observed

Calculated
Value at

Maximum Collapse Maximum Collapse Maximum Collapse

1 E4 Central
deflection

in. x 10-3 600 45-5 661 87-2 89-7 1000

2 Rotation B, radiansx IO-3 181 13-6 30-9 46-4 28-7 31-6
3 h 18-8 13 6 22-7 39-4 101 150
4 03 17-5 13 6 40 150 29-7 39-4
5 „ *4 »» 18-4 13-6 220 22-9 46-5 53-5

6 E5 Central
deflection

in. x 10-3 50 1 631 71-3 83-7 83-5 86-3

7 Rotation 6\ radiansx I0~3 29-2 39-6 26-8 29-7 32-8 32-5
8 h 31-4 39-6 7-5 151 11-3 13-7

9 03 9-3 151 27-1 39-6 12-5 13-7
10 04 " 12-2 151 35-6 441 33-9 35-2

11 E6 Central
defleclion

in. X IO"3 50-3 62-1 66-2 65-8 77-9 94-2

12 Rotation 0\ radiansx 10 •> 28-1 390 27-4 27-6 27-2 31-5
13 02 31-4 390 14-3 13-5 7-8 149
14 03 100 14-9 110 13-5 25-4 390
15 04 » 11-7 14-9 20-5 17-8 36-5 491
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It is possible by means of the simple plastic theory to calculate the theoretical
deflections and rotations at collapse for the various positions of the load. These
calculated values are compared with those observed in Table V. The rotations 0lt
02, 03 and 04 refer respectively to mirrors Mu M2, M3 and M4. Except for the first
loading position practically all the observed deflections and rotations are less than
the calculated values. Hence the ability of a beam to sustain a given ultimate load
is not adversely affected by the attainment of the füll plastic moment at various
sections due to other critical load distributions. This is true whatever the order in
which the loads are applied.

Tension tests

Tension tests were performed on four specimens, of diameter 0-178 in. and gauge
length 0-70 in., in a Hounsfield Tensometer. Specimens ETI and ET2 were eut from
the ends of beam E2 after testing, and specimens ET3 and ET4 were eut from the ends

of beam E6. The upper and lower yield stresses obtained are given in Table VI.

Table VI

Tension
Specimen

Upper Yield
Stress,

tons/in.2

Lower Yield
Stress,

tons/in.2

ETI 21-68 20-88

ET2 21-57 20-57

ET3 22-70 20-56

ET4 21-08 20-17
1

The lower yield stresses are in good agreement with each other, and have a mean
value of 20-54 tons/in.2 Considering beams El, E2, E3, EC1 and EC2 (see Table III),
the method of analysis suggested by Roderick and Phillipps gives a mean yield stress
in closer agreement with the yield stress from the tension tests than is obtained when
the simple plastic theory is applied.

4. Conclusions
The general agreement between the values of the lower yield stress calculated from

the collapse loads for both the continuous and the fixed-ended beams is satisfactory
and shows that the simple plastic theory gives predictions of the collapse loads of
such beams with sufficient accuracy for practical purposes. The method of allowing
for stress concentration suggested by Roderick and Phillipps (1949) does not lead to
any distinet improvement for the continuous beams, but does lead to slightly better
agreement for the fixed-ended beams. The tension tests carried out in connexion
with the continuous beams did not establish any conclusive results, but with the
fixed-ended beams tension tests favoured the method of Roderick and Phillipps.

The tests on the continuous beams confirm that the predictions of the plastic
theory are not upset by sinking of supports, even if sinking is sufficient to cause yield
in the beam. The plastic theory is equally successful for all the load distributions
investigated, and the failure of one span does not decrease the ultimate carrying
capacity of an adjacent span.
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The tests on the fixed-ended beams show that ultimate carrying capacity is
independent of the degree of rigidity of the end connections as long as these are capable
of resisting the füll plastic moment. The carrying capacity is not adversely affected
when füll plastic moments are produced at a number of sections by different successive
load distributions, and this is true whatever the order in which the loads are applied.

The work described in this paper was carried out at the Engineering Laboratory,
Cambridge University, and forms part of a general investigation into the behaviour
of rigid-frame structures under the direction of Professor J. F. Baker, Head of the
Department of Engineering.
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Summary

According to the simple plastic theory, the collapse loads of mild-steel continuous
and fixed-ended beams may be calculated by considering merely the requirements of
equilibrium in relation to the external loads and the füll plastic moments of resistance
of the beams. It follows that sinking of supports, order of loading and degree of
end fixity should have no influence on such collapse loads. In order to check these
deductions, tests were performed on i-m..square beams continuous over two spans
and on £-in. square single-span beams provided with varying degrees of end fixity.
The influence of various types of loading and of varying Orders of application of the
loads were investigated. Control tests were performed on similar simply supported
members, and tension tests carried out at controlled rates of strain on material taken
from unyielded sections of the beams.

The results give consistent conürmation of the simple plastic theory, and show
conclusively that the collapse loads may be calculated with sufficient accuracy for
practical purposes by this means. During the loading of a continuous beam in which
one support is initially lower than the others, there is, according to the simple plastic
theory, a progressive movement of the sections of maximum sagging moments along
the beam. This is demonstrated in the tests by the appearance of Lüders' wedges

on the polished surfaces of the f-in. square beams.
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Resume

Suivant la theorie simple de la plasticite, les charges de rupture des poutres en
acier doux, continues ou encastrees ä leurs extremites, peuvent etre calculees par
simple consideration des exigences d'equilibre correlativement aux charges exterieures
et aux pleins moments plastiques de resistance des poutres. II en resulte que l'af-
faissement des appuis, l'ordre de mise en charge et le degre de rigidite aux extremites
ne doivent exercer aucune influence sur ces charges de rupture. Pour verifier ces
deductions, des essais ont ete effectues sur des poutres carrees de i in. (22,2 mm.),
continues sur deux portees, ainsi que sur des poutres carrees de i in. (6,35 mm.) sur
portee simple, avec differents degres de rigidite aux extremites. On a etudie
l'influence de divers types de charges et de divers ordres de mise en charge. Des essais
ont ete effectues, ä titre de contröle, sur des elements simplement poses sur leur
appuis; on a egalement procede ä des essais de traction, sous des taux de tension
contröles, sur des eprouvettes prelevees sur des sections n'ayant subi aucune deformation.

Les resultats obtenus fournissent une bonne confirmation de la theorie simple de
la plasticite et montrent d'une maniere concluante que les charges de rupture peuvent
etre calculees avec une precision süffisante pour les besoins de la pratique, d'apres la
methode ci-dessus. Au cours de la mise en charge d'une poutre continue dont un
appui est initialement plus bas que les autres, il se produit, suivant la theorie simple
de la plasticite, un deplacement progressif des sections presentant les moments
maxima d'affaissement, le long de la poutre. Ceci est mis en evidence, au cours des
essais, par l'apparition de figures de Luders sur les surfaces polies des poutres carrees
de ¦§¦ in.

Zusammenfassung

Nach der einfachen Plastizitätstheorie können die Bruchlasten von durchlaufenden
und eingespannten Balken aus Flusstahl allein aus der Betrachtung der
Gleichgewichtsbedingungen bezüglich der äusseren Lasten und der vollen plastischen
Widerstandsmomente der Balken berechnet werden. Es folgt daraus, dass
Auflagersenkungen, Lastanordnung und Einspannungsgrad keinen Einfluss auf solche Bruchlasten

haben sollten. Zur Ueberprüfung dieser Feststellungen wurden Versuche an
über zwei Felder durchlaufenden, i in. (22,2 mm.) starken und an einfeldrigen,
verschieden stark eingespannten, i in. (6,35 mm.) starken Rechteck-Balken durchgeführt.
Die Einflüsse verschiedener Arten von Lasten und verschiedener Formen der Last-
Aufbringung wurden untersucht. Zur Kontrolle wurden Untersuchungen an
entsprechenden einfach gelagerten Balken gemacht und unter kontrollierten Spannungen
Zugversuche an Material aus unverformten Trägerteilen ausgeführt.

Die ermittelten Resultate bedeuten eine gute Bestätigung der einfachen
Plastizitätstheorie und zeigen überzeugend, dass die Bruchlasten mit für praktische Bedürfnisse

genügender Genauigkeit nach dieser Methode berechnet werden können.
Während der Belastung eines durchlaufenden Balkens, bei dem ein Auflager von
Anfang an tiefer liegt als die anderen, ergibt sich, in Uebereinstimmung mit der
einfachen Plastizitätstheorie, entlang dem Balken ein fortlaufendes Fliessen der Zonen
grösster Momentenbeanspruchung infolge Einsenkung. Dies zeigt sich im Versuch
durch das Auftreten von Fliessfiguren von Lüders auf den polierten Oberflächen der
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Calcul du coefficient de securite

Safety factor calculation

Die Berechnung des Sicherheitsbeiwertes

Prof. Dr. h.c. E. TORROJA et Ing. A. PAEZ
Madrid Madrid

Dans le domaine de la construction, peu de problemes peuvent presenter autant
d'interet economique et theorique que celui du juste etablissement des coefficients de
securite. Leur importance justifie par elle-meme la necessite de quelques principes
fondamentaux et d'un processus mathematique qui conduisent ä- l'etablissement
logique des valeurs de ces coefficients, avec l'approximation süffisante compatible
avec les exigences pratiques et avec l'ineluctable variabilite des donnees du probleme.

II existe, sans aucun doute, une discontinuite accusee dans la rigueur avec laquelle
se developpe le calcul d'une structure. Apres une etude mecanique minutieuse et
une deduetion detaillee des regimes de contraintes ä l'interieur des divers elements
resistants, on adopte un coefficient de securite empirique qui, sans justification
prealable, s'applique comme facteur ä une etude fonctionnelle scrupuleuse et precise.

L'opportunite de Her les resultats definitifs ä des considerations economiques
objeetives empeche de developper l'etude sur des valeurs et des erreurs moyennes.
Elle oblige ä calculer la probabilite pour chaque variable d'atteindre une valeur
determinee, c'est-ä-dire de produire une certaine reduction des caracteristiques de resistance
des materiaux employes, ou une augmentation determinee des sollicitations prevues,
comme dans le cas des surcharges accidentelles. D'autre part, si l'on fait abstraction
d'une correlation explicite entre le coefficient de securite et la probabilite d'effondre-
ment, ce coefficient ne peut etre determine que lorsque cette probabilite a ete fixee au
prealable, ce qui enleve toute objeetivite au resultat puisqu'il est lie ä une probabilite
qui, suivant ce criterium, est arbitraire.

II est certain qu'ä chaque Systeme de charges qui sollicite un ouvrage correspond
toujours une repartition determinee des contraintes dans chacune des diverses sections
des differents elements qui la composent. Si le taux maximum dans une section est
inferieur au taux de rupture du materiau, cette section ne subira de rupture dans
aucune de ses fibres.

Le champ d'application de la presente etude est limite au cas le plus, frequent oü
l'effondrement de l'ouvrage est du au fait que la contrainte maximum resultante
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depasse la charge limite du materiau. L'effondrement peut se produire quand il
intervient simultanement une combinaison malencontreuse de causes en quelque sorte
imprevisibles.

Ces causes derivent de l'ensemble de phenomenes fortuits et ne repondent ä
d'autre loi qu'ä celles du hasard. L'une d'entre elles est la presence d'une surcharge
exceptionnelle capable par elle-meme, ou bien de detruire l'ouvrage, ou bien de con-
tribuer indirectement ä son effondrement.

D'autres causes qui peuvent etre ä l'origine de la ruine d'un ouvrage parfaitement
concu sont, l'existence d'un defaut grave dans le materiau (vides du beton, bulles ou
soufflures de l'acier, etc.) ou dans l'execution meme en chantier (mise en place defec-
tueuse des elements, mauvaise disposition des armatures ou dosage inadequat du
beton).

D'autre part, le calcul realise peut ne pas correspondre ä la realite, soit que Ton
ignore les lois qui regularisent le comportement reel de l'ouvrage, soit que la com-
plication qui resulte de leur application soit trop grande et rende impossible leur
developpement.

En dernier lieu, le processus de calcul lui-meme est expose, comme toute ceuvre
humaine, ä des erreurs ou ä des fautes de calcul, d'autant plus susceptibles de surgir
et de passer inapercues que sera plus grande la complication de ce calcul.

En definitive, les differentes variables qui interviennent dans le phenomene peuvent
etre classees en cinq groupes:

(1) Depassement des surcharges prevues (variable x),
(2) Defauts dans les bases theoriques du calcul (variable y),
(3) Erreurs numeriques dans le calcul (variable z),
(4) Insuffisance de resistance des materiaux (variable u),
(5) Defauts d'execution (variable t).

Chacune de ces variables aleatoires doit etre representee sous forme de fonction
statistique deduite des experiences realisees.

Dans le but de simplifier dans la mesure du possible les Operations ulterieures, il
convient d'affecter ä ces variables la forme de coefficients de correction.

S'il etait possible de connaitre la realite des faits, on pourrait calculer les erreurs
unitaires commises dans les cinq points enumeres. Par exemple, on saurait qu'au
cours de la periode de service de l'ouvrage, Feffort maximum applique ä une section
determinee, produit par la presence d'une surcharge maximum Sx, devrait etre sv au
lieu de Feffort sp theoriquement deduit de la surcharge S'x admise.

L'effort calcule sp aussi bien que l'effort reel sv differeront ä leur tour de Feffort sr
necessaire pour rompre une fibre de la section consideree. En general, les trois
sollicitations appliquees sr, sr et sp seront inegales, le fait que

Sv<SR (1)

etant la condition necessaire pour qu'aucune des fibres ne se rompent pas.
La relation

C=-f (2)

a ete appelee coefficient de securite efficace reel et le quotient

C=^ (3)
s.p

coefficient de securite efficace prevu, ou simplement coefficient de securite efficace.
Dans cette expression, sr represente l'effort maximum qui, applique ä la section,
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pourrait eTre supporte par celle-ci si les materiaux employes avaient les memes
caracteristiques et les memes proprietes que l'on a suppose dans le calcul et qui, en
general, sera different de leur valeur reelle sr.

Suivant ces principes, si Sx represente le train reel de charges le plus lourd ou le
Systeme de forces maximum applique exterieurement ä la piece et S'x est la surcharge
admise dans le projet, l'erreur relative en supposant connue la realite, serait:

Sx—S x
* S'x

positive ou negative selon que le criterium etabli est insuffisant ou excessivement
conservateur.

En consequence, pour corriger les resultats theoriques, il serait necessaire de com-
mencer par appliquer, pour cette seule raison, un coefficient de correction:

x=l+ex=-~ (4)

qui, applique ä la surcharge admise comme probable, donnerait comme produit le
Systeme reel des efforts qui agissent sur la piece ou sur l'ouvrage que l'on considere.

Les divergences naturelles entre le comportement reel de l'ouvrage et son
comportement theorique fönt que, meme en partant d'un meme Systeme final de forces
exterieures S'x, les efforts s'y determines par le calcul dans une section determinee
de la piece que l'on etudie different des sy que l'on obtiendrait reellement pour la
meme surcharge S'x. Pour que le premier s'identiüe avec le resultat veritable, il est
necessaire d'appliquer un deuxieme coefficient de correction:

Sy

y=y (5)
S y

Enfin, les erreurs numeriques sont la cause de nouvelles erreurs qui, pour etre
eliminees, exigent Fintroduction d'un troisieme coefficient:

s~

z=f (6)

Par consequent si sp est la sollicitation propre d'une piece, determinee par le
calcul suivant un certain processus numerique, base sur certaines surcharges et
hypotheses approximatives, la sollicitation que l'on devrait faire intervenir dans ce calcul
pour obtenir des resultats en accord avec la realite est

s.=xyzsp (7)

De merne, si sr est la sollicitation de rupture assignee aux materiaux et sr leur
veritable sollicitationlimite, on peut ecrire:

'-Ä (8)

oü u et t sont les deux facteurs de correction ä faire intervenir, le premier pour com-
penser les divergences entre les caracteristiques mecaniques reelles des materiaux et
celles qui ont ete adoptees dans le calcul et le second pour tenir compte des anomalies
ou defauts introduits sur le chantier. En divisant (8) par (7), on obtient:

•
- 5 * ._L (9)

s„ u t xyzsp
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Selon les egalites (2) et (3), l'expression (9) se transforme en:

Cv= ^—— (10)
x y z t. u

ce qui, ecrit de la facon suivante:

C
7T=x • y ¦ z t. u=y (11)
Cv

suggere un concept plus ample et plus rigoureux de la signification de ces facteurs de
correction, en ce sens que chacun de ces facteurs represente la relation entre les

coefficients de securite prevu et le reel, se rapportant ä n'importe lequel des cinq
concepts de base, lorsque les autres sont satisfaits d'une maniere complete et parfaite,
c'est-ä-dire si les quatre autres coefficients correspondants sont egaux ä l'unite.

Quant au produit
y=x .y.z.t.u, (12)

sa signification est immediate, chaque fois qu'il represente la relation entre les coefficients

C et Cy ä la suite de Fintervention globale de toutes les causes d'erreur.
Etant donne que la condition de permanence ou de non-rupture de l'ouvrage

s'exprime par Finegalite:
C„>1 (13)

on en deduit que la valeur du coefficient de securite adopte doit etre:

C>y (14)

On comprend logiquement que les valeurs des cinq facteurs de correction soient
essentiellement inconnus. Toutefois, ä l'aide d'une statistique adequate on peut
relier ä chaque fluctuation de ces facteurs, entre deux limites etablies arbitrairement, la
probabilite d'occurrence d'un fait semblable.

Ce concept qui interprete les facteurs de correction, non comme un nombre plus
ou moins certain, mais comme une fonction de probabilite, pose le probleme de
Fetablissement d'un criterium mathematique ä l'aide duquel on puisse developper les
Operations qu'il est necessaire Me realiser avec ces variables aleatoires.

Dans les grandes lignes, si X(x) et Y(y) sont deux fonctions de probabilite, il
devient necessaire d'etablir un procede operatoire ä l'aide duquel on puisse obtenir la
loi de-probabilite d'une nouvelle variable w liee aux variables anterieures par la
relation

w=f(x,y) (15)

ou ce qui revient au meme, au moyen de l'equation:

y-"Kx,w) (16)

A cet effet, (fig. 1), considerons un Systeme d'axes cartesiens rectangulaires.
En prenant comme origine des coordonnees le point O, on" peut representer, sur

le premier quadrant, la fonction

y=ch(x, Wl) (17)

qui relie la variable x ä la y, au moyen de la fonction <j> qui doit etre uniforme
pour les differentes valeurs w,- que la variable iv peut prendre.

En supposant que la variable x varie entre une limite inferieure x=a et une
limite superieure x—A et que, de meme, la variable y soit comprise entre deux limites
b<.y<.B on peut dessiner sur les quadrants II et III, les fonctions X(x), Y(y) repre-
sentatives respectivement, de la probabilite pour x d'atteindre une valeur comprise
entre a et x et pour y de prendre une valeur comprise entre b et y.
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Etant donne que la probabilite de x2>x>a est toujours plus grande que celle de

A-j>x>a quand x-£>xx et que
dX=X'(x)dx (18)

a toujours et seulement une Solution, dans tout l'intervalle compris entre a et A, la
fonction X=X(x) est non seulement monotone, mais aussi continue, de meme que sa
derivee premiere dans cet intervalle; on peut en dire autant de la fonction analogue
Y= Y(y) dans l'intervalle de b ä B.

a
in

X(X)

idx_
71

M dx
nr

4.TY(y) M/N(M)

rm

Fig. 1

Selon ce qui a ete expose anterieurement, ä tout valeur OJ arbitraire de x, corres-
pondra toujours une seule valeur OH de la fonction X(x).

D'autre part, en vertu de l'hypothese admise sur Funiformite de la fonction
y=<t>(x), ä toute valeur OJ de x correspondra aussi une seule valeur OL de y, teile que

y=cb(x,wl)
et par consequent, une valeur

OC=Y(y)},=4,=&(x,Wi), (19)

qui jointe ä ON, definit le point N dans le quadrant IV, etablissant ainsi une
correspondance univoque, entre chacun des points n de la courbe y=<f>(x, w{) et chacun
des points N de la courbe W\.

En vertu de la propriete commune aux fonctions X et Y d'etre monotones dans
tout l'intervalle considere, tout point generique m, du Systeme I, situe entre la courbe
y=cj>(x, wx) et les axes coordonnes, aura toujours un point reciproque Met seulement
un, dans le Systeme IV, entre la courbe W± et les axes OE et OF.

Puisque le Systeme N a ete construit en rapportant aux axes coordonnes OE et OF
les probabilites d'occurrence de certains phenomenes, ce Systeme correspondra ä un
domaine d'egale probabilite; par consequent, la probabilite pour un point generique
M d'etre situe dans la zone comprise entre la courbe W\ et les axes OE et OF sera
exprimee par le rapport des aires:

aire OEWxFO
aire OEQFO
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x.et v etant des variables qui sont comprises entre les limites extremes a et A, b et B, la
probabilite de verification des inegalites:

A>x>a B>y>b (20)

sera, sans aucun doute, la certitude; c'est-ä-dire que Fon aura:

X(A) Y(B) OE= OF=l (21)

et aire OEQFO=l (22)

c'est-ä-dire que la probabilite pour le point Md'etre ä l'interieur du contour OEWxFO
sera la valeur de cette aire qui, selon Fegalite (19), est:

\ <t>(x,zx)dX (23)
J a

aire OEW^FO

Puisque la fonction j=f/>(jc) est, par hypothese, une fonction uniforme pour toutes
les valeurs parametriques que peut adopter w, les valeurs extremes g et G de ce para-
metre seront obtenues pour deux des quatre combinaisons auxquelles peuvent donner
lieu les quatre limites des deux variables aleatoires x et y (a, A,b et B).

Soit, ä cet effet, g la valeur extreme que peut atteindre sa valeur minimum a
et soit de meme G la limite extreme du parametre w, quand x arrive ä sa valeur
maximum A.

Dans ces conditions, les fonctions y=<j>(x, g) et y—<j>(x, G) du premier quadrant
representeront les limites des valeurs possibles de w.

Etant donne la correspondance univoque entre les points M du Systeme IV et les

points M du premier Systeme, la probabilite pour le point M d'etre compris dans la
zone limitee par les courbes repräsentatives des fonctions <f>(x, u\) et cf>(x, g) et com-
patible avec les domaines de fluctuation des variables x et y, c'est-ä-dire la probabilite
pour la variable w d'etre limitee par les valeurs g et w, sera la meme que celle pour Ie
point M d'etre situe entre W\ et les axes DE et OF.

Par consequent la probabilite pour la variable w d'etre limitee par la valeur g et
la valeur particuliere wu sera:

W=W(w,)=[ 0(x,Wl)dX (24)

De meme, pour une valeur arbitraire w de wl,

W=W(w)=\ <P(x,w)dX (25)

Et finalement, en differenciant sous le signe integral, on aura la probabilite pour
la variable w d'etre comprise entre une valeur generique w et une valeur w+dw qui
sera:

dW=dw\ -^dX (26)

En derivant, par rapport ä w, la fonction (19) deviendra:

_30_a^ dY_d<f>/dY\
dw~dw'd<j>~dw\dy)y=t{x,w)

En reportant cette expression dans l'equation (26), il restera enfin:

CA 8d> ldY\dw=dw\ -r.flrW—) (28)
Ja dw \dyjy=i(x,w,
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Dansie cas particulier auquel se refere ce rapport, les variables w, x, y sont reliees entre
elles par la relation w=x y; c'est-ä-dire que:

y=i(X>W)=- (29) •

d'oü l'on deduit:
8d> 1

©-=- (30)8w x
D'autre part, le caractere fortuit des coefficients de correction x, y, z, t, u oblige ä

etendre la domaine de fluctuation de ces variables ä tout le champ reel positif:
0<.v<oo, 0<>><co, 0<M<OO

conditions qui, tenant compte de l'equation (30), transforment Fegalite (28) en
l'expression:

fnp-r^fir) <31>
Jo x \dy)y_w.x

qui, comme (28), exprime la probabilite pour la variable w=x y d'Stre comprise
entre w et w+dw.

L'opportunite d'operer avec les fonctions X(x), Y(y),. deduites directement
de l'experimentation, au lieu de considerer les lois gaussiennes similaires, oblige ä

developper cette methode selon des procedes graphiques, pour ne pas alterer le
caractere veritable des distributions experimentales par des simplifications additionnelles

qui pourraient diminuer leur precision.
Pour cela, il suffit de dessiner ä une echelle convenable les fonctions X(x), Y(y)

ainsi que le reseau des hyperboles:
w,

y=x-
repräsentatives de la condition de lien imposee aux variables w=x y.

Suivant la methode indiquee dans la fig. 1, ä chaque valeur particuliere wu
correspondra une courbe Wx dans le quadrant (IV) qui delimitera un contour OEW^F,
dont l'aire

Qx=\ dw=W(w{)
J o

definit l'ordonnee Wx— W(wx) correspondant ä l'abscisse ivj. En repetant ce

processus autant de fois qu'on le juge necessaire, on peut dessiner, par points, la
•fonction W= W(w). Une fois trouvee la fonction W= W(w), representative de la
probabilite pour la variable w=x y d'etre comprise entre une valeur 0 et une autre
valeur generique w, on peut determiner la nouvelle distribution W'=W'(w') de la
variable auxiliaire vt©

w' w z
ainsi que les fonctions de probabilite W"=W"(w") et r=r(y) correspondant aux
variables:

w" w' u

y=w" t=xyztu
Puisque, selon l'equation (14), la probabilite de non-effondrement est conditionnee

par Finegalite Oy, on en deduit que la probabilite pour un ouvrage calcule avec un
coefficient de securite egal ä C, de s'effondrer est:

r,,=i-f dr=i-r(C),
J o

chaque fois que J'(o)=0
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L'on ne pretend pas, avec ces methodes, etablir un nouveau theoreme mathe-
matique destine ä resoudre d'une facon academique le probleme general de la
composition des variables de probabilite. L'on essaie seulement d'etablir un criterium
pratique qui permette d'obtenir, d'une facon suffisamment precise et generale, la loi
de distribution du produit:

y=x .y.z.t.u,
ou, ce qui est equivalent, la probabilite d'effondrement:

rh=l-r(C) (32)

en fonction du coefficient de securite C. On peut facilement comprendre que la
fonction Fh n'est pas unique, mais qu'elle varie selon les conditions de surveillance en
chantier, le type de surcharge qui agit sur la structure, la rigueur qui a preside au
developpement des calculs ou le genre de materiaux employes. Bref, eile varie avec les
diverses circonstances qui modifient les distributions individuelles correspondant aux
cinq variables enumerees.

Dans le but de faciliter aux theoriciens la täche fastidieuse de determiner la fonction

de probabilite qui correspond aux caracteristiques particulieres de l'ouvrage en
projet, on a calcule, au cours d'experiences que nous decrirons plus loin, les distributions

individuelles relatives aux cas de plus frequente utilisation pratique, ainsi que
les 75 differentes fonctions de probabilite Fh correspondant aux diverses combinaisons
auxquelles donnent lieu les differentes sous-classifications (calculs rigoureux, normaux
ou approximatifs, surcharges dans les maisons, les ponts ou les edifices industriels,
ouvrages metalliques, ou de beton, tres contröles, normalement ou peu contröles, etc.).

Au moyen d'un jeu d'abaques calcules ä cet effet, on peut connaitre par leur
simple lecture la probabilite d'effondrement relative ä un coefficient de securite
determine, dans le cas concret que l'on envisage.

D'autre part, tout ouvrage implique le risque inherent de son effondrement,
origine de dommages determines. Si Fon considere n ouvrages identiques en tous
points, avec une probabilite Ijn d'effondrement et dont les dommages totaux, pour
cette cause improbable, seraient egaux ä D pour chacun, on peut esperer que, dans un
delai equivalent ä la periode habituelle de service de ces ouvrages, un d'entre eux
s'effondrera, et que cette catastrophe donnera lieu ä des pertes humaines et materielles
äquivalentes ä D. Si P est le coüt du premier etablissement dans Fensemble des n

ouvrages, chacun realises, la perte totale sera P+D. Etant donne que Fon ignore
a priori quelle sera l'ouvrage qui s'effondrera, puisque tous ont la meme" probabilite,
on en deduit qu'il correspond ä chaque ouvrage des dommages virtuels egaux ä

l/n(D+P); c'est-ä-dire, equivalents au produit de la probabilite d'effondrement
rh= Ijn par les dommages totaux occasionnes, en y incluant le coüt du propre ouvrage
detruit.

Dans un criterium de vaste economie nationale, la perte economique virtuellement
consecutive ä la destruction possible de l'ouvrage est representee suivant le raisonne-
ment precedent, par Fesperance mathematique de Feffondrement, c'est-ä-dire, par la
quantite:

\(D+p) (33)

oü Ifn represente la probabilite d'effondrement, probabilite qui, anterieurement, a
ete designee par Th.

En ajoutant ä cette partie le coüt P du premier etablissement, on constate que,
dans le sens economique general, le debours total affectue par le proprietaire et les
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sinistres, c'est-ä-dire le coüt total que suppose pour la collectivite la construction de
l'ouvrage precite, est:

P+rhx(D+P)=R (34)

oü le deuxieme terme du premier membre, c'est-ä-dire la quantite rh(D+P), a la
meme signification conceptuelle et quantitative qu'une prime d'assurance de la
construction pour couvrir les risques et les pertes de son effondrement improbable.

La Solution la plus economique est par consequent celle oü l'expression (34) est
minimum. D'une facon plus precise, on peut enoncer le principe precedent en
disant que, dans le champ des Solutions infinies que Fon peut imaginer en faisant
varier seulement le coefficient de securite d'un meme ouvrage en projet, la Solution
logique parce que la plus economique, est celle pour laquelle le coüt d'ensemble de

l'ouvrage en lui-meme et de la prime d'assurance des dommages possibles qui peuvent
etre occasionnes par Feffondrement (en y incluant la reconstruction de l'ouvrage)
atteint une valeur minimum.* Une fois etabli ce principe economique, le processus
operatoire qu'il convient de suivre pour la determination du coefficient de securite
resulte immediatement, comme consequence logique, de la condition de minimum
imposee. A cet effet, on essaiera plusieurs coefficients arbitraires qui, introduits
premierement dans la fonction de probabilite /© et ensuite dans la relation (34),
conduiront ä une serie de resultats numeriques representatifs des frais totaux d'ouvrage
assures, dont la valeur minimum definira la Solution la plus economique. Le coefficient

de securite C, qui correspond ä cette Solution de valeur minimum, sera le
coefficient qu'on devra adopter pour l'ouvrage etudie, la probabilite d'effondrement
apparaissant comme une fonction dependante de C.

Pour le developpement et I'application pratique des principes et de la theorie
exposee, il est necessaire d'etablir, en se conformant le plus possible ä la realite, les
fonctions individuelles de probabilite correspondant aux cinq groupes precites, en
partant des donnees statistiques. Une des difficultes qui se pose ici est celle qui
resulte de la forte interference et de la connexion etroite de certaines variables avec
d'autres. Cette dependance mutuelle fait que les resultats experimentaux permettent
rarement Fetablissement direct d'une distribution determinee. Ils sont tres frequem-
ment troubles par des phenomenes de caractere etrange, soit qu'il soit impossible de
les eliminer, soit que les donnees publiees ne soient pas aussi adequates que le ferait
desirer l'objet fundamental de cette etude.

Une des distributions qui peut etre determinee directement est celle qui se rapporte
aux erreurs numeriques qui s'infiltrent dans Ie calcul. En partant d'une revision
meticuleuse des Operations intervenant dans le calcul des efforts et des contraintes de
116 elements differents d'ouvrages industriels, de bätiments, de ponts et de tribunes,
on a pu tracer la loi de probabilite Z=Z(z) de ces erreurs numeriques qui, comme
consequence de son caractere fortuit et libre d'erreurs systematiques, affecte une
forme nettement gaussienne, avec valeur la plus probable pour z= 1.

Les lois de probabilite U(u) correspondant aux coefficients de correction u dans les
betons et dans les aciers ont ete determinees ä partir des series etendues d'essais
realises sur ces materiaux par l'Institut Technique du Bätiment et des Travaux Publics
de Paris pendant la periode 1935-1947. De meme que dans le cas anterieur,
l'experimentation groupe directement les elements cherches, c'est-ä-dire la concentration
des resultats, autour de la valeur moyenne pour les differentes series essayees.

II n'en est pas de meme pour la determination de la loi de probabilite Y(y)
representative des .erreurs ou des defauts de precision dans les hypotheses de calcul. Un

* Ce principe a ete formule par le Professeur E. Torroja lors du Herne Congres International
des Ponts et Charpentes, ä Liege, en 1948.
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calcul parfaitement ideal est celui qui reproduit, avec une fidelite absolue, les deformations

et les contraintes qui se manifesteraient rigoureusement dans un ouvrage
construit avec des materiaux exactement identiques ä ceux que Fon a envisages dans
le calcul comme elements de depart.

Or, tout ouvrage presente certaines divergences avec les dimensions stipulees et,
dans de nombreux cas, d'importants defauts de construction qui alterent son
comportement. Seuls les modeles ä echelle reduite ou naturelle construits dans un
laboratoire et etroitement surveilles pourraient servir de point de comparaison.

Meme ainsi, il est necessaire d'effectuer quelques corrections. Si Fon mesure des

deformations ou des fleches, les resultats peuvent etre affectes par le manque de
concordance entre les modules d'elasticite et de deformation supposes et ceux que le
materiau possede reellement. Si l'on etudie les charges de rupture, leurs ecarts
propres et leur heterogeneite peuvent fausser la comparaison avec le calcul.

Pour essayer d'eliminer tous ces phenomenes perturbateurs dans l'etude presente,
on a corrige par les methodes mathematiques, de la fig. 1, les lois de variabilite des
modules indiques et des resistances anterieurement determinees, en etablissant que
la loi Y(y) cherchee doit etre une fonction statistique teile que la loi Fi(>'i), oü

yx=y.m, coincide avec la fonction de probabilite donnee par l'experimentation
quand la distribution M(m) represente la loi de Variation des modules d'elasticite ou
des resistances.

Ces fonctions de probabilite Yx(yx) ont ete determinees en se basant sur les effets
exerces sur des poutres droites, sur des dalles et sur des ponts realises par FEngineering
Experiment Station de l'Universite d'IIlinois, sur les epreuves realisees sur le Pont de
Djedeida, sur les resultats obtenus ä l'aide des modeles du Fronton Recoletos de
Madrid et sur l'experimentation effectuee sur des ouvrages determines, en Suisse, par
le Eidgenössische Material Prüfungs-und Versuchsanstalt für Industrie und Bauwesen
de Zürich.

Mais c'est dans la determination de la distribution T(t) des coefficients de correction

pour des defauts introduits pendant la construction de l'ouvrage que se manifeste
la plus grande compücation. D'un cöte, il est necessaire de decomposer la variable
t en deux facteurs, dont Fun t2 represente les erreurs de piquetage, de mise en place
des armatures, de liaisons defectueuses, etc. (c'est-ä-dire, qui n'affectent pas la
resistance intrinseque du materiau); 1'autre r3 exprime la possibilite de defaut qui
Faffecte, par exemple gächage ou dosage defectueux du beton.

Pour determiner le premier de ces facteurs, on a eu recours ä l'experimentation
realisee sur divers ouvrages et sur des ponts suisses, par le Laboratoire Federal de
ce pays, en eliminant par les methodes mathematiques de composition de variables
anterieurement decrites, les causes d'erreurs dues aux imperfections possibles du
calcul developpe et aux ecarts entre les modules d'elasticite reels et supposes.

Le second facteur a ete determine en se basant sur les experiences realisees par
A. R. Collins et publiees dans le n° 3 de la Revue Road Research et sur les references
fournies par M. Billiard, de l'Institut Technique du Bätiment et des Travaux Publics,
sur les resultats des essais effectues sur des ouvrages contröles par le Bureau Securitas,
dans les annees 1947 et 1948.

Ces references permettent de determiner l'importance statistique des defauts
d'execution dans des chantiers rigoureusement, normalement et faiblement contröles,
au moyen des combinaisons opportunes entre les lois de distribution partielles.

Enfin, la variabilite des surcharges a ete determinee en se basant sur les donnees
publiees par M. A. Freudenthal* et sur l'examen comparatif des criteriums adoptes

*Trans. Amer. Soc. Civ. Engrs, 112, 125, 1947.
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dans les Instructions des divers pays pour fixer les surcharges estimees maxima.
Lorsque ces donnees n'ont pas ete, meme de loin, aussi abondantes qu'on

l'aurait desire, elles ont ete malgre tout süffisantes pour prouver qu'en tablant sur
elles, la theorie exposee permet d'arriver ä des resultats pratiques. Bien que les

developpements theoriques soient compliques et laborieux, il a ete possible d'etablir
des tables et des abaques auxiliaires, au moyen desquels et en fonction du prix de

l'ouvrage que l'on etudie, calcule avec un coefficient de securite quelconque, on peut
deduire les prix correspondants aux divers coefficients que Fon essaie. En classant
les calculs selon des cadres-types et ä l'aide des tables ou abaques precites, Fensemble
des Operations requises dans un cas concret se reduit ä des additions et des multi-
plications qui peuvent etre effectuees en peu de minutes.

Comme on devait logiquement Fesperer, les coefficients de securite que l'on obtient
en appliquant ces procedes ä des pieces differentes ou ä des groupes fonctionnels d'un
m6me ouvrage sont differents d'un element ä un autre. Leur Variation depend de la

plus grande ou de la plus petite importance de la piece consideree, de l'influence
relative de la surcharge comparee avec son poids propre et de Famplitude des

dommages qui pourraient etre occasionnes par la rupture possible.
De meme, le coefficient de securite propre d'un element determine ou d'un ensemble

de pieces de caracteristiques egales, varie quand on modifie les conditions primitives
supposees en ce qui concerne la surveillance du chantier ou quand on remplace le

calcul par un autre calcul plus rigoureux.
Le criterium economique qui sert de base ä la determination de ces coefficients de

securite et la Subordination de ceux-ci au degre de surveillance prevu et ä la precision
avec laquelle ont ete effectues les calculs du projet, permettent de poser objectivement
le probleme du degre de contröle auquel doivent etre soumis les travaux de betonnage
et de construction, ainsi que Fopportunite d'une etude minutieuse du bätiment. Une
surveillance etroite et un calcul precis supposent des reductions determinees dans la
valeur du coefficient de securite et, par consequent, une economie dans les materiaux
employes. Selon que ces economies sont superieures ou non au surplus que l'une ou
l'autre Solution exige, il est necessaire ou anti-economique de recourrir ä une plus
grande surveillance de l'ouvrage ou ä employer un plus grand nombre d'heures ä

preciser les dimensions des differents elements.
Enfin, il convient de signaler le fait que les resultats definitifs auxquels on arrive

par I'application de cette methode coi'ncident avec ceux auxquels 1 humanite est

parvenue lentement jusqu'ä l'epoque actuelle, peut-etre sans raison apparente.
On pourrait penser que cette coincidence enleve un interet ä ce theme, puisque son

etude semble servir seulement de justification ä des coutumes etablies selon un
criterium purement subjectif. Neanmoins, cette meme conclusion sert ä mettre en
valeur les resultats; en effet d'une part, eile apporte garantie ä la methode elle-meme
et d'autre part, eile indique, dans l'ordre, des chiffres que les techniciens utilisent,
Fopportunite d'introduire des variations bien definies d'un cas ä l'autre, en fonction
des differentes variables. Ces modifications n'avaient pu etre appreciees et mises en
valeur jusqu'ä present et on ne pouvait seulement qu'en avoir une intuition vague, sans

possibilite de les liberer de dangereux criteriums personnels, ni de les utiliser avec la

precision raisonnee que l'economie et la securite des ouvrages exigent en meme temps.
II ne convient pas ici et nous ne disposons pas de la place süffisante, d'exposer le

developpement complet de la theorie, ni les resultats numeriques que Fon peut
obtenir, puisqu'ils sont differents pour chaque cas concret, avec des variations qui
atteignent aisement par exemple ±20% et meme plus et aussi parce que les auteurs

esperent pouvoir presenter bientot un memoire assez long en anglais.
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Ils ne pretendent pas que la presente etude epuise la question ou lui apporte une
Solution definitive. Ils estiment seulement avoir etabli un processus permettant de
determiner le coefficient de securite sur des bases objectives et de resoudre ainsi le
probleme-en fournissant des resultats d'interet pratique. On peut en deduire des
directives susceptibles d'orienter les recherches ulterieures, dans les multiples aspects
du probleme. Les auteurs attirent enfin l'attention sur Finteret qu'il y a ä pousser
l'etude statistique de tous les facteurs qui interviennent ici, c'est-ä-dire de toutes les
causes d'erreurs, de defauts ou d'autres, dont la conjonction est susceptible de produire
Feffondrement des ouvrages.

Resume

Le but prineipal de cette etude est Fetablissement d'une methode de calcul generale
qui permette d'arriver ä connaitre la valeur numerique du coefficient de securite dans
un cas determine. Ce resultat doit etre completement degage de toute subjeetivite et
doit dependre exclusivement des donnees concretes qui caracterisent l'ouvrage projete.

Le developpement du probleme a ete etabli sur des principes mathematiques. Les
lois de la probabilite, determinees sur la base de l'experimentation existante, sont
combinees en vue de la determination de la probabilite d'effondrement.

La condition de prix minimum de l'ouvrage assure suppose une nouvelle equation
qui, associee ä la precedente, permette de determiner la valeur la plus appropriee du
coefficient de securite, compatible avec la securite necessaire et exprimee par la probabilite

d'effondrement qui est ainsi egalement definie.

Summary
The main purpose of this investigation is to establish a general method of calculation

which, in any particular case, will enable the determination ofthe numerical value
of the factor of safety. The calculated value obtained must be free from arbitrary
or subjeetive factors. It should be entirely derived from the factual circumstances
appropriate to the particular work or design.

The problem has been approached mathematically. Laws of probability, based
on existing experimental data, have been suitably applied and manipulated to work
out the probability of a structural failure.

A further equation can be formulated from the condition that the insured cost of
the work shall be a minimum. This condition, in conjunction with aeeident probability,

enables the most appropriate value for the design safety factor to be calculated,
compatible with a suitable margin of safety. This safety margin will be expressed by
the aeeident probability, which, by this procedure, will become automatically defined.

Zusammenfassung
Die vorliegende Studie macht sich zur Aufgabe eine allgemeine Berechnungsweise

aufzustellen, die zu einer ziffernmässigen Festsetzung des Sicherheitsbeiwertes für
einen gegebenen Fall führt. Diese Festsetzung muss in jeder Hinsicht objektiv sein
und darf sich nur auf konkrete Angaben stützen, die den Besonderheiten des
fraglichen Entwurfes oder Bauvorhabens entsprechen.

Diese Aufgabe wird auf mathematischer Grundlage entwickelt. Die aus
vorhandenen Erfahrungen und Versuchen abgeleiteten Gesetze der Wahrscheinlichkeit
werden miteinander in Verbindung gebracht und zur Bestimmung der Wahrscheinlichkeit

des Versagens eines Bauwerks herangezogen.
Die notwendige Festsetzung eines Mindestgestehungspreises für ein versichertes

Bauwerk bedingt eine weitere Gleichung, welche zusammen mit der vorangehenden, die
Bestimmung des geeignetsten Sicherheitsbeiwertes im Einklang mit der erforderlichen
Sicherheit ermöglicht, der somit gewissermassen automatisch zum Ausdruck kommt.
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Introduction
L'evolution dans le domaine constructif entraine automatiquement un progres

des methodes de calcul ou, plus generalement, des methodes d'investigation du jeu
des forces.

Ce progres, cependant, n'accuse pas une allure reguliere et ne suit l'evolution des
constructions qu'avec un certain decalage. Une des raisons, et non des moindres, est
le fait que l'ingenieur est place, parfois, devant des problemes que l'analyse mathe-
matique rigoureuse proprement dite n'est pas ä meme de resoudre.

Aussi bien, l'ingenieur se trouve dans Fobligation, aujourd'hui plus que jamais,
de rechercher de nouveaux moyens d'investigation et d'etablir des methodes et des
criteres qui, sans avoir Ie caractere de Solutions rigoureuses au sens mathematique, ne
garantissent pas moins une approximation suffisamment exacte du jeu des forces ä

determiner.
Cette constatation n'enleve rien de leur valeur, nous tenons ä y insister particulierement,

aux Solutions mathematiques rigoureuses, quand elles sont possibles et acces-
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sibles, tant qu'elles n'exigent pas une ampleur de calculs disproportionnee avec le
but ä atteindre. Les Solutions rigoureuses de la theorie de l'elasticite s'imposent,
dans un grand nombre de cas, par trois avantages marques:

Elles sont d'une portee generale, par Opposition, p. ex., aux methodes
experimentales qui ne traitent que des cas particuliers;

Elles fournissent une image etonnament fidele du jeu des forces, pourvu que les

charges de l'ouvrage correspondent ä son domaine d'utilisation.
Elles servent de critere pour juger de Fefficacite des methodes de calcul

approchees et permettent d'en determiner le degre d'approximation aussi bien que
l'etendue du domaine d'application.

Ces methodes d'analyse mathematique, cependant, ne sont pas ä meme, ä elles
seules, de resoudre d'une maniere suffisamment simple de multiples problemes
nouveaux, aussi bien pour les constructions metalliques qu'avant tout dans le domaine
du beton arme.

Des que le probleme sort du cadre simple et classique d'un "cas fundamental,"
l'ingenieur est amene ä considerer des moyens d'investigation mieux adaptes ä son
but. Sans vouloir etablir des categories trop rigides, nous en citerons trois:

Les methodes numeriques et graphiques de la statique appliquee;
Les methodes de calculs approches;
Les methodes experimentales.

Les deux premieres ressortissent, en fin de compte, au domaine de l'analyse
mathematique, mais elles different des methodes classiques ä Solution rigoureuse aussi bien

par leur portee que par leur technique particuliere de calcul. II en est dont Forigine
se situe, non pas dans les mathematiques, mais dans la statique elle-meme, et dont
Fidee fundamentale, d'essence purement statique, donne lieu ä des methodes de
calcul nouvelles. Ceci revient ä dire que, dans certains cas, l'ingenieur se substitue
au mathematicien et cree, en quelque sorte, son propre langage mathematique.

Quant aux methodes experimentales, dont Fessor a ete remarquable depuis un
certain nombre d'annees, elles remplacent, dans une large mesure, Ie calcul par
l'observation et presentent, par Iä-meme, des possibilites d'investigation d'une tout
autre nature.

Les methodes experimentales sur modeles jouissent actuellement d'une grande
faveur qui, cependant, parait exageree dans la mesure oü la tendance de les considerer
comme moyen d'investigation de portee generale se fait jour. En effet, les methodes
experimentales sont precisement caracterisees par le fait que leur domaine d'application

est, en general, limite ä la resolution de cas particuliers.
Nous ne pensons pas qu'il soit utile de creer une Opposition entre les methodes

experimentales et analytiques, si differentes l'une de l'autre, et qui, ä cause de la
diversite de leurs possibilites, sont predestinees ä se completer.

L'ingenieur ne peut que se louer de cette diversite de moyens d'investigation qui
sont ä sa disposition et dont Ie developpement ne fait que croitre. II peut choisir
judicieusement la methode appropriee ä chaque probleme et ne craindra pas, le cas
echeant, d'associer la methode analytique ä celle experimentale, ce qui lui permettra
d'etablir des comparaisons d'une grande utilite et d'assesoir ses resultats sur une base
d'autant plus solide qu'elle est l'effet d'un recoupement par des voies essentiellement
differentes.

Nous ne voudrions pas omettre de souligner ici la valeur considerable des
methodes experimentales sur les ouvrages termines. Sans faire partie des methodes
de calcul proprement dites, leur utilite est double: d'une part, elles permettent une
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verification des hypotheses et bases de calcul et, d'autre part, elles fournissent des
indications precieuses et indispensables pour mieux adapter les methodes d'investigation

aux ouvrages futurs.
Les contributions au theme All ne donnent pas une image tres complete du

developpement des methodes de calcul, ce qui, d'ailleurs, n'enleve rien ä leur valeur.
II y en a, parmi elles, qui illustrent tres clairement certains points particuliers fort
interessants auxquels nous nous attacherons dans les chapitres suivants.

Que les auteurs des contributions veuillent bien trouver ici l'expression de notre
gratitude qui va egalement ä tous ceux qui, lors de la discussion du theme All au
Congres, voudront bien temoigner leur interet ä ce domaine si fondamental et captivant
de la science de l'ingenieur.

1. Methodes analytiques de la theorie de l'elasticite et de la plasticite
Dans notre Rapport general sur les dalles, voütes et parois en beton arme, lors du

Congres de Liege en 1948, nous avions donne un apercu sur le developpement de la
theorie de l'elasticite bidimensionnelle et formule quelques conclusions quant aux
methodes analytiques. Nous indiquerons tres brievement quelques points importants
de l'evolution de la theorie de l'elasticite sans pretendre epuiser le sujet.

Choix approprie du Systeme de coordonnees

II est essentiel de souligner l'importance fondamentale que presente une adaptation
judicieuse du Systeme de coordonnees ä la resolution des problemes de la theorie de
l'elasticite, definis par une ou plusieurs equations aux derivees partielles accompagnees
de conditions aux limites. II s'agit, en Foccurence, d'exprimer Ie contour d'un
domaine par une valeur constante des coordonnees. C'est ainsi que les coordonnees
polaires ont ete utilisees des le debut pour les problemes se rapportant ä la circonfe-
rence, ä l'anneau circulaire, au secteur circulaire, etc.; ils forment un cas particulier de
la grande famille des coordonnees curvilignes ä trajectoires orthogonales, parmi
lesquelles nous citerons encore les coordonnees elliptiques-hyperboliques.

Des progrds ont ete realises depuis quelques annees par Fintroduction de nouveaux
systemes de coordonnees. Citons les coordonnees bipolaires introduites par Föppl
et permettant de resoudre les problemes oü figurent l'anneau circulaire excentrique,
le demi-plan troue d'un cercle, etc.

Le Professeur Favre et Fauteur de ces lignes ont introduit et generalise l'emploi
des coordonnees cartesiennes obliques pour les dalles et parois minces obliques sur
la base des equations de la theorie de l'elasticite convenablement transformees.

Citons egalement les "coordonnees polaires generalisees" de Grammel fournissant
une approximation du contour des dalles et parois carrees par une courbe continue,
define par un seul parametre.

II est clair que Fintroduction de nouveaux systemes de coordonnees est appelee, ä

Favenir, ä traiter des problemes aujourd'hui encore insolubles.

Orthogonalisation de systemes de fonctions
Les fonctions orthogonales, en particulier les fonctions trigonometriques, sont un

moyen efficace pour etablir des Solutions rigoureuses. Les progres dans ce domaine
restent tres modestes, Forthogonalisation de familles de fonctions etant une Operation
tres Iaborieuse.

Malgre cela, il est utile d'insister sur Favantage qu'il y aurait d'etablir des familles
de fonctions orthogonales une fois pour toutes en indiquant sous formes de tableaux
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les coefficients d'orthogonalisation. Avec les machines ä calculer actuelles, Fampleur
d'un tel travail peut etre limite ä des proportions raisonnables.

Emploi des imaginaires
Dans les problemes de dalles encastrees, de parois minces ä bords libres, de

problemes de valeurs propres, etc., on est souvent conduit ä des solutions rigoureuses
en donnant des valeurs complexes ä certains parametres et en utilisant comme
solutions les parties reelles et imaginaires des fonctions complexes ainsi etablies.

C'est lä une facon fort originale de satisfaire ä certaines conditions aux limites
qui exigent que l'integrale ainsi que certaines derivees d'ordre pair et impair s'annullent
sur les bords. On est conduit, pour les valeurs propres des parametres, ä des equations

transcendantes qui ont Favantage d'etre resolues une fois pour toutes pour le
genre de problemes considere.

Cette idee est appelee ä etre generalisee ä d'autres problemes.

Problemes particuliers
Le calcul des dalles a ete systematise par M. Pucher qui vient de publier un recueil

contenant des tables et planches des surfaces d'influence des grandeurs caracteristiques.
Ces calculs ont ete etablis une fois pour toutes et permettent de prendre facilement en
compte un nombre quelconque de charges concentrees.

Des progres ont ete en outre realises dans la Solution de problemes se rapportant
aux dalles, parois et voiles minces. II s'agit avant tout de cas particuliers d'importance
et de portee limitee.

Contributions

M. T. van Langendonck, dans son memoire "L'emploi de fonctions orthogonales
speciales pour la Solution du probleme de la torsion," etablit l'integrale de l'equation
de Laplace au moyen de series de puissances (polynömes harmoniques) et deduit une
famille de fonctions orthogonales de ces polynömes pour le contour considere. Cette
methode est appliquee au probleme de la torsion des sections en losange ainsi qu'ä la
recherche des contraintes de cisaillement dans les pieces flechies.

La methode est efficace; il eüt cependant ete interessant que Fauteur tire des
conclusions de son procede et qu'il indiquät de maniere plus detaillee la generalisation
ä laquelle il fait allusion pour resoudre les problemes plus generaux soumis ä l'equation
biharmonique du quatrieme ordre.

M. A. Kuhelj publie un memoire intitule "Beitrag zur Elastizitätstheorie der
Schalen" et etablit les equations fondamentales de la theorie des voiles minces sur la
base tres generale de la geometrie differentielle classique en utilisant Fecriture
vectorielle. Les premiere et deuxieme "formes fondamentales" de Gauss y jouent
un röle essentiel. L'auteur retrouve les expressions pour les defoimations et les
efforts interieurs et etablit des formules approchees dans le cas de constructions tres
minces.

L'interet prineipal de ce travail reside dans le fait que la theorie des voiles minces
est mise en rapport direct avec la geometrie, ce qui permet de prendre en compte de
maniere immediate certaines proprietes geometrique caracteristiques des voiles
considere©

M. A. Holmberg presente, dans son memoire "An approximate method for
treatment of some plate bending problems," deux exemples de dalles rectangulaires
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traites par un calcul approche qui consiste ä ne satisfaire qu'en un point du bord aux
conditions aux limites.

2. Methodes numeriques dans la statique appliquee
Pour les raisons que nous avons exposees dans Fintroduction, il est indispensable

que l'ingenieur dispose, ä cöte des methodes de l'analyse mathematique, de methodes
de calcul numeriques adaptees au probleme particulier ä resoudre. II suffit de
considerer le calcul d'une poutre, dont le moment d'inertie ainsi que les charges sont
discontinus ou varient suivant des lois qui ne sont pas susceptibles d'une interpretation
mathematique simple, pour se rendre compte que les moyens habituels de l'analyse
mathematique ne sont plus adaptes au probleme.

On est des lors, en songeant aux discontinuites des donnees du probleme, conduit
ä des methodes de calcul elles-memes "de caractere discontinu," en tout premier lieu
au "calcul aux differences finies," oü les expressions differentielles sont remplacees
par celles definies avant le passage ä la limite.

Nous reviendrons au theme 3 ä des applications de ce calcul qui peut rendre de
precieux Services ä l'ingenieur ä condition qu'il soit complete par des considerations
sur Fexactitude du resultat.

Si le calcul aux differences, en tant que calcul analytique approche, peut etre
considere comme une methode numerique adaptee ä certains problemes de la statique
appliquee, il en est cependant d'autres dont la caracteristique essentielle est que leur
origine est situee dans la statique appliquee. Leur technique de calcul decoule des
notions fondamentales de la statique et, pour cette raison, ces methodes presentent
un haut degre d'adaptation aux problemes considere©

Le Prof. Stüssi de FE.P.F. ä Zürich a cree une methode de calcul basee sur
" l'equation du polygone funiculaire " et en a demontre Fefficacite par un grand nombre
d'applications tres variees de problemes aux limites. L'auteur part de la relation
generale (relation entre une fonction et sa deuxieme derivee) qui permet de determiner
le polygone funiculaire pour un Systeme de charges donnees, ce qui conduit ä un
Systeme d'equations lineaires ternaires dont la resolution numerique definit le polygone
funiculaire cherche.

L'idee est generalisee pour des charges continues et discontinues par Fintroduction
de "charges de nceuds" qui entrainent un haut degre d'exactitude du resultat final.

Si la methode du Prof. Stüssi presente certaines analogies avec le calcul aux
differences, il y a cependant un point fondamental qui la caracterise et la distingue
clairement: la methode, basee sur la construction du polygone funiculaire, est
rigoureusement exacte et les equations qui en decoulent representent le probleme tel
quel, tandis que le calcul aux differences ne donne, par definition, qu'une Solution
approchee.

Indiquons les applications aux problemes suivants:

Resolution de l'equation differentielle generale du second ordre, ävec differents
cas de conditions aux limites (problemes de deformations du second ordre,
problemes d'oscillations, problemes de valeurs propres);

Resolution de l'equation differentielle du quatrieme ordre par combinaison de
deux polygones funiculaires;

Application aux dalles et parois par combinaison de deux groupes de polygones
funiculaires.

Par son haut degre d'exactitude et par son adaption aux problemes statiques
dans des conditions tres generales, la methode du polygone funiculaire est appelee ä
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rendre de. grands Services ä l'ingenieur. Elle peut etre qualifiee d'autochtone,
puisqu'aussi bien son idee fondamentale que sa technique de calcul est inspiree de
la statique appliquee exclusivement.

M. W. J. Van der Eb, dans sa contribution "Some special cases of buckling,"
traite deux cas de flambement, Fun de poutres ä barres accouplees, l'autre de poutres
supportees lateralement par des appuis elastiques. Au moyen du calcul aux
differences, l'auteur etablit des tableaux et des graphiques pour les applications pratiques.

3. Autres methodes (methodes de calculs approches, Methode de relaxation,
calcul ä la rupture, statique experimentale, etc.)

Methodes de calculs approches

L'emploi des methodes de calculs approches, par Opposition aux methodes dites
rigoureuses, est souvent chose tres delicate. II est necessaire de donner ä une teile
methode des bases solides, ce qui exige Fevaluation de l'ordre de grandeur de Fapproxi-
mation aussi bien que la determination de son domaine d'application. Elle ne sera
efficace qu'en mesure oü il sera possible de pousser Fapproximation aussi loin que
Fexige la nature du probleme.

Ces considerations sur la qualite de Fapproximation sont d'autant plus necessaires

que les methodes de calculs approches sont indispensables lä oü les solutions rigoureuses
restent encore inaccessibles.

Ces methodes sont de nature fort variee. Des progres ont ete realises pour
quelques problemes particuliers de dalles, de parois et de voiles minces, pour des

problemes particuliers de stabilite (flambement, deversement), oü l'on constate un
emploi frequent du calcul aux differences.

Citons specialement le developpement remarquable de la methode de relaxation,
appliquee ä la resolution de systemes d'equations lineaires de la statique ou ä ceux
obtenus par le calcul aux differences. Cette methode, due ä Southwell, possede des

avantages marques sur les autres methodes procedant par approximations successives

(voir le memoire de l'auteur sur le calcul des barrages-poids).
On peut adapter la methode de relaxation ä diverses structures de systemes d'equations

lineaires et etablir dans chaque cas la technique de calcul appropriee. Le point
le plus important, mais aussi le plus delicat, est celui de la convergence rapide du
calcul. De serieux progres ont ete realises precisement dans cette direction, de meme
que dans Fadaptation de la methode aux equations harmoniques et biharmoniques
de la theorie de l'elasticite, transformees par le calcul aux differences en systemes
d'equations lineaires de structure speciale et caracteristique.

De nouvelles possibilites de calculs numeriques ont ete creees par les machines ä

calculer modernes, qui permettent d'affronter actuellement la Solution numerique de

problemes inaccessibles aux moyens habituels. Leurs possibilites sont loin d'etre
epuisees par les solutions de cas particuliers. Nous voyons, au contraire, les machines
ä calculer mises au service de problemes plus generaux, dont les solutions, calculees
une fois pour toutes et mises en tables, constitueraient en quelque sorte des archives
auxquelles l'ingenieur pourrait se referer ä tout instant. Citons comme exemples:
Forthogonalisation de certaines familles de fonctions, Felaboration numerique de
certaines fonctions fondamentales, Fetablissement systematique de fonctions
d'influence generales ou en rapport avec le calcul de relaxation, et bien d'autres!

L'auteur de ce rapport traite, dans son memoire " L'influence de l'elasticite du sol
sur les contraintes des barrages-poids," le probleme delicat de Falteration des
contraintes dans les barrages-poids et le sol de fondation quand l'elasticite de ce dernier
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est prise en compte. Renoncant ä elaborer numeriquement la Solution mathematique
rigoureuse qui met en connexion un triangle et le demi-plan, Fauteur exprime les

equations du probleme au moyen du calcul aux differences et utilise la methode de

relaxation, dont la technique a ete adaptee ä la structure particuliere des equations
biharmoniques. Les resultats soulignent l'importance que prend l'elasticite du sol
de fondation dans la repartition des contraintes et demontrent Fefficacite de methodes
numeriques appropriees ä des problemes inaccessibles ä toute autre Solution analytique.

M. C. D. Williams, dans "The limit of stress in the compression flanges of beams,"
indique une methode de calcul pour determiner la limite des compressions dans les

ailes de poutres, methode appelee ä remplacer les resultats empiriques. Partant d'une
nouvelle definition de l'etat d'equilibre stable, l'auteur procede par approximations
successives conduisant ä la ligne elastique caracteristique. La distribution des

charges sur la poutre, le mode de fixation des extremites ainsi que les variations de la
section de la poutre sont pris en compte.

M. K. Bentley presente une etude, " Lateral stability of beams," sur le deversement
des poutres. II generalise le probleme en ne negligeant pas le rapport des moments
d'inertie des axes principaux et en traitant egalement le cas de deformations plastiques.
L'auteur etablit, pour differents cas d'encastrement, les formules pour les charges
critiques de deversement et montre que celles-ci englobent les resultats connus etablis
dans des conditions moins rigoureuses. II conclut ä la concordance des resultats
theoriques et experimentaux decrits en fin de memoire.

M. J. Dutheil remplace, dans son memoire "Theorie de Finstabilite par divergence
d'equilibre," la notion classique de "bifurcation d'equilibre" par celle de "divergence
d'equilibre." L'auteur insiste sur le fait que la definition classique d'instabilite a un
caractere abstrait et ne tient pas compte des conditions reelles. II etudie le flambement
et le deversement en introduisant une notion nouvelle, la "prefleche conventionnelle,"
qu'il definit par plusieurs conditions. La securite au flambement est determinee par
une probabilite. L'auteur obtient, par sa theorie, un raecordement du flambement ä

la flexion simple et ramene le deversement au flambement en milieu elastique. La
verification experimentale etablit une concordance satisfaisante entre la theorie et les

nombreux essais effectues au Laboratoire de l'Institut Technique du Bätiment et des

Travaux Publics.
Dans "Method of elastic compatibility in the Solution of beams of finite length

on elastic foundations," M. S. P. Banerjee expose une methode de calcul approche
pour les poutres sur sol elastique en superposant deux systemes de contraintes, le
premier lineaire, se rapportant ä la poutre supposee rigide, le second (contraintes
"additionnelles") tenant compte de l'elasticite de la poutre. L'auteur obtient des

expressions simples pour les fleches et les moments de flexion et illustre d'exemples
sa methode de superposition.

M. R. Pascal presente un memoire, "Etude theorique, experimentale et pratique
des encastrements de flexion," dans lequel il part des equations de Boussinesq pour
une charge concentree au bord du demi-espace elastique. II generalise ses calculs ä

l'etude de Fencastrement d'un solide prismatique dans le demi-espace et compare ses

resultats ä des essais sur caoutchouc et sur "plexiglas." L'auteur analyse la notion
d'encastrement et traite des exemples choisis dans le domaine du genie civil.

Statique experimentale
Nous avons essaye, dans Fintroduction, de delimiter le röle que joue la statique

experimentale comme moyen d'investigation du jeu des forces dans les ouvrages.
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Cette methode, pourtant ancienne, a pris ces dernieres annees un essor remarquable
et se trouve etre, aujourd'hui, un auxiliaire precieux de l'ingenieur.

L'evolution dans le domaine des essais sur modeles beneficie avant tout des progres
realises dans le perfectionnement des methodes et des instruments de mesure. De
plus en plus, les mesures par moyens mecaniques sont remplacees par des methodes
eiectrique et optique.

D'autre part, les ouvrages refractaires aux methodes de calcul sont utilises sur une
grande echelle et exigent des recherches particulieres.

A cöte des methodes et des instruments de mesure, le materiau utilise ä la confection
du modele joue un röle preponderant par ses proprietes elastiques et plastiques, par
les variations de ces proprietes en fonction du temps ainsi que par les valeurs absolues
de ses constantes d'elasticite caracteristiques.

Le point le plus delicat reste Finterpretation adequate des mesures permettant de
tirer des conclusions suffisamment süres quant au comportement de l'ouvrage termine.

M. M. Rocha, dans son memoire "General review of the present Status of the
experimental method of structural design," presente une vue d'ensemble sur Fetat
actuel des methodes de la statique experimentale par essais sur modeles. Apres une
comparaison sur Futilite respective des methodes analytiques et experimentales,
l'auteur etablit, de maniere tres generale, les bases de la similitude mecanique et
formule les lois qui fönt passer du modele ä Foriginal. Des indications utiles sont
donnees sur les materiaux appropries ä la confection des modeles, sur les echelles

optimales, sur la maniere d'appliquer les surcharges, sur les mesures effectuees, etc.
Les conclusions de M. Rocha ont un grand interet. II insiste sur le fait que les

questions de securite peuvent etre etudiee sur le modele, les deformations pouvant
aisement etre poussees au delä de la limite elastique et releve que, dans certains cas,
Fechelle peut etre choisie tres reduite, ce qui entraine une economie appreciable.

L'auteur donne quelques exemples tres suggestifs des methodes variees qui sont ä

sa disposition et qui requierent, il ne faut pas Foublier, une installation et un outillage
tres perfectionnes au service de specialistes particulierement qualifies.

Sachons gre ä M. Rocha de son expose si detaille et du fait qu'il preconise, comme
nous nous plaisions ä y insister dans Fintroduction, une synthese entre les methodes
analytique et experimentale.

MM. M. Rocha et F. Borges traitent trois exemples caracteristiques de la methode

par photoelasticite dans leur memoire "Photoelasticity applied to structural design."
Cette methode experimentale, qui donne directement les trajectoires des contraintes
principales, est particulierement adaptee ä l'investigation d'eiements de beton arme,
oü les armatures suivent les trajectoires des contraintes de traction.

Bien que limitee aux etats de contraintes bidimensionnels, la methode photo-
elastique peut rendre de precieux Services.

M. C. Benito, dans son memoire "Nouvelle methode d'analyse tridimensionnelle
sur modeles reduits," expose une methode originale appliquee ä des modeles en
gelatine. Le modöle, charge ä 20° C, est refroidi ä 2° C. et coupe en tranches. En
revenant ä la temperature initiale, on mesure les deformations "liberees" et on en
deduit les contraintes.

Deux exemples illustrent Ie procede qui s'avere des plus delicats et exige les soins
les plus minutieux.

M. J. G. Hageman presente, dans "Experimental and theoretical investigation of
a flat slab floor," les resultats d'une analyse experimentale tres soignee sur un modele
de dalle-champignon et realise ainsi un voeu exprime lors du Congres de Liege en 1948.
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L'auteur base ses essais sur la recente theorie de M. A. M. Haas et expose en detail la
technique des essais.

Dans ses conclusions, l'auteur indique les ecarts avec la theorie et avec d'autres
essais du meme genre et montre, entre autre, que l'influence d'une charge isolee au
centre d'un panneau ne va pas au delä du panneau considere.

Les resultats de M. Hageman sont etablis avec beaucoup de soins et ses indications
presentent un interet indeniable pour le constructeur de dalles-champignon.

Dans le meme ordre d'idees, MM. Kist, Bouma et Hageman donnent, dans leur
expose "Measurement of strains in a slab subjected to a concentrated load," les
resultats d'essais sur une dalle chargee de maniere concentree et indiquent en
particulier l'importance de la surface d'appui de la charge sur sa repartition, probleme
particulierement important pour les tabliers de ponts.

Conclusions
Dans ce rapport general, nous nous sommes assignes la täche de degager les grandes

lignes de l'evolution des methodes de calcul ou, plus generalement, des methodes
d'investigation du jeu des forces dans les ouvrages.

On constatera que des progres sensibles ont ete realises sur differents points et que
l'evolution des methodes d'investigation est en plein essor.

Cette evolution peut etre, dans ses grandes lignes, caracterisee par un fait fonda-
.mental: eile s'oriente dans le sens d'une adaptation de plus en plus parfaite des

moyens d'investigation aux problemes consideres. II s'agit lä d'un processus d'ade-
quation qui va en s'intensifiant ä mesure que le nombre et la complexite des nouveaux
problemes augmentent.

L'ingenieur doit s'efforcer de garder une vue d'ensemble sur la diversite des moyens
ä sa disposition. II les coordonnera, le cas echeant, et evitera la specialisation oü
il serait conduit par Femploi abusif et unilateral d'une seule et unique methode.

C'est lä, ä notre avis, la seule facon possible de donner aux methodes d'investigation

du genie civil leur vraie valeur et de garantir, sur la base de la plus large objectivite,
leur evolution et leurs progres futurs.

Resume

Apres une introduction oü les differentes methodes de calcul sont caracterisees et

comparees dans ce qu'elles ont d'essentiel, l'auteur traite, dans les chapitres suivants,
de l'evolution et des progres realises dans les trois grands domaines definis par les
sous-titres du theme All. Les grandes lignes aussi bien que les points particuliers,
oü les progres ont ete le plus sensibles, sont mis en evidence et les contributions au
theme All sont sommairement analysees.

Le rapport se termine par des conclusions d'une portee generale.

Summary

After an introduction in which different methods of calculation are described and
compared in their essential features, the reporter considers the development and

progress made in the prineipal fields coming under the sub-titles of theme All.
Importance is attached to the broad lines of development, as well as to those points
which allow progress to be more clearly recognised. A short appreciation is given
of the contributions submitted under theme All.

The report concludes with some deductions of a general nature.
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Zusammenfassung

Nach einer Einführung, in der die verschiedenen Berechnungsmethoden in ihren
wesentlichen Zügen beschrieben und verglichen werden, behandelt der Verfasser in
den folgenden Abschnitten die Entwicklung und die Fortschritte in den durch die
Untertitel des Themas All bezeichneten Hauptgebieten. Es wird Gewicht auf die
grossen Linien, wie auch auf diejenigen Punkte der Entwicklung gelegt, welche die
Fortschritte besonders deutlich erkennen lassen. Die Beiträge zum Thema All
werden kurz gewürdigt.

Der Bericht schliesst mit einigen Folgerungen von allgemeiner Tragweite.
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L'emploi de fonctions orthogonales speciales pour la Solution du

probleme de la torsion

The use of special orthogonal functions for solving the torsion
problem

Anwendung von besonderen orthogonalen Funktionen für die Lösung
von Torsionsproblemen

Prof. TELEMACO VAN LANGENDONCK
Ecole Polytechnique, Universite de Sao Paulo, Bresil

Generalites

Le probleme de la torsion d'une piece prismatique de section pleine, S, consiste
ä resoudre l'equation aux derivees partielles:

82w 82w

8x-2+W ~2 d*mS 0)

avec w=0 sur le contour. Les composantes de la contrainte de cisaillement paralleles
aux axes des x et des y sont donnees par

dw T dw T
Txz=~oyJ; Ty2=z~d~xlt (2)

oü Test le moment de torsion et /, est le "moment d'inertie ä la torsion":

"-ily,=2 wdxdy (3)

avec lequel on peut calculer Fangle 6 de torsion, par unite de longueur de la piece
(G est le coefficient d'elasticite transversale):

T
e=GJ, ¦ ' ¦

'
<4>

x2+y2
Si l'on pose z=w-\ -z— (5)
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la condition (1) devient:
82z 82z

W2+W=° ®
x2+y2

qui est l'equation de Laplace, avec z=—-— (7)

sur le contour.*
La Solution generale de l'equation (6) est

z=f1(x+iy)+f2(x-iy) (8)

qu'on peut ecrire, en developpant en serie de puissances:
oo oo

:=y^a"m(x+iyr+^b"m(x-iy)z= } a"m(x+iy)m+2_b"m(x-iyy (9)

m=0 m 0

oü les coefficients a"m et b"m sont determines par la condition au contour (7).
On obtient la Solution reelle du probleme en combinant les termes des series (9)

de facon ä avoir:

^© (x+iyy+(x-iy)m yL, (x+iy)m-(x-iyr
z=Za m 2 +Zb m 3

m 0 m r>

qu'on peut ecrire:
OO 00

^ji'mUm+Sb'mV,z=>a'mUm+>b'mVm (10)

m=0 m=0
oü Um=$[(x+iy)m+(x-iy)m] et Vm=hl(x+iy)m-(x-iy)m] sont les expressions tres
connues:

u0=\ v0=o
Ux=x Vx=y
U2=x2-y2 V2=2xy
U3=x*-3xy2 V3 3yx2-y*
U4=x*-6x2y2+y* Vi,=4xiy-4xyi

lesquelles sont des polynömes homogenes de degre m. Par suite, Fegalite (10) ne
perdra pas sa generalite si on groupe les Um et les Vm de fa?on ä avoir, en posant
"2m—Um> ff 2m + l== *m, C 2m a m et C 2m+i b m\

z= yc'mWm= yam(c'0, mW0+c'UmWl+z-

m=Ü m 0

+c'm_1>mWm_1+Wm)=2,amPm (11)

m 0

les coefficients c'„_ m pouvant etre des nombres reels finis quelconques. On peut les
n — m

choisir de facon que les polynömes > c'„imW„ (avec c'm<m=l) soient—quand on

* Dans quelques cas, il serait plus convenable de poser
z=w+x2 ou z=w+y2

l'equation (6) restant valable, avec z=x2 ou z=y2 sur le contour.
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change, dans Wn, y enf(x)—des fonctions orthogonales pour le contour C caracterise

par l'equation y=f(x). On aura:

PJds^O et, si m©«, PmPnds=0
Je Je

Pour que z satisfasse ä la condition (7) au contour, il faut que

m<y=Rx)

(12)

(13)

c'est-ä-dire, qu'il faut developper l'expression du premier membre en fonction des P„,
ce qui est possible, car les Pm sont des fonctions orthogonales. En consequence, les
coefficients am resteront determines et la valeur de z sera connue (11); on pourra,
alors, calculer w (5) et J, (3). En fait, d'apres la theorie des series de Fourier, on
aura:

am=
fr+r Pmds

l (14)
P2mds

La Solution obtenue convergira peut-etre quelquefois plus lentement que la
Solution qu'on pourrait obtenir avec le procede Ritz-Rayleigh; mais eile presente
Favantage de dispenser de la resolution d'equations simultanees pour le calcul des
coefficients et de donner la Solution avec une precision croissante avec le nombre des

termes qu'on prend, et qui converge en moyenne vers la Solution exaete, en vertu de

la propriete des series de fonctions orthogonales.
La Solution decrite s'applique, evidemment, ä tous les problemes de la physique

mathematique qui consistent ä resoudre l'equation de Laplace ä deux dimensions, avec
certaines conditions sur des contours prefixes (probleme de Dirichlet).

Comme exemple d'autre cas d'application, nous terminerons en donnant la Solution

d'un probleme de calcul de la distribution des contraintes de cisaillement dans des

pieces flechies. Le probleme de la plaque librement appuyee sur le contour peut etre
ramene ä la Solution de deux equations de Laplace et alors etre resolu par le procede
indique. L'auteur etudie maintenant I'application d'une methode semblable au calcul
des plaques avec conditions quelconques d'appui et ä la resolution de l'equation
d'Airy y4n'=f(x, y), en utilisant la Solution generale de l'equation sans second membre:

w=ft(x+ iy) +yf2(x+iy) +f2(x- iy) +yf4(x-iy)

Application aux sections en losange
Pour resoudre le probleme de la torsion d'une piece prismatique avec section en

forme de losange, on prend pour axe des coordonees, dans le plan de la section, les

diagonales du losange (fig. 1). On peut ainsi prendre
seulement, pour le developpement (10) de z, les fonctions paires de x
et de y, c'est-ä-dire seulement les fonctions Um avec m pair.
L'egalite (11) sera valable si on pose Wm=U2m:

W0=l
Wx=x2-y2
Wz=x*-6x2y2+y*
W^=x6- I5x*y2+ ISxty-y6

Fig. 1

©

-b-
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Les integrales (12) peuvent s'etendre, ä cause de la symetrie, ä un seul cote du
losange. Si on prend le cote x=b(l—y/h), il vient ds=dyjcos a et l'integrale sur le
contour du terme general xpy" est:

f f* / y\" dy W1 f1 p\q\
xpy"ds= WH /—= (l—nYv''dv=sb>H>, \_\„.Je oJ \ h) cosa cosa0J (p+q+l)\

Avec cette formule, on calcule toutes les integrales lp< q=\cWpWads et
r2+y2

¦ Wpds, pour les valeurs entieres de p et q entre 0 et le plus grand m que
f ©Hc-2

l'on desire employer dans le developpement (11) de z. On calcule aussi, pour trouver

¦¦--iL'J, (3), les integrales I"p= Wpdx dy, en notant que

/j©Vi*-4„M "; "¦""b'-"'-'(Pipw
Soit le cas du losange avec b=0,4h; on dispose le calcul comme on a fait sur le

tableau I, qui finit par une colonne oü se trouvent dejä les valeurs successives des
termes qui somment J,, et l'on s'arrete des que la precision voulue est atteinte.

Dans la premiere colonne, se trouvent les valeurs des m qui correspondent ä chaque
terme du developpement (11) de z, dont le calcul est fait sur la ligne respective. Sur

la premiere ligne (m=0)on trouve les valeurs de P02ds=\ W02dsetde\ P0—^—ds
C x2+y2

W0—j—ds, dejä calculees (70i 0 et I0', parce que P0= W0); le quotient de ces deux

quantites donne a0 (14), qui figure dans le tableau. Dans la colonne suivante, on

trouve P0dxdy=\ W0dxdy=I"0 et, dans la derniere, le deuxieme terme du

developpement de /,, c'est-ä-dire, le double du produit des nombres qui se trouvent
dans les deux colonnes precedentes 2x2x0,193333=0,773333; le premier terme de
ce developpement est donne au-dessus du nombre 0,773333 et correspond ä la difference
entre z (5) et w, qui est (3):

-2Jj X—Y~dxdy= -0,386667

En general, sur la meme ligne, on trouve successivement m, 0Am, xAm,

m-\Am, m-\Bm, m_2Bm, 0Bm, Cm (precede dans la meme colonne par Cm_u Cm _2,

etc.), Dm, Em, Fm, Gm. Ces valeurs sont obtenues de la facon ^uivante, en fonction
des quantites dejä calculees:

t}A'm==Im, 0

\Am Im, i+o^m-O^l
2^m ^m, 2 + 0^m • 0^2+ 1-^m ¦ 1^2

„ _
m~\Am

m-l"m—
<̂-m-l

D __
ni-lAm

m - 7."m — -pr
<-m-2
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ff - °A"

C =1 +
D —I' +

Dm

F =1" 4-x m * m> r.

m— \-™-m * in

,B„,. D„
¦ lBm+m-2-Am -

-l+m-2^m • Af
,~2ßm +
-2+ • • +0B„, ¦ D0

nB„

\B„ l+m-2-Rf« • ^m-2+ • +(A ¦ Ff)

Pour le calcul de J,, dans Fexemple du tableau I, il suffit de s'arreter ä la ligne

Gm — 2fcmb m

m=3, ce qui donne, en faisant la somme
des nombres de la derniere colonne (dans
la ligne m=4, on trouverait —0,000572):

7,=0,166M3=0,415Ä2/i2
La repetition de ce calcul pour d'autres

valeurs de la relation b/h permet de tracer
le graphique de la fig. 2, oü est etablie la
comparaison des valeurs de /, avec les
valeurs obtenues par les formules usuelles
(formule de St. Venant: J,=S4I40JP, et
formule des sections allongees:

/,=4/S72/(S72-|-16/).
On y trouve aussi les resultats de

I'application de la formule proposee, ä la suite
des calculs faits, pour Fusage pratique :

•M»' YZbA
S--2 6/i

,t-e/iIT

/© formale (I5J

41SI' 4b3h3
51 '+16/ 2b'+3h*

SP_ 6. b3h3
I

40Jp~ 5 b*+h*

o.2 OA o.s o.s '%

Fig. 2

bW
5 2b2+bh+2h2

(15)

Application aux sections composees de deux ou trois rectangles
Pour la determination des Jt des sections en croix, en T, en L, en U, etc. (fig. 3),

il y a des formules pratiques, qui toutefois s'appliquent ä des cas oü la largeur des

rectangles est d'un ordre de grandeur plus petit que la longueur. Malgre la presence
des angles rentrants la methode generale decrite permet de trouver la Solution cherchee

pour des rectangles quelconques.* Par exemple, pour le cas de L symetrique (fig. 3),

¦y
ß=a/6T

Cc

*-JC

\y
—*~x

'OC

Fig. 3

* Pour le cas de deux rectangles, l'auteur a propose ailleurs une methode dont la Solution converge
plus rapidement, mais dans laquelle on ne peut pas eviter la resolution d'equations simultanees pour
trouver les coefficients des termes de la serie. Cette Solution est obtenue par deux series trigono-
metriques, une pour chaque rectangle, dont les termes satisfont ä l'equation (1). Les coefficients de
ces termes sont determines par la condition de continuite sur la limite des deux rectangles.

CR.—13



Tableau I

m iWmPods
=s h2'"

jrVmPlds
=s /,2m+2

WmPlds
=S hp" + 4

Pm=Wm+ [PuMs
=s Il4'" Pmds

-S 1,2m+ 2

am
1,2-2,,,

IfPmdxdv
b/,2i„+)

Ji
=M-1

Pm-lh2 Pm-zlr* Pm—lhfi

0
1

2
3

in

-0,2800000
+0,1731200
-0,1230720

oAm

-0,0848384
+0,0675240

\Am

-0,0144580

lAm >Am

+0,2800000
+0,7310294
+ 1,1186871

m—\B„,

-0,1731200
-0,5818361

m—iBm

—

+0,1230720

m—3ö/» m—40//1

1,0000000
0,1160533
0,0129241
0,0016040

Cm

+ 0,1933333
-0,0433067
+ 0,0021738
+ 0,0002346

Dm

+0,193333
-0,373162
+0,168196
+0,146259

Eni

+ 2,000000
+0,280000
-0,026138
-0,007547

Fm

-0,386667
+0,773333
-0,208971
-0,008793
-0,002208

Gm

m colonnes m colonnes

X

<
>
7.

r>
lm

Tableau II

ffVmPods
=S II2"!

\W,„P\ds
S I\2m 1 2

\WmPlds
S 1,2m I 4

Pm=tVm +

Pm-\lt2 I Pm—lhfl Pm-ih6

iP„Ms-
=s Ii4'"

jap.
Pmds

-s h2"< 1 :

Clin
-.h2-2m

mm 1,2m I 2

U=li4

-0,3333333
+0,2000000
-0,1428571

-0,0761905
+0,1269841 -0,0351268

+0,3333333
+0,2142857
+0,1695590

-0,2000000
-0,3571429 0,1428571

1,0000000
0,3555556
0,2071655
0,1024435

+0,2666667
+0,2088889
-0,0123810
+0,0026626

+0,266667
+0,587500
-0,059764
+0,025991

+0,500000
+0,166667
-0,030952
+0,006657

-0,066667
+0,133333
+0,097917
+0,001850
+0,000173



l'emploi de fonctions orthogonales 195

on prendra les fonctions W, en combinant les fonction U et V de facon ä obtenir des

polynömes symetriques en x et y:
W0=l, Wx=x+y, W2=2xy, Wi=x3-3xy2-3yx2+y\ fK4=x4-6x2>'2+/t,

A cause de la symetrie les integrales sur le contour s'etendent sur le parcours OAfi-C,
ce qui donne, pour le terme generale xpyq-\-xqyp:

I (xpyq+xqyp)ds=bm+r-1(—
i 0"'-l Om+n+l ßmj_0"H-l_fi»i+'i+l\

m+l n+l

m 2^ v i\Q
Vr-=\o-y-Xl+1 +7)21

Application a la Determination des contraintes de cisaillement dans les pieces
flechies
La theorie de l'elasticite donne, pour les composantes des contraintes de cisaillement

(le plan de la flexion contient l'axe des x):

JA9l
Tyz~ 8x2J'

oü v est le coefficient de Poisson, Q l'effort tranchant, / le moment d'inertie de la
section par rapport ä l'axe des y et <f> une fonction qui satisfait ä v2t£=0 et qui, au
contour, permet d'ecrire

dy dx

Pour le cas du losange (fig. 4), la fonction <j> est impaire
en y et paire en x. On peut, en consequence, la developper
en serie suivant les fonctions V avec indice impair:

*
oo

m=0

rZm+l
'2m+1

La condition au contour s'ecrit I en posant kI en posant k=-rr~):

-ßT

y W L

b~
X

Fig. 4

avec Wm=-
1

i(
m 0

9*Wj 8V2m+ l) U2m-ßV2m, c'est-ä-dire:2m+l\ dy r dx

W0=l, W1 (x2-y2)-ß(2xy), W2=(x*-6x2y2+y*)-ß(4x3y-4xyi),
A partir de ces W, on calcule, comme auparavant, les fonctions Pm orthogonales

pour le contour et on developpe le binöme x2—ky2:

(x2-ky2)yplxy

oo

/ amPm avec a„,=
J>-kyWJe

JePm2dS

Toutes les Operations sont faites, sans difficulte, comme pour le tableau I et le
probleme est resolu. Dans le tableau II, est donnee la Solution pour le cas du carre
(losange avec ß=l). La derniere colonne; qui contient les termes dont la somme
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doit etre egale ä 1/6 pour que l'effort tranchant soit egal ä l'integrale des contraintes
txz, permet de determiner la precision obtenue. Sur la fig. 5 sont indiquees les valeurs
des txz pour les diagonales x=0 et y=0, pour le contour y=l—x et pour >'=0,5,
valeurs obtenues avec les termes de la serie jusqu'ä w 3 (auquel correspond, dans la

va/eurs ca/cc/Ues

— formu/e c/ass/que
Q"st*** ej

-o

^e-

Sf,

fo"

Z¦ pocrx^O
xx

Fig. 5

derniere colonne, la somme 0,166.606 au lieu de 1/6). Le calcul de txz a ete fait, en
employant les divers coefficients, de la meme facon que le calcul des deux dernieres
colonnes des tableaux I et II, suivant Fexemple du tableau III, pour x=y=0 et pour
x=0, .y=0,6.

Tableau III

m WmPy-fm
formule generale

*=0
y=0

*=0
^=0,6

0
1

2
3

1

(*2->>2)+0,333.333/o
(^»-6^2>,2+yt)+o)214.286/i -0,2/0
(at2 —15jc*>'2+15x2>"t_y6)+o,169.559/"2—0,357.143/,

+0,142.857/"0

1,00000
0,33333

-0,12857

0,00201

1,00000
-0,02667
-0,07614

0,09282

^r«=(0,266.667/o+0,587.500/i-0,059.764/"2+0,025.991/3)
y -x2+0,2^2 0,4702 0,3300
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Resume

Une nouvelle methode est proposee pour la Solution du probleme de la torsion;
eile consiste ä utiliser certaines fonctions orthogonales specialement choisies. La
methode peut etre adoptee ä la Solution des problemes de la physique mathematique
consistant ä resoudre l'equation de Laplace, ä deux dimensions, avec des conditions
donnees au contour. Un exemple d'application est indique pour le cas de la torsion
d'une piece de section en losange et un autre au cas des contraintes de cisaillement
dans les pieces flechies.

Summary

A new method for the Solution of the problem of torsion is proposed. It consists
of the use of special orthogonal sets of functions. This method is extensible to the
problems of mathematical physics which involve the Solution of Laplace's equation
with given boundary conditions. Two examples are shown: one, the torsion of
a bar with rhombus-shaped section and the other, the distribution of the shearing
stresses in beams under bending.

Zusammenfassung

Eine neue Methode für die Lösung der Torsionsaufgabe wird vorgeschlagen. Sie

besteht in der Anwendung von besonderen orthogonalen Funktionssystemen. Diese
Methode ist anwendbar auf die Lösung der Fragen, die in der mathematischen Physik
auftreten, wenn man eine Laplace'sche 2-dimensionale Gleichung mit gegebenen
Randbedingungen lösen will. Zwei Beispiele werden angeführt: eines für die Torsion
eines Stabes mit rhombusförmigem Querschnitt und das andere für die Verteilung der
Schubspannungen in Stäben, die durch Biegung beansprucht sind.
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AIIl
Beitrag zur Elastizitätstheorie der Schalen

Contribution to the theory of elasticity of shells

Contribution ä la theorie de l'elasticite des voütes minces

A. KUHELJ
Ljubljana, Jugoslawien

Einleitung
Die Ausgangsgleichungen der Biegetheorie dünner Schalen sind auch bei Benutzung

der Bernoulli'schen Annahme über das Ebenbleiben der Querschnitte noch
immer ziemlich undurchsichtig (vgl. z.B. Schrifttum 7). Auch haben sich bei erneuter
anschaulicher Ableitung dieser Gleichungen einige Unstimmigkeiten ergeben
(Schrifttum 8), so dass das Auftreten einiger Glieder daselbst nicht vollkommen
begründet erscheint. In diesem Beitrage wird versucht, einen neuen Rechnungsgang
bei der Aufstellung der Grundgleichungen anzudeuten, welcher von bekannten
Formeln der elementaren Differentialgeometrie der Flächen ausgeht und
verhältnismässig schnell und sicher zu eindeutigen Resultaten, ähnlich wie sie in neuerer
Zeit für spezielle Schalenformen aufgestellt wurden, führt. Weiter werden auch
einige Vereinfachungen vorgeschlagen, welche bei allgemeinen Schalenformen und
Parametern zwar noch immer zu ziemlich verwickelten Formeln führen, welche aber
z.B. bei Anwendung auf zylindrische Schalen beliebigen Querschnittes verhältnismässig

einfache Resultate ergeben.

Zusammenstellung einiger Resultate der elementaren Flächentheorie
Die für die Verzerrung der ganzen Schale massgebende Mittelfläche soll durch

zwei krummlinige Gauss'sche Koordinaten gegeben sein, die wir hier in Anlehnung
an A. E. H. Love (Schrifttum 7) mit a und ß bezeichnen, und zwar sollen die beiden
Scharen der Koordinatenlinien (a-Linie bei konstantem ß, /?-Linie bei konstantem <x)

der Einfachheit halber Krümmungslinien der Mittelfläche sein. Wir verwenden als
Hilfsmittel durchwegs die Vektorrechnung und benutzen dabei die im Lehrbuche
von R. S. Burington und C. C. Torrance (Schrifttum 3) angewandten Bezeichnungen
mit dem Unterschied, dass wir die Vektoren einfachheitshalber nur mit einem
Querstriche bzw. Querpfeile andeuten. Die Hauptsätze der elementaren Differentialgeometrie

entnehmen wir dem Lehrbuche von W. Blaschke (Schrifttum 2, vgl. auch
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das entsprechende Kapitel in Schrifttum 3), dessen Bezeichnungen sich übrigens von
unsrigen nur wenig unterscheiden.

Der Ortsvektor zu einem beliebigen Punkte P der Schalenmittelfläche sei als
Funktion von <x und ß durch

r=x(x, ß)i+y(x, ß)j+z(a, ß)k (1)

gegeben, wobei x, y, z Kartesische Koordinaten von P bedeuten, während i,j, k die
Einheitsvektoren in Richtung der Koordinatenachsen sind. Alle im folgenden
gebrauchte Ableitungen von r bzw. x, y, z nach a, bzw. ß seien überall endlich und
stetig. Um die~Uebersichtlichkeit auch in verwickelten Ausdrücken möglichst zu
wahren, wollen wir weiter verabreden, dass unten angesetzte Zeichen a bzw. ß
ausschliesslich Ableitungen nach diesen Parametern bedeuten sollen, so dass z.B.

^ dt dr d2t

^-te ^8^ r^=dr72USW (2)

sein soll.
Die in (2) angegebenen Ableitungen ra und tß bedeuten bekanntlich Vektoren in

Richtung der Tangenten zu beiden Koordinatenlinien. Um zu Einheitsvektoren et
bzw. e2 in diesen Richtungen zu kommen, führen wir nach A. E. H. Love (Schrifttum 7)
die positiv genommenen Wurzeln der beiden Koeffizienten E und G der ersten
Fundamentalform ein

>i=+V/£=+V/ra©:(, B=+VG=+Vrß.rß (3)

und erhalten

r„ r,

e>=i> °>=i C4)

während der Einheitsvektor in Richtung der Flächennormale durch

ei=ely.e2 (5)
gegeben ist.

Die Ableitungen dieser Einheitsvektoren nach a und ß sind im wesentlichen
durch die Ableitungsgleichungen nach Gauss und Weingarten (Schrifttum 2, S. 108
und 114) gegeben; es ist z.B.

ra.a. ^ Aa,
lot_ A r*A2

Alle Ausdrücke vereinfachen sich wegen der Benutzung der Krümmungslinien als
Koordinatenlinien sehr, weil dann bekanntlich

F=ta ^=0 und M=raß ei=0
ist. Unter Benutzung der Ableitungsgleichungen erhält man dann

Aß A Ag A
ei<x=-^e2+^-ei, e2rt=^ex, eia -—e1 (6a-c)

Ba Bx B B
eiß=-je2, e2ß=-—ei+—e3, eiß=-^e2 (7a-c)

wobei statt der Koeffizienten L, M, N der zweiten Fundamentalform die beiden
Hauptkrümmungshalbmesser Rx und R2 mit

1 L L 1 N N
TrE~A~2

Und
R~2-G-J2 (8)

eingeführt worden sind. Dabei ist zu beachten, dass Rx und R2 als positiv zu nehmen
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sind, wenn die Krümmungsmittelpunkte der Krümmungslinien auf der positiven
Seite des Einheitsvektors e3 liegen.

Mit diesen Formeln lassen sich, wie im folgenden gezeigt wird, verhältnismässig
einfach alle Resultate der Biegetheorie der Schalen ableiten. Zur Vereinfachung der
Gleichungen brauchen wir nur noch folgende Beziehungen zwischen obigen Grössen,
die sich durch Vergleich der auf verschiedenen Wegen erhaltenen gemischten
Ableitungen von ra bzw. rß ergeben. Aus Gaussens Theorema egregium (Schrifttum 2,
S. 117) erhält man

(*).+(*).--£ »
während die beiden Mainardi-Codazzischen (Schrifttum 2, I.e.) Gleichungen in unserem
Falle folgende einfache Form annehmen

GM (£).-£ —>
Verformung der Schalenmittelfläche

Die bei der Belastung der Schale entstehenden Verschiebungskomponenten eines
beliebigen Punktes P der Schalenmittelfläche in Richtung der Einheitsvektoren elt
e2, e3 seien mit u, v, w bezeichnet; der Ortsvektor f" zum Punkte P', wohin der Punkt
P nach der Belastung verschoben wird, ist also durch

7'=r+p=t+ue1+ve2+we3 (11)

gegeben. Unter Benutzung der Gleichungen (4), (6) und (7) erhält man sehr leicht
die Ableitungen von 7' nach « und ß, die natürlich wieder Vektoren in Richtung der
Tangenten zu den Koordinatenlinien auf der verformten Mittelfläche darstellen. So
erhält man z.B.

r'oi^a+u^+Vae^Waei+ ue^+ve^+we^
oder nach (6) und (7)

und ähnlich

'\=\A+Ua+v^-w^yi + \va-u-^y2+\wa +uj-\ei ¦ (12a)

?'ß=(^-^)«i+ (-S+^+"3f-M,^je2+(M'ß+^)<?3 • (12b)

Durch abermalige Anwendung dieser Regeln lassen sich verhältnismässig leicht auch
Ausdrücke für die zweiten Ableitungen von 7' berechnen, auf deren Wiedergabe wir
aber verzichten, weil wir sie im folgenden nicht brauchen werden. Aus Gleichungen
für t'a und 7'ß erhält man natürlich auch sehr leicht entsprechende Ableitungen des

Verschiebungsvektors p, indem man von obigen Ausdrücken die, Ableitungen von r
abzieht.

Die Verzerrungen in der Schalenmittelfläche lassen sich nun mit Hilfe der ersten
Ableitungen von 7' sofort berechnen und zwar auch bis zu den Gliedern höherer
Ordnung in den Verschiebungen. Da wir aber auf Stabilitätsprobleme an dieser
Stelle nicht eingehen können, wollen wir uns im folgenden nur auf die Glieder erster
Ordnung beschränken. Die Dehnung *x in Richtung der a-Linie ist z.B. bekanntlich
durch

ds'—ds A'—A ,-——
£l —-j- — mit A'^Vr'^.r'r, (13a)
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gegeben, wobei ds'=A'.da. das Bogenelement dieser Linie nach der Verzerrung
bedeutet. Für die Scherung y12 des Flächenelementes mit den Längen Ada., Bdß
erhält man (vgl. Schrifttum 1, 4, 5, 9 und 10)

yi2=- AB (13b)

und durch Einsetzen entsprechender Ausdrücke aus (12a, b) erhält man endgültig
für die Komponenten des Verzerrungstensors bis auf die Grössen von höherer
Ordnung in den Verschiebungen

ABe2=ß+ulT5

w

w
T2

Vr,uß „Aß "a
^2=B-UÄB+Ä

Bcl

"Tb

(14a-c)

Ausserdem werden wir bei folgenden Ausführungen noch Ausdrücke für die
Einheitsvektoren e\, e'2 in Richtung der Tangenten zu den beiden Koordinatenlinien
nach der Verformung, sowie den Einheitsvektor e'3 in Richtung der Flächennormale
brauchen. Es ist bis auf die Glieder höherer Ordnung

r'a /»of. Aß\ (wa u\

rß iuß Ba\ ,(wß.v\'¦^J'=[B-VÄBn+e2+[-B+R2h
(W* U \

K15a-c)

e'i=(raxrß)lVE'G'-F'2-- B ¦-)+ Ö- e2+e3

Mit diesen Gleichungen und unter Benutzung von (6) und (7) lassen sich leicht auch
Ableitungen dieser Vektoren nach a. und ß berechnen. So erhält man z.B.

e 2<3=

e 3a=-

+

B«
u*Tb-va2b

B«2 B
-VR\

lR2+\R2)ß+\B)ß_

A
j_ / " \ i (w«\ Aß Aß

rArJA-ä).+vbr2+w^

Ry

«?3

Aß_

AB e2-
wn

%2+R <?3

(16a, b)

und ganz ähnliche Ausdrücke würde man auch für die übrigen Ableitungen erhalten.

Verformung eines beliebigen Schalenelementes

Aehnlich wie bei der Plattentheorie beschränkt man sich auch bei Untersuchung
der Schalen auf die Verzerrungen parallel zur Tangentialebene der Schalenmittelfläche.

Wir nehmen daher auf dem Normalenvektor e3 durch den Punkt P der
Schalenmittelfläche (Abb. 1) einen Punkt Pz an und legen durch diesen im konstanten
Abstand z von der Schalenmittelfläche eine neue Fläche. Alle Grössen in bezug
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,A\\ ~~-?/ /11 // / I \eJ Je?

i

Abb. 1. Verschiebungen der Schale

auf diese Fläche wollen wir mit demselben Zeichen wie entsprechende Grössen der
Mittelfläche bezeichnen, versehen sie aber noch mit dem Index z.

Aus der Gleichung dieser Fläche

rz=t+ze3 (17)

Hesse sich nun nach allgemeinen Regeln der Differentialgeometrie leicht beweisen,
dass auch hier die Koordinatenlinien a=const. und /J=const. Krümmungslinien
sind und dass die Flächengrössen folgende Werte haben

Az=A.^£=A^_l.y Bz=ß(l-£ (18a, b)

R1z=R1-z=R1(a--^J, R^RiU--] (19a, b)

was übrigens anschaulich auch unmittelbar einleuchtet (Abb. 1). Weiter sind die
Einheitsvektoren dieser Fläche zu Vektoren ex, e2, e3 der Schalenmittelfläche parallel
und man kann deshalb die Formeln für die Verzerrungen in der Mittelfläche
unverändert auf unsere neue Fläche übertragen, wenn wir nur die Verschiebungen uz, vz,
wz eines beliebigen Punktes Pz unserer Fläche kennen.

Um nun diese Grössen zu bestimmen, gehen wir auch hier wie bei der Biegung
dünner Balken und Platten von der Bernoulli'schen Annahme aus, dass ebene
Querschnitte auch nach der Verformung eben bleiben und senkrecht zur verformten
Mittelfläche stehen. Für die Verschiebung pz erhält man dann (vgl. Abb. 1) folgende
Gleichung

PP'z=z e3+~pz=-p+z e'3

oder ~Pz=t+z(e'3—e3) (20)
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oder in Komponentenform und unter Beachtung der Gleichungen (11) und (15c)
geschrieben

(w$ V \

wz=w

(21a-c)

Zur Berechnung der Verzerrungskomponenten in der Tangentialebene wendet
man Gl. (14a-c) auf die neue Fläche an und erhält z.B.

w*a Azß wz

ei*=Ä-z+v*ZBrRZ
Wenn man nun für Grössen rechts die Werte (18), (19) und (21) einsetzt und dazu
noch Gl. (10a) beachtet, erhält man für elz

€U= — (22a)

'©
' wobei ex durch (14a) gegeben ist, während man für die erste Krümmungsänderung ky
automatisch

'K«\ Aß (Wß v \
Ki=A[-Ä+Rja+TB[B+R2) (23a)

bekommt. Auf dieselbe Weise erhält man für die Dehnung e2z in Richtung der
zweiten Koordinatenlinie

,„=2=2S (22b)

'-r2
1 Ma v\ B„/w„ u\ „„ xmt K2=B-{1+R2)ß+TB[-I+Rj (23b)

Aehnlich verfährt man auch bei der Berechnung der Scherung yl2z. Hier erweist es

sich am einfachsten, wenn man die mit dem Faktor z behafteten Glieder in zwei
Anteile zerlegt und man erhält

Ynz=yii- — \—-—z (22c)z.\ z.X2

H -i
wobei die zweiten Krümmungsänderungen durch

^.Tb'Ä (23c)

^+r),-m-'»^ <2M»

gegeben sind. Gleichungen (22) und (23) stimmen vollkommen mit entsprechenden
Gleichungen von Love (Schrifttum 7, Gl. 26 und 30, S. 524 bzw. 527) überein. Unsere
Krümmungsänderung Xx ist bei Love mit r bezeichnet, während A2 durch Ai und y12
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ausgedrückt wird, weil, wie sich leicht mit Hilfe der Mainardi-Codazzischen
Gleichungen (10) direkt beweisen lässt,

Ai-Az=G?ri?i)ri
ist. Trotz der neuerdings erhobenen Zweifel (vgl. Schrifttum 8, Gl. 6 und 7) ergeben
sich also obige Gleichungen zwangsläufig aus der Bernoulli'schen Annahme. Etwas
anders gebaute Ausdrücke erhält man, wenn man bei ihrer Ableitung von den Love-
schen Gleichungen für die Drehungen (Schrifttum 7, Gl. 24 und 25 auf S. 523)
ausgeht, wobei aber dort bei q'2 und r'2 augenscheinlich Versehen unterlaufen sind,
wie man sich leicht durch Vergleich von q'2 mit p\ und r'2 mit r\ überzeugt. Aus
unseren Ausdrücken (16a, b) und ähnlich gebauten Gleichungen für andere
Ableitungen der Einheitsvektoren auf der verformten Mittelfläche könnte man übrigens
auf Grund von bekannten Gleichungen für die Geschwindigkeitskomponenten bei
Drehung verhältnismässig leicht Ausdrücke für alle sechs Drehungskomponenten
erhalten, die vollkommen symmetrisch gebaut sind und von denen wir glauben, dass
sie bis auf die Glieder zweiter Ordnung in den Verschiebungen u, v, w korrekt sind.
Der Kürze halber aber wollen wir darauf nicht näher eingehen.

Schnittkräfte und Schnittmomente. Gleichgewichtsbedingungen

Wir gehen nun zur Berechnung der den Verformungen elz, e2z, yl2z entsprechenden
Spannungen über. Wir vernachlässigen die Normalspannung a3z in Richtung von
e3 und erhalten dann bekanntlich aus dem Hooke'schen Gesetze

E E E
Clz=j—^2(eiz+ve2z), a2z=j—-^e2z-\-velz)) t12z= y12z (24a-c)

wobei mit E der Elastizitätsmodul und mit v=ljm die Poissonsche Konstante
bezeichnet ist. Bei der Aufstellung der Gleichgewichtsbedingungen erweist sich
weiter die Einführung der resultierenden Kraft und des resultierenden Momentes der
Spannungen über die Schalendicke als vorteilhaft, wenn man sie auf die Längeneinheit

der a- bzw. der /J-Linie bezieht Der Kürze halber benennen wir diese Grössen
einfach als Schnittkräfte bzw. Schnittmomente und erhalten für diese Grössen in der
Schnittfläche oc=const. (Abb. 2) in der von Flügge (Schrifttum 4) herrührenden
Bezeichnung folgende Gleichungen (alle Integrale sind zwischen — h/2 und +h/2 zu
nehmen)

Nn=jr1Zz(l-^dz

Q^\rl3z{l-^dz

Ml=jz.<7lz[l--Qdz

M12=jz.r12z\l-^Jdz

<*>> s*,v
&9.

'<<& m
4P *<v

f© Set,4AfdP
8*

BApdd-

BQ,dß AQyda

Abb. 2. Schnittkräfte und Momente
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In diesen und in ähnlich gebauten Gleichungen für den Schnitt ß=const. müsste
man statt Rx bzw. R2 eigentlich die Werte der Krümmungshalbmesser R\ und R'2
nach der Verformung einsetzen. Ebenso müsste man später auch die
Gleichgewichtsbedingungen eigentüch für das verformte Schalenelement aufstellen und
deshalb statt der ursprünglichen Grössen A, B die nach der Verformung enstandenen
Werte A', B' usw. benützen. Wenn wir von Stabilitätsuntersuchungen absehen,
können wir sowohl die auf die Längeneinheit der unverformten Schalenmittelfläche
bezogenen Schnittkräfte und Momente als auch die für das unverformte Schalenele-
ment angesetzten Gleichgewichtsbedingungen in erster Näherung als richtig ansehen.
Durch Entwicklung von (1—z/R,)'1 bzw. (1—z/R^'1 in eine Potenzreihe und
Vernachlässigung aller höherer Potenzen von der dritten ab erhält man für die
Kräfte und Momente folgende Gleichungen

(R->—R,
R,—R?\

{ -*vi—R-y Ro — -fvi\
N2=D(e2+ve,)+K[<2.^+K2-j^)

#12 -
1-v

-Dy, l-v R,-R2s
RiR2

N21=-
¦v l-v R2—Ru

Mi=—K\Kl+VK2-[
Ry

R\R2

-Ri
R,R1-^2

M- ;= —K\ K2pVK, +
^2 — ^1

R\R2

M12- -4^Pf)
M-21 .J^i+h+m)

mit D=
Eh

l-v2 K--

Rt
£A3

(25a-h)

12(1-©)'
k2-*-h-K ~D~12 (26)

Die verhältnismässig kleinen Einheitskräfte Qx und Q2 berechnen wir ähnlich wie
bei Platten nicht aus den Formänderungen, sondern erst später aus den
Gleichgewichtsbedingungen.

Auf die bei Flügge (Schrifttum 4) auftretenden Sonderfälle angewandt, stimmen
obige Ausdrücke vollkommen mit den Flüggeschen überein. Gegenüber den
Loveschen Gleichungen (Schrifttum 7, Gl. 39, 42 und 44 auf S. 531, 532 bzw. 533)
bestehen Unterschiede, die aber zum Teil darauf hinzuführen sind, dass bei Love
auch die für das Verschwinden von e3z notwendige Normalspannung a3z in Betracht
genommen wurde.

Mit den Schnittkräften und Momenten lassen sich die Gleichgewichtsbedingungen
am Schalenelement verhältnismässig einfach ausdrücken. Wenn man—wie erwähnt
—einfachheitshalber die Gleichgewichtsbedingungen am unverzerrten Schalenelement
annimmt, die Aussenkraftkomponenten je Flächeneinheit der Mittelfläche in
Richtung der Vektoren eu e2, e3 mit Xu X2, X3 bezeichnet und die Momente der
Aussenkraft um die drei Achsen durch den Mittelpunkt des Schalenelementes ver-
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nachlässigt, dann lautet in vektorieller Form die Gleichgewichtsbedingung gegen
Verschiebung

[B(N.ei +N12e2+ ßi<?3)]a+ [A(N2lel+N2e2+Q2e3)]ß
+AB(Xiei + X2e2+X3e3)=0 (27a)

und die Gleichgewichtsbedingung gegen Drehung
AB[e{ x (Nl2e2+Qxe3)+e2 x (N2lex + Q2e3)] + [^(-M^-r-Af>2)]a

+ [A(-M2ei + M21e2)]ß=0 (27b)

Unter Benutzung der Gl. (6a-c) und (7a-c) erhält man daraus sechs Gleichungen in
skalarer Form

(BNX + (AN21)ß+AßN12-BaN2- ^Qx+ABX, =0

AB
(BNl2)oi+(AN2)ß-AßNl+BxN2l-—Q2+ABX2=0

(BQ1)0L+(ÄQ2)ß+AB^+^j +ABX3=0

-(BMl2\-(AM2)ßPAßMx-B^M2XPABQ2=Z)
(BM1)a + (AM2[)ß+AßMn-B0LM2-ABQ1=0

Ml2 M2[
R] Ri¦S^+-^+Nl2-N2l=0

(28a-f)

Um nun die endgültigen Gleichungen für die Verschiebungen zu bekommen,
drückt man aus Gl. (28d, e) die beiden Querkräfte Qx und Q2 durch Momente aus
und setzt sie in Gl. (28a-c) ein. Unter Benutzung von Gl. (25a-h), (14a-c) und
(23a-d) erhält man daraus ein System dreier partieller Differentialgleichungen für die
drei Verschiebungen u, v, w, durch deren Integration bei Berücksichtigung gegebener
Randbedingungen das Problem der Verschiebungen, und damit auch das der
Spannungsbestimmung, prinzipiell gelöst wird. Auf eine explizite Hinschreibung dieser
Gleichungen für den allgemeinsten Fall müssen wir allerdings verzichten, weil sie
ausserordentlich unübersichtlich sind und ihre Aufstellung sich nicht lohnt. Die
letzte skalare Gleichgewichtsbedingung (28f) fällt weg, weil sie schon in den Grössen
€i> e2> 7i2. ^l» K2> ^i un£l A2 identisch befriedigt wird, wie man sich leicht durch
Einsetzen der Ausdrücke aus (25c, d, g, h) überzeugt.

NÄHERUNGEN BEI DÜNNEN SCHALEN

Aus der elementaren Elastizitätstheorie ebener Spannungs- und Dehnungs-
zustände ist bekannt, dass die Bernoulli'sche Hypothese nur bei einigermassen dünnen
Scheiben zutrifft und dass die Zusatzglieder bei Verschiebungen annäherend mit der
zweiten Potenz des Verhältnisses Trägerhöhe : Trägerlänge zunehmen. Daraus
können wir schliessen, dass auch bei Schalen die Bernoulli'sche Annahme nur dann
zutreffen wird, wenn das oben genannte Verhältnis nicht zu gross sein wird. Wir
wollen weiter annehmen, dass das Verhältnis der Schalendicke zu den beiden
Hauptkrümmungshalbmessern klein gegenüber eins sei und dass man es deshalb überall
vernachlässigen darf. Bei vielen praktischen Ausführungen beträgt dieses Verhältnis
höchstens ein paar Prozent und ein solcher Fehler in der Spannungsberechnung ist
im Hinblick auf die Unsicherheiten bei der Bestimmung der Schalendicke, des

Elastizitätsmoduls und anderer Grössen sicher zulässig.
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Mit der Annahme, dass die Schalendicke klein gegenüber den beiden
Krümmungshalbmessern sei, vereinfachen sich aber unsere Gleichungen ziemlich stark.
So sieht man z.B., dass schon in Gl. (21a-b) rechts die Verschiebungen u und v
einmal mit dem Faktor eins und das andere Mal aber mit z/R, bzw. z/R2 auftreten.
Wir können also diese letzten Summanden streichen und erhalten für die Verschiebungen

ausserhalb der Mittelfläche einfach dieselben Gleichungen

uz=u—z

vz=v—z

wz=w

A

B

(29a-c)

wie bei Platten. In Gleichungen (18a, b), (19a, b) und (22a-c) für die Grössen Az,
Bz, Ru, R2z und für die Verformungen ausserhalb der Mittelfläche streichen wir
ebenfalls überall die Verhältnisse z/R, bzw. z/R2 und erhalten so

elz=el—ZK1
E2z £2 ZK2

y\2z=Y\2—2-zA
(30a-c)

mit etwas veränderten Ausdrücken für die Krümmungsänderungen

i/M Aß

"^aXa-J+a-b^
1 (wß\ Ba

-b[b)ß+Iww«

x j l(wß\ Aß '/Vi Ba
K^X2=X=Ä\Bh-TBW^B{-j)ß-ÄF2^

«2 (31a-c)

Wenn man dann weiter noch in den Gleichungen für die Schnittkräfte und
Schnittmomente dieselbe Vernachlässigung zulässt, erhält man statt (25a-h)

N1 D(€1 + vC2) N2=D(e2+ ve,) N12=N21 l-v.¦Dy,
(32a-f)2i——2~^Yi2 y

M, -K(k,+vk2) M2=-K(k2+vk1) M,2=M2, -(l-v)K\)
In den Gleichungen (25a-h) sind also jetzt alle sogenannte Zusatzglieder weggefallen.
Man könnte aber auch unmittelbar von Gl. (25) zu (32) gelangen unter der
Voraussetzung, dass h/R, und h/R2 klein sind gegen eins und dass es sich um einen
Biegespannungszustand handelt, bei welchem die grössten Biegungsverformungen K,h, x2h und
AA von derselben Grössenordnung sind wie els e2 und y,2. Jedes Glied in (25),
welches in (32) nicht mehr auftritt, ist nämlich mit dem Verhältnis h/R, oder h/R2
multipliziert gegenüber anderen, der Grössenordnung nach gleichen Gliedern, und
kann deshalb vernachlässigt werden.

Auch die Gleichgewichtsbedingungen können bei kleinen h/R, und h/R2 etwas
vereinfacht werden. Wenn man nämlich die durch Q, und Q2 in Gl. (28a, b)
eingeführten Glieder näher betrachtet, findet man dass sie in diesen Gleichungen bei
Schnittkräften Nu N2 und A^^ ausnahmslos vernachlässigt wurden. Man kann also
in beiden ersten Gleichungen (28) auch die Summanden (ABQ,)/R, bzw. (ABQ2)/R2



ELASTIZITATSTHEORIE DER SCHALEN 209

(33a-e)

streichen und erhält so die für die Berechnung des Versehiebungs- und Spannungszustandes

massgebenden fünf Gleichungen aus (28a-e)

(BN,)x+ (AN2,)ß+AßN,2-BOiN2+ABXl=0'
(BN,2)OL+(AN2)ß-AßN,+BclN2, + ABX2=0

(BQ,\+(AQ2)ß+AB{^+^j+ABX3=Q

ABQ,=(BM,)a+(AM2,)ß+AßM,2-BaM2
ABQ2=(BM,2)ai + (AM2)ß-AßM,+BaiM2l

Was nun die letzte Gleichgewichtsbedingung (28f) betrifft, so erweist sie sich nicht
mehr als Identität. Aber wir können doch annehmen, dass sie durch unsere
Ausdrücke genügend genau befriedigt wird, weil beim Biegespannungszustand die
Grössen M,2/R, und M2,/R2 klein sind gegenüber N,2=N2, und deshalb gestrichen
werden können. Indem man nämlich für die in (28f) auftretenden Kräfte und
Momente die Ausdrücke aus (32) einführt, erkennt man, dass in den beiden ersten
Summanden grössenordnungsmässig gleiche Glieder wie bei den letzten zwei
auftreten, die aber dort noch mit h/R, bzw. h/R2 multipliziert sind.

Gleichungen (33a-e) bilden den Ausgangspunkt für die Aufstellung der
Differentialgleichungen für Verschiebungen. Dazu braucht man wieder nur die Grössen Q,
und Q2 aus den letzten zwei Gleichungen in (33c) einzusetzen und dann alle in
(33a-c) auftretenden Schnittkräfte und Schnittmomente durch Verschiebungen
mittels der Gleichungen (14), (30), (31) und (32) auszudrücken. Im allgemeinen
erhält man zwar auch mit allen diesen Vereinfachungen noch immer sehr
unübersichtliche Gleichungen; aber durch entsprechende Wahl der Koordinaten a und ß
erhält man in vielen, praktisch sehr wichtigen Sonderfällen verhältnismässig einfache
Ausdrücke, die sich für numerische Berechnungen viel besser eignen als die in voriger
Nummer erwähnten allgemeineren Beziehungen. Wir wollen dies ganz kurz
Beispiel der Zylinderschalen zeigen, wo die Verhältnisse besonders einfach sind.

am

Biegespannungstheorie dünner Zylinderschalen
Bei zylindrischen Schalen nehmen wir als Gauss'sche Koordinate <x die Länge der

Erzeugenden auf der Schalenmittelfläche von einem gewissen Querschnitt und für ß
die Länge der Leitlinien von einem bestimmten Axialschnitt ab. Dann hat man

A=B=l, j-=0, 1=/G8) (34)

Gleichungen (14) und (31) für die Verzerrungen und Krümmungsänderungen
nehmen dann eine sehr einfache Form an und ergeben für die Schnittkräfte und
Momente folgende Ausdrücke

T / *©
N, D

I H
"a +^K-^

N2 D\vß-^+vu^

N,2=

M,=

l-vN2\= —D(uß+Vz)
(35a-f)

-K(wa(X + vWßß)

M2=-K(wßß+vwlxlx)

M,2=M2, -(l-v)K.w0iß
-14
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während die Gleichgewichtsbedingungen (33) nun folgendermassen lauten

Nla+N21ß+X,=0 1

N12a+N2ß+X2=0

Qlcc + Q2ß+~-rX3 0 (36a-e)

Q,=Ml0L+M2,ß
Q2=M,2o,+M2ß

Aus den letzten zwei Gleichungen erhält man mittels (35d-e) Ausdrücke für Q,
und Q2 in der Verwölbung w und Gl. (36a-c), in Verschiebungen u, v, w ausgedrückt,
lauten daher

"aa+
1 1+v

1+v l-v
f+^a

±{vua+vß-^y

-vT2+d=°
(w\ *2 „

mit

k2

+2wa0Lßß+w

AAw+^=0

(37a-c)

(38)AAw=waz<XOr

Gleichungen (37) stellen die auf Schalen beliebiger Querschnittsform
ausgedehnten, etwas vereinfachten Flüggeschen Gleichungen (71) (Schrifttum 4, S. 118) dar.

Statt die Spannungsverteilung auf dem Umwege über Verschiebungen zu berechnen,

ist es manchmal vorteilhafter, unmittelbar die Schnittkräfte zu bestimmen.
Indem wir in der Gleichgewichtsbedingung (36c) Q, und Q2 durch w ausdrücken,
bekommen wir nämlich aus (36a-c) und aus der Verträglichkeitsbedingung zwischen
N,, N2, N12 und w folgende Gleichungen

Nla+N21ß+X,=0
N12a+N2ß+X2=0
N2
-^-K.AAw+X3=Q
R2

Nlßß-vN,c
Eh

i+N2aia-vN2ßß-2(l+v) N^ßP—w^O
H-2

(39a-d)

Bei der Integration solcher Gleichungssysteme baut man aber gewöhnlich die
Lösung aus Summen von Gliedern auf, in denen alle unbekannte Grössen als
Produkte gewisser Funktionen einer unabhängigen Veränderlichen mit unbekannten
Funktionen der anderen Veränderlichen auftreten, wobei natürlich die willkürlich
gewählten Funktionen gewissen Randbedingungen genügen müssen. In solchen
Fällen tritt in den übrigen Randbedingungen eine Schnittkraft nicht auf und es ist
daher ratsam, sie aus (39a-d) zu eliminieren. Wenn wir z.B. die Schnittkräfte und
die Verwölbung w als bekannte Funktionen von a annehmen, tritt in den Schnittebenen

j8=const. die Schnittkraft N, nicht mehr auf; wir drücken sie also aus (39a)
durch andere Grössen aus und eliminieren sie dann aus (39d). Aus (39b-d) erhält
man so drei Differentialgleicnungen für N2, N2, und iv

N2W+N2ß+X2=0
N2-K. R2.AAw+R2X3=0

Eh
N2actrl-vN2aßß-N21ßßß-(2+v)N2,^ß+—w^a + vX,ao,-X,ßß=0

(40a-c)
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Mit unseren Annahmen können wir aber unser Problem auch auf eine einzige
Differentialgleichung für die Verwölbung w zurückführen. Aus (40a-c) eliminiert
man N2 und N2l und bekommt

Eh 1K. AA(R2. AAw)+—vvaaaa+vArlaaa-Xla/}/, I

„^
+(2+v)X2outß+X2ßßß-AA(R2X3)=0)

Auf Einzelheiten bei der numerischen Durchführung der Rechnungen können
wir an dieser Stelle nicht eingehen, sondern verweisen auf das Schrifttum 6.

Schrifttum
(1) Biezeno, C. B. und Grammel, R. Technische Dynamik. Berlin, 1939.
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(5) Girkmann, K. Flächentragwerke. Wien, 1946.
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Zusammenfassung

Aus Gauss'schen und Weingartenschen Ableitungsgleichungen der Flächentheorie

und unter Benutzung der Bernoulli'sehen Annahme über das Ebenbleiben der
Querschnitte lassen sich sehr leicht Ausdrücke für die Verzerrungen eines beliebigen
Schalenelementes ableiten. Lovesche Gleichungen für diese Grössen werden
bestätigt. Zur angenäherten Behandlung dünner Schalen wird die Vernachlässigung
der Schalendicke gegenüber den beiden Hauptkrümmungshalbmessern der Mittelfläche

vorgeschlagen. Daraus ergeben sich vereinfachte Ausdrücke für die
Krümmungsänderungen und auch der Einfluss der Querkräfte auf das Gleichgewicht in
der Tangentialebene kann vernachlässigt werden. Mit dieser Annahme lassen sich
bei zylindrischen Schalen verhältnismässig einfache Gleichungen sowohl für die
Verschiebungen als auch für die Schnittkräfte angeben.

Summary

From the formula; of Gauss and Weingarten for the theory of surfaces and under
Bernoulli's assumption that plane sections remain plane, the expressions for the
strain in the shell are derived. On the above assumption, Love's equations for the
components of strain are correct. To simplify the analytical treatment of thin shells,
it is proposed to neglect their thickness, when compared with the main radii of
curvature of the middle surface. This assumption gives simplified expressions for
the changes of curvature, and the influence of the stress-resultants normal to the
middle surface in the equations of equilibrium in the tangential plane can be neglected.
In the case of a cylindrical shell, comparatively simple equations are derived both
for the components of displacement and for the stress-resultants.
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Resume

A partir des equations etablies par Gauss et par Weingarten pour la theorie des
surfaces et en utilisant l'hypothese de Bernoulli concernant la conservation de la
planeite des sections, on peut etablir tres aisement des expressions donnant les
deformations d'un element de voüte mince arbitraire. Les equations de Love
concernant ces grandeurs sont ici confirmees. Pour traiter le probleme des voütes
minces, il est propose de negliger leur epaisseur par rapport aux deux rayons de courbure

principaux. II en resulte des expressions simplifiees pour les variations de

courbure; l'influence des efforts de cisaillement sur les conditions de l'equilibre dans
le plan tangentiel peut egalement etre negligee. Dans ces conditions, on obtient des

equations relativement simples pour les voütes cylindriques, tant en ce qui concerne
les deformations que les efforts dans les sections.
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An approximate method for treatment of some plate bending problems

Methode approchee pour l'etude de quelques problemes concernant la
flexion des dalles

Eine Näherungsmethode zur Behandlung einiger Probleme der
Plattenbiegung

ÄKE HOLMBERG, d.s.c.s.e.
Consulting Engineer, Lund, Sweden

Consider a rectangular plate, fig. 1, simply supported along the edges x=0 and

x=a, whereas the other edges are either simply supported or rigidly clamped.
Suppose, furthermore, that this plate is submitted to a load
which can be expanded into a Fourier series in x. Then
any quantities relating to the plate can be calculated using
the well-known method involving simple corrections of
the corresponding quantities for a simply supported
beam. When, however, the boundary conditions at x=0
and x=a are changed, the calculation is considerably
complicated by time-wasting numerical computations,
which can seldom be managed when a design problem
calls for a rapid Solution. Some cases have been treated
in publications. Reference is made to S. Timoshenko,*
and D. Young.f Special mention is also made to
S. Levy,}; the immediate source of Inspiration for the
present paper.

In the following paragraphs a very simple but somewhat rough-and-ready method,
which is applicable under any arbitrary boundary conditions, is given. The easiest

way to demonstrate this method is to adduce two examples which permit comparison
with previously known "exaet" solutions.

* "Bending of Rectangular Plates with Clamped Edges," Proc. Fifth Int. Congr. Appl. Mech.,
1939.

t "Deflection and Moments for Rectangular Plates with Hydrostatic Loading," J. Appl. Mech.,
1943.

t "Square Plate with Clamped Edges under Normal Pressure producing Large Deflections,"
N.A.C.A. Report, No. 740.

ft
Fig. 1.
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Example No. 1

A triangulär load, two opposite edges clamped,
the third edge clamped, and the fourth edge free.

Consider the corresponding beam, fig. 2.

c4w p t x\ p\ l x \

[U 3 1

TZ
Fig. 2.

__2Ap V 1 nirx 4(A-~.
irD /, n A. a irD

Dp 1 mrx
sin:

'1.2.3.

X 0 1 .Y f2

d^w pa } and t93iv

/_, n B.a
n=l .3.5...

yields
<9.v3' 2D r9.Y3

-2A2+3(A-l)B=-3
2A2pa21S V -W Z-i n2

1 «77 4(A-l)Bpa
COS —r+-

1 mr
-r COS-^-=0

and hence ,4=f; 5=1.

2 1 2«77-a-

-= -r— is carried out by substituting S'o+S1x+S2.v
nL 3a

n=l .2.3...

and by inserting x=0, x=3a/2, and .v=3a. For these values, the sum is known.

d2w 27pa2 1 2nnx
dx2 4-niD /-, «3Sm 3a

x=0
d2w

dx~2=~6D

n=i .2.3

x=a

00

2pa "s© 1 nirx
7T-5Z) ^_! n} a

n l .3.5...

d2w pa2 land^w l yields C=f^=r^r / -sin-^
dx2

x=0
n=i .3.5...

11

w=
243pa
T&PD

00
4 V 1

<9H'_n > gives F=tt\ whence, finally,
dx J

1

2mrx 2pa4

3a T$D
n-1.2.3..

"V 1 «»r.
> -^ sin —

«7TX £

J

I2lpa4 ^© 1

1507r3Z) Zl, «:

n=7.J.5.

10/27TA-

sin -j-j—IIa • (1)

1

f-

n 1.3.5.

This is the equation of the elastic curve, which is

generally assumed to be known. The third term
represents the influence of the restraining moment.

For the plate shown in fig. 3 with the loading
as indicated in fig. 2, the elastic surface is chosen:

VHDiiiMimimmmiiiiiiiiiiiHm

ä

Fig. 3.
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W
243pa
loVl)

oo
4 N^ 1

n=1.2.3...

2mrx 2pa4
,(1 -+- Ki )sin-^ =-=" 3a ttsD

oo

Z 1 I1TX
(1+iysm —

n-*J.3.5...

+M 'VI ^ •
lOmrA-2 «-5(1 + ^)sin-TTI- (2)

n ;.J.5.
where y„ are functions of y.

y]n is determined by:

From

2«77X
AA Y, sin —— =0 and" 3a

y=±-2

l + Y,n=0,and^=0

nnx rnrb
AA Y„ sin G =0 when -=—=<x„

a 2a
is thus generally obtained:

GX cosh Ga„+sinh Ga„ wry
1 + F„= 1 —^-r-p. r-p——- cosh G—

sinn. Gol„ cosh Gct.„+GoLn a
sinh Ga„ mry imy

sinh Gol„ cosh Gan+Gct„ ' a
' a

On the other hand, if the boundary conditions are:
b

(3)

t92y
l+F„=0and-^-vn=0

then

i+rn=i-

<9y2

Gol„ sinh Ga.„+2 cosh Gct.n

2 cosh2 C7a„
cosh G

nny

1

+-z - G -— sinh G—
2 cosh Gol„ a a

(4)

In this example, M is determined by the condition:

The approximation consists in assuming that the function in v represented by the
first two terms in dw/dx is affined to the function represented by the third term. This
is not the case, and the angular deviation at the boundary becomes zero at one point
only. In the remaining region, the angular deviation becomes negative.

M being determined, all requisite quantities can be calculated from eqn. (2).
Suffice it to say that, for x=0, y=0, Y„=0 can be put in the calculation of d2w/dx2.
When x is small, contributions to Y„ are furnished by the terms where n is large only,
and for these terms Y„=0. The calculation can be made rapidly by using the functions

shown in figs. 4 and 5, and the summations given below:
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For b/a=l, 2, and 3, some quantities have been computed on the assumption
that Poisson's ratio is equal to zero. In fig. 6, they are compared with previously
known " exaet'' values.

Example No. 2

A uniformly distributed load; all edges clamped. For the corresponding beam
shown in fig. 7, the equation is:

4pa4 V 1

w=—rf. / -%sin-n5D / f n5

nirx pa« 1 rnrx
— sin

a 3tt3£> _n=1.3.5... n l .3.5...
For the plate shown in fig. 8, the following is chosen:

n=1.3.S... n 1.3.S...
1 -f F„ is determined from eqn. (3) and Af from eqn. (5).

(6)

(7)
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Just as in Example No. 1, some quantities have been calculated for Poisson's
ratio=0, and are compared in fig. 9 with previously known "exaet" values.

.««
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Fig. 8. Fig. 9.

Summary

Ifa rectangular plate (fig. 1) is simply supported or clamped along the edgesy= ±b/2
and simply supported along the edges x=0 and x=a, and if this plate is submitted
to a load which can be expanded into a Fourier series in x, then all quantities relating
to the plate can be calculated in a simple manner by means of generally known
methods. When, however, the boundary conditions at x=0 and x=a are changed,
the numerical computations are time-wasting. In this paper, the author demonstrates
an approximate method which is characterised by the fact that the latter boundary
conditions are satisfied on one point only. The calculations are very simple, and
the results are sufficiently accurate for most design problems.
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Resume

L'auteur considere le cas d'une dalle rectangulaire suivant figure 1, portant librement

ou totalement encastree sur les bords y=-hb/2, portant librement sur les bords
x=0 et x=a et soumise ä une charge se pretant ä un developpement en serie de
Fourier par rapport ä x. II montre que toutes les grandeurs qui caracterisent la dalle
peuvent etre calculees d'une maniere simple, ä l'aide de methodes generalement
connues. Les calculs numeriques sont toutefois fastidieux lorsque l'on fait varier
les conditions marginales sur les bords x=0 et x=a. L'auteur expose une methode
approchee caracterisee par ce fait que les conditions marginales laterales ne sont
remplies qu'en un point. Les calculs sont tres simples et la precision obtenue- est
generalement süffisante pour les besoins de la pratique.

Zusammenfassung

Für den Fall einer Rechteckplatte nach Abb. 1, die an den Rändern y=±b/2 frei
aufliegt oder total eingespannt ist, an den Rändern x=0 und x=a frei aufliegt und
einer Belastung unterworfen ist, die nach einer Fourier-Reihe in x entwickelt werden
kann, können alle die Platte betreffenden Grössen auf einfache Weise mittels allgemein
bekannten Methoden berechnet werden. Die numerischen Berechnungen werden
jedoch zeitraubend, wenn die Randbedingungen an den Rändern x=0 und x—a
geändert werden. Im vorliegenden Aufsatz wird eine Näherungsmethode beschrieben,
die durch die Tatsache charakterisiert ist, dass die seitlichen Randbedingungen nur
in einem Punkt erfüllt sind. Die Berechnungen werden sehr einfach und es wird eine
für praktische Probleme meist genügende Genauigkeit erzielt.
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Some special cases of buckling

Une etude du flambage en certains cas particuliers

Einige besondere Knickfälle

Ir. W. J. van der EB
Research Engineer, T.N.O., Delft, Holland

Bückling of latticed struts with long battens only
When the lengths of the battens are not neglected, the System of the latticed strut

may be supposed to consist of coupled parts having a moment of inertia /, and a

length 2t?, and parts to be coupled whose two components are self-supporting "single
sections," each having a moment of inertia Ie and a length c. The distance between
the centres ofthe battens is termed /, so that equation l=c+2e is valid. Furthermore,
the angular displacement of the centre of the plh hatten is indicated as i/ip, whilst the
difference between the angular displacements of the ends of this plh hatten is referred
to as A<f>p (figs. 1 and 2).

In considering any given (p+l)th element (of a single section) of the parts to be

coupled, it is found that the following differential equation must be applied:

P^.-.hs

rl,
=TT ,r

~-j
»,»<«

s

Cp!

otViz±.v-. branch of Ihe deflecfion curve

Fig. 1
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whilst for the coupled parts

Fig. 2

d2y_ P Mp
dx2~~EVley+E~Ple

2P
¦--ppy

is valid
where

d2y
~dpf~ Erlf

With the boundary conditions that must hold for the parts to be coupled:

x=pl+e:
x=(p+l)l-e:

and for the coupling parts:
where x—pl—e:

x=pl+e:
(l and r denoting "left" and "right").

In this way, after introducing the conditions of equilibrium and continuity, the
equation of finite differences by which the problem is defined is found to be:

y' <t>(p+\)r

y'=<ppr
y'=<f>{p+iv

Pc cos a,e cos a,e
a2c sin a2c

A2<I>p+
Pc 2(1—cos ß2c)cos a,e

a2c sin a2c

+
2Pe 2(1 —cos 2a,e) cos a,e

2a,e sin 2a,e
0P+

Pc

a-,c sin a2c

Mt+i-A*, '- 0

in which a, 2P/ErIt, a2=^P/ErIe, 2P=total buckling force, ¦ri=4C/E-rFeh2, Fe=
cross-sectional area ofthe single section and h=distance between the centres of gravity
of the single sections. As large battens, having great rigidity with respect to
"Vierendeel" deformation, are being dealt with, their deforming effects may be
assumed to be infinitely small and are therefore neglected.

An exaet Solution of this equation of finite differences which also satisfies the
boundary conditions, not to be mentioned here, is obtained at such a State of buckling
deformation that the deflection curves ofthe centre lines ofthe battens are all situated
on sinusoidal curves of the same form, displaced in a parallel sense with respect to
each other, of which only that with one wave between the bar-ends will, of course,
represent the least favourable condition. Introducing the Solution indicated, the
general buckling condition is found to be:

2<X7;

tri

ßlT I 77

cos — cos —cos— I —sin
m\ n

OLTr\

ml sin
(l-a>

2«

0c(l —«) /?77 ßlT OL1T

H -c .sin — sin —
2 m mm

sin cos ß-(l-
m\

Tt\ 77 (1 ä)77
-cos - -f-sin - sin —r-nj n 2«

in which <x.=c/l and ß=^(l—y.)\t,2Ie/Il and «=number of panels, whilst m is the
coefficient of the virtual buckling length defined by the equation:

t2EtL
P=-

m2l2
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and h2

Z-27T2

This formula takes into aecount all extreme cases, for if c=0, that is, 2e=l, then <x

becomes 0, whilst ß2=\Ie/I,. Moreover, cos v.ir/m approximates to unity and
sin cm/m approximates to oLir/m.

The buckling condition is reduced to:

ßtirl 77 \ * 77 77
- cos — 1 —sin - sin —

iz -'\ n / n 2n

ßlT I 77 \ 77 77

cos —11 —cos - I +sin - sin ¦=-n] n 2n

cos

ßtr
cos —

m

m\
ßlT I 77 \ 77 / 77\

— cos — 1 —cos =-| 1—cos-
m\ n I 2n\ nj

(Tr\ 77 / 77\
1—cos - l+cos y\ 1—cos -I

Or jS77- 77

[JZ+l].oos——ÖZ+l].cos»-m 2n

ßr. TT

COS — —COS ;r- COS JT"
m 2« 2«

or /?77 2«

m 77

therefore m=2ßn

-Thus the total buckling force becomes, under condition ß2=\Ic/I,:
2n2ErIe tt2 E t I,
4ß2n2l2 ¥T2

which is correct.
When c=l, that is, e=0, then a=l, ^8=0, and the following is obtained:

77

2-
77 77

COS —cos —
n m

sin
77 / 77

— 11—cos -m\ n

being the simple formula already found by several authors.
When the battens are very narrow, their "Vierendeel" deformation is no longer

negligible and it is necessary to equate for Z as follows:

Ji2
©/©Z=-

ErFehi

1+-
(l-cosj)

7AcEIk

where Ik is the moment of inertia of the battens with respect to their "Vierendeel"
effect. If the battens are infinitely weak, /*=0, and in that case Z=0. ft is then
found from the buckling condition that m=n, and the total buckling force is then:



222 AU 2—W. J. VAN DER EB

2P=
2it2EtL

n2l2
which is also correct.

Therefore, as has already been shown, all the extreme cases have been taken into
aecount in the formula.

When transposing the above-mentioned buckling condition, a fortunate fact
appeared, viz. that in practical cases the effect of ß is very slight. Thus, for example,
values were found as in the following'table:

ti=3 a=0-6 n=6 a=0-6

m
(3=002
Z=

/3=012
Z= m

(3=0-02
Z=

0=012
Z=

0-7
1-1
1-9

29-39
5-23
0176

28-41
5-21
0-172

0-9
1-4
2-7

49-80
15-26
2-30

49-36
15-22
2-29

The values of ß applied in the above table were based on boundary values for
\/2Ie/I, equal to about 0-1 and 0-6. This quantity varies in practice between
approximately these amounts. It may be seen from the values shown above that
if tables are compiled for the average value, i.e. for \/2Ie/It—0-35, the error in-
curred in Z will at most be 1 %, and furthermore this error rapidly diminishes if m
increases (i.e. with Z decreasing).

This affords considerable simplification in the numerical tables and in the
application of the theory. In Computing Tables I to IV, a value of ß based on -\/2Ie/I,
=0-35 has been introduced. Furthermore, five values of <x have been introduced,
viz. 0-6, 0-7, 0-8, 0-9 and 1. The various lines (figs. 4 to 7) have been plotted in ten
points, intermediate values being established from curves drawn as accurately as

possible.

Method of calculation

Calculate: Z=h2/2ie2 and ct. c/l in which c=l—2e.
The corresponding value of m can immediately be found from Tables I to IV.

Then the virtual ratio of slenderness of the strut is:

ml
"vir!= ~j~

in which:
ie radius of gyration ofthe single cross-section;
h distance between centres of gravity of the component sections;
/ distance between centres of battens measured along centre-line of bar;
c =the length to be taken into aecount of the sections to be coupled;
2e=length of battens minus twice the distance between two rivets in the case

of riveted constructions. In the case of welded constructions the entire
length of the hatten is allowed to be taken into aecount.

The virtual ratio of slenderness being known, the required admissible compressive
stress crd can immediately be found in Table VI according to V.O.S.B. requirements.*

* V.O.S.B.=Netherlands Standards for the Designing of Steel Bridges.
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Hence the admissible compressive force=2Fe. ad, in which 2Fe=total gross cross-
sectional area.

Numerical example (fig. 3)

/j=14-6 cm.; ie=2-02 cm.; /=6-95 cm.; c=90 cm. and /=120 cm., whilst n=4
and Fe=28 0, so that:

14-62
scz==2xTöT2=26-1

whilst «=90/120=0-75, m is found to be about 1-05; hence

1-05x120
Ktr,- 2.02 -6J

2^=30, c =9050 C 18

Fig. 3

Table I (fig. 4)

14.6

—
I

120 120 l=120cm 120
L =480 cm. H

irpi

Z Z Z Z z
m a=0-6 a=0-7 a=0-8 a=0-9 a=l

71=3 71 3 71 3 /i=3 71=3

0-60 ^
0-65 4810
0-70 2900 ~
0-75 21-00 65-00
0-80 15-40 36-90 ~
0-85 12-20 23-40 79-50
0-90 1010 17-40 41 00 —¦
0-95 8-40 13-70 27-90 97-30
100 705 11-25 20-30 48-80 ~
105 605 9-40 1600 3200 119-70
110 5-20 805 1300 23-85 59-20
115 4-60 6-95 10-85 18-70 38-90
1-20 405 605 9-35 15-20 28-60
1-25 3-40 5-20 800 12-70 22-30
1 30 2-90 4-50 6-90 10-85 17-80
1-35 2-55 405 605 9-40 15-20
1-40 2-20 3-50 5-30 810 12-90
1-50 1-70 2-65 410 6-30 9-65
1-60 1-20 205 3-30 500 7-50
1-70 0-80 1-55 2-50 3-95 5-95
1-80 0-50 110 1-95 310 4-80
1-90 0-17 0-75 1-50 2-50 3-85
200 0 0-40 1-20 205 315
210 0-20 0-95 1-75 2-55
2-20 010 0-70 1-55 205
2-30 1-30 1-65
2-40 • 110 1-30
2-50 100
2-60 0-75
2-70 0-55
2-80 • 0-35
2-90 015
300 0
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The admissible compressive stress according to V.O.S.B. requirements is then
1,021 kg./cm.2, so:

(P)=2x28-0x 1,021 kg. 57-2 metric tons.

The ratio of slenderness with respect to the x direction is:

A-=6i>r69'
and the admissible compressive stress is then 952 kg./cm.2, so

(P)=2x 28-0x952 kg. 53-2 metric tons.

The latticed strut therefore appears stronger with respect to the y axis than the x axis.
If the length of the battens had been neglected, a virtual ratio of slenderness of
A„>,=82 and an admissible compressive stress of 800 kg./cm.2 would have been
found. In this case P=44-l metric tons, whilst according to Engesser's formula
A„>,=85 and P=42-l metric tons.

Table II (fig. 5)

Z Z Z z Z
771 a=0-6 a=0-7 a=0-8 a=0-9 a=l

71=4 71=4 7J 4 71=4 7J 4

0-60 r^j
0-65 97-60
0-70 57-50 ~
0-75 4100 129-20
0-80 30-55 67-25 ~
0-85 24-80 4510 15700
0-90 20-30 34-75 79-70 ~
0-95 17-40 2705 53-50 17900
100 14-70 22-95 40-25 95-50 ~
105 12-75 -19-65 3200 63-70 232-50
110 11-15. 16-70 26-35 47-25 115-40
115 9-95 14-75 22-30 37-70 7610
1-20 8-90 12-90 19-00 30-90 56-25
1-25 7-90 11-40 16-60 25-90 44-30
1-30 700 1005 14-60 22-20 36-25
1-35 6-20 8-95 12-90 19-30 30-35
1-40 5-55 800 11-50 1700 2605
1-50 4-40 6-50 9-55 13-60 19-95
1-60 3-50 5-40 800 1105 15-80
1-70 2-95 4-40 6-75 900 12-90
1 80 2-40 3-70 5-65 7-60 10-70
1-90 200 305 4-70 6-40 8-95
200 1-65 2-55 3-75 5-40 7-60
210 1 35 210 315 4-60 6-50
2-20 105 1-65 2-60 3-95 5-55
2-30 0-80 1-30 2-20 3-30 4-80
2-40 0-60 105 1-80 2-80 415
2-50 0-40 0-75 1-45 2-40 3-55
2-60 015 0-60 1-20 205 310
2-70 0 0-40 100 1-75 2-70
2-80 0-25 0-80 1-45 2-30
2-90 010 0-60 1-20 200
300 -005 0-50 100 1-70

Bückling of bars elastically supported at intermediate points
The second case refers to the calculation of the stability of the upper chord of a

Iow-truss bridge. There are already many publications on this subject. Thus, the
CR.—15
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Table III (fig. 6)

227

Z Z Z Z Z
m <x=0-6 a=0-7 <x=0-8 a=0-9 <x l

«=5 7! 5 n=5 n=5 7! 5

0-60 ^
0-65 174-90
0-70 95-50 ~
0-75 65-40 212-30
0-80 50-50 110-60 /^y
0-85 40-60 77-05 25710
0-90 33-50 5700 130-50 ~
0-95 28-20 4605 8905 311-40
100 24-60 37-90 6600 156-50 f»«-'

105 21-50 3200 52-80 105-50 37800
1-10 18-90 27-70 43-50 77-40 178-80
1-15 16-85 24-20 37-00 6200 123-95
1-20 1505 21-50 31-90 50-90 91-85
1-25 13-40 1900 27-80 42-75 72-45
1-30 1210 1700 24-60 36-90 59-40
1-35 10-90 15-30 21-80 3200 5010
1-40 9-90 13-90 19-60 28-40 4305
1-50 8-30 11 60 16-40 22-70 3315
1-60 6-90 9-70 13-60 18-50 26-50
1-70 5-80 810 11-25 15-50 21-75
1-80 4-90 700 9-55 1315 18-25
1-90 4-20 5-95 8-20 11-30 15-50
200 3-50 510 710 9-70 13-30
210 3 05 4-50 6-20 8-50 11-55
2-20 2-60 3-80 5-40 7-40 1010
2-30 210 3-30 4-70 6-50 8-85
2-40 1-80 2-80 410 5-70 7-80
2-50 1-55 2-35 3-60 505 6-90
2-60 1-30 200 315 4-50 615
2-70 105 1-75 2-70 3-90 5-50
2-80 0-90 1-50 2-40 3-50 4-90
2-90 0-70 1-25 210 310 4-40
300 0-60 105 1-80 2-75 3-90

case of a bar elastically supported at intermediate points with hinged ends has already
been dealt with by Dr. Ing. Fr. Bleich in Theorie und Berechnung der eisernen Brücken
(Theory and Dimensioning of Steel Bridges), whilst the same theme was subsequently
treated by Prof. P. P. Bijlaard in De Ingenieur, No. 4, 1932, in an article entitled
" Knikzekerheid van de bovenrand van open wandbruggen" (Buckling Resistance
of the Upper Chord of a Low-Truss Bridge). '

The same problem is dealt with below,
but in this case with hinged elastically
supported ends. Fig. 8 shows the
condition for any given number of waves.

With a2=P/EI, the differential equation

of any given pth curve will appear
in the general form: Fig. 8

y.as

ttfrii*

d2y

dx72=~a2y+
Spx+RpC

EtI

x as

in which Sp and Rp are values depending on the elastic reactions p. P«.
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Table IV (fig. 7)

Z Z Z Z Z
m <x=0-6 a=0-7 a=0-8 a=0-9 a l

71 6 71 6 71 6 71 6 71 6

0-60 ^
0-65 258-80
0-70 14400 ~
0-75 96-40 311-60
0-80 73-00 163-30 ~
0-85 5900 112-50 379-50
0-90 49-70 84-50 192-50 ~
0-95 42-50 6805 131-50 458-90
1-00 36-50 56-50 97-60 229-70 ~
105 3210 47-85 77-50 15500 555-70
110 28-20 41-30 64-45 114-30 276-10
115 25-20 36-60 54-90 89-50 182-40
1-20 22-65 32-20 47-20 73-50 134-45
1-25 20-30 28-60 41-40 63-40 106-90
1-30 18-50 25-50 3705 54-90 87-85
1-35 16-95 23-05 3300 4805 7415
1-40 15-25 2110 29-40 42-30 63-80
1-50 12-80 17-70 24-50 3305 49-30
1-60 10-80 14-90 20-30 27-20 39-60
1-70 9-30 12-70 17-25 23-55 32-70
1 80 7-95 1110 14-85 20-30 27-50
1-90 6-90 9-65 12-90 17-50 23-50
200 600 8-30 11-20 1510 20-30
210 5-20 7-30 9-90 13-20 17-70
2-20 4-50 6-40 8-70 11-65 15-60
2-30 400 5-65 7-70 10-30 13-80
2-40 3-50 505 6-85 915 12-30
2-50 3-05 4-45 6-15 8-20 11-00
2-60 2-65 3-90 5-50 7-35 9-90
2-70 2-30 3-45 4-90 6-60 8-90
2-80 205 3-10 4-40 6-05 800
2-90 1-75 2-70 400 5-40 7-25
3-00 1-50 2-40 3-55 4-90 6-60

The boundary conditions for any given pth curve are as follows:
where P=pc: J=J(P+i)/
where x=(p+l)c: >'=^o>+i)r
(/ and r again denote "left" and "right").

Introducing the conditions of equilibrium and continuity, the following system
of simultaneous equations of finite differences is obtained:

aP 2aP(l -cos ac)Vp
- ~ A2r]P+-

sin ac sm ac

and

in which

^P=^2yP+pPp

vp=yP--[pSP-i+RP-i]

In the case of hinged elastically supported ends, the following equation is vaüd:

PP=A(yp-S0)
where A is the force giving any elastic support a deflection of unity, and 80 is the
lateral movement of the left end, that is, for p=0.
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Now buckling of the bar is possible in two distinct ways. In the case of Symmetrie
buckling, whereby S0=8„, the following conditions are valid:

For p=0 and p=n, it follows that y0=yn=0 and rj0=r]n=0 and also ZPP=Q
or, consequently, 27(^—S0)=0.

In the case of reversed Symmetrie buckling S0= —S„.
In this case yo=0; yn=2S0, and it follows that 7]0=i]n=0, furthermore

cZpPp=2P80.

After several reduetions the buckling condition is finally obtained, which can be
written in both cases in the general form:

[A]JC]
[B] [D]

in which, in the case of Symmetrie buckling:

[yi]=cosh (n+ l)i/f—cosh («+ l)^+cosh i/i cos net—cosh n<l> cos <j>

[B]=sinh w/f sin <j>—sinh i/f sinh n<j>

and in the case of reversed Symmetrie buckling:

[/l]=cosh («+l)i/f+cos («+1)^—cosh 4> cos neb—cosh n>l> cos •/>

[B]= + sinh «f/f sin ^-fsinh 1/1 sin n<f>

while in both cases:

[C]=[2(cosh ./.-cos ^)]2+25[cosh ^cos ^-1]
[D]=2B sinh <p sin <£

In these formulae i/f and </> are given by

cos </>=-JVß+Wß+4*+16
cosh «£= -r-iv/i8+iv'i8+4a+16

in which:
77

a=5
m n
— sin 1

77 m
—2 1—cos

,6=2.8
77]

l—cos —
m\

m representing the coefficient of virtual buckling length defined by the formula:
72£V7

P=- 2r2m'-c

Am2c3 m2
whilst furthermore B= ,„ T—^7tt2EtI Y

tt2EtI
so that Y=—r-r-

Ac3

In these equations:

A =the force required for giving any elastic support a deflection of the unity
(1 cm.);

n =the number of panels of the strut;
c =the length of a panel of the strut;
£V=modulus of buckling;
I =the moment of inertia valid for the buckling direction under consideration.
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In this way the most general expressions for buckling condition are given; they are
valid in any given number of panels.

i/f and <f>, however, can be eliminated in a fairly simple manner, and, for any given
value of n in each particular case of buckling, two equations of higher degree in terms
of B as a function of m, are obtained, viz. one in the case of Symmetrie buckling and
the other in the case of reversed Symmetrie buckling. With

(m 77 \ / 77\
1 sm — I o=2 1— cos —

77 m] \ m]
the values are found as follows:
where n=2:

Symmetrie buckling:

reversed Symmetrie buckling:

where «=4:

B--
36-6

~~b-2a

B=l (fig. 9)

Fig. 9

Symmetrie buckling: B2(b2-4ab+2a2)-B(5b2-7ab-136+ 10fl)+(562-206+10=0
reversed Symmetrie buckling: B2(b2—2ab) + B(ab+5b — 362) + (62 — 26)=0
where «=6:
Symmetrie buckling: Bi(bi-6ab2+9a2b-2ai)+ B2(-7bi + l9b2-52ab-lla2b+l4a2

+23ab2)+B(l4bi-6Sb2-l6ab2+70b+56ab-28a)+(-7bi+42b2-63b+l4)=0
reversed Symmetrie buckling: B^(3a2b-4ab2+bi)+B2(-a2b+9ab2-5bi- I4ab

+ llb2)+B(-2ab2+6bi+4ab-22b2+l4b) + (-bi+ 4b2-3b)=0
The accompanying two graphs (figs. 10 and 11) give the results, established point

by point, for m ascending by 0-1, where n—4 and n=6. All roots have been
determined, so that curves for all wave forms could be plotted. It will appear that in each
case only two wave forms are possible. The other wave forms are fairly possible,
but can only be produced "with assistance." Table V gives the maximum B values
as a function of m for «=4 and «=6, whilst Table VI represents a set of buckling
stresses determined in aecordance with V.O.S.B. requirements (Netherl. Standards
for the Designing of Steel Bridges), the admissible compressive stresses and safety
factor given as functions of the ratio of slenderness A, A ascending from unity. In
calculating the rigidity of the elastic supports (determination of A), the two deformation
possibilities of the cross-section of the low-truss bridge are to be taken into aecount.
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The following formula is recommended (fig. 12):

A=
1

(a+$h,y (H-\h2)2b
3EIn 2EI,

How can the theory given above be applied? One possibility is to require the
same safety factor in both the x and the y directions in the upper chord (the x axis
is horizontal, the y axis is vertical). In general the radius of gyration with respect
to the vertical axis (in this case, the y axis) will be larger than with respect to the x axis.

Then the following condition is valid:

hence

Xx=Xy

c m c

ix~ iv

so 772 -lx
The required value of B corresponding to m can then be found at once in Table V,
hence:

B Pbuckling B n Pactual
A
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n in this equation denotes the required coefficient of safety against buckling under
the condition Xx=Xy. This value can at once be found in Table VI, where Xx=Xy is
known, which will obviously be the case.

The ratio m=iy/ix will generally be fairly small, varying between about 1 and 1-5,
and will seldom be more. The corresponding values of B are then usually rather
high, so that rigid vertical members are required in order to ensure the same resistance
against buckling with respect to both x and y axis. This, particularly in the case of
high bridges without upper bracing, leads to heavy constructions. In such cases it
will be found more advantageous to construct the upper chord somewhat heavier
with regard to the y direction, considering the last direction decisive (the x direction
being safe). The procedure then is as follows.

The actual compressive stress is given by:

* actual

where F is the gross cross-sectional area of the upper chord; Table VI at once gives
the corresponding required ratio of slenderness with respect to the y axis. This value
being Xy, the required m value will be:

K
y c

The corresponding value of B can now be found in Table V; moreover:
B n "actual

A :

C

n denoting the required factor of safety against buckling according to A^., also to be
found in Table VI.

The most advantageous use of material can, of course, only be found by trial, that
is, by comparing various possibilities with regard to their total weight.

Table V

m
B

m
B

71=4 71 6 71 4 71 6

10 3-62 3-80 2-3 0-99 0-81
11 2-39 2-50 2-4 0-95 0-73
1-2 217 2055 2-5 0-90 0-695
1-3 1-96 1-855 2-6 0-85 0-68
1-4 1-73 1-655 2-7 0-81 0-665
1-5 1-51 1-46 2-8 0-75 0-65
1-6 1-27 1-31 2-9 0-70 0-635
1-7 1-19 1-24 30 0-65 0-62
1-8 115 117 31 0-60 0-605
1-9 112 1105 3-2 0-54 0-59
20 1095 1035 3-3 0-46 0-575
21 1075 0-96 3-4 0-37 0-56
2-2 103 0-89 3-5 0-37 0-545

Method of calculation

Calculate a=P/F. Find in Table VI the required ratio of slenderness Xy

corresponding to a. Hence:
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Numerical example

B No. 425 low-truss bridge of the State Railways in the former Netherlands
Indies; theoretical length 6x435 cm. Trapezoidal main girder. Upper chord
extending over four panels.

The data then are:

n=4; c=435 cm.; 7^=14-7 cm.;
F= 178-6 cm.2 (gross cross-sectional area of upper chord);
Pma.x= — I4l metric tons (having ^4=0-550 metric tons/cm.);

141
Actual compressive stress od=-——=0-789 metric tons/cm.2;

I lo-b
Corresponding ratio of slenderness found in Table VI, A>,=92.

Required coefficient of Virtual buckling length:
92x14-7 „,/r7=-435- 3-1

In Table V is found 5=0-604 according to n=4 and w=3-l. To A,.=92 corresponds
ak 2,l40, hence PbuCkiing= 178-6x2,140=382 metric tons (Table VI).

^ 0-604x382 nMnRequired: A= j^t =0-530 metric tons/cm.

Having A =0-550 metric tons/cm., the actual factor of safety is therefore somewhat
larger than calculated.

Summary

This paper deals with the results of a theoretical study of two cases of buckling,
both of them under application of the theory of equations of finite differences.

The first case refers to the buckling of latticed struts with long battens only, the
lengths not being neglected. It proved possible to deduce an exaet buckling
condition, in which all extreme cases are unequivocally included.

The second case deals with the buckling of bars elastically supported at any
number of intermediate and equidistant points, while the two end supports are also
elastic, permitting lateral movement and having the same rigidity as the others. In
this case also it proved possible to deduce an exaet buckling condition valid for any
given number of panels.

Both cases are documented with graphs, tables and calculation methods, enabling
easy application in practice. Two numerical examples are given by way of illustration.

For detailed information see: Ir. W. J. van der Eb, "Over enige bijzondere knik-
gevallen," Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft Nederland.

Resume

L'auteur expose une recherche theorique sur deux cas de flambage, effectuee en
appliquant le calcul des differentielles finies aux deux cas.

Le premier cas porte sur le flambage des barres en treillis, avec elements
d'assemblage relativement longs dans le sens de la longueur de la barre. On a pu arriver
ä une condition de flambage exaete, qui englobe sans equivoque tous les cas extremes.

Le second cas porte sur le flambage de barres supportees lateralement par un
nombre quelconque d'etais concentres elastiques et equidistants, les deux etais d'ex-
tremite etant egalement elastiques, c'est-ä-dire lateralement deplacables et de la
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meme rigidite que les autres. Ici encore, on a pu etablir une condition de flambage
valable pour n'importe quel nombre de panneaux.

Les deux cas sont completes par des graphiques, tableaux et methodes de calcul,
permettant une application simple en pratique. Deux calculs sont effectues ä titre
d'exemples.

Pour l'etude detaillee, voir: Ir. W. J. van der Eb, "Over enige bijzondere knik-
gevallen," Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft, Nederland.

Zusammenfassung

Im vorstehenden Aufsatz wird das Endergebnis einer theoretischen Abhandlung
über zwei Knickfälle unter Anwendung der Differenzrechnung näher untersucht.

Der erste Fall bezieht sich auf die Knickung von Rahmenstäben mit in der
Stabrichtung verhältnismässig langen Bindeblechen. Es gelang, eine exakte
Knickbedingung abzuleiten, in der alle extremen Fälle eindeutig eingeschlossen sind.

Im zweiten Fall handelt es sich um die Knickung von Stäben, die in einer beliebigen
Anzahl gegenseitig gleichtweit entfernter Zwischenpunkte elastisch quergestützt sind,
wobei auch die beiden Endabstützungen elastisch, also seitlich verschieblich sind und
gleiche Steifigkeit wie die übrigen Abstützungen aufweisen sollen. Auch in diesem
Fall gelang es, eine exakte und für beliebige Felderzahl gültige Knickbedingung
abzuleiten.

In beiden Fällen wird die praktische Anwendung durch graphische Darstellungen,
Tabellen und Rechenvorschriften^ sowie zwei numerische Beispiele erleichtert.

Die vollständige Abhandlung einschliesslich allen Zwischenrechnungen ist zu
finden in: Ir. W. J. van. der Eb, "Over enige bijzondere knikgevallen," Rapport
No. 21: Commissie inzake Onderzoek van Constructies T.N.O., Postbox 49, Delft,
Nederland.
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Measurement of strains in a slab subjected to a concentrated load

La mesure des contraintes dans une dalle soumise ä une charge
concentree

Spannungsmessungen an einer Platte unter Einzellast

Ir. H. J. KIST, Ir. A. L. BOUMA and Ir. J. G. HAGEMAN
Chief Engineer, Rijkswaterstaat Research Engineer, T.N.O., Delft Research Engineer, T.N.O., Delft

Introduction
For designing reinforced-concrete slabs it is desirable to know the stress

distribution produced by concentrated loads.
In the theory of plates as it has been developed up to now, the material is usually

supposed to be ideal: homogeneous, isotropic and elastic and meeting the requirements

of Hooke's law.
In order that the results of the measurements can be compared with these existing

theories, measurements have to be made on a practically ideal material. This is one
of the reasons why a steel model was chosen. Moreover a steel model can be
constructed on a fairly small scale, and besides it is possible to make a great number of
observations on such a model for many different schemes of loading.

In order to interpret the results of the measurements on reinforced-concrete
constructions it will be necessary to carry out tests on reinforced-concrete slabs during
which the specific behaviour of this material will be observed. Only part of the
investigation has been completed, however, several results have already been obtained
and some conclusions can be drawn.

Description of model and tests
The model (fig. 1) contains two rectangular slabs for testing. The upper slab is

the web of a beam DIN 100, length 580 cm. Rotation of the flanges is prevented,
so that the sides of the web are practically fixed. The web has a thickness of about
1-9 cm. The lower slab (about 96x1-9x506 cm.) has a hinge-bearing along the
entire length of each long side. The distance between these hinge-bearings is 92 cm
and is called the span.

One short side of each slab is completely fixed and the other short sides have
hinge-bearings. In the future these hinge-bearings may be removed in order to
make these short sides entirely free.
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DIN IOO LG. 5ÖO c 177
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slrainqauqes

96 x 1,9 x 506 C 177

Fig. 1. Cross-section of model

The model is rigidly united by vertical and diagonal members.
The load is applied by a hydraulic jack placed between the slabs. The magnitude

of the load is measured by a dynamometer provided with electrical resistance
strain-gauges and is kept limited to assure the validity of Hooke's law.

The load was concentrated on a circular area with a varying diameter D (7-6—5-4
—3-6—1-6 cm.) or transmitted by a ball with a diameter of 1 cm.

The influence of different packingsuchas 3 mm. of cardboard and 3 mm. of rubber
between the slab and the distribution piece was also tested.

Up to now, measurements have been taken only in the middle part of the lower
slab. It may be supposed that the supports along the short sides of the slabs do not
influence the stress distribution in the central part; in other words, in this case the
slab may be considered to be infinitely long. The load is placed respectively in
different points of this central part, while the strains are measured in several places.
Because no strain-rosettes were used, a special scheme had to be designed for fixing
the strain-gauges and placing the load, so that for a point at a certain distance from
the load the values of ex and ey could be determined in a simple way.

Philips strain-gauges mostly were used with a measuring length of 12 mm. In
some places Baldwin strain-gauges were used with a measuring length of 12 and 3 mm.

Results
From the strains measured (ex and ey) for a certain magnitude and position of the

load P, the bending moments Mx and My are determined by means ofthe formulae:

M*=TZ©2 • fe+" • «r) • ^2

M>'=\^v-2 ¦ ^>+v ¦ e*> • *;'2

in which the modulus of elasticity is assumed to be £=2-15 IO6 kg./cm.2, and
Poisson's ratio v=0-3.

Mx is the bending moment transmitted by sections perpendicular to the span, and
My the bending moment transmitted by sections parallel to the span.
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The relation between elongation and load (ex, ey and P) was fairly linear. For
that reason it was possible to use one certain magnitude of P for calculating.

Fig. 2 shows the values of Mx/P and My/P at several points of sections below P,
one in the direction of the span and the other parallel to the long side of the slab.

Span 92 cm

—i-jAx'P in seclion l3

r Localions of load

ü!9
0- 76 cm

Aboul Ihe 0 - 5,f| cm
same for D- 3.6 cm

1.6 cm
Bali

My:P in seclion I,

iHino e beann

5 5 5 5 5 5
Load in secfion Mjrlr in seclion l(n seclion HMriP

D=7,6Cm

3.3032 D32°g54r.m
O-Shcm Offa- ,6cfn
m 0.5Oü •Q.53
ion 0Load in see

My*. P in seclion IMy-. P in seclion IE

0-7.bC m
0.2

o,2j a.29D:5,«ffl 03
ü 3.6cm

0,4 34D= 1.6c m
BS048

0.5
hfl^-:P in same seclions as load l.bc rn Ma: P in seclion I

Load in seclion
Load in seclion 0 2

\L Load in seclion0.1Q 33

Load in secfion 04

0,5 050.52
1.6 c mMy: P in same seclions 35 load My: P in seclion I

Load m sechon
oad in sechon 0.2
oad n sechon

03
Load n seclion

0,4
0.4742_

0.50.5

Fig. 2. Moment-load ratio fro'm measured strains

In this case the load P is placed without any packing in the centre of the span.
In the neighbourhood ofthe load, and especially below the load, the influence of

the concentration of the load proves to be very important. This influence, however,
may be neglected when the point is chosen at a greater distance from the load. The
influence of the packing also appears to be limited to the close surroundings of the
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load. Generally the results of the formulae concerning the elementary theory of
plates1 agree well with the T.N.O. results.

Fig. 2 also shows the values of Mx/P and My/P at points in sections below P, one
parallel and the other perpendicular to the span. In this case a concentrated load
with diameter D—l-6 cm. without any packing is placed respectively at different
points of the span.

When the load is moved from the centre to the vicinity of the supports it appears
that in the beginning the values of Mx/P and My/P decrease only slightly.

Fig. 3 again shows the values of Mx/P below the load as a function of the
concentration of the load in the case where the load P is placed at the centre of the span.
The observations obtained with three different kinds of strain-gauges and with two
different packings and without any packing show a certain deviation. During
loading without any packing, generally lower values are found, and during loading

0.6
lemenrary Iheory of plales (lil. 1)

averaqe computed from measuremenls
-© 1 I I l_0.5

Weslergaord (lir.2)

"•"©;¦•0.4

^Reinforced concrele code of the Nelherlands0.3

cenlre ofspanLoad in
0.2

?i rah'o as a function of the concenlralion

of Ihe load

tnre 0.10i 0.04
D=3.6

o.oz 0.06
0 5.4D 0.5 0 1.6 0=7.6 cm

Fig. 3.

with a rubber packing of 3 mm., higher values of Mx/P are found. For comparison
the values according to the elementary theory of plates l and those from the formula
of Westergaard 2 are also given. Those of Westergaard also agree well with the test
results when the load is concentrated on a very small area.

The T.N.O. results also agree with those of tests on rectangular slabs of aluminium
made by R. G. Sturm and R. L. Moore.3

The tests will be continued. The load will be placed at different points of the
lower slab near the short sides (different boundary conditions: hinged, fixed, free).
Thereafter tests will be made on the upper slab.

Fig. 3 also shows the maximum moments according to the Netherlands Code
(G.B.V. 1950).

When the load is concentrated on a small area, the moments determined from the
observations are considerably bigger than those according to this code. However,
it must be taken into consideration that a reinforced-concrete construction that is
loaded up to the limit of its bearing capacity does not follow Hooke's law. Usually
the thickness of a reinforced-concrete slab is, in relation to its span, bigger than for

1 For references see end of paper.
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the T.N.O. model. For this reason the results of this investigation are compared
with those of the tests of Prof. Dr. Ing. Morsch.4

During these tests on reinforced-concrete slabs (span 200 cm., thickness 14 cm.,
and sides perpendicular to the span 300 cm.) a load is applied that is distributed over
an annular area with an outer diameter of 10 cm. He concludes that it is allowable
to take into aecount a co-operating width in the slab equal to or bigger than the span.
This means that the moment is equal to or smaller than 0-25P. In the tests of Morsch
the diameter of the loaded area amounted to 0-05 of the span. In the steel model
the diameter would thus be 4-6 cm. From the results of the steel-model tests a maximum

moment of 0-40P to 0-47P would then be found (fig. 3).
It remains to be deeided how far the difference between these values and 0-25P

is due to the differences in the relation between the thickness of the slab and the
span or to the differences between the properties of steel and those of reinforced
concrete.

Another problem which arises is what moments must be taken into aecount for
the design of reinforced-concrete slabs that are very thin in relation to their span
and carry a load that is concentrated on an area as small as possible.

More data concerning the above problems can be obtained by testing reinforced-
concrete slabs upon which dead loads as well as live loads are applied.
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Summary
The purpose of these experiments is to obtain data for designing reinforced-

concrete floor slabs for bridges and other structures, subjected to concentrated loads.
The tested model was a steel slab which had been stress-relieved.
Electrical resistance strain-gauges have been used.
The results have been compared with some existing theories, other experiments

already made on this subject and the reinforced-concrete code of the Netherlands
(G.B.V. 1950).

R6sume

Le but des presentes recherches est de reunir des donnees en vue du calcul des
dalles de tablier en beton arme, pour ponts et autres ouvrages, dans le cas d'une
charge concentree.

cr.—16
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Le modele qui a ete soumis aux essais etait constitue par une dalle en acier ayant
subi un traitement d'egalisation. Les mesures ont ete effectuees ä l'aide d'extenso-
metres electriques ä resistance.

Les resultats obtenus sont compares avec certaines theories, avec ceux qui ont
ete fournis par d'autres recherches experimentales anterieures sur la meme question,
ainsi qu'avec les prescriptions neerlandaises concernant le beton arme.

Zusammenfassung

An einer spannungsfrei gemachten Stahlplatte, die durch eine konzentrierte Last
beansprucht wurde, sind Messungen ausgeführt worden, um Unterlagen für die
Berechnung von Stahlbetonplatten bei Brücken und sonstigen Konstruktionen zu
erhalten. Benützt wurden Dehnungsmess-streifen.

Die Ergebnisse wurden mit einigen schon bekannten Theorien, mit weiteren
Forschungen auf diesem Gebiete, sowie mit den niederländischen Stahlbetonbestimmungen

verglichen.
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Experimental and theoretical investigation of a flat slab floor

Recherches theoriques et experimentales sur une dalle-champignon

Experimentelle und theoretische Untersuchungen an einer Pilzdecke

Ir. J. G. HAGEMAN
Research Engineer T.N.O., Delft

Introduction
It is known that a three-dimensional stress distribution in a homogeneous elastic

material, which is moreover isotropic and meets the requirements of Hooke's law, is
established by three linear simultaneous differential equations with linear boundary
conditions. Only a few exaet solutions of these equations are known and the
procedure of finding the approximations by iteration is complicated and takes a lot of
time.

The economical use of monolithic reinforced-concrete construction could be

improved by a clear insight into the oecurring three-dimensional stress distributions.
Reinforced concrete does not meet the premises leading to the above three

simultaneous differential equations.
It appears that the development of the technique of reinforced concrete sur-

passed the existing calculation methods. These have even failed in such a way
that the general application of scientific concrete structures, e.g. flat slab floors, is
hampered or rather involves a waste of material which, if the insight into the oecurring
stress distribution had been clearer, could in many cases have been limited.

Empirical research
In order to be able to determine if the differences between theory and practice are

caused by the adopted premises, which refer to the properties of the materials, or by
the methods of calculation which are applied to this kind of construction, it was
deeided to use a steel model for the investigations, because, it may be supposed, steel
does follow the premises made in the theoretical considerations.

The floor slab (4,500 x 2,940 x 9 mm.), consisting of 15 square panels, is supported
by 24 steel columns (figs .1), each with a column capital shaped as an equilateral hyper-
boloid rotated on its vertical asymptote. This shape may be considered as the average
column capital.
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The overhanging length has been chosen in such a way that the oecurring moments
due to a uniformly distributed load in the floor slab approximate to the moments in a
flat slab floor infinitely stretched in both directions.

The connections in the column and in the floor slab are welded electrically. To
limit the resisting welding stresses as much as possible, the floor slab was annealed
twice.

The floor slab also acts as the bottom of a tank. Into this tank water can be

pumped to gain a uniformly distributed load.
Deformation of the floor due to action of sides of the tank during loading is

counteracted by means of a flexible connection between sides and bottom. These
sides are fixed to a frame. By jacking against this frame a concentrated loading on
the floor slab is accomplished.

The model is mounted on a rigidly constructed base of reinforced concrete, which
also serves as a storage tank for the water.

Uniformly distributed loads
First the deflection plane of the central panel due to a uniformly distributed load

was determined by means of dial gauges with a measuring precision of 0-01 mm.
These gauges are mounted on a structure revolving round a column (fig. 2).

The exaetness of these measurements was about 2 to 3 % of the greatest deflection.

hyptrbola dial gauges -lesf pfale
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However, by determining the bending moments by differentiating the deflections
twice, the inexactitude may be great.

A more accurate determination raises the practical difficulty that, generally, very
accurate dial-gauges command only a very small measuring ränge, so that the dial-
gauges must be adjusted several times during the test. Therefore a specially designed
instrument is used for the determination of the bending moments. This instru-
ment gives the size ofthe curvature, namely the term w, + w2—2w0. It is known that
the curvature k at the point A0, provided the values for Ax are not too high, equals

w, + w2—2h'0

Ax2
(fig. 3).

Due to a special design it is possible to determine simultaneously the curvatures
in two directions (fig. 4) at right angles to each other.

ax i ax

Fig. 3

Fig. 4

A dial gauge with a measuring accuracy of 0-001 mm. was used. The value Ax
amounted to about 7 cm. The bending moments M are determined from the
formula:

Mx=K(kx+vky)
in which K Stands for rigidity of the slab and v for Poisson's ratio. This was done at
different points of the flat part of the slab under uniformly distributed loading.

In the centre of the panel in which the greatest positive moment occurs, the
measurements were controlled by means of strain-gauges and Huggenberger tenso-
meters (fig. 5).

It is clear that with the use of these curvature-meters it is not possible to determine
the bending moments in the neighbourhood of the column capital. For that reason
the stress distribution along the boundary of the column capital is measured by means
of strain-gauges with a measuring length of 2-5 cm. The negative moments thus
determined are controlled by means of Huggenberger tensometers.

Concentrated loads
By several characteristic positions of the concentrated load (in the centre of the

panel and in the middle between the columns at the boundary of two panels) the
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3P*1 I1

Fig. 5

influence of this load on the bending moments in the flat part ofthe floor was measured
by means of the curvature-meters. The stress below the load was also determined
by strain-gauges with a measuring length of 3 mm.

In this way an impression was obtained of the stress distribution in the neighbour-
hood of the concentrated load.

The bending moments at the boundary of the column capital were established in
the same way as with a uniformly distributed load.

The influence of the size of the area over which the concentrated load was
distributed was also examined.

Results
It appeared that with a uniformly distributed load the greatest positive moments

in all 15 panels differed only slightly from each other. The greatest difference
amounted to about 10% ofthe average.

Owing to the correct choiee for the overhanging length, which measured f of the
distance between two columns each panel thus approximated to the so-called ideal
central panel. The other measurements could be limited to the central panel of the
test slab.

Fig. 6 shows, among other things, the outstanding results ofthe deflection measurements

by a water-Ioad of 150 cm. height. The greatest deflection amounted to
0-77 mm. in respect to the column capital.

Fig. 6 also depicts the radial and tangential bending moments (Mraci and M,a„g)
measured also by a water-load of 150 cm.

The greatest positive moment (point B) amounted to 21 kg.-cm./cm.; for the
negative radial bending moment at the boundary of the column capital (0-4a from
the column axis, in which a Stands for half the panel length) an average of —47

kg.-cm./cm. was found.
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The bending moments Mx and My in point D (fig. 6) amounted to +25 kg.-cm./
cm. and — 8 kg.-cm./cm. respectively.

During the concentrated loading it appeared that the overhanging length also
indicated that the behaviour of all panels approximated to that of the central panel.

The load was concentrated on a circular area with a diameter d (fig. 7). To determine

the influence of the size of this diameter on the stresses below the concentrated
load, rfwas chosen as 1-6, 3-6, 5-4 and 7-4 cm. respectively.

Below the concentrated load the curvature-meters indicated about 15% lower
values than the strain-gauges with a measuring length of 3 mm.

Fig. 8 shows graphically the influence ofthe concentration of the load on the stress
distribution underneath in the case when the load is situated at point B. It appears
that the proportion M/P in which M Stands for the bending'moment and P for the
size of the concentrated force, follows from the formula a=M/W (o-=measured
stress, W=h2/6=moment of resistance, A=thickness of the slab), diminished from
0-26 to 0-22, ^increasing from 1-6 cm. to 7-6 cm.

Table I

Concentrated load Concentrated load
Influence of atB at D

T.N.O. E.M.P.A. T.N.O. E.M.P.A.

oc* at B\
aiy at BJ +0-263 +0-182 +0022

-0006
—

a^at D +0026 — +0-219 +0099 to +0192
ay at D -0015 — +0-177 +0-054 to +0-137
ax at L +0001 — +0028 —
ay at L -0008 — +0002 —

• ar at H -0056 — -0017 —
ol, at E -0028 — -0100 —

OLx MxIP 0Ly My/P OLr=OLradial=Mr/P.

Table I shows the bending moments at the points B, D, E, H and L, the load being
in position B or D.

If the concentrated load is at B (fig. 9) the greatest bending moment at D amounts
to about tö of the bending moments below B. At L some influence can be noticed.
The greatest moment at the boundary of the column capital amounts in this case to
i of the moment at B.

With the concentrated load at D, the bending moments are at B (=L) and E
about tö and about tö respectively of the moment at D.

A few results of the tests made by Prof. Ros (E.M.P.A.) are given in the table
to make comparison possible.

Theoretical research
The measured results are particularly compared with the results of the calculation

method of Dr. Ir. A. M. Haas.1 In this method, just as in the model, the most usual
shapes of column capital and drop panel are replaced by hyperboloids.

Haas approximates the stress distribution in the column supposing the stress
distribution to be axially symmetrical in this hyperboloid, by means of the formula
for a circular slab in which inertia is inserted varying only with the radius.

1 For references see end of paper.
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Table II
The numerical sum of the positive and negative bending moments (pa3)

Nichols

Measured
Haas
A.C.I

0-47
0-51
0-52

0-51
0-51
0-72

The flat part of the floor is shaped as shown in fig. 10. To calculate the part
ABG, minus the included part of the column capital, Haas applies, in imitation of
Tölke,2 the Solution in polar-co-ordirfates of the biharmonic differential equation
AAw==p/Kaccording to Clebsch3 (in whichp Stands for load per unit area).

P
w=—K rü+*o+B0ln-^a+C0r2+D0r2ln^a

+2 (Anr*n+Bnr-'i"+Cnr*"+2+Dnr-*n+2) cos 4«a

i

The above coefficients are determined by co-ordinating along the inside boundary
the average of the moments and shearing forces to those in the column capital and to
demand along the outer boundary the boundary conditions in a number of connecting
points (if more connecting points are chosen, more coefficients have to be added to
the calculation).

Fig. 6 shows the deflections and bending moments of the steel model found in
this way. The greatest deviation between the theoretically and experimentally
determined values for both the deflections and the bending moment appears to be
about 15% at maximum, the theory providing higher absolute issues than the test.

As the model test gives only values for the negative moment in the column capital
at a distance of 0-4a from the column axis the negative bending moment at a distance
of 0-225a from the column axis is calculated by means of the theory of Haas, which
has appeared to be sufficiently exaet. Thus the theoretically determined results for a
practical case could be compared to those according to the requirements of the
American Concrete Institute and those found by the Eidgenössische Material Prüfungs
Anstalt.

Fig. 10 also shows the course of the bending moments found from:

(a) the empirical research T.N.O.
(b) the theory of Haas,
(c) the American requirements (A.C.I. 318-51),4
(d) the empirical investigation of Prof. Ros (E.M.P.A.).5

For the purpose of control, the theoretical total amount of the moments for
c=0-45a and for c=0-Sa is also given according to the formula of J. R. Nichols 6:

ZM=pa*
c3 4c

+*8Ö3_2^a

A theoretical investigation which has not yet been completed gave the following
results:

(a) Tölke, who imagines the slab to be immovably fastened at a distance r=Q-2a,
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as well as Haas, does not take into aecount the coefficients B, Bn and
D, D„. Now this appears not only to be allowable but even desirable.

(b) When the number of connection points along the outer boundary increases,
all stress quantities in the slab approach a limit, provided the calculation was
done very aecurately. When three connection points and the coefficients
Ac, up to and including A2, C0 up to and including C2, B0 and D0 are used
the deviation from the limit amounts to 2 % in the centre of the panel.
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Conclusions
As a result of the above investigations the following conclusions concerning flat

slab floors having square panels may be drawn.
1. The calculation method of Haas provides that by a uniformly distributed load,

bending moments in the ideal central panel are maximal about 15 % higher than those
found during the investigation of the model. A satisfactory explanation of this
discrepancy has not yet been found. Partly it might have been caused by the cir-
cumstance that in the steel model the ideal central panel has been approximated but
not fully realised. In any case the conclusion may be drawn that the above theory
gives results that are sufficiently correct for practical use.

2. The measured results achieved by Prof. Ros with a uniformly distributed load
agree sufficiently with the results of T.N.O. so that these T.N.O. results can be applied
in practice directly to reinforced concrete, though found on a steel model.

3. Except at the boundary of the column capital the results found with the A.C.I.
requirements agree fairly well with those found by T.N.O. The negative bending
moments at the column capital, as found according to the theory of Haas, are con-
siderably greater than those of the A.C.I. The A.C.I. condition that, for determination

of the compressive stress in the concrete at the boundary of the column capital,
the width of the column strip must be decreased to -\ of its value does point in this
direction.

4. From T.N.O. experiments as well as from those of Prof. Ros it follows that,
for the bending moment below a not too strongly concentrated load, a value of -\ or
jP may be taken into aecount. If this concentrated load is placed in the centre of
the panel, the value of the negative moment at a distance 0-4a from the column axis
amounts to yöP and the negative as well as the positive moment right between the
columns amounts to about -^P. In the surrounding panels the influence of the
concentrated load can be neglected. When the load is placed right between the
columns on the boundary of two panels, then the moment below the load, near the
column capital and in the centre of the adjacent panel, amounts to \P, tö? and -fgP
respectively.

5. When a flat slab floor with an overhanging length of f of the span length of
support is used, all panels will behave as ideal central panels, with a uniformly
distributed load as well as with a concentrated load. In this way it is possible to diminish
the quantity of reinforcement in the concrete and to simplify the calculations and the
construction.
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Summary

By means of a steel model the Committee for Research on Constructions T.N.O.
investigated the conduct of an ideal square central panel of a flat slab floor with
uniformly distributed and concentrated loads.

The theoretical investigation was based on the theory of Dr. Ir. A. M. Haas, who
took into aecount the influence of the column capital on the stress distribution in the
floor.

The results of the T.N.O. investigation were compared with the latest American
Building Code Requirements for Reinforced Concrete (A.C.I. 318-51) and with tests
made by Prof. Dr. Ing. h.c. M. Ros.

Resume

A l'aide d'un modele en acier le Comite de Recherches sur les Constructions
T.N.O. a examine le comportement d'une zone centrale carree et ideale d'une dalle-
champignon soumise ä une charge uniformement repartie, puis ä une charge con-
centree.

La recherche theorique etait basee sur la theorie du Dr. Ing. A. M. Haas, qui,
dans ses calculs, a tenu compte de l'influence du chapiteau des colonnes sur la
repartition de la tension.

Les resultats des recherches de la T.N.O. sont compares avec les nouvelles
prescriptions sur le beton arme de l'Institut Americain du Beton (A.C.I 318-51) et avec
les recherches effectuees par M. le Prof. Dr. Ing. h.c. M. Ros.

Zusammenfassung

Der Ausschuss für Eisenbeton- und Stahlbauten T.N.O. hat an einem Stahlmodell
das Verhalten eines quadratischen ideellen Mittelfeldes einer Pilzdec'ke unter gleich-
massiger Belastung und unter Einzellast untersucht.

Die theoretische Forschung baut auf der Theorie von Herrn Dr. Ing. A. M. Haas
auf, der in seinen Berechnungen den Einfluss der Pilzköpfe auf die Spannungsverteilung
berücksichtigt hat.

Die Ergebnisse der T. N. O.-Forschungen wurden mit den neuesten Forderungen
der Amerikanischen Betonanstalt (A.C.I. 318-51) sowie mit den Untersuchungen
von Herrn Prof. Dr. Ing. h.c. M. Ros verglichen.
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The limit of stress in the compression flanges of beams

Contraintes limites dans les membrures comprimees des poutres

Die Grenzspannung in den Druckgurten von Trägern

Prof. CLIFFORD D. WILLIAMS
Chief Structural Engineer, Patchen and Zimmerman, Augusta, Georgia, U.S.A.*

Specifications for the design of structural metal beams usually limit the stress in
the compression flange by consideration of its unsupported length, its width, and in
some instances by its thickness and the depth of the beam. Most specifications do
not consider the type of loading which produces the flange stress nor the end conditions
which may affect the limit of that stress. A specification which provides one working
formula for all conditions of loading, for all conditions of end restraint, and for
flanges that may vary in section along their length, cannot provide constant factors
of safety for all of the possible conditions.

The work of S. Timoshenko, as summarised in the Theory of Elastic Stability,t has
been notable in the analysis ofthe elastic problem that is involved in the flanged beam
subjected to bending. Karl De Vries' paper, " Strength of Beams as Determined by
Lateral Buckling," with the several discussions,% has summarised the present Status

of the problem. Further consideration of the flange buckling problem seems justified
with the objective of simplification and more general application to the varying
conditions that may exist.

The following items are among the considerations that may affect Solution of the

problem:
(1) unsupported length of the compression flange,
(2) horizontal moment of inertia of the compression flange,
(3) torsional resistance of the beam,
(4) restraint to end rotation of the compression flange,
(5) thickness and width of the compression flange,
(6) variations in section of the flange,
(7) resistance of the tension flange. and
(8) point of application of load to the beam—whether at the top flange, bottom

flange, or intermediate between the flanges.

* Formerly Head Professor of Civil Engineering, University of Florida, Gainesville, U.S.A.
t S. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Co., 1936.

t Trans. Amer. Soc. Civ. Engrs., 112, 1245.
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Some comparison has been made between the compression flange of a beam and
a column, considering that the flange tends to buckle transverse to the web of the
beam. The flange is considered to receive its load by shear transfer from the web.
The manner in which this shear transfer is accomplished is a function of the manner
in which the beam is loaded. For example, if a beam is subjected to pure bending
the flanges receive füll load at their ends; when the load is concentrated at the centre
of the beam span the shear transfer is uniform per unit of length; and when the applied
load is uniform the shear transfer is uniformly decreasing from the ends to the centre
of the span. Thus the compression flanges may receive their load under conditions
that vary from end loading to loading uniformly distributed along the length of the
members.

The effect of the distribution of beam loading on the limit of stress may be
demonstrated by comparison of similar loading conditions on a slender column.
The classical Euler loading on a column of uniform section and having its ends free
to rotate is expressed as P=ir2EI/L2=9-87EI/L2. It may be shown that the same
column having uniform increments of load per unit of length has a limiting load of
P=3l-6EI/L2, and when loaded with uniformly decreasing increments from the end
to the centre, P=20SEI/L2. Thus it would appear that the manner of loading is a
major consideration affecting the limiting load by as much as 3-17 times.

Again, the effect of end restraint to rotation of the compression flange may be
demonstrated by consideration of the free end and the fixed end Euler limits, which
are in the ratio of 1 to 4. Degree of end restraint would affect values falling between
these two.

Variation of the cross-section of a column along its length becomes an important
consideration in establishing its limiting load. It is very difficult to assign an average
value to the moment of inertia of a column which will fully aecount for the manner of
Variation. For example, a column may have a heavy mid-section or it may have
heavy end-sections. In these cases the average moment of inertia may be the same
but the limit of load would be different.

The torsional resistance of a beam to buckling of the compression flange might
also be compared to a slender column having a spring placed to resist lateral deflection.

Let fig. 1 illustrate a column with a spring which has zero load when the
column is straight. When the column is bent toward the spring the restraining force
is dependent upon the amount of deflection. Similarly, the simply supported beam
illustrated in plan view in fig. l(b) will have each cross-section throughout its length
rotated through some angle ß. The amount of the deflection a will determine the
magnitude of the angles ß along the length of the beam and consequently the amount
of the torsional resistance. It would appear that the column of fig. 1 (a) and the
compression flange of the beam of fig. 1(6) would each have increasing loads required to
maintain deflections of increasing magnitudes. However, in each case the restraining
lateral force is zero when the member is straight and the critical load for the straight
condition is the same whether or not the restraint is pending. In order to evaluate
the effect of the torsional restraint of the beam for various amounts of lateral deflection

of the compression flange it is necessary to assign values to the maximum angle
of rotation of the beam and to define the law of Variation of that angle along the
length of the beam. The amount of torsional resistance must be small indeed when
the flanges of the beam are straight or nearly straight. A condition of neutral
equilibrium must exist while the beam flanges are straight. Higher values of load in
the compression flange are likely, possibly because of torsional restraint that develops
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with increasing angles of torsional rotation. The least value of load that will produce
neutral equilibrium would seem to be that which occurs when the flanges are straight.

It has been assumed that the vertical load applied to the top flange of a beam tends
to increase the torsional angle, resulting in a lowered limit of load. On this basis, a
load applied to the bottom flange increases the limit of load. It follows that, if the
flanges are straight, the vertical load would be in the plane of the web and consideration

of top or bottom location would be eliminated.
If the designer is concerned with the load that will produce neutral equilibrium

while the compression flange is straight, then a much simplified method may be used.
In this case füll consideration may be given to the effects of end restraint, variations
in type of loading, and variations in the section of the compression flange.

It is not the intention of this paper to discuss buckling phenomena in the plastic
ränge, that is, when the computed stress in the flange is greater than the proportional
limit of the material. Also, it is assumed that the thickness of the compression flange
is sufficient so that local crippling of the flange does not precede lateral buckling.
For the purpose of this discussion it is considered that there are two limiting values
of stress, either ofwhich may control. One of these limits is the stress which compares
with the yield point of the material and the other is the stress in the extreme fibres of
the beam when a state of neutral equilibrium exists in a straight compression flange.
It is acknowledged that higher stress values may be obtained before collapse of the
beam, but it is believed that a factor of safety should be maintained with respect to
the lower of these two defined critical stress values.

CR.—17
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In order that the critical stress may be found for any given compression flange, it
is assumed that the load will maintain a small lateral deflection of the flange. The
amount of this deflection is immaterial so long as it does not produce an appreciable
torsional resistance from the beam. The amount of the flange load is then such that
any decrease would permit the flange to straighten and any increase would cause
greater lateral deflection. The amount of the deflection that is assumed to be
maintained is further assumed to be small enough so that it is immaterial whether the load
is applied to the top flange or to the bottom flange of the beam. These assumptions
are consistent with determination of the critical load for the straight flange.

The assumption of a small lateral deflection of the compression flange is a tool
to be employed in evaluating the critical load in the compression flange. It is required
that the load maintain the deflection in amount and the deflection curve in shape.
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Since the shape of the deflection curve is usually not known in advance, a process of
iteration may be used to approach evaluation of the true curve. Fortunately, the
series is rapidly converging so that the work is minimised. Again, the analogy of a
column loaded at its ends may be used as an example. Assume that the deflection
is a and that the shape of the curve is parabolic (while it is known that the curve is

sinusoidal). Fig. 2(a) shows the ordinates to the parabolic curve for the centres of
five equal divisions of the half length. The load P produces bending moments along
the length of the column. The deflection at the centre may be computed from these
bending moments and is expressed as y=0-l037PaL2/EI. Since y=a, then
P=9-64EI/L2. If integrated continuously, the value of P would be found to be
9-60EI/L2. These values are about 3 % less than the accepted value of P=9%7EI/L2,
because of the assumption that the curve is parabolic. This approximation will
normally be sufficiently accurate in view of the fact that the value of E will vary by
more than 3 % from any assumed value. However, if deflections were computed at
the centres of the five divisions, a new closer curve shape might be developed as shown
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in fig. 2(b). When the new curve is used in the same manner as the first approximation
it is found that y=0-l025PaL2/EI, from which P=9-77EI/L2. This value is now
about 1 % below the accepted value. Continuation of the same process will yield
results with an even greater degree of accuracy. If the sinusoidal ordinates of fig. 3

were used, the resultant value of v=0-1009PaL2/EI produces P=9-91EI/L2. The
only reason this value differs from the value of 9-87EI/L2 is that the Integration was
performed in five finite parts rather than continuously.
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Fig. 3

In the case of pure bending in a flanged beam the flange stress is applied entirely
at the ends of the beam. If the ends of the compression flange are free to rotate and
the flange is of constant section, then the critical flange load is F=9S7EI/L2; the

average stress in the flange is F/A=9-S7EI/AL2, when A is the area ofthe flange and /
is the moment of inertia of the compression flange about the axis along the web (for
constant section rolled beams / is one-half ofthe Iy—y value given in steel handbooks);
the extreme fibre stress is f=9S7EIc/AL2y, when c is the distance from the neutral
axis of the beam to the extreme fibres and v is the distance to the centre of the flange.
Since f=M/S, in which 5 is the section modulus of the beam about its major axis, the
critical value of M=9-S7EIcS/AL2y.

Fig. 4(a) represents a flanged beam of uniform section simply supported and
loaded with a concentrated load P placed at the centre. It is desired to find the load P
which will induce a critical flange load F. If the half-span is divided into five equal
divisions, the increment of load F that is applied to each division is 0-2F. Assuming
that the compression flange deflects laterally in a parabolic shape with a maximum
deflection of a, fig. 4(c) represents the column loading. Bending moments at the
centre of the divisions are computed as follows:
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0 Point 5

0-2Fx0-32a=0-064Fß Point 4

0-2F

0-4FxO-24f3=0096Ff7
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These bending moments are plotted in fig. 4(d). The horizontal deflection of the
centre of each division from the tangent to the elastic curve at the centre of the span
may be computed by the use of the Moment-Area principles in the following manner:

00320FaZ,/F/xO-10Z,=0-0032Ffli2/F/ Point 2

0-0256

XO-10 =000576
Point 3

Point 4

Point 5

0-02S32FaL2/EI End

Since the deflection of the end from the tangent to the elastic curve at the centre is

0-02832FaL2/EI, the deflection of the centre will be y=0-02%32FaL2/EI. The require-
ment is that y=a. Hence, 0-02832FL©E7=l, and F=35-3EI/L2, when / is the
moment of inertia ofthe compression flange about its vertical axis. This value of the
limiting load is approximate because it is based on an assumed shape of deflection
curve. A closer value will result from a curve that is nearer the true shape of the
deflection curve. Such a curve may be developed from the computed deflection at
each point, when each such deflection is divided by 0-02S32FE2/EI and the quotient
is subtracted from l-0a as in the following computation:

0-02832.7
1'00fl-Ö^Ö2832-=0 End

0-02432ö
VOOa-(üm3T=0-Ha Pomt5

M 0-01632« _„ n¦ h00a-^ömr=0-42a Point4

M 000896a _ n „
"Ö1J2832- Point 3

00032a
1-°0ö-ö^2832=°-89fl P0iDt2

The new curve is plotted in fig. 4(e). A closer value for the limit of the force F
may be found by repeating the calculations for bending moment and deflection, using
this last curve:

0-2FxO-28a=0-056Fa Point 4
0-2F
0-4FxO-26a=0-104Fa
0-2F 0-160Fo Point 3

Ö:6FxO-2la=0-l26Fa
0-2F 0-286Fa Point 2

0-8FxO-lla=0088Fa
0-374Fa Point 1
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0-0374FaZ./£/x0-10£=0-00374Fai:2/£/ Point 2
0-0286

Point 3

0-0660 x0-10Z.=

x0-10L=

xO-10£=

xO-05F=

=000660

00160 0-01034

0-0820 =0-00820

0-0056 001854

0-0876 =0-00876

0-0876
0-02730

=0-00438

Point 4

Point 5

0-03168FaL2/FJ End

The new closer value for the limit of F is then found from the equation y=a.
Thus, j>=0-03168FaZ.2/FJ, or 0-03168FL2/F/=l, and F=3l-6EI/L2.

The process might be continued, and it is found that a slight change in the value
of F will occur, resulting in a final value of F=3l-3EI/L2. Then f=3l-3EIc/AL2y
and sincef=PL/4S, P= l25-2EIcS/AL>y.

It is noted that the critical load in the top flange is expressed as F=KEI/L2, when
K varies with the manner in which the loads are applied to the compression flange, or
the continuity of the ends of the beam.

In the case of a uniformly loaded beam, the shear transfer from web to flange is

uniformly decreasing from the end to the centre. Fig. 5(c) illustrates an assumed

parabolic deflection curve with maximum ordinate a. The length of the beam is
divided into ten equal divisions. The load applied to the flange per unit of length
varies from a maximum value at the end to zero at the mid-span. The average value
of FC?//for division 5 is 9/10 ofthe value of Kg//for the end ofthe beam; the average
value is 7/10 for division 4, 5/10 for division 3, 3/10 for division 2, and 1/10 for
division 1. Fig. 5(c) shows the distribution of the force F to the five divisions with
F/25 at division 1, 3F/25 at division 2, 5F/25 at division 3, 7F/25 at 4, and 9F/25 at 5.

The bending moment at point 4 will be 0-36Fx(0-51a-0-19a)=0-1152Fa. The
calculations for the bending moment at each point and the deflection of each point
from the tangent to the elastic curve at the mid-span follow:

0-36Fx0-32a=0-1152Fa Point 4
0-28F

0-64Fx0-24<3=0-1536Fa

0-20F 0-2688Fa Point 3

0-84FxO-16a=01344Fa

0-12F 0-4032Fa Point 2

0-96FX 0-08.3=0-0768Fa

0-4800Fa Point 1
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0-04800FaL/F/xO-10L=0-004800FflZ,2/F/ Point 2 0-89a
0-04032

0-08832

0-02688

0-11520

0-01152

0-12672

0-12672

xO-10Z,=0-008832

0-013632

xO-10L=0-011520

0025152

X0-10Z=0-012672

0-037824
xO-05Z,=0-006336

Point 3 0-69a

Point 4 0-43a

Point 5 0-14«

0-044160FaL2/F/ End 0

Since the maximum deflection is found to be j>=0-04416FaZ,2/£7 and y=a, then
F=22-6EI/L2. This value of Fis approximate, since a parabolic curve was assumed.
The ordinates for a closer curve were found by dividing each deflection value by
0044l6FaL2/EI and subtracting these quotients from a. These new ordinates are
shown in fig. 5(o").
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By using the ordinates of (d), new values of bending moment, new deflections, and
still another deflection curve are computed as follows:

0-36FxO-29a=0-1044Fa
0-28F

Point 4

0-64FX 0-26a=0-1664Fa
0-20F 0-2708Fa Point 3

0-84FxO-20a=0-1680Fa
0-12F 0-4388Fa Point 2

0-96FxO-llo=0-1056Fa
0-5444Fa Point 1

0-05444FaL/F/x 0- 10F=0005444FaL2/FJ
0-04388

0-09832 X0-10L=0009832
002708 0015276
0-12540 xO-10L=0-012540
0-01044 0-027816

0-13584 xO-10F=0-013584
0-041400

0-13584 xO-05F=0-006792

New
Ordinate

Point 2 0-89.2

Point 3 0-68a

Point 4 0-42a

Point 5 014a

End 00-048 l92FaL2/EI
From this results the closer value of F=20-SEI/L2, which is 2-lln2EI/L2, when /is

the moment of inertia of the compression flange about the vertical axis.
Table I gives values of K for simply supported beams of constant section which

are supported against lateral movement only at their ends.

Table I
Values of K

Type of loading K
Plane bending 9-87
Uniform load 20-8
Concentrated load at 0-1L 20-9
Concentrated load at 0-2L 23-8
Concentrated load at 0-3L 27-9
Concentrated load at 0-4Z, 30-4
Concentrated load at centre 31-3

Equal loads at 0-1Z, and 0-9F 12-1

Equal loads at 0-2F and 0-8Z, 15-1

Equal loads at 0-3L and 0-7F 19-7

Equal loads at 0-4L and 0-6L 25-3

The method that has been applied to the constant-section beam may be expanded
to become applicable to the variable-section beam. Fig. 6(a) illustrates a welded beam
with varying flange thickness, loaded with a single concentrated load at the centre
of the span. The shear diagram is shown in fig. 6(b), and the moment of inertia of
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the entire beam about its horizontal axis is shown in fig. 6(c). The shear load
between the web and the flange at any point is equal to VQ/IX lb./in. Since the
numerical value of V is constant throughout the length of the beam, the shear
transferred to the flange of the beam from the web must be proportional to Q/Ix.

After the distribution of the flange loading from the web is determined, a
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parabolic horizontal deflection curve is assumed and corresponding bending moments
are computed. The deflection curve may be computed by the Moment-Area method,
areas of the M/EI diagram being used. The resulting deflection curve will be more
nearly the true curve of deflection maintained by the flange loads. When a value of
the maximum deflection is expressed in terms of the initial deflection and E, a value
for Fmay be found.

Fig. 6(e) shows values of VQ/IX and the percentage of the flange load that each
60-in. length of the web transfers to the flange. The half-length of the compression
flange is divided into six sections of 30 in. each for the computation, and the centre
of each length becomes a working point. These centres are numbered from 1 to 6 in
fig- 6(/). The sum of the increments of F that are shown applied to the centres of
these sections is equal to F, and these increments correspond with the VQ/IX values
in fig. 6(e). Ordinates to the assumed parabolic curve are shown in fig. 6(f) and are
used to compute the bending moments at points 1 to 5 in the following manner:

Bending Moments

0
0-144Fx0-27a=0-03888Fa
0-144F
0-288FX 0-22a=0-06336Fa
0-173F 010224Fa
0-461Fx0-17a=0-07837Fa
0-173F
0-634FX
0-183F
0-817FX
0-183F

0-18061Fa

0-lla=0-06974Fa
0-25035Fa

0-05a=0-04085Fa
0-29120Fa

KJÖÖFx 0-01a=0-01000Fa
0-30120Fa

Point 6

Point 5

Point 4

Point 3

Point 2

Point 1

Centre

M

Computation of Deflection

dx/I Mdx/I x

(1) 0-29120Fax30/15-6=0-5600Fa 30

(2) 0-25035Fax30/15-6=0-4814Fa

Mxdx/I Deflection New
at ordinate

16-800Fa Point 2 0-93.7

l-0414Fa 30 31-242Fa

(3) 0-18061Fax30/10-4=0-5210Fa 48-042Fa Point 3 0-80a

l-5624Fa 30 46-872Fa

(4) 0-10224Fax30/10-4=0-2949Fa 94-9l4Fa Point 4 0-61a

l-8573Fa 30 55-719Fa

(5) 0-03888Fax 30/5-2 =0-2243Fa 150-633Fa Point 5 0-38a

2-0816Fa 30 62-448Fa

213-081Fa Point 6 0-13a
2-0816Fa 15 31-224Fa

244-305Fa End 0
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In the foregoing computations it is found that the deflection of the end of the
beam from the tangent to the elastic curve at the centre is j=244-305Fa/F. By
definition, the force F must just maintain the small deflection a. Hence, y=a and

F= £7244-305 122,800 lb. The average flange stress at the centre of the beam will
be F/A, or 122,800/7-5= 16,375 lb./in.2. The extreme fibre stress will be greater than
the average flange stress, being equal to 16,375 X 10-5/9-75= 17,635 lb./in.2 The load
P on the beam for which Mc/I= 17,635 lb./in.2 will be such that 90Px 10-5/1,663
17,635. Thus P=31,0301b.

These values were computed on the assumption that the shape of the deflection
curve that would be maintained by the force F is parabolic. If each of the deflections
(times E) that were computed for points 2 to 6 is divided by 244-305F^ and the

quotients are subtracted from a, a new shape of curve will be indicated which would
be closer to the true curve.

The new ordinates in the foregoing computations are these values. The
computations may now be repeated to obtain a closer value of F:

Bending Moment

0-144Fx0-25a=0-03600Fa Point 5

0-144F

0-288FX 0-23a=0-06624Fa
0-173F
0-461FX
0-173F

0-634FX
0-183F

0-817FX
0-183F

0-10224Fa Point 4

O-19a=0-08759Fa
0-18983Fa Point 3

0-13a=0-08242Fa
0-27225Fa Point 2

0-07a=0-05719Fa
0-32944Fa Point 1

l-OOOFxO =0
0-32944Fa Centre

M
Computation of Deflections

dx/I Mdx/I

(1) 0-32944Fax30/15-6=0-6335Fa
(2) 0-27225Fax30/15-6=0-5236Fa

x Mxdx/I Deflection New
at ordinate

30 19-005Fa Point 2 0-93a

l-1571Fa 30 34-713Fa

(3) 0-18983Fax30/10-4=0-5476Fa 53-718Fa Point 3 0-80a

l-7047Fa 30 5M41Fa
(4) 0-10224Fax30/10-4=0-2949Fa 104-859Fa Point 4 0-60a

l-9996Fa 30 59-988Fa

(5) 0-03600FaX 30/5-2 =0-2077Fa 164-847Fa Point 5 0-38a

2-2073Fa 30 66-219Fa

231-066Fa Point 6 0-13a
2-2073Fa 15 33-109Fa

264-175Fa End 0
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Since y=264-l75Fa/E or 264-175F/F=l, then F =113,561 lb. Also, F/A
113,561/7-5=15,141 lb./in.2, and the maximum flange stress at the centre ofthe span
is 10-5/9-75x15,141 16,306 lb./in.2 Then Mc/I=90Px 10-5/1,663 16,306 lb./in.2
or P=28,695 lb.
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Fig. 7

It will be noted that the new values differ from the values first computed by less
than 10 %. Ordinates to a second new curve appear to be almost identical with those
used for the second computation. Hence it would seem unnecessary to carry the
computation further.

Fig. 7(a) illustrates the plan view of a simply supported beam of constant section.
The top flange is assumed to be restrained from rotation in a horizontal plane.
Fig. 7(d) shows the half-span divided into ten equal divisions and an assumed reverse
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parabolic deflection curve. The beam is loaded with a centrally placed concentrated
load Pas shown in fig. 7(b), hence an increment of 0-1F will be applied to the
compression flange at each division of the length.

Using the assumed curve shape, the simple bending moments are calculated in
the usual manner. Since the end tangents to the elastic curve are prevented from
rotating, the total Af/F/area between the end and the centre of the span must be zero;
hence, end moments must be of the magnitude that will accomplish this result. The
sum ofthe simple moments at the ten divisions divided by 10 will then equal the end

moment and the bending moment at any point will be the difference between the end

moment and the simple moment at that point.

Bending Moments

M

0-lFxO-04a=
0

=0-004Fa
Point 1

Point 2
-0-207
-0-202

0-1F
0-2FxO-07a==0-014Fa

Point 30-1F 0-018Fa -0-189

0-3Fx0-12a==0-036Fa

Point 40-1F 0-054Fa -0-153

0-4Fx0-16a==0-064Fa

Point 5(MF 0-118Fa -0-089

0-5Fx0-20a=0-100Fa

0-1F 0-218Fa Point 6 +0-011

0-6Fx0-16a=0-096Fa

0-1F 0-314Fa Point 7 +0-107

0-7Fx0-12a=0-084Fa

0-1F 0-398Fa Point 8 +0-191

0-8FxO-07a=0-056Fa

0-1F 0-454Fa Point 9 +0-247

0-9Fx0-04a=0-036Fa

0-1F 0-490Fa Point 10 +0-284

1-0F

Deflections from the tangent to the elastic curve at the end may now be calculated
as follows:
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M
-0-207Fax
-0-202Fa

dx x
005Z,x005F=

Deflection

-00005FaZ.2

-O-OOlOFaF

Point 2

Point 3

point 4

Point 5

Point 6

Point 7

Point 8

Point 9

Point 10

New curve
0-038a

-0-409Fa

-0189Fa -0-0015Fa£2

-0-0015FaZ.2

0116a

-0-598Fa

-0153Fa -0O030FaF2

-00019FaF2

0-232a

-0-751Fa

-0089Fa -0-0049Fa£2

-0-002 lFa/2

0-380a

-0-840Fa

+001 lFa -00070FaF2

-0-0021Fa£2

0-543a

-0-829Fa

+0107Fa

-0-722Fa

-00091FaF2

-0-0018FaF2

0-705a

+0191Fa -0-1009Fa£2

-O-OODFaF2

0-845a

-0-531Fa

+0-247Fa -0-0122FaL2

-0-0007FaL2

0-946a

-0-284Fa

+0-284Fa -00129FaF2 l-000a

Since y=00l29FaL2/EI and y=a, F=77-5EI/L2. The next approximation,
using the curve developed from the first approximation, results in F=75-5EI/L2.

It will be seen by the illustrative examples that the procedure for finding the limit
of stress in the compression flange of a beam follows a very definite plan. The step-
by-step procedure may be outlined as follows:

(1) Identify the conditions of end restraint that affect the shape of the elastic
curve for lateral buckling of the compression flange.

(2) Assume a nominal finite lateral deflection of the compression flange and a

shape of curve that is in general agreement with the conditions of end
restraint.

(3) Define the manner of loading of the compression flange consistent with the

manner in which the beam is loaded.
(4) Compute bending moments along the length of the compression flange

caused by the flange load and the assumed lateral deflections, and
consistent with the conditions of end restraint.

(5) Compute the magnitude of the lateral deflection of the flange from the
values of M, E, I, and the length of the beam, and expressed in terms of the

magnitude of the assumed lateral deflection.
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(6) A new deflection curve may be developed from the above step (5) and com¬
pared with the assumed shape of curve.

(7) When the assumed shape of deflection curve and the shape of the deflection
curve found by use of the assumed curve agree, an equation between the
computed maximum deflection and the assumed deflection will yield an
expression for the limit of load in the straight compression flange of the
beam.

Experimenters are familiär with certain phenomena in the testing of flanged
beams. Load may be applied gradually to the beam with no apparent tendency for
the compression flange to buckle sidewise until a certain load value has been reached.
Once this critical value of flange stress has been reached, the compression flange may
exhibit a tendency to bend principally in one lateral direction. Upon reaching a
second critical value of flange stress, the compression flange may be easily moved
from one deflected position to a deflected position in the opposite direction. Then,
as increasing values of load are placed on the beam, the amount of lateral deflection
that will remain placed in either direction increases also. The ultimate result occurs
when the beam has been loaded so that lateral deflection in one direction continues
to complete collapse.

It is noted by the experimenters that when a given load is suspended vertically
from the bottom flange of the beam, the amount of lateral deflection of the
compression flange is smaller than when the same load is placed on the top flange. This
fact is consistent with principles developed by previous investigators pertaining to
action after certain bending has taken place in a lateral direction.

It would seem that it should be possible experimentally to measure the angle of
rotation of the central portion of the beam span that agrees with any value of
superimposed load; then, with a sufficient number of measurements of such relations, the
load at zero angle of rotation could be projected. Such measurements have been
carried out successfully for several types of loading, but certain phenomena are
troublesome to the experimenter.

The lateral deflection of the compression flange is sensitive to conditions of end
restraint. It is not easy to obtain a truly simply supported beam with lateral support
of the compression flange not restrained from end rotation. Also, it is found that
the immediate past history of stress in the flange appears to affect the magnitudes of
rotation angles of the beam cross-section that will be maintained by any given vertical
load. The probable reason for this Variation is that the experimenter is unable to
control the maximum amount of rotation and the beam flange is subjected to stresses
above the yield point in certain fibres. A different number of fibres have stress
above the yield point with each value of rotation angle.

The following procedure has been found to produce satisfactory results
experimentally. A load is placed upon the beam which does not cause general yielding but
which is known to be well above that producing critical stress while the beam is

straight. While the beam is under this load the compression flange may be moved
in a lateral direction by a pressure of the hand, say to the left, and will stay in some
such deflected position. Now the load may be gradually reduced and a record made
of angles of rotation and corresponding loads. If the same procedure is repeated by
rotating the beam to the right and recording the loads and angles, two sets of load-
angle values will have been produced. Now, if these data are plotted, curves defining
the two sets of data will intersect at a value of load checking very well the value of
loading that produces critical flange load, while the beam is straight. A second set
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of data may produce a new set of different angle-load values, but the intersection of
the two such curves produced continuously will usually give the same result for the
critical point. Whether the load is applied to the top flange or to the bottom flange,
and whether the load is vertical or inclined from some centre of loading, will affect
the magnitudes of the angles maintained by any given loads on the beam. But it is
of interest that any set of data produced from the same conditions of loading appear
to project to the same critical value for the compression flange—while straight.

Summary

Determination of the limit of stress in the compression flanges of beams involves
many considerations. Factors that are important in the literature on the subject
include such items as the distribution of the load causing stress, the torsional resistance
of the beam, the lateral stability of the compression flange, and others. Because of
the complicated nature of a complete Solution in the general case, specifications for
design contain empirical formulae guiding the designer. The effects of the distribution

of the loading, the type of end restraint, and variations in the section of the beam
are known to have large effects but are not included as considerations in the design
formulae.

It is herein presented that a revised definition of the neutral state of equilibrium
will greatly simplify the considerations and provide the designer with a logical
procedure for analysis. In this way he will not be dependent upon empirical formulae
that must be conservative to a large degree. It is proposed that the neutral state of
equilibrium for design purposes be defined as that having the smallest value; this
value occurs while the flange is straight but buckling is imminent. Such a definition
eliminates the necessity for consideration of the torsional resistance of the beam and
of the loading position, that is, whether the load is on the top or bottom flange of the
beam. The definition permits füll attention to be given to the large factors affecting
Solution of the particular case considered. These large factors include the distribution

of the loading on the beam, the condition of end restraint, and variations of
section.

Special cases illustrate a general method of Solution involving the use of common
iteration processes and in some cases successive approximations.

R6sume

Le calcul des charges limites des membrures de compression des poutres fait
intervenir plusieurs considerations. Les points importants traites dans la litterature
specialisee sont la distribution de la charge, la resistance ä la torsion de la poutre,
la stabilite laterale de la membrure de compression, etc. Par suite de la complexite
d'une Solution complete du cas general, les specifications de detail fönt intervenir des
formules empiriques destinees ä guider le dessinateur. On sait que la distribution de
la charge, le mode de fixation de l'extremite de la poutre et les variations de son profil
jouent ici un grand röle, mais ne sont pas pris en consideration dans les formules
de dessin.

Nous montrons qu'une revision de la definition de l'etat d'equilibre stable sim-
plifiera sensiblement la question et fournira au dessinateur un processus logique
d'analyse. II n'aura ainsi pas ä se fier ä des formules empiriques qui sont necessairement

tres conservatrices. Nous proposons de definir, pour le dessin, l'etat d'equilibre
stable comme celui qui a la moindre valeur; cette valeur se manifeste lorsque la membrure

est droite, mais sur le point de se deformer. Une teile definition elimine la
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necessite de considerer la resistance ä la torsion de la poutre et de faire intervenir le
mode d'application de la charge, suivant qu'elle est placee sur la membrure superieure
ou sur la membrure inferieure. Cette definition permet de concentrer toute l'attention

sur les facteurs essentiels qui determinent la Solution dans le cas particulier etudie.
Ces facteurs comprennent la distribution de la charge sur la poutre, le mode de
fixation de l'extremite de cette poutre et les variations de sa section.

Des cas particuliers illustrent une methode generale de resolution qui entraine le
recours ä des procedes d'iteration courants et parfois ä des approximations
successives.

Zusammenfassung

Die Bestimmung der Grenzspannung in den Druckgurten von Trägern umfasst
zahlreiche Ueberlegungen. Die in der Fachliteratur behandelten wichtigen Punkte
sind die Lastverteilung, die Torsionssteifigkeit des Trägers, die seitliche Stabilität des

Druckgurtes, u.a. Wegen der komplizierten Form der vollständigen Lösung im
allgemeinen Fall finden sich in den Entwurfs-Normen empirische Formeln als
Wegleitung für den Konstrukteur. Die grosse Bedeutung der Einflüsse der Lastverteilung,
der Form der End-Festhaltung und der Veränderlichkeit des Querschnitts ist bekannt,
doch sind diese Faktoren in den Entwurfsformeln nicht berücksichtigt.

Der Verfasser zeigt, dass eine verbesserte Definition des neutralen
Gleichgewichtszustandes das Problem stark vereinfachen und dem Konstrukteur eine
vernünftige Berechnungsmethode in die Hand geben kann. Er ist damit nicht mehr auf
empirische Formeln angewiesen, die weitgehend veraltet sind. Der Verfasser
schlägt vor, den neutralen Gleichgewichtszustand für den Entwurf dahin zu definieren,
dass er den kleinsten Wert aufweisen soll; dieser Wert ergibt sich bei geradem Flansch
unmittelbar vor dem Ausknicken. Die vorgeschlagene Definition macht die
Notwendigkeit einer Berücksichtigung der Torsionssteifigkeit des Trägers und der Lage
der Belastung, d.h. ob die Last am oberen oder unteren Flansch des Trägers wirkt,
überflüssig. Die Definition erlaubt uns, unsere volle Aufmerksamkeit den
entscheidenden Faktoren, die die Lösung des betrachteten, besonderen Falles
beeinflussen, zuzuwenden. Diese entscheidenden Faktoren sind die Verteilung der
Belastung über dem Träger, die Festhalte-Bedingungen an den Enden und die
Veränderlichkeit des Querschnitts.

An Hand von Sonderfällen wird ein allgemeines Lösungsverfahren aufgezeigt, das
die üblichen Iterationsvorgänge und in gewissen Fällen auch successive Approximationen

umfasst.

CR.—18
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Theorie de l'instabilite par divergence d'equilibre

The theory of instability through disturbance of equilibrium

Instabilitätstheorie durch Störung des Gleichgewichts

JEAN DUTHEIL
Dijon

Les solutions classiques donnees aux problemes d'instabilite determinent, en
general, une charge critique qui correspond ä la limite entre deux etats d'equilibre
differents: il y a bifurcation d'equilibre.

L'experience ne fait pas apparaitre un tel changement d'etat d'equilibre. En
general, des le debut de I'application de la charge, on constate une forme d'equilibre
stable, qui subsiste jusqu'ä la ruine.

II s'agit en fait d'un simple phenomene de statique dans lequel l'etat de
contrainte du materiau et sa deformation interviennent pour determiner l'affaissement.
A partir d'une certaine contrainte, le caractere inelastique de la deformation est tel
que les moments exterieurs et Interieurs varient suivant des lois divergentes, il n'y a
plus d'equilibre possible, on dit qu'il y a instabilite par divergence d'equilibre.

On sait enfin que, theoriquement, la charge critique classique peut etre döpassee,
et le second etat d'equilibre etre stable.

Dans les cas les plus defavorables, il ne peut y avoir, en tous cas, instabilite pour
une charge inferieure ä la charge critique. Or, experimentalement, la ruine se produit
pour des charges toujours inferieures aux charges critiques.

Si le rapport de la charge critique k la charge de rupture peut etre voisin de 1 dans
certaines zönes, il peut aussi tendre vers l'infini dans d'autres zönes.

Cette contradiction entre la theorie et l'experience n'est pas surprenante. L'allure
ideale d'un phenomene est toujours plus ou moins influencee, en pratique, par de
multiples causes qui peuvent le deformer au point de n'en laisser subsister qu'une
caricature.

Dans les problemes d'instabilite, la theorie ne considere que des elements parfaits,
tant de forme que de structure et indefiniment elastiques et resistants.

Les eprouvettes d'essai, comme les elements mis en oeuvre, sont tres loin de cette
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perfection: les materiaux sont inhomogenes, et ils ne sont elastiques qu'approximative-
ment, et dans certaines limites. II en resulte que la deformation theorique est pro-
fondement alteree, et comme eile joue dans les problemes d'instabilite un röle
preponderant, le phenomene est lui-meme profondement altere, au point qu'il
paraisse ne plus avoir de rapport avec son allure theorique.

La notion classique d'instabilite par bifurcation d'equilibre est donc purement
abstraite. Elle ne peut evidemment suffire ä Fetablissement de regles pratiques
rationnelles, qui doivent s'axer sur une concordance experimentale etendue, et
s'inspirer d'une coneeption coherente de la securite.

Mais, quoique purement abstraite, cette notion conserve cependant une signification

essentielle, et il est important de se penitrer du caractere dualiste de la notion
d'instabilite.

II est egalement important de remarquer qu'en raison du caractere aleatoire des

perturbations qui influent sur la stabilite, une coneeption rationnelle de la securite ne
peut etre que probabiliste. C'est sur ces deux principes essentiels que s'appuie la
theorie que nous exposons brievement dans son application aux deux problemes
fondamentaux d'instabilite: le flambement et le deversement.

I Le Flambement

Le flambement des barres droites ä section constante
Le probleme de la stabilite d'une barre prismatique droite, articulee ä ses deux

extremites et soumise ä une compression axiale est fondamental.
La theorie bien connue d'Euler le resoud dans le cas ideal d'une barre parfaite et

indefiniment elastique et resistante: le bifurcation d'equilibre se produit pour la valeur
critique de la charge calculee par Euler:

N J***ly» \2

Pour une charge inferieure, l'equilibre stable est rectiligne; pour une charge
superieure, il est flechi.

II faut ensuite passer de la piece ideale ä la piece reelle. Au debut, on a simplement
considere que, puisque les barres utilisees en construction ont des proportions telles
que leur contrainte de rupture qui correspond ä une courbe deformee tres tendue est
atteinte pour une charge tres peu superieure ä la charge critique d'Euler, celle-ci cor-
respondrait pratiquement ä la rupture par flambement. Le fait d'avoir ainsi neglige
les deformations plastiques des materiaux et notamment de l'acier, a eu comme
consequences de nombreuses et retentissantes catastrophes et les controverses bien
connues entre Euleriens et non-Euleriens.

Ces controverses n'ont abouti qu'ä des formules empiriques de raecordement se
substituant ä la formule d'Euler, dans les zönes oü eile est inapplicable.

Un certain nombre de chercheurs ont cependant essaye d'echafauder une theorie
du flambement par divergence d'equilibre, se basant sur le fait experimental incon-
testable que l'equilibre flechi apparait pour une valeur de la charge tres faible et large-
ment inferieure ä la charge critique d'Euler.

Nous pensons avec eux que ces constatations montrent que la theorie par bifurcation

d'equilibre est une abstraction. L'experience reste notre grande maitresse, et il
serait vain d'aller contre ses enseignements.

L'instabilite de flambement se produit reellement par divergence d'equilibre, et
c'est cette constatation qui doit etre ä la base de toute Solution realiste.
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Quelles sont donc les causes de cette apparition prematuree de l'equilibre flechi?
Elles peuvent se classer en deux categories:

(i) Defectuosites de structure: Les materiaux sont inhomogenes, leurs proprietes
mecaniques variables dans leur masse, ainsi que leur etat de contrainte
interne.

(ii) Defectuosites de forme: Defaut de rectitude, de centrage pour ne citer que
les principaux.

Quoi qu'il en soit, le probleme reside dans la recherche d'une interpretation des
effets de ces differentes defectuosites, au moyen d'une hypothese les rendant acces-
sibles au calcul.

On est ainsi amene ä supposer la piece en materiau parfaitement homogene, doue
de proprietes elasto-plastiques bien definies, mais presentant initialement certaines
defectuosites de formes.

Partant de l'hypothese ainsi posee, on peut calculer la contrainte maximum dans
la barre. Une certaine valeur de cette contrainte amenant l'affaisement, on peut
calculer la charge correspondante, ou charge critique probable. Une comparaison
avec les essais, renseigne sur la validite de l'hypothese admise.

Des tentatives de ce genre ont ete faites par de nombreux auteurs. Surtout pour
l'acier, la nature de l'imperfection initiale a ete, suivant le cas, une fleche initiale ou
une excentricite initiale ou une combinaison des deux.

Toutes les hypotheses emises presentent le caractere commun de n'exprimer
l'imperfection initiale qu'en fonction de certaines dimensions caracteristiques des

pieces, telles que: longueur, demi-hauteur de la section droite, rayon du noyau central,
etc.

II est certain qu'une teile coneeption ne peut avoir qu'une validite tres limitee. On
peut considerer, en effet, que dans le cas d'eprouvettes usinees, les defectuosites de
forme: courbure initiale et excentricite de charge, peuvent etre suffisamment reduites
pour n'avoir que des effet absolument negligeables. La flexion prematuree est donc
düe ä peu pres uniquement, aux defectuosites de structures.

Ces defectuosites de structures ne pouvant se manifester que sous contrainte, il
est clair que la defectuosite conventionnelle qui interprete leurs effets, doit etre fonction

de cette contrainte.
Toute expression d'une fleche initiale, ou d'une excentricite initiale qui n'est fonction

que des dimensions de la piece, ne peut donc etre consideree comme valable que
pour un materiau bien determine, car eile admet implicitement que la contrainte qui
lui correspond est la limite d'ecoulement du dit materiau.

Ces considerations eliminent donc l'excentricite en tant que moyen d'interpretation
des defectuosites inevitables. On ne voit pas bien, en effet, comment on pourrait
justifier la Variation necessaire de la dite excentricite avec la nature du materiau.

II reste donc la fleche initiale, avec la necessite d'affecter son expression d'un coefficient

variable avec le materiau, ou les nuances d'un meme materiau. Ceci laisse
prevoir les difficultes qui surgiraient dans le cas de I'application ä des barres ä treillis,
et ä des problemes plus complexes.

Ces considerations preliminaires suffisent ä expliquer l'insucces des differentes
tentatives connues.

Elles montrent egalement que les hypotheses d'une fleche initiale ou d'une
excentricite initiale doivent etre abandonnees, en leur substituant celle d'une prefleche
conventionnelle, fonction de la contrainte.

L'expression de cette prefleche conventionnelle ne saurait etre quelconque si l'on
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veut aboutir ä une Solution generale; eile doit satisfaire ä certaines conditions que
nous allons examiner successivement.

Elle doit satisfaire aux lois de la flexion sinusoidale

Dans les essais de flexion simple, operes sur des poutres d'acier doux par exemple,
on peut constater des fluages locaux qui ont comme consequence une certaine majoration

de la deformation. On constate d'ailleurs que, pour l'ensemble de la poutre, la
loi deformation/allongement reste sensiblement lineaire tant que la contrainte maximum

reste au-dessous de la limite d'ecoulement, et meme un peu au-dessus en
consequence du phenomene d'adaptation dans la section.

On pourrait donc, pour determiner la fleche reelle, calculer d'abord la fleche
elastique theorique, et lui ajouter une fleche complementaire d'inhomogeneite.
Puisque la deformation reste sensiblement lineaire, l'expression de cette fleche
complementaire aurait, ä un coefficient pres, la meme expression que la fleche theorique
d'elasticite pure.

En flexion sinusoidale, la fleche elastique d'un poutre de longueur /, de moment
d'inertie /, coefficient d'elasticite E, sous moment maximum au milieu M0 s'exprime par:

M0l2
J TT2 EI

La fleche complementaire d'inhomogeneite s'exprimerait donc par :

M0l2 W
f°=c^ErCn'N-c (1)

dans laquelle:
C=constante experimentale
n./=contrainte maximum de flexion au bord de la section mediane
W= module de section (//Fpour une piece pleine)
Nc=tt2EI/12, charge critique d'Euler.

En flexion simple, cette fleche complementaire est pratiquement sans importance.
Quand il s'agit de flambement, il n'en est plus de meme. L'inhomogeneite du
materiau cree des le debut de I'application des charges, une dissymetrie des deformations

qui provoque une flexion influant directement sur la contrainte au bord de la
section mediane, et l'on ne peut negliger cette consequence.

II resulte de notre expose preliminaire, qu'on ne peut rationnellement interpreter
les effets de cette defectuosite que par la consideration d'une prefleche conventionnelle
fonction de la contrainte.

Les considerations suivantes precisent la forme ä donner ä cette prefleche
conventionnelle.

On sait que la flexion de flambement suit tres sensiblement la loi sinusoidale. Or
ä mesure que l'elancement augmente, Ie flambement se rapproche de la flexion simple,
puisque la contrainte de compression diminue. A la limite pour un eiancement
infiniment grand il faut donc que l'expression de la prefleche conventionnelle tende
vers l'expression (1).

Cette condition est indispensable si l'on veut aboutir ä une Solution generale qui
raccorde le flambement ä la flexion simple.

La contrainte maximum nm au bord de la section mediane etant la somme d'une
contrainte de compression simple n et d'une contrainte de flexion «/, il en resulte qu'il
n'y a d'ores et dejä, que deux expressions possibles de la prefleche conventionnelle:
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W
f0=Cnm

fo=Cnf

Nc

W_

Nc
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(2)

(3)

hyperbole d'Euler

' r2

Elle doit etre theoriquement correcte

Nous entendons par lä que, si l'on suppose nulle
la prefleche conventionnelle, la piece redevenant ainsi
parfaite, les charges critiques de la theorie par divergence

d'equilibre doivent devenir identiques ä celles de
la theorie par bifurcation d'equilibre. En supposant
un materiau parfaitement elastique jusqu'ä sa limite
d'ecoulement ne, le diagramme ideal de la contrainte
critique de flambement est represente en ABC sur la
figure 1.

Dans la theorie par divergence d'equilibre, on
admet que 1'affaissement se produit lorsque la
contrainte maximum au bord de la section mediane est
egale ä la limite d'ecoulement du materiau. En fait,
c'est pour une contrainte legerement superieure que 1'affaissement se produit du fait
de Fadaptation de plasticite, mais dans le flambement pur, l'erreur commise, en se

limitant ä ne est negligeable.
Tenant compte qu'en flexion sinusoidale le facteur d'amplification de la fleche

sous la contrainte axiale nz est:

\

Eiancement

Fig. 1.

nc—n.

la contrainte d'affaissement nz se calculera en posant:
nzQf0 nc

nz+- W nc—n
=ne (4)

dans laquelle:
ß=surface de section de la barre
«c=contrainte critique d'Euler

Nc T2£

y=eiancement=
/

/=longueur de la piece

r=rayon de giration dans le plan de flambement.

Avec l'expression (2) de/0, on arrive ä l'equation du second degre:

nz2-nz[nc+ne(C+l)]+nenc=0 (5)
dont la Solution est:

nz=n4 — Vn42—ncne ]
avec: ,„..,, (6)

«4=i [nc+ne(C+l)]j
Pour une valeur determinee de C, la Variation de n en fonction de y se fait suivant

une courbe ayant Failure AD indiquee en pointille sur la figure 1. Si l'on fait C=0,
ce qui revient ä supposer la piece parfaite, on voit qu'on a bien:



280 AH 3—J. DUTHEIL

nz=nc pour nc<jte

nz=ne pour np>ne

L'expression (2) satisfait donc ä la condition posee: la courbe de nz en fonction
de y coincide avec ABC.

Avec l'expression (3) de/„, on arrive ä l'equation:

nz2(C+l)-nz[ne(C+l)+nc]+nenc=0 (7)

On voit qu'en faisant C=0 dans les equations (5) et (7), elles deviennent identiques.
L'expression (3) satisfait donc egalement ä la condition posee.

Elle doit assurer la concordance experimentale
Le caractere aleatoire des imperfections, les variations constatees dans la valeur

de la limite d'ecoulement d'un meme materiau, l'influence de Fadaptation de plasticite,

sont autant de causes de dispersion dans les essais de flambement. Pour verifier
une concordance experimentale, il faut donc disposer, autant que possible, d'un grand
nombre de points d'essais. Les essais de Tetmayer sur l'acier doux sont, ä ce point
de vue, parmi les plus interessants.

La valeur de la limite d'ecoulement ne ä prendre en compte, doit etre la valeur
moyenne d'un grand nombre d'essais.

II resulte des essais de traction, effectues recemment sur dix mille (10 000)
eprouvettes en acier doux ordinaire, par la Chambre Syndicale des Entrepreneurs de
Construction Metallique de France, et la S.N.C.F., que cette valeur moyenne ressort
ä 28,6 kg./mm.2 En prenant cette valeur pour ne et C= 1/12 dans la formule (6)
donnant nz en partant de l'expression (2) de la prefleche conventionnelle on voit que la
courbe de nz, en fonction de Felancement y passe sensiblement par la moyenne des

points d'essais de Tetmayer (courbe 1 fig. 2). La concordance experimentale de
l'expression (2) peut donc etre consideree comme aussi bonne que possible pour
l'acier doux ordinaire.

Toujours avec C=l/12, eile parait d'ailleurs
aussi bonne pour l'acier ä haute resistance, le
duralumin, le bois de construction (sapin blanc).
(Essais de Ros, Publication Preliminaire du 1er

Congres de FA.I.P.C).
Partant de l'expression (3) de /„, on peut egalement

tracer la courbe de Variation de n: en fonction
de y. Avec C= 1/12, la concordance semble bonne
pour les grands elancements mais beaucoup moins
bonne pour les petits et moyens; la courbe calculee
passe nettement plus haut que la moyenne des

points d'essais. On ne peut trouver de valeur de C
donnant une concordance aussi bonne qu'avec
C=l/12, et l'expression (2). II y a donc ici nettement

avantage en faveur de l'expression (2).

kg n
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Fig. 2.

Elle doit permettre une coneeption probabiliste de la securite
La coneeption de la securite est evidemment le point le plus faible des methodes

de calcul au flambement derivant directement de la theorie par bifurcation d'equilibre.
On ne peut obtenir en effet autre chose que la valeur d'une contrainte critique de

flambement concordant plus ou moins avec les essais. De ces valeurs critiques, on



L'INSTABILITE PAR DIVERGENCE D'EQUILIBRE 281

passe aux valeurs admissibles par I'application d'un coefficient de securite. Mais
c'est lä que se presente la difficulte, on ne peut prendre un coefficient de securite
unique pour tous les elancements. Pour l'acier doux par exemple, si l'on prend 2,5 ou
3 par rapport ä la charge critique d'Euler, on ne peut conserver ce chiffre pour les tres
petits elancements car on arriverait ä ne travailler qu'ä 8 ou 9 kg./mm.2, en compression

simple. Inversement, le coefficient de securite normalement admis en compression

simple etant de 1,66, qui oserait Fappliquer aux grands elancements par rapport
ä la charge critique d'Euler? On s'en tire donc en faisant varier empiriquement la
valeur de ce coefficient de securite avec l'elancement.

Cependant, en toute rigueur, si les contraintes critiques calculees sont bien reelles,
les coefficients de securite differents amenent evidemment ä Finverse du resultat qu'on
se propose normalement d'obtenir, et qui est l'homogeneite du degre de securite entre
les differents elements d'une construction; il ne viendrait pas ä Fidee de mettre dans
une chaine de levage des maillons de differentes resistances.

II ne faut pas etre difficile pour admettre un procede qui, contraite ä toute logique,
consacre enfait Vechec de la theorie par bifurcation d'equilibre.

Cet echec est inevitable si l'on ne veut pas considerer, malgre leur evidence, les

perturbations apportees par les defectuosites.
Ces perturbations etant aleatoires, la coneeption de la securite ne peut etre que

probabiliste. Une contrainte critique calculee ne peut etre qu'une contrainte critique
plus ou moins probable qui ne peut constituer la base d'une coneeption rationnelle
de la securite.

Le probleme du flambement n'est qu'un probleme de resistance des materiaux
comme les autres, et de ce fait, justiciable des memes methodes.

En traction simple par exemple, la contrainte critique est la limite d'ecoulement.
Sa valeur, pour l'acier doux, varie de 22 ä 35 kg./mm.2, et sa valeur moyenne a ete
calculee ä 28,6 kg./mm.2 sur 10 000 essais. On n'applique cependant pas Ie coefficient
de securite par rapport ä ce chiffre, mais par rapport ä 24 kg./mm.2, car on estime que
la probabilite de se trouver devant une valeur inferieure est suffisamment faible.

De meme le cas du flambement, nz etant la contrainte probable d'affaissement, il
faut determiner ns, contrainte limite d'affdissement, teile que la probabilite d'observer
une valeur inferieure, soit suffisamment faible. Et c'est par rapport ä ns que le coefficient

de securite doit etre applique et non par rapport ä nz; enfin, ce coefficient de
securite doit etre unique et valable pour tous les elancements.

ns doit se deduire de nz par Ie jeu d'une majoration du coefficient experimental C,
en tenant compte d'autre part, des deux conditions suivantes:

Pour un eiancement nul, il faut prendre pour ne la valeur limite et non la
valeur moyenne, par exemple pour l'acier doux, il faut prendre 24 kg./mm.2 et
non 28,6 kg./mm.2

Pour un eiancement infiniment grand, il ne faut pas que la valeur de ns tende
vers nc, le rapport nc/ns de la contrainte critique d'Euler ä la contrainte limite
doit tendre vers une valeur finie, plus grande que 1 quand l'elancement croit
indefiniment.

Partant de l'hypothese (2), la valeur de ns est donnee par la meme expression (6)
que nz, etant entendu qu'on donne ä ne la valeur limite, et qu'on substitue ä C un
coefficient C>C.

La valeur de ns peut donc se mettre sous la forme:

'-/«j=«4 1" - *' «42
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Quand l'elancement devient tres grand, nc tend vers zero, on peut developper le
radical en serie et ne conserver que les deux premiers termes, d'oü:

nc ne
ns=n4H'-M 2«4

nc ne

(1 + C'K 1 + C

d'oü: -=1 + C (8)
ns

En prenant C' 5C= 1/2,4, on ne constate aucun point d'essai en dessous de la
courbe de ns en fonction de y. Cette courbe est tracee pour l'acier doux en 2 sur la
figure 2.

Partant de l'hypothese (3), on obtiendrait encore pour un eiancement infiniment
grand:

"-e=l + C
ns

Elle doit permettre V etablisement de formules pratiques suffisamment simples

L'examen des equations (5) et (7) montre immediatement que Favantage de la
simplicite est entierement en faveur de l'hypothese (2) qui reste donc finalement la
seule ä retenir.

Conclusion
Une opinion repandue jusqu'ä present etait qu'on pouvait faire, sur les imperfec-

tions initiales, un nombre ä peu pres illimite d'hypotheses valables. Effectivement, il
y en a eu beaucoup d'emises; un certain nombre d'entre elles sont enumerees par M. le
Prof. Massonnet dans son article "Reflexions concernant Fetablissement de prescriptions

rationnelles de flambage des barres d'acier" (Ossature Metallique, No. 7-8,
juillet-aoüt 1950); d'autres par M. le Prof. Campus dans son article "Reflexions sur
la Methode de M. Dutheil pour le calcul des pieces comprimees et flechies" (Ossature
Metallique, No. 1, janvier 1951).

De toutes ces hypotheses, aucune ne repond ä toutes les conditions posees, et ne
peut serieusement etre opposee ä notre hypothese (2) qui semble, seule, permettre une
Solution simple, generale et coherente du probleme. Elle illustre bien notre opinion
que la theorie du flambement par bifurcation d'equilibre, tout en n'etant qu'une
abstraction, conserve cependant une signification essentielle: l'expression (2) de la
prefleche conventionnelle, renfermant en effet le terme nc, charge critique d'Euler, et
dans toutes les formules qui en decoulent on retrouve la contrainte critique d'Euler nc
et la limite d'ecoulement ne. Elle est donc fondamentalement Eulerienne.

Formules d'application
Pour tous les elancements, on peut calculer ns par:

ns=n4-Vn42—nenc 1

avec: n4=i [nc+nc(C+l)] J U
En posant: k=ne/ns, on peut aussi donner un tableau ou une courbe des valeurs de k
en fonction de l'elancement.

La condition ä verifier sera alors:
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(10)nk<R
dans laquelle:

/?=contrainte admissible
«=contrainte de compression simple
k=coefficient de flambement.

C'est la methode suivie dans les Regles d'Utilisation de l'acier, applicable en
France, aux Travaux dependant du Ministere de la Reconstruction et de FUrbanisme,
et aux Travaux Prives. (Regles CM 46).

Notons que, dans ces Regles nous avions exprime la fleche initiale par:

>CÄ7 <">

Cette fleche initiale n'etait que la prefleche conventionnelle correspondant ä une
contrainte au bord de la section mediane egale ä ne, soit une valeur particuliere de:

W
f0=C'nmWc (12)

qui peut etre consideree comme une generalisation de (11). Cette generalisation
presente des avantages dans certains problemes complexes de flambement et pour
I'application ä differents materiaux.

Problemes complexes de flambement
Poutres composees de membrures assemblees par treillis ou barrettes

Une teile poutre composee, comprimee axialement se comporte du point de vue
de la forme d'equilibre, comme une poutre prismatique, c'est-ä-dire qu'elle prend, des
le debut de I'application de la charge, une position d'equilibre flechi. II en resulte
que les troncons de membrures sont inegalement comprimes, et qu'il y a certainement
danger ä considerer que la charge se repartit egalement, comme on doit logiquement
le faire dans la methode par bifurcation d'equilibre. Ce danger, confirme par
l'experience, est apparu d'ailleurs ä un certain nombre d'ingenieurs qui ont essaye d'y
remedier par l'emploi de formules empiriques.

Notre methode donne une Solution immediate ä ce probleme: la contrainte maximum

au bord de la section mediane et determinant 1'affaissement, ne doit plus etre
prise egale ä ne, mais ä «,, contrainte limite d'affaissement du troncon de membrure
qui est connue puisqu'il s'agit d'une barre prismatique.

Partant de l'expression (12), on exprime la contrainte nm par:
nc—on

n„,=n nc—(l-l-c)o-n
ou, en posant:

/*— 1 nc
k»= /, ,x avec: /*=—fi—(1+c) an

n„,=nk0
Alors que dans une poutre prismatique, la condition ä verifier serait:

nk0<R
dans le cas de la poutre ä treillis, eile devient:

nko<nn (13)
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m, etant la contrainte limite admissible du troncon de membrure soit:

ni,=n,/a

Prise en compte de la deformation d'effort tranchant

Dans les poutres simplement flechies, on neglige en general cette deformation qui
n'a pas grands inconvenients.

Dans les poutres comprimees axialement, la fleche complementaire qui en resulte

provoque une augmentation de la contrainte au bord de la section mediane, eile a

donc une influence directe sur la stabilite.
Considerons d'abord le cas oü la raideur propre des membrures est negligeable

devant celle de Fensemble de la poutre.
La deformation d'effort tranchant peut s'assimiler ä une diminution du module de

raideur EI de la poutre, ce module devenant :

EI/X avec A>1
On etablit facilement la valeur de A:

nc Q
X=1+GDa

dans laquelle:
G=module d'elasticite transversal
ß=section totale des membrures

Qa=section de l'äme equivalente.

II en resulte immediatement que la contrainte critique d'Euler nc devient:

n'c=nc/X

et le facteur d'amplification de la fleche:

(ces deux proprietes pouvant s'etablir d'ailleurs directement par l'analyse).
Le probleme est ainsi simplement resolu, il suffit de remplacer nc par n'c dans les

formules qui precedent, et la condition ä verifier devient:

nk'oOtu (14)

Si la raideur des membrures est appreciable, on etablit facilement que le module
de raideur devient:

E(I/X+Zi)
dans laquelle:

Ei= somme des moments d'inertie des membrures
/=moment d'inertie de l'effet poutre, c'est-ä-dire calcule sans tenir compte
des i des membrures.

On en deduit:

"'<="< (1+7J (15)

Remarquons en passant qu'ä notre connaissance cette valeur de la contrainte
critique d'Euler n'a jamais ete calculee. Timoshenko, dans son ouvrage Theorie de la
Stabilite Elastique, ne considere que le cas oü la raideur des membrures est
negligeable. L'influence de cette raideur est cependant, dans certains cas, importante;
l'erreur commise en la negligeant peut etre superieure ä 20%.
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Determination de l'effort tranchant de flambement
Ce probleme a fait couler beaucoup d'encre et donne naissance ä de nombreuses

formules plus ou moins empiriques mais la plupart tres divergentes.
II se trouve ici resolu immediatement.
En negligeant la deformation d'effort tranchant, n k0 represente la contrainte totale

au bord de la section mediane. La contrainte de flexion est donc:

nka—n=n (k0—l)
et comme il s'agit de flexion sinusoidale, Feffort tranchant maximum est:

T=W^n(k0-l) I

(16)

Dans le cas oü deformation d'effort tranchant est appreciable, il suffit de remplacer
nc par n'c et de substituer ä k0, dans l'expression (16), la valeur correspondante de k'0.

Poutres flechies et comprimees

La prise en compte de la prefleche conventionnelle permet de donner ä ce probleme
une Solution rationnelle, et d'obtenir le raecordement total entre la flexion simple et
le flambement.

Par crainte d'abuser de la place qui nous est reservee, nous renvoyons le lecteur
au texte de la Conference que nous avons eu Fhonneur de presenter ä la Tribüne de la
Societe Royale Beige des Ingenieurs et Industrieis, le 3 mai 1950, et publiee dans le
Bulletin No. 3, 1950, de cette societe.

Ce texte sert de base ä la revision du texte concernant le flambement dans les

Regles CM 1946, revision demandee par la Chambre Syndicale des Entrepreneurs de
Construction Metallique de France. Le nouveau texte marquera d'importants progres

et sera plus simple.
Nous esperons que les exemples qui precedent suffiront cependant pour donner une

idee des possibilites de cette methode.
Par eile, et du fait de sa coneeption probabiliste de la securite, le probleme du

flambement cesse de presenter le caractere particulier qui le distinguait des autres
modes de sollicitation, et la Resistance des Materiaux y gagne en coherence.

II Le Deversement

Le deversement des poutres droites flechies
Une poutre droite flechie dans un plan de symetrie peut etre instable sous une

contrainte maximum tres inferieure ä sa limite d'ecoulement. Suivant ses proportions,
il arrive qu'elle flambe lateralement on dit qu'elle se deverse.

II s'agit d'un probleme d'instabilite qui presente de grandes analogies avec celui
du flambement.

La theorie bien connue de Timoshenko (Annales des Ponts et Chaussees, fasc. III,
IV et V, 1913, et son ouvrage—Theorie de la Stabilite Elastique—lui donne une Solution

dans le cas d'une poutre parfaite, et en materiau indefiniment elastique et resistant.
La bifurcation d'equilibre doit se produire theoriquement pour la valeur critique du
moment calculee par Timoshenko dans differents cas de charge, et differentes formes
de section.

Pour un moment inferieur, l'equilibre stable reste plan; pour un moment superieur,
il devient gauche. Mais cette theorie n'est pas plus confirmee experimentalement que
celle d'Euler.
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En fait, le gauchissement apparait des le debut de I'application de la charge, et
l'instabilite se produit par divergence d'equilibre, comme dans le flambement. A ce

point de vue, les experiences de deversement effectuees courant 1951 par l'Institut
Technique du Bätiment et des Travaux Publics, sur des I.P.N. soumis ä moment
constant, sont caracteristiques. Les formules de Timoshenko presentent d'ailleurs les

memes dangers que celles d'Euler.
Hormis quelques formules empiriques, la plupart sans grand fondement, il n'y a

pas eu de tentative qui merite d'etre rapportee en vue d'etablir une theorie de deversement

par divergence d'equilibre; c'est cependant bien ainsi que se produit l'instabilite,
et c'est cette constatation qui doit etre ä la base de toute Solution realiste.

S'il n'y a pas eu de tentative serieuse, alors qu'elles ont ete si nombreuses dans les

cas du flambement, c'est que le probleme est ici infiniment plus complexe.
Considerons une barre rectangulaire etroite, rectangulaire, flechie dans son propre

plan sous un moment constant M. Sur les appuis, il y a une seule liaison des sections
terminales: toute rotation est impossible autour de Faxe OX (fig. 3).

1 '
H

1

M
\\

° *
\ ii ie 1

l ¦, Ih-
Fig. 3.

Supposons une position d'equilibre accompagnee d'un leger flechissement lateral.
La methode de l'energie permet de determiner la forme d'equilibre; on sait que le

deplacement lateral du centre de gravite de la section est ä Variation sinusoidale.

de meme que Fangle de torsion:

y=y0 sin -. x

cf>=</>0 sin-rx

Considerons dans la section, et sur toute la longueur / de la barre, une tranche
infiniment mince AB ä la partie superieure de la zone comprimee. Cette barre
prismatique elementaire uniformement comprimee, tend ä flamber lateralement, mais les
reactions elastiques de la barre entiere s'opposent ä ce flambement. Ces reactions

qui proviennent de la raideur de flexion d'une

r
M

Ai'h

—t-/J

Ir M2f',

©I
l\0

Fig. 4.

part, et de la raideur de torsion d'autre part,
sont evidemment ä variations sinusoidales
puisque proportionnelles aux deformations.

La barre prismatique elementaire se trouve
donc exactement placee dans les conditions d'une
barre soumise au flambement dans un milieu
elastique. On sait, en effet, que dans ce cas, la
ligne elastique en position d'equilibre flechie est
sinusoidale et que, par consequent, les reactions
du milieu elastique sont elles-memes ä variations
sinusoidales.
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Si nous connaissions la constante du milieu elastique correspondant ä la barre
elementaire, le probleme pourrait etre considere comme resolu.

Du fait de la Variation de la contrainte dans la section le long de Faxe OZ, le calcul
de cette constante est inextricable. La difficulte peut etre tournee au moyen de Farti-
fice suivant: On peut delimiter, dans la section de la poutre, deux membrures fictives
(fig. 4) d'epaisseur e, qui seraient soumises ä une contrainte uniforme:

M
'UV

dont le moment resistant serait egal ä M.
II suffit d'ecrire:

—t- n=eb (h-
o

¦e) n

d'oü: e=0,2l2h
On peut concevoir une poutre composee ideale, dont les membrures seraient celles

que nous venons de definir, et dont les liaisons entre ces membrures seraient telles que
la raideur de torsion et la raideur de flexion laterale de la poutre composee soient les

memes que celles de la barre reelle.
La poutre composee ideale ainsi definie possede la propriete remarquable d'avoir un

contrainte critique de deversement egale ä celle de la poutre reelle.
Nous en donnons ci-dessous la demonstration.
On concoit immediatement la simplification apportee au probleme tel que nous

Favons pose, et il ne s'agit plus que de la stabilite au flambement d'une barre
prismatique determinee, dans un milieu dont on connait les reactions elastiques. Ce

probleme est classique, au moins si l'on reste dans l'hypothese de pieces parfaite est
indefiniment resistantes.

Considerons (fig. 5) la section mediane de la
poutre dans une position d'equilibre legerement
flechie. Nous ne faisons aucune hypothese sur
la forme de section que nous supposons seulement

doublement symetrique. Nous ne la
representons rectangulaire que pour fixer les
idees.

La zöne 1 correspond ä la membrure
comprimee de la poutre composee ideale; cette
membrure a un moment d'inertie transversal i,,
et une section Q\.

Les memes valeurs s'appliquent ä la membrure

tendue 2, ä la zöne neutre 3 correspon-
dent i' et Q', ä l'ensemble de la section i et Q.

<f>0=valeur maxima de la rotation
f=fleche de la membrure comprimee

/'=fleche de la membrure tendue
p0=valeur maxima de la reaction de raideur de torsion
r0=valeur maxima de la reaction de raideur de flexion
/= longueur de la poutre

F=module d'elasticite de traction
C7=module d'elasticite transversal
/,=moment d'inertie de torsion de la section

i,a,

r-1
A

h+H

I.S1

Fig
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nc,=tension critique d'Euler de la membrure tendue (ou de la membrure
comprimee)

8=coefficient de majoration du moment d'inertie de la membrure tendue:
8 l+n/nci

-r,=module de resistance de la section (dans le sens vertical)

J=distance entre c. d. g. des membrures
M,—valeur maxima du moment de torsion.

Les equations d'equilibre donnent entre les differentes valeurs maxima definies
ci-dessus:

/-/' b f+f

M,=Pod+r0^=a</>0

expressions dans lesquelles a, b, c, sont des constantes: ¦

772 /4 /4

a=GI'T2' b=^Ii,' c=^e7'
De ces expressions, on tire la relation:

f., f A-B

ab b
avec: A =-= 5= —

d2 4c

Le moment par rapport ä la section mediane des reactions elastiques s'opposant au
flambement de la membrure comprimee est:

l2
M0=(p0+r0)—2

IT'-

Or: p0=f'-b=Xf—p±-

f+f A + Xn^Ei'
ro=-^r=f

(2
r**

2c J 2 /4

S A+l 7r2 Ei'
T l2

d'oü: ¦^=n,=nc,SX+(X+l)nc,u (17)

i
avec: w=

2i,
La tension critique de la membrure comprimee, qui est aussi celle de la piece reelle,
est donc:

n=n1+nc,=nc,(SX+l) + (X+l)nc,u (18)

equation du 2° degre en n qui, resolue, donne:

n=nc,V(2A + l)(u+l) (19)
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1 Gl l2 V tt2 Ei,
avec: A=-^-=r -~ u=^- ncl= n nit2 Ei, d2 2i, l2ü,

Cas d'une section rectangulaire en acier doux

G 2 rt2 Ei
rf=0,788/i,

La formule (19) devient:

i,=0,2l2i, a=0,788/i, T.=y ncl=nc=-ß^-, w=l,36

I

n=nc, l,53SV2A+l (20)

/, l2
avec: ,4=0,308 - j-i h2

Cas d'une section en double te en acier doux

On a sensiblement: u=0 d=h
¦n2 Ei,

n.cl-
TT2 Ei, V2 IV\2

h
P etant le rayon de giration dans le plan de l'äme et V=-, nc etant la tension critique

d'Euler de la barre dans le sens de son plus petit moment d'inertie.
La formule (19) devient:

n=nc,V2A + l (21)

It l2
avec: .4=0,0812 4-^

i h2

Comparaison avec les formules obtenues par les methodes classiques

Pour la section en double te, M. Timoshenko arrive ä l'expression suivante de la
tension critique:

n=- -jVEi G I,Vl+7T2 a2/l2

¦n2 d2 h2 Ei tt2 i h2

-T=T2T2Glt=6'l6i,T2

On peut verifier que cette expression est identique ä (21)

Pour la section rectangulaire, l'expression de la tension critique obtenue par
M. Timoshenko est:

Vit
n=-jjVEiGI,

expression identique ä:

n=nc 1,535©Z4

donc differente de (20) par la suppression du chiffre 1 sous le radical.
Cette difference s'explique aisement. Dans une barre rectangulaire etroite, ayant

une extremite encastree et l'autre soumise ä un moment de torsion, Fencastrement
s'oppose au gauchissement d'une tranche mince quelconque situee ä une distance d du
c. d. g. Elle subit de ce fait une deformation de flexion qui influe sur Fangle de torsion.

C.R.—19
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Cette deformation complementaire de flexion est d'autant plus importante que la
distance d est plus grande et la longueur de la barre plus petite.

Ce phenomene n'a pas echappe ä M. Timoshenko. Pour la section en double te,
il a donc evalue apres coup, la raideur de flexion des ailes et Fa introduite dans les

equations differentielles d'equilibre, ceci d'ailleurs au prix de certaines complications
mathematiques. Pour la section rectangulaire, il a neglige cette raideur de flexion
complementaire, alors que par notre methode eile est automatiquement prise en
compte dans tous les cas, et se traduit par le chiffre 1 sous le radical dans notre
formule (20).

En conclusion, nous pouvons dire que non seulement notre hypothese simplifica-
trice se trouve confirmee, mais encore qu'elle presente un avantage evident sur les
methodes classiques puisqu'elle permet d'aboutir ä une formule generale unique,
valable pour toutes les formes de section, et qu'elle prend automatiquement en compte
le phenomene de raideur de flexion complementaire que nous venons de signaler.

Remarquons que nous n'avons jusqu'ici, considere que le cas
fundamental du moment constant mais on sait que les autres cas de
charge s'en deduisent par application de coefficients determines par
Timoshenko. II n'y a donc aucun interet ä traiter directement ces
autres cas de charge. L'important est d'avoir ramene le probleme
du deversement ä celui du flambement en milieu. elastique ce qui
rend possible I'application au deversement de la theorie par divergence

d'equilibre.
Avant d'etablir les formules pratiques d'application, il est cependant

necessaire de preciser une particularite importante du probleme
fondamental du flambement d'une barre prismatique dans un milieu

Fig. 6. elastique.
Considerons une barre prismatique AB (fig. 6) parfaite de forme et de structure,

de longueur /, en position d'equilibre legerement flechie, dans un milieu elastique
de constante ß.

L'equation de sa ligne elastique peut etre consideree sans erreur appreciable comme
sinusoidale:

y=f&mjx
La compression axiale N correspondant ä l'equilibre, se compose de deux parties

distinctes:

(i) Nc charge critique d'Euler equilibree par le potentiel interne de la barre flechie.
(ii) N, charge axiale complementaire equilibree par les reactions du milieu

elastique. Ce deuxieme Systeme de forces ne produit aucun moment flechissant dans
la barre car le travail de la force N, dans son deplacement est egal au travail des
reactions elastiques, en negligeant bien entendu, comme habituellement, l'augmentation

de potentiel interne dans la barre düe ä son raccourcissement.
On peut donccalculer N, en ecrivant que le moment dans la section mediane est nul.
La reaction du milieu elastique sur un element dx de la barre est:

77

ßy dx—ßf sin - x dx

La somme des reactions elastiques est:

.21

iV.

H.

P=\ ßf sin-. xdx=ßf-
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et le moment de ces reactions par rapport ä la section mediane est:

PI cJ2
• M°=T^fn2

On aura donc:
l2

Xlf=ßf~2
TT*-

l2
d'oü: ¦ Ni=ß-x

TT^

et la charge critique totale de la barre sera:

N=N,+NC
II est important de remarquer que sous une charge axiale <N, seule la position

d'equilibre rectiligne est possible.
Si la caracteristique du milieu elastique ß est suffisamment grande, la barre pourra

atteindre sa limite elastique sans flamber, ce qui revient ä dire qu'elle travaille dans
ce cas en compression simple. II en resulte qu'une poutre flechie peut ne pas etre
soumise au deversement et c'est lä une difference essentielle avec le cas d'une barre
prismatique comprimee en milieu libre, qui se trouve toujours soumise au flambement
quel que soit son eiancement.

II en resulte egalement qu'il serait inexact d'appliquer un meme coefficient de
securite aux deux termes N, et Nc dont se compose la charge critique totale, Fun
correspondant ä de la compression simple et l'autre ä du flambement elastique. C'est
lä l'une des circonstances qui rendent impossible tout Systeme coherent de securite,
dans la theorie par bifurcation d'equilibre.

Signaions enfin qu'il est inutile de considerer toute autre forme d'equilibre flechi,
avec plusieurs demi-ondes, car dans le deversement, ces formes d'equilibre se tradui-
raient par une augmentation de la constante du milieu elastique ä laquelle cor-
respondrait une charge critique plus elevee.

Passons ä la barre prismatique reelle, et voyons comment s'applique la theorie
par divergence d'equilibre.

Tant que la contrainte de compression reste inferieure ä la valeur limite:

' Q Qtt2
la barre travaille en compression simple, le flechissement est faible car les reactions du
milieu elastique s'opposent ä toute amorce de flexion; il ne peut y avoir flambement.

Mais, lorsque la contrainte de compression est superieure ä n,, il y a equilibre
flechi de flambement, et 1'affaissement se produit pour une contrainte au bord de la
section mediane egale ä:

n'e=ne—n,
Le probleme se trouve ainsi ramene ä celui d'une barre soumise au flambement

libre, et la condition de stabilite ä satisfaire s'ecrit:

«,=

H) k0+"-<R (22)

ß— 1 «c
avec: k0=—jz——-. p.= -

-(1+c') an—n,
<7 coefficient de securite—ne/R
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L'expression ci-dessus n'est d'ailleurs valable qu'autant que:

CT

Pour<« «i/o-, il y a compression simple et Finegalite ä verifier se reduit ä:

n<R
Le probleme etudie est donc une combinaison de la compression simple et du

flambement. Dans la Solution que nous lui donnons, la coneeption de la securite est
coherente puisqu'ä la contrainte critique de flambement, nous appliquons le coefficient
de securite de notre theorie de flambement, et ä la contrainte de compression simple,
le coefficient de securite o-=ne/R.

Ces considerations montrent comment s'applique la theorie par divergence
d'equilibre, au deversement.

n/ etant la contrainte de flexion simple dans la poutre, resultant de sa charge, en
valeur d'exploitation, on peut poser immediatement la condition de stabilite ä
verifier:

(«i\ rt\
(23)

r*—l "cl
avec: k0=—tt-—7. p,=-p.—(l+c') r anf—n,
la valeur de n, etant donnee par la formule precedemment etablie:

n,=nc, SA+(A+1) nc, u

Dans le cas d'une section en double te, ces formules se simplifient.
On a sensiblement:

w=0 d'oü n,=nc, SX

TT2 Ei
«el=«c(-) avec «c=-^

dans laquelle:
F=demi-hauteur de la section

P=rayon de giration dans le plan de l'äme
z=plus petit moment d'inertie

ß=surface de section

anr IG/,/2°=H A — - —
«ci tr2 E 1 h2

A
A=

8+^

VERIFICATION EXPERIMENTALE

Sur Finitiative de la Chambre Syndicale des Entrepreneurs de Construction
Metallique de France, des essais ont ete effectues par le Laboratoire de l'Institut
Technique du Bätiment et des Travaux Publics, en octobre 1950.

Ces essais ont porte sur cinq poutres en I.P.N. 100 dont les longueurs sont indi-
quees dans le tableau I (colonne 1). Ces poutres ont ete soumises ä une flexion
circulaire, avec dispositif empechant toute rotation des sections terminales autour de
l'axe longitudinal. Les rotations etaient libres autour des deux axes de symetrie de
la section.
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Tableau I

293

(1) (2) (3) (4) (5)
Longueur des Tier rtcr Erreur Her

poutres calculee mesuree % pieces ideales

3 m. 00 16,4 16,10 + 1,7 17,06
2 m. 00 23.7 23,8 -0,4 26,4
1 m. 50 27.5 27,7 -0,8 37,1
1 m. 00 30,5 30,0 + 1,6 61,8
Om. 50 flexion simple 31,0 165,7

Les contraintes critiques calculees (colonne 2) resultent de l'equation:

(n/—n,) k0+n,=ne

avec: Kq-
•1 nc

8=1 +

•1,083

OL

ncl

f^=n/—n

X=
8 + y4

Cette equation n'est autre que (23) appliquee ä l'etat critique, au moment de
1'affaissement, etant entendu que pour la verification experimentale, on remplace
c'= 1/2,4 par c=l/12, ce qui donne l + c= 1,083.

On a pris pour ne la moyenne des valeurs mesurees dans Faile comprimee.
Dans la cinquieme colonne ä droite, on a calcule les contraintes critiques relatives

aux pieces supposees parfaites, par nos formules equivalentes ä celles de Timoshenko.
Ainsi qu'il fallait s'y attendre, ces valeurs s'ecartent tres sensiblement des valeurs
mesurees, alors que dans notre theorie par divergence d'equilibre, l'ecart n'est que de
2 % au maximum.

De plus, des mesures precises de deformation ont ete faites pour chacune des
valeurs progressives du moment applique. Ces mesures ont permis de constater,
pour les quatre premiers essais, que la forme d'equilibre est dejä gauche pour de tres
faibles valeurs de la contrainte, ce qui contredit la theorie par bifurcation d'equilibre.

Dans le dernier essai, (poutre de 0m. 50), notre calcul donne n,=nc, ce qui signifie
que la membrure comprimee travaille en compression simple et n'est pas soumise au
flambement. Effectivement dans cet essai, il n'a pu etre mesure de deformation
laterale appreciable.

On passerait du moment constant, cas fondamental, ä toute autre sollicitation par
I'application des coefficients de la theorie classique.

Toute autre liaison des sections terminales se traduirait egalement par I'application
de coefficients connus.

On resoudrait egalement sans difficultes Ie probleme des pieces simultanement
flechies et comprimees. En raison du manque de place, nous renvoyons ä Conference
de Bruxelles dejä citee.

Ce qu'il est important de retenir, c'est que, par cette theorie, confirmee experi-
mentalement, le raecordement entre le deversement et le flambement se trouve realise

pour la premiere fois.
II en resulte des consequences importantes pour Fhomogeneite du degre de securite

et la coherence de la Resistance des Materiaux.
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Resume
Flambement

La theorie d'Euler ne s'applique qu'au cas ideal d'une barre parfaite et indefiniment
elastique (flambement par bifurcation d'equilibre). L'experience montre qu'il y a
equilibre flechi des le debut de I'application de la charge, et la rupture d'equilibre
depend de la contrainte au bord de la section mediane: il y a instabilite par divergence
d'equilibre.

II a ete propose beaucoup d'hypotheses pour Interpreter les defectuosites
inevitables qui sont la cause du flechissement prämature. Une analyse serree des

conditions ä remplir montre qu'il y en a peu de correctes. Une seule semble convenir
pour aboutir ä une Solution coherente et generale des problemes simples et complexes
de flambement (pieces prismatiques, ou composees de membrures assemblees par
treillis ou barrettes, simplement comprimees ou simultanement flechies, prise en
compte de la deformation d'effort tranchant, etc.).

Deversement (ou flambement lateral des poutres soumises ä la flexion)
Les theories classiques connues (notamment celle de Timoshenko) ne s'appliquent

qu'ä des pieces parfaites et indefiniment elastiques (deversement par bifurcation
d'equilibre). En realite, il y a, comme dans le cas du flambement, deversement par
divergence d'equilibre. A notre connaissance, ce probleme n'a pas recu de Solution
pratique. Nous en proposons une en montrant que le deversement d'une poutre
flechie s'identifie avec le flambement d'une barre prismatique dans un milieu elastique.

Cette theorie conduit pour les pieces supposees parfaites, ä des expressions de la
charge critique identique ä celles de Timoshenko, avec Favantage d'une prise en
compte automatique de la raideur laterale de flexion. Ceci etant acquis, la theorie
du deversement par divergence en decoule immediatement.

Les essais recents executes au Laboratoire de l'Institut Technique du Bätiment et
des Travaux Publics confirment cette theorie.

Summary
Bückling

Euler's theory holds good only for the ideal case of a perfectly straight and per-
fectly elastic bar (buckling through deviation of the equilibrium). Experience shows
that a bent equilibrium condition exists right from the beginning of the loading and
that the disturbance of equiübrium is dependent on the edge stressing of the middle
section: there arises an instability through disturbance of the equilibrium.

Many hypotheses have already been advanced to aecount for the inevitable defects
that cause premature bending. A compendious investigation into the conditions
that have to be fulfilled shows that only a few are correct. One alone appears to be
suitable to allow of obtaining a comprehensive and general Solution of the simple and
of the complex problems of buckling (prismatic members or built-up grid or frame
bars, bars that are only compressed or at the same time also bent, taking aecount of
the plastic deformation in consequence of a transverse force, etc.).

Lateral buckling (lateral buckling of beams subjected to bending)

The well-known classic theories (especially that of Timoshenko) hold good only
for perfect and perfectly elastic beams (lateral buckling through deviation of the
equilibrium). In reality, there occurs, as in the case of buckling, lateral buckling
through disturbance of the equilibrium. As far as we are aware, this problem has
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never been solved practically. The author proposes a Solution, in that he shows that
the lateral buckling of a beam subjected to bending is identical with the buckling of a
prismatic bar in an elastic medium.

For bodies that are assumed to be perfect, this theory leads to expressions for the
critical loads which agree with those of Timoshenko but have the advantage, however,
of automatically taking the lateral bending-stiffness into consideration. From this
there follows directly the theory of buckling through deviation of the equilibrium.

The most recent tests carried out in the laboratory of the Institut Technique du
Bätiment et des Travaux Publics confirm this theory.

Zusammenfassung
Knicken

Die Theorie von Euler gilt nur für den Idealfall des vollkommen geraden und
vollkommen elastischen Stabes (Knicken durch Verzweigung des Gleichgewichts).
Die Erfahrung zeigt, dass schon vom Beginn der Belastung an eine ausgebogene
Gleichgewichtslage existiert und dass die Störung des Gleichgewichts abhängt von
der Randspannung des Mittelschnitts: es entsteht eine Instabilität durch Störung des

Gleichgewichts.
Um die unvermeidlichen Mängel zu erklären, die die Ursache der frühzeitigen

Ausbiegung sind, wurden schon viele Hypothesen aufgestellt. Eine gedrängte
Untersuchung der Bedingungen, die zu erfüllen sind, zeigt, dass nur wenige korrekt sind.
Eine einzige schien geeignet, um zu einer zusammenhängenden und allgemeinen
Lösung der einfachen und der komplexen Probleme des Knickens zu gelangen
(prismatische Körper oder zusammengesetzte Gitter- oder Rahmenstäbe, nur gedrückte
oder gleichzeitig auch gebogene Stäbe, Berücksichtigung der Verformung infolge der
Querkraft, usw.).

Kippen (oder seitliches Knicken der Biegebalken)

Die bekannten klassischen Theorien (namentlich diejenige von Timoshenko)
gelten nur für vollkommene und vollkommen elastische Balken (Kippen durch
Verzweigung des Gleichgewichts). In Wirklichkeit kommt es, wie im Knickfall, zum
Kippen durch Störung des Gleichgewichts. Dieses Problem ist unseres Wissens bisher
nie praktisch gelöst worden. Der Verfasser schlägt eine Lösung vor, indem er zeigt,
dass das Kippen eines Biegeträgers identisch ist mit dem Knicken eines prismatischen
Stabes in einem elastischen Medium.

Diese Theorie führt für die vollkommen vorausgesetzten Körper auf Ausdrücke
für die kritischen Lasten, die mit denjenigen von Timoshenko übereinstimmen, jedoch
den Vorteil haben, die seitliche Biegesteifigkeit automatisch zu berücksichtigen.
Hieraus folgt unmittelbar die Theorie des Kippens durch Abweichung des

Gleichgewichts.
Die neuesten im Laboratorium Institut Technique du Bätiment et des Travaux

Publics durchgeführten Versuche bestätigen diese Theorie.
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Etude theorique experimentale et pratique des encastrements
de flexions

Theoretical, experimental and practical investigations of bending
stresses

Theoretische, experimentelle und praktische Untersuchung der
Biegeeinspannungen

R. PASCAL
Ingenieur-Docteur E.P.C., Paris

I. Action d'un effort concentre applique sur le plan limitant un solide
indefini (flg. 1)

Boussinesq puis Flament ont etudie l'action d'une force concentree agissant en un
point du plan limite d'un solide elastique indefini.

Gräce ä l'utilisation des solutions generales donnees par Boussinesq on obtient
sans difficulte notable les valeurs des deplacements //, v, w, et des contraintes N,, N2,
N}> T\, 7\, Fj, en tout point du solide elastique. Les notations etant celles qu'indique
la figure 1, nous avons abouti aux resultats suivants pour le point m (.v, y, o) du plan
limite:

Deplacements:

U (1+17)(1-2T,)JC l-_ (l + r,) (1-27?) y W

n 2-nEp2 ' nn 2-trEp2 '

Contraintes normales

N, i r

n 2-rrp2

n

I

2t7P2

d-v2)
TrEp

l--{X2(l-y)-y2r,)
P

i--Ay2d-v)-x2v)
v,'=0
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Contraintes tangentielles:

AH 3—R. PASCAL

Tl=o, f2=o, Ti=-^*yfl TTp*

Za : rpoJu/e de TJotinq

r efficlent de FbiLaon

UL-
Tz

fe:
TiT>^
VZ

fr*

deplocemenfer

conlroinleJ normaleJ

contraintes dfi cijoillement

Fig. 1. Action d'un effort n normal au plan limite au point o. Action d'un
effort/porte suivant ox et agissant en o. Notations pour les deplacements et les
contraintes normales et tangentielles suivant le triedre o, x, y, z

Un calcul du meme genre pour l'effort horizontal / agissant en o, suivant ox,
nous a donne pour le point m (x, y, o):

Deplacements:

U 1 + 71 V 1+7? W (1 + 77)(1—277)
f=^Ep2(p+7}X)' ~r^EpXy> T 2ttEp2

X

Contraintes normales:

Nt 1 ,xy* 2(l—n)x(p+i)x)

f it(1-2v)p21
N2

(1+^) 3^.+y(l-,)- (1_w
-r,x

f n{l-2y)p*
N3 l

yi-
3(1—7?) 27JX

p

f n(l -2V)p3 L

Contraintes tangentielles:

„ ,P2-2*2 *v2
(l-7?)X+7?2 3J-T-

3j_ 3*j>

/ 2nfi*

i r x x2„
•

f
T*_JL
f 2-irpi

„ x 3.x2

«77.
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L'examen de ces deux groupes montre que les deplacements sont inversement pro-
portiormels ä E. II prouve aussi que les contraintes dependent du coefficient de
Poisson.

II. Calcul des deplacements normaux: If provenant d'une section rectangu¬
laire APPARTENANT AU PLAN LIMITE ET Ä UN PRISME ENCASTRE NORMALEMENT

DANS LE SOLIDE INDEFINI (fig. 2)

Nous supposerons que la piece prismatique amene un effort normal N, un moment
flechissant M, correspondant ä une rotation autour d'un axe parallele ä oy et un effort
tranchant T parallele ä ox. Nous admettons que la repartition des efforts elastiques
correspondants, ä l'interieur du rectangle de contact, est celle que donne la resistance
des materiaux. Les efforts normaux sont representables par un plan:

12Af
a3b ab

N 6M1 2a,\

SW +t) ™tn=Ax+B

W

ix
g. lo^-ai)

02

Fig. 2. Contour rectangulaire d'encastrement.
(Vecteur de flexion parallöle ä Py)

Le deplacement vertical du point P et provenant de la flexion composee est,
d'apres ce qui precede, donne par l'expression:

1_„2 r«2 r+b/2 Ax+B
W,= -=r\ ,——- dx dy1 vE J aJ-b/2 Vx2+y2

On peut ecrire W,= Wn+W,2; la premiere integrale correspond ä Ax et la
seconde ä B.
Wi, est une expression impaire:

Wn=-
1-t?2 \a22 b+Vb2+4az2 a,2 b+Vb2+4a,2
,EAnL 2/a2/ ~tL- 2/a,/

W12 est tme expression paire

l—n2

+^(Vb2+4a22-Vb2+4a12)]

W,12 -B
b+Vb2+4a22 b+Vb2+4a,2 b 2a2+Vb2+4a22

a2L -r-—: a,L —,—; f-^L;
2/02/ 2/atl 2 2a1+Vb2+4a12.
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Le deplacement vertical W2 du point P provenant de Feffort tranchant s'obtient
d'une facon identique en partant de la fonction:

-.(x—a,) (x-a2)
f=6Tx- a*b

expression conforme aux regles de la resistance des materiaux. On obtient ainsi:

W,=
3(1+7?) (1-27?)

aibirE

(•+6/2 Ca-,

J -6/2 J oi

fl-' (x-a,) (x-a2)
(x2+y2)

dy dx

On trouve, apres integration, l'expression impaire W2:

W,=
3(1 + 7?) (1-27?)

a3birE T.

+ \{a,a2-buy

(arc tg2^) • T • (fl'-l)-(arc *£) ¦ T • (fl2-l)

-ßt2)]4at2+b2

b_
2a~2!

b2
+^(a,+a2)

2a2
arc tg-r—arc tg

2a,
b

-ffe2

On s'apercoit que le deplacement total W= W, + W2 ne correspondpas ä la droite de
Navier, meme en cas de compression pure. En etendant les calculs aux points du plan
situes de part et d'autre de l'axe ox, on peut obtenir la deformation du rectangle
d'appui teile qu'elle ressort de I'application de la theorie de l'elasticite et des
principes de la resistance des materiaux. L'allure du rectangle T, deforme fait l'objet
de la figure 3. Les calculs sont faits rapidement ä partir de ceux qui precedent par
un procede de contours superposes.

On remarque que la surface T, contient Faxe oy, eile n'est symetrique, par rapport
ä oy qu'en Fabsence d'effort normal.

Elle est toujours symetriques, avec les bases adoptees par rapport au plan y=0.
Le resultat auquel nous venons d'aboutir est caracterise par une anomalie

rigoureusement etablie dont l'existence necessite le recours ä la methode experimentale.

lo : cor,hur initial

Ti

^

% T-l

L Ji

To -v

L : contnur transtorme -+-

Fig. 3. Deplacement et deformation du contour rectangulaire T.
(Vecteur de flexion pure suivant oy)

III. Probleme de l'encastrement plan 'etudie ä partir des memes bases que
PRECEDEMMENT—RECHERCHE DES CONTRAINTES DANS LE SOLIDE INDEFINI (fig. 4)

En utilisant les etudes de Boussinesq et de Flament, nous avons obtenu sans grandes
difficultes les expressions donnant les valeurs des tensions N3 et N, agissant au point m,
de coordonnees (a, o, y) ainsi que les valeurs T2 du cisaillement correspondant. On
sait que iV2=7? (N+N').
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Les resultats qui, sauf pour N2, sont independants de E et de 7?, peuvent etre
resumes ci-dessous en coordonnees bipolaires, les poles etant les extremites de la
penetration de la lame indefinie.

(-0)

CX compression pur^

ß s flexion pvrt

u - a'sar/lemenl pur

A X ' A
¦f^r [ nun,im,,1* nulluni,},

M'd.o.T)

o<

ihid/W)

n

(|J
'11)1)1)1))))))

3 M

2 a

vT
nininim. IUI.111)11)1),

Kx.

4 o3

Fig. 4. Encastrement plan d'une lame normale au solide indefini

ler cas: compression pure (resultat classique)

Les tensions principales correspondant aux bissectrices de Fangle AMA' ont pour
expressions:

N=-[(ff-ff)+sin (6'-ff)]

N'=-[(0'-0)-sin (ff-ff)]
77

et N2=t] (N+N') en epaisseur indefinie.

2eme cas: flexion pure
On obtient la valeur des tensions principales et leur orientation par la construction

de Mohr, ä partir des resultats suivants (avec K=3M/ira2, y etant determine par 8 et 6'):
N, OL l+tg20-±=a (0-0')--(sin 20-sin 2ff)-yL © a,-y (cos2 0-cos2 ff)K 2. 1 + \S~ o

K

K

+tg2

=a (0-0')+« (sin 20-sin 2ff)+y (cos2 0-cos2 ff)

(cos2 0-cos2 0')-y (d-ff)+t (sin 20-sin 2-5')

et N2=i) (N,+N3) en epaisseur indefinie.

3eme cas: cisaillement pur
On procedera comme ci-dessus pour obtenir N, N' et leur orientation ä partir des

resultats suivants (avec K'=3Ty/4ira3):
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Ni
-rr,—y (cos2 0—cos2 ff)—4yLK

COS i

COS I
—y

1 1

cos2 ff cos2 0
+4a (tg 0'-tg ff)-

6a (ff-6)+a (sin 20'-sin 20)

K-,=(cos2 ff-cos2 6)—2yL
cos ff'

cos 0 -2a (ff-ff)+a (sin 20'-sin 20)

^2 4 r-,=4aL
COS0'

COS 0
-2a (cos2 0'-cos2 0)+2y (tg 0'-tg 0)-3y (0'-0)+^(sin 20'-sin 20)

et N2=r) (N, + N3) en epaisseur indefinie.
Ces formules n'ont ete indiquees que parce que nous les avons utilisees plus loin.

Experiences preliminaires sur un modele en caoutchouc (deformations rever¬
sibles mais finies)—Experiences de M. Tesar—Experiences de MM. Favre
et Bereuter

La necessite d'un recours ä l'experience decoule du resultat trouve pour Fencastrement

ä la flexion d'une piece prismatique. Oü le calcul est insuffisant, parce que trop
simplifie dans ses bases, l'experience eclaire, parce qu'elle contient les donnees intactes
du probleme etudie.

Afin d'avoir une idee sensible du phenomene, nous avons procede ä des experiences
purement demonstratives de deformations finies. Pour cela nous avons decoupe une
eprouvette dans une lame de caoutchouc et celle-ci recouverte d'une laque blanche ä
ete soumise ä trois sortes de sollicitations:

1° traction pure dans la partie de largeur constante
2° flexion pure dans la partie de largeur constante
3° flexion et cisaillement dans la partie de largeur constante

La photo n° 1 correspond ä l'effet de la traction, la photo n° 2 correspond ä celui
de la flexion pure, et la photo n° 3 ä celui de la flexion alliee au cisaillement et ä une
legere traction.

Sur la laque nous avons trace un quadrillage et chaque carre contenait un cercle
inscrit. La deformation du quadrillage et des cercles inscrits renseigne parfaitement

sur le sens des efforts et montre aussi les deformations finies dont les proportions
correspondent ä celles d'un modele ä deformations infinitesimales. La fissuration de
la laque, comme la deformation des cercles, pourrait donner lieu ä des mesures, mais
ce domaine n'est pas celui de l'elasticite, puisque les deplacements et deformations qui
sont bien reversibles, ne sont pas en meme temps infinitesimales.

Ces essais n'ont qu'une valeur demonstrative.

Examen de la photo n° 1 (fig. 5)

Les resultats obtenus valent pour la compression pure au signe pres. La courbe
des deplacements W,2 que nous avions tracee pour le cas du beton (t?=0,20, £=
220 t./cm.2) se retrouve ici, tres nette. On voit aussi une legere difference entre les
tensions principales du centre de la zöne de transition et celles des parties laterales.
Cette difference concerne leur valeur et leur orientation. L'intensite des efforts de
traction doit etre vraisemblablement proportionnelle au nombre de fissures par unite
de longueur. On constate que les directions principales de traction s'epanouissent ä

peu pres ä 45°, im peu plus bas que le conge. Les deformations sont encore sensibles
ä une profondeur egale ä la largeur de la piece. Sauf pour les regions extremes, les
sections droites restent droites.
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Examen de la photo n° 2 (fig.6)

La flexion est circulaire, c'est-ä-dire qu'il n'y a pas d'effort tranchant. On retrouve
ici avec la meme nettete que precedemment la courbe de deplacements W„ symetrique
par rapport ä sa tangente inflexionelle. Les cercles sont deformes d'une facon tres
nette. Malheureusement, la pellicule de laque parait avoir flambe dans les regions
comprimees, mais le phenomene est clair et confirme bien les resultats de notre
premier calcul, du moins au point de vue qualitatif. Les sections droites sont trans-
formees en courbes inflexionelles ä proximite de l'appui, mais les rayons de ces courbes
sont tres grands.

Examen de la photo n° 3 (fig. 7)

Ce cliche correspond ä un cas rencontre frequemment dans la pratique. La droite
de transition est encore inflexionelle, mais eile subit un deversement du ä l'importance
du cisaillement. La dissymetrie correlative des contraintes se lit sur les ellipses dont
les excentricites sont nettement differenciees autour de la deformee de transition.
Celle-ci semble bien etre le resultat d'une addition des courbes W„, W,2 et W2, dont
les formules ont ete donnees au debut et pour lesquelles une application numerique a
ete faite.

nr-^rX-
B332

r

:-

ttm

Fig. 7. Photo n° 3

Les sections droites ne restent droites que dans la partie centrale de la bände.
Ces experiences pourraient etre reprises avec un materiau moins deformable et

dont le coefficient de Poisson se rapproche de celui du beton (t?=0,20) ou de l'acier
(t?=0,30). II faudrait proceder avec des objectifs speciaux et realiser un quadrillage
beaucoup plus tenu. Les excentricites des ellipses seraient d'ailleurs moins grandes
que pour t?=0,50.
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La conclusion de ces experiences demonstratives, c'est que les hypotheses simpli-
ficatrices de la resistance des materiaux, qui sont parfaitement verifiees ä mi-distance
des masses d'encastrement, ne le sont aucunement autour de la droite de transition.

Rappel des experiences de M. Te'sar *

Sous le titre "Section d'encastrement d'une voüte epaisse ä retombee normale,"
M. Tesar a decrit les experiences de photoelasticimetrie qu'il a entreprises en 1936 et
1937 au Laboratoire de l'Ecole des Ponts et Chaussees.

En soumettant un modele de xylolithe ä une serie de trois efforts differents
correspondant donc ä trois montages differents, M. Tesar a obtenu par combinaison
lineaire des resultats recueillis (Operation legitime en elasticite pure) les actions
separees d'un effort normal, d'un effort tangentiel et d'une flexion apportes par la
voöte.

Les resultats publies par M. Tesar concernent les tensions agissant sur la droite de
transition entre les extremites horizontales des conges.

En analysant ces resultats et en les comparant avec ceux qu'un calcul habituel
aurait donnes, Fexperimentateur a trouve des differences considerables dont quelques
unes proviennent certainement du fait que la piece encastree presente une forte courbure.

Nous avons compare les resultats de l'action du moment avec celui que donnent

les formules de Ribiere (CR. 1889 et 1891) et non pas de Navier comme Favait
fait M. Tesar.

La divergence entre les resultats mesures et ceux du calcul est moins considerable,
mais reste sensible.

En tracant les cercles de Mohr pour Fextrados dans le cas de la compression pure,
de la flexion pure et du cisaillement pur, nous sommes arrives aux resultats graphique-
ment representes sur la fig. 8. Le resultat de la comparaison est suggestif pour le
cisaillement pur, dans le cas du beton.

Cömprejjion pure Nl cercle f/e Mohr calcule N2, cercle, de liohr obtenu

Flexion pure Ff, cereft tie Mohr calcule, f% ^.fcrclc de thhr_o61enu/ /*'/ ©

-I

\ \\ ^Gjoillemenc pur 7j cerett de Mohr calcule
t /^cerefc de MoEr obtenu

N

44-

<b

Fig. 8. Experience de M. Tesar.—Comparaison des cercles de Mohr correspondant
au point E, d'apres les resultats publies

* Annales des Ponts et Chaussees, 1937.

CR.—20
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Rappel des experiences de MM. Favre et Bereuter *

Les auteurs des essais ont utilise un verre special dit "optique" et sur lequel ils ont
d'abord evalue les tensions originelles. Utilisant la methode d'examen optique que
M. Favre a mis au point ä Zürich, ils ont cherche Finfluence de Fangle d'inclinaison
d'une console encastree dans une masse indefinie, sur la distribution des contraintes.
Dans chaque cas la console etait sollicitee par un effort parallele au plan limite de
Situation et d'intensite identiques. De la sorte, l'eprouvette etait soumise ä une traction

normale, ä un cisaillement et ä une flexion.
Les resultats ä retenir de ces experiences sont la concentration des efforts aux

conges et particulierement aux conges rentrants ä mesure que Fangle d'incidence
augmente, Famortissement assez rapide des contraintes ä Finterieur de la masse
d'encastrement et enfin la presence d'un point singulier du spectre isostatique que
nous retrouverons plus loin et que nous designerons sous le nom de pole d'encastrement.

Ce point legerement au-dessus de la ligne des raccords superieurs des conges
se deplace vers Fangle rentrant ä mesure que Fangle </> augmente. Le conge exterieur
supporte des tensions decroissantes avec <j>. C'est le contraire pour le conge interieur.
La somme des deux maxima est ä peu pres independante de Fangle.

On remarquera que si Fencastrement avait ete parfait, le point singulier aurait ete
situe sur la droite limitant la masse d'encastrement quelle que soit la valeur de </>.

Nous notons ce fait en passant, car nous reviendrons sur la notion d'encastrement
parfait.

Essais de l'auteur entrepris au Laboratoire de la S.N.C.F. sous la direction
EFFECTIVE DE M. KAMMERER, INGR. Dr. ES SCIENCES, ASSISTE DE M. CANAL,
iNGr. P.C. (1947)

Ces experiences ont ete faites avec le soin et la precision que M. Kammerer et son
assistant ont toujours montre dans leurs travaux du Laboratoire de Levallois Perret.

Le but des essais et des mesures entrepris a ete d'etudier dans ses details, Fencastre-

Fig.9
* E.P.Z. 44
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ment d'une piece flechie encastree dans une masse indefinie. Cette etude d'elasticite
plane a ete faite avec deux rayons de conge et sans conges.

Nous avons procede ä une comparaison des resultats fournis par le calcul avec
ceux qui ont ete trouves aux essais.

La figure 9 montre le modele etudie dans son cadre. La piece aboutissant ä la
masse d'encastrement lui amene uniquement un effort de flexion. La matiere utilisee
etait du Plexiglass d'un module elastique de 29.000 kg./cm.2 avec un coefficient de
Poisson egal ä 0,30 et un coefficient photoelastique K=4l. L'epaisseur du modele
etait de 10 mm. et le couple agissant avait ete mesure avec toute la precision utile.

Le banc de photoelasticite utilise etait celui de la S.N.C.F. dont M. Kammerer a
donne la description dans son excellent livre intitule Recherches sur la photo-
elasticimetrie (Edition Hermann). On a determine d'abord les isoclines, ce qui
fournissait les points de tension maxima aux contours puisque ce sont ceux pour
lesquels Fisocline arrive normalement. On a pu tracer ensuite les isochromes et gräce
au compensateur mesurer les tensions.

Les resultats ä retenir sont tous contenus dans le spectre chiffre des isostatiques.
Nous avons montre les resultats obtenus sous forme de triptyque. (Figs. 10,

11 et 12).

VARIATIONS SUIVANT LE LONG DU

pONTOUR DE LA PIECE DE LA CONTRAINTE
NORMALE PARALLELE AU CONTOUR

,fjs .l'-rsL

?"S5 -*r»

Couple sppltcue

150 Kmm

Fig. 10(6). Partie 1. Angle vif
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Chacune des trois planches fournit les dimensions du modele et le spectre des

isostatiques. Les donnees numeriques sont indiquees sur les epures jointes. Ce sont
les repartitions des contraintes dans la piece flechie et sur la droite d'appui.

Les resultats ont ete reproduits avec la meme representation pour faciliter les

comparaisons.
L'examen comparatif de ces planches est facilite par l'examen du tableau ci-dessous

et du graphique des contraintes agissant sur la droite de transition.

VARIATIONS des CONTRAINTES
N3, N1.T2, LE LONG DES SECTIONS

AB-CD-EF
Variations de N3: \

_ N1 : |"
_ T2:

p-ss

12-tnrri

"i

E
h»,— '-Ä-- •

o'it '\e?e •*-"

rt I

»> X f.ofis

I f
I I
I

-'¦'\ i

-1-fS

Fig. 10 (b). Partie 2. Angle vif—Couple applique 150 kg-mm.



Fig. 11 (a). Petit conge—Tensions
principales—Couple applique

150 kg-mm.
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VARIATIONS LE LONG DU CONTOUR

DE LA PIECE DE LA CONTRAINTE NOR
MALE PARALLELE AU CONTOUR '

,1'M ¦•!"

VARIATIONS des CONTRAINTES

N3.N1.T2, LE LONG DES SECTIONS

AB _ CD_ EF

Variations de N3
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Fig. 11 (6). Petit conge



Fig. 12 (a). Grand conge—Tensions
principales—Couple applique

150 kg-mm.
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VARIATIONS LE LONG DU CONTOUR
DE LA PIECE DE LA CONTRAINTE NORMALE

PARALLELE AU CONTOUR

VARIATIONS des CONTRAINTES
N3, N1.T2, LE LONG DES SECTIONS

AB _ CD_EF

Variations de N3
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Fig. 12 (fc). Grand conge
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Moment applique: M=15 kg.-cm.—Contraintes exprimees en kg./mm.2

Angle vif: r=0 Petit conge: r i mm. Grand conge: r=6 mm.

Situation des points sin-
guliers:

1 point singulier de
lere espece aux
angles.

1 point singulier vir-
tuel de chaque cöte
ä l'exterieur et dans
le quadran du conge.

1 point singulier vir-
tuel de chaque cöte ä
l'exterieur et dans le
quadran du conge?

Hauteur du pole d'encastrement

(point singulier
de lere espece) 121 mm. 145 mm. 174 mm.

Tensions maxima et
diametre maximum du
cercle de Mohr coefficient

d'augmentation.

2,95 kg./mm.2
2 95

2,30 kg./mm.2
2.30

1 AC
P=LT5=1'48

1,95 kg./mm.2
1,95

p n55 1'25

Contrainte maximum
dans la piece au-dessus
du pole 1,55 1,55 1,55

Concentrations maxima
des contraintes principales

(sur les conges)
^W.=l,90* kg./mm.3
^max. =0,425
dy kg./mm.3

^W.=0,192
°x kg./mm.3
^max. =0,250
°y kg./mm.3

^W.=0,115
-* kg./mm.3

^-W*. =0,120
°y kg./mm.3

Comparaison des Resultats du calcul et des Resultats experimentaux pour la
piece essayee

Possedant des donnees numeriques precises pour le plexiglass, nous avons pense
qu'il serait interessant de proceder au calcul des efforts en plusieurs points de la masse
d'encastrement choisis ä proximite de Fencastrement et de les comparer avec les
resultats des calculs. Les figures qui precedent suffisent ä montrer l'importance des
differences dans la section de transition avec et sans conges.

A l'interieur de la piece encastree, celles-ci s'attenuent jusqu'ä devenir pratiquement

nulles, ä mesure que l'on se dirige vers le pole d'encastrement.
La figure 13 montre d'abord la position des points choisis: A, B, C, B', A', puis

le resultat de chacun des essais pour chacune des trois eprouvettes analysees. On
observe que la presence d'un conge et son rayon ont une certaine influence en des

points situes ä une demi-hauteur des pieces ä l'interieur de la masse d'encastrement.
Cette influence se traduit par une diminution des contraintes pouvant atteindre 20%
et une legere rotation de l'ellipse, des torsions dans certaines regions.

En utilisant les formules du Paragraphe 111 et en suivant les regles habituelles du
calcul pour l'evaluation des contraintes sur la droite limite, les conges etant supposes
absents, nous avons obtenus des resultats, ceux que le calcul ordinaire laisserait
prevoir comme provenant d'un moment de 15 kg.-cm. agissant lineairement sur un
Segment de 24 mm. de longueur de la droite limite.

La comparaison de ceux-ci pour les points choisis dans le cas de l'angle vif avec
les resultats experimentaux est explicitee dans la figure 14.

On notera une difference marquee pour les points A et A', accompagnee d'une
divergence de directions principales. Cette difference s'attenue ä mesure que l'on se

dirige vers l'axe vertical.
Ces experiences ä deux dimensions, nous avions envisage de les etendre ä trois

dimensions.
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Fig. 13. Position des points etudies dans la masse d'encastrement

La premiere idee consiste ä utiliser le procede nouveau de figeage. Mais il faudrait
attendre que cette sorte de mesure soit definitivement entree dans la technique des

laboratoires specialises. L'etude detaillee de la distribution des efforts dans les pieces
prismatiques montre, d'apres le trace des surfaces de cisaillement dans les pieces
symetriques, suivant la theorie de Saint Venant, que les resultats recueillis ailleurs que
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12 mm 12 mm

calcul

calculcalcul
objcryalion

obseryolionocurrmfion

Echdlc du lenjionj ;

Fig. 14. Comparaison des resultats du calcul et de l'experience pour le
modele ä angle vif. (Ellipses des tensions)

dans la region mediane sont fausses ä cause de la grande inclinaison de ces surfaces

par rapport au plan moyen des que l'on s'approche de l'extrados ou de l'intrados.
Si, par exemple, une excentricite a/b= 1/5 est satisfaisante pour les mesures, l'excentricite

inverse b/a=5 l'est beaucoup moins.
D'autre part, la difference des coefficients de Poisson conduit ä une repartition

differente des contraintes autour de points homologues ä cause de la presence d'un
facteur -q/{l—2rj) dans les formules donnant les efforts normaux en fonction des

deformations. Ce facteur=0,75 pour le plexiglass, peut varier de 0,25 ä 0,50 pour
le beton.

Nous aurions voulu construire des modeles en beton arme en utilisant une echelle
acceptable. Nous avions pense ä des pieces de l'ordre de 20 x 40 encastrees dans des

massifs de l'ordre de 1,00x2,00 m. et d'au moins 1,00 m. de profondeur.
En faisant varier la proportion des cötes et le pourcentage d'armatures, on

aboutirait ä une collection de resultats interessants. Les mesures des deplacements
angulaires et lineaires pourraient etre faites avec des cordes vibrantes et celles des

contraintes ä l'aide de strain-gauges places sur la peripherie contre les armatures et ä

l'interieur du beton. Ce travail experimental etant termine, il resterait ä comparer
les resultats que l'on en retirerait avec ceux qu'on obtiendrait gräce ä l'emploi des

formules que nous avons donnees au Paragraphe I.

ZONE DE TRANSITION I INFLUENCE DES CONGES I ROTATION SUPPLEMENTAIRE

II existe donc une zöne de transition pour les encastrements de flexion pure ou de
flexion composee et celle-ci est comprise entre la droite limitant la masse d'appui et le
pole d'encastrement. Ce pole ou cette droite polaire est toujours situee dans Taxe
de la piece pourvu que l'angle d'incidence soit droit. S'il varie, le pole d'encastrement
se deplace vers le cöte correspondant ä l'angle ferme mais en restant ä peu pres au
meme niveau.

La figure 15 montre l'importance du trace des conges. // suffit donc d'un Supplement

de matiere insignifiantpour ameliorer la securite dans des proportions importantes.
On peut completer le röle du conge par un traitement localise de la region critique, teile
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SANS CONGE

R= 0
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R 3 mm
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Fig. 15. Comparaison des regions critiques du raecordement. (Encastrement de flexion pure)

qu'elle est definie dans la figure 15, et l'on peut dire qu'elle est limitee par l'isochrome
correspondant ä la tension maximum realisee au niveau du pole d'encastrement.

Voici, re'sumes, les enseignements de nos essais:

(1) Le diametre maximum du cercle de Mohr et par suite le cisaillement maximum
varient en raison inverse du rayon du conge. Un rayon convenable permet de reduire
beaucoup la majoration de contrainte et l'etendue de la region critique.

(2) L'absence de conge peut conduire ä fapparition d'une region critique relativement

etendue et presentant une grande concentration de tensions au point singulier,
principalement sur la droite exterieure d'appui. La majoration des contraintes a
atteint 90% dans nos essais (voir tableau precedent). Au point singulier, on a:
N1=N}„ le rayon du cercle de Mohr est nul, mais il suffit de s'ecarter tres peu de ce
point pour que l'une des deux tensions soit negligeable, l'autre restant peu variable.

(3) Le pole d'encastrement est situe dans les essais entrepris ä une hauteur approxi-
mativement egale ä la demi-largeur de section au-dessus du centre du conge. Ceci n'etant
indique que pour fixer les idees n'est evidemment pas une regle. D'ailleurs, les essais
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de Zürich indiquaient une hauteur relative plus faible, mais avec accompagnement de
cisaillement. On remarquera enfin que Fencastrement est d'autant moins imparfait
que la distance du pole ä la droite limite est plus faible (nous reviendrons sur ce point)

(4) A ces remarques, il faut ajouter l'un des enseignements des experiences de
Zürich. Celles-ci montrent clairement que la valeur de la contrainte maxima et celle
de la concentration de tension varient pour un effort exterieur egal, en raison inverse
de la mesure du diedre.

Ces renseignements sont utilisables dans la construction mecanique et en fonderie
aussi bien que pour les ossatures de constructions et l'etude des cordons de soudure.

II est probable que l'arc de cercle n'est pas le trace Optimum de raecordement.
Rien ne s'opposerait, en fonderie ou en construction metallique ä lui substituer un
trace ä courbure progressive. Pour cela, on peut employer des arcs de lemniscate,
de radiotde ou de clothoide symetriques par rapport ä la bissectrice de l'angle qui
serait une normale commune.

D'apres ce qui a ete vu et mesure, on sait que la zöne situee entre le pole et la droite
d'appui est une region ä deformations angulaires importantes. Cette Observation est
interessante car eile peut donner lieu ä un calcul de correction utile pour les ouvrages
importants. Dans cette region les sections droites ne restent pas tout ä fait droites.
Elles paraissent transformees en sections inflexionelles ä tres faible fleche, symetriques
ou non, suivant que la flexion est simple et composee. On pourrait evaluer la rotation
elementaire correspondant ä une longueur ds de la fibre neutre (en cas de flexion pure)
en la choisissant comme la demi-somme de la rotation calculee d'apres les contraintes
extremes et de la rotation calculee comme d'habitude avec l'hypothese de la linearite
des tensions celles-ci etant deduites du moment effectif. Le Supplement de
deformation angulaire entre la droite d'appui et le pole d'encastrement dont la Situation

peut etre decelee soit par l'examen d'un enduit de laque fissurable soit sur modele
serait alors facile ä obtenir. Pour le faire, le mieux est d'employer la methode
graphique. A ce Supplement de rotation il faudrait ajouter celui qui provient de la
rotation de la droite d'appui. Quand il est possible de construire un modele bien
etudie, il est facile de calculer cette derniere rotation, -soit par Integration graphique,
soit par Observation sur le modele.

Ces remarques n'interessent, bien entendu, que les ouvrages importants.
Nous examinerons plus loin le calcul de correction correspondant.
En procedant ä un calcul numerique sur le modele de plexiglass nous avons trouve,

comme rotation supplementaire totale, compte tenu de la deformation de la masse
dans la region de l'encastrement, un Supplement de rotation entre la droite de transition
et le centre d'encastrement s'elevant ä 6/10 environ de la rotation calculee d'apres la
methode habituelle entre ces deux points. Mais ce calcul a ete fait en ne tenant
compte pour les deplacements que des contraintes extremes. C'est pourquoi il
constitue une limite superieure ou si l'on veut un ordre de grandeur maximum. D'autres
essais nous paraissent indispensables pour aboutir ä un resultat utilisable dans la
pratique.

L'etude d'une piece prismatique encastree dans une masse indefinie doit d'ailleurs
faire ressortir une valeur plus faible de la rotation du plan d'appui, en raison de
l'importance plus grande de la masse d'encastrement, dans la direction perpendiculaire
au plan de figure.

Evolution plastique et rupture d'un encastrement de flexion (beton arme, acier)
Dans la pratique, on dimensionne les encastrements pour que les contraintes

donnees par le calcul soient inferieures ä des limites bien determinees par la connais-
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sance des materiaux. Mais il est utile d'examiner l'influence d'une majoration des
efforts sur l'ouvrage, afin de suivre la Variation des coefficients de securite locaux par
rapport ä la limite elastique pu par rapport ä la limite de rupture.

L'application du theoreme de M. Colonetti, lorsqu'elle est facile ä faire et lorsque
les conditions necessaires qu'il requiert sont satisfaites, aboutit ä un Systeme d'equations

independantes, dont le nombre est egal au degre d'hyperstaticite du Systeme.
Parmi les variables independantes figurent les reactions d'appui qui, pour Fencastrement,

sont au nombre de trois (moments de flexion, reaction complementaire verticale
et poussee). Mais si l'on s'apercoit en faisant ce calcul que l'une des regions plastifiees
interesse le voisinage de Fun des appuis, le resultat obtenu est douteux. II faudrait
d'abord avoir une idee exacte du comportement de l'appui considere du point de vue
des deformations et surtout de la deformation angulaire.

D'apres ce qui precede, nous pouvons donner quelques indications d'ordre general,
mais qui cernent le probleme numerique ä resoudre pour chaque cas particulier.

(i) La rotation elastique aux naissances varie en raison inverse du rayon des

conges, quand ils sont circulaires, cette rotation etant definie comme on Fa indique
precedemment et concernant la region limitee par le pole d'encastrement.

(ii) La phase plastique dans la region consideree prendra naissance dans la region
du conge et, s'il n'y en a pas, ä l'angle vif.

(iii) L'etendue de cette phase depend du materiau et du rayon du conge, probablement

de la forme de celui-ci, toutes choses egales d'ailleurs. Un trace judicieux du
conge suffirait pour reduire beaucoup cette etendue et pour augmenter la securite
d'autant plus que ledeclanchement de la periode des grandes deformations irreversibles
ne semble se manifester suivant certaines experimentations que si une zöne minimum
est sollicitee au-dessus de la limite elastique.

(iv) Pour les materiaux dits plastiques ou ä elasticite retardee, les deformations
dont il vient d'etre question sont fonctions croissantes du temps. Le type de ces
fonctions a ete donne par divers experimentateurs et notamment per M. L'Hermitte.

A la lumiere des essais que nous avons decrits on peut prevoir, sous reserve bien
entendu d'un contröle experimental, Fattitude evolutive d'un encastrement de flexion
pour deux cas differents, l'acier et le beton arme.

Pour l'acier, materiau considere comme isotrope, ou suppose tel, on verra
apparaitre les premieres lignes de Hartmann en relief au point le plus sollicite du
conge comprime ou ä ses environs immediats et en creux dans la region correspondante
du conge tendu. Le trace des courbes de glissement deduit de la consideration de la
courbe intrinseque de la limite elastique est commode, soit en partant des isoclines,
soit en partant du reseau des isostatiques, puisque ces courbes sont des trajectoires ä
45° des isostatiques. En se reportant ä l'une ou ä l'autre de ces categories de courbes,
on voit que le secteur plastique de Hencky qui est de 90° dans le cas de l'effort normal
est d'environ 60° pour nos trois essais de flexion pure. II s'en suit une Variation
d'environ 30° moins grande des contraintes le long des trajectoires de glissement
tournant autour de l'angle vif ou du conge. L'amorce de rupture partirait probablement

d'un point voisin de la tension elastique maxima en suivant le trace d'une
courbe de glissement.

En continuant ä augmenter l'effort exterieur, la phase des grandes deformations
suivant la phase elastique aboutirait ä la plastification d'une surface importante et ä

la rupture generalisee.*
Pour Ie beton arme, il est plus difficile de prevoir en dehors de l'experience directe.

* Nous comptons entreprendre prochainement une serie d'essais de rupture sur modeles metalliques.
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Les essais de M. Chambaud, qui ont suivi en 1947 les experiences preliminaires
que nous avions faites sous sa direction, ont jete pourtant quelque lumiere sur l'evolution

de rupture d'un encastrement des pieces fortement armees et armees dans un seul
sens.

La region centrale pouvait etre ä peu de chose pres consideree comme un double
encastrement ä cause de la symetrie des efforts et des structures et de la faible distance
des charges jumelles concentrees.*

Divers types d'encastrements: Travail d'encastrement: Encastrement parfait
ä la flexion: proposition de symetrie et methode des modeles doubles:
Critere de Vibration pour apprecier la valeur d'un encastrement ä la
FLEXION

La notion d'encastrement ayant donne lieu ä des expressions incertaines
demande ä etre precisee. Disons brievement que l'on peut classer les encastrements
d'apres leur nature constructive. II y a d'abord ceux analogues ä celui des essais ä

lumiere polarisee qui proviennent de la solidarite d'une piece prismatique ou d'une
plaque ou d'une coquille avec un massif beaucoup plus important par son etendue et
sa masse. C'est le cas de nombreux ponts encastres et dont l'appui est constitue
par une eulee ä peu pres indeformable.

Un autre exemple plus frequent est celui des nceuds de charpente triangulee ou
ä echelle. Ces encastrements comportent un deplacement lineaire et un deplacement
angulaire tres faibles generalement et communs ä toutes les barres aboutissant au
nceud. Ce deplacement peut conduire ä des hypo-encastrements ou ä des hyper-
encastrements suivant les sens de rotation du nceud considere et de ceux qui Fentourent.

Citons enfin Fencastrement par penetration realise souvent en mecanique comme
pour la charpente tubulaire et assez frequemment dans les travaux publics. Encastrement

d'une voüte de barrage dans le rocher, encastrement d'un rideau de palplanches
ou d'un massif de pylone, d'un pieu ou d'un scellement flechis. Ces trois dernieres
sortes de realisations ont fait l'objet d'une etude que nous avons recemment publiee.

Nous designons sous l'expression de "Travail d'Encastrement" celui qui est
developpe dans la masse de l'appui. II se decompose dans le cas que nous traitons en
trois parties, dont la derniere est generalement la plus importante:

(a) Travail du ä l'action de la force normale.
(b) Travail du ä l'action de la force tangentielle ou effort tranchant.
(c) Travail du ä l'action de la flexion au moment d'encastrement.

Si l'appui etait infiniment dur il n'y aurait pas de travail d'encastrement parce que
les contraintes d'appui ne se deplaceraient rigoureusement pas. Au contraire, le
travail d'encastrement sera d'autant plus grand que l'appui est plus deformable.

En procedant ä la comparaison d'un encastrement parfait et d'un encastrement
sur une masse, nous avons pu verifier pour l'essai entrepris que le travail d'encastrement

etait trop faible pour etre appreciable avec les moyens de mesure que nous avions
adoptes. II s'agissait de deux pieces decoupees dans le meme echantillon de metal,
l'une constituee par une poutre de 7 X 7 et de 40 cm. de portee chargee en son centre,
l'autre issue du meme bloc et usinee pour en laisser un massif de 200 x 100 x 100 et
une console de 7 X 7 et d'une longueur de 20 cm. Le metal avait ete recuit avant
usinage et les deformations avaient ete observees ä l'aide d'un comparateur donnant
le 1/100 de mm. Le module elastique avait ete determine d'apres la fleche de la

* L'analyse detailee des experiences precitees a fait l'objet de deux notes parues l'une en fevrier
1949, l'autre en novembre 1949, sous la signature de M. Chambaud.



ETUDE DES ENCASTREMENTS DE FLEXIONS 321

premiere poutre en utilisant la formule exacte de la fleche, c'est-ä-dire en tenant compte
de la hauteur de la piece.

Nous avions realise avec la poutre un encastrement parfait et avec la console un
encastrement egalement parfait, et ceci nous amene ä la notion d'encastrement parfait
de flexion qui est essentielle pour certaines applications.

Si nous nous bornons au cas general des structures ä section symetrique, on peut
enoncer ce qui suit:

"II y a encastrement parfait deflexion lorsque la section d'appui ne tourne pas
sous l'action du moment qu'elle supporte. Ce cas est rigoureusement realise pour
toutes les structures planes deforme quelconque lorsque la forme et le Systeme de

forces les sollicitant sont symetriques par rapport au meme plan et que, de plus, la
distance des points d'intersection de la structure avec le plan de symetrie restent
invariablement distants."

Notons que dans ce cas, le pole d'encastrement de chaque section defini par le plan
de symetrie est contenu dans ce plan.

Une poutre simple posee sur appuis et symetriquement chargee peut etre consideree
comme encastree par rapport ä sa section mediane si eile est ä section constante.

Supposons que nous voulions appretier la deformabilite par rotation d'un appui
pour une structure determinee. On pourrait y arriver en realisant un modele simple
et un modele double et en comparant les isoclines et les isochromes aux appuis pour
chacun des cas les sollicitations etant bien entendu les memes. Dans le premier cas
on observerait un pole d'encastrement ä proximite de la ligne d'appui et dans l'autre
il serait sur cette ligne d'appui. L'eloignement du pole d'encastrement renseignerait
au moins approximativement sur la valeur de Fencastrement ou, si l'on veut, sur sa

rigidite.
Le critere de la valeur d'un encastrement de flexion pour une poutre ä section

constante comme Fest un mät ou un pylone sans fruit, peut etre defini avec precision en
comparant la periode calculee et la periode observee. M. Y. Rocard dans son ouvrage
assez recent intitule Dynamique Generale des Vibrations a traite du probleme de la
tige imparfaitement encastree pour laquelle il designe par Acu Famplitude angulaire de

la base. En designant par ct. l'expression sans dimension: /x
4Sn2ü

EIT2
la densite, Q et / la section et l'inertie, T la periode, E le module de Young)

L'elongation y du point d'abcisse x a pour expression:

(8 designant

y= XX XXA ch a^+B sha-r + Ccos a7+D sina-r

avec: A=/la>x-—77——-. : x(sin<x cha—sha cosa)
2a (1-fchacosa)

B= id. X(cha sina—sha sina)
C id. X (sh a cos a—sin a ch a)
D= id. X(l+cha cos a+sha sina)

Supposons Fencastrement parfait, alors /lcu=0, il en resulte necessairement
Fidentite: ch a cos a+1 =0, d'oü l'on tire la valeur de la periode fundamentale 6

correspondant ä Fencastrement parfait:

En comparant la frequence correspondante ä celle d'un vibrometre, on aura dejä
CR.—21
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une idee de Fencastrement sans aucun calcul. L'evaluation de la periode reelle don-
nera a et la mesure de y en un point convenablement choisi fournira la valeur de A<o.

Bien qu'il conduise ä des calculs compliques pour des structures moins simples qu'un
mät ä section constante, il semble que le critere de Vibration puisse donner lieu ä des

considerations utiles, en operant, par exemple, sur un modele.

Deplacements des appuis d'encastrement dans les grands ouvrages (dalles,
arcs ou coques)

Bien que dans la pratique les deplacements des appuis d'encastrement soient tres
faibles, leurs consequences, surtout quand il s'agit de variations angulaires, ne laissent

pas d'etre appreciables des que les ouvrages sont rigides et de grande portee. II
suffit d'ailleurs de se reporter aux formules de Bresse pour le saisir. La mesure des

contraintes dans les ouvrages executes et celles des deplacements en ont dejä donne
des indices et il semble que si l'on devait entreprendre pour de grands ouvrages une
note de mesures et de calculs, apres execution, on y trouverait assez souvent l'influence
de l'imperfection de certains encastrements. Citons par exemple la communication
de M. Dantarella au congres de 1930 et concernant deux ponts de chemin de fer, d'une
meme ligne, franchissant la Brambilla et le Rino, les ouvrages en arc encastre et

presque identiques, ayant subi les memes efforts aux memes epoques ont donne des

lignes d'influence de deformation assez dissemblables et different sensiblement l'une
et l'autre des lignes calculees. Nous pensons que la raison de la dissonance constatee
doit provenir de la nature des enrochements. C'est le pont franchissant le Rino, plus
massivement encastre que l'autre, qui a donne en cie deplacements les plus faibles et

pour lequel les variations de ces deplacements en fonction du temps etaient les moins
elevees.

Dans un arc, les deplacements de l'appui ä considerer sont: Ax, Ay et Aa>. Nous
passons sous silence les efforts de torsion düs au vent et ceux qui sont accidentels
comme, par exemple, les effets d'une implantation defectueuse. Pour les grands
ouvrages, les variations verticales Ay, toujours faibles, sont sans interet pratique.
Une Variation positive ou negative Ax equivaut, soit ä un refroidissement soit ä un
allongement de la portee, c'est-ä-dire, tout compte fait, ä l'influence d'une Variation
de temperature, ce dont on peut tenir compte dans les calculs en augmentant la marge
habituelle ä considerer en fonction du climat et des previsions de retrait. Le deplacement

le plus ä craindre est Ie troisieme, c'est celui qui correspond ä Fencastrement de
flexion pure ayant fait l'objet de nos calculs et de nos essais.

Dans ce qui precede, nous avons examine les causes de perturbation provenant de

l'imperfection des methodes de calcul, mais nous n'avons rien dit de Celles qui trouvent
leur origine dans la nature du sol et dans la Constitution meme des massifs d'encastrement.

Et ce sont, sans doute, les plus importantes.
Qu'il s'agisse d'un pont arque ou d'un tablier droit encastre ou d'une coquille de

barrage, les caracteristiques du rocher mesurees en place (par exemple par la methode
acoustique mise au point recemment par MM. Chefdeville et Dawance sous la
direction de M. L'Hermitte) son ou ses modules de Young, son ou ses modules de
Poisson, son anisotropie, ses clivages ou ses failles, variables d'une rive ä une autre, et
d'une couche geologique ä une autre, ont une importance evidente. En laissant au
bureau le soin de deviner les conditions aux limites, on produit une note de calculs
fallacieuse. Si, de plus, un Organe intermediaire existe, que ce soit une eulee de

pont ou bien des blocages massifs lateraux, il y a une nouvelle cause de Variation
de Aoj ä ajouter ä celles qui precedent.
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De nombreux ponts encastres le sont sur des massifs de repartition. Les deplacements

des eulees devant etre consideres sont ceux qui aecompagnent et ceux qui
suivent le decintrement. Si celui-ci est execute avec des verins, on ne doit retenir
dans les calculs que l'action des efforts ulterieurs correspondant ä Fachevement de
l'ouvrage, aux surcharges qu'il doit subir et ä l'ensemble des variations en fonction
du temps, affeetant soit l'ouvrage soit le terrain de fondation.

L'evaluation a priori de ces deplacements qui s'ajoutent ä ceux que nous avons
envisages nous parait necessaire pour les grands ouvrages ä moins qu'on prefere
adopter un dispositif de reglage. Gräce ä une methode d'assujetissement il est facile
de proceder ä ce calcul pourvu que l'on connaisse les efforts exterieurs de premiere
approximation, les caracteristiques du terrain en place, en particulier ses coefficients
de compressibilite verticale et horizontale.

II est bien entendu que ces coefficients peuvent varier avec le temps et que les
determinations sur place ne doivent pas uniquement concerner des resultats instantanes.

Nous voyons lä un nouvel exemple d'association entre le bureau d'etudes, le
chantier et le laboratoire, en vue d'une construction rationnelle.

Calcul de correction en vue de tenir compte des Rotations Aio0 et zlco, aux
NAISSANCES D'UN ARC ENCASTRE

M. Chambaud a publie en 1941 une importante etude intitulee: "Le röle des
theories elastiques du second ordre dans le calcul des ponts en arcs de grande portee."
Elle avait pour but la recherche, dans les grands ouvrages, des efforts secondaires
provenant des deplacements de la fibre moyenne. II a suppose les appuis immuables.
La methode de calcul que nous allons exposer pour les arcs encastres derive en somme
du meme souci, mais ne concerne que Finfluence des deplacements generalement tres
faibles de ces appuis sur la valeur des reactions. Elle est generalisable.

Soit que l'on se contente d'une evaluation des deplacements Wn, Wn et W2, soit
que Fon ait evalue approximativement les deplacements lineaires des massifs extremes
Ax0, Ay0, Ax\, Ayx et les deplacements angulaires Aa>0, Aail generalement plus
importants que les deplacements co, on peut alors evaluer l'importance des contraintes
secondaires dues ä ces six deplacements. Les deplacements Ay0 et Ayl n'auraient
generalement pas d'importance pratique. Les deplacements Ax0 et Axx donneraient
lieu ä un calcul identique ä celui de l'effet d'un refroidissement, ou du retrait d'en-
semble, probleme classique generalement aise ä resoudre. Restent les deplacements
angulaires, d'ailleurs tres faibles, des sections d'encastrement: G0 et Gr..

Pour effectuer le calcul des reactions secondaires, nous imaginerons un arc de

meme definition que le precedent et charge identiquement mais dont les naissances
Go et Gj sont articulees. On commencera par calculer les angles de rotation aux
naissances ü0 et ßi de cet arc sous l'influence des charges et surcharges supportees par
l'arc encastre. Puis, on assujetira l'arc articule ä l'action de deux moments arbitraires
M0 et Mi appliques aux naissances pour ramener ß0 ä Aw0 et Qx ä AojX. On deter-
minera les coefficients a et ß fournissant les rotations en G0 et Gi dues aux moments
M0 et Mx.

On aura, dans le cas d'un arc symetrique les valeurs de M0 et My gräce aux
relations:

M0OL+Mlß+(Q0-Aaj0)=0
M0ß+Mlrt.-{Ql-Aa>i)=Q

S'il n'y a pas de symetrie, il y a quatre coefficients a, a', ß, ß' ä determiner aussi

simplement.
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Si clMq et <iMy designent les moments correspondants ä Fencastrement parfait de
l'arc etudie, les moments correctifs seront (<lM0—M0) et (gZMy — My).

Les reactions verticales secondaires sont obtenues sans difficultes ainsi que la
poussee secondaire qui est la difference entre la poussee theorique de l'arc
encastre et celle de l'arc articule soumis aux moments M0 applique en G0, et My
appliquee en G1; ainsi qu'ä tous les efforts de charge et de surcharge agissant sur l'arc
encastre.

Pour fixer les idees, nous avons considere Fun des deux arcs encastres du pont
faisant l'objet de la figure 16. Avec les indications numeriques contenues dans la
figure, un premier calcul donne :

Poussee de l'arc encastre: 4875 tonnes (appliquee en Gg)
Reactions verticales en G0 et Gi.' 2600 tonnes
Moments en G0 et Gy: +1659 t-m.

2
La rotation d'appui arbitrairement choisie a ete en G0 : Aw0=ijz-~: et en

2
Gi : Awy — 77^©, elles sont faibles.

10UU

Arc articule correspondant, poussee: 4781 tonnes
Reactions verticales: 2600 tonnes

32 32
Rotation des appuis: Q0 X (z-^, Qy j^)

32 4
Les valeurs des moments M0 et My reduisent cette rotation de 77^ ä -rr——, soit:

1000 1000
32 — 2

-f-1659x^rr-=1556 tonnes.

Moment secondaire: c7kf0—M0=—^r— — 103,60 t-m.

Le moment d'appui ä retenir est donc: +1555,40 t-m. au lieu de 1659 t-m.
Les reactions verticales secondaires sont nulles ä cause de la symetrie et un calcul

facile nous donne ä partir des angles (ß0—Aou0) et (Qy—Aaiy) la valeur de la reaction
horizontale ä retenir. Elle est donnee par Fegalite.

ß=4781 tonnes+0,0285 (M0-M1)=4781 tonnes+0,057 M0=4869,70 tonnes
au lieu de 4875 tonnes.

Mesures pouvant etre effectuees sur les appuis des grands ouvrages, modifica-
tion et reglage de ceux-ci

L'influence appreciable de l'imperfection de Fencastrement de flexion pour les
portees importantes fait penser qu'il y aurait interet ä verifier la tenue des appuis des
grands ouvrages encastres, qu'il s'agisse de barrages, de voütes de tunnels ou de ponts.
Ces verifications operees ä intervalles reguliere et avec des surcharges parfaitement
connues' seraient surtout utiles au debut du fonctionnement des structures. Elles
donneraient des precisions sur la Variation des conditions d'appui avec le temps, et
du meme coup, on aurait le plus souvent sans difficultes, la repartition exacte des
contraintes entre appuis.

On dispose de clinometres tres precis et de temoins sonores, noyes ou exterieurs
insensibles ä Fhumidite ambiante et fournissant, compte tenu de la Variation de
temperature des frequences traduisant avec fidelite et ä n'importe quel moment les de-
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formations des regions auscultees. La recente mise au point de l'auscultation sonore
par les ingenieurs de FI.T.B.T.P. permettrait d'avoir ä tout moment la mesure du
module elastique du beton ou de la maconnerie en place.

Nous croyons d'ailleurs que l'auscultation methodique des grands ouvrages
permettrait de rediger des notes de calcul a posteriori plus convaincantes et plus pre-
cieuses que celles que l'on exige ordinairement des bureaux d'etudes.

Une autre idee qui se presente ä l'esprit, c'est celle de Famelioration des appuis
existants par les procedes de synthese statique qui, comme la precontrainte mais d'une
facon plus generale marque la trace de la volonte de l'ingenieur sur la tenue des
constructions. Nous avons pour cela ä notre disposition des boucliers de butee, des

dalles sur pieux ou pendules droits ou inclines, des ancrages du type Coyne et des

verins plats du type Freyssinet.
Ces diverses sortes de dispositifs utilises isolement ou associes entre eux per-

mettraient de modifier d'une facon arbitraire les deplacements d'appui et, partant,
les reactions correspondantes.

On peut d'ailleurs s'tabiliser les efforts malgre de faibles variations elastiques ou
plastiques, des cäbles ou des terrains, gräce ä l'emploi de tensiostats (lire: "Les ten-
siostats et leur application ä la synthese statique").*

On peut enfin envisager un troisieme parti comme Variante du precedent, celui de

construire les appuis pour en rendre le reglage tres facile sans ancrages ni butees.

Resume

Partant de formules deduites de celles de Boussinesq et Flament qui concernent
l'action de charges ponctuelles sur le plan limitant un solide indefini, on passe ä

l'etude des deplacements du plan limite dans la region d'encastrement d'une piece
prismatique qui est solidaire du solide indefini et aboutit perpendiculairement au plan
qui le limite.

Ce calcul conduit ä une contradiction et celle-ci ne peut etre reduite que par la
methode experimentale.

Apres avoir rappele les resultats des essais de M. Tesar (1936) et de MM. Favre et
Bereuter (1944) on deduit des experiences demonstratives sur un modele en caoutchouc.

Ensuite on expose les resultats des essais d'encastrement de flexion pure entrepris
au laboratoire de la S.N.C.F. sur modeles en plexiglass soumis ä la lumiere polarisee.

L'analyse de ces resultats montre Finsuffisance localisee des regles de la resistance
des materiaux. II conduit ä la notion de pole d'encastrement et ä l'etude de l'influence
d'une zöne de transition situee entre la section normale du pole et le plan limite. Le
röle des conges circulaires et l'influence de leur rayon sur l'importance de la zöne
critique a ete mis en evidence et chiffre.

Les renseignements recueillis ont permis de decrire l'evolution plastique jusqu'ä
la rupture des encastrements de flexion pour le beton peu ou abondamment arme et
pour l'acier doux.

Apres avoir tres rapidement passe en revue divers types courants d'encastrements,
on etudie le travail d'encastrement et l'on donne une definition de Fencastrement parfait

ä la flexion. Enoncant une proposition de symetrie on en tire une conclusion
pratique pour l'etude sur modele des dispositifs d'encastrement des structures planes.
On propose ensuite un critere de Vibration sur modele ou sur l'ouvrage pour juger de
la valeur des encastrements d'appui.

On examine ensuite les causes de deplacement d'appuis d'encastrement dans les

* Technique Moderne—Construction, juin, 1949.
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constructions (dalles, axes ou coquilles) et l'on propose une methode de calcul pour
tenir compte des rotations aux appuis des arcs ou des poutres encastres.

On envisage enfin l'examen, le contröle, Famelioration eventuelle et le reglage des

appuis d'encastrement pour les grandes constructions.
L'expose ne concerne pas d'applications etrangeres aux travaux publics et les

encastrements de torsions n'ont pas ete etudies.

Summary

The author Starts with equations derived from the formulae of Boussinesq and
Flament regarding the influence of a point load acting on the boundary plane of a
semi-infinite area. He investigates the effect on its surroundings of a prismatic,
rectangular body fixed in this semi-infinite area at right angles to its boundary plane.
The calculations lead to a contradiction which can only be solved by tests.

After mentioning the results of the tests of Tesar (1936), Prof. Dr. Favre and
Dr. Bereuter (1944), investigations made on a rubber model are described. These
tests alone were of instructive and demonstrative significance.

Next, the results are given of tests carried out with polarised light on models of
plexiglas in the laboratory of the S.N.C.F. The conclusions drawn from these results
lead to the coneeption of the "fixing pole" and to the consideration of the influence
of a transition zone. The importance of radii and of the influence of the dimensions
ofthe radii on the size ofthe critical zone is emphasised and explained.

The experience collected has made it possible to describe the plasticity up to rupture

of reinforced concrete and steel.
After mentioning current practice for fixed-ended beams, the author investigates

the fixing effort and gives a definition of perfect fixing for bending.
He thereby comes to a conclusion, from which he gives useful directions for model

tests with fixed foundations and abutments. Further, he suggests the adoption of a
Vibration criterion for forming a judgment on the value of fixed supports.

In addition, the causes of the displacements of housings and abutments are
investigated, a simple method of calculation being given for considering the slight
twisting oecurring at the end points of fixed arches.

Finally, the inspection, any necessary improvement and the regulating of fixed
supports of big structures are dealt with.

The paper considers only applications in the field of structural engineering.
Various extensions of the investigation are possible which are not discussed here.

Zusammenfassung

Der Verfasser geht von Gleichungen aus, die aus den Formeln von Boussinesq und
Flament über den Einfluss einer punktförmigen, auf die Begrenzungsebene des
Halbraumes wirkenden Belastung abgeleitet sind. Er untersucht die Wirkung eines

prismatischen, rechteckigen, senkrecht zur Begrenzungsebene des Halbraumes in
diesen eingespannten Körpers auf seine Umgebung. Die Berechnungen führen zu
einem Widerspruch, der nur durch Versuche gelöst werden kann.

Nach Erwähnung der Ergebnisse der Versuche von Tesar (1936), Prof. Dr. Favre
und Dr. Bereuter (1944) werden Untersuchungen an einem Modell aus Gummi
beschrieben. Diese Untersuchungen waren einzig von instruktiver und
demonstrativer Bedeutung.

Es werden darauf die Resultate von Versuchen angegeben, die im Laboratorium
der S.N.C.F. an Modellen aus Plexiglas durch Prüfung mit polarisiertem Licht
durchgeführt wurden. Die Schlussfolgerungen aus diesen Resultaten führen zum
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Begriff des "Einspannungspols" und zur Betrachtung des Einflusses einer Ueber-

gangszone. Die Bedeutung der Ausrundungen und des Einflusses ihres Radius auf
die Grösse der kritischen Zone wurde hervorgehoben und abgeklärt.

Die gesammelten Erfahrungen haben die Beschreibung der Plastifizierung bis zum
Bruch unter Biegeeinspannung für Eisenbeton und Stahl ermöglicht.

Nach Erwähnung verschiedener geläufiger Ausführungen von Einspannungen
untersucht der Verfasser die Einspannungsarbeit und gibt eine Definition der vollkommenen

Einspannung bei Biegung.
Er kommt damit zu einem im übrigen ziemlich offensichtlichen Schluss, aus dem er

eine für Modellversuche mit Einspann-Fundamenten und Widerlagern nützliche
Folgerung zieht. Er schlägt weiter die Anwendung eines Vibrations-Kriteriums zur
Beurteilung des Einspanngrades vor.

Es werden zudem die Ursachen der Verschiebungen von Einspannstellen und
Widerlager untersucht, wobei eine einfache Berechnungsmethode zur Berücksichtigung

der an den Endpunkten der eingespannten Bogen auftretenden kleinen
Verdrehungen angegeben wird.

Schliesslich wird noch die Kontrolle, ev. Verbesserung und Regulierung
eingespannter Auflager grosser Bauwerke behandelt.

Der Artikel umfasst nur Anwendungen auf dem Gebiete des Bauingenieurwesens.
Es sind verschiedene Erweiterungen der Untersuchung möglich, die hier aber nicht
erörtert worden sind.
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Experimental and analytical methods of design

When considering the experimental method of structural design, the problem
arises of knowing its position in relation to the analytical methods of the Theory of
Elasticity and Strength of Materials. These methods sum up the knowledge on the
behaviour of solid bodies subject to loadings which could be interpreted and expressed
quantitatively, that is, dealt with theoretically.

The analytical methods of design, like all physical theories, have the great advantage

of providing knowledge of all the phenomena in a given domain. A theory fills
the gaps existing in the knowledge of the isolated cases which led to its creation; it
even permits the observed phenomena to be surpassed to an extent which reveals the
audacity of the theory.

Thus, the bending theory of Strength of Materials, which has been of so great a
service to mankind, both in relation to safety of structures as well as to economy of
materials, has allowed the prediction of the behaviour of a very large number of
structural members which had never been observed before, as regards either materials,
shape, dimensions or loading.

In contrast with the analytical methods, the experimental methods provide knowledge

about isolated cases, since each structure to be studied requires the construction
and Observation of a model. This does not strictly hold, since there is always, at
least qualitatively, an application of theory to the phenomena which permits the
behaviour of structures not very different from others previously studied to be
foreseen.

With regard to analytical methods, the question which arises is as follows: do
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they permit, in their present Status, the behaviour of structures to be foreseen with
the accuracy demanded in practical engineering?

The analytical methods give results applicable to solids of given shapes and
submitted to certain loadings. Besides this, except in a very few cases, they are established
on the assumption that the materials are homogeneous, isotropic, and obey Hooke's
law. Since they are theories, they are open to the possibility of being applied beyond
the field for which they were established, which will result in a loss of accuracy, and
extremely unreliable results may even be obtained.

Thus, with regard to the shape of structures, which are of an infinite variety, the
designer constantly applies theories to solids of shapes very different from those for
which they were established. Besides this, he divides the structure in parts whose
reciprocal reactions he at times ignores and at other times fixes arbitrarily, considering
them as hinged, built in, etc.

With regard to loadings, it is also very often necessary to make considerable
simplifications so as to convert the real loadings into others the effect of which can be
calculated.

It was mentioned that the analytical methods are in general developed in the
hypothesis that the materials obey Hooke's law. In the concept of safety which is

generally followed today, by which, for given loadings, known as working loadings,
the stresses developed should not exceed the safety stresses, this hypothesis has not,
as a general rule, an important effect on the results of the calculations compared with
that derived from the simplification of the shapes and of the loadings. This is
because with common building materials the curvature of the stress-strain diagrams,
up to values of stresses generally adopted as safe stresses, is small. Also up to these

stresses the creep of the materials does not often influence the stress distribution to a
degree which need be taken into consideration.

However, either in the application ofthe probabilistic concept of safety, at present
awakening great interest, '• 2 or of the concept of safety in relation to failure, which is
already frequently applied, the hypothesis of the materials following Hooke's law
takes all the value from nearly all the existing analytical methods of design.

In fact, within the probabilistic concept it is necessary to predict the behaviour of
structures for all possible intensities of loading, even for those which are not very
probable, for which the structures may suffer deformations which go far beyond the
elastic ränge or even suffer failures. The dimensions to be chosen for a structure are
those which minimise the sum of the initial cost of the structure and the cost of main-
tenance; in the latter there should be included the repair expenses due to the action of
loadings of great magnitude, and also the expenses due to any damage, such as excessive

deformations, personal accidents, etc.
For the application of the concept of safety with regard to failure it is only necessary

to determine the magnitude of the loadings which cause failure.
It can safely be said that the possibilities of the analytical methods are very limited

in relation to the behaviour of structures for great deformations. This results from
the great analytical difficulties which arise when non-linear relations between strain
and stress have to be considered; the Situation is made worse by the need to consider
simultaneously the dependence of the phenomena on time.

It was just the difficulty of establishing non-linear theories associated with the fact
that the structures suffer, in general, deformations too great for their use when the
elastic ränge is well passed, which led to the deficient concept of safety based on the
consideration of working loads.

1 For references see end of paper.
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As the designer, up to a few decades ago, besides the knowledge of the behaviour
of similar structures and his intuition, only had at his disposition analytical methods,
he had to establish the necessary hypotheses, however extraordinary they may have
been, so that the problems he had to solve feil within the theories at his disposal,
having at times to choose, not the most convenient solutions, but those which could
be handled by those methods.

This Situation, with the difficulty of comparing the predictions of the analytical
methods, especially with regard to the values of strains and stresses, and the real
behaviour of the structures, has led to an excessive confidence in the precision of those
methods, and even to a certain conventionalism in their application.

The progressive improvement of the techniques for measuring strains and stresses
and the appearance of new materials suitable for building models have led to a great
development of the experimental method of structural design, especially in the last
decade.

When the analytical methods are not satisfactory, it is in general possible to predict
with the necessary accuracy and within reasonable time and expense the behaviour of
structures by the use of models.3

In the following paragraphs the similarity conditions which the models should
satisfy are presented briefly.

Mechanical similarity

(a) Models made from the same materials.as the prototype
Let us consider a prototype (fig. 1) made from any materials, homogeneous or

heterogeneous, isotropic or non-isotropic, which, for the loadings applied, do not
obey Hooke's law, Suppose that the prototype is in static equilibrium under the
action of surface forces F'p, F"p,... (generally represented by Fp), and of the reactions
of supports, fixed or movable, R'p, R"p, (generally represented by Rp).

Material M2 / p

Material Hz/
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\ \ "-Material li,\ Failure gm\

Malerial 14,

Fig. 1

Let us build a model geometrically similar to the scale of 1/A, made from the same
materials as the prototype, bound in the same way, and supported by homologous
supports of the same type. Subject it to homologous forces, Fm, to a scale of 1/A2,

Fm=Fp/Xz, so that the surface stresses, fm, equal the homologous stresses of the
prototype, fP,fm=fP.

It can be shown that the displacements of homologous points of the prototype

z



332 All 3—M. ROCHA

and of the model, Sp and 8m, the strains of homologous segments, €p and e„„ and the
stresses in homologous elemental surfaces, tp and tm, are related by.

©1
*m 'D

(1)

whatever may be the deformation, even if failures take place, either for stable or
unstable equilibriums. The reactions of the supports of the model are given by
Rm=Rp/X2, that is, the homologous reaction stresses, rp and rm, are equal, rm=rp.

It has been said that the supports would have to be of the same type; that is, for
fixed supports, either hinged or built in, there would have to correspond fixed supports
of the same type, and for supports which suffer displacement there would have to
correspond suppotts such that their displacements, under the loading Rm=Rp/X2, or
rm=rP, would be 1/A of the displacements suffered by the supports of the prototype
when submitted to the action of Rp or rp.

It is obvious that the similarity condition presented demands that the initial states
of strain and stress of the model be the same as in the prototype.

As for body forces, such as the weight, similarity does not exist unless steps be

taken to convert the homologous body forces to a scale of 1/A2, that is, in the case of
the weight, the equivalent of multiplying the specific weights of the materials of the
model by A. For this purpose appropriate forces may be applied to the model or it
may be subject to a rotation which produces convenient centrifugal forces.

Also in the case of dynamical equilibriums there is not similarity even when the
surface forces only are considered.

As to the effects of loads which tend to produce change in volume, such as

temperature or contraction in the case of concrete, the relations (1) hold as long as the
unit volume change is the same, which implies, in the case of temperature, subjecting
the model to variations of temperature equal to those suffered by the homologous
points of the prototype.

The similarity conditions presented so far demand that it be assumed that if the
elements of volume of a model are subject to the same State of stress (in general
varying with time) as the homologous elements of the prototype, the state of strain
will also be the same even for strains in the neighbourhood of failure. The state of
stress of the model being the same as that of the prototype, two homologous points
are immersed in media whose states of stress are analogous but where the stress

gradient, in any direction, is A times greater in the model.
Hence the conclusions presented were derived on the assumption that the relation

between strain and stress of an element of volume does not depend on the stress

gradient which exists around this element. In the case of solids in elastic deformation,
the Theory of Elasticity even admits the hypothesis, which has been amply verified,
that the relation between strain and stress of an element of volume does not depend
on the state of stress around the element.

However, it is conceivable when leaving the elastic ränge, especially when dealing
with ductile materials, that that relation depends on the State of stress which exists
around the element of volume, and that it may vary even when only the gradient of
the state of stress varies.

The experimental verification of the influence of stress gradient has frequently led
to results which do not agree. In the case of steel, which has been the material most
studied, the results which show the existence of this influence are more numerous.4, 5
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It should be noted, however, that the influence of the stress gradient on the
similarity relations will only be important in the case of very large strains and of scale
values under certain limits, the equilibrium studied and the degree of accuracy required
for the model study having to be taken into aecount.

Another objeetion to the conclusions presented results from the consideration of
the influence of the volume on the probability of failure,6 which has been observed in
brittle materials7 and in the brittle rupture of duetile materials8 subject to tensile
stresses. The mean tensile strength varies with the volume of the piece, a reduction
oecurring when volume increases.

Hence when wishing to study models in which failures are produced by tension it
may be necessary to take this effect into consideration, especially as there exists the
possibility of the results not being on the side of safety. But, as in the majority of
cases the structures built from brittle materials are designed in such a way that tensile
failures do not expose them to risk, the objeetion which has just been raised is not of
great significance.

In any case, to verify if there does exist any influence due to the scale and what the
influence would be, observations can be made on models of different scales and
comparison of the results made by means of the expressions (1).

Except for special cases, we think that those influences of the stress gradient and
volume do not limit the conclusions arrived at with regard to similarity to the point
of having practical interest.

(b) Models made from materials different from those of the prototype 3

It often happens, as will be seen later, that it is not possible or even convenient
to make the models from the same materials as the prototype.

Consider the general case of the prototype of fig. 1 built from any materials.
Let ep be the extensions undergone by an elemental parallelepiped of any of the
materials when subject at its surface to the stresses tp in equilibrium.

In a geometrically similar model, in order to observe displacements, strains and
stresses proportional to the homologous ones of the prototype, it is necessary, in the
first place, that the materials of the model be such that when an elemental parallelepiped

is subject to stresses tm tp/a, the strains developed be em=*p/ß, ct. and ß being
constants. When the creep of the materials has to be taken into consideration, if the
stresses tp be reached at the time 6p, the stresses. tm will have to be reached at the time
dm=6pJT, t being a constant. Therefore, for the materials of the model there will have
to be scales for stresses 1/a, for strains l/ß, and for time 1/t.

The condition which we have just stated implies that, for any of the materials of
the model, the uni-axial loading a (tension, compression) curve as a function of the
strain e (fig. 2) be obtained from the curve of the homologous material of the
prototype by multiplying the ordinates and abscissae, respectively, by 1/a and l/ß,
that is to say, by a change of scales of the axes. When it is necessary to take the creep
of the materials into consideration this relation between the diagrams has to be veri-
fied whichever way the stresses applied to the prototype material change with time;
as was seen, the stresses of the model material can be applied according to a certain
scale of time.

The above-mentioned relation between the uni-axial loading diagrams is not
sufficient to verify the general condition stated before, which refers to any loading.
However, it is sufficient that in the majority of cases this relation holds to allow us to
assume, with sufficient accuracy, that the materials of the model satisfy the general
condition. Besides this, it should be noted that in the case where it is not demanded
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that the relation holds up to failure, it is sufficient that the development of the curves
be similar to be able to determine the factors 1/a and l/ß with reasonable accuracy.

If it is desired to foresee the behaviour of the prototype even after failures have
appeared, the materials of the model should satisfy the condition stated, even for
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Fig. 2

stresses which bring about failure of the parallelepiped. It will be necessary therefore

that in the curves of fig. 2 the ultimate strengths of homologous materials be in
the relation of 1/a and that they correspond to strains in the relation of 1//?.

Conditions have so far been considered which should be satisfied by the materials
of the model. In the case of the prototype being submitted to surface forces Fp in
static equilibrium, if homologous forces Fm=Fp/X2a., that is, stresses fm=fp/&, be

applied to the model of scale 1/A at homologous times, the relations

Sm=YßBp

¦¦„,=~£P r
1

T
i

*m — ~tn

(2)

are verified in homologous times provided that the displacements are small.
The model has to be supported on homologous supports of the same type. To

the supports ofthe prototype with displacement there will have to correspond supports
such that under the action of forces Rm Rp/X2<x. or rm=rp/ct., they will undergo
displacements l/Xß of those undergone by the homologous supports of the prototype
when subject to Rp or rp.

In the case of 1//?=1, that is, of a parallelepiped of any of the materials of the
model having the same strains as a parallelepiped of the homologous materials of
the prototype for the loading tm=tp/oL, the relations (2) hold even for large displacements.

It is possible then to study by models equilibriums in which phenomena of
instability appear, the scale of 1/A2a being that of critical homologous loads.
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In the general case of the prototype in dynamical equilibrium under the action of
surface forces and body forces, especially the weight, in order that the relations (2)
should hold for homologous times, it is necessary that, besides the surface forces
satisfying the relation Fm=Fp/X2ct, or fm=f„ja, the following relations should hold:

1 A

-=- (3)
P ct.

l'Jjß <4>

where l/p=dm/dp, dm and dp being the specific weights of the materials of the model
and prototype respectively. In general it is not possible to satisfy all these conditions.

When dealing with vibrations, the scale of the homologous periods of Vibration is
given by (4).

In the particular case where the effects of weight are negligible, it will only be

necessary to verify relation (4). If, besides this, it is not necessary to take the effects
of creep into consideration, then the material does not demand a time scale, from
which it results that for each value of the scale of the model there is one value of the
time scale.

In the case of static equilibriums in which the effect of weight has to be considered,
it will only be necessary to verify the condition (3). For the current values of the
scales this condition demands that the model materials have high specific weight and
high deformability.

With regard to the effects ofthe temperature and other loads which tend to produce
changes in volume, the relations (2) hold provided that the model is subject to
temperature changes Am given by

A„=yP
where Ap is the temperature change at the homologous point of the prototype and 1/X
is the scale of the coefficients of thermal expansion.

All the conclusions presented are obviously subject to the same objections
presented in section (a).

(c) Prototype under elastic deformation
Consider a prototype made up of various elastic materials with moduli of elasticity

E'p, E"p, and Poisson's ratios v'p, v"p, From the results presented in (b)
it is concluded that for similarity to exist it is necessary that a geometrically similar
model be made of elastic materials whose homologous constants E'm, E"m,
and v'm, v"m, satisfy the relations

F' F" 1

H. p Hi p fJ,

and
I i ll llv m=v p, v „, v p,

where l/p is the scale of the moduli of elasticity. Since the influence of Poisson's
ratio on the states of stress and strain is often negligible, the conditions of equality
for these ratios may often be ignored. In this case if the prototype be made of only
one material it is sufficient that the model material be elastic.

When the prototype is only submitted to the action of surface forces, the scale
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of these forces 1/f^, may be given any value, provided that the elastic limit is not sur-
passed, the relations (2) taking the form

A

°m—PI P

X2
em rL-T€P Y (5)

f _X2
tm — ~jtp

9

on the condition that the displacements be small and the model be supported in a way
analogous to that of the prototype. To the supports with displacement have to
correspond supports which undergo displacements to the scale /xA/t/>, when subject
to reactions Rm Rp/<b or rm=X2rp/cp.

When it is assumed that the materials of the prototype and of the model follow
Hooke's law up to failure, in order to be able to study the effects of loads which
produce failures, it is necessary that the ultimate stresses, u„, and ap, satisfy the
conditions (?m/eP) lension ={am/ap) compress!on =X2/</> which fix the value of the scale
of forces. In the case of studies in which failures occur, since the superposition of the
effects of loads does not hold, it is generally necessary to apply all the loads
simultaneously.

In the case of large displacements, the conclusions arrived at in this section hold
as long as the scale of forces be

Fm=W/p0rfm='/p
and the relations (5) will take the form

§;» =x8p

«m =ep

t„,
1

=-tp
I1

We thus see that the model has to remain geometrically similar to the prototype
after deformation.

Phenomena of instability can then be studied on models, the critical homologous
loads being to the scale of l/A2/x.

In the more general case of the prototype being in dynamic equilibrium under the
action of surface and body forces, especially the weight, it is necessary that the materials
of the model satisfy the conditions stated and also that

1

f
1

J_
~"xTP

.1 ft
"Aa/ p

(6)

That is, once the scale 1/A and the materials of the prototype and the model have been
defined, the values of the force and time scales are fixed; the homologous forces have
then to be applied at times to the scale of 1/t. The relations (5) will hold when the
model, supported in a manner similar to the prototype, Starts from a position in which
the displacements are to the scale of ^X/^ and the velocities to the scale of pXt/</>.
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When dealing with vibrations, 1/t is the scale of the homologous periods of
Vibration.

In the particular case when it is not necessary to consider the weight, only the time
scale will be fixed. Once the force scale has been fixed, the first of the relations (5)
fixes the scale of displacements, and hence also the initial position of the model, from
which the velocities, to the scale already referred to, have to be applied.

In the case of static equilibriums where the effect of surface forces and weight have
to be taken into consideration simultaneously, the first relation of (6) will have to
be verified.

For the common scales of the models it is often difficult to study the effect of
weight due to the low value of the strains. Hence at times recourse is taken to the
methods already mentioned, equivalent to increasing the specific weight.

(d) Elastic equilibrium in two dimensions and equilibrium ofstructures consisting ofbars
The Theory of Elasticity shows that in a homogeneous plate in two-dimensional

elastic equilibrium, the State of stress does not depend on Poisson's ratio, unless the
plate has holes, and that in the boundary of each hole or in the outer boundary of the
plate, forces act whose resultant is not equivalent to zero or to a couple.

Hence the conditions referred to in the section (c) for the model material are
simplified in the present case; for the determination of the State of stress it is sufficient
that the material of the model be elastic.

When the materials of the prototype and the model have different values for
Poisson's ratio, the homologous strains and displacements are not proportional.
Therefore, when there are statically indeterminate supports, even the proportionality
of the stresses ceases to hold.

For the same reason if the plate be made of different elastic materials there will
only be similarity when the homologous Poisson's ratios are equal.

If a plate is subject to body forces acting in its plane, the state of stress is still in
general independent of Poisson's ratio when the body forces are of constant intensity,
which condition is satisfied by the weight.

In two-dimensional equilibriums it is easy, in view of the small thickness of the
plate, to apply to the model complementary forces equivalent to the increase of specific
weight.

By the use of Biot's analogy it is possible to determine the effect of weight and in
general the effect of body forces, substituting these forces- for forces acting in the
boundary of the plate.9

If the plate is subject to variations of temperature or other causes of change in
volume, as it is necessary to introduce conditions relative to the strains, in order to
have similarity it is necessary that vm=vp.

It should be noticed that in the cases mentioned in which the State of stress depends
on Poisson's ratio, the influence of this ratio is generally small and in the majority of
cases may be ignored.

In solids subject to plane strain the determination of stresses can be easily made
from a plate in two-dimensional equilibrium, which frequently has a considerable
practical interest.

Finally, consider the case of structures consisting of straight or curved bars
existing, or not, in a plane.

Within the simplifying hypotheses of the Strength of Materials it is generally
possible to analyse these structures on models in which the cross-sections of the bars
are not geometrically similar to those of the prototype.3 This possibility has great

cr.—22
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practical interest, as it permits the Substitution of the shapes of these sections, often
very complex, for others easier to reproduce in the models.

When models whose sections are not geometrically similar are used, proportionality

can only hold between homologous shearing forces, normal forces, and bending
moments.

In the particular case of plane structures consisting of bars in static equilibrium
under the action of forces acting in their plane, for such a proportionality to exist it
is in general sufficient that, along all the bars, the moments of inertia Ip and /„, of the
homologous cross-sections of the prototype and of the model be proportional,
IJIP=l/C.

This permits the construction of models with rectangular sections of constant
thickness, which greatly simplifies the construction of models.

The forces may be applied at any scale, l/</>, which will be the scale of the shearing
and normal forces developed; l/X</> will be the scale ofthe moments, denoting now by
1/A the scale of the axes of the bars.

In the dynamic equilibriums under the actions of surface forces and of the weight
it is in general sufficient that, besides the mentioned proportionality between the
moments of inertia, the areas Sp and S„, of the homologous cross-sections be proportional,

Sm/Sp=l/Ci, the constant Cy being of any value. The scale of the applied
forces and of the time must have the values :

1 1

</> XpCy

1= /oi
T V A3f£

The model should start from a position in which the displacements are to the scale
Qx/A3i/> and the velocities of the scale tQx/A30. When the weight can be neglected
the forces scale can assume any value.

Construction of the models
Mechanical similarity, as has just been seen, requires certain conditions in the

models with regard to shape, materials and loadings. Let us see what are the possibilities

to fulfil these conditions.

(a) Scales

Except in special cases similarity demands that the models be geometrically similar
to the prototype, but without fixing the scale value.

A scale near unity has the advantage of permitting the reproduction in the model
of the characteristics of the prototype, such as shapes, joints between parts, residual
stresses, etc.

However, in the case of large structures, which are the most common in civil
engineering, such a scale cannot generally be adopted, both for economic reasons and
the time needed for the construction of the models. Furthermore the application of
loads in large models demands very expensive equipment, and the observations,
besides taking a lot of time, are more difficult and less accurate, especially if they have
to be made in the open air.

The reduction of the scale is accompanied in general by economy, rapidity and
ease of model studies. In the majority of cases these factors vary greatly with the
change in scale.
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On the other hand, the smaller the scale the greater is the difficulty of reproducing
the shapes. As a rule, however, it is possible to simplify the shapes considerably,
either by omitting some details or by replacing parts for others of a convenient deform-
ability, without prejudicing the precision of the results. In the case of structures of
large dimensions with simple shapes, at times scales of about 1/500 are adopted.

In fixing the minimum possible scale it is necessary to bear in mind:

the smallest parts to be reproduced in the model, which should not be so
small as to make their construction and Observation difficult;

the accuracy with which it is possible to set up the equipment for applying
forces and other loading;

the accuracy, dimensions and way of placing the measuring apparatus,
especially the magnitude of the bases of the extensometers in view of the
gradients of strains which are anticipated.

(b) Materials

The materials chosen for construction of models should, in a general way, obey
the following conditions:

have the mechanical properties demanded by similarity which should not be
appreciably affected by the common ambient variations of temperature and
humidity;

be easily worked and joined;
have such deformability that, under the action of easily obtainable loading

intensities, the accuracy demanded for the measurement of displacements and
strains be reached;

allow the measuring apparatus to be easily mounted either on the surface
as inside;

be economical.

When it is wished to study by a model the behaviour of a prototype in which
.complex mechanical properties have to be taken into consideration, such as
nonlinear relations between stresses and strains, non-reversible strains and creep, it should
be seen in the first place if it is possible to build the model with the same materials as
the prototype.

This is at times difficult even for scales that are not very small. Thus in the case
of models of structures of reinforced concrete the difficulty often arises of the aggregate

being too large; when using the same concrete for the model it may also be

necessary to take into consideration the Variation of wall effect and rate of drying.
In metallic and in reinforced-concrete models, it is difficult to find on the market
sections, plates and bars with the necessary dimensions and with the same properties as
those of the steels used in the construction. For this reason it is necessary at times to
make the sections specially from plates laminated to the appropriate thickness (fig. 3).
In reinforced-concrete models it is, in general, possible to Substitute a single bar for
groups of bars and thus use commercial sizes.

The plates and bars of small dimensions which exist on the market are often
annealed, but it is as a general rule possible to give them properties analogous to
those of the steels of construction by stretching them.

It is, .however, possible to use materials in the models different from those of the
prototype. Thus for concrete structures it is easy to find mortars satisfying the
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Fig. 3. Part of a steel model to a scale of 1/6 ofa high-voltage steel mast 33 m. high,
extensometers were used for strain measurements

Huggenberger

Fig. 4. Reinforced-mortar model to a scale of 1/50 of a guide wall of a spillway dam.
studying up to failure the forces exerted by the gates

Used for
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conditions stated (fig. 4); it is advisable that 1/a be small and l/ß be great so as to
obtain, for small magnitudes of loading, deformations measurable with accuracy. In
the case of reinforced-concrete structures the steel should be replaced by a material
for which 1/a and l/ß have the same values as for the mortar.

When choosing a material for a model different from that of the prototype, it is
sufficient, in general, to verify if the similarity condition stated is satisfied in uni-axial
loading. Tests may also be carried out on pieces geometrically similar, made from
the materials of the prototype and the model, which are submitted to homologous
loadings to scale in order to determine if the relations (2) are satisfied. It is con-
venient, as is obvious, that the shapes of the pieces and the loadings be chosen to
obtain equilibriums analogous to those to be studied.

When the prototype is in elastic equilibrium there are many materials available
for the construction of models, among which can be mentioned celluloid, plastics,
plaster of Paris, metals and cork agglomerates.

In the choiee of the material for a given case consideration should be given in the
first place to facility of construction. In the case of complex and curved shapes it is

convenient as a rule to make use of mouldable materials, such as plaster of Paris or
some plastics.

In the second place attention should be paid to the advantage of the material
having a high proportional limit and a low modulus of elasticity, to measure strains
accurately when applying small forces. The materials with these properties have, in
the majority of cases, an appreciable creep; however, in general, it can be assumed,

1

Fig. 5. Perspex model (laid horizontally), to the scale of 1/200, of a monument about 100 m. high
to be built in concrete. Electric strain gauges were used for both static and dynamic strain
measurements
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without affecting the accuracy, that the materials referred to above have a modulus
of elasticity which is a function of time when under the action of constant load; thus
the relations of similarity established for elastic materials will hold.

Of the materials mentioned the most used at present are plastics which together
with celluloid have the advantage of a high proportional limit, generally above 1 %,
both in tension and compression. They are, also, easily workable.

Celluloid and the majority of plastics in use today, such as those known by the
trade names of perspex, plexiglas and lucite, which consist of polymethyl methacrylate,
and those known as bakelite, marblette and trolon, which are phenolformaldehydes,
have moduli of elasticity ranging from 15,000 to 45,000 kg./cm.2 Poisson's ratio
varies between 0-30 and 0-40.

Celluloid and the three plastics first mentioned have the great advantage over the
other plastics of being easily glued (fig. 5).
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Fig. 6. Alkathene model to a scale of 1/200 of a 35 m. high arch dam. The model was subjected
to mercury hydro-static pressure and the strains were measured by means of electric strain
gauges specially built for use on alkathene

Another plastic now used in the Laboratorio de Engenharia Civil (Lisbon) is
alkathene, a commercial name for a polythene. It has a very low modulus of
elasticity, about 2,000 kg./cm.2, and can be moulded at about 140° C. (fig. 6). This
plastic cannot be glued but the surfaces to be joined can be welded. This is done in
a way similar to the welding of metals, using a bar of alkathene and a jet of hot air.

The fact that alkathene can be welded, together with the great facility with which it
can be eut, even with wood working tools, permits the shapes of the models to be
modified at will in the search for the most convenient forms for the structure being
studied.

Another material mentioned, plaster of Paris, with which diatomite is often mixed,
has the advantage of being easily moulded and very economical (fig. 7).10- n It has,
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however, the grave inconvenience of being brittle and often develops invisible cracks
which can completely upset the field of stresses. Its mechanical properties vary
between wide limits with the water content and its humidity at the time of use. Its
modulus of elasticity may vary between 5,000 and 80,000 kg./cm.2, the lowest values

"ITiJ
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Fig. 7. Model to a scale of 1/300 of a 130 m. high arch dam and its foundations. It was built
from plaster diatomite mix and electric strain gauges were used for strain measurements

being obtained with the addition of diatomite. The strains at the proportional limit,
however, vary very little, having values of approximately 0-1 %, which at times upsets
the accuracy of the measurements of the deformations. Poisson's ratio varies
between 0-15 and 0-25.

(c) Application of the loads

Concentrated loads are easily applied to models by means of weights, jacks or
Springs. As the values of the forces to be applied to produce the same deformation
diminish as the square of the scale, it is very convenient to use the lowest scale, since
the equipment for the application of the forces can become much more simple and
economical.

The distributed loads are at times substituted by concentrated forces, more or less

near each other according to the precision required and the space needed to be free
for observing the loaded surface.

When the distributed forces act normally to the loaded surface they can be applied
by means of fluids. When the intensity of these forces is very high, use can be made
of flexible cushions into which the fluid is introduced under the necessary pressure.

Referring to the determination of the effects of weight in models, it was mentioned
that in general it is necessary to use complementary forces or subject the model to a
rotation. The application of complementary forces does not present any difficulties
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when, as is common, dealing with structures with small thickness, since these forces
can be substituted by surface forces. However, when the forces have to be applied
to the interior of the models, the arrangements needed become very complicated;12
the use of centrifugal forces is also not easy.

With alkathene it is already frequently possible to determine the effect of weight
on models of moderate dimensions.

The study on models of the effects of temperature presents two difficulties, the
application of given temperatures and the influence of these temperatures on the
measuring apparatus. For this reason very few studies have been made on this
aspect.13

Observations on the models
To predict the behaviour of a structure by means of models implies, in a general

way, the determination of displacements, strains and stresses.
Following the common concept of safety, it is particularly important to determine

the stresses developed under the action of working loads, as it is from these stresses
that the structures are designed.

In the design in relation to failure it is only of essential interest to determine the
intensity of the loadings which produce failure.

In design by the probabilistic concept there will be above all the need to measure
the displacements and the characteristics ofthe failures caused by the action of various
loadings with all possible intensities. From these measurements it will be possible
to evaluate the damage, such as that resulting from excessive deformation, the need
of repair, etc., which will occur in the prototype.

(a) Measurement of displacements, strains and stresses 14

The measurement of displacements in the models is carried out by means of
deflectometers with a sensibility of 1/10 and 1/100 mm. and, rarely, of 1/1,000 mm.

The measurement of strains is in the majority of cases the most important
determination, as this permits the determination of the stresses once the relation between
strain and stress is known. For materials in elastic deformation it is sufficient to
know the modulus of elasticity and Poisson's ratio.

The measurement of strains in models is made almost exclusively at points on the
surface. Measurements in the interior present besides the difficulties inherent in such
measurements, those originating in the reduced size of the models. However, as the
greatest strains and stresses appear in general at the surface, such difficulties are as a
rule of little importance.

Among the extensometers used in the measurements of strains on models, we
can mention the Huggenberger and Johansson mechanical extensometers. These
extensometers have a satisfactory accuracy on short bases, which, in general,
have to be used on models. The Johansson extensometers can be applied on
a base of 3 mm. Like all mechanical extensometers they only permit measurements

at the surface and they have the drawback of requiring, together with the
accessories, an excessive space; besides this they often require considerable time to
mount.

The vibrating wire extensometer is also sometimes used.11 The minimum length
ofthe wires is about 2 cm., which at times is excessive; besides, the placing and
Observation of the wires is a prolonged Operation. They permit, however, being read at a
distance, which is an advantage when there are inaccessible parts in the model or when
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the model is large. The wire extensometer is the most reliable for observations over
long periods.

Finally, electrical resistance extensometers14 are, without doubt, the most appropriate

for measurements on models and are almost exclusively used today. In fact,
they occupy least space and are the lightest, they are easily mounted without requiring
any accessories, and can be observed at a distance. The measuring bases can be of
any value above a few millimetres and their precision is satisfactory. Above all,
when, as is usual, it is necessary to determine a large number of strains, the electrical
gauges give results most rapidly and economically. The only inconvenience of the
electrical extensometers is their instability with time, though there are already some
types in which this inconvenience is reduced.

Fig. 8. Electric strain gauge inside a prism of a plastic. In a compressive test the values given
by this strain gauge were in füll agreement with those placed on the surface

The electrical extensometers, due to their small dimensions, lend themselves to
the measurement of strains in the interior of models. In the case of mouldable
materials they can be placed in position at the time of moulding (fig. 8), and
conveniently protected against humidity if necessary. With the appearance of the
electrical gauges it can be said that the difficulties in measuring strains in models have
almost ceased to exist.

The accuracy with which the extensometers measure the strains depends largely,
as is obvious, on the magnitude of the strains to be measured and on the experimental
conditions. All the extensometers referred to permit, as a general rule, measurements
to be made to within an error of Ae=lOx 10©



346 All 3—M. ROCHA

Assuming this value, the table below gives the approximate values of relative
errors within which the strains and stresses can be measured in materials most com-
monly used in model construction when they are strained to the proportional limit.
The influence of the error in the modulus of elasticity on the error in the stresses is

not considered, as in general it has no importance.

Materials Strains
assumed

<r(%)

Relative error of the
strains and stresses

Ath (%)

Celluloid and plastics
Plaster of Paris
Mortars and concretes
Metals

1

005
0 02
0-2

0-1
2
5
0-5

It can be seen that the strains and stresses can be obtained with an entirely
satisfactory accuracy.

The determination of the isostatics, that is, of the prineipal directions on the
surface of models of celluloid, plastics and metals, can be made very easily, in view
of the great deformability of these materials, by the use of brittle coatings 14

(fig. 9). It is possible to obtain the appearance of cracks for strains of about 10~4.

The method is particularly advisable when dealing with models of complex shapes;
it can be applied in dynamic equilibriums. The knowledge of the isostatics has the
great advantage of permitting a reduction in the number of observations to be made
with the extensometers for determining the states of strain.

*.-•¦

Fig. 9. Application of the brittle coating method to the determination of the isostatics in a spillway
guide wall
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Techniques for the application of the brittle coating method for the measurement
of the magnitude of the strains and stresses are being developed, and have already
reached some interesting results. The development of methods which may give
results over an area is of great interest as it avoids readings having to be taken at
various points, which is necessarily a prolonged Operation, and the probability of
making errors is reduced.

When the relation between strain and stress is not linear and the creep has to be

considered, it is not generally possible to determine the stresses from the measurement
of strains.

Recently a property was brought to light 15 which permits the direct determination
of the stresses. This property is the following: if at a point in a solid made of any
material, an elastic solid of small dimensions be introduced and intimately joined to
that solid, the stresses developed in the elastic solid only depend on the state of stress
in its neighbourhood as long as its modulus of elasticity be sufficiently small in relation
to that corresponding to the deformations of the surrounding solid. Thus by measuring

the stresses set up in the elastic solid, for example by means of its deformation
(fig. 10), it is possible to determine the state of stress in the solid made of any material.

\
Fig. 10. Small magneto-striction cells to be left inside models for direct stress measurements

(b) Photoelastic method

The determination of the stresses in two-dimensional elastic equilibriums can be
done by photoelasticity.16- 17 Compared with the general method of determining
the stresses from the measurements with extensometers, the photoelastic method has
the advantage of being more rapid and economical, and also reaching, in general,
greater accuracy. The fact that models with greatly reduced dimensions can be used

appreciably contributes to this economy. In the case of the study of high stress
concentrations, this fact makes the use of this method very convenient, as the use of
extensometers in this case requires the use of large models.

The photoelastic method has the advantage of making observations all over an
area. The attempts to apply photoelasticity to three-dimensional equilibriums have
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not yet reached results of practical value. At present it is preferable to study such
equilibriums by leaving extensometers in the interior of mouldable models.

(c) Models of structures consisting ofbars
The models of structures consisting of bars, which we will call briefly linear

structures, may be studied by using the general methods just referred to.
Before the appearance of electrical strain-gauges the measurement of strains was

made difficult by the extensometers and their accessories having excessive dimensions
and weight compared with the dimensions and rigidity which it is convenient to give
to the models of linear structures.

When the sections of the model are not geometrically similar to those of the prototype,

the measurement of the strains permits the determination of the shearing and
normal forces and of the bending moments in the model, which can be transferred
to the prototype.

For the study of linear structures many special methods have been developed.
The methods most used are those which permit the determination of the influence
lines of the statically indeterminate forces (exterior and interior) from the reciprocity
theorem of Maxwell-Betti.18' 19 Obtaining the influence lines by this way has the
great advantage of avoiding the application of forces to the models, which is
particularly important in the case of structures having a large number of members. In
spite of this determination of the influence lines being in principle possible for any
linear structure, the experimental difficulties have limited its application to structures
in plane equilibrium.

The various methods based on that theorem differ from each other in the
magnitude of displacements imposed on the model, in the technique of applying these
displacement and in the technique of the measurement of the displacements
corresponding to the forces whose effect it is desired to determine.

The methods which use large displacements have the advantage of making it
possible to observe directly the functioning of the structures, and to measure the
corresponding displacements easily. They have, however, the grave disadvantage of the
results being affected by the redistribution of stresses due to the large displacements
imposed; for this reason the methods today have little more than pedagogic value.

However, at times the inconvenience referred to is not important; thus in the case
of continuous beams, for the determination of the influence lines of the reactions of
the supports, these can be displaced even to one-fifth of the spans without errors of
more than a few per cent resulting. It is in such a case a method to be recommended.

Of the methods based on the theorem of reciprocity, the one most employed is
that of Beggs,20 in which small displacements are imposed by means of a special
device and the measurement of corresponding displacements is made by means of
microscopes.

The application of this method is only advisable for the determination of the
influence lines corresponding to external indeterminate forces. In fact, for the
determinations corresponding to interior indeterminate forces in complex structures, which
are those requiring experimental study, there is not, in the majority of cases, room
enough to mount the device for imposing the displacements. Besides this they cannot
be imposed to the edges of the section but only at a distance which is often excessive.
On the other hand, time taken for mounting is prolonged and awkward and, fre-
quently, the rigidity of the model does not permit the imposition of sufficiently large
displacements.
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The measurements of the displacements, either small or large, are made very
conveniently by the Photographie method.21 In this method the model is photographed
on the same plate before and after a displacement is imposed; the displacements can
be measured with a microscope or on a screen on which the plate is projeeted (fig. 11).
This method permits rapid readings to be made and its accuracy even for small
displacements is the same as that obtained by direct readings on the model with a
microscope.

i
¦±~>

Fig. 11. Photograph obtained in studying a linear structure by the Photographie method

The Photographie method supplies a record of the results of the test and of the
conditions under which it was carried out. It can reveal certain causes of error, such
as deficient design of the model, accidental movements of built-in members, deficient
working of the device for imposing the displacements, etc.

In brief, in the experimental study of linear structures, it is advisable to apply the
general method, measuring the strains by means of electrical strain-gauges, except in
the determination of the influence lines corresponding to external indeterminate
forces when the structure is in plane equilibrium. For this determination it is advisable

to use the Beggs method and measure the displacements by the Photographie
method.

Conclusions
The essential aspects of the problem of experimental design of structures have

been presented in this paper.
The conclusion is reached that the choiee of shapes and determination of the

dimensions of any structure can be made, as a general rule, from observations on
models, even when it is wished to take into consideration its behaviour beyond the
elastic ränge. Models also lend themselves to the determination of the influence of
the Variation of the properties of the materials throughout a structure.

At present it is in the choiee of materials for models and in their construction that
difficulties are at times met with, whilst previously, before the appearance of electrical
strain-gauges, it was in the Observation ofthe models that the greatest difficulties were
met, and which were frequently insoluble.
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It can be truly said that a model, even on a very reduced scale, is in general a much
more faithful image of the prototype than the hypotheses adopted by analytical
methods, either from the point of view of the shape, or the material or even of the

loading. This does not, of course, minimise the value of analytical methods, which
have the great advantage of being, except in very special cases, more rapidly and
economically applied, of not requiring equipment and also of furnishing results which
are easily checked.

These advantages indicate the use of the analytical methods in the primary design
of a structure, in which phase it is necessary to obtain a rough estimate ofthe possible
solutions, which, as a general rule, are numerous. For the final design of small and
medium structures the analytical methods are also generally the most adequate.

It is in the design of important structures, with, say, a value of over £10,000, that
the studies on models, whose cost is in the region of some hundreds of pounds, is

recommended, unless completely reliable analytical methods are available.
The analytical and experimental methods should not be put in Opposition, as at

times is the tendency, but rather be considered as tools to be wisely used in the safe
and economical resolution of structural design problems.

It should be emphasised that to obtain results in periods compatible with those

usually required for the elaboration of plans and to win the confidence ofthe author-
ities interested in the plan, it is necessary to have specially equipped and organised
laboratories. For the laboratories to work economically they need to have an
important volume of permanent work.

The use on a large scale ofthe experimental method as a routine method of design
gives valuable opportunities for perfecting the knowledge and formulating theories of
the behaviour of structures. It often happens that when studying a model certain
effects which had not been considered are found to be the most important. The
difficulty and high cost of the Observation of the prototypes is a further reason which
weighs in favour of a wider use of models as a research instrument.
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Summary

The aim of the paper is to give a general view of the present Status of the experimental

method of structural analysis within both the elastic and non-elastic ranges.
The requirements of mechanical similarity to be met for model shape, materials

and loading, for static or dynamic equilibriums are presented and the actual possibilities

are then indicated for such requirements being fulfilled.
Finally, the possibilities and the exigencies of the experimental method of structural

analysis are mentioned.

Resume

Le present rapport a pour but de donner un apercu de l'etat actuel de la methode
experimentale de calcul des ouvrages, soit dans le domaine elastique, soit au delä de
ce domaine.

A cet effet, l'auteur commence par presenter les conditions auxquelles doivent
repondre les formes, les materiaux et les sollicitations des modeles, en equilibre
statique ou dynamique; il expose ensuite les possibilites actuelles d'observation de ces
conditions.

En conclusion, il mentionne les possibilites et les exigences de la methode
experimentale de calcul des ouvrages.

Zusammenfassung

Mit vorliegendem Bericht wird versucht, einen Ueberblick über den heutigen
Stand der experimentellen Methoden zur Tragwerksuntersuchung, sowohl innerhalb
wie auch ausserhalb des elastischen Bereiches zu geben.

Dafür wird zunächst auf die Bedingungen mechanischer Aehnlichkeit hingewiesen,
denen die Durchbildung, Baustoffe und Beanspruchungen der Modelle bei statischem
bezw. dynamischem Gleichgewicht genügen müssen. Im weiteren werden die heutigen
Möglichkeiten, solche Bedingungen zu schaffen, dargelegt.

Zum Schluss wird auf die Möglichkeiten und Anforderungen der experimentellen
Methode eingegangen.
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Photoelasticity applied to structural design

La photoelasticimetrie appliquee au calcul des ouvrages

Spannungsoptische Bemessung von Tragwerken

MANUEL ROCHA and FERRY BORGES
Chief Research Engineer, 2nd Department Engineer

Laboratorio de Engenharia Civil, Lisbon

Introduction
This paper presents some experimental studies for the design of structures, carried

out in the Laboratorio de Engenharia Civil (Ministerio das Obras Püblicas), Lisbon,
in which the photoelastic method was used.

As is known, it is possible, in general, to reproduce the real behaviour of structures
in models even when very reduced dimensions are chosen. Once the model is built,
the general test method consists of the application of loads and the measurement of
displacements, stresses and strains.

In order to measure the stresses, extensometers or the photoelastic method are
commonly used.

The advantage of the photoelastic method is the ease, rapidity and economy with
which it permits the determination of the fields of stress. The fact that
photoelasticity supplies images in relation to the complete field of stress, besides avoiding
errors, allows the rapid localisation of the regions of important stresses. The small
scale to which the models can be built is one of its prineipal advantages; in fact, the
construction of models is simplified and the forces to be applied are small.

On the other hand photoelasticity requires the use of transparent materials and
it is only practicable to study plane states of stresses. The numerous attempts which
have been made to extend this method to the study of three-dimensional states of
stress have not reached a degree of real practical interest; in such cases the authors
think it advisable to use extensometers, left in the interior of mouldable models.

The restrictions mentioned considerably limit the field of application of
photoelasticity. Besides, photoelasticity only serves to determine the state of stress within
the elastic limit.

The application of photoelasticity, like other experimental methods, is only
advisable when there are no analytical methods which furnish results with the desired
accuracy, or when their application is less economical.

cr.—23
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The authors believe that the studies which follow show well how photoelasticity
can be used to advantage in solving problems of structural design.

Study of the influence of the deformability of the foundations on the
behaviour of an aqueduct

The problem of studying the stress distribution in a concrete aqueduct for different
mechanical properties ofthe soil appeared in the study ofthe new Lisbon water supply.

The greater part of the aqueduct will be built in a trench.
Fig. 1 shows the shape of the cross-section initially proposed for the conduit,

together with some modifications which were tested. To carry out the tests the loads
were taken as those obtained from the usual design theories for the thrust of earth fills.

H

\i3.70 m

Fig. 1. Cross-section of the aqueduct
I. Section initially proposed

II. Section with base of double thickness
III. Modified section

A bakelite plane model was built to the scale of 1/20 with a thickness of 1-0 cm.
The distributed loads applied to the prototype were replaced by adequate concentrated
loads, which were applied by jacks as shown on fig. 2. In order to maintain a
constant load, the oil-pressure tube, common to all jacks, was connected to another jack
the piston of which was loaded by a weight.

Loadings corresponding to the following hypotheses were considered:

(a) füll conduit, earth filling with an angle of friction of 35° and 4 m. thick at the
crown of the aqueduct;

(b) empty conduit, earth filling 8 m. thick with an angle of friction of 25°.

These hypotheses had led to the highest stresses in analytical calculations, con-
sidering the upper part of the conduit as a built-in arch. An asymetric loading
was also considered, which corresponded to loading half the arch. Successive tests
were made on the model supported by foundations with different mechanical
properties.

For studying the hypothesis of the aqueduct and the foundation having the same
mechanical properties, the soil was reproduced from the same bakelite from which the
model was made. Afterwards, the model was supported on bases of cork agglo-
merate and rubber, materials which reproduce foundations respectively 30 and 300
times more deformable than the material of the conduit.
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To reproduce soil of much greater deformability than that of the structure, the
model was supported on a tube so as to obtain a Uniform pressure on its base. For
this a rubber tube of 1-8 cm. external diameter was used, filled with water and closed
at the ends.

In order to compare with the analytical calculation previously made, a test was
carried out in which the arch was built-in by placing the model between two roughened
steel plates tightly joined together by bolts.
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Fig. 2. Test arrangement Fig. 3. Isochromatics
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Fig. 4. Stresses in the prototype for different values of the foundation deformability
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For the structure dealt with it is sufficient to know the stresses at the boundaries.
These stresses were determined from the order of the isochromatics, one of which
is shown in fig. 3.

The stresses at the crown and at sections near the springing points for model I
(fig. 1), when subject to loading a, are shown in fig. 4. Thus it will be seen that the
analytical results obtained for the built-in arch agree with those obtained
experimentally for the same condition.

As the deformability of the ground increases, the absolute values of the stresses
increase. Thus, at the crown, when the modulus of elasticity of the foundation
material, E/, is t^ö of that of the structure, Ec, the compressive stresses rise from
6 kg./cm.2, the value obtained in the case of the built-in arch, to about 20 kg./cm2; at
the same time tensile stresses of approximately 16 kg./cm.2 develop at the internal
face. In the section near the springing, for the same conditions, the compressive
stresses at the internal face increase from 4 to 17 kg./cm.2 and tensile stresses of about
10 kg./cm.2 appear at the external face.

The increase of the deformability of the foundation beyond that mentioned above
does not lead to any appreciable Variation in the maximum stresses.

For loading b the influence of the deformability of the foundation is similar. The
maximum stresses observed are not very different.

It should be noted that for common soils and particularly for those crossed by the
aqueduct, the stresses developed in the structure should correspond to the relation
Ec/Ef of several hundreds.

With regard to the base of the aqueduct the increase of stresses in the middle of
its upper face is particularly important as the deformability of the foundation
increases.

For the relation EJEf=300 the tensile stress reaches 25 kg./cm.2 for loading a and
31 kg./cm.2 for loading b, stresses that would require considerable reinforcement in
the base.

A model was tested in which the base had double the thickness (fig. 1). The
Solution of increasing the thickness ofthe base, though giving a reduction in the tensile
stresses when the foundation deformability is large, is not economical. In order to
decrease the stresses at the base the authors also studied the Solution of leaving the
central zone free (fig. 5) by means of a Channel beneath the central part of the conduit,

IQOfn

Fig. 5. Aqueduct with the central zone ofthe base free
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which could be also used for drainage. Thus the uplift pressures would be avoided,
which otherwise might induce cracking at the base.

For a width ofthe Channel of 1 m. the tensile stresses, which, as already mentioned,
were about 30 kg./cm.2 for the hypothesis of Ec/Ef=300, become nearly nil. The
stresses in the arch were also reduced due to the Channel.

The distribution of stresses observed in the tests carried out led to a modification
of the cross-section as shown in fig. 1. Tests similar to those already described were
carried out on this new cross-section.

In spite of this Solution corresponding to a reduction of 20 % in the volume of
concrete, the maximum stresses developed did not suffer any appreciable change.
The opening of a Channel under the central part of the base reduced the stresses as in
the previous case.

It is of interest to mention that some years ago the authors carried out some
photoelastic tests on another conduit, in which the deformability of the foundation
was also taken in aecount. The results of these tests, which also showed a large
influence of the deformability of the foundation, were later fully confirmed by the
behaviour of the structure.

Study of stress distribution around the spillway openings of an arch dam

When designing the reinforcement to be placed around the flood-discharge
openings of Castelo do Bode Dam (fig. 6) it was found impossible to calculate the
reinforcement.

~" -

-Vr-l«

§&©¦' .1I

Fig. 6. Upstream view of the spillway openings of the Castelo do Bode Dam

To determine the stresses developed the experimental method was used. Measurements

were taken on three-dimensional plaster of Paris models, which faithfully
reproduced the dam and the rock of foundation.* These models were used not only
to study the stresses around the spillways but also those developed in the entire dam.

* "Note on the Studies of Dam Problems carried out in the Laboratorio de Engenharia Civil,"
Publication No. 13, Laboratorio de Engenharia Civil, Lisbon, 1950.
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Fig. 7 shows the diagram of the normal stresses acting at the edges of the
horizontal section which passes at middle height ofthe openings, when the dam is subject
to the füll hydrostatic pressure.

For the Interpretation of these diagrams that are far from simple, photoelastic
tests were carried out.

Plane models to a scale of 1/500 of constant and variable thickness were used

(fig. 8), by which it was possible to study the influence of the thickness change on the
distribution of stresses around the spillway openings.
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Forces which reproduced the mean compressive stresses in the arches of the dam
were applied to these models. The values of these mean stresses were determined by
by the tests on the three-dimensional models.

Two models of constant thickness were made, one of bakelite to determine the
isochromatics, and another of celluloid to determine the isoclinics. Forces were
applied to these models to produce a uniform stress field in the region not affected by
the spillway openings.

The model of variable thickness was made by cementing together sheets of celluloid
so as to obtain steps of thickness corresponding in a simplified way to the shape ofthe
spillway and reproducing the increase of sectional area around the openings. Forces
were applied to this model which were proportional to the normal forces in the arches
at different levels and which also corresponded to an approximately uniform distribution

of stresses in the area not affected by the spillway openings.
It was desired to determine, above all, the normal stresses along section I-I' (fig. 8).
The difference of the prineipal stresses was obtained from the isochromatics and

from the readings taken with a Babinet-Soleil compensator. To confirm the values
of the stresses at the faces of the spillways openings, measurements were carried out
with Johansson strain-gauges of a 0-3 cm. base.

Knowing the isoclinics and the difference of prineipal stresses along section I-I',
the normal stresses were calculated by integration along the section concerned. As
this section may be regarded as symmetrical the calculation was quite easy.

The diagrams of the normal stresses along the section I-I' for the models of
constant and variable thickness are shown in fig. 9. These stresses were calculated on
the assumption that the mean compressive stress developed in the arches of the dam
is 21 kg./cm.2

20

Stress

(+)

©
LV

l-

10 m

Fig. 9. Normal stresses along the section I-I', transferred to the prototype
I. Determined from the constant thickness model

II. Determined from the variable thickness model
III. Determined from the three-dimensional model (mean values ofthe stresses at corresponding

points of the upstream and downstream face). (Left bank)
IV. Determined from the three-dimensional model (mean values ofthe stresses at corresponding

points of the upstream and downstream face). (Right bank)
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The value of 18 kg./cm.2 for the tensile stress at the face of the spillway openings
obtained from the constant-thickness model is, as was to be expected, greater than
the value of 12-5 kg./cm.2 obtained from the variable-thickness model.

It is interesting to note that the maximum stress obtained from the variable-
thickness model agrees with the mean stress developed along the face of the spillway
opening measured on the three-dimensional models. It should be emphasised that
this mean stress is not far below the maximum stress developed at the face of the
spillway opening. This stress is in turn the maximum tensile stresses in the spillway
area.

In fig. 9 are also presented diagrams of the mean values of the stresses at
corresponding points of the upstream and downstream faces obtained in the three-
dimensional models.

The agreement between these diagrams and that obtained from the variable-
thickness model is quite satisfactory. The photoelastic variable-thickness model, of
course, does not take into consideration the bending and other effects which were
determined by the three-dimensional model. However, the photoelastic method was
of good service to solve the proposed problem.

sa

£fi32© ' -
-{ - © I ¦ ' • **

'

Fig. 10. Test arrangement

In order to eliminate the tensile stresses and the resulting cracks, which were incon-
venient specially due to the high velocity of the water at the spillways openings, the
use of prestressed concrete in this area was tried.

The distribution of the stresses due to the prestressing was studied on the variable-
thickness model using the test arrangement shown in fig. 10. It was also easy to
determine the stresses due to the weight and to the hydrostatic pressure on the upper
face of the openings. Fig. 11 shows the diagrams of the stresses thus obtained.

It is interesting to note that, at section I-I', the effects of the prestressing and of
the weight of part of the dam over the spillways openings are distributed through a
large area, and so the vanishing of the tensile stresses is not attained.

Due to this fact it was thought advisable to limit the stress distribution area by
creating a vertical Joint located about 3 m. from the openings (fig. 12).

Experimental tests made accordingly showed that the weight alone was enough
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Stress
kgcm

H

10m

Fig. 11. Normal stresses along section I-I' transferred to the prototype
I. Tensile stresses due to normal stresses in the arches

IL Compressive stresses due to the weight
III. Total compressive stresses due to the weight and a prestress of 4,000 tons

5tress
Joint

ft

Fig. 12. Normal stresses along the section I-I', transferred to the prototype, on the hypothesis of
leaving a Joint during construction

I. Compressive stresses due to weight (open Joint)
II. Tensile stresses due to normal stresses in the arches

to produce a compression stress of 6-5 kg./cm.2 (fig. 12). Therefore, after grouting
the Joint the maximum tensile stress in service will be 6 kg./cm.2; to absorb the tensile
stresses, which develop only in a small area, normal reinforcement was used. So it
was possible to achieve a considerable economy.

Study of the reinforcement of the Guide walls of dam spillways to support
the forces transmitted by the gates

In Castelo do Bode dam the flood discharge called for two gates (fig. 13), each one
having to support a maximum thrust of about 4,000 tons. It was therefore necessary
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to provide the guide walls with reinforcements capable of transmitting this thrust to
the body of the dam.

For designing this reinforcement a photoelastic test was carried out on a bakelite

[ r
¦ • •> ' —

•

Fig. 13. Spillway of Castelo do Bode Dam

model to a scale of 1/200 (fig. 14). A force which reproduced the thrust was applied
to the model.

In fig. 15 are shown the isochromatics obtained.
The isostatics plotted from the isoclinics are shown in fig. 16.

7

Ak

-

Fig. 14. Test arrangement
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The stresses were calculated using the method of Integration along straight
sections. In the fig. 17 are shown the values of these stresses transferred to the prototype.

The static equilibrium of several sections of the model was satisfied to within
errors of 3 %, which are fully satisfactory.
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Fig. 17. Normal stress transferred to the prototype

The reinforcements were placed following the isostatics and the area of their cross-
sections was established according to the stresses given by the model.

A similar problem arose in the Mabubas Dam (Portuguese West Africa), whose
guide walls are shown in fig. 18. The thrust of the gates is transmitted to the guide
walls by means of cantilevers and the maximum thrust in each wall is 1,200 tons.
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Fig. 18. Guide walls of Mabubas Dam

As in the previous case a bakelite model was made to a scale of 1/200. To determine

the prineipal stresses in the wall a graphic integration was made along the
isostatics indicated in fig. 19.

Based on the results obtained the walls were reinforced as shown in fig. 20.

In order to study the local effect of the loads transmitted by the cantilevers to the
guide walls, a reinforced-concrete model was built to a scale of 1/10. Fig. 21 shows
a view of the test.

Stresses were measured on this model not only near the beam but also at some
points where the stresses had been determined by the photoelastic model. In fig. 22
are compared, along one of the isostatics, the stresses obtained in the photoelastic
test with those obtained on the concrete model when working in the elastic ränge.
As was expected, the stresses agree closely.

The test on the concrete model was carried beyond the elastic ränge and gave
valuable information about the behaviour in the neighbourhood of the failure. The
first cracks, which were detected for a load equal to twice the working load, appeared
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Fig. 19. Isostatics

/
Fig. 20. Reinforcement in the guide wall designed from the photoelastic test
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* wmm
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Fig. 21. Reinforced-concrete model to a scale of 1/10

tt i

kqcm

Fig. 22. Stresses along one isostatic
I. Determined from the photoelastic model

II. Determined from the concrete model
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near the upstream flange of the cantilever. These cracks later spread through the
whole wall and led to the failure.

The results of this test suggested the need to strengthen the reinforcement near the
cantilever, as shown in fig. 20.

In order to study the legitimacy of undertaking tests until failure on small
reinforced models, another model was built to a scale of 1/50 (fig. 23). In both models
the development of the failure was absolutely identical.

Fig. 23. Concrete model to a scale of 1/50

Conclusions
The studies presented show well how advantage can be taken of photoelasticity

in spite of its only being applicable to plane elastic states of stress.
As was seen, it permits not only the choiee of the best shapes but also, in the case

of reinforced concrete, to define the directions of the reinforcement from the
isostatics and its sectional area from the tensile stresses observed.

However, as to the design of reinforced concrete from homogeneous and elastic
models there are two objections.

In the first place it should be noted that for the reinforcement to function under
stresses for which it is commonly designed, it is necessary for the concrete to crack;
from these cracks there will result a redistribution of stresses.

A second objeetion, and as a general rule a more important one, is that an elastic
behaviour analysis is being considered; that is, the behaviour of the structure for
loadings which cause large deformations or even ruptures are not taken into
consideration.

These same objections arise, however, in relation to the usual design of reinforced-
concrete structures from the results of the Theory of Elasticity and Strength of
Materials, obtained on the hypothesis of the materials being homogeneous and
elastic.

To reproduce perfectly the behaviour of reinforced-concrete structures it is advisable

to use reinforced mortar or concrete models. In one of the studies mentioned,
models of this type were additionally used.
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Summary

The paper deals with some studies carried out at the Laboratorio de Engenharia
Civil, Ministerio das Obras Püblicas, Lisbon, in which use was made of the photoelastic

method for model stress analysis.
The following studies are reported:

Influence of the deformability of the foundations on the behaviour of an
aqueduct.

Stress distribution around the spillway openings of an arch dam.
Reinforcement of the guide walls of dam spillways to support the forces trans¬

mitted by the gates.

In each case the Solution for construction resulted from the conclusions drawn
from the experiments.

Reference is also made to the position of the photoelastic method in relation to
the other methods of experimental stress analysis.

Resume

Les auteurs exposent quelques etudes executees au Laboratorio de Engenharia
Civil, Ministerio das Obras Püblicas, Lisbonne, dans lesquelles la methode photo-
elastique a ete utilisee pour la determination des contraintes sur des modeles
d'ouvrages.

Les etudes exposees sont les suivantes:

Influence de la deformabilite des fondations sur le comportement elastique d'un
aqueduc.

Distribution des contraintes autour des ouvertures du deversoir d'un barrage-
voüte.

Ancrage des vannes aux guideaux des deversoirs de barrages.

Dans chaque cas, la Solution constructive a ete choisie d'apres les conclusions des
essais.

Les auteurs etudient egalement la position de la methode photoelastique, par
rapport aux autres methodes experimentales de determination des contraintes.

Zusammenfassung

In der vorliegenden Arbeit werden einige Untersuchungen beschrieben, bei denen
das spannungsoptische Verfahren zur Spannungsermittlung bei Modellen gebraucht
wurde.

Die erwähnten Studien, die im Laboratorio de Engenharia Civil, Ministerio das
Obras Püblicas, Lisboa, durchgeführt wurden, betreffen:

Den Einfluss der Nachgiebigkeit des Baugrundes auf das elastische Verhalten
einer Wasserleitung.

Den Spannungszustand um die Oeffnung des Ueberfalls einer Bogenstaumauer.
Die Verankerung der Schützen an den Leitmauern des Ueberfalls einer

Bogenstaumauer.

Die konstruktive Ausbildung wurde in allen Fällen auf Grund der Versuchsergebnisse

gewählt.
Es wird auch auf den heutigen Stand der spannungsoptischen Verfahren gegenüber

anderen experimentellen Methoden eingegangen.

cr.—24
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Method of elastic compatibility in the Solution of beams of finite
length on elastic foundations

Methode de calcul elastique appliquee au calcul des poutres de

longueur finie reposant sur des bases elastiques

Methode zur Berechnung von endlichen Balken auf elastischer
Unterlage

SANTI P. BANERIEE, assoc.m.am.soc.c.e., a.m.i.struct.e.
Chartered Structural Engineer, London

I. Beams and foundation pressures

1. Introduction

When a "rigid" beam carrying loads rests on elastic material, it develops pressure
underneath, which is uniform throughout when centrally loaded or uniformly varying
in a straight line if eccentrically loaded. If, on the other hand, the beam is "semirigid,"

i.e. one capable of resisting bending with certain amount of deflections, the
pressure is proportional to the deflection oecurring at each point. This is because
the supporting soil below beams carrying engineering structures is considered to
behave elastically, which tends to recover from the relative Settlements when the
superimposed loads on the beams are removed.

If the soil proves to be flowing plastically under loading, as may be the case with
very soft clay, the beam necessitates designing as "rigid" as if floating on liquid of
heavy density. On similar arguments an absolutely "flexible" member may be
sufficient to bear loads Iying on rather rigid supporting medium, such as rock. The
appropriate stiffness required for a beam therefore depends upon the nature of the
soil below. The theory also gives easy means of determining the correct value of
stiffness required for a beam (Section V, examples 2 and 3).

2. Elastic line of a semi-rigid beam and the soil pressure

Fig. l(b) shows the pressure distribution under a rigid beam LR loaded non-
centrally as in (a), the straight-line Variation being represented by cd from the average
line LCR. If, instead, the beam is semi-rigid and rests on elastic material such that
the loaded points are made to remain in one plane (not necessarily horizontal), the
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beam would produce deflections between the points as in (c) denoted by S^ (termed
"local deflections") and the pressure would vary as shown in (d), there being relief
between the loads and increase under.

If it is now considered that according to the loading the loaded points move out
of the plane so as to take different levels, the axis LCR of the beam would deflect to
take the form LCR similar to a bow of some shape either indicating "hog" or "sag"
shown in (e). These deflections, represented by 8B (termed "bow deflections"), are
measured from a line connecting the ends of the beam. The deflections at various
points along the beam would therefore be the algebraic sum of 8,4 and 8B, as in (/). It
will be noticed that the values of 8^ are negligible as compared with 8B.

With these deflections taking place throughout the beam, additional Variation in
earth pressure below comes into effect such that the lowest point in the beam exerts
the highest upward pressure and the highest point has the maximum relief or reduction
in upward pressure. These pressures would have at the same time the effect of reduc-
ing the deflections 8^ + 8B by a certain amount and adjusting themselves accordingly.
The variations from the straight line ab of pressure distribution, which may take the
two possible forms corresponding to the two deflection forms in (/), are indicated in (g).

Finally, these additional pressure variations ghk due to beam deflections, when
superimposed on the average straight line ab of pressure distribution in (b), would give
the two possible pressure diagrams shown in (h)—one giving maximum pressure at
the ends and the other in the middle. It is therefore considered sufficient to check up
pressures at the ends and at the section of maximum deflection in the middle of a
beam. It should be realised, however, that the deflections referred to are only relative
and are additional to the general settlement of the beam as a whole.

II. Forces acting on a beam and the principle of analysis
3. Forces acting on a beam in equilibrium

The forces are considered to be divided into two Systems:

(a) System 1

From the superimposed loads on a beam and its bearing area the average earth
pressure w0 per unit area is obtained. The pressure w per unit run of the beam is

uniform for a beam of constant width or varying accordingly. Only the prismatic
beams would be dealt with at present. Cases with non-prismatic sections will be
considered in Section V, para. 13.

Consider the forces acting on a beam, as if rigid, comprising the superimposed
loading above and w per unit run of earth pressure below as represented by LRba
in fig. l(b). If the beam is centrally loaded, this would be in equilibrium or eise these
forces would have an unbalanced resulting moment. This has to be balanced by an
assumed straight-line Variation of earth pressure from positive (acting upward) at one
end to negative (acting downward) at the other, similar to that represented by line
cd in fig. l(b). These pressures are termed "balancing pressures" (B.P.).

The system of forces comprising these, such as would occur on a loaded beam if
it were perfectly rigid, is termed Fr. The moments produced by Fr throughout rhe
beam are Mr and the deflections measured from a line connecting the ends 8r, which
are approximately equal to S^-|-8B referred to in fig. 1(/). The maximum deflection
oecurring in the middle of the beam in particular is termed Yr.

(b) System 2

Due to the deflections throughout a semi-rigid beam, deviations from the straight-
line distribution of pressure, referred to in System 1, corne to operate, having increased
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values at the lower points and relieved at the higher, such that the straight line repre-
senting w indicates the average of the deviations as in fig. l(h), wherein ghk was the
deviated form from line ab.

The increase and the relief of pressure involved in the deviations comprise the
"additional Variation of pressure" and such a Variation, similar to that in fig. l(g), is
shown in fig. 2(a) in typical form, in which the increase is shown at the ends and relief
in the middle, consequent upon the middle of the beam deflecting upwards under
force system Fr. The vice-versa would be the possible alternative.

These forces in the additional pressure Variation, which tend to restore the beam
from the elastic deformations or deflections due to System Fr, are called "elastic
restoring forces" and are comprised in a system termed Fe. The moments produced
by Fe are Me and the related deflections 8e—in particular Ye, the maximum in the
middle.

It would be realised from fig. 1 that it is the bow deflections 8B which are the essential

factors in the development of the force system Fe and the consequent deflections
8e, the influence of 8^ being negligible.

4. Principles of analysis

A centrally loaded beam, if rigid, would exert uniform pressure LRba shown in
fig. 2(b), where La equals w, and pressure LRkhg when semi-rigid. The eccentricity

of superimposed loading would only

Relief ofpressure fy

(a)

(b)

V

-Additional pressures-
>q
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fw
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introduce the balancing pressuies in
addition. Since the line ab in fig. 2(a)
represents the average of the forces Fe,
the areas above and below the line
should therefore be equal. To sim-
plify calculations for moments and
deflections, the Variation in Fe is
replaced by the straight dotted lines
shown and drawn symmetrically a-
bout the centre ofthe beam, in lieu of
line ghk. The maximum ordinates,
both above and below the line ab, in
the Variation are represented by fw

per unit run or fw0 per unit area, / being a factor or coefficient. The maximum and
minimum pressures developed are therefore w0+fw0 and w0—fw0 respectively per unit
area.

It would be observed that the force System Fe gives a deflection 8e always opposite
to 8r. The total deflections throughout a beam would therefore be the sum of 8r
and 8C algebraically, and the final maximum deflection in the middle of the beam

Y=ZYr+Ye (4:1)
considering the maximum deflections Yr and Ye to occur approximately at the same
section. (It may be worth noting that the shift of the position of the maximum
deflection in a prismatic beam, simply supported at the ends with a bending moment
diagram of one sign, can never exceed 1/13th of the length from the centre.) The
deflections are represented in fig. 3 for the beam under the system of forces in fig. 2.
The original deflection is Yr from the loading and the pressure LRba of system Fr,
which reduces to Y due to the forces Fe having pressure ordinates fw at the centre
and the ends (fig. 2(a)).
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For the purposes of analysis, it is necessary to ascertain the value of fw so as to
obtain the pressures and the bending moments throughout a beam. To obtain the
value of/, the final maximum deflection Y is to be considered first, which is dependent
upon

(a) the elastic properties of the beam and
(b) the elastic properties of the soil,

so that the higher the "flexural rigidity" (EI) or the "modulus of foundation" (k0),
the lesser is the deflection. The value of Y should be such as to be compatible with
the conditions for both (a) and (b).

ßenersl setllement

Original lerel \
-^h' Y*2Yr + YcPV,

Fig. 3

The value of/, related to Y, having been ascertained, the bending moment diagram
for system Fe can be obtained with its maximum Ordinate Me at the centre, where
shear is nil. The moments throughout the beam would then equal LMr-\-Me.

For the purposes of maximum and minimum pressures underneath, the positions
of/w under system Fe would be considered at the ends and in the middle of the beam
where maximum deflection occurs.

III. Pressures and related deflections
5. Signs

The signs in the Operations will be considered as follows:
(i) " Moments" are positive when tension is created on the underside of beams.
(ii)' "Deflections" are positive given by positive moments.
(iii) "/-system" is positive in the positive force System Fe causing positive

moments Me, and forces act upwards at the ends and downwards in the
middle of a beam. r -,-

6. Forms of pressure Variation and the
related deflections Ye

The value of deflection Ye for a
beam is connected to the force system
Fe, which in turn depends on the value
of/ Therefore the equations for
deflections can be expressed in terms of/

(A) Form of pressure distribution
in system Fe with equal maximum

Ordinate above and below
average

A positive force system Fe with
maximum ordinates/w above and below
the average line is shown in fig. 4(a),
with consequent positive deflection Ye

at (b). The©system at (a) is therefore

la)%" 2Fw

ft/V,

jj>^ -^rfTTr^
v^Jj /«-

(C) Me

fwL
Ye =0.003$5 £1

»'*

Fig. 4
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positive. The arrangement could be of opposite kind with negative values. With
these forces acting on a beam, the moments Me at any section distant x from an end
is given by

Me fw,
x2 2©
~2~3T

and at centre, where x=L/2, the maximum value

Me=0-0416wZ,2/ (6:1)
The deflection at any section distant x from an end

8,=
wf
Ti 24" '3ÖT

Ux IL*'
""96" + 192Ö

where EI= flexural rigidity

(6:2)

and the maximum deflection at centre, where x=L/2
wL4

re=0-00365-=rr/EI J

shown at (b). The maximum and minimum pressures are w+fw and w—fw per unit
run of beam respectively.

It would be observed from fig. 4 that the maximum ordinate fw of pressure
reduction can never exceed w in value and thus also the maximum ordinate of pressure
increase; in other words/can never exceed 1.

(B) Other forms of pressure distribution in system Fe

p----]-----^-f=^^B
/n/V

pfw

JU

w*

trr^ i» hk^m
[m+p=2]

Fig. 5

UP-^' pfir

(ö)

There may be other cases of distribution such that the maximum ordinates of
reduction and increase have unequal values. This would also be obvious from
figs. 5(a) and (b) with positive and negative/-Systems respectively, where some parts
of the beams do not bear on the soil due to upward deflections.

For the purposes of analysis let mfw and pfw be the ordinates of the maximum
reduction and increase respectively below and above the average, so that their sum

mfw+pfw=2fw (6:3a)
as before, or

m+p 2 (6:36)
With such forms of pressure distribution as in fig. 5, mfw would be controlled by

the value of w, so that mfw=w or mf=l. Then from eqn. (6:3a),
l+/>/=2/,or/>/=(2/-l),or

1

p=2-
The eqn. shows that

/ • • • '

when/=l,/?=l
f<l,p<\ and

/>!,/»!

(6:4)
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Since the areas of pressures under the force system Fe above and below the average
lines should be equal, it is clear from the diagrams that the ordinates pfw have to be
greater than mfw, i.e. from eqn. (6:3a),

pfw>'2-p)fw, ox p>l (6:5)
This shows therefore from eqn. (6:4) that the cases would involve values of/>l.
The maximum and minimum pressures developed are 2fw and zero respectively

per unit run, as would be observed from fig. 5 also.

(C) Practical considerations

To serve all practical purposes, it is assumed that: -

(i) when/<l, the Variation should be considered with equal maximum ordinates
fw above and below the average, and

(ii) when/>l, the maximum reduction mfw has the limiting value w.

Some possible forms of pressure distribution and the connected diagrams for the
force Systems Fe are shown in Table I, in which the deflections Ye are shown represented
by the form

wL4
Yc=N. — .f (6:6)

0-005

Numbers in ci'rctes
indicate Ihe cases
-oipressure distribution

of Table I

om
(D®

_3:_._\^._

The "deflection coefficients" N against the values of/for all the cases can also be taken
from fig. 6. It is to be noted that the cases 2 and
6 in Table I, having unequal ordinates mfw and
pfw, would be covered by the cases 1 and 5,
since mfw are not the limiting values w.

The foregoing assumptions give safe results,
as the values of N for Ye are on the higher side
(see also para. 8).

When Yr is negative, Ye is positive with
positive /-system. Cases 1 to 4 are some of the
possible forms shown in Table I. Case 2

represents an ideal fourth-degree curve in view
of the deflection being the fourth integral of
loading and is absolutely theoretical. Under
normal conditions case 1 for /<1, and case 3

for/>l would be apparent.
When Yr is positive, Yc is negative with

negative/-system, such that some ofthe possible
forms may be as shown by the cases 5 to 8.
Case 5 is the case 1 inverted and case 6 represents

the theoretical fourth-degree curve. Under
normal conditions case 5 for/<l, and case 7 for
f>l would be apparent, but a case with/>l
will not occur in practice when Yr is positive
(para. 7(2)0)).

0003

0002

0001

re -ai-

>•
'

©

®x

Fig. 6

7. Factors affect ing the final deflection Y in a beam

These will be considered in the following treatment of the deflections from the
elastic properties of the beam and the bearing soil (para. 4):

(1) Deflections from elastic properties of beam
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wL4
From eqns. (6:6) and (4:1), Ye=N. ~=yf and Y=ZYr+ Ye, remembenng that

hl
Yr and Ye are always of opposite signs.

r
Fw~

*K

32 Fw

(3) (b)

Fig. 7

(i) When Yr is negative, Te is positive with positive/-system (fig. 7(a)):
wL4

Y=-Yr+N.—{+f)--
wL4

(ii) When yr is positive, 7e is negative with negative/-system (fig. 7(6)):
wl,4¦».#-/> ¦ + Yr+N.^if

(B,)

(B2)

These equations stand for all values of/ whether greater, equal or less than 1.

(2) Deflections from elastic properties of soil
Since the soil reaction per unit area of foundation is assumed proportional to the

pressure per unit area psettlement (para. 1), the ratio is a constant, termed k0, which
settlement S1

is known as the "modulus of foundation." The above relation gives

P=k0S (7:1)

Also _P_
(7:2)

The modulus may vary under a beam in various ways depending upon the nature
of the soil and the depths to which they occur. Let the minimum value under a beam
be k0 and the maximum nk0 per unit area, so that «>1. In the analysis, the variations,
when taken into aecount, will be considered symmetrical about the centre line of the
beam such that k0 and nk0 occur under the ends and the centre or vice versa, the
Variation being linear. Such variations are considered to cover the limits of all
possible cases.*

In the derivation of the deflection equations, the distribution of pressure under
force system Fe will be considered under two groups as follows:

(a) Force system Fe when/<l
This system includes cases 1 and 5 of Table I, and under this group the pressure

Variation has equal maximum ordinates fw above and below the average (para. 6(C)).

* Advantage can also be taken of such variations in the moduli in an attempt to take aecount of
the usual pressure variations experienced in cohesive and non-cohesive soils under engineering
structures.
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(i) When Yr is negative, /-system is positive (fig. 8):

Gl.

~^-Y (a) DeflC V"

"HJJ Fw„ (b)% "[* ye F-syslem]

379

Fw

^c<mL
mrfw,

«• Hi-'*i %*f"i (cj Unit pressures "p"

nk (dJCase-1 FoundS
moduli

k0 (e) Case -2

Fig. 8

In the final position of the beam the deflection (ignoring the little displacement of
the position of maximum deflection from centre),

Y= settlement at centre minus settlement at ends

Case 1: if Ar0 is the modulus at centre and nkQ at ends, then from eqn. (7:2):

Y=
W0—fWo Wo+fWr, W0

h nk0 h
l

1+-
Ko

Case 2: if t?ä:0 is the modulus at centre and k0 at ends, then:

Y=
w0-fw0 w0+fw0 w0 .©

nnk0 k0 k0

(ii) When Yr is positive, /-system is negative (fig. 9):

3
k0

V
1 —n

1 —

• (Si)

(Sa)

6.L

1

Fw.

*Y(a)DeFIS V*

^yC/L (b) Fe"[-*e f-system]

»o'f^u %*fwg wo-fWo (c) Unit pressures p'

i

nk0

nk.

nh0 (djCase-J \FoundB
moduli

(e) Case -2

Fig. 9
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In the final position the maximum deflection,
Y= settlement at centre minus settlement at ends

Case 3: if k0 is the modulus at centre and nk0 at ends, then:

Y= Wq+(-/>'o h'q-(-/>o^ _^0
kr, nkn kn

r
1+-

n f+
Case 4: if nk0 is the modulus at centre and k0 at ends, then:

w0+(-f)w0 w0—(—f)w0 w0Y=-
nkn h

1

1+-
n f-

1-i
n

1

1 —

(S3)

(S4)

Case 5: when k0 is uniform throughout, n=l and all the above equations become:

(S5)
2it'o

Y=-lc~fKo

<a)

z

5siäs*

Fig. 10

(b) Force system Fe when/>l
The cases 3, 4, 7 and 8 in Table I are covered by this group, where the maximum

ordinates of pressure reduction and increase are w and (2/— l)ie respectively (para. 6).
It is to be realized that since some

parts of the beams do not bear on the
soil due to the upward deflections when

/>1, the values of Y given by the soil
equations would not be the true values
of the maximum deflections oecurring
in the beams, but would only represent
the values measured up to the ground
lines as shown in fig. 10 by Ys. The
relationship of this Y, with true Y may

be approximately obtained by considering the deflection curves of the beams of at least
the fourth degree and are as follows when k0 is uniform:

(i) when Yr is negative,
for/=2, 7=0-938 7

/=3, 7,=0-803 7
(ii) when Yr is positive,

for/=2, 7=00625 7
/=3, 7^=00124 7

Representing the number coefficients above by C, therefore, a soil equation would
take the form:

7i=deflection value from derived equation C7

Y=-±, (deflection value from derived equation) (7:3)

The value of C on soil with variable foundation modulus may be very different and
difficult to judge. However, the value in a case can be ignored if the difference
obtained between Y and Ys is limited to, say, 10-12%, and for this purpose it is
essential that for beams

(i) with negative 7r,/must not exceed 2-5, and
(ii) with positive 7,.,/must not exceed 1-0.

Then the appropriate soil equations can be used without any reference to C.

It would normally be seen in practical problems that the above conditions are ful-
filled, since the maximum pressures below would control the designs calling for the
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appropriate stiffnesses for the beams. If in a certain problem either of the above
values of/is exceeded within the limiting pressure, the beam has to be made stiffer to
bring in more of the unsupported portions to bear on soil (fig. 10) and thus reduce
the value of/ Aiternatively, for beams with positive Yr, an effective shorter bearing
length may be considered (i.e. the portion of beam actually bearing on soil in fig. I0(b))
in a revised design for both beam and soil equations.

The deflection equations when/>l are derived as follows, bearing in mind that
mf= 1 and pf=2f— 1:

(i) When Yr is negative, /-system is positive:
Case I: k0 at centre and nk0 at ends:

7= w0-mfw0 w0+pfwQ

ko nk0

Wq

'k0 n
m + -

Wq

'koi

f+
1 +

k0

2/-1

Case 2: nk0 at centre and k0 at ends:

w0—mfw0 w0+pfwo_ _Wo
k0 ~ *oL'

7=-
nkn

m

Wq

'ko 2/-

,_WoJ k0

¦l +
l-

n

1 —n

+ k0

l-1-
n

l —

Wo

'k0
1-1

n

2iv0

nk0J

_2_^o.

(ii) When 7©s positive,/-system is negative:
A case with/>l will not occur in practice as stated before.

Case 5: k0 is uniform, i.e. «= 1:

The above equations also give 7= —— / as eqn. (S5).

(S,')

(S2')

8. Values offinal deflection 7 and coefficientf
As stated in para. 4, the final deflection 7should satisfy conditions for both beam

and soil properties. Therefore for a particular case, a beam equation and an appropriate

soil equation for deflections have to be solved simultaneously to obtain the
values of 7 and/with proper signs.

In connection with the deflection Ye in a particular beam equation, it is evident
wL4

that when/<l, 7c=0-0037 -=7/. This value of 7V=0-0037 may therefore be used in
hl

all practical cases as a trial value for solving the equations. If from the Solution the
absolute value obtained for/is <1, the result would be satisfactory; and if >1, a
revision in the coefficient would be necessary, which can then be judged easily from
fig. 6, bearing in mind the probable nature of distribution of Fe.

It may be worth while to note that a higher value ofN than anticipated for a beam,
if adopted, should normally give safer results, as the Solution would yield lesser values

of/and 7. In doubtful cases, however, a problem may be solved with two beam
equations representing possible upper and lower limits in the values of Ye, and the
worse values of obtained moment and shear taken care of at each section. Similarly
in a case of doubtful Variation in the foundation modulus along a beam, the Solution
may also be carried out with two soil equations representing the upper and the lower
limits.
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IV. Final moments and pressures

9. Moments Me
These are obtained from force system Fe when the value of/ is determined from

the Solution of the deflection equations. Referring to the Table I it would be clear
that even when the value of/is known, the moments Me, with central ordinate Me,
would depend upon the nature of distribution of force system Fe in a particular case.

The A/>curve was considered in fig. 4 with value of/<1 and was of the third
degree. With the increase in the value of/ the shape of the curve tends to change
only slightly. For the convenience of obtaining values at intermediate points along
the length of a beam, it is sufficient to consider an Me-diagram as triangulär with the

y^9 n\
/,'' ¦\ ig-

ff ¦* ¦*
§ f^r\ ^ <s r^ii.

1
5a

Mg -diagram

Fig. 11

Q
010

0-09

$p~/ /*rv /
0-07 - 1 /Js>

I / <§>

006

1 Numbers in circles indicate
Olli 1 Ihe cases otpressure

' dislribution ot table I
004

003 ~ II
l/ß) Me'Q- wL2

002 1/ *p)

001 -II ¦

0 ' 1 I r

Fig. 12

ordinate Me at centre. Such a diagram is shown in fig. 11 replacing the third-degree
curve when/<l. The differences in the ordinates are only little.

The values of Me under various cases are given in Table I in the form Me=Q ¦ wL2,
where Q is a function of/ The values of Q under different cases can also be taken
from fig. 12 against the values of/ As stated in para. 6(C), cases 1, 3 and 5 of Table I
would normally cover all practical cases.

10. Final moments M
At any section of a beam, the final moment M=UMr+Me (para. 4), MT and Me

being opposite in signs. Note that Me would carry the sign of/
11. Final pressures under a beam and Settlements

From the value of/obtained, the pressures would be as follows (para. 6):
(i) when/<l, pmax=w0+fw0 per unit area

Pmin=Wo—fWo
(ii) when/>l,/w=2/vt>0 » » »

These would be clear from the pressure distributions shown in Table I. The balancing
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pressures B.P. due to the eccentricity of loading on a beam from force system Fr are
also to be taken into aecount.

The Settlements at various points in a beam can then be obtained from the related
pressures, employing eqn. (7:2).

V. Examples
12(a). Beam on soil with constant foundation modulus

Example 1*. A weightless beam 10 inches by 8 inches with the loading shown
in fig. 13(a) is resting on an elastic foundation having a modulus of 200 lb./in.3 The
elastic modulus of the beam material is 1-5 IO6 lb./in.2 Obtain the moments and
pressures throughout the beam.

Thus, Z,= 120 in., 7=426-7 in.4, £=1-5 IO6 lb./in.2 and k0=200 lb./in.3
Total load=/J+48a=5,000+4,800=9,800 lb.
Bearing area of foundation =120 10=1,200 in.2

9,800
•'• VVo=nöÖ=8'16 lb-/in© and w=8-16 10=81-6 lb./in. run.

Unbalanced moment and balancing pressures B.P.:
Considering w acting below and taking moments about point 6, unbalanced mo-

ment=5,000 90+4,800 44-9,800 60=73,200 in.-lb.
Section modulus of foundation area

10 1202
Z= 2 =24,000 in.3

o
73,200

.". End pressures in B.P.=± non= ±3-05 lb./in.2

±30-5 lb./in. run
Moments Mr :

With the superimposed load above and w and B.P. below, values of moments
obtained are shown in Fig. 13(6).

Deflection Yr :

From the Mr diagram, the value of maximum deflection 7r is found conveniently
by the "Conjugate Beam Method" at a section 54 in. from the left end as 00810 in.,
which is positive in value. (Approximation of the Mr diagram by straight lines,
shown dotted, is permissible for this purpose.)
Beam equation:

Since Yr is positive, eqn. (B2) of para. 7 applies,
wL4 81-6. 1204

•• y= + ^+^/=+0-0810+0-0037r?- 1Q6 426,7/

+0-0810+0-0980/ (1)

Soil equation:
Since k0 is constant and Y, is positive, eqn. (S5) of para. 7 applies,

-¦¦ ^-^=-^-6/=-0.08,6/ «)

Solution:
Solving eqns. (1) and (2) above, /= -0-45 and 7=+0-0368 in. The value of/

* The example is taken from Beams on Elastic Foundation, by M. Hetenyi, University of Michigan
Press, Ann Arbor, 1946, p. 47.
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obtained is <1, which shows that the value of TV adopted in beam equation is suitable
(para. 8). Note that the value is in the negative system.

Moment Me :

Since/<1 and 7, is +ve, case 5 of Table I applies. From fig. 12, ß=00187
against/=0-45.

.-. Me=-QwL2= -0-0187 81-6 1202=-22,000 in.-lb.
This is the central ordinate of the triangulär Me diagram.
Final moments M (in.-lb.):

Section Mr Me M Hetenyi's values of M
2
3

Centre
4
5

+48,040
+29,700
+30,000
+27,870
+ 10,880

-11,000
-19,100
-22,000
-16,150
- 7,340

+ 37,040
+ 10,600
+ 8,000
+ 11,720
+ 3,540

+35,460 (calculated)

+ 9,623

These are shown in fig. 13(c), with the Mr and Me diagrams superimposed.

Final pressures/? (lb./in.2): /w0=0-45 8-16 3-67

Section w0 /Wo B.P. P Hetenyi's values ofp
1

Section of
max. defln.

6

+ 816

+ 8-16
+ 8-16

-3-67 +305

+ 3-67 +0-31
-3-67 -3-05

+ 7-54

+ 1214
+ 1-44

+ 607

+ 10-39 (centre)
+ 1-26

These are sh<

Settlements

wn in fig. I3(d).

inches): From eqn. (7:2), S=pjk0

Section 5 Hetenyi's values of 5

1

Near centre
6

7-54/200=0 038
1214/200=0061
1-44/200=00072

003036
005193
000628

Settlements at intermediate points may be found by obtaining the relative deflections.
Fig. 14. shows the beam in its final position.

ÄWAWW
CL.

Final position oF beam

Fig. 14

12(6). Value of Ifor beam to control deflection

Example 2. What should be the value of / for the beam in example 1 if the
maximum deflection 7 is not to exceed 0-02 in.

Using the soil eqn., 7= -0-0816/
.'. +0-02=-0-0816/ .'. /=-0-245

cr.—25
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34-6 41-8
Withdrawing the value of /, the beam eqn. is expressed as Y=-\——-\——/ and

substituting the appropriate values
1 1 24-4

+0-02=j[34-6+41-8(-0-245)]=j(34-6-10-2)= —
24-4

•• /=ö^2=1'210in-4
3 flTl 3 /12 1 210

With 10 in. width, depth d=J-y=J—'-^ =11-32 in.

12(c). Value of Ifor beam to control pressure
Example 3. What may be the value of / for the beam of example 1 if the maximum

pressure underneath is not to exceed 14 lb./in.2?
We have seen that in the middle of the beam

/W=h>0+M,+B.P.=+8-16+8-16/+0-31 =+8-47+8-16/
5-53

.-. 14=+8-47+8-16/ .'. /=—^=0-675 (in negative system).

From the soil equation, therefore,
7= -0-0816/= -0-0816(-0-675)= +0055 in.

Withdrawing the value of / from the beam eqn.,

7=J[34-6+41-8/]

and substituting the appropriate values
1 6-4

+0-055=j[34-6+41-8(-0-675)] —

6-4
•"• 7=ööT5=116in-4

With 10 in. width, depth d=¦-/—^-—=5-18 in.

12(0*). Beam on soil with variable foundation modulus

Example 4. Solve the problem in example 1 assuming that the modulus varies
from 200 lb./in.3 at centre to 350 lb./in.3 at ends. Then, the beam equation, as before

7= +0-0810+00980/ (1)
Soil eqn.:

350
"=2Ö0=1-5

7r is +ve, and in anticipation of/<l, eqn. (S3) applies.

Y--—\i 1 1
,-

8-16

'¦ 200 [ +l-5j-^+200 -tV -0-0683/+0-0135 (2)

Solving (1) and (2),/= -0-405 and 7= +0-0413 in. From fig. 12, case 5, ß=0-0168.
.-. M,= -0-0168. 81-6. 1202=-19,700 in.-lb.

The diagram is represented by Mel in fig. 13.

M„,a^at section 2=+48,040 '-r—=+38,190 in.-lb.

pmax at middle =+8-16+(0-405 8-16)+0-31 11-77 lb./in.2
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13. Beam with non-prismatic section having constant width
The procedure is the same as shown before except for a little adjustment involved

in the value of Ye. For this purpose an equivalent "constant moment of inertia" is
obtained for the same amount of maximum deflection within the beam. The example,
which follows, will clarify the problem.

Example 5*. A continuous footing 30 ft. wide, having a cross-section as shown
in fig. 15, rests-on soil with a modulus of 300 kips/ft.3 There is a line load of 150 kips/ft.
run at the centre and the elastic modulus of the material may be taken as 432,000
kips/ft.2 The weight of the beam is neglected.

300,000
Thus, k0=—t-^—=173 lb./in.3 (uniform),

432,000,000' =3,000,000 lb./in.2,
122

P=150 kips/ft. 150,000 lb./ft.
Considering 1 ft. length of footing as width of beam, bearing area=360 in. x 12 in.

Also
150,000 416

w= =416 lb./in. run, and w0=—-=34-8 lb./in.2

The system r> is shown in (a). The loading being symmetrical about the centre
there is no B.P.

With the load P above and w acting below, the moments developed in the beam are
shown in (c). The variations in the moment of inertia are shown in (b).

Yr:
To obtain the maximum deflection 7r, a diagram for Mr/I is obtained first as in

(d). From this the maximum deflection at centre, Yr= +0-196 in.
7e:

Equivalent constant moment of inertia Ic for the beam to give the same amount
of maximum deflection in the middle under force system Fe is to be considered first.
For this purpose the beam is to be considered loaded at the centre with a concentrated
unit load when supported at the ends. This is reasonable, since the Me diagram is
nearly triangulär, which is corresponding to the above condition of loading.

Let the moment diagram from the unit load be called My and the maximum
deflection 7:. Then the central ordinate of My diagram

W. L 1.360
My +—j- +—j—=+90 in.-lb (13:1)

shown in (e). The maximum deflection with Ic,
1 WLi 1 -36°3 °'324-

7l= +48 • 1TC +48 •

3,000,000 Ic= +~T mAb' ' (B:2)
With the present variable /, the maximum deflection Yy is found from Myjl diagram
as in (/), and the value at centre

+000,000,365 in (13:3)
From eqns. (13:2) and (13:3),

/c=äööÄ365 89'000in-4 (13:4)

* The example is taken from "Successive Approximation for Beams on Elastic Foundations,"
by E. P. Popov, Proc.A.S.C.E., May, 1950, vol. 76, Separate No. 18, p. 5.
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The procedure hereafter is as for a prismatic beam with constant moment of inertia Ic.

Beam equation:
Since Yr is + ve, eqn. (B2) applies.

416 3604
•¦ Y= +0-196+0-0037

3)000000 89000/=+0-196+0-097/ (1)

Soil equation:
k0 being uniform eqn. (S5) applies.

2 34-8
7=-- 173 /= -0-402/ (2)

Solution:
From eqns. (1) and (2) above, /= -0-392 and 7=+0-158 in.

Me-
Since case 5 of Table I applies, from fig. 12, 0=00163.

.'. Me= -0-0163 416 3602= -880,000 in.-lb.

M (in.-lb.):
These are shown in (g).

/©lb./in.2):
/vf0=0-392. 34-80=13-65

Section Wo /wo P Popov's values of p

1

4 •

+ 34-80
+34-80

-13-65
+ 13-65

+2115
+48-45

+ 18-85
+4500

These are shown in (h).

VI. Remarks

14. Remarks

Comparing the present method with that developed mathematically from differential

equations for elastic lines, the Solution is reliable for a beam having a value of
\l>2tr, when 7r is negative, and
A/>7r, when 7r is positive,

4 [bk~o~
where A= / —=-r and 6=width of beam.

V 4EI
With higher value of A/ the pressures are in error, as the deflection curve of the

beam develops reverse curvatures at distant points from the loads. The maximum
possible bending moment will not, however, exceed the value obtained by this method,
and in practical designs with reinforced concrete foundation beams, recourse may have
to be made to nominal reinforcements in the compression faces.

Summary

The forces acting on a beam are considered to be divided into two Systems:

System 1, comprising the superimposed loads on the beam and the pressure
underneath such as would occur if the beam were perfectly rigid, due consideration

being given to the eccentricity of loading, if any, involving straight-line
Variation of pressure, and
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System 2, comprising only the additional Variation of pressure under the
beam due to deflections throughout from the average straight-line Variation
obtained in System 1.

The additional pressure Variation of System 2 related to the deflections is obtained
from consideration of

(a) the elastic properties of the beam, and
(b) the elastic properties of the soil.

This being known, the corresponding moment diagram is readily approximated.
This diagram, when superimposed on that due to System 1, gives the final moment
values throughout the beam.

The advantage of the method lies in obtaining readily

(1) the final bending moment diagram,
(2) the maximum deflection oecurring in a beam, and
(3) the maximum and minimum pressures underneath.

Other advantages available from the theory include the determination of the
appropriate moment of inertia of a beam to control

(a) maximum deflection, and
(b) maximum pressure underneath.

The method can be applied to beams, prismatic or non-prismatic, with any kind
of loading and solutions give with comparative ease results which are reasonably close
to those obtained by accurate analysis. The paper includes illustrative examples
already solved by other methods.

Resume

On considere que les forces agissant sur une poutre se divisent en deux systemes:

ler Systeme: comprenant les charges appliquees ä la poutre et la pression
s'exercant en-dessous, telles qu'elles se presenteraient si la poutre etait parfaitement

rigide, compte tenu eventuellement de l'excentricite de la charge, impliquant
Variation de pression en ligne droite.

2eme Systeme: comprenant uniquement la Variation additionnelle de
pression sous la poutre, due aux deviations d'un bout ä l'autre, ä partir de la
Variation moyenne en ligne droite obtenue dans le ler Systeme.

La Variation additionnelle de pression du deuxieme Systeme, relative au deviations,
est obtenue par la prise en consideration:

(a) des proprietes elastiques de la poutre,
(b) des proprietes elastiques du sol.

Celles-ci etant connues, on obtient sans difficulte une approximation de la courbe
du moment correspondant. Cette courbe, lorsqu'on la superpose ä celle qui resulte
du premier Systeme, donne les valeurs definitives du moment d'un bout ä l'autre de la
poutre.

L'avantage de la methode reside dans le fait qu'on obtient instantanement:

(1) la courbe definitive du moment de flexion,
(2) la deviation maximum se produisant dans une poutre,
(3) les pressions maximum et minimum en-dessous.
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Parmi les autres avantages offerts par cette theorie, il fait mentionner la determination

du moment d'inertie d'une poutre permettant d'equilibrer:
(a) la deviation maximum,
(b) la pression maximum au-dessous.

La methode peut etre appliquee aux poutres prismatiques ou autres, avec
n'importe quelle sorte de charge et les solutions donnent, avec une facilite relative, des

resultats qui sont suffisamment proches de ceux que l'on obtient par une analyse
rigoureuse. L'expose contient des exemples explicatifs dejä resolus par d'autres
methodes.

Zusammenfassung

Die auf einen Balken wirkenden Kräfte werden in zwei Systeme eingeteilt:

System 1 umfasst die auf ihn wirkenden Nutzlasten sowie die auf der
Unterlage entstehenden Pressungen für den Fall, dass der Balken vollkommen
steif ist. Eine etwaige Exzentrizität der Belastung wird dabei im Sinne eines

geradlinigen Verlaufs der Pressungen berücksichtigt.
System 2 umfasst lediglich die zusätzlichen Aenderungen dieser Pressungen

entsprechend den Durchbiegungen, die von der für das System 1 gewählten
mittleren geradlinigen Verteilung abweichen.

Die zusätzliche Aenderung der Pressungen im System 2 ergibt sich aus der Betrachtung

(a) der elastischen Eigenschaften des Balkens,
(b) der elastischen Eigenschaften des Untergrundes.

Diese Eigenschaften als bekannt vorausgesetzt, lässt sich die entsprechende
Momentenlinie schnell und in guter Annäherung ermitteln. Sie ergibt, nach Ueber-
lagerung derjenigen des Systems 1 den endgültigen Momentenverlauf im Balken.

Der Vorteil der Methode besteht darin, dass

(1) der endgültige Momentenverlauf im Balken,
(2) die grösste Durchbiegung des Balkens,
(3) die grösste und kleinste Pressung der Unterlage schnell und leicht ermittelt

werden kann.

Als weiterer Vorteil ergibt sich aus der Theorie die Möglichkeit, das Trägheitsmoment

eines Balkens zweckmässig so festzulegen, dass

(a) die grösste Durchbiegung,
(b) die grösste Pressung im Untergrund innerhalb bestimmter Grenzen bleiben.

Das Verfahren kann auf Balken prismatischen oder nicht prismatischen
Querschnitts und für jede Art von Belastungen angewandt werden. Es liefert auf
verhältnismässig einfache Weise Ergebnisse, welche mit den genauen Lösungen gut
übereinstimmen. Der Aufsatz enthält Beispiele, die zum Vergleich auch mit Hilfe
anderer Methoden gelöst wurden.
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L'influence de l'elasticite du sol sur les contraintes des barrages-poids
(Theorie et Solution numerique)

The influence of the elasticity of the soil on the conditions of stress in
gravity dams

(Theory and numerical method)

Einfluss der Baugrundnachgiebigkeit auf den Spannungszustand von
Gewichtsstaumauern

(Theorie und numerische Methode)

Prof. Dr. P. LARDY
Secretaire gene>al de l'A.I.P.C, Ecole Polytechnique Federale, Zürich

Introduction
Generalite's

La prise en compte de l'influence de l'elasticite du sol sur les contraintes des

barrages signifie un progres dans leur investigation par le calcul. Les etudes effectuees
aussi bien sur les barrages arques que sur les barrages-poids demontrent suffisamment
l'importance de la coaction du barrage et du sol de fondation.

II s'agit lä d'un probleme eminemment difficile de la theorie mathematique de
l'elasticite.

Ce travail donne avant tout un apercu tres succinct sur une methode appropriee
de calcul numerique. L'exemple calcule montre avec suffisamment de clarte
l'influence remarquable de l'elasticite du sol sur les contraintes, qui se trouvent grande-
ment alterees ä la base et le long des parements amont et aval des barrages-poids.

Position du probleme

Nous nous bornons au cas le plus simple et ne considerons, comme forces
exterieures, que l'action du poids-propre et de la pression laterale de l'eau (bassin
rempli) sur le barrage-poids de section triangulaire sur sol elastique, en negligeant les
effets de la sous-pression et de la temperature.

Le mur est defini par:
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Fig. 1.

Le parement amont est suppose vertical

A=hauteur du barrage
A=tg w (cfj=angle d'ouverture du mur)

b=X A=largeur du barrage
ym=poids specifique du mur
£'m=module d'elasticite du mur
vm=coefficient de contraction du mur

Le sol de fondation est assimile ä un demi-plan, defini par les constantes:

y/=poids specifique du sol
£}-=module d'elasticite du sol
iy=coefficient de contraction du sol

Les contraintes sont designees par:
o-=contraintes normales
r=contraintes de cisaillement

Les deplacements sont:

w=deplacements horizontaux
w=deplacements verticaux.

Le sol de fondation est suppose elastique, homogene et isotrope. Le mur sera
calcule en etat de contraintes planes (tranche isolee), le sol par contre en etat de
deformations planes (etendue indefinie du sol).

Le probleme est defini par les trois groupes de conditions suivants:

(1) Conditions d'equilibre et de compatibilite, donnees par la theorie de l'elas¬
ticite, dans le triangle (mur) d'une part et dans le demi-plan (sol) d'autre
part.

(2) Conditions aux limites pour les efforts normaux o- et les efforts tranchants t
sur le contour ABCDE.

(3) Conditions de continuite des contraintes et des deplacements sur Ie bord
BD, commun au mur et au sol.
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Difficultes principales
La difficulte principale du probleme reside dans l'etablissement de la connexion

entre le mur et le sol, c'est-ä-dire dans l'expression de la continuite des contraintes et
des deplacements le long du bord commun BD. Cette difficulte se trouve accrue du
fait que les deux elements en coaction, le mur et le sol, ont des caracteristiques
differentes:

Le mur: forme triangulaire, avec Em et vm,
Le sol: demi-plan, avec Ej et Vf.

Chacun des deux domaines est caracterise par une fonction d'Airy (fonction
"'potentielle" des contraintes), dont l'expression mathematique differe essentiellement
d'un domaine ä l'autre, d'oü la difficulte de la connexion sur le bord commun BD.

Une autre difficulte apparait quand on exprime les conditions aux limites sur les

parements, oü les efforts tranchants t, ainsi que les efforts normaux a sur le parement
aval s'annullent. On est conduit ä un probleme de "valeurs propres" defini par des

arguments complexes et donnant lieu ä des familles de "fonctions propres" dont
Fetablissement est singulierement laborieux.

Ce sont lä les deux difficultes essentielles et caracteristiques du probleme.

Solutions analytiques
Tölke* a donne une Solution analytique rigoureuse du probleme. Cependant,

cette Solution est presentee de maniere ä decourager le lecteur, tant les grandes lignes
de sa demonstration sont enfouies dans un fatras analytique inutile. Deux autres
critiques seront formulees ulterieurement.

Tölke decompose le probleme en deux parties et procede en principe de facon
analogue ä celle utilisee dans le calcul des systemes hyperstatiques en statique
appliquee. '

Une coupure effectuee ä la base BD permet de calculer le mur comme Systeme
"isostatique," ce qui conduit ä la regle du trapeze generalisee, c'est-ä-dire ä une repartition

lineaires des contraintes. La coupure entre le mur et le sol, ouverte dans le

Systeme isostatique, doit etre, pour satisfaire aux conditions d'elasticite, referm.ee au
moyen d'un Systeme de contraintes " hyperstatiques " (contraintes " propres "). II faut
donc exprimer que les deplacements relatifs effectifs u et v sont nuls en chaque point
de la base du mur.

Les calculs, extraordinairement laborieux, conduisent ä des series qui ne conver-
gent que lentement. La determination des constantes d'integration d'apres la
methode de Ritz n'est pas effectuee de maniere correcte dans le memoire de Tölke.

On peut envisager d'autres solutions analytiques par un choix different des

systemes de coordonnees, par exemple, mais l'ampleur des calculs reste immense.
Pour ces differentes raisons, nous avons envisage une Solution pratique au moyen

du calcul aux differences qui conduit, en principe, toujours ä une Solution numerique.
Cet avantage reste, bien entendu, lie ä l'inconvenient qu'un tel resultat ne peut pre-
tendre ä une Solution de caractere general.

Dans notre probleme, le calcul aux differences s'est revele extremement fertile,
gräce au fait qu'il a ete combine avec la "methode de relaxation" pour la resolution
des equations lineaires.

Quelques indications sur le principe de cette methode numerique, ainsi que sur
les conclusions d'ordre pratique qui decoulent de l'exemple traite, forment l'objet
prineipal de cet expose.

* Tölke: Wasserkraftanlagen, Handbibliothek für Bauingenieure, Verlag Springer, Berlin, 1938.
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Calcul aux differences et Methode de relaxation
Remarques generales

Le calcul aux differences transforme les expressions differentielles en "differences
finies," dont la forme et la structure sont celles avant le passage ä la limite (intervalle
de base tendaht vers zero), qui caracterise le calcul differentiel.

Les fonctions inconnues dependent ici des deux variables independantes x et y
et sont definies, dans notre probleme, par des equations aux derivees partielles du
quatrieme ordre (equations biharmoniques) ainsi que par d'autres equations aux
derivees partielles aux limites et sur la coupure entre le mur et le sol.

L'exactitude de la Solution augmente en principe quand on diminue l'intervalle
de base, donc quand on augmente le nombre des points du reseau de base, mais le
nombre des equations lineaires ä resoudre augmente, lui aussi, rapidement; l'ampleur
des calculs numeriques peut devenir prohibitive et l'exactitude finale peut en souffrir.
II existe en quelque sorte un Optimum dans le choix de l'intervalle de base.

C'est pourquoi, les avantages du calcul aux differences ne peuvent etre juges de
maniere absolue, mais uniquement en relation avec la methode de resolution des

equations lineaires choisie dans chaque cas.

Ayant ä resoudre, dans notre probleme, quelques centaines d'equations lineaires,
nous avons renonce aux methodes classiques de resolution. D'autre part, il serait
illusoire de calculer les solutions des equations lineaires avec une exactitude exageree,
alors que l'erreur provenant du fait que les intervalles de base sont finis, peut etre non
negligeable.

Nous avons donc adopte une methode de resolution par approximation successive,
dite methode de relaxation.

Methode de relaxation
Cette methode, due ä Southwell, possede des avantages marques sur les autres

methodes procedant par approximation successive.
En designant par L, (/=1, 2, n) les membres de gauche d'un Systeme de n

equations lineaires, on nomme "residu" de l'equation la valeur de L, quand on
assigne aux inconnues des valeurs quelconques. La Solution du Systeme correspond
ä L,=0 pour chaque equation.

v Si des lors on commence par un systtine de valeurs approchees pour les inconnues
(ce qui est toujours possible), les /., seront differents de zero. La methode de relaxation

consiste ä reduire, par Operations successives sur les inconnues, tous les residus ä

zero.
La maniere d'operer cette reduction forme precisement la technique de la methode

de relaxation. Ces Operations peuvent etre effectuees aisement sur la base de Schemas

geometriques, appeles "Relaxation pattern"; ceux-ci sont caracteristiques de la
structure des equations et contiennent de maniere simple et claire le principe des calculs
numeriques ä effectuer.

Le Prof. Stiefel de l'Ecole Polytechnique Federale ä Zürich a generalise cette
technique de la relaxation pour les equations biharmoniques de notre probleme en appli-
quant le principe de reduction par Variation simultanee de plusieurs inconnues et en
etablissant des methodes appropriees pour accelerer la convergence de l'iteration.

L'avantage prineipal de la methode de relaxation reside dans le fait que le calcul
numerique est limite au calcul des residus, ceci sans l'obligation de calculer directement

les valeurs intermediaires des inconnues, comme c'est le cas pour les methodes
ordinaires d'iteration.
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Les calculs effectues ont demontre le grand avantage de la methode de relaxation,
adaptee de maniere appropriee aux problemes du genre traites ici.

Exemple numerique
Donnees

Les donnees sont celles de la fig. 1 avec les valeurs numeriques suivantes :

h=l (normee)
Z>=0,8

ym=y/=2,5 t./m.3

Em=4Ef, vm=ß, "/=4
Le mur est soumis au poids-propre et ä la pression laterale de l'eau, le sol aux

reactions du mur et ä la pression verticale de l'eau.

Conditions

Les trois groupes de conditions (voir, Introduction, Position du probleme) sont ä

remplir:
(1) Conditions generales d'equilibre et de compatibilite (equations biharmoniques):

Dans le mur (triangle): AAwm=0
Dans le sol (demi-plan): AAw/=0
wm, w/=fonctions d'Airy pour les domaines respectifs

82 d2
A=—2+-ö~2=Operateur laplacien

(2) Conditions aux limites sur le contour ABCDE:

Exprimees par les charges exterieures au moyen des grandeurs w„„ -r^;
8wr

W"-8rl

n=direction de la normale

(3) Continuite des contraintes et des deplacements le long de la coupure BD:

dwf dwm
Wf=W™> 8j=-öJ
d2Wf
~8y~2

4

15

8iWf 4

d2wm 13 d2w,

dy2 ' 45 ' dx2

8iwm 79 8iwm 13

8y* 15 "
8y> 45 ' 8x28y ' 18

La forme de ces deux dernieres equations, due ä des considerations sur l'energie
du Systeme, se prete particulierement bien au calcul de relaxation.

Calcul numerique
Les conditions enoncees doivent etre transposees en equations aux differences.
Pour les besoins du calcul aux differences, le demi-plan doit etre remplace par un

rectangle suffisamment grand. Les deux domaines, triangle et rectangle de
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remplacement, sont recouverts d'un premier reseau de points (reseau caracteristique
du calcul aux differences).

II s'avera tres vite que la relaxation dans le rectangle etait fort laborieuse. Cette
difficulte fut resolue par le Dr. Preissmann, Zürich, qui reussit ä transformer les
formules de Boussinesq du demi-plan pour des fonctions d'influence en expressions
appropriees au calcul aux differences et ä la methode de relaxation. Cette simplification

supprime la relaxation dans le demi-plan; des lors, la relaxation peut etre limitee
au domaine du triangle et aux deux bords de la coupure.

Les valeurs de depart sont celles donnees par la regle du trapeze.
La relaxation fut grandement facilite par l'emploi de la machine ä calculer avec

commandes automatiques de l'Institut de Mathematiques appliquees de l'Ecole
Polytechnique Federale (Direction: Prof. Stiefel). Gräce aussi ä l'etablissement de
"relaxation pattern" appropries, l'ampleur du calcul de relaxation a pu etre tenue
dans des limites raisonnables.

Ce premier reseau, relativement large, a permis de resoudre le probleme avec
suffisamment d'exactitude dans la zone moyenne du mur et de sa base, mais s'est
revele insuffisant pour les zones des parements ainsi que pour les deux extremites de
la base qui forment des domaines singuliers.

Des lors, un reseau de densite double fut introduit. Gräce ä des procedes speciaux
pour accelerer la convergence de la relaxation, la Solution numerique de ces zones
particulieres put etre menee ä bien.

Resultats

Les trois tableaux qui suivent contiennent, en comparaison, les valeurs extremes
aux deux parements.

Tableau I
Contraintes normales verticales er

Section Contraintes: parement cöte eaux Contraintes: parement aval

Distance de
la coupure
en metres

Regle du
trapeze
kg./cm.2

Calcul
exaet

kg./cm.2

Difference
o/

0

Regle du
trapeze

kg./cm.2

Calcul
exaet

kg./cm.2

Difference
0//o

6-6
42,5 m. 5,4 6,6 22 9,0 10,6 18

7-7
32,5 m. 6,3 8,4 33 10,5 13,6 30

8-8
22,5 m.

7,3 10,4
'

49 12,1 17,6 46

9-9
12,5 m.

8,2 14,6 78 13,7 22,4 63

10-10
2,5 m.

9,1 18,2 100 15,2 30,0 97

Degre d'exactitude; ampleur des calculs

Les calculs ont ete effectues avec cinq decimales. Les contraintes, decoulant
des fonctions w par l'operation de la deuxieme difference, sont evidemment moins
exactes que celles-ci. On arrive ä une estimation de l'erreur moyenne d'environ 5 %,
ce qui est amplement süffisant.

II est clair qu'ä Favenir, l'ampleur des calculs se trouvera reduite du fait que les
essais et tätonnements du debut ne se repeteront plus.
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Tableau II
Contraintes de cisaillement t

Section Contraintes: parement aval

Distance de
la coupure
en metres

Regle du
trapeze
kg./cm.2

Calcul
exaet

kg./cm.2

Difference
o/

o

6'-6'
40 m.

7,5 9,6 28

l'-l'
30 m.

8,8 12,0 36

8'-8'
20 m.

10,0 14,8 48

9-9'
10 m.

11,2 18,2 63

]0'-10' 12,5 25,0 100

Tableau III
Contraintes normales horizontales <jx

Section Contraintes: parement aval

Distance de
la coupure
en metres

Regle du
trapeze

kg./cm.2

Calcul
exaet

kg./cm.2

Difference
o/.0

6-6
42,5 m.

7-7
32,5 m.

8-8
22,5 m.

9-9
12,5 m.
10-10
2,5 m.

5,8

6,8

7,8

8,8

9,8

7,2

8,8

12,0

15,0

19,0

24

30

56

70

94

La technique de relaxation ayant ete fortement developpee au cours de ces calculs,
il est possible, ä l'avenir, de profiter de l'experience acquise (Etablissement de tableaux
definitifs de fonctions pour la resolution de l'equation AAw=0). Remarquons
egalement que certains resultats intermediaires de caractere assez general, se trouvant
etablis une fois pour toutes (transposition des formules de Boussinesq en equations
aux differences, etc.), peuvent etre utilises tels quels par la suite.

II reste neanmoins clair que ce genre de calculs s'adresse ä des specialistes qualifies.

Conclusions
Les resultats obtenus prouvent qu'il est possible de traiter, sur une base numerique

appropriee, des problemes extremement difficiles et compliques de la theorie de
l'elasticite, ceci avec une exactitude süffisante et une ampleur de travail raisonnable, ä

condition de tenir compte des experiences faites.
Les resultats (voir tableaux et fig. 2) sont remarquables et montrent que les ecarts
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entre la Solution indiquee et la regle du trapeze sont beaucoup plus importants qu'on
ne pouvait s'y attendre, avant tout dans la zone de base du mur (jusqu'ä 100%).

Des ecarts de 10% se fönt sentir jusqu'ä pres de la mi-hauteur du mur, donc dans
un domaine tres grand.

Dans les zones medianes des sections horizontales, les contraintes sont plus
petites que celles calculees par la regle du trapeze. Dans le sol de fondation, les
contraintes oy s'attenuent plus rapidement que les autres.

Ces resultats soulignent la valeur de tels calculs et posent, entre autre, ä nouveau
la question de la securite et des contraintes admissibles dans le beton, puisque, dans
certaines zones, les ecarts conduisent ä une majoration des contraintes d'environ
100% sur celles du calcul ordinaire. On peut envisager la generalisation de cette
methode pour d'autres profus que le triangle et tirer profit des resultats acquis pour
simplifier et accelerer les calculs, qui peuvent etre completes, dans les zones critiques,
par des developpements analytiques. La prise en compte de la souspression et des
effets de la temperature ne presente aucune difficulte.

Cet exemple demontre l'efficacite et la valeur de methodes numeriques appro-
priees, appliquees ä des problemes dont la Solution analytique rigoureuse est,
aujourd'hui encore, pratiquement inaccessible.

Resume

Ce memoire donne un apercu succinct sur une methode numerique donnant la
Solution du probleme de "l'influence de l'elasticite du sol sur les contraintes des

barrages-poids."
La transformation des equations differentielles en equations aux differences et leur

resolution au moyen du calcul de "relaxation" permet de resoudre le probleme avec
une exactitude süffisante et remplace avantageusement la Solution purement analytique
pratiquement inaccessible.

Les conclusions mettent en evidence la necessite de tels calculs en etablissant
I'alteration profonde subie par les contraintes sous l'influence de l'elasticite du sol,
ceci principalement ä la base du mur.

Summary

This paper includes a comprehensive survey of a numerical method for solving
the problem of the "Influence of the elasticity of the soil on the conditions of stress
in gravity dams."

The conversion of the differential equations into equations of difference, and also
their Solution by the "relaxation method," leads to a sufficiently accurate Solution of
the problem and replaces with advantage the purely analytical method, which is

unusable in practice.
The conclusions emphasise the necessity of such calculations and throw a very

impressive light on the important influence ofthe elasticity ofthe soil on the conditions
of stress in gravity dams, particularly at the foot of the dam-wall.

Zusammenfassung

Diese Arbeit vermittelt einen gedrängten Ueberblick über eine numerische
Methode zur Lösung des Problems: "Einfluss der Baugrundnachgiebigkeit auf den
Spannungszustand von Gewichtsstaumauern."

cr.—26
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Die Verwandlung der Differentialgleichungen in Differenzengleichungen sowie
ihre Auflösung nach der "Relaxationsmethode" führt zu einer genügend genauen
Lösung des Problems und ersetzt mit Vorteil die praktisch unzugängliche, rein
analytische Methode.

Die Schlussfolgerungen unterstreichen die Notwendigkeit solcher Berechnungen
und beleuchten sehr eindrücklich den hervorragenden Einfluss der Baugrundnachgiebigkeit

auf den Spannungszustand der Gewichtsstaumauern, insbesondere in der
Umgebung der Fundamentfuge.
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Nouvelle methode d'analyse tridimensionnelle sur modeles reduits

A new method of three-dimensional analysis using small-scale models

Ein neues Verfahren zur drei-dimensionalen Spannungsmessung in
Modell-Konstruktionen

C. BENITO
Ingenieur, Chef de la Section des Modeles Reduits du Laboratorio Central de Ensayo

de Materiales de Construcciön, Madrid

1. Generalites
Malgre les tres grands progres realises par les differentes theories employees pour

le calcul des ouvrages, de nombreux techniciens du genie civil cherchent une
methode pour la resolution des problemes d'elasticite ä trois dimensions. Les
travaux preliminaires sont etablis sur la base de la theorie de l'elasticite et on
n'entrevoit pas, jusqu'ä maintenant, de processus mathematique general de resolution
qui pussie etre applique ä la pratique. Sauf en certains cas relativement rares, qui
sont d'ailleurs devenus classiques pour etre repetes dans tous les traites speciaux, la
connaissance de la repartition des centraintes ou des deformations dans l'interieur du
solide spatial exige la resolution d'un Systeme d'equations differentielles qui constitue
un obstacle serieux et infranchissable.

Cependant, on peut esperer parvenir par les methodes experimentales au resultat
cherche. C'est ce que montrent les investigations qui ont dejä ete faites dans ce sens
et qui nous rapprochent progressivement de la Solution du cas general.

Dans un travail anterieur,* nous avons dejä expose les methodes photo-
elastiques adoptees pour l'etude de certains modeles tridimensionnels construits en
bakelite, en trolon ou en gelatine. Dans cette etude, nous proposions l'emploi de la
gelatine pour les problemes oü interviendraient des efforts de masse ou dans lesquels
les modeles seraient de grandes dimensions ou de formes compliquees. Mais ainsi
que nous l'avons constate, en appliquant les methodes photo-elastiques tri-
dimensionnelles ä l'observation de tranches planes des modeles dans lesquels les
contraintes avaient ete prealablement "fixees," il n'a ete possible que d'evaluer les
directions et grandeurs des trois contraintes principales, aux points oü l'on connaissait

* C. Benito et A. Moreno, "Etudes photo-elastiques tridimensionnelles sur modeles en gelatine,"
Publication No. 73 du Laboratorio Central de Ensayo de Materiales de Construcciön, Madrid, 1951.
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a priori la direction de l'une d'elles. Cette condition limite dans une large mesure
l'utilite pratique de cette methode et reduit son application aux exemples dans lesquels
interviennent des symetries de forme et de charge.

En dehors du domaine de la photo-elasticfte et dans tous les cas oü l'on a essaye
des modeles reduits tridimensionnels, les etudes dont nous avons connaissance ont
ete limitees ä l'observation des deformations de surface; il est rare que l'on ait
introduit des organes d'auscultation en certains points interieurs.

Nous nous proposons d'exposer dans ce qui suit une nouvelle methode avec
laquelle nous pensons avoir reussi ä trouver la Solution experimentale des problemes
tridimensionnels, meme avec Intervention des efforts de masse.

2. Expose de la Methode d'essai et des bases de recherche
Dans les etudes que nous avons'faites des caracteristiques des gelatines, etudes

dont les resultats figurent dans la publication citee plus haut, nous avons mis en
evidence les variations observees dans la valeur du module longitudinal de Young en
fonction de la temperature et nous sommes arrives ä conclure que la valeur du module
augmentait au cours du refroidissement du materiau. Ce phenomene nous a permis
de charger le modele reduit ä etudier ä la temperature ambiante (ä peu pres 20° C),
puis de diminuer cette temperature progressivement jusqu'ä 2° C.; nous avons pu
ensuite decharger le modele, puis le couper en tranches planes et paralleles et observer
les contraintes enregistrees, comme s'il s'agissait d'un cas de photo-elasticite ä deux
dimensions. Nous avons egalement constate qu'en elevant ä nouveau la temperature
de ces tranches, la contrainte observee disparaissait.

Pour expliquer ce processus en nous rapportant aux deformations, nous pourrons
dire que si nous chargeons un modele construit avec un materiau presentant un
module d'elasticite E, il se produira en chaque point des deformations que nous
designerons par e. En abaissant la temperature, le module passe ä la valeur E'~p>E;
en supprimant les charges exterieures, les deformations recuperees e' ont un signe
contraire aux deformations anterieures et leur sont inferieures. II subsiste ainsi des
deformations fixees qui ne subissent aucune modification (comme nous l'avons
demontre), meme si nous coupons le materiau en prismes ou en cubes. Si la
temperature s'eleve ensuite jusqu'ä la valeur initiale, le module reprend sa valeur
primitive et les deformations se trouvent liberees.

La methode que nous proposons est basee sur la mesure de ces "deformations
liberees" qui, lorsqu'elles sont connues pour chaque point de l'interieur du modele,
peuvent etre rapportees aux valeurs des contraintes, äu moyen des constantes
elastiques du materiau ä temperature de l'essai.

Conformement ä ce qui precede, les differentes phases de I'application de la
methode sont les suivantes:

(1) Preparation du modele avec un materiau remplissant les conditions qui
seront indiquees au chapitre suivant.

(2) Application des charges exterieures ä la temperature ambiante (environ
22° C).

(3) Refroidissement lent du modele jusqu'ä une temperature interieure uniforme
de 2° C. et retrait des charges.

(4) A ce moment, les deformations initiales sont retenues en partie dans la
totalite du modele; on le coupe donc en tranches ou en cubes, sans que
cette deformation initiale residuelle subisse une modification, de ce fait.

(5) Mesure des "deformations liberees" dans les tranches ou les cubes, lorsque
l'on eleve ä nouveau la temperature jusqu'ä environ 22° C.
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Si les deformations mesurees sont süffisantes, on pourra determiner l'ellipsoide
des deformations de chaque point; ä partir de cet ellipsoide, il sera aise de passer ä

l'ellipsoide des contraintes, en faisant intervenir les valeurs du module d'elasticite et
les coefficients de Poisson ä 22° et ä 2° C.

Gräce ä cette nouvelle methode, nous nous proposons d'aboutir ä la connaissance
en amplitude, direction et sens des contraintes principales, en n'importe quel point de
l'interieur ou de la surface d'un modele de forme quelconque, lorsqu'agissent sur lui
des efforts exterieurs ou de masse.

Deux questions essentielles doivent etre resolues pour la mise en pratique de cette
methode:

(ö) Disposer d'un materiau qui remplisse les conditions correspondant aux
hypotheses de base de la theorie de l'elasticite, de l'analyse dimensionnelle
et de la methode ci-dessus elle-meme.

(b) Employer un processus de mesure qui permette de connaitre les valeurs des

deformations, avec la precision exigee par l'essai.

Nous examinons ci-apres chacune de ces deux questions.

3. Recherches concernant le materiau
La technique des modeles reduits d'ouvrages implique pour les materiaux certaines

conditions particulieres.
Le materiau doit, en premier lieu, permettre la fabrication du modele; il doit donc

se preter au moulage ou bien au faconnage jusqu'ä l'obtention de la forme voulue.
Dans les deux cas, il ne doit en resulter aucune contrainte residuelle susceptible
d'alterer les resultats des essais.

Du point de vue de la theorie de l'elasticite, le corps est suppose homogene,
isotrope et elastique. Ces conditions doivent 6tre d'autant plus etroitement respectees
qu'elles seront satisfaites par le ou les materiaux que l'on projette d'employer pour la
construction effective de l'ouvrage. Par ailleurs, l'analyse dimensionnelle qui dicte
les lois de similitude ä respecter entre les dimensions du modele et celles de l'ouvrage
reel impose une serie de conditions deduites du theoreme -n ou de Vaschy; dans le cas
de la similitude amplifiee (echelle differente de 1), ces conditions sont exprimees par
les relations ci-apres:

£m Cm/Cr aM Em*m Pm p'mIm
«R Im/Ir ' VR Er€r pR p'rIr

P'm Dm vm

P'r Dr vr

(1)

en designant par:
e les deformations,
C les deplacements,
/ les longueurs,
er les contraintes,
E les modules d'elasticite,
p les pressions exterieures,
p' les poids speeifiques des materiaux,
D les densites des surcharges (par exemple l'eau qui agit sur le parement d'un

barrage),
v les coefficients de Poisson.
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Tous ces symboles sont affectes d'un indice M ou R suivant qu'il s'agit du modele
ou de l'ouvrage reel. A l'exception de la derniere relation qu'exprime l'egalite des

coefficients de Poisson dans le modele et dans l'ouvrage, il n'est pas possible de tirer
une conclusion sans que le probleme soit plus nettement determine. Par suite et
afin de connaitre l'ordre de grandeur des caracteristiques du materiau que l'on doit
utiliser, nous allons faire appel ä un cas particulier d'ouvrage tridimensionnel oü, en
plus des forces exterieures, les efforts de masse exercent egalement une grande influence.
L'ouvrage que nous considerons comme le plus representatif est ici le barrage-poids
ä base droite ou en arc.

L'ideal serait de connaitre de regime de contraintes qui se manifeste en n'importe
quel point de l'interieur du barrage, de ses fondations ou de ses rives, en tenant compte
des particularites elastiques des divers elements qui composent l'ensemble de l'ouvrage
et de l'influence de leurs poids respectifs.

Nous ne connaissons que peu d'exemples d'essais tridimensionnels sur barrages;
cependant, leur petit nombre est amplement compense par la valeur des resultats
obtenus. Nous ne tenterons pas de les resumer ici; nous indiquerons seulement que
les plus interessants ont ete realises aux Etats-Unis, au Portugal et en Italie. Dans
la plupart des cas, on n'a considere qu'ulterieurement l'influence du poids propre du
barrage et dans tous les cas, on a mesure les deplacements des elements de surface de

l'ouvrage. Comme nous l'indiquions anterieurement, notre but est de mesurer les

contraintes en n'importe quel point de l'interieur ou de la surface et tout particulierement

ä proximite des fondations et des rives. En nous limitant ä cet objet precis,
nous pouvons deduire des expressions (1) les conditions suivantes:

1. Le coefficient de Poisson du materiau constituant le modele doit etre de l'ordre
de 0,3.

2. L'echelle des poids specifiques doit etre la meme que celle des densites des

liquides qui constituent la charge ou, ce qui revient au meme, le poids specifique du
materiau doit etre 2,3 fois plus grand que celui du liquide utilise pour la mise en charge.
Si, en tablant sur l'experience que nous avons acquise au sujet des essais photo-
elastiques, nous envisageons l'emploi d'un materiau presentant des caracteristiques
analogues ä celles de la gelatine, le liquide de mise en charge ne devra pas alterer ce
materiau et, par consequent, il sera impossible d'utiliser l'eau. D'autre part, il
convient que l'echelle des modules d'elasticite soit faible, pour que le module
d'elasticite du modele soit, lui aussi, faible, ce que l'on peut realiser en employant des

liquides plus legers que l'eau. Ceti nous amene ä admettre, ä titre de premier
tätonnement:

7^=0,8, donc:/7©=0,8/>'.R~l,9gr./cm.3
1JR

3. Si l'on admet que les deformations du modele peuvent etre vingt fois plus
grandes que les deformations reelles (hypothese adoptee aux essais du Boulder Dam*),
c'est-ä-dire:

-=20, ilen resulte: ^=0,04.^
*R Er Ir

L'echelle des longueurs varie assez notablement d'un essai ä l'autre; eile depend
essentiellement des dimensions de l'ouvrage ä etudier. Nous pouvons fixer comme

* Model Tests of Boulder Dam, Bureau of Reclamation, Boulder Canyon Project, Part 5, Bull.
3, Denver, Colorado, 1939.
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limites 1/100 et 1/200, d'oü l'on peut deduire l'ordre de grandeur des modules
d'elasticite correspondants:

EM=2 x 105x0,04/200=40 kg./cm.2
dans l'un des cas et 80 kg./cm.2 dans l'autre.

En tablant sur ces donnees, nous pouvons resumer comme suit les principales
particularites du materiau que nous considerons comme le meilleur ä employer, pour
appliquer la methode ici proposee aux essais de barrages sur lesquels interviennent
des efforts de masse.

Le materiau doit se preter aisement au moulage ou au faconnage; il doit etre
homogene, elastique, isotrope, avec un coefficient de Poisson voisin de 0,3, un module
d'elasticite de l'ordre de 60 kg./cm.2 et un poids specifique de l,9gr./cm.3 Ces derniers
chiffres indiquent seulement un ordre de grandeur, car ils ont ete obtenus en partant
d'une hypothese (echelles des longueurs et des deformations) qui peut varier assez
notablement suivant chaque essai ou chaque materiau dont on dispose.

Nous n'avons pas encore mentionne une condition dont la non-satisfaction
empeche I'application du processus ici expose. II s'agit de la condition suivant
laquelle le module d'elasticite du materiau doit augmenter lorsque la temperature
ambiante diminue, la difference entre les valeurs extremes devant etre aussi grande
que possible.

Pour trouver le materiau susceptible de satisfaire ä toutes ces conditions, nous
sommes partis des etudes que nous avons dejä effectuees sur les proprietes elastiques
des gelatines. Dans ces corps, se trouve un produit que l'on peut mouler facilement
par gravite, qui est homogene, isotrope, dans lequel la somme des deformations
elastiques et plastiques est proportionnelle ä la contrainte qui les produit et qui admet
un module d'elasticite tres sensible ä l'influence de la temperature. Toutefois, la
valeur de ce module d'elasticite est faible (nous n'avons pas reussi ä depasser 20
kg./cm.2), son poids specifique est tres petit et il admet un coefficient de Poisson
eleve (de l'ordre de 0,5), ce qui ne nous permet pas de l'utiliser effectivement ici.
Malgre ces inconvenients, nous avons adopte la gelatine comme materiau initial pour
la recherche du materiau qui convient le mieux. Nous ne decrirons pas ici toutes
les tentatives que nous avons faites et les nombreux petits echecs que nous avons
subis; nous nous contenterons d'indiquer le chemin qui nous a permis d'arriver ä une
Solution satisfaisante. Ces echecs, d'un interet apparemment limite, nous ont
neanmoins permis de developper nos connaissances de certains materiaux,
connaissances que nous mettrons ä profit au cours d'etudes ulterieures.

Nous avons envisage un produit de base compose de gelatine, de glycerine et
d'eau. D'autre part, nous connaissions les proprietes du melange de glycerine et de

litharge, qui durcit et forme un corps ä grande densite et haut module d'elasticite.
Nous avons donc envisage d'ajouter de la litharge aux produits de base ci-dessus

afin de corriger ses propres defauts. Quelques essais nous ont donne l'assurance que
nous etions sur la bonne voie. II nous a suffi de proceder ä un nombre suffisamment
grand d'essais par tätonnements pour ameliorer les resultats. Afin de ne pas nous
etendre trop longuement sur les differentes compositions essayees, nous indiquons
dans le tableau I les constituants de quatre melanges, dont les modules d'elasticite
atteignent 12, 27, 34 et 70 kg./cm.2 apres 30 jours.

Ces materiaux se pretent aisement au moulage et prennent au refroidissement la
rigidite caracteristique de la gelatine; ils peuvent ainsi se demouler facilement et
rapidement, ce qui permet d'observer leurs caracteristiques elastiques peu d'heures
apres le moulage. Pour celä, on prepare des eprouvettes cubiques de 15 cm. de cöte
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que l'on soumet ä une compression simple apres avoir graisse les faces pour eviter les

alterations par evaporation de l'eau interstitielle et aussi pour supprimer le frottement
sur la base de l'eprouvette au cours de l'essai. Comme il s'agit seulement de connaitre

Gelatine
Eau
Litharge
Glycerine

Tableau I
Aen% B C D

15 25 25 20
30 20 15 20
40 40 40 45
15 15 20 15

0.¦ü

<s>
c

0 0

Fig Mesure des deformations

l'amplitude des constantes elastiques du materiau, les deplacements longitudinaux sont
mesures en quatre points sur le plan de la base superieure et aux quatre points corres-
pondants de la base inferieure; les deplacements transversaux sont rapportes au milieu
des faces laterales. Tous ces deplacements ont ete determines avec une erreur
inferieure ä 0,01 mm. ä l'aide de fleximetres places ainsi qu'il est indique sur la fig. 1.

Les essais effectues comme nous venons
de l'indiquer ont montre que ces materiaux

se comportaient elastiquement, que
leurs modules d'elasticite augmentaient avec
l'äge de l'eprouvette et simultanement
diminuait la valeur de leur coefficient de

Poisson, phenomene favorable puisque nous
sommes partis d'une valeur de ^=0,50 trop
elevee. Nous nous attendions ä une
diminution de v correlativement ä l'augmentation
de E, puisque ces grandeurs varient ordin-
airement en sens inverse l'une de l'autre.
Nous constatons en effet que E augmente et
que v diminue au-dessous de 0,5 (limite

theorique de plasticite), le comportement elastique predominant ainsi sur le comportement
plastique. Ce processus d'accroissement de durcissement avec l'äge n'est pas
indefini; il se ralentit lentement. Nous avons pu observer que sur tous les melanges
essayes il cessait apres 28 ou 30 jours, temps au bout duquel on obtenait des valeurs
stabilisees.

Pour appuyer les affirmations ci-dessus, nous reproduisons sur la fig. 2 les
diagrammes contraintes-deformations obtenus sur certains essais ä 1, 2, 7 et 48 jours,
sur l'echantillon 41-11, dont la composition est indiquee en A, dans le tableau I.
Sur tous les graphiques, on constate qu'il y a proportionnalite entre les contraintes et
les deformations.

Ayant ainsi reussi ä obtenir un materiau satisfaisant aux conditions elastiques,
avec un poids specifique voisin de 2, il importait de verifier si ce module d'elasticite
E augmentait effectivement lorsque la temperature diminuait; ä cet effet, nous avons
refroidi les eprouvettes et lorsque la temperature atteignait 2° C.*, nous avons repete
le processus de mise en charge. Dans tous les cas, nous avons obtenu l'effet prevu
et nous avons pu verifier que l'augmentation est d'autant plus faible que le module
d'elasticite est lui-meme plus grand; ceci parait logique, puisque la rigidite doit etre
d'autant moins sensible aux fluctuations des temperatures qu'elle est plus grande.

* Pour refroidir l'eprouvette, on la mettait, ainsi que la machine d'essai, dans une chambre froide
dans laquelle les Operateurs etaient munis d'habits de protection contre le froid.
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Sur la fig. 3, nous avons resume les resultats des essais de mise en charge ä 2° C.
sur l'echantillon 41-11 et nous les comparons avec ceux qui ont ete obtenus ä 22° C.
(fig. 2); nous pouvons y observer les valeurs obtenues pour E et v aux temperatures
citees. La connaissance des caracteristiques elastiques des melanges ä 22° et ä 2° C.
nous a fait penser qu'il etait opportun d'etudier l'evolution du processus au cours du
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Fig. 2. Diagrammes contraintes-deformations

refroidissement. A cet effet, nous avons soumis trois eprouvettes identiques ä 22° C.
ä la meme compression simple, maintenue constante, et nous avons mesure les
racourcissements pendant l'abaissement de la temperature. Les resultats des trois
essais ont ete pratiquement identiques, ce qui nous a fourni une bonne preuve de leur
homogeneite et de leur reproductibilite. Ces essais fönt l'objet de la fig. 4. Sur
le diagramme de la partie superieure sont portees les variations de temperature; ä
la partie inferieure sont portees les deformations en fonction du temps. Au moment
de I'application de la compression ä la temperature de 22° C, il se produit presque
instantanement un racourcissement qui augmente, mais ä une allure decroissante,
pour se stabiliser apres 17 heures. Ce comportement est, jusqu'ici, celui meme qui
caracterise les corps elasto-plastiques (comme nous l'avons dejä indique, la somme des
deformations elastiques et plastiques est proportionnelle ä la contrainte qui les produit).

Cette periode ecoulee, nous avons
abaisse lentement la temperature et ,_,

nous avons constate une augmenta- f
tion des deformations, ä laquelle nous <l-"

attribuons une cause d'ordre ther- g

mique, puisque les autres facteurs ne "i
varient pas. II y a ici contraction _|
thermique, suivant un coefficient ä
pratiquement lineaire qui peut etre 0,02050 40 50 eo 70 9o ,0 too „0deduit des deux diagrammes. A la gr/cm1
fin de ce Stade, nous avons decharge Fig. 3. Diagrammes contraintes-deformations
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les eprouvettes et constate des deformations de signe contraire aux deformations
anterieures et ä peu pres egales ä la moitie des deformations produites au cours de la
periode de mise en charge (ceci pouvait etre prevu, puisque le module d'elasticite ä
2° C. est ä peu pres le double de la valeur pour 22° C). Enfin, en elevant la temperature,

nous avons constate une nouvelle deformation correspondante ä la dilatation
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Fig. 4. Diagramme thermique

et ä la diminution du module d'elasticite. Le diagramme met en evidence une
deformation residuelle düe ä l'intervention de differentes etapes plastiques.

De cette figure, que nous designons sous le nom de "diagramme thermique," il
resulte deux valeurs qui sont indispensables pour pouvoir passer des valeurs
experimentales mesurees ä la determination des contraintes; l'une d'elle est la
deformation "liberee" et l'autre est le coefficient de dilatation thermique. Ces deux
valeurs doivent etre determinees avec la precision maximum, puisqu'elles sont
essentielles pour les calculs ulterieurs.

Le materiau se comportant elastiquement ä 22° C. comme ä 2° C. les deformations
"liberees," sous deduetion des dilatations et contractions thermiques, apparaissent
proportionnelles aux contraintes; il est ainsi possible de parvenir ä la connaissance de
ces dernieres.

Nous en avons ainsi termine avec la premiere partie du memoire se rapportant
aux materiaux utilisables dans I'application de la methode proposee. Nous avons
mis en evidence les principales caracteristiques de quelques melanges qui permettent
d'entreprendre l'etude generale des modeles tridimensionnels avec efforts de masse.
Ceci constitue une contribution, si faible soit-elle, ä la resolution du probleme
excessivement complexe de la determination des contraintes ä l'interieur d'un barrage.

4. Essais de mesure des deformations
Lorsque nous nous referons ä l'ellipsoide des contraintes ou ä l'ellipsoide des

deformations, en un point de l'interieur ou de la surface d'un corps, nous tablons sur
des considerations theoriques qui ne peuvent etre concretisees sans faire intervenir



ANALYSE SUR MODELES REDUITS 411

un espace. C'est pourquoi en nous efforcant de determiner la position, Famplitude
et la direction des axes de ces ellipsoides en un point, nous procedons ä mesure dans
un espace suffisamment petit pour pouvoir admettre que, dans cet espace, le champ
des contraintes est pratiquement constant.

Nous avons dejä vu que la methode exposee comporte la mise en charge du modele,
son refroidissement ä 2°, puis, apres decharge, le decoupage en tranches conservant
les traces des deformations. Ces dernieres sont liberees ulterieurement par elevation
de la temperature. Etant donne que la mesure des deformations liberees fournit les
indications de base pour le calcul des contraintes, il est tout d'abord necessaire de
fixer la forme et les dimensions des tranches du modele correlativement aux mesures
ä prevoir.

A premiere vue, la forme ideale parait etre la sphere, puisque par "liberation"
des deformations, cette sphere se convertirait en un ellipsoide; toutefois, nous avons
du renoncer ä decouper une sphere dans le materiau indique precedemment. D'autre
part, tout en reussissant ä obtenir l'ellipsoide final, l'ellipsoide de deformation aurait
une forme teile qu'il ne serait pas possible d'obtenir, dans des conditions pratiques et

par mesure directe, la position et la grandeur des axes; pour cette raison, et comme
l'indique le Professeur Torroja,* il serait necessaire de mesurer les deformations
suivant les aretes et diagonales d'un octaedre regulier, inscrit dans la sphere primitive.
Pour y parvenir, il n'est pas indispensable de partir d'une sphere; en effet, en
decoupant des morceaux du modele sous la forme de cubes, ce qui est aise, on peut
mesurer les memes grandeurs, qui sont celles que mentionne la fig. 5. Une autre
Solution plus simple et qui est süffisante pour determiner l'etat des contraintes est
celle que cite Torroja, qui consiste ä mesurer les deformations selon les trois aretes
orthogonales d'un cube et les diagonales de trois faces contenant le meme sommet,
ainsi que l'indique la fig. 6. Si le cube est suffisamment petit pour que l'on puisse

vi

©_

P-

Fig. 5. Directions des mesures Fig. 6. Directions des mesures

admettre que l'etat des contraintes est pratiquement constant, ces mesures permettent
de determiner les valeurs des trois deformations longitudinales ex, ey, ez et des trois
glissements yxy, yxz, yyz; dans ces conditions, les equations de Lame permettront de
resoudre le probleme.

Pour mesurer d'une maniere pratique les aretes et les diagonales des faces de

chaque cube, sur de nombreux points, nous avons effectue un grand nombre d'essais
en employant des procedes et dispositifs divers. L'un des procedes, que nous
considerons comme le meilleur, consiste ä decouper le modele retenant ses deformations

ä 2° C, sous forme de tranches planes sur lesquelles on dessine un quadrillage
* E. Torroja, "El problema general de la auscultaciön," Publication No. 16de l'Instituto Teenico

de la Construcciön y del Cemento, Madrid.
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dont on observe les deformations correlativement ä l'elevation de la temperature.
La methode de mesure est analogue ä celle qu'appliquent Brewer et Glasco * sur des
pieces metalliques; cependant, nous n'avons pas pu reproduire photographiquement
le quadrillage sur le materiau constituant le modele, comme ils le fönt eux-memes
et nous avons du reproduire photographiquement sur la tranche de petites croix
constituees par des traits extremement fins.

Pour eprouver la valeur du procede de mesure, nous avons soumis ä une
compression simple un prisme droit ayant une section de 10 x 10 cm. et une hauteur de
20 cm.; dans le tiers central de l'une des faces laterales, nous avons reproduit une
serie de croix formant un reticule de 2 cm. de cöte. L'ensemble a ete photographief
avant et apres la mise en charge et on a mesure les intervalles avec une erreur de
moins de 0,01 mm., ä l'aide d'un microscope micrometrique; on a ensuite determine
les valeurs indiquees sur la fig. 7. Les deformations longitudinales ont pu etre
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Fig. 7. Deformations et isostatiques experimentales

determinees avec des erreurs atteignant 10% sur la valeur moyenne et sur les points
de croisement qui ont ete utilises pour dessiner les courbes isostatiques; l'erreur
maximum a ete de 2° 45'. Bien que ces erreurs soient admissibles, nous pensons que
l'on pourrait les reduire en ameliorant la reproduction photographique et, par suite,
la precision de la mesure; nous y avons toutefois renonce, car pour couper le modele
en tranches planes, il nous etait necessaire d'etablir et d'essayer trois modeles
identiques, pour pouvoir disposer de donnees portant sur trois plans perpendiculaires.

Pour tourner la difficulte, nous avons decide de decouper le modele en cubes de
petites dimensions, puis de mesurer les distances entre les milieux de chaque paire

* Brewer et Glasco, "Determination of Strain Distribution by the Photogrid Process," Journal of
Aeronautical Corp., Nov. 1941, No. LV, 9.

t Les photographies ont ete prises avec des plaques ä fort contraste.
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d'aretes ou de faces opposees. Ces points etaient materialises en enfoncant de
petites aiguilles en acier inoxydable; le probleme se ramenait ainsi ä mesurer
l'intervalle entre deux pointes metalliques; pour obtenir la precision maximum, nous
avons etudie et construit un appareil que nous decrivons ci-apres brievement (fig. 8).

Fig. 8. Dispositif pour la mesure des deformations
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Fig. 9. Schema electronique pour la mesure des deformations
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Cet appareil comporte deux vis micrometriques avec axes prolonges se terminant par
de petites surfaces circulaires planes. Ces micrometres sont montes sur un chässis
qui leur permet de pivoter sur deux axes, Tun vertical et l'autre horizontal. Au centre
de l'appareil, se trouve une petite plateforme A dont la position peut etre reglee en
hauteur et suivant deux axes horizontaux et perpendiculaires entre eux. La
disposition planetaire de l'appareil permet hereusement d'effectuer des mesures en
differentes positions, sans qu'il soit necessaire de toucher le cube place sur la plateforme
centrale. La difficulte etait de determiner le moment auquel la pointe de l'une des vis
micrometriques vient en contact avec la pointe de l'une des aiguilles metalliques
enfoncees dans le cube. Cette difficulte a ete resolue dans des conditions absolument
satisfaisantes, en mettant ä profit le fait que le materiau utilise est bon conducteur de
l'electricite. Le courant eiectrique passant ä travers la masse du cube ne devant
necessairement produire en lui aucune alteration, nous avons adopte le montage
electronique indique sur la fig. 9 et dans lequel le contact entre les deux pointes
metalliques est indique par un signal lumineux emis par un indicateur d'accord, avec
une erreur inferieure ä 0,005 mm. Dans ces conditions, le courant qui traverse le
cube est absolument negligeable et nous n'avons constate aucune alteration du
materiau lui-meme. Ce procede permet de mesurer les deformations en neuf
directions, autour d'un point de l'interieur du modele; comme nous l'avons indique
anterieurement, ceci est süffisant pour determiner la repartition des contraintes qui
agissent sur ce point.

Pour terminer, nous reproduisons ci-apres les resultats de deux essais, au cours
desquels nous avons applique la presente methode.

5. Verification experimentale
Pour verifier une methode experimentale, il est necessaire de I'appliquer ä des

exemples ou ä des problemes dont on connait a priori la Solution. En considerant
comme valables les resultats de la theorie d'elasticite, nous avons realise plusieurs
essais dont deux sont decrits ci-apres:

La. premiere experience consistait ä charger un cube en compression simple avec
une charge connue et ä lui appliquer la methode indiques en
decoupant interieurement deux petits cubes Orientes comme
l'indique la fig. 10. II s'agissait de verifier si la direction
et Famplitude des contraintes principales dans les deux
cubes, obtenues d'apres les resultats des mesures des
deformations liberees, presentaient la concordance voulue avec
la charge initiale qui, comme nous l'avons dejä dit, etait
connue.

Ainsi qu'il a ete indique ä la fin de la troisieme partie,
avant d'appliquer la methode au modele, c'est-ä-dire au cube,
il etait necessaire de determiner le coefficient de dilatation
thermique du materiau au passage de 2° ä 22° C. et, ä l'aide
d'un diagramme thermique analogue ä celui de la fig. 4, de

rapporter les deformations liberees aux contraintes initiales.
Pour determiner le coefficient de dilatation ou de contraction
thermique, nous avons utilise les procedes classiques et

constate qu'il etait de 0,00031 entre 2° et 22° C.; pour rapporter les contraintes
initiales aux deformations liberees, nous avons determine les diagrammes thermiques
longitudinaux et transversaux d'une eprouvette de compression apres six jours de

&

Fig. 10. Position des
cubes intörieurs
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moulage; ensuite, et en appliquant ä ce cas connu les equations de Lame, nous avons
obtenu les valeurs suivantes:

(7=2,3 kg./cm.2 (module de rigidite ou d'elasticite transversale),

Af?=0,046 kg./cm.2, en designant par e la valeur de la dilatation cubique et avec

a=: vE

(!+„)(! _2„)-

En tablant sur ces valeurs caracteristiques du materiau que nous nous proposions
d'utiliser, nous avons entrepris l'essai du cube comme suit:

Nous avons moule un cube de 7 cm. d'arete, puis nous l'avons mis en charge en
compression simple, apres six jours, la salle de travail etant ä 22° C. Apres avoir
atteint l'equilibre, nous avons fait descendre la temperature ä 2° C. et nous avons
retire les charges, ce qui a amene la recuperation d'une partie de la deformation, la
deformation residuelle etant retenue. Nous avons ensuite decoupe les deux cubes
comme l'indique la fig. 10 et nous avons mesure les distances entre les points au
milieu de chaque paire d'aretes ou faces opposees en adoptant la methode indiquee
dans la quatrieme partie. Toutes ces Operations ont ete faites ä 2° C. Les mesures
etant terminees, nous avons releve la temperature ä 22° C. et nous avons repete les

mesures. Les valeurs des glissements et des deformations liberees apres elimination
de la dilatation thermique sont indiquees dans le tableau II.

Tableau II

*x ey ez y.xy y.xZ y.rz

Cubel 0,0103 0,0104 -0,0199 -0,0001 -0,0012 0,0020
Cube II -0,0090 0,0115 -0,0043 0,0027 -0,0289 0,0004

En partant de ces resultats et ä l'aide des equations de Lame, nous avons calcule
les valeurs des contraintes en kg./cm.2 qu'indique Ie tableau III.

Tableau III

Contraintes Ox ay Oz T.xy Tv; Tyz

Cube I
Cube II

0,002
-0,087

0,002
0,007

-0,138 0
-0,065 +0,006

-0,002
-0,066

0,004
0

d'oü nous avons deduit les contraintes principales suivantes, en kg./cm.2, que nous
comparons dans le tableau IV avec la pression moyenne reelle.

Tableau IV

Contraintes principales en kg./cm.2

Cubel
Cube II
Pression moyenne reelle

°l ctii ctiii
0,002
0,008
0

0,002
-0,010

0

-0,138
-0,143
-0,123
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En determinant les cosinus directeurs des contraintes principales du cube I, nous
avons obtenu des resultats qui differaient de moins de 1° des valeurs exactes; pour

le cube II, l'erreur maximum a ete de 4°. Ces
derniers resultats, ainsi que ceux du tableau IV,
constituent une excellente confirmation de la
valeur de la methode.

Un autre essai a consiste ä soumettre un
cube ä une double compression et, en appli-
quant la methode decrite, ä en faire sortir un
petit cube (fig. 11). Dans ce cube, nous avons
mesure les deformations liberees, puis nous en
avons deduit les contraintes principales et nous
avons procede ä une comparaison avec les
charge exterieures. Nous n'indiquerons pas
ici tout le detail de l'operation qui, d'ailleurs,
est semblable ä celle que nous venons de
decrire pour le cas precedent. Nous nous

bornerons ä indiquer les resultats obtenus en les comparant aux valeurs reelles tirees
des charges exterieures connues.

U om

Fig. 11. Position du cube interieur

Tableau V
Contraintes principales en kg./cm.2

°I CTn CTm

Valeurs experimentales 0

„ reelles 0
-0,32
-0,29

-0,63
-0,61

Tableau VI
Cosinus directeurs de CTi

1 m n
Valeurs experimentales 0,70

„ reelles 0,707
0
0

0,70
0,707

Tableau VII
Cosinus directeurs de °n

1 m n
Valeurs experimentales 0

„ reelles 0
1

1

0
0

Tableau VIII
Cosinus directeurs de o-m

1 m
Valeurs experimentales

reelles
0,68
0,707

0
0

n

0,75
0,707

Les resultats ci-dessus exposes fournissent, dans tous les cas, une approximation
acceptable.
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6. Conclusion
A l'aide des exemples que nous venons de decrire, nous pensons avoir mis nettement

en evidence les qualites d'une methode qui permet d'etudier les ouvrages sur trois
dimensions, malgre l'intervention des efforts de masse, en utilisant des modeles
reduits dans lesquels il est possible de determiner la repartition des contraintes autour
de n'importe quel point, que ce soit ä l'interieur ou ä la surface.

Pour y parvenir, il est necessaire de construire ce modele avec un materiau tel
que celui qui est indique en troisieme partie et qui, non seulement, satisfasse aux
hypotheses de base de l'elasticite, mais soit en outre tel que son module d'elasticite
longitudinal augmente lorsque la temperature ambiante baisse. Ceci etant realise,
on peut mettre le modele en charge ä 22° C, le refroidir ä 2° C, le decharger et le

couper en cubes ayant un volume suffisamment petit pour que l'on puisse admettre
que dans chacun de ces cubes le regime des contraintes en tous points est constant.
Ceci fait, il suffit de mesurer les deformations liberees dans les cubes par l'elevation
de la temperature ä 22° C. (comme il est indique dans la quatrieme partie), puis de les

rapporter aux constantes elastiques du materiau pour pouvoir, ä l'aide des equations
de Lame, determiner les valeurs en grandeur et en direction de chacune des contraintes
principales correspondant ä chacun des points ayant fait l'objet de l'essai.

L'auteur est heureux d'exprimer ici sa gratitude ä Mr. A. Moreno, Perito
Industrial, du L.C.E.M.C. de Madrid, pour la collaboration qu'il a bien voulu
apporter ä la mise au point de cette etude.

Resume

L'auteur expose une methode experimentale pour l'etude de la repartition des
contraintes en un point quelconque de l'interieur ou de la surface d'un ouvrage
tridimensionnel, meme dans le cas oü, en plus de forces exterieures, on fait intervenir
l'influence des efforts de masse.

L'auteur propose que l'etude de l'ouvrage soit effectuee au moyen d'un modele
reduit ä construire dans un materiau dont il indique la composition. II expose
egalement les caracteristiques de ce materiau ainsi que le procede original designe
sous le nom de "liberation des deformations" et decrit les appareils utilises pour
mesurer ces deformations. II termine en exposant les resultats obtenus au cours de
deux essais effectues avec la methode proposee, avec une conclusion satisfaisante.

Summary

In this paper an experimental process has been devised for the study of stress
distribution at any internal or surface spot of a three-dimensional structure, even in
the case where the influence of mass forces is considered, besides outside forces.

The author proposes the study of a structure by means of a small-scale model
made with a given material, the composition of which is indicated by him. He also
describes the characteristics of the said substance and the original process named
"liberation of deformations" and the apparatus he uses to measure the changes of
form. He ends up by showing the results obtained from two examples where he has

applied the proposed method with satisfactory results.

Zusammenfassung

Die vorliegende Abhandlung beschreibt ein experimentelles Verfahren zur
Untersuchung der Spannungsverteilung in irgend einem gegebenen Punkte im Innern
oder an der Oberfläche einer Konstruktion mit drei Dimensionen, auch für den Fall,

cr.—27
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dass ausser äusseren Krafteinwirkungen auch der Einfluss der Massenkräfte in
Betracht gezogen wird.

Der Verfasser schlägt vor, die Untersuchung einer Konstruktion an einem
verkleinerten Modell vorzunehmen, das aus einem Material hergestellt ist, dessen

Zusammensetzung angegeben wird. Er beschreibt ebenfalls die Eigenschaften dieses

Materials, sowie das Originalverfahren, genannt "Befreiung von Verformungen,"
und die Apparate, die zum Messen dieser Verformungen dienen. Die Abhandlung
schliesst mit der Beschreibung der Ergebnisse, die bei zwei Probemessungen erzielt
wurden, wobei die vorgeschlagene Methode mit zufriedenstellenden Ergebnissen zur
Anwendung kam.
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Lateral stability of beams

La stabilite laterale des poutres

Kippstabilität von Trägern

K. BENTLEY, M.A.

Cambridge

Introduction
The problem of lateral stability of beams is not new: the Solution for the case of

elastic buckling of a beam subjected to a pure bending moment was first given more
than half a Century ago. This Solution, however, was for a thin deep beam and
Timoshenko later extended the theory to include I-sections. The mathematical solutions

are, however, rather complicated and Timoshenko gave an approximate energy
method for an I-girder subjected to a central load. In this theory, however, he
neglected the ratio of prineipal moments of inertia as being small and the theory is only
applicable to I-girders. In the following paper it is proposed to give approximate
energy solutions for beams subjected to pure bending and to a central concentrated
load and no assumption is made as to the size or shape of the member except symmetry
about the major axis.

The case of lateral buckling of beams when stressed above the proportional limit
has been considered very little. Timoshenko* suggests a possible method of
procedure. The problem is considered in more detail in this paper and a method is
suggested for calculating the critical loads when the curvature of the stress-strain
relationship is taken into aecount.

Energy method for obtaining the critical moment for lateral buckling of
beams subjected to pure bending

Consider a beam of length L subjected to a pure bending moment M about the
major axis. Let the bending rigidity about the major axis be A and about the minor
axis B. Then due to the bending moment M the beam will take up a curvature of
M/A in the plane of bending. The stability of the beam may be considered by
supposing that it undergoes some small displacement from this position of equilibrium.
If consequent on this small displacement a decrease of energy take place, the beam is

* See Timoshenko, Theory ofElastic Stability.
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unstable. The critical condition such that the beam is in neutral equilibrium may
be found by finding the value of M so that there shall be no gain or loss in energy.

At a distance z from one end of the beam let the lateral deflection be u and the
angle of twist 9. There is thus a lateral bending moment of M sin 6 and a bending
moment of M cos 8 about the major axis. Thus for an elemental length of beam dz
there is an increase of strain energy of bending of:

IM2 cos2 8 M2 sin2 6 M2
+\ 2A ' 2B 2A

If 6 is small, the total increase of strain energy is:

\ M2I B\
)d*=2B{l-A)™2e-dz

CL M2( A\„

rL / de dw in
cL j ide\2 i

dz (b)

It has been shown by many writers * that the torque acting at this cross-section may
be written as:

Cdd d^e
Jz~CWi

de d^e
where C-r is the torque according to the usual St. Venant Solution and the term Q-v-j
allows for non-uniform torsion and warping of the cross-section and may be
calculated according to the method given by Timoshenko.

The strain energy due to torsion is thus:
Idmdff
[dTydz

Thus the sum of (a) and (b) at the critical condition will be equal to the work done
by the applied moments M when the beam is allowed to deflect. The work done
by M may be calculated by finding the angle through which it turns.

The lateral bending moment M sin 6 causes the ends of element dz to rotate

through an angle =— dz relative to each other. This occurs in a plane at an

angle 8 to the horizontal and the relative rotation in a vertical plane is — dz.
B

Due to bending about the major axis the ends of the element dz rotate by an amount
M M cos2 6

—— dz-\ dz relative to each other, the first term being the angle before

the deflection e was given and the second term after. Thus the total relative rotation
ofthe ends is:

f£/Afsin20 M Mcos29 \}0{^--dZ-Ä-dz+—^--dz)
The work done by M is therefore, for small 6:

CL M2[ B\
)o-B{l-Är-dz^)+{h)

Substituting for (a) and (b) and noting that the beam is symmetrical about the centre,
the equation from which the critical moment may be obtained is:

rLi2M2/ b\m cL'2 ide\2 rL'2 de d>e

* See Timoshenko, Journal ofthe Franklin Institute, March, April, May, 1945.
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If the relationship between 6 and z were known exactly the equation (1) would give
an exaet value for Mcr, the critical moment causing lateral instability. Usually an
exaet relationship is not known, but if a relationship satisfying the end conditions
is assumed, then an approximation to the answer is obtained.

Thus when the ends of the beam are held in such a manner that they are free to
ttz d26

warp, e=ay sin y satisfies the end conditions that 6=—2=0 at both ends of the

beam. Substitution of this in equation (a) gives a value for the critical moment with
ends free to warp of:

tr / BC / Tr2 C,
M'x'iJ(x=m-J1+D-.-i (2)

This agrees with Timoshenko's Solution for an I-girder when the value of Cy for an
I-girder is substituted and the value of B/A is neglected. The ratio of B/A may be
as high as 0-4 in practice and in those cases its neglect would give appreciable error.
The value of the critical moment given in equation (2) is exaet because in this case
the value of 6 assumed is exaet.

In a practical case it is almost impossible to apply a moment at the ends without
preventing warping and so the case when the ends are completely restrained against

con-warping will now be considered. In this case 9=by 11—cos -=- I satisfies the end

de
ditions that d=—=0 at both ends. When this value of 0 is substituted in equation (1)

it is found that the value of the critical moment M~ is given by:

IT / BC / 4lT2 Cy

^2=H5zVi©^-V1+^-c (3)

This Solution is not exaet due to inaecuracies in the assumed value of 6. By
taking 6 of the form (see Timoshenko, Theory ofElastic Stability):

0=Ml-cos— I-t-62(I—cos — I+63II-COS — 1+

a more accurate answer may be obtained. It can be shown that equation (3) is in
error by the order of 2 %, negligible for all practical purposes. One noticeable point
about (3) compared with (2) is that complete restraint against warping increases the
critical moment by more than 15 %.

Energy Solution for a beam subjected to a central concentrated load through
the shear centre
Suppose that a central load P is applied at a distance y above the shear centre so

as to produce no twist. The stability is considered as for the case of pure bending
by assuming the beam to deflect. Let 6m be the angle of twist at the centre.

Then in the manner already given, the strain energy due to lateral bending is:

jj-U'-^""12
and the strain energy due to torsion is:

\:w- de d^e
ldz' dzi

dz
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The work done by the central load may be found by considering it in two parts.
If the load is applied at the shear centre, the work done by it may be found in a manner
similar to that already described for the pure moment. Due to lateral bending the

ends of element dz rotate through an angle ¦=- sin 6 — relative to each other. Since
2 B

this bending occurs in a plane at angle 6 to the horizontal it causes a lowering of the

load of z sin 6 ——— dz. Similarly due to bending about the major axis the
2B

P
load rises by an amount r— z2 sin2 6 dz. Thus, if 0 is small, total work done by P is:

cm pit ß\/„ aH"«*
Due to the load being applied at a distance y above the shear centre there is an
additional work done ofPy(l — cos em)=Py6m2/2 approximately. Remembering the
symmetry about the centre of the beam, the energy equation then becomes:

rmpii ß\n Pydm2 CL'2 lde\2 rm dn diQ

The solutions of this may be found as for the pure bending case and are given below:

When j=0 and ends free to warp: pcn -jYJ\_ßiAy+j2 • *f) ¦ • ¦ (5)

18-3 / BC I 4tt2 CA
When y=0 and ends fixed: P"2=^ß'J l—BIA\+U '~Cl ' ' ' ^'
When the load is applied distance y above shear centre the critical load of equation (5)
is reduced to:

Pcn1=PcriU-X+^) approx. (7)

where

y_ 301»

PcryLi'l -B/A)
The theory considered so far has been concerned with beams of material which
behaved elastically. For beams of, say, aluminium alloy the ränge of elastic behaviour
is small and so the elastic critical loads will not give a good approximation to tbe
failing loads of the beams. Attempts have been made in an empirical fashion to
allow for this effect, among others, by assuming some initial imperfection for the
beam or some eccentricity of loading. The effect of this is that lateral deflections of
the beam occur from the first application of the load becoming infinite, theoretically,
near the critical load. The failing load is then determined as that load which causes
the stress in the beam to exceed the yield stress of the material or some other pre-
determined value. A value of the initial eccentricity is then chosen to give good.
agreement with experiment. This method, whilst giving reasonable agreement
between calculated and actual failing load, covers up the essential fact that much of
the reduction in failing below the elastic critical load is due to the relationship between
stress and strain being non-linear. In this paper it is proposed to give an approach
which is dependent only on this fact.

The method follows that originally proposed by Engesser for struts in which the
curved stress-strain relationship may be allowed for by an effective modulus of
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elasticity. For the problem of lateral stability of beams, the method is more com-
plicated due to the fact that there are four factors, A, B, C and Cy, in which the
modulus of elasticity plays a part. Since I-beams are most frequently used in practice
and are also the simpler to deal with theoretically, the following discussion will be
restricted to beams of I-section. The usual proportions of I-section will be taken, so
that it is possible to assume that the web has a small effect on the bending and that
in bending about the major axis there is a uniform stress in the flanges.

Let us assume the theoretical approach of a beam which remains straight until
buckling and then fails by bending laterally and twisting. Before buckling the stress
distribution in the I-girder may be considered to be very nearly a uniform compressive
stress in one flange and an equal tensile stress in the other. The strain of the flanges
will be that corresponding to the stress for the material concerned, and the curvature
of the beam will be the strain divided by the distance to the centre of the section. If
the stress is greater than the limit of proportionality this curvature is greater than the
elastic value given by M/A. It is fairly easy to see that the curvature is increased in
the ratio E/Es where Es, the secant modulus, is the actual ratio of stress to strain.
As will be seen from equation (a), it is the curvature in the plane of bending which
introduces the factor A, and it is therefore proposed to allow for this by assuming A
to be factored in the ratio Es/E. This, of course, has no effect when the stress is
below the limit of proportionality.

At the critical load, when the beam suddenly deflects laterally and twists, the
direct stresses due to lateral bending and the shear stresses due to twist both increase
rapidly, whilst the mean direct stress due to the applied moment remains constant.
Thus at some points in the beam the direct stress will decrease below that caused by
the applied moment, and if the mean direct stress is above the elastic limit, then the
reduction in stress will occur as an unloading from the plastic region. Thus the stress

Mesan stress
Flange

Slress

Unloading

Strain

Bending stress Following tangent
modulus law

Mean slress
in Flange

S^
fS *ÜÖ-*
Jf.ö-S«a«;«

Fig. 1

distribution across a flange will be somewhat as shown in fig. 1, where the increase of
loading follows the usual stress-strain curve, but unloading from the plastic region
follows the usual Hooke's law.

For small lateral bending moments the increase of stress can be approximated
to by a straight line whose gradient E, is that of a tangent to the stress-strain curve
at the point considered. E, is called the tangent modulus. This effect was first
mentioned by Engesser for struts, and it has been suggested that for small lateral bending
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stresses the effective lateral bending modulus may be taken as a reduced modulus Er *
where:

Er_ 4E,/E E,

E~(l + VEJE)2:>E
The effective value of B to be used in formulae is then the elastic value factored by
Er/E.

In this purely theoretical case of a beam which remains straight until buckling,
the shear stress due to twisting increases rapidly as the direct stress remains
constant. There is a certain amount of evidencef that for this case the shear modulus
is unchanged and the value of C remains unaltered.

Let us now consider the more practical case where the beam undergoes lateral
deflections and rotations before the critical load is reached. These lateral deflections
are due to inevitable imperfections in the beam. In this case the deflections first of
all occur gradually and then more rapidly when near to the critical load. Thus the
shear stress due to twisting increases gradually as the bending moment is applied.
When the shear stress increases very gradually in this way while the direct stress
increases more rapidly there is evidence t to show that the shear modulus is very
nearly the elastic value G factored by Es/E. Accordingly the torsional stiffness C
will be factored in the ratio Es/E. For more rapid increases of shear stress the
effective modulus would be higher and closer to the elastic value which applies when
the increase of stress is very rapid. In a similar manner, lateral bending occurs
gradually and the direct stress distribution in a flange will change somewhat as shown

Mean slress

AD

BC
Stress

Fading load

Moment

Fig. 2. Variation of stresses in beam with small eccentricity

in fig. 2. The stresses continually increase and the direct stress distribution due to
lateral bending of small magnitude is such as to approximate to that given by a
tangent to the stress-strain curve.

The effective value of modulus B is thus its elastic value factored by E,/E. The
effective value of the major stiffness A will be the same as that already discussed,
that is, A x Es/E. Since the warping rigidity of an I-girder is provided by differential
bending ofthe flanges, this also will be modified in the ratio E,/E.

Thus it will be seen that in the more practical case of deflections oecurring below
the critical moment, the effective values of B and C are lower, giving a lower value
of the critical moment. In practice therefore it is to be expected that the values of

* S. Timoshenko, Theory of Elastic Stability, McGraw Hill.
t S. Batdorf, "Theories of Plastic Buckling," Journal of Aeronautical Sciences, July 1949.
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the critical moment will approximate to this lower limit. The value of the critical
moment for a beam is now dependent on the material of the beam and not only on
the modulus of material as given in equations (2), (3), (5) and (6).

In order to find the critical moment for a beam the stress-strain curve of the
material must first be obtained and the values of E,/E and Es/E noted for various
values of the stress. The value of the critical moment may then be most easily found
from (2) and (3) by a trial and error procedure. A value for the stress in the flange
caused by the critical moment is assumed so that the values of E,/E and E,/E are
known. When these values are substituted in the equations a value of the critical
moment will be obtained which will probably differ from the originally assumed value.
A second approximation to the correct value can then be made until agreement is
reached.

The case of the centrally applied load is rather more difficult, since the stress and
therefore the effective moduli vary along the beam. Numerical methods of Integration

are required for the Solution. With the assumptions made, the stress in the
flange varies linearly from zero at the end of tbe beam to a maximum p at the centre.
The value of P in equation (4) may thus be replaced by 4p/ZL where Z is the modulus
of bending about the major axis. Equation (4) may then be rewritten for the case
where load is applied through the shear centre:

4p2

Z2L2

cL>2 ii i\ rL'2 tdey, cm de d3ß

where A, B, C and Cy are functions of p.
Assuming some value of p, the effective values of A, B, C and Cy may be found

and each of the integrals of equation found by numerical Integration. The Solution
gives a value of L which agrees with the chosen value of p and hence the value of the
critical load for a given L. This procedure may be repeated until the relationship
between P and L is found. Of course, in the above the value of Z to be used should
not be the usual elastic value but one which allows for the form-factor due to the
curved stress-strain relationship. For the usual I-section this correction is small.

Experimental results
Some experiments have been carried out at the Engineering Laboratory,

Cambridge, with the support of the Aluminium Development Association to check the
above theory. The beams had an I-section 2\ in. deep, by 1^ in. wide by i in. thick
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and two materials were used, one to specification D.T.D. 364 and the other M.G. 5,

typical stress-strain curves and effective moduli being shown in figs. 3 and 4.

The specimens were supported under conditions of simply supported ends, the
beam being free to deflect in vertical and horizontal planes but the ends prevented
from twisting. For the case of pure moment the load could not be applied so that
the ends were completely free to warp and the method of end fixing is shown in figs. 5

and 6. The blocks bolted to the flanges (fig. 5) located the specimen in the end fittings

%

».
Fig. 5. Blocks locating beams in end fitting

Fig. 6. 50-in. beam at failure

(fig. 6) and also provided some restraint against warping. The blocks were clamped
tightly in the end fittings. End moments were applied by means of cantilevers
projecting beyond the ends of the specimen.

With the central loading the ends were allowed to warp by supporting the I-section
through the web only. With the higher strength alloy, D.T.D. 364, restraint against
warping was provided for as in the pure bending case, but with the M.G.5 the ends
were welded to ^-in. thick blocks of aluminium in the hope of providing füll restraint.

The results of the tests together with the calculated results are shown in figs. 7, 8,
9 and 10.

It will be seen that for long slender beams the failing load may be greater than
the critical load. This is to be expected since in this region the critical load falls
below the minimum strength of the beam. For the end fittings of type shown in fig. 5

the experimental results lie consistently between the two calculated curves showing
approximately the same amount of restraint against warping and that füll restraint
was not obtained.
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On the whole the experimental results seem to agree well with the theory; the
largest discrepancies appear in the neighbourhood of the proportional limit, where
the "elastic" curve diverges from that calculated by the use of effective moduli. It is
in this region that the greatest divergence might be expected, due to the rapid change
in slope of the stress-strain curve. For example, consider a practical beam in which
there is inevitably some small deflection near the critical load, and let us suppose that
the length is such that the critical load just produces a stress equal to the proportional
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limit. Any small lateral bending therefore produces stresses which extend into the
region of curved stress-strain relationship and the ratio E,/E is less than 1. The
simplified theory so far considered gives the effective modulus at this point as E and
hence it is to be expected that in practice the failing load will be less than that
calculated. This difference will be greater, the greater the initial imperfections which
produce the lateral deflection, and it is only in this region that the initial imperfections
would be expected to have much effect.

Nowhere in the theory has any mention been made of the size of the initial
eccentricities which must be present in any practical beam. Some eccentricity was
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assumed in the theory, in order to produce small deflections below the critical load,
but no specific magnitude was attached to it. The basic assumption was that the
lateral deflections were small, so that the bending stress distribution could be approxi-
mated to by a straight line. It was also assumed that no unloading of the fibres
oecurred. This second assumption is not strictly true. Measurements of deflection
which were taken enabled an estimate to be made of the point at which unloading
oecurred and it appeared that unloading usually oecurred but never below 95 % of
the failing load. This is sufficiently close to failure to make the assumption reason-
able. In this region the lateral bending becomes so large that the first major assumption

is no longer tenable and the bending stresses no longer follow a reasonably
straight-line law. It can be shown that the effect of unloading and this effect tend
to cancel each other and hence the reasonable agreement of the theory with experiment.

Conclusions
On the basis of the experimental data presented it seems that the calculated critical

load for lateral buckling does give a good approximation to the failing load of beams
in bending, even when the magnitude ofthe initial eccentricities is neglected.

Summary

The usual mathematical solutions for'the problem of lateral stability of beams
are long and complieated, particularly when allowance is made for the ratio of the
maximum and minimum bending stiffnesses. An approximate energy Solution is

presented in this paper for the two cases of a beam in pure bending or under a central
concentrated load.

The theory is extended to allow for beams fabricated from materials whose stress-
strain curve is non-linear, which is the case with aluminium alloys. The method used

for this follows that originally presented by Engesser for struts when the usual elastic
modulus is replaced by an effective modulus. Experimental results are given for
I-beams fabricated from two different aluminium alloys. These results show good
agreement with the theory.

Resume

Les solutions mathematiques habituelles du probleme de la stabilite laterale des

poutres sont longues et complexes, tout particulierement lorsque le rapport entre les
valeurs maximum et minimum de la rigidite ä la flexion est variable. L'auteur
presente une Solution approchee, basee sur des considerations energetiques, dans les
deux cas de la flexion pure et de la concentration de la charge au milieu de la poutre.

La theorie est elargie aux poutres constituees en un materiau dont le diagramme
d'allongement est non-lineaire, comme c'est le cas par exemple pour les alliages
d'aluminium. La methode employee suit celle qui a ete indiquee initialement par
Engesser, dans laquelle le module habituel d'elasticite est remplace par un module
efficace. L'auteur reproduit des resultats experimentaux obtenus sur des poutres
constituees par deux alliages legers differents. Ces resultats presentent une bonne
concordance avec la theorie.

Zusammenfassung

Die üblichen mathematischen Lösungen des Problems de seitlichen Stabilität von
Trägern sind lang und kompliziert, besonders bei veränderlichem Verhältnis der
grössten zur kleinsten Biegesteifigkeit. Dieser Aufsatz bringt eine Näherungslösung
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auf Grund einer Energiebetrachtung für die beiden Fälle der reinen Biegung und
der Einzellast in der Mitte des Trägers zur Darstellung.

Die Theorie wird erweitert auf Träger aus Material mit nichtlinearem Spannungs-
Dehnungsdiagramm, wie zum Beispiel Aluminiumlegierungen. Die dabei verwendete
Methode folgt der ursprünglich von Engesser für Streben angegebenen, bei der der
übliche Elastizitätsmodul durch einen effektiven Modul ersetzt wird. Es werden
Versuchsresultate für Träger aus zwei verschiedenen Aluminiumlegierungen angegeben.

Diese Resultate zeigen eine gute Uebereinstimmung mit der Theorie.
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