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‘Lateral stability of beams
La stabilité latérale des poutres
Kippstabilitit von Trigern

K. BENTLEY, M.A.
Cambridge

INTRODUCTION

The problem of lateral stability of beams is not new: the solution for the case of
elastic buckling of a beam subjected to a pure bending moment was first given more
than half a century ago. This solution, however, was for a thin deep beam and
Timoshenko later extended the theory to include I-sections. The mathematical solu-
tions are, however, rather complicated and Timoshenko gave an approximate energy
method for an I-girder subjected to a central load. In this theory, however, he neg-
lected the ratio of principal moments of inertia as being small and the theory is only
applicable to I-girders. In the following paper it is proposed to give approximate
energy solutions for beams subjected to pure bending and to a central concentrated
load and no assumption is made as to the size or shape of the member except symmetry
about the major axis. '

The case of lateral buckling of beams when stressed above the proportional limit
has been considered very little. Timoshenko* suggests a possible method of pro-
cedure. The problem is considered in more detail in this paper and a method is
suggested for calculating the critical loads when the curvature of the stress—strain
relationship is taken into account.

ENERGY METHOD FOR OBTAINING THE CRITICAL MOMENT FOR LATERAL BUCKLING OF
BEAMS SUBJECTED TO PURE BENDING

Consider a beam of length L subjected to a pure bending moment M about the
major axis. Let the bending rigidity about the major axis be 4 and about the minor
axis B. Then due to the bending moment M the beam will take up a curvature of
M/A in the plane of bending. The stability of the beam may be considered by
supposing that it undergoes some small displacement from this position of equilibrium.
If consequent on this small displacement a decrease of energy take place, the beam is

* See Timoshenko, Theory of Elastic Stability.
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unstable. The critical condition such that the beam is in neutral equilibrium may
be found by finding the value of M so that there shall be no gain or loss in energy.

At a distance z from one end of the beam let the lateral deflection be u and the
angle of twist 8. There is thus a lateral bending moment of M sin § and a bending
moment of M cos 6 about the major axis. Thus for an elemental length of beam dz
there is an increase of strain energy of bending of :

MZ2cos28 M?2sin28 Mzd_le B 20 d
24 T 2B 24)%T2p\! T4) sl
If 8 is small, the total increase of strain energy is:
L M2 A
R —_—— 2
fOZB(I B)B.dz i w8 ® & % =« @ Y3

[t has been shown by many writers* that the torque acting at this cross-section may
be written as:

Cdf d3f
dz  ldz3
do . ) ) d3e
where CC?Z' is the torque according to the usual St. Venant solution and the term C; 7

allows for non-uniform torsion and warping of the cross-section and may be cal-
culated according to the method given by Timoshenko. :
The strain energy due to torsion is thus:

e R

Thus the sum of (a) and (b) at the critical condition will be equal to the work done
by the applied moments M when the beam is allowed to deflect. The work done
by M may be calculated by finding the angle through which it turns.

The lateral bending moment A sin & causes the ends of element dz to rotate

0 ) " :
. dz relative to each other. This occurs in a plane at an
M sin2 0
B

Due to bending about the major axis the ends of the element dz rotate by an amount

A_fd M cos2 8
=g T

the deflection 6 was given and the second term after. Thus the total relative rotation
of the ends is:

M sin
through an angle 3

angle ¢ to the horizontal and the relative rotation in a vertical plane is L.

. dz relative to each other, the first term being the angle before

. 3 Ldz—— .dz+ Y

The work done by M is therefore, for small :
L M2 B
el | 1R s
fo 5 (1 A)G . dz=(a)+(b)
Substituting for (a) and (b) and noting that the beam is symmetrical about the centre,
the equation from which the critical moment may be obtained is:

Liz pp2 B Liz. (d6\2 L2 do d3o
—(1—==162 . dz= i — = :
JO 2B(1 A)B .dz fo C(dz) .dz fo Cldz T dz' . . (1)

* See Timoshenko, Journal of the Franklin Institute, March, April, May, 1945.

ff- (M sin2 6 M M cos2 0 )
— . dz
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If the relationship between 6 and z were known exactly the equation (1) would give
an exact value for M., the critical moment causing lateral instability. Usually an
exact relationship is not known, but if a relationship satisfying the end conditions
is assumed, then an approximation to the answer is obtained.

Thus when the ends of the beam are held in such a manner that they are free to
2

; : s d2
warp, 9=a, sin — satisfies the end conditions that f=>—-=0 at both ends of the

L dz2
beam. Substitution of this in equation (a) gives a value for the critical moment with
ends free to warp of: -

T BC w2 C4
M"l_i mJ1+EE : B 0% B & B (2)

This agrees with Timoshenko’s solution for an I-girder when the value of C; for an
I-girder is substituted and the value of B/A is neglected. The ratio of B/4 may be
as high as 0-4 in practice and in those cases its neglect would give appreciable error.
The value of the critical moment given in equation (2) is exact because in this case
the value of 6 assumed is exact.

In a practical case it is almost impossible to apply a moment at the ends without
preventing warping and so the case when the ends are completely restrained against

2
warping will now be considered. In this case =5, ( 1—cos %z) satisfies the end con-

do :
ditions that §=—=0 at both ends. When this value of 6 is substituted in equation (1)

dz
- it is found that the value of the critical moment Mc,2 is given by:

P BC [ 4x2
MC,Z—IISEA/I_B/A.J1+ﬁ.f N )

This solution is not exact due to inaccuracies in the assumed value of 6. By
taking 0 of the form (see Timoshenko, Theory of Elastic Stability):

6
9=b1(1—cos 2[‘12)+b2(1—cos 4%Z)—f-b3(l—cos lz)+ 4 @

L

a more accurate answer may be obtained. It can be shown that equation (3) is in
error by the order of 2 %, negligible for all practical purposes. One noticeable point
about (3) compared with (2) is that complete restraint against warping increases the
critical moment by more than 15 Y%,.

ENERGY SOLUTION FOR A BEAM SUBJECTED TO A CENTRAL CONCENTRATED LOAD THROUGH
THE SHEAR CENTRE

Suppose that a central load P is applied at a distance y above the shear centre so
as to produce no twist. The stability is considered as for the case of pure bending
by assuming the beam to deflect. Let 8, be the angle of twist at the centre.

Then in the manner already given, the strain energy due to lateral bending is:

L. P B
—(1=2)02,2
Jo %.45(1 A)H z2dz

and the strain energy due to torsion is:

L Cde Cdﬁ dJBd
o*[ (az)‘ a‘zr]
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The work done by the central load may be found by. considering it in two parts.
If the load is applied at the shear centre, the work done by it may be found in a manner
similar to that already described for the pure moment. Due to lateral bending the
Pz . d ) :
ends of element dz rotate through an angle EZ sin 0 —Bf relative to each other. Since
this bending occurs in a plane at angle 6 to the horizontal it causes a lowering of the
Pz sin 0

load of zsin 6. g dz. Similarly due to bending about the major axis the

P .
load rises by an amount >4 z2sin2 6, dz. Thus, if 8 is small, total work done by P is:
L2 p2 B
Z (1=2)62,2
Jfo 23(1 A)G z2dz

Due to the load being applied at a distance y above the shear centre there is an
additional work done of Py(l1 — cos 8,,)=Pyb,,2/2 approximately. Remembering the
symmetry about the centre of the beam, the energy equation then becomes:

L2p2/ B Py8,2 (L2 _(dh\2 L2 4§ 436
—{1==1)02 il Ak I i 7 — — . dr.
R TR PP T S L L
The solutions of this may be found as for the pure bending case and are given below:

_ ) 17-1 BC 72 C
When y=0 and ends free to warp: P, = 72 JI—B/A(1+E . ?) N )
18-3 BC 4n2 C,
When y=0 and ends ﬁxed.r Fopp= 72 4/1—8/A(1+? .—E) ... (6)

When the load is applied distance y above shear centre the critical load of equation (5)

is reduced to:
2

X
Pc,11=Pc,1(1—X+7) approx. -+ . . . . . . (M

where
30By

~ P, L3(1—BJA)

The theory considered so far has been concerned with beams of material which
behaved elastically. For beams of, say, aluminium alloy the range of elastic behaviour
is small and so the elastic critical loads will not give a good approximation to the
failing loads of the beams. Attempts have been made in an empirical fashion to
allow for this effect, among others, by assuming some initial imperfection for the
beam or some eccentricity of loading. The effect of this is that lateral deflections of
the beam occur from the first application of the load becoming infinite, theoretically,
near the critical load. The failing load is then determined as that load which causes
the stress in the beam to exceed the yield stress of the material or some other pre-
determined value. A value of the initial eccentricity is then chosen to give good.
agreement with experiment. This method, whilst giving reasonable agreement
between calculated and actual failing load, covers up the essential fact that much of
the reduction in failing below the elastic critical load is due to the relationship between -
stress and strain being non-linear. In this paper it is proposed to give an approach
which is dependent only on this fact.

The method follows that originally proposed by Engesser for struts in which the
curved stress—strain relationship may be- allowed for by an effective modulus of

X
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elasticity. For the problem of lateral stability of beams, the method is more com-
plicated due to the fact that there are four factors, 4, B, C and Cj;, in which the
modulus of elasticity plays a part. Since I-beams are most frequently used in practice
and are also the simpler to deal with theoretically, the following discussion will be
restricted to beams of I-section. The usual proportions of I-section will be taken, so
that it is possible to assume that the web has a small effect on the bending and that
in bending about the major axis there is a uniform stress in the flanges.

Let us assume the theoretical approach of a beam which remains straight until
buckling and then fails by bending laterally and twisting. Before buckling the stress
distribution in the I-girder may be considered to be very nearly a uniform compressive
stress in one flange and an equal tensile stress in the other. The strain of the flanges
will be that corresponding to the stress for the material concerned, and the curvature
of the beam will be the strain divided by the distance to the centre of the section. If
the stress is greater than the limit of proportionality this curvature is greater than the
elastic value given by M/A. It 1s fairly easy to see that the curvature is increased in
the ratio E/E; where E;, the secant modulus, is the actual ratio of stress to strain.
As will be seen from equation (a), it is the curvature in the plane of bending which
introduces the factor 4, and it is therefore proposed to allow for this by assuming 4
to be factored in the ratio E/E. This, of course, has no effect when the stress is
below the limit of proportionality.

At the critical load,- when the beam suddenly deflects laterally and twists, the
direct stresses due to lateral bending and the shear stresses due to twist both increase
rapidly, whilst the mean direct stress due to the applied moment remains constant.
Thus at some points in the beam the direct stress will decrease below that caused by
the applied moment, and if the mean direct stress is above the elastic limit, then the
reduction in stress will occur as an unloading from the plastic region. Thus the stress

Bending stress fb//aw/ny tangent
modulus law

Mean stress Mean stress
in flange in Flang

Stress

AN

Unloading

Bending stres.

Stram

Following
Hookes law

Fig. 1

distribution across a flange will be somewhat as shown in fig. 1, where the increase of
loading follows the usual stress-strain curve, but unloading from the plastic region
follows the usual Hooke’s law.

For small lateral bending moments the increase of stress can be approximated
to by a straight line whose gradient E; is that of a tangent to the stress—strain curve
at the point considered. E,is called the tangent modulus. This effect was first men-
tioned by Engesser for struts, and it has been suggested that for small lateral bending
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stresses the effective lateral bending modulus may be taken as a reduced modulus E *
where:

E, 4E\|E E,

E-(+VE/EY E
The effective value of B to be used in formulae is then the elastic value factored by
E./E.

In this purely theoretical case of a beam which remains straight until buckling,
the shear stress due to twisting increases rapidly as the direct stress remains con-
stant. There is a certain amount of evidencet that for this case the shear modulus
1s unchanged and the value of C remains unaltered.

Let us now consider the more practical case where the beam undergoes lateral
deflections and rotations before the critical load is reached. These lateral deflections
are due to inevitable imperfections in the beam. In this case the deflections first of
all occur gradually and then more rapidly when near to the critical load. Thus the
shear stress due to twisting increases gradually as the bending moment is applied.
When the shear stress increases very gradually in this way while the direct stress
increases more rapidly there is evidence{ to show that the shear modulus is very
nearly the elastic value G factored by E;/E. Accordingly the torsional stiffness C
will be factored in the ratio E;/E. For more rapid increases of shear stress the
effective modulus would be higher and closer to the elastic value which applies when
the increase of stress is very rapid. In a similar manner, lateral bending occurs
gradually and the direct stress distribution in a flange will change somewhat as shown

|

/{Mean stress
- A 8
7
#"
L~ 8¢
Stress He I
7,
/  ——
7 | ¢ 0
Failing load
Momen/

Fig. 2. Variation of stresses in beam with small eccentricity

in fig. 2. The stresses continually increase and the direct stress distribution due to
lateral bending of small magnitude is such as to approximate to that given by a
tangent to the stress—strain curve.

The effective value of modulus B is thus its elastic value factored by E,/E. The
effective value of the major stiffness 4 will be the same as that already discussed,
that is, A X E5/E. Since the warping rigidity of an I-girder is provided by differential
bending of the flanges, this also will be modified in the ratio E,/E.

Thus it will be seen that in the more practical case of deflections occurring below
the critical moment, the effective values of B and C are lower, giving a lower value
of the critical moment. In practice therefore it is to be expected that the values of

* S. Timoshenko, Theory of Elastic Stability, McGraw Hill.
T S. Batdorf, “Theories of Plastic Buckling,” Journal of Aeronautical Sciences, July 1949,
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the critical moment will approximate to this lower limit. The value of the critical
moment for a beam is now dependent on the material of the beam and not only on
the modulus of material as given in equations (2), (3), (5) and (6).

In order to find the critical moment for a beam the stress—strain curve of the
material must first be obtained and the values of E,/E and E;/E noted for various
values of the stress. The value of the critical moment may then be most easily found
from (2) and (3) by a trial and error procedure. A value for the stress in the flange
caused by the critical moment is assumed so that the values of Ej/E and E,/E are
known. When these values are substituted in the equations a value of the critical
moment will be obtained which will probably differ from the originally assumed value.
A second approximation to the correct value can then be made until agreement is
reached.

The case of the centrally applied load is rather more difficult, since the stress and
therefore the effective moduli vary along the beam. Numerical methods of integra-
tion are required for the solution. With the assumptions made, the stress in the
flange varies linearly from zero at the end of the beam to a maximum p at the centre.
The value of P in equation (4) may thus be replaced by 4p/ZL where Z is the modulus
of bending about the major axis. Equation (4) may then be rewritten for the case
where load is applied through the shear centre:

4p2 [LI2 11 L2 ige\: (H2 g8 438
i’ il 27222\ g, — N 60 2
Zszfo »z (B A)dz J-o C(dZ) dz fo e dz

where 4, B, C and C; are functions of p.

Assuming some value of p, the effective values of 4, B, C and C; may be found
and each of the integrals of equation found by numerical integration. The solution
gives a value of L which agrees with the chosen value of p and hence the value of the
critical load for a given L. This procedure may be repeated until the relationship
between P and L is found. Of course, in the above the value of Z to be used should
not be the usual elastic value but one which allows for the form-factor due to the
curved stress—strain relationship. For the usual I-section this correction is small.

EXPERIMENTAL RESULTS

Some experiments have been carried out at the Engineering Laboratory, Cam-
bridge, with the support of the Aluminium Development Association to check the
above theory. The beams had an I-section 21 in. deep, by 14 in. wide by # in. thick

Yltimate _
0TD 3648 —
30
) 0.1% Proof 5
g 28.5 tons/in 701
8
0 E 0.8
#rs _Utimate_ '
v
g MGS 0.6
5
0 04
0-1% Proof 9.3 tons/in?
0.2
Strain x 10 , Stress (tons/in?)
i L J 3 1 1 1 1 1 i J
g 100 4 5 & 7 8 9 0 "

Fig. 3. Stress-strain curves Fig. 4. Moduli for M.G.5
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and two materials were used, one to specification D.T.D. 364 and the other M.G. 5,
typical stress—strain curves and effective moduli being shown in figs. 3 and 4.

The specimens were supported under conditions of simply supported ends, the
beam being free to deflect in vertical and horizontal planes but the ends prevented
from twisting. For the case of pure moment the load could not be applied so that
the ends were completely free to warp and the method of end fixing is shown in figs. 5
and 6. The blocks bolted to the flanges (fig. 5) located the specimen in the end fittings

Fig. 6. 50-in. beam at failure

(fig. 6) and also provided some restraint against warping. The blocks were clamped
tightly in the end fittings. End moments were applied by means of cantilevers pro-
jecting beyond the ends of the specimen. ,

With the central loading the ends were allowed to warp by supporting the I-section
through the web only. With the higher strength alloy, D.T.D. 364, restraint against
warping was provided for as in the pure bending case, but with the M.G.5 the ends
were welded to 4-in. thick blocks of aluminium in the hope of providing full restraint.

The results of the tests together with the calculated results are shown in figs. 7, 8,
9 and 10.

It will be seen that for long slender beams the failing load may be greater than
the critical load. This is to be expected since in this region the critical load falls
below the minimum strength of the beam. For the end fittings of type shown in fig. 5
the experimental results lie consistently between the two calculated curves showing
approximately the same amount of restraint against warping and that full restraint
was not obtained.



LATERAL STABILITY OF BEAMS 427

On the whole the experimental results seem to agree well with the theory; the
largest discrepancies appear in the neighbourhood of the proportional limit, where
the ““elastic” curve diverges from that calculated by the use of effective moduli. Itis
in this region that the greatest divergence might be expected, due to the rapid change
in slope of the stress—strain curve. For example, consider a practical beam in which
there is inevitably some small deflection near the critical load, and let us suppose that
the length is such that the critical load just produces a stress equal to the proportional

Jr 075+ )
~ Ends restrained
g
N
2 3
2 r—§ 0.501-=
I ®
b Ry £nds Free
3 S <
b Experimenta/
Ry £nds Free . i 2.25- x1periments
:'3 Elsstic ‘ O Fnds Frae
Critical + £nd's restrained
f0ad's -
Length of beam (in) Length of beam (in)
1 1 1 1 A L J 1 1 1 1 1 1 = J
a 2 4“0 &0 a 20 40 60
Fig. 7. I-section D.T.D. 364. Central load Fig. 8. I-section M.G.5. Central load

20
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sE 6
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< ©
& S
L SN 4 »E
: |8
S
® 3
L N
5 __-;:_ 2r g .
& S + Experrmental
by
 Length of beam (ir) 1 Length of beam (in)
L 'y 1 1 ] 1 1 1 1 1 L J
7 2 L 60 80 100 0 20 40 60
Fig. 9. I-section D.T.D. 364. Pure bending. Fig. 10. I-section M.G.5. Pure Bending

limit. Any small lateral bending therefore produces stresses which extend into the
region of curved stress—strain relationship and the ratio. E,/E is less than 1. The
simplified theory so far considered gives the effective modulus at this point as £ and
hence it is to be expected that in practice the failing load will be less than that cal-
culated. This difference will be greater, the greater the initial imperfections which
produce the lateral deflection, and it is only in this region that the initial imperfections
would be expected to have much effect.

Nowhere in the theory has any mention been made of the size of the initial
eccentricities which must be present in any practical beam. Some eccentricity was
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assumed in the theory, in order to produce small deflections below the critical load,
but no specific magnitude was attached to it. The basic assumption was that the
lateral deflections were small, so that the bending stress distribution could be approxi-
mated to by a straight line. It was also assumed that no unloading of the fibres
occurred. This second assumption is not strictly true. Measurements of deflection
which were taken enabled an estimate to be made of the point at which unloading
occurred and it appeared that unloading usually occurred but never below 95%, of
the failing load. This is sufficiently close to failure to make the assumption reason-
able. In this region the lateral bending becomes so large that the first major assump-
tion is no longer tenable and the bending stresses no longer follow a reasonably
straight-line law. It can be shown that the effect of unloading and this effect tend
to cancel each other and hence the reasonable agreement of the theory with experiment.

CONCLUSIONS

On the basis of the experimental data presented it seems that the calculated critical
load for lateral buckling does give a good approximation to the failing load of beams
in bending, even when the magnitude of the initial eccentricities is neglected.

Summary

The usual mathematical solutions for-the problem of lateral stability of beams
are long and complieated, particularly when allowance is made for the ratio of the
maximum and minimum bending stiffnesses. An approximate energy solution is
presented in this paper for the two cases of a beam in pure bending or under a central
concentrated load.

The theory is extended to allow for beams fabricated from materials whose stress—
strain curve is non-linear, which is the case with aluminium alloys. The method used
for this follows that originally presented by Engesser for struts when the usual elastic
modulus is replaced by an effective modulus. Experimental results are given for
I-beams fabricated from two different aluminium alloys. These results show good
agreement with the theory.

Résumé

Les solutions mathématiques habituelles du probleme de la stabilité latérale des
poutres sont longues et complexes, tout particulicrement lorsque le rapport entre les
valeurs maximum et minimum de la rigidité a la flexion est variable. L’auteur pré-
sente une solution approchée, basée sur des considérations énergétiques, dans les
deux cas de la flexion pure et de la concentration de la charge au milieu de la poutre.

La théorie est élargie aux poutres constituées en un matériau dont le diagramme
d’allongement est non-linéaire, comme c’est le cas par exemple pour les alliages
d’aluminium. La méthode employée suit celle qui a été indiquée initialement par
Engesser, dans laquelle le module habituel d’élasticité est remplacé par un module
efficace. L’auteur reproduit des résultats expérimentaux obtenus sur des poutres
constituées par deux alliages légers différents. Ces résultats présentent une bonne
concordance avec la théorie.

Zusammenfassung
Die liblichen mathematischen Losungen des Problems de seitlichen Stabilitdt von
Trdgern sind lang und kompliziert, besonders bei verdnderlichem Verhiltnis der
grossten zur kleinsten Biegesteifigkeit. Dieser Aufsatz bringt eine Ndherungslosung
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auf Grund einer Energiebetrachtung fiir die beiden Fille der reinen Biegung und
der Einzellast in der Mitte des Trédgers zur Darstellung.

Die Theorie wird erweitert auf Trager aus Material mit nichtlinearem Spannungs-
Dehnungsdiagramm, wie zum Beispiel Aluminiumlegierungen. Die dabei verwendete
Methode folgt der urspriinglich von Engesser fiir Streben angegebenen, bei der der
iibliche Elastizititsmodul durch einen effektiven Modul ersetzt wird. Es werden
Versuchsresultate fiir Triger aus zwei verschiedenen Aluminiumlegierungen angege-
ben. Diese Resultate zeigen eine gute Uebereinstimmung mit der Theorie.
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