Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht

Band: 4 (1952)

Artikel: Method of elastic compatibility in the solution of beams of finite length
on elastic foundations

Autor: Banerjee, Santi P.

DOl: https://doi.org/10.5169/seals-5038

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-5038
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

All 3

Method of elastic compatibility in the solution of beams of finite
length on elastic foundations

Méthode de calcul élastique appliquée au calcul des poutres de
longueur finie reposant sur des bases élastiques

Methode zur Berechnung von endlichen Balken auf elastischer
Unterlage

SANTI P. BANERIJEE, ASSOC.M.AM.SOC.C.E., A.M.I.STRUCT.E.

Chartered Structural Engineer, London

L]

I. BEAMS AND FOUNDATION PRESSURES

1. Introduction

When a “rigid” beam carrying loads rests on elastic material, it develops pressure
underneath, which is uniform throughout when centrally loaded or uniformly varying
in a straight line if eccentrically loaded. If, on the other hand, the beam is *semi-
rigid,” i.e. one capable of resisting bending with certain amount of deflections, the
pressure is proportional to the deflection occurring at each point. This is because
the supporting soil below beams carrying engineering structures is considered to
behave elastically, which tends to recover from the relative settlements when the
superimposed loads on the beams are removed.

If the soil proves to be flowing plastically under loading, as may be the case with
very soft clay, the beam necessitates designing as “rigid” as if floating on liquid of
heavy density. On similar arguments an absolutely “flexible” member may be
sufficient to bear loads lying on rather rigid supporting medium, such as rock. The
appropriate stiffness required for a beam therefore depends upon the nature of the
soil below. The theory also gives easy means of determining the correct value of
stiffness required for a beam (Section V, examples 2 and 3).

2. Elastic line of a semi-rigid beam and the soil pressure

Fig. 1(b) shows the pressure distribution under a rigid beam LR loaded non-
centrally as in (a), the straight-line variation being represented by ¢d from the average
line LCR. If, instead, the beam is semi-rigid and rests on elastic material such that
the loaded points are made to remain in one plane (not necessarily horizontal), the
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beam would produce deflections between the points as in (c) denoted by 84 (termed
“local deflections”) and the pressure would vary as shown in (d), there being relief
between the loads and increase under.

If it is now considered that according to the loading the loaded points move out
of the plane so as to take different levels, the axis LCR of the beam would deflect to
~ take the form LC’R similar to a bow of some shape either indicating “hog”’ or “sag”
shown in (e¢). These deflections, represented by 8z (termed *“bow deflections ™), are
measured from a line connecting the ends of the beam. The deflections at various
points along the beam would therefore be the algebraic sum of 34 and 8z, asin (/). It
will be noticed that the values of 8, are negligible as compared with 8.

With these deflections taking place throughout the beam, additional variation in
earth pressure below comes into effect such that the lowest point in the beam exerts
the highest upward pressure and the highest point has the maximum relief or reduction
in upward pressure. These pressures would have at the same time the effect of reduc-
ing the deflections 8,4+ 83 by a certain amount and adjusting themselves accordingly.
The variations from the straight line ab of pressure distribution, which may take the
two possible forms corresponding to the two deflection forms in (f), are indicated in (g).

Finally, these additional pressure variations ghk due to beam deflections, when
superimposed on the average straight line ab of pressure distribution in (4), would give
the two possible pressure diagrams shown in (h)—one giving maximum pressure at
the ends and the other in the middle. It is therefore considered sufficient to check up
pressures at the ends and at the section of maximum deflection in the middle of a
beam. It should be realised, however, that the deflections referred to are only relative
and are additional to the general settlement of the beam as a whole.

II. FORCES ACTING ON A BEAM AND THE PRINCIPLE OF ANALYSIS

3. Forces acting on a beam in equilibrium

The forces are considered to be divided into two systems:

(a) System 1 _

From the superimposed loads on a beam and its bearing area the average earth
pressure wy per unit area is obtained. The pressure w per unit run of the beam is
uniform for a beam of constant width or varying accordingly. Only the prismatic
beams would be dealt with at present. Cases with non-prismatic sections will be
considered in Section V, para. 13.

Consider the forces acting on a beam, as if rigid, comprising the superimposed
loading above and w per unit run of earth pressure below as represented by LRba
in fig. 1(b). If the beam is centrally loaded, this would be in equilibrium or else these
forces would have an unbalanced resulting moment. This has to be balanced by an
assumed straight-line variation of earth pressure from positive (acting upward) at one
end to negative (acting downward) at the other, similar to that represented by line
cd in fig. 1(b). These pressures are termed ““balancing pressures” (B.P.).

The system of forces comprising these, such as would occur on a loaded beam if
it were perfectly rigid, is termed F,. The moments produced by F, throughout rhe
beam are M, and the deflections measured from a line connecting the ends 3,, which
are approximately equal to 84+ 85 referred to in fig. 1(f). The maximum deflection
occurring in the middle of the beam in particular is termed Y,.

(b) System 2
Due to the deflections throughout a semi-rigid beam, deviations from the straight-
line distribution of pressure, referred to in System 1, come to operate, having increased
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values at the lower points and relieved at the higher, such that the straight line repre-
senting w indicates the average of the deviations as in fig. 1(4), wherein ghk was the
deviated form from line ab. '

The increase and the relief of pressure involved in the deviations comprise the
“additional variation of pressure” and such a variation, similar to that in fig. 1(g), is
shown in fig. 2(a) in typical form, in which the increase is shown at the ends and relief
in the middle, consequent upon the middle of the beam deflecting upwards under
force system F,. The vice-versa would be the possible alternative.

These forces in the additional pressure variation, which tend to restore the beam
from the elastic deformations or deflections due to system F,, are called “‘elastic
restoring forces” and are comprised in a system termed F,. © The moments produced
by F. are M, and the related deflections 8,—in particular Y., the maximum in the
middle. - :

It would be realised from fig. 1 that it is the bow deflections 8 which are the essen-
tial factors in the development of the force system F, and the consequent deflections
d,, the influence of 84 being negligible. A

4, Principles of analysis

A centrally loaded beam, if rigid, would exert uniform pressure LRba shown in
fig. 2(b), where La equals w, and pressure LRkhg when semi-rigid. The eccentricity
of superimposed loading would only

1 introduce the balancing pressuies in

Relief of pressure 4 | _ addition. Since the line abinfig. 2(a)
2 T T ﬂf”’ represents the average of the forces F,,

( ")” _,L{ : >,L w the areas above and below the line
e 9 A tionall prediures k should therefore be equal. To sim-

plify calculations for moments and

L 4 1 ‘ deflections, the variation in F, is
w replaced by the straight dotted lines
(6) , 2 4 shown and drawn symmetrically a-

bout the centre of the beam, in lieu of
9 & line ghk. The maximum ordinates,
both above and below the line ab, in
the variation are represented by fw
per unit run or fw, per uhit area, f being a factor or coefficient. The maximum and
minimum pressures developed are therefore wy+/wy and wy— fw, respectively per unit
area.

It would be observed that the force system F, gives a deflection 8, always opposite
to 8,. The total deflections throughout a beam would therefore be the sum of 8§,
and 38, algebraically, and the final maximum deflection in the middle of the beam

Y=Y, +Y. . . . . . . . . (4D

considering the maximum deflections Y, and Y, to occur approximately at the same
section. (It may be worth noting that the shift of the position of the maximum
deflection in a prismatic beam, simply supported at the ends with a bending moment
diagram of one sign, can never exceed 1/13th of the length from the centre.) The
deflections are represented in fig. 3 for the beam under the system of forces in fig. 2.
The original deflection is Y, from the loading and the pressure I.Rba of system F,,
which reduces to Y due to the forces F, having pressure ordinates fw at the centre
and the ends (fig. 2(a)).

Fig. 2
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For the purposes of analysis, it is necessary to ascertain the value of fw so as to
obtain the pressures and the bending moments throughout a beam. To obtain the
value of f, the final maximum deflection Y is to be considered first, which is dependent
upon

(a) the elastic properties of the beam and
(b) the elastic properties of the soil,

so that the higher the ‘““flexural rigidity” (EI) or the ‘“modulus of foundation™ (ky),
the lesser is the deflection. The value of Y should be such as to be compatible with
the conditions for both (a) and (b).

beneral seltlement
Spngtvel %

RSN 27
- k

Fig. 3

The value of £, related to Y, having been ascertained, the bending moment diagram
for system F, can be obtained with its maximum ordinate M, at the centre, where
shear is nil. The moments throughout the beam would then equal ZM,+ M..

) For the purposes of maximum and minimum pressures underneath, the positions
of fw under system F, would be considered at the ends and in the middle of the beam
where maximum deflection occurs.

ITI. PRESSURES AND RELATED DEFLECTIONS

S. Signs
The signs in the operations will be considered as follows:
(1) “Moments”’ are positive when tension is created on the underside of beams.
(1) ““Deflections’ are positive given by positive moments.
(1) “f-system” is positive in the positive force system F, causing positive
moments M., and forces act upwards at the ends and downwards in the

middle of a beam. e
| b
6. Forms of pressure variation and the . [7—_¢f|]33 !
related deflections Y. ily” éhe), . |_imw
The value of deflection Y, for a | L J
beam is connected to the force system | l |

F,, which in turn depends on the value (67"
of f. Therefore the equations for de-
flections can be expressed in terms of f.
(A) Form of pressure distribution
in system F, with equal maxi-
mum ordinate above and below (g "
average

Fwl?
Yo = 0.00365 =

A positive force system F, with °

maximum ordinates fw above and below 8

. s . 't N ~

the average line is shown in fig. 4(a), SRS
with consequent positive deflection ¥, 3.8

at (b). The f-system at (a) is therefore Fig. 4
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positive. The arrangement could be of opposite kind with negative values. With
these forces acting on a beam, the moments M, at any section distant x from an end

is given by
= 2%
Me= [E_E:I fw,
and at centre, where x=L/2, the maximum value

M.=0-0416wL2f . . . . . . . . (6:1)

The deflection at any section distant x from an end
¥ x dLex ULP e
36=Er [2_4_@“% +ﬁ)] , where E7/=flexural rigidity
and the maximum deflection at centre, where x=L/2
wL4

Ye=0-00365E,—f i & ¢ om s o® s w (0E2)
shown at (). The maximum and minimum pressures are w-+fw and w—jfw per unit
run of beam respectively.

It would be observed from fig. 4 that the maximum ordinate fw of pressure

reduction can never exceed w in value and thus also the maximum ordinate of pressure
increase; in other words f can never exceed 1.

(B) Other forms of pressure distribution in system F,

R S
N

4 N

mrnjz_'b'/':/zu: HH\\L‘,’ Tw DR i 41 :{%;V
i !

PF
i (2) [mtp=2] (6)

Fig. 5

There may be other cases of distribution such that the maximum ordinates of
reduction and increase have unequal values. This would also be obvious from
figs. 5(a) and (b) with positive and negative f-systems respectively, where some parts
of the beams do not bear on the soil due to upward deflections.

For the purposes of analysis let mfw and pfw be the ordinates of the maximum
reduction and increase respectively below and above the average, so that their sum

mfw+pfw=2fw . . . . . . . . (6:39)

m+p=2 . . . . . . . . . (6:3b)

With such forms of pressure distribution as in fig. 5, mfw would be controlled by
the value of w, so that mfw=w or mf=1. Then from eqn. (6:3a),
14+pf=2f, or pf=(2f—1), or

as before, or

1 =
P=2_]~ . . . . . . . . . . . . (6:4)
The eqn. shows that
when f=1, p=1
J<l, p<l and

>1, p>1
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Since the areas of pressures under the force system F, above and below the average
lines should be equal, it is clear from the diagrams that the ordinates pfw have to be.
greater than mfw, i.e. from eqn. (6:3a),

pw>Q2—p)fw,orp>1 . . . . . . . (6:9
This shows therefore from eqn. (6:4) that the cases would involve values of />1.

The maximum and minimum pressures developed are 2fw and zero respectively
per unit run, as would be observed from fig. 5 also.

(C) Practical considerations
To serve all practical purposes, it is assumed that: -

(i) when /<1, the variation should be considered with equal maximum ordinates
fw above and below the average, and
(i) when f>1, the maximum reduction mfw has the limiting value w.

Some possible forms of pressure distribution and the connected diagrams for the
force systems F, are shown in Table I, in which the deflections Y, are shown represented
by the form

wL?
Ye:N'E' N (H))
The “deflection coefficients N against the values of ffor all the cases can also be taken
from fig. 6. Itis to be noted that the cases 2 and
6 in Table I, having unequal ordinates mfw and

pfw, would be covered by the cases 1 and 5, 4 | I
since mfw are not the limiting values w. l Numbers in circles
The foregoing assumptions give safe results, , . d ”;‘,’,’”;:z e s
as the values of N for Y, are on the higher side \ \af Table I
(see also para. 8). \
When 7, is negative, Y, is positive with pos- 1
itive f~system. Cases 1 to 4 are some of the /% 00 BN @
possible forms shown in Table I. Case 2 7\ N b S
represents an ideal fourth-degree curve in view ,___@r_’ d._‘_@:‘:\_ 2N
of the deflection being the fourth integral of g 2 &~ )
loading and is absolutely theoretical. Under ‘\ KN
normal conditions case 1 for f<I1, and case 3 % Q)
for f>1 would be apparent. 0602 \
When Y, is positive, Y, is negative with \
negative f~system, such that some of the possible h-n- Ly &N
forms may be as shown by the cases 5 to 8. N
Case 5 is the case 1 inverted and case 6 repre- 7% S
sents the theoretical fourth-degree curve. Under
normal conditions case 5 for <1, and case 7 for -

f>1 would be apparent, but a case with f>1 ¢ : :
will not occur in practice when Y, is positive ' ]
(para. 7(2)(6)). Fig: &

7. Factors affecting the final deflection Y in a beam

These will be considered in the following treatment of the deflections from the
elastic properties of the beam and the bearing soil (para. 4):

(1) Deflections from elastic properties of beam
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LA !
From eqns. (6:6) and (4:1), Y.=N. -%7 fand Y=2Y,+Y,, remembering that

Y, and Y, are always of opposite signs.

Fig. 7

(i) When Y, is negative, Y, is positive with positive f~system (ﬁg T(a)):

wL4
Y=—Y+N. 5 H)==Y+N. —f .. . (B
(i1) When Y, is positive, Y, isrnegative with negative f-system (fig. 7(b)):
LA
Y=+4+Y,—N. "—"(—f) +Y+N ... (B

These equations stand for all values of f, whether greater, equal or less than 1.

(2) Deflections from elastic properties of soil

Since the soil reaction per unit area of foundation is assumed proportional to the
pressure per unit area p .

settlement .S
is known as the “modulus of foundation.”” The above relation gives

settlement (para. 1), the ratio is a constant, termed kg, which

pmkoS o e W e w e e w (71)
_P :
Also = e (D)

The modulus may vary under a beam in various ways depending upon the nature
of the soil and the depths to which they occur. Let the minimum value under a beam
be ky and the maximum nk, per unit area, so that #=>1. In the analysis, the variations,
when taken into account, will be considered symmetrical about the centre line of the
beam such that ky and #nky occur under the ends and the centre or vice versa, the
variation being linear. Such variations are considered to cover the limits of all
possible cases.*

In the derivation of the deflection equations, the distribution of pressure under
force system F,. will be considered under two groups as follows:

(a) Force system F, when /<1
This system includes cases 1 and 5 of Table I, and under this group the pressure
variation has equal maximum ordinates fw above and below the average (para. 6(C)).

* Advantage can also be taken of such variations in the moduli in an attempt to take account of
the usual pressure variations experienced in cohesive and non-cohesive soils under engineering
structures.
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(i) When Y, is negative, f-system is positive (fig. 8):

|~ Jrworv
' ’ . . Fwa }
™ P J I/‘nq, (85 " [+ve F-system]

W, + Fry W, -J Fw, w,+fuy  (c) Unit pressures p*
|
| I
”ro /T ”Lt’ (d) Case-7 Found?
oduly
A nk, b (e)case-2 | """
Fig. 8

In the final position of the beam the deflection (ignoring the little displacement of
the position of maximum defiection from centre),

Y =settlement at centre minus settlement at ends

Case 1: if kg is the modulus at centre and nk, at ends, then from eqn. (7:2):
_WO—'fH’Q W0+fW0_ Wy 17 Wo 1
R it 1+;!_ f+?0 e N 5

Case 2. if nky is the modulus at centre and k. at ends, then:
Y=w0—fw0_w0+fw0_ wo[l-l-l _%)[ IJ
0

Y

n_

1—-
n

nko ko ko
(i) When Y, is positive, f~system is negative (fig. 9):

(S2)

E Fu, (6) “Fg”["}’é' F-system]

Hy = Fiw, W, ]fw,, W,-fi, (c) Unit pressures p*
; ' o '
nky /li,, nllro d) Case -7 Found?
moduli
ko nk, by (e) Case -2
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In the final position the maximum deflection,
Y=settlement at centre minus settlement at ends

Cuse 3: if kg is the modulus at centre and nk, at ends, then:

=w0+(—f)w0 wo—(— f)'Vo_F“_’[l+ }H_wo[]_l] . (Sy)
H

ko ﬂko ko
Case 4: if nkg is the modulus at centre and k, at ends, then
_wot(=fwy  wo—(=N)wg_ o Wo l]
Y=k kKol f‘ ok - (S
Case 5: when kg is uniform throughout, n=1 and all the above equations become:
2"'0
Y— —TO . . B . . . . . . (Ss)

(b) Force system F, when f>1
The cases 3, 4, 7 and 8 in Table I are covered by this group, where the maximum

ordinates of pressure reduction and increase are w and (2f— 1)w respectively (para. 6).
It is to be realized that since some

parts of the beams do not bear on the
soil due to the upward deflections when
f>1, the values of Y given by the soil
equations would not be the true values
of the maximum deflections occurring
in the beams, but would only represent
the values measured up to the ground
Fig. 10 lines as shown in fig. 10 by Y. The
relationship of this ¥; with true ¥ may
be approximately obtained by considering the deflection curves of the beams of at least
the fourth degree and are as follows when kj; is uniform:
(i) when Y, is negative,
for f=2, Y,=0-938Y
/=3, ¥,=0-803Y

(i) when Y, is positive,
‘ for /=2, ¥,=0-0625Y
f=3, ¥,=00124Y
Representing the number coefficients above by C, therefore, a soil equation would
take the form:
Y,=deflection value from derived equation=CY

1
Y=E (deflection value from derived equation) . . . (7:3)

The value of C on soil with variable foundation modulus may be very different and
difficult to judge. However, the value in a case can be ignored if the difference
obtained between Y and Y is limited to, say, 10-129%, and for this purpose it is
essential that for beams

(1) with negative Y,, f must not exceed 2-5, and

(i1) with positive Y,, f must not exceed 1-0.
Then the appropriate soil equations can be used without any reference to C.

It would normally be seen in practical problems that the above conditions are ful-

filled, since the maximum pressures below would control the designs calling for the
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appropriate stiffnesses for the beams. If in a certain problem either of the above
values of fis exceeded within the limiting pressure, the beam has to be made stiffer to
bring in more of the unsupported portions to bear on soil (fig. 10) and thus reduce
the value of . Alternatively, for beams with positive Y,, an effective shorter bearing
length may be considered (i.e. the portion of beam actually bearing on soil in fig. 10(5))
. in a revised design for both beam and soil equations.

The deflection equations when f>>1 are derived as follows, bearing in mind that

mf=1 and pf=2f—1:
(i) When Y, is negative, f-system is positive:
Case 1: kg at centre and nk, at ends:

0

ko d nko ko n
2 _ Wy 2f—l Wy 1 _ 2W’0 7
S L £ L - S

Y—

Wo—mfwo_WO'l'PfWo: Wo[ _{_T]f_wo[ 1]

nko ko kop n k_o n
W 1T wy 1 % ,
_—ko[zf—1+n}—k0[1—n]_—kof. LSy

(ii) When Y, is positive, f~system is negative:
A case with f>1 will not occur in practice as stated before.

Case 5: kg is uniform, i.e. n=1:

2
The above equations also give Y= —TWO /, as eqn. (Ss).
0

8. Values of final deflection Y and coefficient f

As stated in para. 4, the final deflection Y should satisfy conditions for both beam
and soil properties. Therefore for a particular case, a beam equation and an appro-
priate soil equation for deflections have to be solved simultaneously to obtain the
values of Y and f with proper signs.

In connection with the deflection Y, in a particular beam equation, it is evident

LA : .
that when /<1, Y,=0-0037 WE_If This value of N=0-0037 may therefore be used in

all practical cases as a trial value for solving the equations. If from the solution the
absolute value obtained for fis <1, the result would be satisfactory; and if >1, a
revision in the coefficient would be necessary, which can then be judged easily from
fig. 6, bearing in mind the probable nature of distribution of F,.

It may be worth while to note that a higher value of N than anticipated for a beam,
if adopted, should normally give safer results, as the solution would yield lesser values
of fand Y. In doubtful cases, however, a problem may be solved with two beam
equations representing possible upper and lower limits in the values of Y,, and the
worse values of obtained moment and shear taken care of at each section. Similarly
in a case of doubtful variation in the foundation modulus along a beam, the solution
may also be carried out with two soil equations representing the upper and the lower
limits.
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IV. FINAL MOMENTS AND PRESSURES

9. Moments M,

These are obtained from force system F, when the value of fis determined from
the solution of the deflection equations. Referring to the Table I it would be clear
that even when the value of fis known, the moments M,, with central ordinate M.,
would depend upon the nature of distribution of force system F, in a particular case.

The M,-curve was considered in fig. 4 with value of f <1 and was of the third
degree. With the increase in the value of f, the shape of the curve tends to change
only slightly. For the convenience of obtaining values at intermediate points along
the length of a beam, it is sufficient to consider an M .diagram as triangular with the
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008 > /4
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N « « « Numbers m circles mdicale
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3} E3 X by distribution of Table I
28 3 2 © ;
S 8 8 3 004 2
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[ .S SN .

Mg = d/a_gram 003+
Mo=Q wi?
Fig. 11 0oz o)
o001+, s
0 L 1 £
0 ! 2 3
Fig. 12

ordinate M, at centre. Such a dlagram is shown in fig. 11 replacing the thu'd—degree
curve when f<<1. The differences in the ordinates are only little.

The values of A, under various cases are given in Table I in the form M,=Q . wL2,
where Q is a function of f. The values of Q under different cases can also be taken
from fig. 12 against the values of f. As stated in para. 6(C), cases 1, 3 and 5 of Table I
would normally cover all practical cases.

10.. Final moments M

At any section of a beam, the final moment M=2M,+4+ M, (para. 4), M, and M,
being opposite in signs. Note that M, would carry the sign of f.

11. Final pressures under a beam and settlements

From the value of f obtained, the pressures would be as follows (para. 6):
(1) when f<1, pn.x=wy+/Wy per unit area \
Pmm—wo_fwo 3 3 3]
(ll) Whenf>l pmax—szO ”» 23 93
pﬂ”ﬂ _0 bR 2 2
These would be clear from the pressure distributions shown in Table I. The balancing
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pressures B.P. due to the eccentricity of loading on a beam from force system F, are

also to be taken into account. 7
The settlements at various points in a beam can then be obtained from the related

pressures, employing eqn. (7:2).

V. ExaMPLES
12(a). Beam on soil with constant foundation modulus

Example 1*¥. A weightless beam 10 inches by 8 inches with the loading shown
in fig. 13(a) is resting on an elastic foundation having a modulus of 200 1b./in.3 The
elastic modulus of the beam material is 15. 106 1b./in.2 Obtain the moments and
pressures throughout the beam.

Thus, L=120 in., I=426-7 in.4, E=1-5. 106 Ib./in.2 and k(=200 Ib./in.3
Total load=P+489=>5,000+4,800=9,800 1b.

Bearing area of foundation=120. 10=1,200 in.2

?;2%:8-16 1b./in.2, and w=8-16 . 10=81-6 Ib./in. run.
Unbalanced moment and balancing pressures B.P.:

Considering w acting below and taking moments about point 6, unbalanced mo-

ment=>5,000 . 90+44,800 . 44—9,800 . 60=73,200 in.-1b.

Section modulus of foundation area

10. 1202
Z= 6 =24,000 in.}

73,200
24,000

Wo=

= 43-05 1b./in.2
=4-30-5 Ib./in. run

End pressures in BP.=4+-——

Moments M,
With the supenmposed load above and w and B.P. below values of moments

obtained are shown in Fig. 13(b).
Deflection ¥, :

From the M, diagram, the value of maximum deflection Y, is found conveniently
by the “Conjugate Beam Method™ at a section 54 in. from the left end as 0-0810 in.,
which is positive in value. (Approximation of the M, diagram by straight lines,
shown dotted, is permissible for this purpose.)

Beam equation:
Since Y, is positive eqn. (B,) of para. 7 applies,

81-6 . 1204
Y=+7Y, +N— f=+00810+0:0037 z—55—5e=

=4+00810400980f . . . . . . . . . . . (D

Soil equatlon
Since kg is constant and Y, is pos1t1ve eqn. (Ss) of para. 7 applies,

2w°f=—2 816f_-oosmf )

Solution: .
Solving eqns. (1) and (2) above, f=—0-45 and Y=+40-0368 in. The value of f

* The example is taken from Beams on Elastic Foundation, by M. Hetenyi, University of Michigan
Press, Ann _Arbor, 1946, p. 47.



384 _ All 3—S. P. BANERJEE
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obtained is <1, which shows that the value of N adopted in beam equation is suitable
(para. 8). Note that the value is in the negative system.
Moment M, :
Since f<<1 and Y, is +ve, case 5 of Table I applies. From fig. 12, 0=0-0187
against f=0-45.
—QOwL2=—0-0187 . 81-6 . 1202=—22,000 in.-1b.
This is the central ordmate of the triangular M, diagram.

Final moments M (in.-1b.):

Section M, Me M I Hetenyi’s values of M
2 +48,040 —11,000 +37,040 ' + 35,460 (calculated)
3 +29,700 —19,100 + 10,600 l

Centre + 30,000 —22,000 + 8,000 + 9,623
4 +27,870 i —16,150 +11,720
5 +10,880 — 7,340 + 3,540

These are shown in fig. 13(c), with the M, and M, diagrams superimposed.
Final pressures p (Ib./in.2): fwy=0-45.8-16=3-67

Section Wo Jfwo ~ BP. p ] Hetenyi’s values of p
1 +8:16 —3-67 +3-05 + 754 | + 607 '
Section of J |
max. defin. +8:16 +3-67 +0-31 +12:14 | +10-39 (centre)
6 1816 —3-67 —3-05 + 144 | 4 126
1

These are shown in fig. 13(d).
Settlements (inches): From eqn. (7:2), S=p/k,

Section S - ‘ Hetenyi’s values of S
1 7-54/200=0-038 | 003036
Near centre 12-14/200=0-061 0-05193
6

1-44/200=0-0072 0-00628

Settlements at intermediate pomts may be found by obtaining the relatwc deflections.
Fig. 14. shows the beam in its final position.

G.L.

Frnal position of beam
Fig. 14

12(b). Value of I for beam to control deflection

Example 2. What should be the value of I for the beam in example 1 if the
maximum deflection Y is not to exceed 0-02 in.?

Using the soil eqn., - Y=-—0-0816f,

+0-02=—0-0816f, L. f=—=0-245
C.R—25
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34-6 41 8
Withdrawing the value of I, the beam eqn. is expressed as Y=+— 7 f and
substituting the appropriate values
1 1 24-4
+0:02=7[346+41'8(—0-245)]=7(346—10:2)="F
24-4 '
—_——= in.4
I 002 1,210 in.

121 12.1,210 .
With 10 in. width, depth d= / J =11-32 in.

12(c). Value of I for beam to control pressure _
Example 3. 'What may be the value of I for the beam of example 1 if the maximum
pressure underneath is not to exceed 14 Ib./in.2?

We have seen that in the middle of the beam
Pmax=wy+/wy+B.P.=+8164+8:16/+0-31=+8-47+8-16/
14=+8-474-8-16f, .. =g—:%§=0-675 (in negative system).
From the soil equation, therefore, |
Y=—0-0816f=—0-0816(—0-675)=+0-055 in.
Withdrawing the value of I from the beam eqn.,

1
Y=3[346+418f]

and substituting the approprlate values

6-4
+0- 055——[34 6+41-8(—0- 675)]—7
6-4
o7 4
I= 0055 116 in.
With 10 in. width, depth d=N/12 i0116=5-18 in.

12(d). Beam on soil with variable foundation modulus

Example 4. Solve the problem in example 1 assuming that the modulus varies
from 200 Ib./in.3 at centre to 350 1b./in.3 at ends. Then, the beam equation, as before

Y=+40-0810+0-0980 . . . . . . . . (1)
Soil eqn.:
350
Y, is 4 ve, and in anticipation of <1, eqn. (S;) applies.
8:16 1 816 |
Y=—50"6 [H_FS] f+m[l_ﬁ] =—00683/+00135 . . . . . . (2)

Solving (1) and (2), f=—0-405 and Y=+0-0413 in. From fig. 12, case 5, Q=0-0168.
. M.=—00168 . 816 . 1202=—19,700 in.-Ib.
The diagram is represented by M., in fig. 13.
M, 19’;OO=+38,190 in.-Ib.
Dmax at middle  =+8164(0-405 . 8:16)4+0-31=11-77 Ib./in.2




SOLUTION OF BEAMS ON ELASTIC FOUNDATIONS 387

13. Beam with non-prismatic section having constant width

The procedure is the same as shown before except for a little adjustment involved
in the value of Y,. For this purpose an equivalent “constant moment of inertia’ is
obtained for the same amount of maximum deflection within the beam. The example,
which follows, will clarify the problem.

Example 5*. A continuous footing 30 ft. wide, having a cross-section as shown
in fig. 15, restson soil with a modulus of 300 kips/ft.> There is a line load of 150 kips/ft.
Tun at the centre and the elastic modulus of the material may be taken as 432,000
kips/ft.2 The weight of the beam is neglected.

300,000
Thus, ko=—=— 12 ——5—=173 1b./in.3 (uniform),
432,000,000
E=——>"—=3,000,000 Ib./in.2,

P=150 kips/ft.=150,000 1b./ft.
Considering 1 ft. length of footing as width of beam, bearing area=360 in. X 12 in.
Also ,

150,000 416
—— ; — e A in. 2
w=— 416 1b./in. run, and wy 2 34-8 1b./in.

The system F, is shown in (a). The loading being symmetrical about the centre
there is no B.P.
M,:

With the load P above and w acting below, the moments developed in the beam are
shown in (¢). The variations in the moment of inertia are shown in (b).

Y,:

To obtain the maximum deflection Y,, a diagram for M,/I is obtained first as in
(d). From this the maximum deflection at centre, ¥,=-40:196 in.

Y.:

Equivalent constant moment of inertia /. for the beam to give the same amount
of maximum deflection in the middle under force system F, is to be considered first.
For this purpose the beam is to be considered loaded at the centre with a concentrated
unit load when supported at the ends. This is reasonable, since the M, diagram is
nearly triangular, which is corresponding to the above condition of loading.

Let the moment diagram from the unit load be called M, and the maximum
deflection Y. Then the central ordinate of M diagram

— w.L 1.360
M=+ 7 =+ 7] =49 in.-lb. . . . . (13:1)
shown in (¢). The maximum deflection with I,
1 WL 1 1.3603 0-324
Yi=+=.—=+==. =+ in-lb. . (13:2)

48 ° El, 48 * 3,000,000 . I, I,
With the present variable 7, the maximum deflection Y is found from M, /I diagram
as in (f), and the value at centre

=+0-00,000,365in. . . . . . . . (13:3)
From eqns. (13:2) and (13:3),
0-324
Py — in 4 .
15_0_00’000’365—89,000 in. e e . (13:9)

* The example is taken from ‘‘Successive Approximation for Beams on Elastic Foundations,”
by E. P. Popov, Proc.A.S.C.E., May, 1950, vol. 76, Separate No. 18, p. 5.
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The procedure hereafter is as for a prismatic beam with constant moment of inertia /.

Beam equation:
Since Y, is +ve, eqn. (B,) applies.
416 . 3604

Y=+40-19640-0037 . 3,000,000 . 89, 000f—+0-196+0-097f i s w s m Tk
Soil equation:
ko being uniform eqn. (Ss) applies.
2.34-8
Y=— 73 f=-=0402f . . . . . . (@
Solution:
From eqgns. (1) and (2) above, f/=—0-392 and Y=+0-158 in.
M.:

Since case 5 of TablE I applies, from fig. 12, Q=0-0163.
e=—0-0163 . 416 . 3602= —880,000 in.-lb.

M (in.-1b.):
These are shown in (g).
p (Ib./in.2):
Swy=0:392 . 34-80=13-65
Section Wo i Swo P ’ Popov’s values of p
1 +34-80 —13-65 +21-15 ’ +18:85
4 : +34-80 +13-65 +48-45 +45-00

These are shown in (/).

VI. REMARKS

14. Remarks

Comparing the present method with that developed mathematically from differen-
tial equations for elastic lines, the solution is reliable for a beam having a value of
Al>}27, when Y, is negative, and
M7, when Y, is positive,

4 [bk
where A= 7 EOI and b=width of beam.
With higher value of Al the pressures are in error, as the deflection curve of the

beam develops reverse curvatures at distant points from the loads. The maximum
possible bending moment will not, however, exceed the value obtained by this method,
and in practical designs with reinforced concrete foundation beams, recourse may have
to be made to nominal reinforcements in the compression faces.

Summary
The forces acting on a beam are considered to be divided into two systems:
System 1, comprising the superimposed loads on the beam and the pressure
underneath such as would occur if the beam were perfectly rigid, due considera-
tion being given to the eccentricity of loading, if any, involving straight-line
variation of pressure, and
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System 2, comprising only the additional variation of pressure under the
beam due to deflections throughout from the average straight-line variation ob-
tained in System 1.

The additional pressure variation of System 2 related to the deflections is obtained
from consideration of

(a) the elastic properties of the beam, and
(b) the elastic properties of the soil.

This being known, the corresponding moment diagram is readily approximated.
This diagram, when superimposed on that due to System 1, gives the final moment
values throughout the beam.

The advantage of the method lies in obtaining readily

(1) the final bending moment diagram,
(2) the maximum deflection occurring in a beam, and
(3) the maximum and minimum pressures underneath.

Other advantages available from the theory include the determination of the
appropriate moment of inertia of a beam to control

(a) maximum deflection, and
(b) maximum pressure underneath.

The method can be applied to beams, prismatic or non-prismatic, with any kind
of loading and solutions give with comparative ease results which are reasonably close
to those obtained by accurate analysis. The paper includes illustrative examples
already solved by other methods.

Résumé
On considére que les forces agissant sur une poutre se divisent en deux systémes:

ler Systeme: comprenant les charges appliquées a la poutre et la pression
s’exercant en-dessous, telles qu’elles se présenteraient si la poutre était parfaite-
ment rigide, compte tenu éventuellement de I’excentricité de la charge, impliquant
variation de pression en ligne droite.

2¢éme Systéme: comprenant uniquement la variation additionnelle de
pression sous la poutre, due aux déviations d’un bout a I’autre, a partir de la
variation moyenne en ligne droite obtenue dans le ler systéme.

La variation additionnelle de pression du deuxiéme systéme, relative au déviations,
est obtenue par la prise en considération:

(a) des propriétés élastiques de la poutre,
(b) des propriétés élastiques du sol.

Celles-ci étant connues, on obtient sans difficulté une approximation de la courbe
du moment correspondant. Cette courbe, lorsqu’on la superpose a celle qui résulte
du premier systéme, donne les valeurs définitives du moment d’un bout a ’autre de la
poutre.

L’avantage de la méthode réside dans le fait qu’on obtient instantanément:

(1) la courbe définitive du moment de flexion,
(2) la déviation maximum se produisant dans une poutre,
(3) les pressions maximum et minimum en-dessous.
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Parmi les autres avantages offerts par cette théorie, il fait mentionner la détermina-
tion du moment d’inertie d’'une poutre permettant d’équilibrer:

(a) la déviation maximum,
(b) la pression maximum au-dessous.

La méthode peut étre appliquée aux poutres prlsmathues ou autres, avec
n’importe quelle sorte de charge et les solutions donnent, avec une facilité rclatwe des
résultats qui sont suffisamment proches de ceux que I’on obtient par une analyse
rigoureuse. L’exposé contient des exemples explicatifs déja résolus par d’autres
méthodes.

Zusammenfassung
Die auf einen Balken wirkenden Krifte werden in zwei Systeme eingeteilt:

System 1 umfasst die auf ihn wirkenden Nutzlasten sowie die auf der
Unterlage entstehenden Pressungen fiir den Fall, dass der Balken vollkommen
steif ist. Eine etwaige Exzentrizitit der Belastung wird dabei im Sinne eines
geradlinigen Verlaufs der Pressungen beriicksichtigt.

System 2 umfasst lediglich die zusitzlichen Aenderungen dieser Pressungen
entsprechend den Durchbiegungen, die von der fiir das System 1 gewihlten
mittleren geradlinigen Verteilung abweichen.

Die zusétzliche Aenderung der Pressungen im System 2 ergibt sich aus der Betrachtung

(a) der elastischen Eigenschaften des Balkens,
(b) der elastischen Eigenschaften des Untergrundes.

Diese Eigenschaften als bekannt vorausgesetzt, ldsst sich die entsprechende
Momentenlinie schnell und in guter Annidherung ermitteln. Sie ergibt, nach Ueber-
lagerung derjenigen des Systems 1 den endgiiltigen Momentenverlauf im Balken,

Der Vorteil der Methode besteht darin, dass

(1) der endgiiltige Momentenverlauf im Balken,

(2) die grosste Durchbiegung des Balkens,

(3) die grosste und kleinste Pressung der Unterlage schnell und leicht ermittelt
werden kann.

Als weiterer Vorteil ergibt sich aus der Theorie die Méglichkeit, das Tragheits-
moment eines Balkens zweckmaissig so festzulegen, dass
(a) die grosste Durchbiegung,
(b) die grosste Pressung im Untergrund innerhalb bestimmter Grenzen bleiben.
Das Verfahren kann auf Balken prismatischen oder nicht prismatischen Quer-
schnitts und fiir jede Art von Belastungen angewandt werden. Es liefert auf ver-
hiltnismaéssig einfache Weise Ergebnisse, welche mit den genauen Losungen gut
libereinstimmen. Der Aufsatz enthilt Beispiele, die zum Vergleich auch mit Hilfe
anderer Methoden geldst wurden.
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