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Théorie de Pinstabilité par divergence d’équilibre
The theory of instability through disturbance of equilibrium

Instabilitéitstheorie durch Storung des Gleichgewichts

JEAN DUTHEIL
Dijon

Les solutions classiques données aux problémes d’instabilité déterminent, en
général, une charge critique qui correspond a la limite entre deux états d’équilibre
différents: il y a bifurcation d’équilibre.

L’expérience ne fait pas apparaitre un tel changement d’état d’équilibre. En
général, dés le début de I’application de la charge, on constate une forme d’équilibre
stable, qui subsiste jusqu’a la ruine.

Il s’agit en fait d’un simple phénomene de statique dans lequel 1’état de con-
trainte du matériau et sa déformation interviennent pour déterminer |’affaissement.
A partir d’'une certaine contrainte, le caractere inélastique de la déformation est tel
que les moments extérieurs et intérieurs varient suivant des lois divergentes, il n'y a
plus d’équilibre possible, on dit qu’il y a instabilité par divergence d’équilibre.

On sait enfin que, théoriquement, la charge critique classique peut étre dépassée,
et le second état d’équilibre étre stable.

Dans les cas les plus défavorables, il ne peut y avoir, en tous cas, instabilité pour
une charge inférieure a la charge critique. Or, expérimentalement, la ruine se produit
pour des charges toujours inférieures aux charges critiques.

Si le rapport de la charge critique a la charge de rupture peut étre voisin de 1 dans
certaines zOnes, il peut aussi tendre vers l’'infini dans d’autres zones.

Cette contradiction entre la théorie et ’expérience n’est pas surprenante. L’allure
idéale d’un phénomene est toujours plus ou moins influencée, en pratique, par de
multiples causes qui peuvent le déformer au point de n’en laisser subsister qu’une
caricature.

Dans les problemes d’instabilité, la théorie ne considére que des éléments parfaits,
tant de forme que de structure et indéfiniment élastiques et résistants.

Les éprouvettes d’essai, comme les éléments mis en ceuvre, sont trés loin de cette
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perfection: les matériaux sont inhomogeénes, et ils ne sont élastiques qu’approximative-
ment, et dans certaines limites. Il en résulte que la déformation théorique est pro-
fondément altérée, et comme elle joue dans les problemes d’instabilité un réle
prépondérant, le phénoméne est lui-méme profondément altéré, au point qu’il
paraisse ne plus avoir de rapport avec son allure théorique.

- La notion classique d’instabilité par bifurcation d’équilibre est donc purement
abstraite. Elle ne peut évidemment suffire a 1’établissement de régles pratiques
rationnelles, qui doivent s’axer sur une concordance expérimentale étendue, et
s’inspirer d’'une conception cohérente de la sécurite.

Mais, quoique purement abstraite, cette notion conserve cependant une significa-
tion essentielle, et il est important de se pénétrer du caractére dualiste de la notion
d’instabilité.

Il est également important de remarquer qu’en raison du caractere aléatoire des
perturbations qui influent sur la stabilité, une conception rationnelle de la sécurité ne
peut étre que probabiliste. C’est sur ces deux principes essentiels que s’appuie la
théorie que nous exposons brievement dans son application aux deux problémes
fondamentaux d’instabilité: le flambement et le déversement.

. I LE FLAMBEMENT

LE FLAMBEMENT DES BARRES DROITES A SECTION CONSTANTE

Le probléme de la stabilité d’'une barre prismatique droite, articulée a ses deux
extrémités et soumise a une compression axiale est fondamental.

La théorie bien connue d’Euler le résoud dans le cas idéal d’une barre parfaite et
indéfiniment élastique et résistante: le bifurcation d’équilibre se produit pour la valeur
critique de la charge calculée par Euler:

w2 EI
c=“'l_2"

Pour une charge inférieure, 1’équilibre stable est rectiligne; pour une charge
supérieure, il est fléchi.

Il faut ensuite passer de la pi¢ce idéale & la piéce réelle. Au début, on a simplement
considéré que, puisque les barres utilisées en construction ont des proportions telles
que leur contrainte de rupture qui correspond a une courbe déformée trés tendue est
atteinte pour une charge trés peu supérieure a la charge critique d’Euler, celle-ci cor-
respondrait pratiquement a la rupture par flambement. Le fait d’avoir ainsi négligé
les déformations plastiques des matériaux et notamment de ’acier, a eu comme con-
séquences de nombreuses et retentissantes catastrophes et les controverses bien con-
nues entre Eulériens et non-Eulériens.

Ces controverses n’ont abouti qu’a des formules empiriques de raccordement se
substituant a la formule d’Euler, dans les zones ou elle est inapplicable.

Un certain nombre de chercheurs ont cependant essayé d’échafauder une théorie
du flambement par divergence d’équilibre, se basant sur le fait expérimental incon-
testable que I’équilibre fléchi apparait pour une valeur de la charge trés faible et large-
ment inférieure a la charge critique d’Euler.

Nous pensons avec eux que ces constatations montrent que la théorie par blfurca-
tion d’équilibre est une abstraction. L’expérience reste notre grande maitresse, et il
serait vain d’aller contre ses enseignements. ,

L’instabilit¢ de flambement se produit réellement par divergence d’équilibre, et
c’est cette constatation qui doit étre a la base de toute solution réaliste.
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Quelles sont donc les causes de cette apparition prématurée de 1’équilibre fléchi?
Elles peuvent se classer en deux catégories:

(1) Défectuosités de structure: Les matériaux sont inhomogenes, leurs propriétés
mécaniques variables dans leur masse, ainsi que leur état de contrainte
interne.

(i1) Defectuosztes de forme: Défaut de rectitude, de centrage pour ne citer que
les principaux.

Quoi qu’il en soit, le probleme réside dans la recherche d’une interprétation des
effets de ces différentes défectuosités, au moyen d’une hypothése les rendant acces-
sibles au calcul.

On est ainsi amené a supposer la piece en matériau parfaitement homogene, doué
de propriétés élasto-plastiques bien définies, mais présentant initialement certaines
défectuosités de formes.

Partant de I’hypothése ainsi posée, on peut calculer la contrainte maximum dans
la barre. Une certaine valeur de cette contrainte amenant l’affaisement, on peut
calculer la charge correspondante, ou charge critique probable. Une comparaison
avec les essais, renseigne sur la validité de I’hypothése admise.

Des tentatives de ce genre ont été faites par de nombreux auteurs. Surtout pour
Pacier, la nature de I'imperfection initiale a été, suivant le cas, une fléche initiale ou

.une excentricité initiale ou une combinaison des deux.

Toutes les hypothéses émises présentent le caractére commun de n’exprimer
I'imperfection initiale qu’en fonction de certaines dimensions caractérjstiques des
piéces, telles que: longueur, demi-hauteur de la section droite, rayon du noyau central,
etc.

Il est certain qu’une telle conception ne peut avoir qu’une validité tres limitée. On
peut considérer, en effet, que dans le cas d’éprouvettes usinées, les défectuosités de
forme: courbure initiale et excentricité de charge, peuvent étre suffisamment réduites
pour n’avoir que des effet absolument négligeables. La flexion prématurée est donc
dflie & peu prés uniquement, aux défectuosités de structures.

Ces défectuosités de structures ne pouvant se manifester que sous contrainte, il
est clair que la défectuosité conventionnelle qui interpréte leurs effets, doit étre fonc-
tion de cette contrainte.

Toute expression d’une fleche initiale, ou d’une excentricité initiale qui n’est fonc-
tion que des dimensions de la piece, ne peut donc étre considérée comme valable que
pour un matériau bien déterminé, car elle admet implicitement que la contrainte qui
lui correspond est la limite d’écoulement du dit matériau.

Ces considérations éliminent donc ’excentricité en tant que moyen d’interprétation
des défectuosités inévitables. On ne voit pas bien, en effet, comment on pourrait
justifier la variation nécessaire de la dite excentricité avec la nature du matériau.

Il reste donc la fléche initiale, avec la nécessité d’affecter son expression d’un coeffi-
cient variable avec le matériau, ou les nuances d’un méme matériau. Ceci laisse
prévoir les difficultés qui surgiraient dans le cas de I’application a des barres a treillis,
et a des problémes plus complexes.

Ces considérations préliminaires suffisent & expliquer I'insucceés des différentes
tentatives connues.

Elles montrent également que les hypothéses d’une fléche initiale ou d’une ex-
centricité initiale doivent étre abandonnées, en leur substituant celle d’une preﬁéche
conventionnelle, fonction de la contrainte.

L’expression de cette préfléche conventionnelle ne sauralt étre quelconque si ’on
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veut aboutir 2 une solution générale; elle doit satisfaire a certaines conditions que
nous allons examiner successivement.

Elle doit satisfaire aux lois de la flexion sinusoidale

Dans les essais de flexion simple, opérés sur des poutres d’acier doux par exemple,
on peut constater des fluages locaux qui ont comme conséquence une certaine majora-
tion de la déformation. On constate d’ailleurs que, pour I’ensemble de la poutre, la
loi déformation/allongement reste sensiblement linéaire tant que la contrainte maxi-
mum reste au-dessous de la limite d’écoulement, et méme un peu au-dessus en con-
séquence du phénoméne d’adaptation dans la section.

On pourrait donc, pour déterminer la fleche réelle, calculer d’abord la fieche
élastique théorique, et lui ajouter une fléche complémentaire d’inhomogénéité,
Puisque la déformation reste sensiblement linéaire, I’expression de cette fleche com-
plémentaire aurait, a un coefficient pres, la méme expression que la fleche théorique
d’élasticité pure.

En flexion sinusoidale, la fleche élastique d’un poutre de longueur /, de moment
d’inertie 7, coefficient d’élasticité E, sous moment maximum au milieu M, s’exprime par:

M, 12
S=m2Er
La fleche complémentaire d’inhomogénéité s’exprimerait donc par:
M, 12 W
f CZ—EI—CHfN e e e e e e e . (1)

dans laquelle:
C=constante expérimentale
ng=contrainte maximum de flexion au bord de la section médiane
W=module de section (I/¥ pour une pi¢ce pleine)
N.=n2EIfI2, charge critique d’Euler.

En flexion simple, cette fléche complémentaire est pratiquement sans importance.
Quand il s’agit de flambement, il n’en est plus de méme. L’inhomogénéité du
matériau crée dés le début de I’application des charges, une dissymétrie des déforma-
tions qui provoque une flexion influant directement sur la contrainte au bord de la
section médiane, et ’on ne peut négliger cette conséquence.

Il résulte de notre exposé préliminaire, qu’on ne peut rationnellement interpréter
les effets de cette défectuosité que par la considération d’une préfléche conventionnelle

fonction de la contrainte.
Les considérations suivantes précisent la forme a donner a cette préfleche con-

ventionnelle.

On sait que la flexion de flambement suit trés sensiblement la loi sinusoidale. Or
a mesure que I’élancement augmente, le flambement se rapproche de la flexion simple,
puisque la contrainte de compression diminue. A la limite pour un élancement
infiniment grand il faut donc que ’expression de la préfiéche conventionnelle tende
vers ’expression (1).

Cette condition est indispensable si I’on veut aboutir a une solution générale qui
raccorde le flambement a la flexion simple.

La contrainte maximum 7, au bord de la section médiane étant la somme d’une
contrainte de compression simple » et d’une contrainte de flexion #y, il en résulte qu’il
n’y a d’ores et déja, que deux expressions possibles de la préfléche conventionnelle:
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w
fo=Cnm7v—c

w
fa= Cnf E .

Elle doit étre théoriquement correcte

Nous entendons par la que, si ’on suppose nulle
la préfleche conventionnelle, la piéce redevenant ainsi
parfaite, les charges critiques de la théorie par diver-
gence d’équilibre doivent devenir identiques a celles de
la théorie par bifurcation d’équilibre. En supposant
un matériau parfaitement élastique jusqu’a sa limite
d’écoulement »,, le diagramme idéal de la contrainte
critique de flambement est représenté en ABC sur la
figure 1.

Dans la théorie par divergence d’équilibre, on
admet que l’affaissement se produit lorsque la con-
trainte maximum au bord de la section médiane est
égale a la limite d’écoulement du matériau. En fait,
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c’est pour une contrainte légérement supérieure que l’affaissement se produit du fait
de I’adaptation de plasticité, mais dans le flambement pur, I’erreur commise, en se

limitant a n. est négligeable.

Tenant compte qu’en flexion sinusoidale le facteur d’amplification de la fléche

sous la contrainte axiale n;, est:
e
nc_n:

la contrainte d’affaissement n, se calculera en posant:

n S,

ne

n,+

dans laquelle:

Q=surface de section de la barre
n.=contrainte critique d’Euler
w2 E

y2

Yo
Q

He=

/
y=élancement=;

I=longueur de la piece

T =He .
W nf_nz ¢

r=rayon de giration dans le plan de flambement.
Avec I’expression (2) de f,, on arrive a I’équation du second degré:

n2—n. [nc+n. (C+1)]4+nen.=0 .

dont la solution est:
ny=n4—V n2—ncn,

avec: na=% [ne+n. (C+1)]

}

@

)

(6)

Pour une valeur déterminée de C, la variation de » en fonction de y se fait suivant

une courbe ayant I’allure AD indiquée en pointillé sur la figure 1.

Si I’on fait C=0,

ce qui revient a supposer la piéce parfaite, on voit qu’on a bien:
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n.=n, pour n.n,
n.=n, pour n.Mn,
L’expression (2) satisfait donc a la condition posée: la courbe de #. en fonction

de y coincide avec ABC. _
Avec 'expression (3) de f,, on arrive a I’équation:

n2(C+1)—n; n. (C+D+nJ+n.n=0 . . . . . (7

On voit qu’en faisant C=0 dans les équations (5) et (7), elles deviennent identiques.
L’expression (3) satisfait donc également a la condition posée.

Elle doit assurer la concordance expérimentale

Le caractere aléatoire des imperfections, les variations constatées dans la valeur
de la limite d’écoulement d’'un méme matériau, 'influence de I’adaptation de plasti-
cité, sont autant de causes de dispersion dans les essais de flambement. Pour vérifier
une concordance expérimentale, il faut donc disposer, autant que possible, d’un grand
nombre de points d’essais. Les essais de Tetmayer sur I'acier doux sont, a ce point
de vue, parmi les plus intéressants.

La valeur de la limite d’écoulement 7, & prendre en compte, doit étre la valeur
moyenne d’un grand nombre d’essais.

Il résulte des essais de traction, effectués récemment sur dix mille (10 000)
éprouvettes en acier doux ordinaire, par la Chambre Syndicale des Entrepreneurs de
Construction Métallique de France, et la S.N.C.F., que cette valeur moyenne ressort
a 28,6 kg./mm.2 En prenant cette valeur pour n, et C=1/12 dans la formule (6) don-
nant n, en partant de ’expression (2) de la préfleche conventionnelle on voit que la
courbe de n., en fonction de I’élancement y passe sensiblement par la moyenne des
points d’essais de Tetmayer (courbe | fig. 2). La concordance expérimentale de
I’expression (2) peut donc étre considérée comme aussi bonne que possible pour
I’acier doux ordinaire. Yo

Toujours avec C=1/12, elle parait d’ailleurs 5 |-
aussi bonne pour l'acier 4 haute résistance, le N
duralumin, le bois de construction (sapin blanc). 2« ;-U%
(Essais de RoOs, Publication Préliminaire du ler :
Congrés de ’'A.I.P.C.). 2 e

Partant de I’expression (3) de f,, on peut égale- m \ 7\
ment tracer la courbe de variation de #; en fonction o\
dey. Avec C=1/12, la concordance semble bonne ;» \
pour les grands élancements mais beaucoup moins
bonne pour les petits et moyens; la courbe calculée & N R
passe nettement plus haut que la moyenne des NS N
points d’essais. On ne peut trouver de valeur de ¢ * ~]
donnant une concordance aussi bonne qu’avec /
C=1/12, et I’expression (2). Il y a donc ici nette- 20 60 w00 o w80 220 T
ment avantage en faveur de 'expression (2). Fig. 2.

AN AT T

Elle doit permettre une conception probabiliste de la sécurité

La conception de la sécurité est évidemment le point le plus faible des méthodes
de calcul au flambement dérivant directement de la théorie par bifurcation d’équilibre.
On ne peut obtenir en effet autre chose que la valeur d’une contrainte critique de
flambement concordant plus ou moins avec les essais. De ces valeurs critiques, on
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passe aux valeurs admissibles par I’application d’un coefficient de sécurité. Mais
c’est 1a que se présente la difficulté, on ne peut prendre un coefficient de sécurité
unique pour tous les élancements. Pour I’acier doux par exemple, si I’on prend 2,5 ou
3 par rapport a la charge critique d’Euler, on ne peut conserver ce chiffre pour les tres
petits élancements car on arriverait a ne travailler qu’a 8 ou 9 kg./mm.2, en compres-
sion simple. Inversement, le coefficient de sécurité normalement admis en compres-
sion simple étant de 1,66, qui oserait I’appliquer aux grands élancements par rapport
a la charge critique d’Euler? On s’en tire donc en faisant varier empiriquement la
valeur de ce coefficient de sécurité avec 1’élancement.

Cependant, en toute rigueur, si les contraintes critiques calculées sont bien réelles,
les coefficients de sécurité différents aménent évidemment a I’inverse du résultat qu’on
se propose normalement d’obtenir, et qui est ’homogénéité du degré de sécurité entre
les différents éléments d’une construction; il ne viendrait pas a 1'idée de mettre dans
une chaine de levage des maillons de différentes résistances.

Il ne faut pas étre difficile pour admettre un procédé qui, contraite a toute logique,
consacre en fait I’échec de la théorie par bifurcation d’équilibre.

Cet échec est inévitable si I’on ne veut pas considérer, malgré leur évidence, les
perturbations apportées par les défectuosités.

Ces perturbations étant aléatoires, la conception de la sécurité ne peut étre que
probabiliste. Une contrainte critique calculée ne peut étre qu’une contrainte critique
plus ou moins probable qui ne peut constituer la base d’une conception rationnelle
de la sécurité.

Le probléme du flambement n’est qu’un probléme de résistance des matériaux
comme les autres, et de ce fait, justiciable des mémes méthodes.

En traction simple par exemple, la contrainte critique est la limite d’écoulement.
Sa valeur, pour I’acier doux, varie de 22 4 35 kg./mm.2, et sa valeur moyenne a été
calculée a 28,6 kg./mm.2 sur 10 000 essais. On n’applique cependant pas le coefficient
de sécurité par rapport a ce chiffre, mais par rapport a 24 kg./mm.2, car on estime que
la probabilité de se trouver devant une valeur inférieure est suffisamment faible.

De méme le cas du flambement, n, étant la contrainte probable d’affaissement, il
faut déterminer ns, contrainte limite d’affaissement, telle que la probabilité d’observer
une valeur inférieure, soit suffisamment faible. Et c’est par rapport a n; que le coeffi-
cient de sécurité doit étre appliqué et non par rapport a n,; enfin, ce coefficient de
sécurité doit étre unique et valable pour tous les élancements.

n; doit se déduire de »;, par le jeu d’'une majoration du coefficient expérimental C,
en tenant compte d’autre part, des deux conditions suivantes:

Pour un élancement nul, il faut prendre pour #. la valeur limite et non la
valeur moyenne, par exemple pour I’acier doux, il faut prendre 24 kg./mm.2 et
non 28,6 kg./mm.2

Pour un élancement infiniment grand, il ne faut pas que la valeur de n, tende
vers n., le rapport n./n; de la contrainte critique d’Euler a la contrainte limite
doit tendre vers une valeur finie, plus grande que 1 quand I’élancement croit

~ indéfiniment. :

Partant de I’hypothese (2), la valeur de s, est donnée par la méme expression (6)
que 7., étant entendu qu’on donne a #n, la valeur limite, et qu’on substitue a C un
coefficient C'’>C.

La valeur de n; peut donc se mettre sous la forme:

l—n.n,
ns=ny 1— T
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Quand I’élancement devient trés grand, . tend vers zéro, on peut développer le
radical en série et ne conserver que les deux premiers termes, d’ou:

— [1_ (l_nc ne)] _Me Me
: 2n,42 2n4
Conen, ne
~(+Chn. 1+C

don: :1—15=1+C’...........(8)

En prenant C'=5C=1/2,4, on ne constate aucun point d’essai en dessous de la
courbe de n; en fonction de y.  Cette courbe est tracée pour I’acier doux en 2 sur la
figure 2.

Partant de I’hypothése (3), on obtiendrait encore pour un élancement infiniment
grand:

S

s

Elle doit permettre I’ établisement de formules pratiques suffisamment simples

L’examen des équations (5) et (7) montre immédiatement que I’avantage de la
simplicité est entiérement en faveur de ’hypothése (2) qui reste donc finalement la
seule a retenir.

CONCLUSION

Une opinion répandue jusqu’a présent était qu’on pouvait faire, sur les imperfec-
tions initiales, un nombre a peu pres illimité d’hypothéses valables. Effectivement, il
y en a eu beaucoup d’émises; un certain nombre d’entre elles sont énumérées par M. le
Prof. Massonnet dans son article “Réflexions concernant I’établissement de prescrip-
tions rationnelles de flambage des barres d’acier” (Ossature Métallique, No. 7-8,
juillet-aolit 1950); d’autres par M. le Prof. Campus dans son article ‘“ Réflexions sur
la Méthode de M. Dutheil pour le calcul des pieces comprimées et fiéchies’ (Ossature
Métallique, No. 1, janvier 1951).

De toutes ces hypothéses, aucune ne répond a toutes les conditions posées, et ne
peut sérieusement étre opposée a notre hypothese (2) qui semble, seule, permettre une
solution simple, génerale et cohérente du probléme. Elle illustre bien notre opinion
que la théorie du flambement par bifurcation d’équilibre, tout en n’étant qu’une
abstraction, conserve cependant une signification essentielle: I’expression (2) de la
préfleche conventionnelle, renfermant en effet le terme »n., charge critique d’Euler, et
dans toutes les formules qui en découlent on retrouve la contrainte critique d’Euler 7,
et la limite d’écoulement #,. Elle est donc fondamentalement Eulérienne.

FORMULES D’APPLICATION
Pour tous les élancements, on peut calculer #; par:
ny=ny—V'ng2—n, n,
avec: ng=% [n.+n. (C'+1)] } ce e O
En posant: k=n,[n,, on peut aussi donner un tableau ou une courbe des valeurs de &

en fonction de I’élancement.
La condition a vérifier sera alors:
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nk<R |. « o v . . . . .. @0

dans laquelle:

R=contrainte admissible
n=contrainte de compression simple
k=coefficient de flambement.

C’est la méthode suivie dans les Reégles d’Utilisation de I’acier, applicable en
France, aux Travaux dépendant du Ministére de la Reconstruction et de I’Urbanisme,
et aux Travaux Privés. (Reégles CM 46).

Notons que, dans ces Régles nous avions exprimé la fléche initiale par:

, Ne 1?2
f;=C7T2E7 w ® w « » & 3 & & K11

' Cette fleche initiale n’était que la préfléche conventionnelle correspondant a une
contrainte au bord de la section médiane égale a n,, soit une valeur particuliére de:

W
fo=Cltmgr o (12)

qui peut étre considérée comme une généralisation de (11). Cette généralisation
présente des avantages dans certains problémes complexes de flambement et pour
l application a différents matériaux.

PROBLEMES COMPLEXES DE FLAMBEMENT
Poutres composées de membrures assemblées par treillis ou barrettes

Une telle poutre composée, comprimée axialement se comporte du point de vue
de la forme d’équilibre, comme une poutre prismatique, c’est-a-dire qu’elle prend, dés
le début de ’application de la charge, une position d’équilibre fiéchi. Il en résulte
que les trongons de membrures sont inégalement comprimés, et qu’il y a certainement
danger a considérer que la charge se répartit également, comme on doit logiquement
le faire dans la méthode par bifurcation d’équilibre. Ce danger, confirmé par
I’expérience, est apparu d’ailleurs a un certain nombre d’ingénieurs qui ont essayé d’y
remédier par I’emploi de formules empiriques.

Notre méthode donne une solution immeédiate a ce probléme: la contrainte maxi-
mum au bord de la section médiane et déterminant I’affaissement, ne doit plus étre
prise égale a n,, mais a n,, contrainte limite d’affaissement du trongon de membrure
qui est connue puisqu’il s’agit d’une barre prismatique.

Partant de I’expression (12), on exprime la contrainte n,, par:

ne—on
ou, en posant:
k":#j—c’) avec: p=
n,=nk,
Alors que dans une poutre prismatique, la condition a vérifier serait:
nk,<R

dans le cas de la poutre a treillis, elle devient:
nko<nme |. . . . . . . . . . (13
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ny étant la contrainte limite admissible du trongon de membrure soit:

np=nc

Prise en compte de la déformation d’effort tranchant
Dans les poutres simplement fléchies, on néglige en général cette déformation qui

n’a pas grands inconvénients.
Dans les poutres comprimées axialement, la flecche complémentaire qui en résulte
provoque une augmentation de la contrainte au bord de la section médiane, elle a

donc une influence directe sur la stabilité.
Considérons d’abord le cas ou la raideur propre des membrures est négligeable

devant celle de I’ensemble de la poutre.
La déformation d’effort tranchant peut s’assimiler & une diminution du module de

raideur EI de la poutre, ce module devenant: -
' EI/X avec A>1
On établit facilement la valeur de A:
n. £
A=] +E 0.
dans laquelle:

G=module d’élasticité transversal
2=section totale des membrures
Q,=section de I’ame équivalente.

Il en résulte immédiatement que la contrainte critique d’Euler 7. devient:
n'c=nA
et le facteur d’amplification de la fleche:
i’
nc

n’c‘—n
(ces deux propriétés pouvant s’établir d’ailleurs directement par ’analyse).
Le probléme est ainsi simplement résolu, il suffit de remplacer ». par »'; dans les
formules qui précédent, et la condition a vérifier devient:
nk'o<n1,|.........(l4)
Si la raideur des membrures est appréciable, on établit facilement que le module
de raideur devient:

: E (I/]x+2Zi)
dans laquelle:
Zi=somme des moments d’inertie des membrures
I=moment d’inertie de l’effet poutre, c’est-a-dire calculé sans tenir compte

des i des membrures.
On en déduit:

, 1 i

nc—nc(/\-l——f) 2 % B 3 % @ % 8 u 12}

Remarquons en passant qu’a notre connaissance cette valeur de la contrainte
critique d’Euler n’a jamais été calculée. Timoshenko, dans son ouvrage Théorie de la
Stabilité Elastique, ne considére que le cas ou la raideur des membrures est négli-
geable. L’influence de cette raideur est cependant, dans certains cas, importante;
l’erreur commise en la négligeant peut étre supérieure a 20 %;.
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Détermination de I’effort tranchant de flambement

Ce probléme a fait couler beaucoup d’encre et donné naissance a de nombreuses
formules plus ou moins empiriques mais la plupart trés divergentes.

11 se trouve ici résolu immédiatement.

En négligeant la déformation d’effort tranchant, n &, représente la contrainte totale
au bord de'la section médiane. La contrainte de flexion est donc:

nko—n=n(k,—1)
et comme il s’agit de flexion sinusoidale, I’effort tranchant maximum est:

T=W"—;n(ko—1) N ¢ 1)
L |
Dans le cas ou déformation d’effort tranchant est appréciable, il suffit de remplacer
n. par n’, et de substituer a k,, dans I’expression (16), la valeur correspondante de k'.

Poutres fléchies et comprimées

La prise en compte de la préfleche conventionnelle permet de donner a ce probléme
une solution rationnelle, et d’obtenir le raccordement total entre la flexion simple et
le flambement.

Par crainte d’abuser de la place qui nous est réservée, nous renvoyons le lecteur
au texte de la conférence que nous avons eu I’honneur de présenter & la Tribune de la
Société Royale Belge des Ingénieurs et Industriels, le 3 mai 1950, et publiée dans le
Bulletin No. 3, 1950, de cette société. '

Ce texte sert de base a la révision du texte concernant le flambement dans les
Regles CM 1946, révision demandée par la Chambre Syndicale des Entrepreneurs de
Construction Métallique de France. Le nouveau texte marquera d’importants pro-
gres et sera plus simple.

Nous espérons que les exemples qui préceédent suffiront cependant pour donner une
idée des possibilités de cette méthode.

Par elle, et du fait de sa conception probabiliste de la sécurité, le probleme du
flambement cesse de présenter le caractére particulier qui le distinguait des autres
modes de sollicitation, et la Résistance des Matériaux y gagne en cohérence.

II LE DEVERSEMENT
LE DEVERSEMENT DES POUTRES DROITES FLECHIES

Une poutre droite fléchie dans un plan de symétrie peut étre instable sous une con-
trainte maximum trés inférieure a sa limite d’écoulement. Suivant ses proportions,
il arrive qu’elle flambe latéralement on dit qu’elle se déverse.

Il s’agit d’un probléme d’instabilité qui présente de grandes analogies avec celui
du flambement.

La théorie bien connue de Timoshenko (Annales des Ponts et Chaussées, fasc. 111,
IV et V, 1913, et son ouvrage—Théorie de la Stabilité Elastiqgue—lui donne une solu-
tion dans le cas d’une poutre parfaite, et en matériau indéfiniment élastique et résistant.
La bifurcation d’équilibre doit se produire théoriquement pour la valeur critique du
moment calculée par Timoshenko dans différents cas de charge, et différentes formes
de section.

Pour un moment inférieur, I’équilibre stable reste plan; pour un moment supérieur,
il devient gauche. Mais cette théorie n’est pas plus confirmée expérimentalement que
celle d’Euler.
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En fait, le gauchissement apparait dés le début de I’application de la charge, et
I'instabilité se produit par divergence d’équilibre, comme dans le flambement. A ce
point de vue, les expériences de déversement effectuées courant 1951 par I’Institut
Technique du Batiment et des Travaux Publics, sur des I.P.N. soumis & moment con-
stant, sont caractéristiques. Les formules de Timoshenko présentent d’ailleurs les
mémes dangers que celles d’Euler.

Hormis quelques formules empiriques, la plupart sans grand fondement, il n’y a
pas eu de tentative qui mérite d’étre rapportée en vue d’établir une théorie de déverse-
ment par divergence d’équilibre; c’est cependant bien ainsi que se produit I'instabilité,
et c’est cette constatation qui doit étre a la base de toute solution réaliste.

S’il n’y a pas eu de tentative sérieuse, alors qu’elles ont été si nombreuses dans les
cas du flambement, c’est que le probléme est ici infiniment plus complexe.

Considérons une barre rectangulaire étroite, rectangulaire, fléchie dans son propre
plan sous un moment constant M. Sur les appuis, il y a une seule liaison des sections
terminales: toute rotation est impossible autour de I’axe OX (fig. 3).

e

L} 12
& f A8
e
4 b l
l —"ér‘—

Fig. 3.

Supposons une position d’équilibre accompagnée d’un légef fléchissement latéral.
La méthode de I’énergie permet de déterminer la forme d’équilibre; on sait que le
déplacement latéral du centre de gravité de la section est a variation sinusoidale.

. T
de méme que I’angle de torsion:
d=d, sin 7—; x

Considérons dans la section, et sur toute la longueur / de la barre, une tranche
infiniment mince AB a la partie supérieure de la zone comprimée. Cette barre pris-
matique €élémentaire uniformément comprimée, tend a flamber latéralement, mais les
réactions élastiques de la barre entiere s’opposent & ce flambement. Ces réactions

qui proviennent de la raideur de flexion d’une

1 Y _H part, et Fle la raideur de 'for.sion d’gutre part,
. sont évidemment & variations sinusoidales
7 4_19_ _____ L /1} puisque proport.ionne'lles aux déformations.
| / La barre prismatique élémentaire se trouve
held | |1 X ____xdonc exactement placée dans les conditions d’une
= of % /16 barre soumise au flambement dans un milieu
' o /_ . €lastique. On sait, en effet, que dans ce cas, la
2% Te T ligne élastique en position d’équilibre fléchie est
0, sinusp%’dale et que, par conséquent, les réa‘lctions
Ly a du milieu élastique sont elles-mémes & variations

Fig. 4. sinusoidales.
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Si nous connaissions la constante du milieu élastique correspondant a la barre
élémentaire, le probléme pourrait étre considéré comme résolu.

Du fait de la variation de la contrainte dans la section le long de I’axe OZ, le calcul
de cette constante est inextricable. La difficulté peut étre tournée au moyen de I’arti-
fice suivant: On peut délimiter, dans la section de la poutre, deux membrures fictives
(fig. 4) d’épaisseur e, qui seraient soumises 4 une contrainte uniforme:

.
/14
dont le moment résistant serait égal a M.
Il suffit d’écrire:
bh?
T3 n=eb(h—e)n
d’ou: g e=0,212A

On peut concevoir une poutre composée idéale, dont les membrures seraient celles
que nous venons de définir, et dont les liaisons entre ces membrures seraient telles que
la raideur de torsion et la raideur de flexion latérale de la poutre composée soient les
mémes que celles de la barre réelle.

La poutre composée idéale ainsi définie posséde la propriété remarquable d’avoir un
contrainte critique de déversement égale a celle de la poutre réelle.

Nous en donnons ci-dessous la démonstration.

On congoit immédiatement la simplification apportée au probléme tel que nous
I’avons posé, et il ne s’agit plus que de la stabilité au flambement d’une barre pris-
matique déterminée, dans un milieu dont on connait les réactions élastiques. Ce
probléme est classique, au moins si ’on reste dans I’hypothése de piéces parfaite est
indéfiniment résistantes.

Considérons (fig. 5) la section médiane de la z
poutre dans une position d’équilibre légérement |
fléchie. Nous ne faisons aucune hypothése sur o
la forme de section que nous supposons seule- 1—4
ment doublement symétrique. Nous ne la |
représentons rectangulaire que pour fixer les |
idées. |

La zbne 1 correspond a la membrure com- ;
primée de la poutre composée idéale; cette | |
membrure a un moment d’inertie transversal 7|, I
et une section £2,. 4

Les mémes valeurs s’appliquent a la mem- ——
brure tendue 2, a la zéne neutre 3 correspon- . -

dent i’ et £, & I’ensemble de la section i et £2. L_’—>
Fig. 5.

éo=valeur maxima de la rotation

f=fléche de la membrure comprimée

f'=fieche de la membrure tendue

po=Vvaleur maxima de la réaction de raideur de torsion

ro=valeur maxima de la réaction de raideur de flexion
/=longueur de la poutre

E=module d’¢élasticité de traction

G=module d’élasticité transversal

I,=moment d’inertie de torsion de la section

i

>

1

8

I I S
]

1
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ney=tension critique d’Euler de la membrure tendue (ou de la membrure
comprimée)
d=coefficient de majoration du moment d’inertie de la membrure tendue:
o=1 +n/ Ney
T/=module de résistance de la section (dans le sens vertical)
d=distance entre c. d. g. des membrures
M,=valeur maxima du moment de torsion.

Les équations d’équilibre donnent entre les différentes valeurs maxima définies

ci-dessus:
' I o YR . - i
=g ['=gpn =00
- d
M,=P,,d+roi=a¢o

expressions dans lesquelles a, b, ¢, sont des constantes: )
2 : ]4 [4

o
o =Gl Y=5Ey CoE
De ces expressions, on tire la relation:
. . A—B
J f8+A+B x i
ab b
avec: . | A=Ei—2 B=:12’

Le moment par rapport a la section médiane des réactions €lastiques s’opposant au
flambement de la membrure comprimée est:

12
Mo"—"(po"{“ro)w_z
’iT Ell

Or: Po =f =M

_f+f’_ 1+)\7r4 Ei'
o= 3 TH

o 2 Ei,8 A+1w2Ei
d’ou: ‘Mo—f(,. 11+ 5 wl, )—N]f
" |
d’ot: b—1=n1=nﬂs/\+(l\+1)nﬂu. v ww &8 oa po@h
1
. _7
avec: u—2ll

La tension critique de la membrure comprimée, qui est aussi celle de la piece réelle,
est donc:
H—= nl-}—nq—ncl(S/\—l—1)+(A+I)n¢1 s « « & e (18

équation du 2° degré en n qui, résolue, donne:

n=naV2A+1) (u+1) l. N (1)
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1 GI I? i’ w2 Ei,

avec. A= 2E11 d2 u=-2—i1 ﬂcl=m51“

Cas d’une section rectangulaire en acier doux

. ’ G 2 w2 Ei
i1=0.212i, d=0,188h, z=%, ny=n-=—rr0, u=136
La formule (19) devient: »
| n=ng LS3SV2AHL | . ... ... (0)
I, 12
avec: A=0,308 ',2

Cas d’une section en double té en acier doux

On a sensiblement: u=0 d=h
_71'2 Eil_ 0 V2_ V\2
ncl—m_nc 7—nc o

p ¢tant le rayon de giration dans le plan de I’dme et ¥'=x, n. étant la tension critique

2’
d’Euler de la barre dans le sens de son plus petit moment d’inertie.
La formule (19) devient:

Ry E T I ¢))
I 12
avec: : A= 00812—’]—2

Comparaison avec les formules obtenues par les méthodes classiques

Pour la section en double t¢, M. Timoshenko arrive & I’expression suivante de la
tension critique:

14
n=s 777\/51' G IV 1+ a2

' m2a? h? Ei w2 6165 [ h?
avec: ~ 12 - 1222G1 112

On peut vérifier que cette expression est identigue a (21)

Pour la section rectangulaire, I’expression de la tension critique obtenue par
M. Timoshenko est:

Vo
i’l=“1' 7'\/El G I,
expression identique a: B
n=n, 1,535v/24

donc différente de (20) par la suppression du chiffre 1 sous le radical.

Cette différence s’explique aisément. Dans une barre rectangulaire étroite, ayant
une extrémité encastrée et I’autre soumise a un moment de torsion, I’encastrement
s’oppose au gauchissement d’une tranche mince quelconque située a une distance d du
c.d.g. Ellesubit de ce fait une déformation de flexion qui influe sur I’angle de torsion.

C.R—19
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Cette déformation complémentaire de flexion est d’autant plus importante que la
distance d est plus grande et la longueur de la barre plus petite.

Ce phénomeéne n’a pas échappé a M. Timoshenko. Pour la section en double té,
il a donc évalué aprés coup, la raideur de flexion des ailes et 1’a introduite dans les
équations différentielles d’équilibre, ceci d’ailleurs au prix de certaines complications
mathématiques. Pour la section rectangulaire, il a négligé cette raideur de flexion
complémentaire, alors que par notre méthode elle est automatiquement prise en
compte dans tous les cas, et se traduit par le chiffre 1 sous le radical dans notre
formule (20).

En conclusion, nous pouvons dire que non seulement notre hypothése simplifica-
trice se trouve confirmée, mais encore qu’elle présente un avantage évident sur les
méthodes classiques puisqu’elle permet d’aboutir & une formule générale unique,
valable pour toutes les formes de section, et qu’elle prend automatiquement en compte
le phénoméne de raideur de flexion complémentaire que nous venons de signaler.

Remarquons que nous n’avons jusqu’ici, considéré que le cas
fondamental du moment constant mais on sait que les autres cas de
charge s’en déduisent par application de coefficients déterminés par
Timoshenko. Il n’y a donc aucun intérét a traiter directement ces
autres cas de charge. L’important est d’avoir ramené le probléme
du déversement a celui du flambement en milieu. élastique ce qui
rend possible ’application au déversement de la théorie par diver-
gence d’équilibre.

Avant d’établir les formules pratiques d’application, il est cepen-
dant nécessaire de préciser une particularité importante du probléme
fondamental du flambement d’une barre prismatique dans un milieu

Fig. 6. élastique.

Considérons une barre prismatique AB (fig. 6) parfaite de forme et de structure,
de longueur /, en position d’équilibre légérement fléchie, dans un milieu élastique
de constante B.

L’équation de sa ligne élastique peut étre considérée sans erreur appréciable comme
sinusoidale:

y=fsin177x

La compression axiale N correspondant a I’équilibre, se compose de deux parties
distinctes:

(1) N charge critique d’Euler équilibrée par le potentiel interne de la barre fléchie.

(i1} N; charge axiale complémentaire équilibrée par les réactions du milieu
élastique. Ce deuxiéme systéme de forces ne produit aucun moment fléchissant dans
la barre car le travail de la force N, dans son déplacement est égal au travail des
réactions élastiques, en négligeant bien entendu, comme habituellement, I'augmenta-
tion de potentiel interne dans la barre diie 2 son raccourcissement.

On peut donccalculer N, en écrivant que le moment dans la section médiane est nul.

La réaction du milieu élastique sur un élément dx de la barre est:

By dx=pf sin Zrl-x dx

La somme des réactions élastiques est:

_— 5
P=f. ﬁfsini;x dx=ﬁfl

™



L’INSTABILITE PAR DIVERGENCE D’EQUILIBRE 291

et le moment de ces réactions par rapport a la section médiane est:

Pl 12
M0=2_1r =ﬁf;2

On aura donc:

d’ot:  M=8—

et la charge critique totale de la barre sera:
N= NI +Nc

Il est important de remarquer que sous une charge axiale <N, seule la position
d’équilibre rectiligne est possible.

Si la caractéristique du milieu élastique B est suffisamment grande, la barre pourra
atteindre sa limite élastique sans flamber, ce qui revient & dire qu’elle travaille dans
ce cas en compression simple. 11 en résulte qu'une poutre fléchie peut ne pas étre
soumise au déversement et c’est 1a une différence essentielle avec le cas d’une barre
prismatique comprimée en milieu libre, qui se trouve toujours soumise au flambement
quel que soit son élancement.

Il en résulte également qu’il serait inexact d’appliquer un méme coefficient de
sécurité aux deux termes N; et N, dont se compose la charge critique totale, I’'un cor-
respondant a de la compression simple et I'autre a du flambement élastique. C’est
la I'une des circonstances qui rendent impossible tout systéme cohérent de sécurité,
dans la théorie par bifurcation d’équilibre.

Signalons enfin qu’il est inutile de considérer toute autre forme d’équilibre fléchi,
avec plusieurs demi-ondes, car dans le déversement, ces formes d’équilibre se tradui-
raient par une augmentation de la constante du milieu élastique a laquelle cor-
respondrait une charge critique plus élevée.

Passons a la barre prismatique réelle, et voyons comment s’applique la théorie
par divergence d’équilibre.

Tant que la contrainte de compression reste inférieure a la valeur limite:

la barre travaille en compression simple, le fléchissement est faible car les réactions du
milieu élastique s’opposent a toute amorce de flexion; il ne peut y avoir flambement.

Mais, lorsque la contrainte de compression est supérieure a ny, il y a équilibre
fléchi de flambement, et ’affaissement se produit pour une contrainte au bord de la
section médiane égale a:

n'e=n,—n,

Le probléme se trouve ainsi ramené a celui d’une barre soumise au flambement

libre, et la condition de stabilité & satisfaire s’écrit:

@—ﬁ)@+ﬂ<Rl N 7))
a g

avec: k,=

o coefficient de sécurité=n,/R
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L’expression ci-dessus n’est d’ailleurs valable qu’autant que:

ny
>

g
Pour<n . ny/o, il y a compression simple et I'inégalité & vérifier se réduit a:
n<R

Le probléme étudié est donc une combinaison de la compression simple et du
flambement. Dans la solution que nous lui donnons, la conception de la sécurité est
cohérente puisqu’a la contrainte critique de flambement, nous appliquons le coefficient
de sécurité de notre théorie de flambement, et & la contrainte de compression simple,
le coefficient de sécurité o=n,/R.

Ces considérations montrent comment s’applique la théorie par divergence
d’équilibre, au déversement.

ny étant la contrainte de flexion simple dans la poutre, résultant de sa charge, en
valeur d’exploitation, on peut poser immédiatement la condition de stabilité a
vérifier:

} (nf—%l) kot <R ' L@

g

p—1 Aecq
“u—+c) FTon—n,
la valeur de n, étant donnée par la formule précédemment établie:
ny=nc OA+(A+1) n,y u

Dans le cas d’une section en double té, ces formules se simplifient.
On a sensiblement:

avec: ko

u=0 d’ou n;=n. 8A
V2 w2 Ei
nﬂ=nc(;) avec nc=12—9
dans laquelle:

V=demi-hauteur de la section

p=rayon de giration dans le plan de I’dme
i=plus petit moment d’inertie

f2=surface de section

_,om 1 GLRE
8_1+n¢-1 A—_‘TTZE i ‘}TZ
A
A=5¥aA

VERIFICATION EXPERIMENTALE

Sur Dlinitiative de la Chambre Syndicale des Entrepreneurs de Construction
Métallique de France, des essais ont été effectués par le Laboratoire de I'Institut
Technique du Batiment et des Travaux Publics, en octobre 1950.

Ces essais ont porté sur cing poutres en I.P.N. 100 dont les longueurs sont indi-
quées dans le tableau I (colonne 1). Ces poutres ont été soumises & une flexion
circulaire, avec dispositif empéchant toute rotation des sections terminales autour de
I’axe longitudinal. Les rotations étaient libres autour des deux axes de symétrie de
la section. ‘



L’INSTABILITE PAR DIVERGENCE D’EQUILIBRE 293

TABLEAU [
M (2) (3) (4) (5)
Longueur des ner ner Erreur Ner
poutres calculée mesurée % pieces idéales

3m.00 16,4 16,10 +1,7 17,06

2m. 00 23.7 23,8 —0,4 26,4

1 m. 50 : ‘27.5 27,7 ' —0,8 37,1

1 m. 00 30,5 30,0 +1,6 61,8

O m. 50 flexion simple 31,0 165,7

Les contraintes critiques calculées (colonne 2) résultent de ’équation:

(np—ny) ko+ny=n,

. _Ll__ . M
avees ko_,u,—l,()83 #_nf—n
1. _ 4

b=1+" =3

Cette équation n’est autre que (23) appliquée a I’état critique, au moment de
l’affaissement, étant entendu que pour la vérification expérimentale, on remplace
c¢’'=1/2,4 par ¢c=1/12, ce qui donne 1+c¢=1,083.

On a pris pour #, la moyenne des valeurs mesurées dans 1’aile comprimeée.

Dans la cinquiéme colonne 4 droite, on a calculé les contraintes critiques relatives
aux piéces supposées parfaites, par nos formules équivalentes a celles de Timoshenko.
Ainsi qu’il fallait s’y attendre, ces valeurs s’écartent trés sensiblement des valeurs
mesurées, alors que dans notre théorie par divergence d’équilibre, ’écart n’est que de
2% au maximum.

De plus, des mesures précises de déformation ont été faites pour chacune des
valeurs progressives du moment appliqué. Ces mesures ont permis de constater,
pour les quatre premiers essais, que la forme d’équilibre est déja gauche pour de trés
faibles valeurs de la contrainte, ce qui contredit la théorie par bifurcation d’équilibre.

Dans le dernier essai, (poutre de Om. 50), notre calcul donne n;=n,, ce qui signifié
que la membrure comprimée travaille en compression simple et n’est pas soumise au
flambement. Effectivement dans cet essai, il n’a pu étre mesuré de déformation
latérale appréciable.

On passerait du moment constant, cas fondamental, & toute autre sollicitation par
Papplication des coefficients de la théorie classique.

Toute autre liaison des sections terminales se traduirait également par ’application
de coefficients connus.

On résoudrait également sans difficultés le probléme des piéces simultanément
fléchies et comprimées. En raison du manque de place, nous renvoyons a4 Conférence
de Bruxelles déja citée. ‘

Ce qu’il est important de retenir, c’est que, par cette théorie, confirmée expéri-
mentalement, le raccordement entre le déversement et le flambement se trouve réalisé
pour la premiére fois.

Il en résulte des conséquences importantes pour I’homogénéité du degré de sécurité
et ]la cohérence de la Résistance des Matériaux.
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Résumé
Flambement ,

La théorie d’Euler ne s’applique qu’au cas idéal d’une barre parfaite et indéfiniment
élastique (flambement par bifurcation d’équilibre). L’expérience montre qu’il y a
équilibre fléchi dés le début de ’application de la charge, et la rupture d’équilibre
dépend de la contrainte au bord de la section médiane: il y a instabilité par divergence
d’équilibre.

Il a été proposé beaucoup d’hypothéses pour interpréter les défectuosités
inévitables qui sont la cause du fléchissement prématuré. Une analyse serrée des
conditions a remplir montre qu’il y en a peu de correctes. Une seule semble convenir
pour aboutir 4 une solution cohérente et générale des problémes simples et complexes
de flambement (piéces prismatiques, ou composées de membrures assemblées par
treillis ou barrettes, simplement comprimées ou simultanément fléchies, prise en
compte de la déformation d’effort tranchant, etc.).

Déversement (ou flambement latéral des poutres soumises a la flexion)

Les théories classiques connues (notamment celle de Timoshenko) ne s’appliquent
qu’a des picces parfaites et indéfiniment élastiques (déversement par bifurcation
d’équilibre). En réalité, il y a, comme dans le cas du flambement, déversement par
divergence d’équilibre. A notre connaissance, ce probléme n’a pas regu de solution
pratique. Nous en proposons une en montrant que le déversement d’une poutre
fléchie s’identifie avec le flambement d’une barre prismatique dans un milieu élastique.

Cette théorie conduit pour les piéces supposées parfaites, a des expressions de la
charge critique identique a celles de Timoshenko, avec ’avantage d’une prise en
compte automatique de la raideur latérale de flexion. Ceci étant acquis, la théorie
du déversement par divergence en découle immédiatement.

Les essais récents exécutés au Laboratoire de I'Institut Technique du Béatiment et
des Travaux Publics confirment cette théorie.

Summary

Buckling

Euler’s theory holds good only for the ideal case of a perfectly straight and per-
fectly elastic bar (buckling through deviation of the equilibrium). Experience shows
that a bent equilibrium condition exists right from the beginning of the loading and
that the disturbance of equilibrium is dependent on the edge stressing of the middle
section: there arises an instability through disturbance of the equilibrium.

Many hypotheses have already been advanced to account for the inevitable defects
that cause premature bending. A compendious investigation into the conditions
that have to be fulfilled shows that only a few are correct. One alone appears to be
suitable to allow of obtaining a comprehensive and general solution of the simple and
of the complex problems of buckling (prismatic members or built-up grid or frame
bars, bars that are only compressed or at the same time also bent, takmg account of
the plastic deformation in consequence of a transverse force, etc.).

Lateral buckling (lateral buckling of beams subjected to bending)

The well-known classic theories (especially that of Timoshenko) hold good only
for perfect and perfectly elastic beams (lateral buckling through deviation of the
equilibrium). In reality, there occurs, as in the case of buckling, lateral buckling
through disturbance of the equilibrium. As far as we are aware, this problem has
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never been solved practically. The author proposes a solution, in that he shows that
the lateral buckling of a beam subjected to bending is identical with the buckling of a
prismatic bar in an elastic medium.

For bodies that are assumed to be perfect, this theory leads to expressions for the
critical Toads which agree with those of Timoshenko but have the advantage, however,
of automatically taking the lateral bending-stiffness into consideration. From this
there follows directly the theory of buckling through deviation of the equilibrium.

The most recent tests carried out in the laboratory of the Institut Technique du
Batiment et des Travaux Publics confirm this theory.

Zusammenfassung

Knicken

Die Theorie von Euler gilt nur fiir den Idealfall des vollkommen geraden und
vollkommen elastischen Stabes (Knicken durch Verzweigung des Gleichgewichts).
Die Erfahrung zeigt, dass schon vom Beginn der Belastung an eine ausgebogene
Gleichgewichtslage existiert und dass die Stérung des Gleichgewichts abhidngt von
der Randspannung des Mittelschnitts: es entsteht eine Instabilitat durch Stdrung des
Gleichgewichts.

Um die unvermeidlichen Mingel zu erkldren, die die Ursache der friihzeitigen
Ausbiegung sind, wurden schon viele Hypothesen aufgestellt. Eine gedréngte Unter-
suchung der Bedingungen, die zu erfiillen sind, zeigt, dass nur wenige korrekt sind.
Eine einzige schien geeignet, um zu einer zusammenhidngenden und allgemeinen
Losung der einfachen und der komplexen Probleme des Knickens zu gelangen (pris-
matische Korper oder zusammengesetzte Gitter- oder Rahmenstidbe, nur gedriickte
oder gleichzeitig auch gebogene Stibe, Beriicksichtigung der Verformung infolge der
Querkraft, usw.).

Kippen (oder seitliches Knicken der Biegebalken)

Die bekannten klassischen Theorien (namentlich diejenige von Timoshenko)
gelten nur fiir vollkommene und vollkommen elastische Balken. (Kippen durch Ver-
zweigung des Gleichgewichts). In Wirklichkeit kommt es, wie im Knickfall, zum
Kippen durch Stdrung des Gleichgewichts. Dieses Problem ist unseres Wissens bisher
nie praktisch gelost worden. Der Verfasser schlégt eine Losung vor, indem er zeigt,
dass das K:ppen eines Biegetrédgers identisch ist mit dem Knicken eines prlsmatlschen
Stabes in einem elastischen Medium.

Diese Theorie fiihrt fiir die vollkommen vorausgesetzten Korper auf Ausdriicke
fiir die kritischen Lasten, die mit denjenigen von Timoshenko iibereinstimmen, jedoch
den Vorteil haben, die seitliche Biegesteifigkeit automatisch zu beriicksichtigen.
Hieraus folgt unmittelbar die Theorie des Kippens durch Abweichung des
 Gleichgewichts.

_ Die neuesten im Laboratorium Institut Technique du Batiment et des Travaux
Publics durchgefiihrten Versuche bestiitigen diese Theorie.
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