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AÜ3

Theorie de l'instabilite par divergence d'equilibre

The theory of instability through disturbance of equilibrium

Instabilitätstheorie durch Störung des Gleichgewichts

JEAN DUTHEIL
Dijon

Les solutions classiques donnees aux problemes d'instabilite determinent, en
general, une charge critique qui correspond ä la limite entre deux etats d'equilibre
differents: il y a bifurcation d'equilibre.

L'experience ne fait pas apparaitre un tel changement d'etat d'equilibre. En
general, des le debut de I'application de la charge, on constate une forme d'equilibre
stable, qui subsiste jusqu'ä la ruine.

II s'agit en fait d'un simple phenomene de statique dans lequel l'etat de
contrainte du materiau et sa deformation interviennent pour determiner l'affaissement.
A partir d'une certaine contrainte, le caractere inelastique de la deformation est tel
que les moments exterieurs et Interieurs varient suivant des lois divergentes, il n'y a
plus d'equilibre possible, on dit qu'il y a instabilite par divergence d'equilibre.

On sait enfin que, theoriquement, la charge critique classique peut etre döpassee,
et le second etat d'equilibre etre stable.

Dans les cas les plus defavorables, il ne peut y avoir, en tous cas, instabilite pour
une charge inferieure ä la charge critique. Or, experimentalement, la ruine se produit
pour des charges toujours inferieures aux charges critiques.

Si le rapport de la charge critique k la charge de rupture peut etre voisin de 1 dans
certaines zönes, il peut aussi tendre vers l'infini dans d'autres zönes.

Cette contradiction entre la theorie et l'experience n'est pas surprenante. L'allure
ideale d'un phenomene est toujours plus ou moins influencee, en pratique, par de
multiples causes qui peuvent le deformer au point de n'en laisser subsister qu'une
caricature.

Dans les problemes d'instabilite, la theorie ne considere que des elements parfaits,
tant de forme que de structure et indefiniment elastiques et resistants.

Les eprouvettes d'essai, comme les elements mis en oeuvre, sont tres loin de cette
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perfection: les materiaux sont inhomogenes, et ils ne sont elastiques qu'approximative-
ment, et dans certaines limites. II en resulte que la deformation theorique est pro-
fondement alteree, et comme eile joue dans les problemes d'instabilite un röle
preponderant, le phenomene est lui-meme profondement altere, au point qu'il
paraisse ne plus avoir de rapport avec son allure theorique.

La notion classique d'instabilite par bifurcation d'equilibre est donc purement
abstraite. Elle ne peut evidemment suffire ä Fetablissement de regles pratiques
rationnelles, qui doivent s'axer sur une concordance experimentale etendue, et
s'inspirer d'une coneeption coherente de la securite.

Mais, quoique purement abstraite, cette notion conserve cependant une signification

essentielle, et il est important de se penitrer du caractere dualiste de la notion
d'instabilite.

II est egalement important de remarquer qu'en raison du caractere aleatoire des

perturbations qui influent sur la stabilite, une coneeption rationnelle de la securite ne
peut etre que probabiliste. C'est sur ces deux principes essentiels que s'appuie la
theorie que nous exposons brievement dans son application aux deux problemes
fondamentaux d'instabilite: le flambement et le deversement.

I Le Flambement

Le flambement des barres droites ä section constante
Le probleme de la stabilite d'une barre prismatique droite, articulee ä ses deux

extremites et soumise ä une compression axiale est fondamental.
La theorie bien connue d'Euler le resoud dans le cas ideal d'une barre parfaite et

indefiniment elastique et resistante: le bifurcation d'equilibre se produit pour la valeur
critique de la charge calculee par Euler:

N J***ly» \2

Pour une charge inferieure, l'equilibre stable est rectiligne; pour une charge
superieure, il est flechi.

II faut ensuite passer de la piece ideale ä la piece reelle. Au debut, on a simplement
considere que, puisque les barres utilisees en construction ont des proportions telles
que leur contrainte de rupture qui correspond ä une courbe deformee tres tendue est
atteinte pour une charge tres peu superieure ä la charge critique d'Euler, celle-ci cor-
respondrait pratiquement ä la rupture par flambement. Le fait d'avoir ainsi neglige
les deformations plastiques des materiaux et notamment de l'acier, a eu comme
consequences de nombreuses et retentissantes catastrophes et les controverses bien
connues entre Euleriens et non-Euleriens.

Ces controverses n'ont abouti qu'ä des formules empiriques de raecordement se
substituant ä la formule d'Euler, dans les zönes oü eile est inapplicable.

Un certain nombre de chercheurs ont cependant essaye d'echafauder une theorie
du flambement par divergence d'equilibre, se basant sur le fait experimental incon-
testable que l'equilibre flechi apparait pour une valeur de la charge tres faible et large-
ment inferieure ä la charge critique d'Euler.

Nous pensons avec eux que ces constatations montrent que la theorie par bifurcation

d'equilibre est une abstraction. L'experience reste notre grande maitresse, et il
serait vain d'aller contre ses enseignements.

L'instabilite de flambement se produit reellement par divergence d'equilibre, et
c'est cette constatation qui doit etre ä la base de toute Solution realiste.
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Quelles sont donc les causes de cette apparition prematuree de l'equilibre flechi?
Elles peuvent se classer en deux categories:

(i) Defectuosites de structure: Les materiaux sont inhomogenes, leurs proprietes
mecaniques variables dans leur masse, ainsi que leur etat de contrainte
interne.

(ii) Defectuosites de forme: Defaut de rectitude, de centrage pour ne citer que
les principaux.

Quoi qu'il en soit, le probleme reside dans la recherche d'une interpretation des
effets de ces differentes defectuosites, au moyen d'une hypothese les rendant acces-
sibles au calcul.

On est ainsi amene ä supposer la piece en materiau parfaitement homogene, doue
de proprietes elasto-plastiques bien definies, mais presentant initialement certaines
defectuosites de formes.

Partant de l'hypothese ainsi posee, on peut calculer la contrainte maximum dans
la barre. Une certaine valeur de cette contrainte amenant l'affaisement, on peut
calculer la charge correspondante, ou charge critique probable. Une comparaison
avec les essais, renseigne sur la validite de l'hypothese admise.

Des tentatives de ce genre ont ete faites par de nombreux auteurs. Surtout pour
l'acier, la nature de l'imperfection initiale a ete, suivant le cas, une fleche initiale ou
une excentricite initiale ou une combinaison des deux.

Toutes les hypotheses emises presentent le caractere commun de n'exprimer
l'imperfection initiale qu'en fonction de certaines dimensions caracteristiques des

pieces, telles que: longueur, demi-hauteur de la section droite, rayon du noyau central,
etc.

II est certain qu'une teile coneeption ne peut avoir qu'une validite tres limitee. On
peut considerer, en effet, que dans le cas d'eprouvettes usinees, les defectuosites de
forme: courbure initiale et excentricite de charge, peuvent etre suffisamment reduites
pour n'avoir que des effet absolument negligeables. La flexion prematuree est donc
düe ä peu pres uniquement, aux defectuosites de structures.

Ces defectuosites de structures ne pouvant se manifester que sous contrainte, il
est clair que la defectuosite conventionnelle qui interprete leurs effets, doit etre fonction

de cette contrainte.
Toute expression d'une fleche initiale, ou d'une excentricite initiale qui n'est fonction

que des dimensions de la piece, ne peut donc etre consideree comme valable que
pour un materiau bien determine, car eile admet implicitement que la contrainte qui
lui correspond est la limite d'ecoulement du dit materiau.

Ces considerations eliminent donc l'excentricite en tant que moyen d'interpretation
des defectuosites inevitables. On ne voit pas bien, en effet, comment on pourrait
justifier la Variation necessaire de la dite excentricite avec la nature du materiau.

II reste donc la fleche initiale, avec la necessite d'affecter son expression d'un coefficient

variable avec le materiau, ou les nuances d'un meme materiau. Ceci laisse
prevoir les difficultes qui surgiraient dans le cas de I'application ä des barres ä treillis,
et ä des problemes plus complexes.

Ces considerations preliminaires suffisent ä expliquer l'insucces des differentes
tentatives connues.

Elles montrent egalement que les hypotheses d'une fleche initiale ou d'une
excentricite initiale doivent etre abandonnees, en leur substituant celle d'une prefleche
conventionnelle, fonction de la contrainte.

L'expression de cette prefleche conventionnelle ne saurait etre quelconque si l'on
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veut aboutir ä une Solution generale; eile doit satisfaire ä certaines conditions que
nous allons examiner successivement.

Elle doit satisfaire aux lois de la flexion sinusoidale

Dans les essais de flexion simple, operes sur des poutres d'acier doux par exemple,
on peut constater des fluages locaux qui ont comme consequence une certaine majoration

de la deformation. On constate d'ailleurs que, pour l'ensemble de la poutre, la
loi deformation/allongement reste sensiblement lineaire tant que la contrainte maximum

reste au-dessous de la limite d'ecoulement, et meme un peu au-dessus en
consequence du phenomene d'adaptation dans la section.

On pourrait donc, pour determiner la fleche reelle, calculer d'abord la fleche
elastique theorique, et lui ajouter une fleche complementaire d'inhomogeneite.
Puisque la deformation reste sensiblement lineaire, l'expression de cette fleche
complementaire aurait, ä un coefficient pres, la meme expression que la fleche theorique
d'elasticite pure.

En flexion sinusoidale, la fleche elastique d'un poutre de longueur /, de moment
d'inertie /, coefficient d'elasticite E, sous moment maximum au milieu M0 s'exprime par:

M0l2
J TT2 EI

La fleche complementaire d'inhomogeneite s'exprimerait donc par :

M0l2 W
f°=c^ErCn'N-c (1)

dans laquelle:
C=constante experimentale
n./=contrainte maximum de flexion au bord de la section mediane
W= module de section (//Fpour une piece pleine)
Nc=tt2EI/12, charge critique d'Euler.

En flexion simple, cette fleche complementaire est pratiquement sans importance.
Quand il s'agit de flambement, il n'en est plus de meme. L'inhomogeneite du
materiau cree des le debut de I'application des charges, une dissymetrie des deformations

qui provoque une flexion influant directement sur la contrainte au bord de la
section mediane, et l'on ne peut negliger cette consequence.

II resulte de notre expose preliminaire, qu'on ne peut rationnellement interpreter
les effets de cette defectuosite que par la consideration d'une prefleche conventionnelle
fonction de la contrainte.

Les considerations suivantes precisent la forme ä donner ä cette prefleche
conventionnelle.

On sait que la flexion de flambement suit tres sensiblement la loi sinusoidale. Or
ä mesure que l'elancement augmente, Ie flambement se rapproche de la flexion simple,
puisque la contrainte de compression diminue. A la limite pour un eiancement
infiniment grand il faut donc que l'expression de la prefleche conventionnelle tende
vers l'expression (1).

Cette condition est indispensable si l'on veut aboutir ä une Solution generale qui
raccorde le flambement ä la flexion simple.

La contrainte maximum nm au bord de la section mediane etant la somme d'une
contrainte de compression simple n et d'une contrainte de flexion «/, il en resulte qu'il
n'y a d'ores et dejä, que deux expressions possibles de la prefleche conventionnelle:
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W
f0=Cnm

fo=Cnf

Nc

W_

Nc

279

(2)

(3)

hyperbole d'Euler

' r2

Elle doit etre theoriquement correcte

Nous entendons par lä que, si l'on suppose nulle
la prefleche conventionnelle, la piece redevenant ainsi
parfaite, les charges critiques de la theorie par divergence

d'equilibre doivent devenir identiques ä celles de
la theorie par bifurcation d'equilibre. En supposant
un materiau parfaitement elastique jusqu'ä sa limite
d'ecoulement ne, le diagramme ideal de la contrainte
critique de flambement est represente en ABC sur la
figure 1.

Dans la theorie par divergence d'equilibre, on
admet que 1'affaissement se produit lorsque la
contrainte maximum au bord de la section mediane est
egale ä la limite d'ecoulement du materiau. En fait,
c'est pour une contrainte legerement superieure que 1'affaissement se produit du fait
de Fadaptation de plasticite, mais dans le flambement pur, l'erreur commise, en se

limitant ä ne est negligeable.
Tenant compte qu'en flexion sinusoidale le facteur d'amplification de la fleche

sous la contrainte axiale nz est:

\

Eiancement

Fig. 1.

nc—n.

la contrainte d'affaissement nz se calculera en posant:
nzQf0 nc

nz+- W nc—n
=ne (4)

dans laquelle:
ß=surface de section de la barre
«c=contrainte critique d'Euler

Nc T2£

y=eiancement=
/

/=longueur de la piece

r=rayon de giration dans le plan de flambement.

Avec l'expression (2) de/0, on arrive ä l'equation du second degre:

nz2-nz[nc+ne(C+l)]+nenc=0 (5)
dont la Solution est:

nz=n4 — Vn42—ncne ]
avec: ,„..,, (6)

«4=i [nc+ne(C+l)]j
Pour une valeur determinee de C, la Variation de n en fonction de y se fait suivant

une courbe ayant Failure AD indiquee en pointille sur la figure 1. Si l'on fait C=0,
ce qui revient ä supposer la piece parfaite, on voit qu'on a bien:
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nz=nc pour nc<jte

nz=ne pour np>ne

L'expression (2) satisfait donc ä la condition posee: la courbe de nz en fonction
de y coincide avec ABC.

Avec l'expression (3) de/„, on arrive ä l'equation:

nz2(C+l)-nz[ne(C+l)+nc]+nenc=0 (7)

On voit qu'en faisant C=0 dans les equations (5) et (7), elles deviennent identiques.
L'expression (3) satisfait donc egalement ä la condition posee.

Elle doit assurer la concordance experimentale
Le caractere aleatoire des imperfections, les variations constatees dans la valeur

de la limite d'ecoulement d'un meme materiau, l'influence de Fadaptation de plasticite,

sont autant de causes de dispersion dans les essais de flambement. Pour verifier
une concordance experimentale, il faut donc disposer, autant que possible, d'un grand
nombre de points d'essais. Les essais de Tetmayer sur l'acier doux sont, ä ce point
de vue, parmi les plus interessants.

La valeur de la limite d'ecoulement ne ä prendre en compte, doit etre la valeur
moyenne d'un grand nombre d'essais.

II resulte des essais de traction, effectues recemment sur dix mille (10 000)
eprouvettes en acier doux ordinaire, par la Chambre Syndicale des Entrepreneurs de
Construction Metallique de France, et la S.N.C.F., que cette valeur moyenne ressort
ä 28,6 kg./mm.2 En prenant cette valeur pour ne et C= 1/12 dans la formule (6)
donnant nz en partant de l'expression (2) de la prefleche conventionnelle on voit que la
courbe de nz, en fonction de Felancement y passe sensiblement par la moyenne des

points d'essais de Tetmayer (courbe 1 fig. 2). La concordance experimentale de
l'expression (2) peut donc etre consideree comme aussi bonne que possible pour
l'acier doux ordinaire.

Toujours avec C=l/12, eile parait d'ailleurs
aussi bonne pour l'acier ä haute resistance, le
duralumin, le bois de construction (sapin blanc).
(Essais de Ros, Publication Preliminaire du 1er

Congres de FA.I.P.C).
Partant de l'expression (3) de /„, on peut egalement

tracer la courbe de Variation de n: en fonction
de y. Avec C= 1/12, la concordance semble bonne
pour les grands elancements mais beaucoup moins
bonne pour les petits et moyens; la courbe calculee
passe nettement plus haut que la moyenne des

points d'essais. On ne peut trouver de valeur de C
donnant une concordance aussi bonne qu'avec
C=l/12, et l'expression (2). II y a donc ici nettement

avantage en faveur de l'expression (2).

kg n

?8 •

V-
?1

' \Ö)
~5 ¦.

?0

If
•

?i
1? \
ß s

HJ

4 v * "5^
SO WO W> 180 220

Fig. 2.

Elle doit permettre une coneeption probabiliste de la securite
La coneeption de la securite est evidemment le point le plus faible des methodes

de calcul au flambement derivant directement de la theorie par bifurcation d'equilibre.
On ne peut obtenir en effet autre chose que la valeur d'une contrainte critique de

flambement concordant plus ou moins avec les essais. De ces valeurs critiques, on
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passe aux valeurs admissibles par I'application d'un coefficient de securite. Mais
c'est lä que se presente la difficulte, on ne peut prendre un coefficient de securite
unique pour tous les elancements. Pour l'acier doux par exemple, si l'on prend 2,5 ou
3 par rapport ä la charge critique d'Euler, on ne peut conserver ce chiffre pour les tres
petits elancements car on arriverait ä ne travailler qu'ä 8 ou 9 kg./mm.2, en compression

simple. Inversement, le coefficient de securite normalement admis en compression

simple etant de 1,66, qui oserait Fappliquer aux grands elancements par rapport
ä la charge critique d'Euler? On s'en tire donc en faisant varier empiriquement la
valeur de ce coefficient de securite avec l'elancement.

Cependant, en toute rigueur, si les contraintes critiques calculees sont bien reelles,
les coefficients de securite differents amenent evidemment ä Finverse du resultat qu'on
se propose normalement d'obtenir, et qui est l'homogeneite du degre de securite entre
les differents elements d'une construction; il ne viendrait pas ä Fidee de mettre dans
une chaine de levage des maillons de differentes resistances.

II ne faut pas etre difficile pour admettre un procede qui, contraite ä toute logique,
consacre enfait Vechec de la theorie par bifurcation d'equilibre.

Cet echec est inevitable si l'on ne veut pas considerer, malgre leur evidence, les

perturbations apportees par les defectuosites.
Ces perturbations etant aleatoires, la coneeption de la securite ne peut etre que

probabiliste. Une contrainte critique calculee ne peut etre qu'une contrainte critique
plus ou moins probable qui ne peut constituer la base d'une coneeption rationnelle
de la securite.

Le probleme du flambement n'est qu'un probleme de resistance des materiaux
comme les autres, et de ce fait, justiciable des memes methodes.

En traction simple par exemple, la contrainte critique est la limite d'ecoulement.
Sa valeur, pour l'acier doux, varie de 22 ä 35 kg./mm.2, et sa valeur moyenne a ete
calculee ä 28,6 kg./mm.2 sur 10 000 essais. On n'applique cependant pas Ie coefficient
de securite par rapport ä ce chiffre, mais par rapport ä 24 kg./mm.2, car on estime que
la probabilite de se trouver devant une valeur inferieure est suffisamment faible.

De meme le cas du flambement, nz etant la contrainte probable d'affaissement, il
faut determiner ns, contrainte limite d'affdissement, teile que la probabilite d'observer
une valeur inferieure, soit suffisamment faible. Et c'est par rapport ä ns que le coefficient

de securite doit etre applique et non par rapport ä nz; enfin, ce coefficient de
securite doit etre unique et valable pour tous les elancements.

ns doit se deduire de nz par Ie jeu d'une majoration du coefficient experimental C,
en tenant compte d'autre part, des deux conditions suivantes:

Pour un eiancement nul, il faut prendre pour ne la valeur limite et non la
valeur moyenne, par exemple pour l'acier doux, il faut prendre 24 kg./mm.2 et
non 28,6 kg./mm.2

Pour un eiancement infiniment grand, il ne faut pas que la valeur de ns tende
vers nc, le rapport nc/ns de la contrainte critique d'Euler ä la contrainte limite
doit tendre vers une valeur finie, plus grande que 1 quand l'elancement croit
indefiniment.

Partant de l'hypothese (2), la valeur de ns est donnee par la meme expression (6)
que nz, etant entendu qu'on donne ä ne la valeur limite, et qu'on substitue ä C un
coefficient C>C.

La valeur de ns peut donc se mettre sous la forme:

'-/«j=«4 1" - *' «42
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Quand l'elancement devient tres grand, nc tend vers zero, on peut developper le
radical en serie et ne conserver que les deux premiers termes, d'oü:

nc ne
ns=n4H'-M 2«4

nc ne

(1 + C'K 1 + C

d'oü: -=1 + C (8)
ns

En prenant C' 5C= 1/2,4, on ne constate aucun point d'essai en dessous de la
courbe de ns en fonction de y. Cette courbe est tracee pour l'acier doux en 2 sur la
figure 2.

Partant de l'hypothese (3), on obtiendrait encore pour un eiancement infiniment
grand:

"-e=l + C
ns

Elle doit permettre V etablisement de formules pratiques suffisamment simples

L'examen des equations (5) et (7) montre immediatement que Favantage de la
simplicite est entierement en faveur de l'hypothese (2) qui reste donc finalement la
seule ä retenir.

Conclusion
Une opinion repandue jusqu'ä present etait qu'on pouvait faire, sur les imperfec-

tions initiales, un nombre ä peu pres illimite d'hypotheses valables. Effectivement, il
y en a eu beaucoup d'emises; un certain nombre d'entre elles sont enumerees par M. le
Prof. Massonnet dans son article "Reflexions concernant Fetablissement de prescriptions

rationnelles de flambage des barres d'acier" (Ossature Metallique, No. 7-8,
juillet-aoüt 1950); d'autres par M. le Prof. Campus dans son article "Reflexions sur
la Methode de M. Dutheil pour le calcul des pieces comprimees et flechies" (Ossature
Metallique, No. 1, janvier 1951).

De toutes ces hypotheses, aucune ne repond ä toutes les conditions posees, et ne
peut serieusement etre opposee ä notre hypothese (2) qui semble, seule, permettre une
Solution simple, generale et coherente du probleme. Elle illustre bien notre opinion
que la theorie du flambement par bifurcation d'equilibre, tout en n'etant qu'une
abstraction, conserve cependant une signification essentielle: l'expression (2) de la
prefleche conventionnelle, renfermant en effet le terme nc, charge critique d'Euler, et
dans toutes les formules qui en decoulent on retrouve la contrainte critique d'Euler nc
et la limite d'ecoulement ne. Elle est donc fondamentalement Eulerienne.

Formules d'application
Pour tous les elancements, on peut calculer ns par:

ns=n4-Vn42—nenc 1

avec: n4=i [nc+nc(C+l)] J U
En posant: k=ne/ns, on peut aussi donner un tableau ou une courbe des valeurs de k
en fonction de l'elancement.

La condition ä verifier sera alors:
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(10)nk<R
dans laquelle:

/?=contrainte admissible
«=contrainte de compression simple
k=coefficient de flambement.

C'est la methode suivie dans les Regles d'Utilisation de l'acier, applicable en
France, aux Travaux dependant du Ministere de la Reconstruction et de FUrbanisme,
et aux Travaux Prives. (Regles CM 46).

Notons que, dans ces Regles nous avions exprime la fleche initiale par:

>CÄ7 <">

Cette fleche initiale n'etait que la prefleche conventionnelle correspondant ä une
contrainte au bord de la section mediane egale ä ne, soit une valeur particuliere de:

W
f0=C'nmWc (12)

qui peut etre consideree comme une generalisation de (11). Cette generalisation
presente des avantages dans certains problemes complexes de flambement et pour
I'application ä differents materiaux.

Problemes complexes de flambement
Poutres composees de membrures assemblees par treillis ou barrettes

Une teile poutre composee, comprimee axialement se comporte du point de vue
de la forme d'equilibre, comme une poutre prismatique, c'est-ä-dire qu'elle prend, des
le debut de I'application de la charge, une position d'equilibre flechi. II en resulte
que les troncons de membrures sont inegalement comprimes, et qu'il y a certainement
danger ä considerer que la charge se repartit egalement, comme on doit logiquement
le faire dans la methode par bifurcation d'equilibre. Ce danger, confirme par
l'experience, est apparu d'ailleurs ä un certain nombre d'ingenieurs qui ont essaye d'y
remedier par l'emploi de formules empiriques.

Notre methode donne une Solution immediate ä ce probleme: la contrainte maximum

au bord de la section mediane et determinant 1'affaissement, ne doit plus etre
prise egale ä ne, mais ä «,, contrainte limite d'affaissement du troncon de membrure
qui est connue puisqu'il s'agit d'une barre prismatique.

Partant de l'expression (12), on exprime la contrainte nm par:
nc—on

n„,=n nc—(l-l-c)o-n
ou, en posant:

/*— 1 nc
k»= /, ,x avec: /*=—fi—(1+c) an

n„,=nk0
Alors que dans une poutre prismatique, la condition ä verifier serait:

nk0<R
dans le cas de la poutre ä treillis, eile devient:

nko<nn (13)
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m, etant la contrainte limite admissible du troncon de membrure soit:

ni,=n,/a

Prise en compte de la deformation d'effort tranchant

Dans les poutres simplement flechies, on neglige en general cette deformation qui
n'a pas grands inconvenients.

Dans les poutres comprimees axialement, la fleche complementaire qui en resulte

provoque une augmentation de la contrainte au bord de la section mediane, eile a

donc une influence directe sur la stabilite.
Considerons d'abord le cas oü la raideur propre des membrures est negligeable

devant celle de Fensemble de la poutre.
La deformation d'effort tranchant peut s'assimiler ä une diminution du module de

raideur EI de la poutre, ce module devenant :

EI/X avec A>1
On etablit facilement la valeur de A:

nc Q
X=1+GDa

dans laquelle:
G=module d'elasticite transversal
ß=section totale des membrures

Qa=section de l'äme equivalente.

II en resulte immediatement que la contrainte critique d'Euler nc devient:

n'c=nc/X

et le facteur d'amplification de la fleche:

(ces deux proprietes pouvant s'etablir d'ailleurs directement par l'analyse).
Le probleme est ainsi simplement resolu, il suffit de remplacer nc par n'c dans les

formules qui precedent, et la condition ä verifier devient:

nk'oOtu (14)

Si la raideur des membrures est appreciable, on etablit facilement que le module
de raideur devient:

E(I/X+Zi)
dans laquelle:

Ei= somme des moments d'inertie des membrures
/=moment d'inertie de l'effet poutre, c'est-ä-dire calcule sans tenir compte
des i des membrures.

On en deduit:

"'<="< (1+7J (15)

Remarquons en passant qu'ä notre connaissance cette valeur de la contrainte
critique d'Euler n'a jamais ete calculee. Timoshenko, dans son ouvrage Theorie de la
Stabilite Elastique, ne considere que le cas oü la raideur des membrures est
negligeable. L'influence de cette raideur est cependant, dans certains cas, importante;
l'erreur commise en la negligeant peut etre superieure ä 20%.
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Determination de l'effort tranchant de flambement
Ce probleme a fait couler beaucoup d'encre et donne naissance ä de nombreuses

formules plus ou moins empiriques mais la plupart tres divergentes.
II se trouve ici resolu immediatement.
En negligeant la deformation d'effort tranchant, n k0 represente la contrainte totale

au bord de la section mediane. La contrainte de flexion est donc:

nka—n=n (k0—l)
et comme il s'agit de flexion sinusoidale, Feffort tranchant maximum est:

T=W^n(k0-l) I

(16)

Dans le cas oü deformation d'effort tranchant est appreciable, il suffit de remplacer
nc par n'c et de substituer ä k0, dans l'expression (16), la valeur correspondante de k'0.

Poutres flechies et comprimees

La prise en compte de la prefleche conventionnelle permet de donner ä ce probleme
une Solution rationnelle, et d'obtenir le raecordement total entre la flexion simple et
le flambement.

Par crainte d'abuser de la place qui nous est reservee, nous renvoyons le lecteur
au texte de la Conference que nous avons eu Fhonneur de presenter ä la Tribüne de la
Societe Royale Beige des Ingenieurs et Industrieis, le 3 mai 1950, et publiee dans le
Bulletin No. 3, 1950, de cette societe.

Ce texte sert de base ä la revision du texte concernant le flambement dans les

Regles CM 1946, revision demandee par la Chambre Syndicale des Entrepreneurs de
Construction Metallique de France. Le nouveau texte marquera d'importants progres

et sera plus simple.
Nous esperons que les exemples qui precedent suffiront cependant pour donner une

idee des possibilites de cette methode.
Par eile, et du fait de sa coneeption probabiliste de la securite, le probleme du

flambement cesse de presenter le caractere particulier qui le distinguait des autres
modes de sollicitation, et la Resistance des Materiaux y gagne en coherence.

II Le Deversement

Le deversement des poutres droites flechies
Une poutre droite flechie dans un plan de symetrie peut etre instable sous une

contrainte maximum tres inferieure ä sa limite d'ecoulement. Suivant ses proportions,
il arrive qu'elle flambe lateralement on dit qu'elle se deverse.

II s'agit d'un probleme d'instabilite qui presente de grandes analogies avec celui
du flambement.

La theorie bien connue de Timoshenko (Annales des Ponts et Chaussees, fasc. III,
IV et V, 1913, et son ouvrage—Theorie de la Stabilite Elastique—lui donne une Solution

dans le cas d'une poutre parfaite, et en materiau indefiniment elastique et resistant.
La bifurcation d'equilibre doit se produire theoriquement pour la valeur critique du
moment calculee par Timoshenko dans differents cas de charge, et differentes formes
de section.

Pour un moment inferieur, l'equilibre stable reste plan; pour un moment superieur,
il devient gauche. Mais cette theorie n'est pas plus confirmee experimentalement que
celle d'Euler.
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En fait, le gauchissement apparait des le debut de I'application de la charge, et
l'instabilite se produit par divergence d'equilibre, comme dans le flambement. A ce

point de vue, les experiences de deversement effectuees courant 1951 par l'Institut
Technique du Bätiment et des Travaux Publics, sur des I.P.N. soumis ä moment
constant, sont caracteristiques. Les formules de Timoshenko presentent d'ailleurs les

memes dangers que celles d'Euler.
Hormis quelques formules empiriques, la plupart sans grand fondement, il n'y a

pas eu de tentative qui merite d'etre rapportee en vue d'etablir une theorie de deversement

par divergence d'equilibre; c'est cependant bien ainsi que se produit l'instabilite,
et c'est cette constatation qui doit etre ä la base de toute Solution realiste.

S'il n'y a pas eu de tentative serieuse, alors qu'elles ont ete si nombreuses dans les

cas du flambement, c'est que le probleme est ici infiniment plus complexe.
Considerons une barre rectangulaire etroite, rectangulaire, flechie dans son propre

plan sous un moment constant M. Sur les appuis, il y a une seule liaison des sections
terminales: toute rotation est impossible autour de Faxe OX (fig. 3).

1 '
H

1

M
\\

° *
\ ii ie 1

l ¦, Ih-
Fig. 3.

Supposons une position d'equilibre accompagnee d'un leger flechissement lateral.
La methode de l'energie permet de determiner la forme d'equilibre; on sait que le

deplacement lateral du centre de gravite de la section est ä Variation sinusoidale.

de meme que Fangle de torsion:

y=y0 sin -. x

cf>=</>0 sin-rx

Considerons dans la section, et sur toute la longueur / de la barre, une tranche
infiniment mince AB ä la partie superieure de la zone comprimee. Cette barre
prismatique elementaire uniformement comprimee, tend ä flamber lateralement, mais les
reactions elastiques de la barre entiere s'opposent ä ce flambement. Ces reactions

qui proviennent de la raideur de flexion d'une

r
M

Ai'h

—t-/J

Ir M2f',

©I
l\0

Fig. 4.

part, et de la raideur de torsion d'autre part,
sont evidemment ä variations sinusoidales
puisque proportionnelles aux deformations.

La barre prismatique elementaire se trouve
donc exactement placee dans les conditions d'une
barre soumise au flambement dans un milieu
elastique. On sait, en effet, que dans ce cas, la
ligne elastique en position d'equilibre flechie est
sinusoidale et que, par consequent, les reactions
du milieu elastique sont elles-memes ä variations
sinusoidales.
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Si nous connaissions la constante du milieu elastique correspondant ä la barre
elementaire, le probleme pourrait etre considere comme resolu.

Du fait de la Variation de la contrainte dans la section le long de Faxe OZ, le calcul
de cette constante est inextricable. La difficulte peut etre tournee au moyen de Farti-
fice suivant: On peut delimiter, dans la section de la poutre, deux membrures fictives
(fig. 4) d'epaisseur e, qui seraient soumises ä une contrainte uniforme:

M
'UV

dont le moment resistant serait egal ä M.
II suffit d'ecrire:

—t- n=eb (h-
o

¦e) n

d'oü: e=0,2l2h
On peut concevoir une poutre composee ideale, dont les membrures seraient celles

que nous venons de definir, et dont les liaisons entre ces membrures seraient telles que
la raideur de torsion et la raideur de flexion laterale de la poutre composee soient les

memes que celles de la barre reelle.
La poutre composee ideale ainsi definie possede la propriete remarquable d'avoir un

contrainte critique de deversement egale ä celle de la poutre reelle.
Nous en donnons ci-dessous la demonstration.
On concoit immediatement la simplification apportee au probleme tel que nous

Favons pose, et il ne s'agit plus que de la stabilite au flambement d'une barre
prismatique determinee, dans un milieu dont on connait les reactions elastiques. Ce

probleme est classique, au moins si l'on reste dans l'hypothese de pieces parfaite est
indefiniment resistantes.

Considerons (fig. 5) la section mediane de la
poutre dans une position d'equilibre legerement
flechie. Nous ne faisons aucune hypothese sur
la forme de section que nous supposons seulement

doublement symetrique. Nous ne la
representons rectangulaire que pour fixer les
idees.

La zöne 1 correspond ä la membrure
comprimee de la poutre composee ideale; cette
membrure a un moment d'inertie transversal i,,
et une section Q\.

Les memes valeurs s'appliquent ä la membrure

tendue 2, ä la zöne neutre 3 correspon-
dent i' et Q', ä l'ensemble de la section i et Q.

<f>0=valeur maxima de la rotation
f=fleche de la membrure comprimee

/'=fleche de la membrure tendue
p0=valeur maxima de la reaction de raideur de torsion
r0=valeur maxima de la reaction de raideur de flexion
/= longueur de la poutre

F=module d'elasticite de traction
C7=module d'elasticite transversal
/,=moment d'inertie de torsion de la section

i,a,

r-1
A

h+H

I.S1

Fig
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nc,=tension critique d'Euler de la membrure tendue (ou de la membrure
comprimee)

8=coefficient de majoration du moment d'inertie de la membrure tendue:
8 l+n/nci

-r,=module de resistance de la section (dans le sens vertical)

J=distance entre c. d. g. des membrures
M,—valeur maxima du moment de torsion.

Les equations d'equilibre donnent entre les differentes valeurs maxima definies
ci-dessus:

/-/' b f+f

M,=Pod+r0^=a</>0

expressions dans lesquelles a, b, c, sont des constantes: ¦

772 /4 /4

a=GI'T2' b=^Ii,' c=^e7'
De ces expressions, on tire la relation:

f., f A-B

ab b
avec: A =-= 5= —

d2 4c

Le moment par rapport ä la section mediane des reactions elastiques s'opposant au
flambement de la membrure comprimee est:

l2
M0=(p0+r0)—2

IT'-

Or: p0=f'-b=Xf—p±-

f+f A + Xn^Ei'
ro=-^r=f

(2
r**

2c J 2 /4

S A+l 7r2 Ei'
T l2

d'oü: ¦^=n,=nc,SX+(X+l)nc,u (17)

i
avec: w=

2i,
La tension critique de la membrure comprimee, qui est aussi celle de la piece reelle,
est donc:

n=n1+nc,=nc,(SX+l) + (X+l)nc,u (18)

equation du 2° degre en n qui, resolue, donne:

n=nc,V(2A + l)(u+l) (19)
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1 Gl l2 V tt2 Ei,
avec: A=-^-=r -~ u=^- ncl= n nit2 Ei, d2 2i, l2ü,

Cas d'une section rectangulaire en acier doux

G 2 rt2 Ei
rf=0,788/i,

La formule (19) devient:

i,=0,2l2i, a=0,788/i, T.=y ncl=nc=-ß^-, w=l,36

I

n=nc, l,53SV2A+l (20)

/, l2
avec: ,4=0,308 - j-i h2

Cas d'une section en double te en acier doux

On a sensiblement: u=0 d=h
¦n2 Ei,

n.cl-
TT2 Ei, V2 IV\2

h
P etant le rayon de giration dans le plan de l'äme et V=-, nc etant la tension critique

d'Euler de la barre dans le sens de son plus petit moment d'inertie.
La formule (19) devient:

n=nc,V2A + l (21)

It l2
avec: .4=0,0812 4-^

i h2

Comparaison avec les formules obtenues par les methodes classiques

Pour la section en double te, M. Timoshenko arrive ä l'expression suivante de la
tension critique:

n=- -jVEi G I,Vl+7T2 a2/l2

¦n2 d2 h2 Ei tt2 i h2

-T=T2T2Glt=6'l6i,T2

On peut verifier que cette expression est identique ä (21)

Pour la section rectangulaire, l'expression de la tension critique obtenue par
M. Timoshenko est:

Vit
n=-jjVEiGI,

expression identique ä:

n=nc 1,535©Z4

donc differente de (20) par la suppression du chiffre 1 sous le radical.
Cette difference s'explique aisement. Dans une barre rectangulaire etroite, ayant

une extremite encastree et l'autre soumise ä un moment de torsion, Fencastrement
s'oppose au gauchissement d'une tranche mince quelconque situee ä une distance d du
c. d. g. Elle subit de ce fait une deformation de flexion qui influe sur Fangle de torsion.

C.R.—19
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Cette deformation complementaire de flexion est d'autant plus importante que la
distance d est plus grande et la longueur de la barre plus petite.

Ce phenomene n'a pas echappe ä M. Timoshenko. Pour la section en double te,
il a donc evalue apres coup, la raideur de flexion des ailes et Fa introduite dans les

equations differentielles d'equilibre, ceci d'ailleurs au prix de certaines complications
mathematiques. Pour la section rectangulaire, il a neglige cette raideur de flexion
complementaire, alors que par notre methode eile est automatiquement prise en
compte dans tous les cas, et se traduit par le chiffre 1 sous le radical dans notre
formule (20).

En conclusion, nous pouvons dire que non seulement notre hypothese simplifica-
trice se trouve confirmee, mais encore qu'elle presente un avantage evident sur les
methodes classiques puisqu'elle permet d'aboutir ä une formule generale unique,
valable pour toutes les formes de section, et qu'elle prend automatiquement en compte
le phenomene de raideur de flexion complementaire que nous venons de signaler.

Remarquons que nous n'avons jusqu'ici, considere que le cas
fundamental du moment constant mais on sait que les autres cas de
charge s'en deduisent par application de coefficients determines par
Timoshenko. II n'y a donc aucun interet ä traiter directement ces
autres cas de charge. L'important est d'avoir ramene le probleme
du deversement ä celui du flambement en milieu. elastique ce qui
rend possible I'application au deversement de la theorie par divergence

d'equilibre.
Avant d'etablir les formules pratiques d'application, il est cependant

necessaire de preciser une particularite importante du probleme
fondamental du flambement d'une barre prismatique dans un milieu

Fig. 6. elastique.
Considerons une barre prismatique AB (fig. 6) parfaite de forme et de structure,

de longueur /, en position d'equilibre legerement flechie, dans un milieu elastique
de constante ß.

L'equation de sa ligne elastique peut etre consideree sans erreur appreciable comme
sinusoidale:

y=f&mjx
La compression axiale N correspondant ä l'equilibre, se compose de deux parties

distinctes:

(i) Nc charge critique d'Euler equilibree par le potentiel interne de la barre flechie.
(ii) N, charge axiale complementaire equilibree par les reactions du milieu

elastique. Ce deuxieme Systeme de forces ne produit aucun moment flechissant dans
la barre car le travail de la force N, dans son deplacement est egal au travail des
reactions elastiques, en negligeant bien entendu, comme habituellement, l'augmentation

de potentiel interne dans la barre düe ä son raccourcissement.
On peut donccalculer N, en ecrivant que le moment dans la section mediane est nul.
La reaction du milieu elastique sur un element dx de la barre est:

77

ßy dx—ßf sin - x dx

La somme des reactions elastiques est:

.21

iV.

H.

P=\ ßf sin-. xdx=ßf-
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et le moment de ces reactions par rapport ä la section mediane est:

PI cJ2
• M°=T^fn2

On aura donc:
l2

Xlf=ßf~2
TT*-

l2
d'oü: ¦ Ni=ß-x

TT^

et la charge critique totale de la barre sera:

N=N,+NC
II est important de remarquer que sous une charge axiale <N, seule la position

d'equilibre rectiligne est possible.
Si la caracteristique du milieu elastique ß est suffisamment grande, la barre pourra

atteindre sa limite elastique sans flamber, ce qui revient ä dire qu'elle travaille dans
ce cas en compression simple. II en resulte qu'une poutre flechie peut ne pas etre
soumise au deversement et c'est lä une difference essentielle avec le cas d'une barre
prismatique comprimee en milieu libre, qui se trouve toujours soumise au flambement
quel que soit son eiancement.

II en resulte egalement qu'il serait inexact d'appliquer un meme coefficient de
securite aux deux termes N, et Nc dont se compose la charge critique totale, Fun
correspondant ä de la compression simple et l'autre ä du flambement elastique. C'est
lä l'une des circonstances qui rendent impossible tout Systeme coherent de securite,
dans la theorie par bifurcation d'equilibre.

Signaions enfin qu'il est inutile de considerer toute autre forme d'equilibre flechi,
avec plusieurs demi-ondes, car dans le deversement, ces formes d'equilibre se tradui-
raient par une augmentation de la constante du milieu elastique ä laquelle cor-
respondrait une charge critique plus elevee.

Passons ä la barre prismatique reelle, et voyons comment s'applique la theorie
par divergence d'equilibre.

Tant que la contrainte de compression reste inferieure ä la valeur limite:

' Q Qtt2
la barre travaille en compression simple, le flechissement est faible car les reactions du
milieu elastique s'opposent ä toute amorce de flexion; il ne peut y avoir flambement.

Mais, lorsque la contrainte de compression est superieure ä n,, il y a equilibre
flechi de flambement, et 1'affaissement se produit pour une contrainte au bord de la
section mediane egale ä:

n'e=ne—n,
Le probleme se trouve ainsi ramene ä celui d'une barre soumise au flambement

libre, et la condition de stabilite ä satisfaire s'ecrit:

«,=

H) k0+"-<R (22)

ß— 1 «c
avec: k0=—jz——-. p.= -

-(1+c') an—n,
<7 coefficient de securite—ne/R
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L'expression ci-dessus n'est d'ailleurs valable qu'autant que:

CT

Pour<« «i/o-, il y a compression simple et Finegalite ä verifier se reduit ä:

n<R
Le probleme etudie est donc une combinaison de la compression simple et du

flambement. Dans la Solution que nous lui donnons, la coneeption de la securite est
coherente puisqu'ä la contrainte critique de flambement, nous appliquons le coefficient
de securite de notre theorie de flambement, et ä la contrainte de compression simple,
le coefficient de securite o-=ne/R.

Ces considerations montrent comment s'applique la theorie par divergence
d'equilibre, au deversement.

n/ etant la contrainte de flexion simple dans la poutre, resultant de sa charge, en
valeur d'exploitation, on peut poser immediatement la condition de stabilite ä
verifier:

(«i\ rt\
(23)

r*—l "cl
avec: k0=—tt-—7. p,=-p.—(l+c') r anf—n,
la valeur de n, etant donnee par la formule precedemment etablie:

n,=nc, SA+(A+1) nc, u

Dans le cas d'une section en double te, ces formules se simplifient.
On a sensiblement:

w=0 d'oü n,=nc, SX

TT2 Ei
«el=«c(-) avec «c=-^

dans laquelle:
F=demi-hauteur de la section

P=rayon de giration dans le plan de l'äme
z=plus petit moment d'inertie

ß=surface de section

anr IG/,/2°=H A — - —
«ci tr2 E 1 h2

A
A=

8+^

VERIFICATION EXPERIMENTALE

Sur Finitiative de la Chambre Syndicale des Entrepreneurs de Construction
Metallique de France, des essais ont ete effectues par le Laboratoire de l'Institut
Technique du Bätiment et des Travaux Publics, en octobre 1950.

Ces essais ont porte sur cinq poutres en I.P.N. 100 dont les longueurs sont indi-
quees dans le tableau I (colonne 1). Ces poutres ont ete soumises ä une flexion
circulaire, avec dispositif empechant toute rotation des sections terminales autour de
l'axe longitudinal. Les rotations etaient libres autour des deux axes de symetrie de
la section.
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Tableau I

293

(1) (2) (3) (4) (5)
Longueur des Tier rtcr Erreur Her

poutres calculee mesuree % pieces ideales

3 m. 00 16,4 16,10 + 1,7 17,06
2 m. 00 23.7 23,8 -0,4 26,4
1 m. 50 27.5 27,7 -0,8 37,1
1 m. 00 30,5 30,0 + 1,6 61,8
Om. 50 flexion simple 31,0 165,7

Les contraintes critiques calculees (colonne 2) resultent de l'equation:

(n/—n,) k0+n,=ne

avec: Kq-
•1 nc

8=1 +

•1,083

OL

ncl

f^=n/—n

X=
8 + y4

Cette equation n'est autre que (23) appliquee ä l'etat critique, au moment de
1'affaissement, etant entendu que pour la verification experimentale, on remplace
c'= 1/2,4 par c=l/12, ce qui donne l + c= 1,083.

On a pris pour ne la moyenne des valeurs mesurees dans Faile comprimee.
Dans la cinquieme colonne ä droite, on a calcule les contraintes critiques relatives

aux pieces supposees parfaites, par nos formules equivalentes ä celles de Timoshenko.
Ainsi qu'il fallait s'y attendre, ces valeurs s'ecartent tres sensiblement des valeurs
mesurees, alors que dans notre theorie par divergence d'equilibre, l'ecart n'est que de
2 % au maximum.

De plus, des mesures precises de deformation ont ete faites pour chacune des
valeurs progressives du moment applique. Ces mesures ont permis de constater,
pour les quatre premiers essais, que la forme d'equilibre est dejä gauche pour de tres
faibles valeurs de la contrainte, ce qui contredit la theorie par bifurcation d'equilibre.

Dans le dernier essai, (poutre de 0m. 50), notre calcul donne n,=nc, ce qui signifie
que la membrure comprimee travaille en compression simple et n'est pas soumise au
flambement. Effectivement dans cet essai, il n'a pu etre mesure de deformation
laterale appreciable.

On passerait du moment constant, cas fondamental, ä toute autre sollicitation par
I'application des coefficients de la theorie classique.

Toute autre liaison des sections terminales se traduirait egalement par I'application
de coefficients connus.

On resoudrait egalement sans difficultes Ie probleme des pieces simultanement
flechies et comprimees. En raison du manque de place, nous renvoyons ä Conference
de Bruxelles dejä citee.

Ce qu'il est important de retenir, c'est que, par cette theorie, confirmee experi-
mentalement, le raecordement entre le deversement et le flambement se trouve realise

pour la premiere fois.
II en resulte des consequences importantes pour Fhomogeneite du degre de securite

et la coherence de la Resistance des Materiaux.
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Resume
Flambement

La theorie d'Euler ne s'applique qu'au cas ideal d'une barre parfaite et indefiniment
elastique (flambement par bifurcation d'equilibre). L'experience montre qu'il y a
equilibre flechi des le debut de I'application de la charge, et la rupture d'equilibre
depend de la contrainte au bord de la section mediane: il y a instabilite par divergence
d'equilibre.

II a ete propose beaucoup d'hypotheses pour Interpreter les defectuosites
inevitables qui sont la cause du flechissement prämature. Une analyse serree des

conditions ä remplir montre qu'il y en a peu de correctes. Une seule semble convenir
pour aboutir ä une Solution coherente et generale des problemes simples et complexes
de flambement (pieces prismatiques, ou composees de membrures assemblees par
treillis ou barrettes, simplement comprimees ou simultanement flechies, prise en
compte de la deformation d'effort tranchant, etc.).

Deversement (ou flambement lateral des poutres soumises ä la flexion)
Les theories classiques connues (notamment celle de Timoshenko) ne s'appliquent

qu'ä des pieces parfaites et indefiniment elastiques (deversement par bifurcation
d'equilibre). En realite, il y a, comme dans le cas du flambement, deversement par
divergence d'equilibre. A notre connaissance, ce probleme n'a pas recu de Solution
pratique. Nous en proposons une en montrant que le deversement d'une poutre
flechie s'identifie avec le flambement d'une barre prismatique dans un milieu elastique.

Cette theorie conduit pour les pieces supposees parfaites, ä des expressions de la
charge critique identique ä celles de Timoshenko, avec Favantage d'une prise en
compte automatique de la raideur laterale de flexion. Ceci etant acquis, la theorie
du deversement par divergence en decoule immediatement.

Les essais recents executes au Laboratoire de l'Institut Technique du Bätiment et
des Travaux Publics confirment cette theorie.

Summary
Bückling

Euler's theory holds good only for the ideal case of a perfectly straight and per-
fectly elastic bar (buckling through deviation of the equilibrium). Experience shows
that a bent equilibrium condition exists right from the beginning of the loading and
that the disturbance of equiübrium is dependent on the edge stressing of the middle
section: there arises an instability through disturbance of the equilibrium.

Many hypotheses have already been advanced to aecount for the inevitable defects
that cause premature bending. A compendious investigation into the conditions
that have to be fulfilled shows that only a few are correct. One alone appears to be
suitable to allow of obtaining a comprehensive and general Solution of the simple and
of the complex problems of buckling (prismatic members or built-up grid or frame
bars, bars that are only compressed or at the same time also bent, taking aecount of
the plastic deformation in consequence of a transverse force, etc.).

Lateral buckling (lateral buckling of beams subjected to bending)

The well-known classic theories (especially that of Timoshenko) hold good only
for perfect and perfectly elastic beams (lateral buckling through deviation of the
equilibrium). In reality, there occurs, as in the case of buckling, lateral buckling
through disturbance of the equilibrium. As far as we are aware, this problem has
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never been solved practically. The author proposes a Solution, in that he shows that
the lateral buckling of a beam subjected to bending is identical with the buckling of a
prismatic bar in an elastic medium.

For bodies that are assumed to be perfect, this theory leads to expressions for the
critical loads which agree with those of Timoshenko but have the advantage, however,
of automatically taking the lateral bending-stiffness into consideration. From this
there follows directly the theory of buckling through deviation of the equilibrium.

The most recent tests carried out in the laboratory of the Institut Technique du
Bätiment et des Travaux Publics confirm this theory.

Zusammenfassung
Knicken

Die Theorie von Euler gilt nur für den Idealfall des vollkommen geraden und
vollkommen elastischen Stabes (Knicken durch Verzweigung des Gleichgewichts).
Die Erfahrung zeigt, dass schon vom Beginn der Belastung an eine ausgebogene
Gleichgewichtslage existiert und dass die Störung des Gleichgewichts abhängt von
der Randspannung des Mittelschnitts: es entsteht eine Instabilität durch Störung des

Gleichgewichts.
Um die unvermeidlichen Mängel zu erklären, die die Ursache der frühzeitigen

Ausbiegung sind, wurden schon viele Hypothesen aufgestellt. Eine gedrängte
Untersuchung der Bedingungen, die zu erfüllen sind, zeigt, dass nur wenige korrekt sind.
Eine einzige schien geeignet, um zu einer zusammenhängenden und allgemeinen
Lösung der einfachen und der komplexen Probleme des Knickens zu gelangen
(prismatische Körper oder zusammengesetzte Gitter- oder Rahmenstäbe, nur gedrückte
oder gleichzeitig auch gebogene Stäbe, Berücksichtigung der Verformung infolge der
Querkraft, usw.).

Kippen (oder seitliches Knicken der Biegebalken)

Die bekannten klassischen Theorien (namentlich diejenige von Timoshenko)
gelten nur für vollkommene und vollkommen elastische Balken (Kippen durch
Verzweigung des Gleichgewichts). In Wirklichkeit kommt es, wie im Knickfall, zum
Kippen durch Störung des Gleichgewichts. Dieses Problem ist unseres Wissens bisher
nie praktisch gelöst worden. Der Verfasser schlägt eine Lösung vor, indem er zeigt,
dass das Kippen eines Biegeträgers identisch ist mit dem Knicken eines prismatischen
Stabes in einem elastischen Medium.

Diese Theorie führt für die vollkommen vorausgesetzten Körper auf Ausdrücke
für die kritischen Lasten, die mit denjenigen von Timoshenko übereinstimmen, jedoch
den Vorteil haben, die seitliche Biegesteifigkeit automatisch zu berücksichtigen.
Hieraus folgt unmittelbar die Theorie des Kippens durch Abweichung des

Gleichgewichts.
Die neuesten im Laboratorium Institut Technique du Bätiment et des Travaux

Publics durchgeführten Versuche bestätigen diese Theorie.
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