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The limit of stress in the compression flanges of beams
Contraintes limites dans les membrures comprimées des poutres

Die Grenzspannung in den Druckgurten von Trigern

Pror. CLIFFORD D. WILLIAMS

Chief Structural Engineer, Patchen and Zimmerman, Augusta, Georgia, U.S.A.*

Specifications for the design of structural metal beams usually limit the stress in
the compression flange by consideration of its unsupported length, its width, and in
some instances by its thickness and the depth of the beam. Most specifications do
not consider the type of loading which produces the flange stress nor the end conditions
which may affect the limit of that stress. A specification which provides one working
formula for all conditions of loading, for all conditions of end restraint, and for
‘flanges that may vary in section along their length, cannot provide constant factors
of safety for all of the possible conditions.

The work of S. Timoshenko, as summarised in the Theory of Elastic Stability,t has
been notable in the analysis of the elastic problem that is involved in the flanged beam
subjected to bending. Karl De Vries’ paper, ** Strength of Beams as Determined by
Lateral Buckling,” with the several discussions,} has summarised the present status
of the problem. Further consideration of the flange buckling problem seems justified
with the objective of simplification and more general application to the varying
conditions that may exist.

The following items are among the considerations that may affect solution of the
problem:

(1) unsupported length of the compression flange,
(2) horizontal moment of inertia of the compression flange,
(3) torsional resistance of the beam,
(4) restraint to end rotation of the compression flange,
(5) thickness and width of the compression flange,
(6) variations in section of the flange,
(7) resistance of the tension flange, and
(8) point of application of load to the beam—whether at the top flange, bottom
flange, or intermediate between the flanges.
* Formerly Head Professor of Civil Engineering, University of Florida, Gainesville, U.S.A.

t S. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Co., 1936.
1 Trans. Amer. Soc. Civ. Engrs., 112, 1245.
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Some comparison has been made between the compression flange of a beam and
a column, considering that the flange tends to buckle transverse to the web of the
beam. The flange is considered to receive its load by shear transfer from the web.
The manner in which this shear transfer is accomplished is a function of the manner
in which the beam is loaded. For example, if a beam is subjected to pure bending
the flanges receive full load at their ends; when the load is concentrated at the centre
of the beam span the shear transfer is uniform per unit of length; and when the applied
load is uniform the shear transfer is uniformly decreasing from the ends to the centre
of the span. Thus the compression flanges may receive their load under conditions
that vary from end loading to loading uniformly distributed along the length of the
members.

The effect of the distribution of beam loading on the limit of stress may be
demonstrated by comparison of similar loading conditions on a slender column.
The classical Euler loading on a column of uniform section and having its ends free
to rotate is expressed as P==2El/12=9-87FI/L2. It may be shown that the same
column having uniform increments of load per unit of length has a limiting load of
P=31-6E1/L2, and when loaded with uniformly decreasing increments from the end
to the centre, P=20-8E7/L2. Thus it would appear that the manner of loading is a
major consideration affecting the limiting load by as much as 317 times.

Again, the effect of end restraint to rotation of the compression flange may be
demonstrated by consideration of the free end and the fixed end Euler limits, which
are in the ratio of 1 to 4. Degree of end restraint would affect values falling between
these two.

Variation of the cross-section of a column along its length becomes an important
consideration in establishing its limiting load. It is very difficult to assign an average
value to the moment of inertia of a column which will fully account for the manner of
variation. For example, a column may have a heavy mid-section or it may have
heavy end-sections. In these cases the average moment of inertia may be the same
but the limit of load would te different.

The torsional resistance of a beam to buckling of the compression flange might
also be compared to a slender column having a spring placed to resist lateral deflec-
tion. Let fig. 1 illustrate a column with a spring which has zero load when the
column is straight. When the column is bent toward the spring the restraining force
is dependent upon the amount of deflection. Similarly, the simply supported beam
illustrated in plan view in fig. 1(b) will have each cross-section throughout its length
rotated through some angle 8. The amount of the deflection a will determine the
magnitude of the angles 8 along the length of the beam and consequently the amount
of the torsional resistance. It would appear that the column of fig. 1(a) and the com-
pression flange of the beam of fig. 1(b) would each have increasing loads required to
maintain deflections of increasing magnitudes. However, in each case the restraining
lateral force is zero when the member is straight and the critical load for the straight
condition is the same whether or not the restraint is pending. In order to evaluate
the effect of the torsional restraint of the beam for various amounts of lateral deflec-
tion of the compression flange it is necessary to assign values to the maximum angle
of rotation of the beam and to define the law of variation of that angle along the
length of the beam. The amount of torsional resistance must be small indeed when
the flanges of the beam are straight or nearly straight. A condition of neutral
equilibrium must exist while the beam flanges are straight. Higher values of load in
the compression flange are likely, possibly because of torsional restraint that develops
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with increasing angles of torsional rotation. The least value of load that will produce

neutral equilibrium would seem to be'that which occurs when the flanges are straight.
' It has been assumed that the vertical load applied to the top flange of a beam tends
to increase the torsional angle, resulting in a lowered limit of load. On this basis, a
load applied to the bottom flange increases the limit of load. It follows that, if the
flanges are straight, the vertical load would be in the plane of the web and considera-
tion of top or bottom location would be eliminated.

If the designer is concerned with the load that will produce neutral equilibrium
while the compression flange is straight, then a much simplified method may be used.
In this case full consideration may be given to the effects of end restraint, variations
in type of loading, and variations in the section of the compression flange.

It is not the intention of this paper to discuss buckling phenomena in the plastic
range, that is, when the computed stress in the flange is greater than the proportional
limit of the material. Also, it is assumed that the thickness of the compression flange
is sufficient so that local crippling of the flange does not precede lateral buckling.
For the purpose of this discussion it is considered that there are two limiting values
of stress, either of which may control. One of these limits is the stress which compares
with the yield point of the material and the other is the stress in the extreme fibres of
the beam when a state of neutral equilibrium exists in a straight compression flange.
It is acknowledged that higher stress values may be obtained before collapse of the
beam, but it is believed that a factor of safety should be maintained with respect to
the lower of these two defined critical stress values.

c.R.—17
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In order that the critical stress may be found for any given compression flange, it
is assumed that the load will maintain a small lateral deflection of the flange. The
amount of this deflection is immaterial so long as it does not produce an appreciable
torsional resistance from the beam. The amount of the flange load is then such that
any decrease would permit the flange to straighten-and any increase would cause
greater lateral deflection. The amount of the deflection that is assumed to be main-
tained is further assumed to be small enough so that it is immaterial whether the load
is applied to the top flange or to the bottom flange of the beam. These assumptions
are consistent with determination of the critical load for the straight flange.

The assumption of a small lateral deflection of the compression flange is a tool
to be employed in evaluating the critical load in the compression flange. It is required
that the load maintain the deflection in amount and the deflection curve in shape.
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Since the shape of the deflection curve is usually not known in advance, a process of
iteration may be used to approach evaluation of the true curve. Fortunately, the
series is rapidly converging so that the work is minimised. Again, the analogy of a
column loaded at its ends may be used as an example. Assume that the deflection
1s @ and that the shape of the curve is parabolic (while it is known that the curve is
sinusoidal). Fig. 2(a) shows the ordinates to the parabolic curve for the centres of
five equal divisions of the half length. The load P produces bending moments along
the length of the column. The deflection at the centre may be computed from these
bending moments and is expressed as y=0-1037Pal?/El. Since y=a, then
P=9-64E1/L2. If integrated continuously, the value of P would be found to be
9-60EI/L?. These values are about 3 9; less than the accepted value of P=9-87E1/12,
because of the assumption that the curve is parabolic. This approximation will
normally be sufficiently accurate in view of the fact that the value of E will vary by
more than 3% from any assumed value. However, if deflections were computed at
the centres of the five divisions, a new closer curve shape might be developed as shown
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in fig. 2(b). When the new curve is used in the same manner as the first approximation
it is found that y=0-1025Pal?/EI, from which P=9-77FI/L2. This value is now
about 1% below the accepted value. Continuation of the same process will yield
results with an even greater degree of accuracy. If the sinusoidal ordinates of fig. 3
were used, the resultant value of y=0-1009PaL?/EI produces P=9-91EI/L2, The
only reason this value differs from the value of 9-87FI/L2 is that the integration was
performed in five finite parts rather than continuously.

Fig. 3

In the case of pure bending in a flanged beam the flange stress is applied entirely
at the ends of the beam. If the ends of the compression flange are free to rotate and
the flange is of constant section, then the critical flange load is F=9-87EI/L?; the
average stress in the flange is F/4=9-87FEI/AL2?, when A is the area of the flange and I
is the moment of inertia of the compression flange about the axis along the web (for
constant section rolled beams [ is one-half of the Iy—y value givenin steel handbooks);
the extreme fibre stress is f=9-87EIc/AL2y, when c is the distance from the neutral
axis of the beam to the extreme fibres and y is the distance to the centre of the flange.
Since f=M/S, in which S is the section modulus of the beam about its major axis, the
critical value of M=9-87EIcS/AL?y.

Fig. 4(a) represents a flanged beam of uniform section simply supported and
loaded with a concentrated load P placed at the centre. Itis desired to find the load P
which will induce a critical flange load F. If the half-span is divided into five equal
divisions, the increment of load F that is applied to each division is 0-2F. Assuming
that the compression flange deflects laterally in a parabolic shape with a maximum
deflection of a, fig. 4(c) represents the column loading. Bending moments at the
centre of the divisions are computed as follows:

-~
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0 Point 5
0-2Fx0-32a=0-064Fa Point 4
0-2F
0-4F x0-24a=0-096Fa
0-2F 0:-160Fa Point 3
0-6Fx0-16a=0-096Fa
0-2F 0-256Fa Point 2

0-8Fx0-08a=0-064Fa
0-320Fa Point 1
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These bending moments are plotted in fig. 4(d). The horizontal deflection of the
centre of each division from the tangent to the elastic curve at the centre of the span
may be computed by the use of the Moment-Area principles in the following manner:

0-0320FaL/EIx0-10L=0-0032Fal?/EI Point 2

0-0256
00576 X010 =0-00576
0-0160 0-00896 Point 3
0-0736 %x0-10 =0-00736
0-0064 0-01632 Point 4
0-0800 x0-10 =0-00800

0-02432 Point 5
0-0800 % 0-05 =0-00400

0-02832FaL?/ET End -

Since the deflection of the end from the tangent to the elastic curve at the centre is
0-02832Fal2/EI, the deflection of the centre will be y=0-02832FaL?/El. The require-
ment is that y=a. Hence, 0-02832FL2/El=1, and F=35-3EI/L?, when I is the
moment of inertia of the compression flange about its vertical axis. This value of the
limiting load is approximate because it is based on an assumed shape of deflection
curve. A closer value will result from a curve that is nearer the true shape of the
deflection curve. Such a curve may be developed from the computed deflection at
each point, when each such deflection is divided by 0-02832FL2/ET and the quotient
is subtracted from 1-Oa as in the following computation:

1-00a—g%§;a= End
I-OOa—g:g—ig%gzo-Ma Point 5 s
. 1'00"_((;:((;;_23?1:0'42“ Point 4
I-OOa—g_‘gg—ggga=0-68a Point 3
1-00a——8:gg§§;=0-89a Point 2

The new curve is plotted in fig. 4(¢). A closer value for the limit of the force F
may be found by repeating the calculations for bending moment and deflection, using
this last curve:

0-2Fx0-284=0-056Fa Point 4
0-2F
0-4Fx0-26a=0-104Fa
0-2F 0-160Fa Point 3
. 0-6Fx0-21a=0-126Fa
0-2F 0-286Fa Point 2
0-8Fx0-11a=0-088 Fa
0-374Fa Point 1
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0-0374FaL/EIX0-10L=0-00374FaL?/EI Point 2

00286 ,
0-0660 % 0-10L=0-00660
0-0160 001034 Point 3
00820 x 0-10L=0-00820
0-0056 0-01854 Point 4
00876 x 0-10L=0-00876

002730 Point 5
00876 x 0-05L.=0-00438

0-03168Fal?/EI End

The new closer value for the limit of F is then found from the equation y=a.
Thus, y=0-03168FaL2/EI, or 0-03168FL2/EI=1, and F=31-6EI/L2.

The process might be continued, and it is found that a slight change in the value
of F will occur, resulting in a final value of F=31-3EI/L2. Then f=31-3EIc/AL2y
and since f=PL/4S, P=1252EIcS/AL3y.

It is noted that the critical load in the top flange is expressed as F: —KI*LI/L2 when
K varies with the manner in which the loads are applied to the compression flange, or
the continuity of the ends of the beam.

In the case of a uniformly loaded beam, the shear transfer from web to flange is
uniformly decreasing from the end.to the centre. Fig. 5(c) illustrates an assumed
parabolic deflection curve with maximum ordinate a. The length of the beam is
divided into ten equal divisions. The load applied to the flange per unit of length
varies from a maximum value at the end to zero at the mid-span. The average value
of ¥ Q/I for division 5 is 9/10 of the value of ¥ Q/Ifor the end of the beam; the average
value is 7/10 for division 4, 5/10 for division 3, 3/10 for division 2, and 1/10 for
division 1. Fig. 5(c) shows the distribution of the force F to the five divisions with
F/25 at division 1, 3F/25 at division 2, 5F/25 at division 3, 7F/25 at 4, and 9F/25 at 5.
The bending moment at point 4 will be 0-36 Fx (0-51a—0-194)=0-1152Fa. The cal-
culations for the bending moment at each point and the deflection of each point
from the tangent to the elastic curve at the mid-span follow:

0:36Fx0:32a=0-1152Fa Point 4
0-28F

0-64F x0-240=0-1536Fa
0-20F 0-2688Fa Point 3

0-84Fx0-16a=0-1344Fa
0-12F 0-4032Fa Point 2 .

0-96F x 0-08a=0-0768 Fa
0-4800Fa Point 1
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0-04800FaL/EI X 0-10L=0-004800FaL?/EI Point 2 0-89a
0-04032
0-08832 x 0:10L=0-008832
0-02688 0-013632 Point 3 0-69a
0-11520 x0-10L=0-011520
0-01152 0-025152 Point 4 0-43a
0-12672 x0-10L=0:012672
0-037824 Point 5 0-l4a
0-12672 % 0:05L=0-006336

.0-044160FaL?/EI End O

Since the maximum deflection is found to be y=0:04416Fal?/El and y=a, then
=22-6EI/L2. This value of Fis approximate, since a parabolic curve was assumed.
The ordinates for a closer curve were found by dividing each deflection value by
0-04416FaL?/EI and subtracting these quotients from a. These new ordinates are
shown in fig. 5(d).



264 All 3—C. D. WILLIAMS

By using the ordinates of (d), new values of bending moment, new deflections, and
still another deflection curve are computed as follows:

0:36Fx0:294=0-1044Fa Point
0-28F :

0-64F x 0-26a=0-1664Fa

0-20F 0-2708Fa Point 3

0-84F x 0-20a=0-1680Fa

0-12F 0-4388Fa Point 2

0:96F x 0-11a=0-1056Fa .
0-5444Fa Point 1

New
ordinate
0-05444FaL/EIX0-10L=0-005444FalL?/EI Point 2 0-89a
0-04388 -
. 0-09832 x0-10L=0-009832
0-02708 0-015276 Point 3 0-68a
0-12540 X 0-10L=0-012540
0-01044 0-027816 Point 4 0-42a
0-13584 X 0-10L=0-013584
0-041400 Point 5 0-14a
0-13584 X 0-05L=0-006792

0-048192FaL?/EI End 0

From this results the closer value of F=20-8E1/L2, which is 2-11#2EI{L2, when I is
the moment of inertia of the compression flange about the vertical axis.

Table I gives values of K for simply supported beams of constant section which
are supported against lateral movement only at their ends.

TABLE 1
Values of K
Type of loading K
Plane bending - . . ’ : . 987
Uniform load . . . . . 20-8
Concentrated load at 0-1L . . . 209
Concentrated load at 0-2L . .. . 238
Concentrated load at 0-:3L . . . 279
Concentrated load at 0-4L . . . 304
Concentrated load at centre . . . 31:3
Equal loads at 0-1L and 0-9L . . . 121
Equal loads at 0-2L and 0-8L . ; . 151
Equal loads at 0-3L and 0-7L . . . A
Equal loads at 0-4L and 0-6L . . . 23

The method that has been applied to the constant-section beam may be expanded
to become applicable to the variable-section beam. Fig. 6(a) illustrates a welded beam
with varying flange thickness, loaded with a single concentrated load at the centre
of the span. The shear diagram is shown in fig. 6(b), and the moment of inertia of
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the entire beam about its horizontal axis is shown in fig. 6(c). The shear load
between the web and the flange at any point is equal to VQ//, Ib./in. Since the
numerical value of V is constant throughout the length of the beam, the shear
transferred to the flange of the beam from the web must be proportional to Q/I..
After the distribution of the flange loading from the web is determined, a
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parabolic horizontal deflection curve is assumed and corresponding bending moments
are computed. The deflection curve may be computed by the Moment-Area method,
areas of the M/EI diagram being used. The resulting deflection curve will be more
nearly the true curve of deflection maintained by the flange loads. When a value of
the maximum deflection is expressed in terms of the initial deflection and E, a value
for F may be found.

Fig. 6(e) shows values of VQ/I, and the percentage of the flange load that each
60-in. length of the web transfers to the flange. The half-length of the compression
flange is divided into six sections of 30 in. each for the computation, and the centre
of each length becomes a working point. These centres are numbered from 1 to 6 in
fig. 6(f). The sum of the increments of F that are shown applied to the centres of
these sections is equal to F, and these increments correspond with the VQ/I, values
in fig. 6(e). Ordinates to the assumed parabolic curve are shown in fig. 6( /) and are
used to compute the bending moments at points 1 to 5 in the following manner:

Bending Moments

0 Point 6
0-144F x0-27a=0-03888Fa Point 5
0-144F
0-288F x0-22a=0-06336Fa
0-173F 0-10224Fa Point 4
0:461 Fx0-17a=0-07837Fa
0-173F 0-18061Fa Point 3
0:634Fx0-11a=0-06974Fa
0-183F 0-25035Fa Point 2
0:817F x 0-:05a=0-04085Fa
0-183F 0-29120Fa Point 1
1-000F x 0-01a=0-01000Fa
0-30120Fa Centre

Computation of Deflection

M dx/I Mdx/I x  Mxdx/I Deflection New
at ordinate
(1) 0-29120Fa x 30/15:6=0-5600Fa 30 16:-800Fa Point 2 0-93a
(2) 0-25035Fax30/15:6=0-4814Fa

1-0414Fa 30 31-242Fa

(3) 0:18061Fax 30/10-4=0-5210Fa 48-042Fa Point 3 0-80a
1:5624Fa 30 46-872Fa

(4) 0-10224Fax 30/10-4=0-2949Fa 94-914Fa Point 4 0-6la
1-8573Fa 30 55-719Fa

(5) 0-03888Fax30/52 =0-2243Fa 150-633Fa Point 5 0-38a

2-:0816Fa 30 62-448Fa

213-081Fa Point 6 0:13a
2:0816Fa 15 31-224Fa

244-305Fa End 0
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In the foregoing computations it is found that the deflection of the end of the
beam from the tangent to the elastic curve at the centre is y=244-305Fa/E. By
definition, the force F must just maintain the small deflection . Hence, y=a and
F=E/244-305=122,800 1b. The average flange stress at the centre of the beam will
be F/A, or 122,800/7-5=16,375 1b./in.2. The extreme fibre stress will be greater than
the average flange stress, being equal to 16,375% 10-5/9:75=17,6351b./in.2  The load
P on the beam for which Mc/I=17,635 1b./in.2 will be such that 90P x 10-5/1,663=
17,635. Thus P=31,030 lb.

These values were computed on the assumption that the shape of the deflection
curve that would be maintained by the force Fis parabolic. If each of the deflections
(times E) that were computed for points 2 to 6 is divided by 244-305FA4 and the
quotients are subtracted from a, a new shape of curve will be indicated which would
be closer to the true curve.

The new ordinates in the foregoing computations are these values. The com-
putations may now be repeated to obtain a closer value of F:

Bending Moment
0-144F x 0-25¢=0:03600Fa Point 5

0-144F

0-288Fx0-23a=0-06624Fa

0-173F 0-10224Fa Point 4
0461 Fx0-19a=0-08759Fa

0-173F 0-18983Fa Point 3
0-634Fx0-13a=0-08242Fa

0-183F 0-27225Fa Point 2
0-817Fx0-07a=0-05719Fa

0-183F 0-32944Fa Point 1

1:000Fx0 =0
0-32944Fa Centre

Computation of Deflections

M dx/I Mdx/l x  Mxdx/I Deflection New

at ordinate

(1) 0-32944Fax30/156=0-6335Fa 30 19-005Fa Point 2 0-93a
(2) 0-27225Fax 30/15:6=0-5236Fa

1-11571Fa 30 34-713Fa

(3) 0-18983Fa x 30/10-4=0-5476Fa 53718Fa Point3  0-80a
1.7047Fa 30 51-141Fa

(4) 0-10224Fa x 30/10-4=0-2949Fa 104-859Fa Point4  0-60a
 19996Fa 30 59-988Fa

(5) 0-03600Fa x 30/5-2 =0-2077Fa 164-847Fa Point 5  0-38a

2-2073Fa 30 66:219Fa

231-066Fa Point 6 0-13a
2:2073Fa 15 33-109Fa

264-175Fa End 0
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Since y=264-175Fa/E or 264175F/E=1, then F =113,561 1b. Also, F/A=
113,561/7-5=15,141 1b./in.2, and the maximum flange stress at the centre of the span
is 10-5/9-75x15,141=16,306 1b./in.2 Then Mc/I=90P x10-5/1,663=16,306 1b./in.2
or P=28,695 Ib.
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Fig. 7

It will be noted that the new values differ from the values first computed by less
than 10%,. Ordinates to a second new curve appear to be almost identical with those
used for the second computation. Hence it would seem unnecessary to carry the
computation further. '

Fig. 7(a) illustrates the plan view of a simply supported beam of constant section.
The top flange is assumed to be restrained from rotation in a horizontal plane.
Fig. 7(d) shows the half-span divided into ten equal divisions and an assumed reverse
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parabolic deflection curve. The beam is loaded with a centrally placed concentrated
load P as shown in fig. 7(b), hence an increment of 0-1F will be applied to the com-
pression flange at each division of the length.

Using the assumed curve shape, the simple bending moments are calculated in
the usual manner. Since the end tangents to the elastic curve are prevented from
rotating, the total M/EI area between the end and the centre of the span must be zero;
hence, end moments must be of the magnitude that will accomplish this result. The
sum of the simple moments at the ten divisions divided by 10 will then equal the end
moment and the bending moment at any point will be the difference between the end
moment and the simple moment at that point. |

Bending Moments

M
0 Point 1  —0-207

0:1Fx0-:04a=0:004Fa Point2 —0-202

O-1F

0-2Fx 0-07a=0-014Fa

O-1F 0-018Fa Point3 —0-189

0-3Fx0-12a=0-036Fa

0-1F 0:054Fa Point4 —0-153

0-4F x 0-16a=0-064Fa. |

0-1F O118Fa Point5 —0-089

0-5F % 0:20a=0-100Fa"

0-1F 0218Fa Point6 -+0011

0-6F % 0-16a=0-096Fa

O1F  0314Fa Point7 +0-107

0-7Fx0-12a=0-084Fa

0-1F 0-398Fz Point8 40191

0-8F x 0-07a=0-056Fa

0-1F 0454Fa Point9  +0-247

0-9F x 0-04a=0-036Fa

0-1F 0-490Fa Point 10 +0-284

10F

- Deflections from the tangent to the elastic curve at the end may now be calculated
as follows: ‘
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M _ Deflection New curve
—0-207Fa x 0-05L x 0-05L=—0-0005FaL? Point 2 0-038a
—0-202Fa
—0-409Fa —0-0010FaL
—0-189Fa —0-0015FaL? Point3 0-116a
—0-598Fa —0-0015FaL?

—0-153Fa —0-0030FzL? point4 0-232a
—0-751Fa —0-0019FaL?

—0-089Fa —0-0049Fal? Point 5 0-380a
—0-840Fa —0-0021FaL?

+0011Fa —0-0070Fal? Point 6 0-543a
—0-829Fa —0-0021 FaL?

+0-107Fa —0-0091FaL? Point7 0-705a
—0-722Fa —0-0018FaL?

+0-191 Fa —0-1009Fal? Point8 0-845a
—0-531Fa —0-0013FaL?

+0-247Fa —0-0122Fal? Point9 0-946a
—0-284Fa —0-0007FaL?

+0-284Fa —0-0129FaL? Point 10 1:000a
0

Since y=0-0129FalL?/El and y=a, F=77-5EI/L2. The next approximation,
using the curve developed from the first approximation, results in F=75-5EI/L2,

It will be seen by the illustrative examples that the procedure for finding the limit
of stress in the compression flange of a beam follows a very definite plan. The step-
by-step procedure may be outlined as follows:

(1) Identify the conditions of end restraint that affect the shape of the elastic
curve for lateral buckling of the compression flange.

(2) Assume a nominal finite lateral deflection of the compression flange and a
shape of curve that is in general agreement with the conditions of end
restraint.

(3) Define the manner of loading of the compression flange consistent with the
manner in which the beam is loaded.

(4) Compute bending moments along the length of the compression flange
caused by the flange load and the assumed lateral defiections, and con-
sistent with the conditions of end restraint.

(5) Compute the magnitude of the lateral deflection of the flange from the
values of M, E, I, and the length of the beam, and expressed in terms of the
magnitude of the assumed lateral deflection.
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(6) A new deflection curve may be developed from the above step (5) and com-
pared with the assumed shape of curve.

(7) When the assumed shape of deflection curve and the shape of the deflection
curve found by use of the assumed curve agree, an equation between the
computed maximum deflection and the assumed deflection will yield an
expression for the limit of load in the straight compression flange of the
beam.

Experimenters are familiar with certain phenomena in the testing of flanged
beams. Load may be applied gradually to the beam with no apparent tendency for
the compression flange to buckle sidewise until a certain load value has been reached.
Once this critical value of flange stress has been reached, the compression flange may
exhibit a tendency to bend principally in one lateral direction. Upon reaching a
second critical value of flange stress, the compression flange may be easily moved
from one deflected position to a deflected position in the opposite direction. Then,
as increasing values of load are placed on the beam, the amount of lateral deflection
that will remain placed in either direction increases also. The ultimate result occurs
when the beam has been loaded so that lateral deflection in one direction continues
to complete collapse.

It is noted by the experimenters that when a given load is suspended vertically
from the bottom flange of the beam, the amount of lateral deflection of the com-
pression flange is smaller than when the same load is placed on the top flange. This
fact is consistent with principles developed by previous investigators pertannng to
action after certain bending has taken place in a lateral direction.

It would seem that it should be possible experimentally to measure the angle of
rotation of the central portion of the beam span that agrees with any value of super-
imposed load; then, with a sufficient number of measurements of such relations, the
load at zero angle of rotation could be projected. Such measurements have been
carried out successfully for several types of loading, but certain phenomena are
troublesome to the experimenter.

The lateral deflection of the compression flange is sensitive to conditions of end
restraint, It is not easy to obtain a truly simply supported beam with lateral support
of the compression flange not restrained from end rotation. Also, it is found that
the immediate past history of stress in the flange appears to affect the magnitudes of
rotation angles of the beam cross-section that will be maintained by any given vertical
load. The probable reason for this variation is that the experimenter is unable to
control the maximum amount of rotation and the beam flange is subjected to stresses
above the yield point in certain fibres. A different number of fibres have stress
above the yield point with each value of rotation angle.

The following procedure has been found to produce satisfactory results experi-
mentally. A load is placed upon the beam which does not cause general yielding but

“which is known to be well above that producing critical stress while the beam is
straight. While the beam is under this load the compression flange may be moved
in a lateral direction by a pressure of the hand, say to the left, and will stay in some

~ such deflected position. Now the load may be gradually reduced and a record made
of angles of rotation and corresponding loads. If the same procedure is repeated by
rotating the beam to the right and recording the loads and angles, two sets of load-
angle values will have been produced. Now, if these data are plotted, curves defining
the two sets of data will intersect at a value of load checking very well the value of
loading that produces critical flange load, while the beam is straight. A second set
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of data may produce a new set of different angle-load values, but the intersection of
the two such curves produced continuously will usually give the same result for the
critical point. Whether the load is applied to the top flange or to the bottom flange,
and whether the load is vertical or inclined from some centre of loading, will affect
the magnitudes of the angles maintained by any given loads on the beam. But it is
of interest that any set of data produced from the same conditions of loading appear
to project to the same critical value for the compression flange—while straight.

Summary

Determination of the limit of stress in the compression flanges of beams involves
many considerations. Factors that are important in the literature on the subject
include such items as the distribution of the load causing stress, the torsional resistance
of the beam, the lateral stability of the compression flange, and others. Because of
the complicated nature of a complete solution in the general case, specifications for
design contain empirical formulae guiding the designer. The effects of the distribu-
tion of the loading, the type of end restraint, and variations in the section of the beam
are known 10 have large effects but are not included as considerations in the design
formulae.

It is herein presented that a revised definition of the neutral state of equilibrium
will greatly simplify the considerations and provide the designer with a logical pro-
cedure for analysis. In this way he will not be dependent upon empirical formulae
that must be conservative to a large degree. It is proposed that the neutral state of
equilibrium for design purposes be defined as that having the smallest value; this
value occurs while the flange is straight but buckling is imminent. Such a definition
eliminates the necessity for consideration of the torsional resistance of the beam and
of the loading position, that is, whether the load is on the top or bottom flange of the
beam. The definition permits full attention to be given to the large factors affecting
solution of the particular case considered. These large factors include the distribu-
tion of the loading on the beam, the condition of end restraint, and variations of
section. '

Special cases illustrate a general method of solution involving the use of common
iteration processes and in some cases successive approximations.

Résumé

Le calcul des charges limites des membrures de compression des poutres fait
intervenir plusieurs considérations. Les points importants traités dans la littérature
spécialisée sont la distribution de la charge, la résistance a la torsion de la poutre,
la stabilité latérale de la membrure de compression, etc. Par suite de la complexité
d’une solution compléte du cas général, les spécifications de détail font intervenir des
~ formules empiriques destinées 4 guider le dessinateur. On sait que la distribution de
la charge, le mode de fixation de I’extrémité de la poutre et les variations de son profil
jouent ici un grand role, mais ne sont pas pris en considération dans les formules
de dessin.

Nous montrons qu’une révision de la définition de 1’état d’équilibre stable sim-
plifiera sensiblement la question et fournira au dessinateur un processus logique
d’analyse. Il n’aura ainsi pas a se fier & des formules empiriques qui sont nécessaire-
ment tres conservatrices. Nous proposons de définir, pour le dessin, I’état d’équilibre
stable comme celui qui a la moindre valeur; cette valeur se manifeste lorsque la mem-
brure est droite, mais sur le point de se déformer. Une telle définition élimine la
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nécessité de considérer la résistance a la torsion de la poutre et de faire intervenir le
mode d’application de la charge, suivant qu’elle est placée sur la membrure supérieure
ou sur la membrure inférieure. Cette définition permet de concentrer toute I’atten-
tion sur les facteurs essentiels qui déterminent la solution dans le cas particulier étudié.
Ces facteurs comprennent la distribution de la charge sur la poutre, le mode de
fixation de I’extrémité de cette poutre et les variations de sa section.

Des cas particuliers illustrent une méthode générale de résolution qui entraine le
recours a des procédés d’itération courants et parfois 4 des approximations
successives. ’

Zusammenfassung

Die Bestimmung der Grenzspannung in den Druckgurten von Trdgern umfasst
zahlreiche Ueberlegungen. Die in der Fachliteratur behandelten wichtigen Punkte
sind die Lastverteilung, die Torsionssteifigkeit des Trégers, die seitliche Stabilitdt des
Druckgurtes, u.a. Wegen der komplizierten Form der vollstindigen Losung im all-
- gemeinen Fall finden sich in den Entwurfs-Normen empirische Formeln als Weg-
leitung fiir den Konstrukteur. Die grosse Bedeutung der Einfliisse der Lastverteilung,
der Form der End-Festhaltung und der Verdnderlichkeit des Querschnitts ist bekannt,
doch sind diese Faktoren in den Entwurfsformeln nicht beriicksichtigt.

Der Verfasser zeigt, dass eine verbesserte Definition des neutralen Gleichge-
wichtszustandes das Problem stark vereinfachen und dem Konstrukteur eine ver-
niinftige Berechnungsmethode in die Hand geben kann. Er ist damit nicht mehr auf
empirische Formeln angewiesen, die weitgehend veraltet sind. Der Verfasser
schldgt vor, den neutralen Gleichgewichtszustand fiir den Entwurf dahin zu definieren,
dass er den kleinsten Wert aufweisen soll; dieser Wert ergibt sich bei geradem Flansch
unmittelbar vor dem Ausknicken. Die vorgeschlagene Definition macht die Not-
wendigkeit einer Beriicksichtigung der Torsionssteifigkeit des Tréigers und der Lage
der Belastung, d.h. ob die Last am oberen oder unteren Flansch des Trégers wirkt,
iiberfliissig. Die Definition erlaubt uns, unsere volle Aufmerksamkeit den ent-
scheidenden Faktoren, die die Losung des betrachteten, besonderen Falles beein-
flussen, zuzuwenden. Diese entscheidenden Faktoren sind die Verteilung der
Belastung iiber dem Triger, die Festhalte-Bedmgungen an den Enden und die Verin-
derlichkeit des Querschnitts.

An Hand von Sonderfillen wird ein allgememes Losungsverfahren aufgezeigt, das
die iiblichen Iterationsvorgédnge und in gewissen Fillen auch successive Appromma-
tionen umfasst.

Cc.R.—18



Leere Seite
Blank page
Page vide



	The limit of stress in the compression flanges of beams

