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Measurement of strains in a slab subjected to a concentrated load

La mesure des contraintes dans une dalle soumise a une charge
concentrée

Spannungsmessungen an einer Platte unter Einzellast

Ir. H. J. KIST, Ir. A. L. BOUMA and Ir.J. G. HAGEMAN
Chief Engineer, Rijkswaterstaat  Research Engineer, T.N.O., Delft  Research Engineer, T.N.O., Delft

INTRODUCTION

For designing reinforced-concrete slabs it is desirable to know the stress distri-
bution produced by concentrated loads.

In the theory of plates as it has been developed up to now, the material is usually
supposed to be ideal: homogeneous, isotropic and elastic and meeting the require-
ments of Hooke’s law.

In order that the results of the measurements can be compared with these existing
theories, measurements have to be made on a practically ideal material. This is one
of the reasons why a steel model was chosen. Moreover a steel model can be con-
structed on a fairly small scale, and besides it is possible to make a great number of
observations on such a model for many different schemes of loading.

In order to interpret the results of the measurements on reinforced-concrete con-
structions it will be necessary to carry out tests on reinforced-concrete slabs during
which the specific behaviour of this material will be observed. Only part of the
investigation has been completed, however, several results have already been obtained
and some conclusions can be drawn.

DESCRIPTION OF MODEL AND TESTS

The model (fig. 1) contains two rectangular slabs for testing. The upper slab is
the web of a beam DIN 100, length 580 cm. Rotation of the flanges is prevented,
so that the sides of the web are practically fixed. The web has a thickness of about
19 cm. The lower slab (about 96x1-9x 506 cm.) has a hinge-bearing along the
entire length of each long side. The distance between these hinge-bearings is 92 cm
and is called the span.

One short side of each slab is completely fixed and the other short sides have
hinge-bearings. In the future these hinge-bearings may be removed in order to
make these short sides entirely free.
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Fig. 1. Cross-section of model

The model is rigidly united by vertical and diagonal members.

The load is applied by a hydraulic jack placed between the slabs. The magni-
tude of the load is measured by a dynamometer provided with electrical resistance
strain-gauges and is kept limited to assure the validity of Hooke’s law.

The load was concentrated on a circular area with a varying diameter D (7-6—5-4
—3:6—1:6 cm.) or transmitted by a ball with a diameter of 1 cm.

- The influence of different packing such as 3 mm. of cardboard and 3 mm. of rubber
between the slab and the distribution piece was also tested.

Up to now, measurements have been taken only in the middle part of the lower
slab. It may be supposed that the supports along the short sides of the slabs do not
influence the stress distribution in the central part; in other words, in this case the
slab may be considered to be infinitely long. The load is placed respectively in
different points of this central part, while the strains are measured in several places.
Because no strain-rosettes were used, a special scheme had to be designed for fixing
the strain-gauges and placing the load, so that for a point at a certain distance from
the load the values of ¢, and ¢, could be determined in a simple way.

Philips strain-gauges mostly were used with a measuring length of 12 mm. In
some places Baldwin strain-gauges were used with a measuring length of 12 and 3 mm.

RESULTS

From the strains measured (ex and ¢,) for a certain magnitude and position of the
load P, the bending moments M, and M, are determined by means of the formulae:

E
M= . (e, 4v. c) . b2

E
M}'=-l—_1/2 ety . ey) . +h?
in which the modulus of elasticity is assumed to be E=2-15.106 kg./cm.2, and
Poisson’s ratio v=0-3.
M, is the bending moment transmitted by sections perpendicular to the span, and
M, the bending moment transmitted by sections parallel to the span.
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‘The relation between elongation and load (e, ¢, and P) was fairly linear. For
that reason it was possible to use one certain magnitude of P for calculating.

Fig. 2 shows the values of M, /P and M,/P at several points of sections below P,
one in the direction of the span and the other parallel to the long side of the slab.
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Fig. 2. Moment-load ratio from measured strains

In this case the load P is placed without any packing in the centre of the span.

In the neighbourhood of the load, and especially below the load, the influence of
the concentration of the load proves to be very important. This influence, however,
may be neglected when the point is chosen at a greater distance from the load. The
influence of the packing also appears to be limited to the close surroundings of the
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load. Generally the results of the formulae concerning the elementary theory of
plates! agree well with the T.N.O. results.

Fig. 2 also shows the values of M,/P and M, /P at points in sections below P, one
parallel and the other perpendicular to the span. In this case a concentrated load
with diameter D=1-6 cm. without any packing is placed respectively at different
points of the span.

When the load is moved from the centre to the vicinity of the supports it appears
that in the beginning the values of M, /P and M,/P decrease only slightly.

Fig. 3 again shows the values of M,/P below the load as a function of the con-
centration of the load in the case where the load P is placed at the centre of the span.
The observations obtained with three different kinds of strain-gauges and with two
different packings and without any packing show a certain deviation. During
loading without any packing, generally lower values are found, and during loading
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with a rubber packing of 3 mm., higher values of M,/P are found. For comparison
the values according to the elementary theory of plates ! and those from the formula
of Westergaard 2 are also given. Those of Westergaard also agree well with the test
results when the load is concentrated on a very small area.

The T.N.O. results also agree with those of tests on rectangular slabs of aluminium
made by R. G. Sturm and R. L. Moore.3

The tests will be continued. The load will be placed at different points of the
lower slab near the short sides (different boundary conditions: hinged, fixed, free).
Thereafter tests will be made on the upper slab.

Fig. 3 also shows the maximum moments according to the Netherlands Code
(G.B.V. 1950).

When the load is concentrated on a small area, the moments determined from the
observations are considerably bigger than those according to this code. However,
it must be taken into consideration that a reinforced-concrete construction that is
loaded up to the limit of its bearing capacity does not follow Hooke’s law. Usually
the thickness of a reinforced-concrete slab is, in relation to its span, bigger than for

1 For references see end of paper.
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the T.N.O. model. For this reason the results of this investigation are compared
with those of the tests of Prof. Dr. Ing. Mérsch.4

During these tests on reinforced-concrete slabs (span 200 cm., thickness 14 cm.,
and sides perpendicular to the span 300 cm.) a load is applied that is distributed over
an annular area with an outer diameter of 10 cm. He concludes that it is allowable
to take into account a co-operating width in the slab equal to or bigger than the span.
This means that the moment is equal to or smaller than 0-25P. In the tests of Morsch
the diameter of the loaded area amounted to 0:05 of the span. In the steel model
the diameter would thus be 46 cm. From the results of the steel-model tests a maxi-
mum moment of 0-40P to 0-47P would then be found (fig. 3).

It remains to be decided how far the difference between these values and 0-25P
is due to the differences in the relation between the thickness of the slab and the
span or to the differences between the properties of steel and those of reinforced
concrete.

Another problem which arises is what moments must be taken into account for
the design of reinforced-concrete slabs that are very thin in relation to their span
and carry a load that is concentrated on an area as small as possible.

More data concerning the above problems can be obtained by testing reinforced-
concrete slabs upon which dead loads as well as live loads are applied.
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Summary

The purpose of these experiments is to obtain data for designing reinforced-
concrete floor slabs for bridges and other structures, subjected to concentrated loads.

The tested model was a steel slab which had been stress-relieved.

Electrical resistance strain-gauges have been used.

The results have been compared with some existing theories, other experiments
already made on this subject and the reinforced-concrete code of the Netherlands
(G.B.V. 1950).

Résumé

Le but des présentes recherches est de réunir des données en vue du calcul des
dalles de tablier en béton armé, pour ponts et autres ouvrages, dans le cas d’une
charge concentrée.

C.R.—16
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Le modele qui a été soumis aux essais était constitué par une dalle en acier ayant
subi un traitement d’égalisation. Les mesures ont été effectuées a I’aide d’extenso-
metres électriques a résistance.

Les résultats obtenus sont comparés avec certaines théories, avec ceux qui ont
été fournis par d’autres recherches expérimentales antérieures sur la méme question,
ainsi qu’avec les prescriptions néerlandaises concernant le béton armé.

Zusammenfassung

An einer spannungsfrei gemachten Stahlplatte, die durch eine konzentrierte Last
beansprucht wurde, sind Messungen ausgefiihrt worden, um Unterlagen fiir die
Berechnung von Stahlbetonplatten bei Briicken und sonstigen Konstruktionen zu
erhalten. Beniitzt wurden Dehnungsmess-streifen.

Die Ergebnisse wurden mit einigen schon bekannten - Theorien, mit weiteren
Forschungen auf diesem Gebiete, sowie mit den niederlindischen Stahlbetonbestim-
mungen verglichen.
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Experimental and theoretical investigation of a flat slab floor
Recherches théoriques et expérimentales sur une dalle-champignon

Experimentelle und theoretische Untersuchungen an einer Pilzdecke

Ir. J. G. HAGEMAN
Research Engineer T.N.O., Delft

INTRODUCTION

It is known that a three-dimensional stress distribution in a homogeneous elastic
material, which is moreover isotropic and meets the requirements of Hooke’s law, is
established by three linear simultaneous differential equations with linear boundary
conditions. Only a few exact solutions of these equations are known and the pro-
cedure of finding the approximations by iteration is complicated and takes a lot of
time. '

The economical use of monolithic reinforced-concrete construction could be
improved by a clear insight into the occurring three-dimensional stress distributions.

Reinforced concrete does not meet the premises leading to the above three simul-
taneous differential equations.

It appears that the development of the technique of reinforced concrete sur-
passed the existing calculation methods. These have even failed in such a way
that the general application of scientific concrete structures, e.g. flat slab floors, is
hampered or rather involves a waste of material which, if the insight into the occurring
stress distribution had been clearer, could in many cases have been limited.

EMPIRICAL RESEARCH

In order to be able to determine if the differences between theory and practice are
caused by the adopted premises, which refer to the properties of the materials, or by
the methods of calculation which are applied to this kind of construction, it was
- decided to use a steel model for the investigations, because, it may be supposed, steel
does follow the premises made in the theoretical considerations.

The floor slab (4,500 x 2,940 X 9 mm.), consisting of 15 square panels, is supported
by 24 steel columns (figs .1), each with a column capital shaped as anequilateral hyper-
boloid rotated on its vertical asymptote. This shape may be considered as the average
column capital.
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The overhanging length has been chosen in such a way that the occurring moments
due to a uniformly distributed load in the floor slab approximate to the moments in a
flat slab floor infinitely stretched in both directions.

The connections in the column and in the floor slab are welded electrically. To
limit the resisting welding stresses as much as possible, the floor slab was annealed
twice.

The floor slab also acts as the bottom of a tank. Into this tank water can be
pumped to gain a uniformly distributed load.

Deformation of the floor due to action of sides of the tank during loadmg is
counteracted by means of a flexible connection between sides and bottom. These
sides are fixed to a frame. By jacking against this frame a concentrated loading on
the floor slab is accomplished.

The model is mounted on a rigidly constructed base of reinforced concrete, which
also serves as a storage tank for the water.

UNIFORMLY DISTRIBUTED LOADS

First the deflection plane of the central panel due to a uniformly distributed load
was determined by means of dial gauges with a measuring precision of 0-01 mm.
These gauges are mounted on a structure revolving round a column (fig. 2).

The exactness of these measurements was about 2 to 3 % of the greatest deflection.
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However, by determining the bending moments by differentiating the deflections
twice, the inexactitude may be great.

A more accurate determination raises the practical difficulty that, generally, very
accurate dial-gauges command only a very small measuring range, so that the dial-
gauges must be adjusted several times during the test. Therefore a specially designed
instrument is used for the determination of the bending moments. This instru-
ment gives the size of the curvature, namely the term w;+w;—2w,. Itis known that
the curvature k at the point A, provided the values for 4x are not too high, equals

W1+ W2—2W0

Due to a special design it is possible to determine simultaneously the curvatures
in two directions (fig. 4) at right angles to each other.

Fig. 4

A dial gauge with a measuring accuracy of 0-:001 mm. was used. The value dx
amounted to about 7 cm. The bending moments M are determined from the
formula:

M.=K(k.+vk))
in which K stands for rigidity of the slab and » for Poisson’s ratio. This was done at
different points of the flat part of the slab under uniformly distributed loading.

In the centre of the panel in which the greatest positive moment occurs, the
measurements were controlled by means of strain-gauges and Huggenberger tenso-
meters (fig. 5).

It is clear that with the use of these curvature-meters it is not possible to determine
the bending moments in the neighbourhood of the column capital. For that reason
the stress distribution along the boundary of the column capital is measured by means
of strain-gauges with a measuring length of 2-5 cm. The negative moments thus
determined are controlled by means of Huggenberger tensometers.

CONCENTRATED LOADS

By several characteristic positions of the concentrated load (in the centre of the
panel and in the middle between the columns at the boundary of two panels) the
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Fig. 5

influence of this load on the bending moments in the flat part of the floor was measured
by means of the curvature-meters. The stress below the load was also determined
by strain-gauges with a measuring length of 3 mm.

In this way an impression was obtained of the stress distribution in the neighbour-
hood of the concentrated load.

The bending moments at the boundary of the column capital were established in
the same way as with a uniformly distributed load.

The influence of the size of the area over which the concentrated load was dis-
tributed was also examined.

RESULTS

It appeared that with a uniformly distributed load the greatest positive moments
in all 15 panels differed only slightly from each other. The greatest difference
amounted to about 10 % of the average.

Owing to the correct choice for the overhanging length, which measured 3 of the
distance between two columns each panel thus approximated to the so-called ideal
central panel. The other measurements could be limited to the central panel of the
test slab.

Fig. 6 shows, among other things, the outstanding results of the deflection measure-
ments by a water-load of 150 cm. height. The greatest deflection amounted to
0:77 mm. in respect to the column capital.

Fig. 6 also depicts the radial and tangential bending moments (M,.s and M,,,,)
measured also by a water-load of 150 cm.

The greatest positive moment (point B) amounted to 21 kg.-cm./cm.; for the
negative radial bending moment at the boundary of the column capital (0-4a from
the column axis, in which @ stands for half the panel length) an average of —47
kg.-cm./cm. was found.
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The bending moments A, and M, in point D (fig. 6) amounted to +25 kg.-cm./
cm. and —8 kg.-cm./cm. respectively.

During the concentrated loading it appeared that the overhanging length also
indicated that the behaviour of all panels approximated to that of the central panel.

The load was concentrated on a circular area with a diameter 4 (fig. 7). To deter-
mine the influence of the size of this diameter on the stresses below the concentrated
load, d was chosen as 1:6, 3:6, 5-4 and 7-4 cm. respectively.

Beiow the concentrated load the curvature-meters indicated about 159% lower
values than the strain-gauges with a measuring length of 3 mm.

Fig. 8 shows graphically the influence of the concentration of the load on the stress
distribution underneath in the case when the load is situated at point B. It appears
that the proportion M/P in which M stands for the bending moment and P for the
size of the concentrated force, follows from the formula o=M/W (c=measured
stress, W=h2/6=moment of resistance, h=thickness of the slab), diminished from
0-26 to 0-22, d increasing from 1-6 cm. to 7-6 cm.

TABLE T
[
Concentrated load Concentrated load
Influence of at B at D
concentrated loads
T.N.O. EM.PA,| T.NO. E.M.P.A.
ayx at B y ] +0-022 —
oy at B +0-263 +40-182 20006 _
ox at D +0-026 - +0-219 +0-099 to +0-192
ay at D —0-015 — +0-177 +0:054 to +0-137
axat L +0-001 — +0:028 —
oy at L —0-008 — +0-002 —
- orat H —0-056 — —0:017 —
arat E —0-028 — —0-100 —_

ax=Mx/P ay=My/P o =0Uradial = M;|P.

Table I shows the bending moments at the points B, D, E, H and L, the load being
in position B or D.

If the concentrated load is at B (fig. 9) the greatest bending moment at D amounts
to about % of the bending moments below B. At L some influence can be noticed.
The greatest moment at the boundary of the column capital amounts in this case to
3 of the moment at B.

Wlth the concentrated load at D, the bending moments are at B (=L) and E
about 75 and about 1% respectively of the moment at D.

A few results of the tests made by Prof. Ro§ (E.M.P.A.) are given in the table
to make comparison possible.

THEORETICAL RESEARCH

The measured results are particularly compared with the results of the calculation
method of Dr. Ir. A. M. Haas.! In this method, just as in the model, the most usual
shapes of column capital and drop panel are replaced by hyperboloids.

Haas approximates the stress distribution in the column supposing the stress
distribution to be axially symmetrlcal in this hyperbolmd by means of the formula
for a circular slab in which inertia is inserted varying only with the radius.

1 For references see end of paper.
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- TaBLE II

The numerical sum of the positive and negative bending moments ( pa3)

l | Nichols
Measured . . . . 0-47 ‘ 0-51
Haas . . 0-51 0-51
A.C.IL

0-52 l 0-72

The flat part of the floor is shaped as shown in fig. 10. To calculate the part
ABG, minus the included part of the column capital, Haas applies, in imitation of
Tolke,? the solution in polar-co-ordinates of the biharmonic differential equation
A4w=p/K according to Clebsch 3 (in which p stands for load per unit area).

. L 2
W—K[64+A0+B0]n +C0r +Dor ln04

+Z (Aur¥"+ Bur ="+ Cr¥"* 24 Dr=41+2) cos 4na]

The above coeflicients are determined by co-ordinating along the inside boundary
the average of the moments and shearing forces to those in the column capital and to
demand along the outer boundary the boundary conditions in a number of connecting
points (if more connecting points are chosen, more coefficients have to be added to
the calculation). _

Fig. 6 shows the deflections and bending moments of the steel model found in
this way. The greatest deviation between the theoretically and experimentally
determined values for both the deflections and the bending moment appears to be
about 159 at maximum, the theory providing higher absolute issues than the test.

As the model test gives only values for the negative moment in the column capital
at a distance of 0-4a from the column axis the negative bending moment at a distance
of 0-225a from the column axis is calculated by means of the theory of Haas, which
has appeared to be sufficiently exact. Thus the theoretically determined results for a
practical case could be compared to those according to the requirements of the
American Concrete Institute and those found by the Eidgenossische Material Priifungs

Anstalt.
Fig. 10 also shows the course of the bending moments found from:

(a) the empirical research T.N.O.

(b) the theory of Haas,

(c) the American requirements (A.C.I. 318- 51) 4

(d) the empirical investigation of Prof. Ro§ (E.M.P.A.).5

For the purpose of control, the theoretical total amount of the moments for
c¢=0-45a and for c=0-8a is also given according to the formula of J. R. Nichols 6:

IM=pat| 144 £ %
=pa Yoz 8a3™ 2ma
A theoretical investigation which has not yet been completed gave the following
results:

(a) Tolke, who imagines the slab to be immovably fastened at a distance r=0-2a,
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as well as Haas, does not take into account the coefficients B; . . . B, and
D, ... D, Now this appears not only to be allowable but even desirable.

() When the number of connection points along the outer boundary increases,
all stress quantities in the slab approach a limit, provided the calculation was
done very accurately. When three connection points and the coefficients
Ay up to and including .45, Cy up to and including C,, By and D are used
the deviation from the limit amounts to 2 % in the centre of the panel.
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CONCLUSIONS

As a result of the above investigations the following conclusions concerning flat
slab floors having square panels may be drawn.

1. The calculation method of Haas provides that by a uniformly distributed load,
bending moments in the ideal central panel are maximal about 159 higher than those
found during the investigation of the model. A satisfactory explanation of this
discrepancy has not yet been found. Partly it might have been caused by the cir-
cumstance that in the steel model the ideal central panel has been approximated but
not fully realised. In any case the conclusion may be drawn that the above theory
gives results that are sufficiently correct for practical use.

2. The measured results achieved by Prof. Ros with a uniformly distributed load
agree sufficiently with the results of T.N.O. so that these T.N.O. results can be applied
in practice directly to reinforced concrete, though found on a steel model.

3. Except at the boundary of the column capital the results found with the A.C.I.
requirements agree fairly well with those found by T.N.O. The negative bending
moments at the column capital, as found according to the theory of Haas, are con-
siderably greater than those of the A.C.I. The A.C.I. condition that, for determina-
tion of the compressive stress in the concrete at the boundary of the column capital,
the width of the column strip must be decreased to # of its value does point in this
direction.

4. From T.N.O. experiments as well as from those of Prof. Ros it follows that,
for the bending moment below a not too strongly concentrated load, a value of % or
1P may be taken into account. If this concentrated load is placed in the centre of
the panel, the value of the negative moment at a distance 0-4a from the column axis
amounts to 3gP and the negative as well as the positive moment right between the
columns amounts to about z%P. In the surrounding panels the influence of the
concentrated load can be neglected. When the load is placed right between the
columns on the boundary of two panels, then the moment below the load, near the
column capital and in the centre of the adjacent panel, amounts to +P, 5P and %
respectively.

5. When a flat slab floor with an overhanging length of 2 of the span length of
support is used, all panels will behave as ideal central panels, with a uniformly dis-
tributed load as well as with a concentrated load. In this way it is possible to diminish

the quantity of reinforcement in the concrete and to simplify the calculations and the
construction.
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Summary

By means of a steel model the Committee for Research on Constructions T.N.O.
investigated the conduct of an ideal square central panel of a flat slab floor with
uniformly distributed and concentrated loads.

The theoretical investigation was based on the theory of Dr. Ir. A. M. Haas, who
took into account the influence of the column capital on the stress distribution in the
- floor.

The results of the T.N.O. investigation were compared with the latest American
Building Code Requirements for Reinforced Concrete (A.C.I. 318-51) and with tests
made by Prof. Dr. Ing. h.c. M. Ros.

Résumé

A l'aide d’un modeéle en acier le Comité de Recherches sur les Constructions
T.N.O. a examiné le comportement d’une zone centrale carrée et idéale d’une dalle-
champignon soumise a une charge uniformément répartie, puis & une charge con-
centrée.

La recherche théorique était basée sur la théorie du Dr. Ing. A. M. Haas, qui,
dans ses calculs, a tenu compte de l'influence du chapiteau des colonnes sur la
répartition de la tension.

Les résultats des recherches de la T.N.O. sont comparés avec les nouvelles pre-
scriptions sur le béton armé de I'Institut Américain du Béton (A.C.I 318-51) et avec
les recherches effectuées par M. le Prof. Dr. Ing. h.c. M. RoS.

Zusammenfassung

Der Ausschuss fiir Eisenbeton- und Stahlbauten T.N.O. hat an einem Stahlmodell
das. Verhalten eines quadratischen ideellen Mittelfeldes einer Pilzdecke unter gleich-
maéssiger Belastung und unter Einzellast untersucht.

Die theoretische Forschung baut auf der Theorie von Herrn Dr. Ing. A. M. Haas
auf, der in seinen Berechnungen den Einfluss der Pilzkopfe auf die Spannungsverteilung
beriicksichtigt hat.

Die Ergebnisse der T. N. O.-Forschungen wurden mit den neuesten Forderungen
der Amerikanischen Betonanstalt (A.C.I. 318-51) sowie mit den Untersuchungen
von Herrn Prof. Dr. Ing. h.c. M. Ros verglichen.
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The limit of stress in the compression flanges of beams
Contraintes limites dans les membrures comprimées des poutres

Die Grenzspannung in den Druckgurten von Trigern

Pror. CLIFFORD D. WILLIAMS

Chief Structural Engineer, Patchen and Zimmerman, Augusta, Georgia, U.S.A.*

Specifications for the design of structural metal beams usually limit the stress in
the compression flange by consideration of its unsupported length, its width, and in
some instances by its thickness and the depth of the beam. Most specifications do
not consider the type of loading which produces the flange stress nor the end conditions
which may affect the limit of that stress. A specification which provides one working
formula for all conditions of loading, for all conditions of end restraint, and for
‘flanges that may vary in section along their length, cannot provide constant factors
of safety for all of the possible conditions.

The work of S. Timoshenko, as summarised in the Theory of Elastic Stability,t has
been notable in the analysis of the elastic problem that is involved in the flanged beam
subjected to bending. Karl De Vries’ paper, ** Strength of Beams as Determined by
Lateral Buckling,” with the several discussions,} has summarised the present status
of the problem. Further consideration of the flange buckling problem seems justified
with the objective of simplification and more general application to the varying
conditions that may exist.

The following items are among the considerations that may affect solution of the
problem:

(1) unsupported length of the compression flange,
(2) horizontal moment of inertia of the compression flange,
(3) torsional resistance of the beam,
(4) restraint to end rotation of the compression flange,
(5) thickness and width of the compression flange,
(6) variations in section of the flange,
(7) resistance of the tension flange, and
(8) point of application of load to the beam—whether at the top flange, bottom
flange, or intermediate between the flanges.
* Formerly Head Professor of Civil Engineering, University of Florida, Gainesville, U.S.A.

t S. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Co., 1936.
1 Trans. Amer. Soc. Civ. Engrs., 112, 1245.
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Some comparison has been made between the compression flange of a beam and
a column, considering that the flange tends to buckle transverse to the web of the
beam. The flange is considered to receive its load by shear transfer from the web.
The manner in which this shear transfer is accomplished is a function of the manner
in which the beam is loaded. For example, if a beam is subjected to pure bending
the flanges receive full load at their ends; when the load is concentrated at the centre
of the beam span the shear transfer is uniform per unit of length; and when the applied
load is uniform the shear transfer is uniformly decreasing from the ends to the centre
of the span. Thus the compression flanges may receive their load under conditions
that vary from end loading to loading uniformly distributed along the length of the
members.

The effect of the distribution of beam loading on the limit of stress may be
demonstrated by comparison of similar loading conditions on a slender column.
The classical Euler loading on a column of uniform section and having its ends free
to rotate is expressed as P==2El/12=9-87FI/L2. It may be shown that the same
column having uniform increments of load per unit of length has a limiting load of
P=31-6E1/L2, and when loaded with uniformly decreasing increments from the end
to the centre, P=20-8E7/L2. Thus it would appear that the manner of loading is a
major consideration affecting the limiting load by as much as 317 times.

Again, the effect of end restraint to rotation of the compression flange may be
demonstrated by consideration of the free end and the fixed end Euler limits, which
are in the ratio of 1 to 4. Degree of end restraint would affect values falling between
these two.

Variation of the cross-section of a column along its length becomes an important
consideration in establishing its limiting load. It is very difficult to assign an average
value to the moment of inertia of a column which will fully account for the manner of
variation. For example, a column may have a heavy mid-section or it may have
heavy end-sections. In these cases the average moment of inertia may be the same
but the limit of load would te different.

The torsional resistance of a beam to buckling of the compression flange might
also be compared to a slender column having a spring placed to resist lateral deflec-
tion. Let fig. 1 illustrate a column with a spring which has zero load when the
column is straight. When the column is bent toward the spring the restraining force
is dependent upon the amount of deflection. Similarly, the simply supported beam
illustrated in plan view in fig. 1(b) will have each cross-section throughout its length
rotated through some angle 8. The amount of the deflection a will determine the
magnitude of the angles 8 along the length of the beam and consequently the amount
of the torsional resistance. It would appear that the column of fig. 1(a) and the com-
pression flange of the beam of fig. 1(b) would each have increasing loads required to
maintain deflections of increasing magnitudes. However, in each case the restraining
lateral force is zero when the member is straight and the critical load for the straight
condition is the same whether or not the restraint is pending. In order to evaluate
the effect of the torsional restraint of the beam for various amounts of lateral deflec-
tion of the compression flange it is necessary to assign values to the maximum angle
of rotation of the beam and to define the law of variation of that angle along the
length of the beam. The amount of torsional resistance must be small indeed when
the flanges of the beam are straight or nearly straight. A condition of neutral
equilibrium must exist while the beam flanges are straight. Higher values of load in
the compression flange are likely, possibly because of torsional restraint that develops
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Fig. 1

with increasing angles of torsional rotation. The least value of load that will produce

neutral equilibrium would seem to be'that which occurs when the flanges are straight.
' It has been assumed that the vertical load applied to the top flange of a beam tends
to increase the torsional angle, resulting in a lowered limit of load. On this basis, a
load applied to the bottom flange increases the limit of load. It follows that, if the
flanges are straight, the vertical load would be in the plane of the web and considera-
tion of top or bottom location would be eliminated.

If the designer is concerned with the load that will produce neutral equilibrium
while the compression flange is straight, then a much simplified method may be used.
In this case full consideration may be given to the effects of end restraint, variations
in type of loading, and variations in the section of the compression flange.

It is not the intention of this paper to discuss buckling phenomena in the plastic
range, that is, when the computed stress in the flange is greater than the proportional
limit of the material. Also, it is assumed that the thickness of the compression flange
is sufficient so that local crippling of the flange does not precede lateral buckling.
For the purpose of this discussion it is considered that there are two limiting values
of stress, either of which may control. One of these limits is the stress which compares
with the yield point of the material and the other is the stress in the extreme fibres of
the beam when a state of neutral equilibrium exists in a straight compression flange.
It is acknowledged that higher stress values may be obtained before collapse of the
beam, but it is believed that a factor of safety should be maintained with respect to
the lower of these two defined critical stress values.

c.R.—17
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In order that the critical stress may be found for any given compression flange, it
is assumed that the load will maintain a small lateral deflection of the flange. The
amount of this deflection is immaterial so long as it does not produce an appreciable
torsional resistance from the beam. The amount of the flange load is then such that
any decrease would permit the flange to straighten-and any increase would cause
greater lateral deflection. The amount of the deflection that is assumed to be main-
tained is further assumed to be small enough so that it is immaterial whether the load
is applied to the top flange or to the bottom flange of the beam. These assumptions
are consistent with determination of the critical load for the straight flange.

The assumption of a small lateral deflection of the compression flange is a tool
to be employed in evaluating the critical load in the compression flange. It is required
that the load maintain the deflection in amount and the deflection curve in shape.

.
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Since the shape of the deflection curve is usually not known in advance, a process of
iteration may be used to approach evaluation of the true curve. Fortunately, the
series is rapidly converging so that the work is minimised. Again, the analogy of a
column loaded at its ends may be used as an example. Assume that the deflection
1s @ and that the shape of the curve is parabolic (while it is known that the curve is
sinusoidal). Fig. 2(a) shows the ordinates to the parabolic curve for the centres of
five equal divisions of the half length. The load P produces bending moments along
the length of the column. The deflection at the centre may be computed from these
bending moments and is expressed as y=0-1037Pal?/El. Since y=a, then
P=9-64E1/L2. If integrated continuously, the value of P would be found to be
9-60EI/L?. These values are about 3 9; less than the accepted value of P=9-87E1/12,
because of the assumption that the curve is parabolic. This approximation will
normally be sufficiently accurate in view of the fact that the value of E will vary by
more than 3% from any assumed value. However, if deflections were computed at
the centres of the five divisions, a new closer curve shape might be developed as shown
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in fig. 2(b). When the new curve is used in the same manner as the first approximation
it is found that y=0-1025Pal?/EI, from which P=9-77FI/L2. This value is now
about 1% below the accepted value. Continuation of the same process will yield
results with an even greater degree of accuracy. If the sinusoidal ordinates of fig. 3
were used, the resultant value of y=0-1009PaL?/EI produces P=9-91EI/L2, The
only reason this value differs from the value of 9-87FI/L2 is that the integration was
performed in five finite parts rather than continuously.

Fig. 3

In the case of pure bending in a flanged beam the flange stress is applied entirely
at the ends of the beam. If the ends of the compression flange are free to rotate and
the flange is of constant section, then the critical flange load is F=9-87EI/L?; the
average stress in the flange is F/4=9-87FEI/AL2?, when A is the area of the flange and I
is the moment of inertia of the compression flange about the axis along the web (for
constant section rolled beams [ is one-half of the Iy—y value givenin steel handbooks);
the extreme fibre stress is f=9-87EIc/AL2y, when c is the distance from the neutral
axis of the beam to the extreme fibres and y is the distance to the centre of the flange.
Since f=M/S, in which S is the section modulus of the beam about its major axis, the
critical value of M=9-87EIcS/AL?y.

Fig. 4(a) represents a flanged beam of uniform section simply supported and
loaded with a concentrated load P placed at the centre. Itis desired to find the load P
which will induce a critical flange load F. If the half-span is divided into five equal
divisions, the increment of load F that is applied to each division is 0-2F. Assuming
that the compression flange deflects laterally in a parabolic shape with a maximum
deflection of a, fig. 4(c) represents the column loading. Bending moments at the
centre of the divisions are computed as follows:

-~



260

AIl 3—C. D. WILLIAMS

0 Point 5
0-2Fx0-32a=0-064Fa Point 4
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These bending moments are plotted in fig. 4(d). The horizontal deflection of the
centre of each division from the tangent to the elastic curve at the centre of the span
may be computed by the use of the Moment-Area principles in the following manner:

0-0320FaL/EIx0-10L=0-0032Fal?/EI Point 2

0-0256
00576 X010 =0-00576
0-0160 0-00896 Point 3
0-0736 %x0-10 =0-00736
0-0064 0-01632 Point 4
0-0800 x0-10 =0-00800

0-02432 Point 5
0-0800 % 0-05 =0-00400

0-02832FaL?/ET End -

Since the deflection of the end from the tangent to the elastic curve at the centre is
0-02832Fal2/EI, the deflection of the centre will be y=0-02832FaL?/El. The require-
ment is that y=a. Hence, 0-02832FL2/El=1, and F=35-3EI/L?, when I is the
moment of inertia of the compression flange about its vertical axis. This value of the
limiting load is approximate because it is based on an assumed shape of deflection
curve. A closer value will result from a curve that is nearer the true shape of the
deflection curve. Such a curve may be developed from the computed deflection at
each point, when each such deflection is divided by 0-02832FL2/ET and the quotient
is subtracted from 1-Oa as in the following computation:

1-00a—g%§;a= End
I-OOa—g:g—ig%gzo-Ma Point 5 s
. 1'00"_((;:((;;_23?1:0'42“ Point 4
I-OOa—g_‘gg—ggga=0-68a Point 3
1-00a——8:gg§§;=0-89a Point 2

The new curve is plotted in fig. 4(¢). A closer value for the limit of the force F
may be found by repeating the calculations for bending moment and deflection, using
this last curve:

0-2Fx0-284=0-056Fa Point 4
0-2F
0-4Fx0-26a=0-104Fa
0-2F 0-160Fa Point 3
. 0-6Fx0-21a=0-126Fa
0-2F 0-286Fa Point 2
0-8Fx0-11a=0-088 Fa
0-374Fa Point 1
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0-0374FaL/EIX0-10L=0-00374FaL?/EI Point 2

00286 ,
0-0660 % 0-10L=0-00660
0-0160 001034 Point 3
00820 x 0-10L=0-00820
0-0056 0-01854 Point 4
00876 x 0-10L=0-00876

002730 Point 5
00876 x 0-05L.=0-00438

0-03168Fal?/EI End

The new closer value for the limit of F is then found from the equation y=a.
Thus, y=0-03168FaL2/EI, or 0-03168FL2/EI=1, and F=31-6EI/L2.

The process might be continued, and it is found that a slight change in the value
of F will occur, resulting in a final value of F=31-3EI/L2. Then f=31-3EIc/AL2y
and since f=PL/4S, P=1252EIcS/AL3y.

It is noted that the critical load in the top flange is expressed as F: —KI*LI/L2 when
K varies with the manner in which the loads are applied to the compression flange, or
the continuity of the ends of the beam.

In the case of a uniformly loaded beam, the shear transfer from web to flange is
uniformly decreasing from the end.to the centre. Fig. 5(c) illustrates an assumed
parabolic deflection curve with maximum ordinate a. The length of the beam is
divided into ten equal divisions. The load applied to the flange per unit of length
varies from a maximum value at the end to zero at the mid-span. The average value
of ¥ Q/I for division 5 is 9/10 of the value of ¥ Q/Ifor the end of the beam; the average
value is 7/10 for division 4, 5/10 for division 3, 3/10 for division 2, and 1/10 for
division 1. Fig. 5(c) shows the distribution of the force F to the five divisions with
F/25 at division 1, 3F/25 at division 2, 5F/25 at division 3, 7F/25 at 4, and 9F/25 at 5.
The bending moment at point 4 will be 0-36 Fx (0-51a—0-194)=0-1152Fa. The cal-
culations for the bending moment at each point and the deflection of each point
from the tangent to the elastic curve at the mid-span follow:

0:36Fx0:32a=0-1152Fa Point 4
0-28F

0-64F x0-240=0-1536Fa
0-20F 0-2688Fa Point 3

0-84Fx0-16a=0-1344Fa
0-12F 0-4032Fa Point 2 .

0-96F x 0-08a=0-0768 Fa
0-4800Fa Point 1
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0-04800FaL/EI X 0-10L=0-004800FaL?/EI Point 2 0-89a
0-04032
0-08832 x 0:10L=0-008832
0-02688 0-013632 Point 3 0-69a
0-11520 x0-10L=0-011520
0-01152 0-025152 Point 4 0-43a
0-12672 x0-10L=0:012672
0-037824 Point 5 0-l4a
0-12672 % 0:05L=0-006336

.0-044160FaL?/EI End O

Since the maximum deflection is found to be y=0:04416Fal?/El and y=a, then
=22-6EI/L2. This value of Fis approximate, since a parabolic curve was assumed.
The ordinates for a closer curve were found by dividing each deflection value by
0-04416FaL?/EI and subtracting these quotients from a. These new ordinates are
shown in fig. 5(d).
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By using the ordinates of (d), new values of bending moment, new deflections, and
still another deflection curve are computed as follows:

0:36Fx0:294=0-1044Fa Point
0-28F :

0-64F x 0-26a=0-1664Fa

0-20F 0-2708Fa Point 3

0-84F x 0-20a=0-1680Fa

0-12F 0-4388Fa Point 2

0:96F x 0-11a=0-1056Fa .
0-5444Fa Point 1

New
ordinate
0-05444FaL/EIX0-10L=0-005444FalL?/EI Point 2 0-89a
0-04388 -
. 0-09832 x0-10L=0-009832
0-02708 0-015276 Point 3 0-68a
0-12540 X 0-10L=0-012540
0-01044 0-027816 Point 4 0-42a
0-13584 X 0-10L=0-013584
0-041400 Point 5 0-14a
0-13584 X 0-05L=0-006792

0-048192FaL?/EI End 0

From this results the closer value of F=20-8E1/L2, which is 2-11#2EI{L2, when I is
the moment of inertia of the compression flange about the vertical axis.

Table I gives values of K for simply supported beams of constant section which
are supported against lateral movement only at their ends.

TABLE 1
Values of K
Type of loading K
Plane bending - . . ’ : . 987
Uniform load . . . . . 20-8
Concentrated load at 0-1L . . . 209
Concentrated load at 0-2L . .. . 238
Concentrated load at 0-:3L . . . 279
Concentrated load at 0-4L . . . 304
Concentrated load at centre . . . 31:3
Equal loads at 0-1L and 0-9L . . . 121
Equal loads at 0-2L and 0-8L . ; . 151
Equal loads at 0-3L and 0-7L . . . A
Equal loads at 0-4L and 0-6L . . . 23

The method that has been applied to the constant-section beam may be expanded
to become applicable to the variable-section beam. Fig. 6(a) illustrates a welded beam
with varying flange thickness, loaded with a single concentrated load at the centre
of the span. The shear diagram is shown in fig. 6(b), and the moment of inertia of
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the entire beam about its horizontal axis is shown in fig. 6(c). The shear load
between the web and the flange at any point is equal to VQ//, Ib./in. Since the
numerical value of V is constant throughout the length of the beam, the shear
transferred to the flange of the beam from the web must be proportional to Q/I..
After the distribution of the flange loading from the web is determined, a

«lpL  SX1PL. 5Xiy PL. l 18 X7 WEB PL..
| |
_— __—
‘ Edl I ﬁi = 0" 1 0" ! " " ]
' 3d-¢"
(a)
Vv
A
SHEAR DIAGRAM
(b)
J'""'"'_“’ '
£l = 2 : :

(= MOMENT OF m(sn)m OF BEAM
c).

=
- K l_l__l
b I ®

Q: STATICAL MOMENT OF TOP FLANGE

(d
>
: . 0440V
<, <F- ¥
28.8 O 346% '366% A H
% : DISTRIBUTION. OF FLANGE LOADS
|
(e)
A83F
AT3F ‘L&gr—ﬁm .
ﬂ?r?g" R BT E R s SO
A44F_— | 4 1 |
A T B I 1 1 PoT~—
e gs 2 t
= 3 PARABOLIG DEFLECTION & FLANGE LOADS
o o (f)
< 90
o 2
& e
w ﬁ—l—_]

|Y= MOMENT OF INE(RgT)IA OF TOP FLANGE

= DIAGRAM

(h)
Fig. 6

e



266 AIl3—C. D. WILLIAMS

parabolic horizontal deflection curve is assumed and corresponding bending moments
are computed. The deflection curve may be computed by the Moment-Area method,
areas of the M/EI diagram being used. The resulting deflection curve will be more
nearly the true curve of deflection maintained by the flange loads. When a value of
the maximum deflection is expressed in terms of the initial deflection and E, a value
for F may be found.

Fig. 6(e) shows values of VQ/I, and the percentage of the flange load that each
60-in. length of the web transfers to the flange. The half-length of the compression
flange is divided into six sections of 30 in. each for the computation, and the centre
of each length becomes a working point. These centres are numbered from 1 to 6 in
fig. 6(f). The sum of the increments of F that are shown applied to the centres of
these sections is equal to F, and these increments correspond with the VQ/I, values
in fig. 6(e). Ordinates to the assumed parabolic curve are shown in fig. 6( /) and are
used to compute the bending moments at points 1 to 5 in the following manner:

Bending Moments

0 Point 6
0-144F x0-27a=0-03888Fa Point 5
0-144F
0-288F x0-22a=0-06336Fa
0-173F 0-10224Fa Point 4
0:461 Fx0-17a=0-07837Fa
0-173F 0-18061Fa Point 3
0:634Fx0-11a=0-06974Fa
0-183F 0-25035Fa Point 2
0:817F x 0-:05a=0-04085Fa
0-183F 0-29120Fa Point 1
1-000F x 0-01a=0-01000Fa
0-30120Fa Centre

Computation of Deflection

M dx/I Mdx/I x  Mxdx/I Deflection New
at ordinate
(1) 0-29120Fa x 30/15:6=0-5600Fa 30 16:-800Fa Point 2 0-93a
(2) 0-25035Fax30/15:6=0-4814Fa

1-0414Fa 30 31-242Fa

(3) 0:18061Fax 30/10-4=0-5210Fa 48-042Fa Point 3 0-80a
1:5624Fa 30 46-872Fa

(4) 0-10224Fax 30/10-4=0-2949Fa 94-914Fa Point 4 0-6la
1-8573Fa 30 55-719Fa

(5) 0-03888Fax30/52 =0-2243Fa 150-633Fa Point 5 0-38a

2-:0816Fa 30 62-448Fa

213-081Fa Point 6 0:13a
2:0816Fa 15 31-224Fa

244-305Fa End 0
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In the foregoing computations it is found that the deflection of the end of the
beam from the tangent to the elastic curve at the centre is y=244-305Fa/E. By
definition, the force F must just maintain the small deflection . Hence, y=a and
F=E/244-305=122,800 1b. The average flange stress at the centre of the beam will
be F/A, or 122,800/7-5=16,375 1b./in.2. The extreme fibre stress will be greater than
the average flange stress, being equal to 16,375% 10-5/9:75=17,6351b./in.2  The load
P on the beam for which Mc/I=17,635 1b./in.2 will be such that 90P x 10-5/1,663=
17,635. Thus P=31,030 lb.

These values were computed on the assumption that the shape of the deflection
curve that would be maintained by the force Fis parabolic. If each of the deflections
(times E) that were computed for points 2 to 6 is divided by 244-305FA4 and the
quotients are subtracted from a, a new shape of curve will be indicated which would
be closer to the true curve.

The new ordinates in the foregoing computations are these values. The com-
putations may now be repeated to obtain a closer value of F:

Bending Moment
0-144F x 0-25¢=0:03600Fa Point 5

0-144F

0-288Fx0-23a=0-06624Fa

0-173F 0-10224Fa Point 4
0461 Fx0-19a=0-08759Fa

0-173F 0-18983Fa Point 3
0-634Fx0-13a=0-08242Fa

0-183F 0-27225Fa Point 2
0-817Fx0-07a=0-05719Fa

0-183F 0-32944Fa Point 1

1:000Fx0 =0
0-32944Fa Centre

Computation of Deflections

M dx/I Mdx/l x  Mxdx/I Deflection New

at ordinate

(1) 0-32944Fax30/156=0-6335Fa 30 19-005Fa Point 2 0-93a
(2) 0-27225Fax 30/15:6=0-5236Fa

1-11571Fa 30 34-713Fa

(3) 0-18983Fa x 30/10-4=0-5476Fa 53718Fa Point3  0-80a
1.7047Fa 30 51-141Fa

(4) 0-10224Fa x 30/10-4=0-2949Fa 104-859Fa Point4  0-60a
 19996Fa 30 59-988Fa

(5) 0-03600Fa x 30/5-2 =0-2077Fa 164-847Fa Point 5  0-38a

2-2073Fa 30 66:219Fa

231-066Fa Point 6 0-13a
2:2073Fa 15 33-109Fa

264-175Fa End 0
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Since y=264-175Fa/E or 264175F/E=1, then F =113,561 1b. Also, F/A=
113,561/7-5=15,141 1b./in.2, and the maximum flange stress at the centre of the span
is 10-5/9-75x15,141=16,306 1b./in.2 Then Mc/I=90P x10-5/1,663=16,306 1b./in.2
or P=28,695 Ib.
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It will be noted that the new values differ from the values first computed by less
than 10%,. Ordinates to a second new curve appear to be almost identical with those
used for the second computation. Hence it would seem unnecessary to carry the
computation further. '

Fig. 7(a) illustrates the plan view of a simply supported beam of constant section.
The top flange is assumed to be restrained from rotation in a horizontal plane.
Fig. 7(d) shows the half-span divided into ten equal divisions and an assumed reverse
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parabolic deflection curve. The beam is loaded with a centrally placed concentrated
load P as shown in fig. 7(b), hence an increment of 0-1F will be applied to the com-
pression flange at each division of the length.

Using the assumed curve shape, the simple bending moments are calculated in
the usual manner. Since the end tangents to the elastic curve are prevented from
rotating, the total M/EI area between the end and the centre of the span must be zero;
hence, end moments must be of the magnitude that will accomplish this result. The
sum of the simple moments at the ten divisions divided by 10 will then equal the end
moment and the bending moment at any point will be the difference between the end
moment and the simple moment at that point. |

Bending Moments

M
0 Point 1  —0-207

0:1Fx0-:04a=0:004Fa Point2 —0-202

O-1F

0-2Fx 0-07a=0-014Fa

O-1F 0-018Fa Point3 —0-189

0-3Fx0-12a=0-036Fa

0-1F 0:054Fa Point4 —0-153

0-4F x 0-16a=0-064Fa. |

0-1F O118Fa Point5 —0-089

0-5F % 0:20a=0-100Fa"

0-1F 0218Fa Point6 -+0011

0-6F % 0-16a=0-096Fa

O1F  0314Fa Point7 +0-107

0-7Fx0-12a=0-084Fa

0-1F 0-398Fz Point8 40191

0-8F x 0-07a=0-056Fa

0-1F 0454Fa Point9  +0-247

0-9F x 0-04a=0-036Fa

0-1F 0-490Fa Point 10 +0-284

10F

- Deflections from the tangent to the elastic curve at the end may now be calculated
as follows: ‘
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M _ Deflection New curve
—0-207Fa x 0-05L x 0-05L=—0-0005FaL? Point 2 0-038a
—0-202Fa
—0-409Fa —0-0010FaL
—0-189Fa —0-0015FaL? Point3 0-116a
—0-598Fa —0-0015FaL?

—0-153Fa —0-0030FzL? point4 0-232a
—0-751Fa —0-0019FaL?

—0-089Fa —0-0049Fal? Point 5 0-380a
—0-840Fa —0-0021FaL?

+0011Fa —0-0070Fal? Point 6 0-543a
—0-829Fa —0-0021 FaL?

+0-107Fa —0-0091FaL? Point7 0-705a
—0-722Fa —0-0018FaL?

+0-191 Fa —0-1009Fal? Point8 0-845a
—0-531Fa —0-0013FaL?

+0-247Fa —0-0122Fal? Point9 0-946a
—0-284Fa —0-0007FaL?

+0-284Fa —0-0129FaL? Point 10 1:000a
0

Since y=0-0129FalL?/El and y=a, F=77-5EI/L2. The next approximation,
using the curve developed from the first approximation, results in F=75-5EI/L2,

It will be seen by the illustrative examples that the procedure for finding the limit
of stress in the compression flange of a beam follows a very definite plan. The step-
by-step procedure may be outlined as follows:

(1) Identify the conditions of end restraint that affect the shape of the elastic
curve for lateral buckling of the compression flange.

(2) Assume a nominal finite lateral deflection of the compression flange and a
shape of curve that is in general agreement with the conditions of end
restraint.

(3) Define the manner of loading of the compression flange consistent with the
manner in which the beam is loaded.

(4) Compute bending moments along the length of the compression flange
caused by the flange load and the assumed lateral defiections, and con-
sistent with the conditions of end restraint.

(5) Compute the magnitude of the lateral deflection of the flange from the
values of M, E, I, and the length of the beam, and expressed in terms of the
magnitude of the assumed lateral deflection.
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(6) A new deflection curve may be developed from the above step (5) and com-
pared with the assumed shape of curve.

(7) When the assumed shape of deflection curve and the shape of the deflection
curve found by use of the assumed curve agree, an equation between the
computed maximum deflection and the assumed deflection will yield an
expression for the limit of load in the straight compression flange of the
beam.

Experimenters are familiar with certain phenomena in the testing of flanged
beams. Load may be applied gradually to the beam with no apparent tendency for
the compression flange to buckle sidewise until a certain load value has been reached.
Once this critical value of flange stress has been reached, the compression flange may
exhibit a tendency to bend principally in one lateral direction. Upon reaching a
second critical value of flange stress, the compression flange may be easily moved
from one deflected position to a deflected position in the opposite direction. Then,
as increasing values of load are placed on the beam, the amount of lateral deflection
that will remain placed in either direction increases also. The ultimate result occurs
when the beam has been loaded so that lateral deflection in one direction continues
to complete collapse.

It is noted by the experimenters that when a given load is suspended vertically
from the bottom flange of the beam, the amount of lateral deflection of the com-
pression flange is smaller than when the same load is placed on the top flange. This
fact is consistent with principles developed by previous investigators pertannng to
action after certain bending has taken place in a lateral direction.

It would seem that it should be possible experimentally to measure the angle of
rotation of the central portion of the beam span that agrees with any value of super-
imposed load; then, with a sufficient number of measurements of such relations, the
load at zero angle of rotation could be projected. Such measurements have been
carried out successfully for several types of loading, but certain phenomena are
troublesome to the experimenter.

The lateral deflection of the compression flange is sensitive to conditions of end
restraint, It is not easy to obtain a truly simply supported beam with lateral support
of the compression flange not restrained from end rotation. Also, it is found that
the immediate past history of stress in the flange appears to affect the magnitudes of
rotation angles of the beam cross-section that will be maintained by any given vertical
load. The probable reason for this variation is that the experimenter is unable to
control the maximum amount of rotation and the beam flange is subjected to stresses
above the yield point in certain fibres. A different number of fibres have stress
above the yield point with each value of rotation angle.

The following procedure has been found to produce satisfactory results experi-
mentally. A load is placed upon the beam which does not cause general yielding but

“which is known to be well above that producing critical stress while the beam is
straight. While the beam is under this load the compression flange may be moved
in a lateral direction by a pressure of the hand, say to the left, and will stay in some

~ such deflected position. Now the load may be gradually reduced and a record made
of angles of rotation and corresponding loads. If the same procedure is repeated by
rotating the beam to the right and recording the loads and angles, two sets of load-
angle values will have been produced. Now, if these data are plotted, curves defining
the two sets of data will intersect at a value of load checking very well the value of
loading that produces critical flange load, while the beam is straight. A second set
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of data may produce a new set of different angle-load values, but the intersection of
the two such curves produced continuously will usually give the same result for the
critical point. Whether the load is applied to the top flange or to the bottom flange,
and whether the load is vertical or inclined from some centre of loading, will affect
the magnitudes of the angles maintained by any given loads on the beam. But it is
of interest that any set of data produced from the same conditions of loading appear
to project to the same critical value for the compression flange—while straight.

Summary

Determination of the limit of stress in the compression flanges of beams involves
many considerations. Factors that are important in the literature on the subject
include such items as the distribution of the load causing stress, the torsional resistance
of the beam, the lateral stability of the compression flange, and others. Because of
the complicated nature of a complete solution in the general case, specifications for
design contain empirical formulae guiding the designer. The effects of the distribu-
tion of the loading, the type of end restraint, and variations in the section of the beam
are known 10 have large effects but are not included as considerations in the design
formulae.

It is herein presented that a revised definition of the neutral state of equilibrium
will greatly simplify the considerations and provide the designer with a logical pro-
cedure for analysis. In this way he will not be dependent upon empirical formulae
that must be conservative to a large degree. It is proposed that the neutral state of
equilibrium for design purposes be defined as that having the smallest value; this
value occurs while the flange is straight but buckling is imminent. Such a definition
eliminates the necessity for consideration of the torsional resistance of the beam and
of the loading position, that is, whether the load is on the top or bottom flange of the
beam. The definition permits full attention to be given to the large factors affecting
solution of the particular case considered. These large factors include the distribu-
tion of the loading on the beam, the condition of end restraint, and variations of
section. '

Special cases illustrate a general method of solution involving the use of common
iteration processes and in some cases successive approximations.

Résumé

Le calcul des charges limites des membrures de compression des poutres fait
intervenir plusieurs considérations. Les points importants traités dans la littérature
spécialisée sont la distribution de la charge, la résistance a la torsion de la poutre,
la stabilité latérale de la membrure de compression, etc. Par suite de la complexité
d’une solution compléte du cas général, les spécifications de détail font intervenir des
~ formules empiriques destinées 4 guider le dessinateur. On sait que la distribution de
la charge, le mode de fixation de I’extrémité de la poutre et les variations de son profil
jouent ici un grand role, mais ne sont pas pris en considération dans les formules
de dessin.

Nous montrons qu’une révision de la définition de 1’état d’équilibre stable sim-
plifiera sensiblement la question et fournira au dessinateur un processus logique
d’analyse. Il n’aura ainsi pas a se fier & des formules empiriques qui sont nécessaire-
ment tres conservatrices. Nous proposons de définir, pour le dessin, I’état d’équilibre
stable comme celui qui a la moindre valeur; cette valeur se manifeste lorsque la mem-
brure est droite, mais sur le point de se déformer. Une telle définition élimine la
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nécessité de considérer la résistance a la torsion de la poutre et de faire intervenir le
mode d’application de la charge, suivant qu’elle est placée sur la membrure supérieure
ou sur la membrure inférieure. Cette définition permet de concentrer toute I’atten-
tion sur les facteurs essentiels qui déterminent la solution dans le cas particulier étudié.
Ces facteurs comprennent la distribution de la charge sur la poutre, le mode de
fixation de I’extrémité de cette poutre et les variations de sa section.

Des cas particuliers illustrent une méthode générale de résolution qui entraine le
recours a des procédés d’itération courants et parfois 4 des approximations
successives. ’

Zusammenfassung

Die Bestimmung der Grenzspannung in den Druckgurten von Trdgern umfasst
zahlreiche Ueberlegungen. Die in der Fachliteratur behandelten wichtigen Punkte
sind die Lastverteilung, die Torsionssteifigkeit des Trégers, die seitliche Stabilitdt des
Druckgurtes, u.a. Wegen der komplizierten Form der vollstindigen Losung im all-
- gemeinen Fall finden sich in den Entwurfs-Normen empirische Formeln als Weg-
leitung fiir den Konstrukteur. Die grosse Bedeutung der Einfliisse der Lastverteilung,
der Form der End-Festhaltung und der Verdnderlichkeit des Querschnitts ist bekannt,
doch sind diese Faktoren in den Entwurfsformeln nicht beriicksichtigt.

Der Verfasser zeigt, dass eine verbesserte Definition des neutralen Gleichge-
wichtszustandes das Problem stark vereinfachen und dem Konstrukteur eine ver-
niinftige Berechnungsmethode in die Hand geben kann. Er ist damit nicht mehr auf
empirische Formeln angewiesen, die weitgehend veraltet sind. Der Verfasser
schldgt vor, den neutralen Gleichgewichtszustand fiir den Entwurf dahin zu definieren,
dass er den kleinsten Wert aufweisen soll; dieser Wert ergibt sich bei geradem Flansch
unmittelbar vor dem Ausknicken. Die vorgeschlagene Definition macht die Not-
wendigkeit einer Beriicksichtigung der Torsionssteifigkeit des Tréigers und der Lage
der Belastung, d.h. ob die Last am oberen oder unteren Flansch des Trégers wirkt,
iiberfliissig. Die Definition erlaubt uns, unsere volle Aufmerksamkeit den ent-
scheidenden Faktoren, die die Losung des betrachteten, besonderen Falles beein-
flussen, zuzuwenden. Diese entscheidenden Faktoren sind die Verteilung der
Belastung iiber dem Triger, die Festhalte-Bedmgungen an den Enden und die Verin-
derlichkeit des Querschnitts.

An Hand von Sonderfillen wird ein allgememes Losungsverfahren aufgezeigt, das
die iiblichen Iterationsvorgédnge und in gewissen Fillen auch successive Appromma-
tionen umfasst.

Cc.R.—18
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Théorie de Pinstabilité par divergence d’équilibre
The theory of instability through disturbance of equilibrium

Instabilitéitstheorie durch Storung des Gleichgewichts

JEAN DUTHEIL
Dijon

Les solutions classiques données aux problémes d’instabilité déterminent, en
général, une charge critique qui correspond a la limite entre deux états d’équilibre
différents: il y a bifurcation d’équilibre.

L’expérience ne fait pas apparaitre un tel changement d’état d’équilibre. En
général, dés le début de I’application de la charge, on constate une forme d’équilibre
stable, qui subsiste jusqu’a la ruine.

Il s’agit en fait d’un simple phénomene de statique dans lequel 1’état de con-
trainte du matériau et sa déformation interviennent pour déterminer |’affaissement.
A partir d’'une certaine contrainte, le caractere inélastique de la déformation est tel
que les moments extérieurs et intérieurs varient suivant des lois divergentes, il n'y a
plus d’équilibre possible, on dit qu’il y a instabilité par divergence d’équilibre.

On sait enfin que, théoriquement, la charge critique classique peut étre dépassée,
et le second état d’équilibre étre stable.

Dans les cas les plus défavorables, il ne peut y avoir, en tous cas, instabilité pour
une charge inférieure a la charge critique. Or, expérimentalement, la ruine se produit
pour des charges toujours inférieures aux charges critiques.

Si le rapport de la charge critique a la charge de rupture peut étre voisin de 1 dans
certaines zOnes, il peut aussi tendre vers l’'infini dans d’autres zones.

Cette contradiction entre la théorie et ’expérience n’est pas surprenante. L’allure
idéale d’un phénomene est toujours plus ou moins influencée, en pratique, par de
multiples causes qui peuvent le déformer au point de n’en laisser subsister qu’une
caricature.

Dans les problemes d’instabilité, la théorie ne considére que des éléments parfaits,
tant de forme que de structure et indéfiniment élastiques et résistants.

Les éprouvettes d’essai, comme les éléments mis en ceuvre, sont trés loin de cette
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perfection: les matériaux sont inhomogeénes, et ils ne sont élastiques qu’approximative-
ment, et dans certaines limites. Il en résulte que la déformation théorique est pro-
fondément altérée, et comme elle joue dans les problemes d’instabilité un réle
prépondérant, le phénoméne est lui-méme profondément altéré, au point qu’il
paraisse ne plus avoir de rapport avec son allure théorique.

- La notion classique d’instabilité par bifurcation d’équilibre est donc purement
abstraite. Elle ne peut évidemment suffire a 1’établissement de régles pratiques
rationnelles, qui doivent s’axer sur une concordance expérimentale étendue, et
s’inspirer d’'une conception cohérente de la sécurite.

Mais, quoique purement abstraite, cette notion conserve cependant une significa-
tion essentielle, et il est important de se pénétrer du caractére dualiste de la notion
d’instabilité.

Il est également important de remarquer qu’en raison du caractere aléatoire des
perturbations qui influent sur la stabilité, une conception rationnelle de la sécurité ne
peut étre que probabiliste. C’est sur ces deux principes essentiels que s’appuie la
théorie que nous exposons brievement dans son application aux deux problémes
fondamentaux d’instabilité: le flambement et le déversement.

. I LE FLAMBEMENT

LE FLAMBEMENT DES BARRES DROITES A SECTION CONSTANTE

Le probléme de la stabilité d’'une barre prismatique droite, articulée a ses deux
extrémités et soumise a une compression axiale est fondamental.

La théorie bien connue d’Euler le résoud dans le cas idéal d’une barre parfaite et
indéfiniment élastique et résistante: le bifurcation d’équilibre se produit pour la valeur
critique de la charge calculée par Euler:

w2 EI
c=“'l_2"

Pour une charge inférieure, 1’équilibre stable est rectiligne; pour une charge
supérieure, il est fléchi.

Il faut ensuite passer de la pi¢ce idéale & la piéce réelle. Au début, on a simplement
considéré que, puisque les barres utilisées en construction ont des proportions telles
que leur contrainte de rupture qui correspond a une courbe déformée trés tendue est
atteinte pour une charge trés peu supérieure a la charge critique d’Euler, celle-ci cor-
respondrait pratiquement a la rupture par flambement. Le fait d’avoir ainsi négligé
les déformations plastiques des matériaux et notamment de ’acier, a eu comme con-
séquences de nombreuses et retentissantes catastrophes et les controverses bien con-
nues entre Eulériens et non-Eulériens.

Ces controverses n’ont abouti qu’a des formules empiriques de raccordement se
substituant a la formule d’Euler, dans les zones ou elle est inapplicable.

Un certain nombre de chercheurs ont cependant essayé d’échafauder une théorie
du flambement par divergence d’équilibre, se basant sur le fait expérimental incon-
testable que I’équilibre fléchi apparait pour une valeur de la charge trés faible et large-
ment inférieure a la charge critique d’Euler.

Nous pensons avec eux que ces constatations montrent que la théorie par blfurca-
tion d’équilibre est une abstraction. L’expérience reste notre grande maitresse, et il
serait vain d’aller contre ses enseignements. ,

L’instabilit¢ de flambement se produit réellement par divergence d’équilibre, et
c’est cette constatation qui doit étre a la base de toute solution réaliste.
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Quelles sont donc les causes de cette apparition prématurée de 1’équilibre fléchi?
Elles peuvent se classer en deux catégories:

(1) Défectuosités de structure: Les matériaux sont inhomogenes, leurs propriétés
mécaniques variables dans leur masse, ainsi que leur état de contrainte
interne.

(i1) Defectuosztes de forme: Défaut de rectitude, de centrage pour ne citer que
les principaux.

Quoi qu’il en soit, le probleme réside dans la recherche d’une interprétation des
effets de ces différentes défectuosités, au moyen d’une hypothése les rendant acces-
sibles au calcul.

On est ainsi amené a supposer la piece en matériau parfaitement homogene, doué
de propriétés élasto-plastiques bien définies, mais présentant initialement certaines
défectuosités de formes.

Partant de I’hypothése ainsi posée, on peut calculer la contrainte maximum dans
la barre. Une certaine valeur de cette contrainte amenant l’affaisement, on peut
calculer la charge correspondante, ou charge critique probable. Une comparaison
avec les essais, renseigne sur la validité de I’hypothése admise.

Des tentatives de ce genre ont été faites par de nombreux auteurs. Surtout pour
Pacier, la nature de I'imperfection initiale a été, suivant le cas, une fléche initiale ou

.une excentricité initiale ou une combinaison des deux.

Toutes les hypothéses émises présentent le caractére commun de n’exprimer
I'imperfection initiale qu’en fonction de certaines dimensions caractérjstiques des
piéces, telles que: longueur, demi-hauteur de la section droite, rayon du noyau central,
etc.

Il est certain qu’une telle conception ne peut avoir qu’une validité tres limitée. On
peut considérer, en effet, que dans le cas d’éprouvettes usinées, les défectuosités de
forme: courbure initiale et excentricité de charge, peuvent étre suffisamment réduites
pour n’avoir que des effet absolument négligeables. La flexion prématurée est donc
dflie & peu prés uniquement, aux défectuosités de structures.

Ces défectuosités de structures ne pouvant se manifester que sous contrainte, il
est clair que la défectuosité conventionnelle qui interpréte leurs effets, doit étre fonc-
tion de cette contrainte.

Toute expression d’une fleche initiale, ou d’une excentricité initiale qui n’est fonc-
tion que des dimensions de la piece, ne peut donc étre considérée comme valable que
pour un matériau bien déterminé, car elle admet implicitement que la contrainte qui
lui correspond est la limite d’écoulement du dit matériau.

Ces considérations éliminent donc ’excentricité en tant que moyen d’interprétation
des défectuosités inévitables. On ne voit pas bien, en effet, comment on pourrait
justifier la variation nécessaire de la dite excentricité avec la nature du matériau.

Il reste donc la fléche initiale, avec la nécessité d’affecter son expression d’un coeffi-
cient variable avec le matériau, ou les nuances d’un méme matériau. Ceci laisse
prévoir les difficultés qui surgiraient dans le cas de I’application a des barres a treillis,
et a des problémes plus complexes.

Ces considérations préliminaires suffisent & expliquer I'insucceés des différentes
tentatives connues.

Elles montrent également que les hypothéses d’une fléche initiale ou d’une ex-
centricité initiale doivent étre abandonnées, en leur substituant celle d’une preﬁéche
conventionnelle, fonction de la contrainte.

L’expression de cette préfléche conventionnelle ne sauralt étre quelconque si ’on
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veut aboutir 2 une solution générale; elle doit satisfaire a certaines conditions que
nous allons examiner successivement.

Elle doit satisfaire aux lois de la flexion sinusoidale

Dans les essais de flexion simple, opérés sur des poutres d’acier doux par exemple,
on peut constater des fluages locaux qui ont comme conséquence une certaine majora-
tion de la déformation. On constate d’ailleurs que, pour I’ensemble de la poutre, la
loi déformation/allongement reste sensiblement linéaire tant que la contrainte maxi-
mum reste au-dessous de la limite d’écoulement, et méme un peu au-dessus en con-
séquence du phénoméne d’adaptation dans la section.

On pourrait donc, pour déterminer la fleche réelle, calculer d’abord la fieche
élastique théorique, et lui ajouter une fléche complémentaire d’inhomogénéité,
Puisque la déformation reste sensiblement linéaire, I’expression de cette fleche com-
plémentaire aurait, a un coefficient pres, la méme expression que la fleche théorique
d’élasticité pure.

En flexion sinusoidale, la fleche élastique d’un poutre de longueur /, de moment
d’inertie 7, coefficient d’élasticité E, sous moment maximum au milieu M, s’exprime par:

M, 12
S=m2Er
La fleche complémentaire d’inhomogénéité s’exprimerait donc par:
M, 12 W
f CZ—EI—CHfN e e e e e e e . (1)

dans laquelle:
C=constante expérimentale
ng=contrainte maximum de flexion au bord de la section médiane
W=module de section (I/¥ pour une pi¢ce pleine)
N.=n2EIfI2, charge critique d’Euler.

En flexion simple, cette fléche complémentaire est pratiquement sans importance.
Quand il s’agit de flambement, il n’en est plus de méme. L’inhomogénéité du
matériau crée dés le début de I’application des charges, une dissymétrie des déforma-
tions qui provoque une flexion influant directement sur la contrainte au bord de la
section médiane, et ’on ne peut négliger cette conséquence.

Il résulte de notre exposé préliminaire, qu’on ne peut rationnellement interpréter
les effets de cette défectuosité que par la considération d’une préfléche conventionnelle

fonction de la contrainte.
Les considérations suivantes précisent la forme a donner a cette préfleche con-

ventionnelle.

On sait que la flexion de flambement suit trés sensiblement la loi sinusoidale. Or
a mesure que I’élancement augmente, le flambement se rapproche de la flexion simple,
puisque la contrainte de compression diminue. A la limite pour un élancement
infiniment grand il faut donc que ’expression de la préfiéche conventionnelle tende
vers ’expression (1).

Cette condition est indispensable si I’on veut aboutir a une solution générale qui
raccorde le flambement a la flexion simple.

La contrainte maximum 7, au bord de la section médiane étant la somme d’une
contrainte de compression simple » et d’une contrainte de flexion #y, il en résulte qu’il
n’y a d’ores et déja, que deux expressions possibles de la préfléche conventionnelle:
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w
fo=Cnm7v—c

w
fa= Cnf E .

Elle doit étre théoriquement correcte

Nous entendons par la que, si ’on suppose nulle
la préfleche conventionnelle, la piéce redevenant ainsi
parfaite, les charges critiques de la théorie par diver-
gence d’équilibre doivent devenir identiques a celles de
la théorie par bifurcation d’équilibre. En supposant
un matériau parfaitement élastique jusqu’a sa limite
d’écoulement »,, le diagramme idéal de la contrainte
critique de flambement est représenté en ABC sur la
figure 1.

Dans la théorie par divergence d’équilibre, on
admet que l’affaissement se produit lorsque la con-
trainte maximum au bord de la section médiane est
égale a la limite d’écoulement du matériau. En fait,
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c’est pour une contrainte légérement supérieure que l’affaissement se produit du fait
de I’adaptation de plasticité, mais dans le flambement pur, I’erreur commise, en se

limitant a n. est négligeable.

Tenant compte qu’en flexion sinusoidale le facteur d’amplification de la fléche

sous la contrainte axiale n;, est:
e
nc_n:

la contrainte d’affaissement n, se calculera en posant:

n S,

ne

n,+

dans laquelle:

Q=surface de section de la barre
n.=contrainte critique d’Euler
w2 E

y2

Yo
Q

He=

/
y=élancement=;

I=longueur de la piece

T =He .
W nf_nz ¢

r=rayon de giration dans le plan de flambement.
Avec I’expression (2) de f,, on arrive a I’équation du second degré:

n2—n. [nc+n. (C+1)]4+nen.=0 .

dont la solution est:
ny=n4—V n2—ncn,

avec: na=% [ne+n. (C+1)]

}

@

)

(6)

Pour une valeur déterminée de C, la variation de » en fonction de y se fait suivant

une courbe ayant I’allure AD indiquée en pointillé sur la figure 1.

Si I’on fait C=0,

ce qui revient a supposer la piéce parfaite, on voit qu’on a bien:
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n.=n, pour n.n,
n.=n, pour n.Mn,
L’expression (2) satisfait donc a la condition posée: la courbe de #. en fonction

de y coincide avec ABC. _
Avec 'expression (3) de f,, on arrive a I’équation:

n2(C+1)—n; n. (C+D+nJ+n.n=0 . . . . . (7

On voit qu’en faisant C=0 dans les équations (5) et (7), elles deviennent identiques.
L’expression (3) satisfait donc également a la condition posée.

Elle doit assurer la concordance expérimentale

Le caractere aléatoire des imperfections, les variations constatées dans la valeur
de la limite d’écoulement d’'un méme matériau, 'influence de I’adaptation de plasti-
cité, sont autant de causes de dispersion dans les essais de flambement. Pour vérifier
une concordance expérimentale, il faut donc disposer, autant que possible, d’un grand
nombre de points d’essais. Les essais de Tetmayer sur I'acier doux sont, a ce point
de vue, parmi les plus intéressants.

La valeur de la limite d’écoulement 7, & prendre en compte, doit étre la valeur
moyenne d’un grand nombre d’essais.

Il résulte des essais de traction, effectués récemment sur dix mille (10 000)
éprouvettes en acier doux ordinaire, par la Chambre Syndicale des Entrepreneurs de
Construction Métallique de France, et la S.N.C.F., que cette valeur moyenne ressort
a 28,6 kg./mm.2 En prenant cette valeur pour n, et C=1/12 dans la formule (6) don-
nant n, en partant de ’expression (2) de la préfleche conventionnelle on voit que la
courbe de n., en fonction de I’élancement y passe sensiblement par la moyenne des
points d’essais de Tetmayer (courbe | fig. 2). La concordance expérimentale de
I’expression (2) peut donc étre considérée comme aussi bonne que possible pour
I’acier doux ordinaire. Yo

Toujours avec C=1/12, elle parait d’ailleurs 5 |-
aussi bonne pour l'acier 4 haute résistance, le N
duralumin, le bois de construction (sapin blanc). 2« ;-U%
(Essais de RoOs, Publication Préliminaire du ler :
Congrés de ’'A.I.P.C.). 2 e

Partant de I’expression (3) de f,, on peut égale- m \ 7\
ment tracer la courbe de variation de #; en fonction o\
dey. Avec C=1/12, la concordance semble bonne ;» \
pour les grands élancements mais beaucoup moins
bonne pour les petits et moyens; la courbe calculée & N R
passe nettement plus haut que la moyenne des NS N
points d’essais. On ne peut trouver de valeur de ¢ * ~]
donnant une concordance aussi bonne qu’avec /
C=1/12, et I’expression (2). Il y a donc ici nette- 20 60 w00 o w80 220 T
ment avantage en faveur de 'expression (2). Fig. 2.

AN AT T

Elle doit permettre une conception probabiliste de la sécurité

La conception de la sécurité est évidemment le point le plus faible des méthodes
de calcul au flambement dérivant directement de la théorie par bifurcation d’équilibre.
On ne peut obtenir en effet autre chose que la valeur d’une contrainte critique de
flambement concordant plus ou moins avec les essais. De ces valeurs critiques, on
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passe aux valeurs admissibles par I’application d’un coefficient de sécurité. Mais
c’est 1a que se présente la difficulté, on ne peut prendre un coefficient de sécurité
unique pour tous les élancements. Pour I’acier doux par exemple, si I’on prend 2,5 ou
3 par rapport a la charge critique d’Euler, on ne peut conserver ce chiffre pour les tres
petits élancements car on arriverait a ne travailler qu’a 8 ou 9 kg./mm.2, en compres-
sion simple. Inversement, le coefficient de sécurité normalement admis en compres-
sion simple étant de 1,66, qui oserait I’appliquer aux grands élancements par rapport
a la charge critique d’Euler? On s’en tire donc en faisant varier empiriquement la
valeur de ce coefficient de sécurité avec 1’élancement.

Cependant, en toute rigueur, si les contraintes critiques calculées sont bien réelles,
les coefficients de sécurité différents aménent évidemment a I’inverse du résultat qu’on
se propose normalement d’obtenir, et qui est ’homogénéité du degré de sécurité entre
les différents éléments d’une construction; il ne viendrait pas a 1'idée de mettre dans
une chaine de levage des maillons de différentes résistances.

Il ne faut pas étre difficile pour admettre un procédé qui, contraite a toute logique,
consacre en fait I’échec de la théorie par bifurcation d’équilibre.

Cet échec est inévitable si I’on ne veut pas considérer, malgré leur évidence, les
perturbations apportées par les défectuosités.

Ces perturbations étant aléatoires, la conception de la sécurité ne peut étre que
probabiliste. Une contrainte critique calculée ne peut étre qu’une contrainte critique
plus ou moins probable qui ne peut constituer la base d’une conception rationnelle
de la sécurité.

Le probléme du flambement n’est qu’un probléme de résistance des matériaux
comme les autres, et de ce fait, justiciable des mémes méthodes.

En traction simple par exemple, la contrainte critique est la limite d’écoulement.
Sa valeur, pour I’acier doux, varie de 22 4 35 kg./mm.2, et sa valeur moyenne a été
calculée a 28,6 kg./mm.2 sur 10 000 essais. On n’applique cependant pas le coefficient
de sécurité par rapport a ce chiffre, mais par rapport a 24 kg./mm.2, car on estime que
la probabilité de se trouver devant une valeur inférieure est suffisamment faible.

De méme le cas du flambement, n, étant la contrainte probable d’affaissement, il
faut déterminer ns, contrainte limite d’affaissement, telle que la probabilité d’observer
une valeur inférieure, soit suffisamment faible. Et c’est par rapport a n; que le coeffi-
cient de sécurité doit étre appliqué et non par rapport a n,; enfin, ce coefficient de
sécurité doit étre unique et valable pour tous les élancements.

n; doit se déduire de »;, par le jeu d’'une majoration du coefficient expérimental C,
en tenant compte d’autre part, des deux conditions suivantes:

Pour un élancement nul, il faut prendre pour #. la valeur limite et non la
valeur moyenne, par exemple pour I’acier doux, il faut prendre 24 kg./mm.2 et
non 28,6 kg./mm.2

Pour un élancement infiniment grand, il ne faut pas que la valeur de n, tende
vers n., le rapport n./n; de la contrainte critique d’Euler a la contrainte limite
doit tendre vers une valeur finie, plus grande que 1 quand I’élancement croit

~ indéfiniment. :

Partant de I’hypothese (2), la valeur de s, est donnée par la méme expression (6)
que 7., étant entendu qu’on donne a #n, la valeur limite, et qu’on substitue a C un
coefficient C'’>C.

La valeur de n; peut donc se mettre sous la forme:

l—n.n,
ns=ny 1— T
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Quand I’élancement devient trés grand, . tend vers zéro, on peut développer le
radical en série et ne conserver que les deux premiers termes, d’ou:

— [1_ (l_nc ne)] _Me Me
: 2n,42 2n4
Conen, ne
~(+Chn. 1+C

don: :1—15=1+C’...........(8)

En prenant C'=5C=1/2,4, on ne constate aucun point d’essai en dessous de la
courbe de n; en fonction de y.  Cette courbe est tracée pour I’acier doux en 2 sur la
figure 2.

Partant de I’hypothése (3), on obtiendrait encore pour un élancement infiniment
grand:

S

s

Elle doit permettre I’ établisement de formules pratiques suffisamment simples

L’examen des équations (5) et (7) montre immédiatement que I’avantage de la
simplicité est entiérement en faveur de ’hypothése (2) qui reste donc finalement la
seule a retenir.

CONCLUSION

Une opinion répandue jusqu’a présent était qu’on pouvait faire, sur les imperfec-
tions initiales, un nombre a peu pres illimité d’hypothéses valables. Effectivement, il
y en a eu beaucoup d’émises; un certain nombre d’entre elles sont énumérées par M. le
Prof. Massonnet dans son article “Réflexions concernant I’établissement de prescrip-
tions rationnelles de flambage des barres d’acier” (Ossature Métallique, No. 7-8,
juillet-aolit 1950); d’autres par M. le Prof. Campus dans son article ‘“ Réflexions sur
la Méthode de M. Dutheil pour le calcul des pieces comprimées et fiéchies’ (Ossature
Métallique, No. 1, janvier 1951).

De toutes ces hypothéses, aucune ne répond a toutes les conditions posées, et ne
peut sérieusement étre opposée a notre hypothese (2) qui semble, seule, permettre une
solution simple, génerale et cohérente du probléme. Elle illustre bien notre opinion
que la théorie du flambement par bifurcation d’équilibre, tout en n’étant qu’une
abstraction, conserve cependant une signification essentielle: I’expression (2) de la
préfleche conventionnelle, renfermant en effet le terme »n., charge critique d’Euler, et
dans toutes les formules qui en découlent on retrouve la contrainte critique d’Euler 7,
et la limite d’écoulement #,. Elle est donc fondamentalement Eulérienne.

FORMULES D’APPLICATION
Pour tous les élancements, on peut calculer #; par:
ny=ny—V'ng2—n, n,
avec: ng=% [n.+n. (C'+1)] } ce e O
En posant: k=n,[n,, on peut aussi donner un tableau ou une courbe des valeurs de &

en fonction de I’élancement.
La condition a vérifier sera alors:



L’ INSTABILITE PAR DIVERGENCE D’EQUILIBRE 283

nk<R |. « o v . . . . .. @0

dans laquelle:

R=contrainte admissible
n=contrainte de compression simple
k=coefficient de flambement.

C’est la méthode suivie dans les Reégles d’Utilisation de I’acier, applicable en
France, aux Travaux dépendant du Ministére de la Reconstruction et de I’Urbanisme,
et aux Travaux Privés. (Reégles CM 46).

Notons que, dans ces Régles nous avions exprimé la fléche initiale par:

, Ne 1?2
f;=C7T2E7 w ® w « » & 3 & & K11

' Cette fleche initiale n’était que la préfléche conventionnelle correspondant a une
contrainte au bord de la section médiane égale a n,, soit une valeur particuliére de:

W
fo=Cltmgr o (12)

qui peut étre considérée comme une généralisation de (11). Cette généralisation
présente des avantages dans certains problémes complexes de flambement et pour
l application a différents matériaux.

PROBLEMES COMPLEXES DE FLAMBEMENT
Poutres composées de membrures assemblées par treillis ou barrettes

Une telle poutre composée, comprimée axialement se comporte du point de vue
de la forme d’équilibre, comme une poutre prismatique, c’est-a-dire qu’elle prend, dés
le début de ’application de la charge, une position d’équilibre fiéchi. Il en résulte
que les trongons de membrures sont inégalement comprimés, et qu’il y a certainement
danger a considérer que la charge se répartit également, comme on doit logiquement
le faire dans la méthode par bifurcation d’équilibre. Ce danger, confirmé par
I’expérience, est apparu d’ailleurs a un certain nombre d’ingénieurs qui ont essayé d’y
remédier par I’emploi de formules empiriques.

Notre méthode donne une solution immeédiate a ce probléme: la contrainte maxi-
mum au bord de la section médiane et déterminant I’affaissement, ne doit plus étre
prise égale a n,, mais a n,, contrainte limite d’affaissement du trongon de membrure
qui est connue puisqu’il s’agit d’une barre prismatique.

Partant de I’expression (12), on exprime la contrainte n,, par:

ne—on
ou, en posant:
k":#j—c’) avec: p=
n,=nk,
Alors que dans une poutre prismatique, la condition a vérifier serait:
nk,<R

dans le cas de la poutre a treillis, elle devient:
nko<nme |. . . . . . . . . . (13
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ny étant la contrainte limite admissible du trongon de membrure soit:

np=nc

Prise en compte de la déformation d’effort tranchant
Dans les poutres simplement fléchies, on néglige en général cette déformation qui

n’a pas grands inconvénients.
Dans les poutres comprimées axialement, la flecche complémentaire qui en résulte
provoque une augmentation de la contrainte au bord de la section médiane, elle a

donc une influence directe sur la stabilité.
Considérons d’abord le cas ou la raideur propre des membrures est négligeable

devant celle de I’ensemble de la poutre.
La déformation d’effort tranchant peut s’assimiler & une diminution du module de

raideur EI de la poutre, ce module devenant: -
' EI/X avec A>1
On établit facilement la valeur de A:
n. £
A=] +E 0.
dans laquelle:

G=module d’élasticité transversal
2=section totale des membrures
Q,=section de I’ame équivalente.

Il en résulte immédiatement que la contrainte critique d’Euler 7. devient:
n'c=nA
et le facteur d’amplification de la fleche:
i’
nc

n’c‘—n
(ces deux propriétés pouvant s’établir d’ailleurs directement par ’analyse).
Le probléme est ainsi simplement résolu, il suffit de remplacer ». par »'; dans les
formules qui précédent, et la condition a vérifier devient:
nk'o<n1,|.........(l4)
Si la raideur des membrures est appréciable, on établit facilement que le module
de raideur devient:

: E (I/]x+2Zi)
dans laquelle:
Zi=somme des moments d’inertie des membrures
I=moment d’inertie de l’effet poutre, c’est-a-dire calculé sans tenir compte

des i des membrures.
On en déduit:

, 1 i

nc—nc(/\-l——f) 2 % B 3 % @ % 8 u 12}

Remarquons en passant qu’a notre connaissance cette valeur de la contrainte
critique d’Euler n’a jamais été calculée. Timoshenko, dans son ouvrage Théorie de la
Stabilité Elastique, ne considére que le cas ou la raideur des membrures est négli-
geable. L’influence de cette raideur est cependant, dans certains cas, importante;
l’erreur commise en la négligeant peut étre supérieure a 20 %;.
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Détermination de I’effort tranchant de flambement

Ce probléme a fait couler beaucoup d’encre et donné naissance a de nombreuses
formules plus ou moins empiriques mais la plupart trés divergentes.

11 se trouve ici résolu immédiatement.

En négligeant la déformation d’effort tranchant, n &, représente la contrainte totale
au bord de'la section médiane. La contrainte de flexion est donc:

nko—n=n(k,—1)
et comme il s’agit de flexion sinusoidale, I’effort tranchant maximum est:

T=W"—;n(ko—1) N ¢ 1)
L |
Dans le cas ou déformation d’effort tranchant est appréciable, il suffit de remplacer
n. par n’, et de substituer a k,, dans I’expression (16), la valeur correspondante de k'.

Poutres fléchies et comprimées

La prise en compte de la préfleche conventionnelle permet de donner a ce probléme
une solution rationnelle, et d’obtenir le raccordement total entre la flexion simple et
le flambement.

Par crainte d’abuser de la place qui nous est réservée, nous renvoyons le lecteur
au texte de la conférence que nous avons eu I’honneur de présenter & la Tribune de la
Société Royale Belge des Ingénieurs et Industriels, le 3 mai 1950, et publiée dans le
Bulletin No. 3, 1950, de cette société. '

Ce texte sert de base a la révision du texte concernant le flambement dans les
Regles CM 1946, révision demandée par la Chambre Syndicale des Entrepreneurs de
Construction Métallique de France. Le nouveau texte marquera d’importants pro-
gres et sera plus simple.

Nous espérons que les exemples qui préceédent suffiront cependant pour donner une
idée des possibilités de cette méthode.

Par elle, et du fait de sa conception probabiliste de la sécurité, le probleme du
flambement cesse de présenter le caractére particulier qui le distinguait des autres
modes de sollicitation, et la Résistance des Matériaux y gagne en cohérence.

II LE DEVERSEMENT
LE DEVERSEMENT DES POUTRES DROITES FLECHIES

Une poutre droite fléchie dans un plan de symétrie peut étre instable sous une con-
trainte maximum trés inférieure a sa limite d’écoulement. Suivant ses proportions,
il arrive qu’elle flambe latéralement on dit qu’elle se déverse.

Il s’agit d’un probléme d’instabilité qui présente de grandes analogies avec celui
du flambement.

La théorie bien connue de Timoshenko (Annales des Ponts et Chaussées, fasc. 111,
IV et V, 1913, et son ouvrage—Théorie de la Stabilité Elastiqgue—lui donne une solu-
tion dans le cas d’une poutre parfaite, et en matériau indéfiniment élastique et résistant.
La bifurcation d’équilibre doit se produire théoriquement pour la valeur critique du
moment calculée par Timoshenko dans différents cas de charge, et différentes formes
de section.

Pour un moment inférieur, I’équilibre stable reste plan; pour un moment supérieur,
il devient gauche. Mais cette théorie n’est pas plus confirmée expérimentalement que
celle d’Euler.
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En fait, le gauchissement apparait dés le début de I’application de la charge, et
I'instabilité se produit par divergence d’équilibre, comme dans le flambement. A ce
point de vue, les expériences de déversement effectuées courant 1951 par I’Institut
Technique du Batiment et des Travaux Publics, sur des I.P.N. soumis & moment con-
stant, sont caractéristiques. Les formules de Timoshenko présentent d’ailleurs les
mémes dangers que celles d’Euler.

Hormis quelques formules empiriques, la plupart sans grand fondement, il n’y a
pas eu de tentative qui mérite d’étre rapportée en vue d’établir une théorie de déverse-
ment par divergence d’équilibre; c’est cependant bien ainsi que se produit I'instabilité,
et c’est cette constatation qui doit étre a la base de toute solution réaliste.

S’il n’y a pas eu de tentative sérieuse, alors qu’elles ont été si nombreuses dans les
cas du flambement, c’est que le probléme est ici infiniment plus complexe.

Considérons une barre rectangulaire étroite, rectangulaire, fléchie dans son propre
plan sous un moment constant M. Sur les appuis, il y a une seule liaison des sections
terminales: toute rotation est impossible autour de I’axe OX (fig. 3).

e

L} 12
& f A8
e
4 b l
l —"ér‘—

Fig. 3.

Supposons une position d’équilibre accompagnée d’un légef fléchissement latéral.
La méthode de I’énergie permet de déterminer la forme d’équilibre; on sait que le
déplacement latéral du centre de gravité de la section est a variation sinusoidale.

. T
de méme que I’angle de torsion:
d=d, sin 7—; x

Considérons dans la section, et sur toute la longueur / de la barre, une tranche
infiniment mince AB a la partie supérieure de la zone comprimée. Cette barre pris-
matique €élémentaire uniformément comprimée, tend a flamber latéralement, mais les
réactions élastiques de la barre entiere s’opposent & ce flambement. Ces réactions

qui proviennent de la raideur de flexion d’une

1 Y _H part, et Fle la raideur de 'for.sion d’gutre part,
. sont évidemment & variations sinusoidales
7 4_19_ _____ L /1} puisque proport.ionne'lles aux déformations.
| / La barre prismatique élémentaire se trouve
held | |1 X ____xdonc exactement placée dans les conditions d’une
= of % /16 barre soumise au flambement dans un milieu
' o /_ . €lastique. On sait, en effet, que dans ce cas, la
2% Te T ligne élastique en position d’équilibre fléchie est
0, sinusp%’dale et que, par conséquent, les réa‘lctions
Ly a du milieu élastique sont elles-mémes & variations

Fig. 4. sinusoidales.
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Si nous connaissions la constante du milieu élastique correspondant a la barre
élémentaire, le probléme pourrait étre considéré comme résolu.

Du fait de la variation de la contrainte dans la section le long de I’axe OZ, le calcul
de cette constante est inextricable. La difficulté peut étre tournée au moyen de I’arti-
fice suivant: On peut délimiter, dans la section de la poutre, deux membrures fictives
(fig. 4) d’épaisseur e, qui seraient soumises 4 une contrainte uniforme:

.
/14
dont le moment résistant serait égal a M.
Il suffit d’écrire:
bh?
T3 n=eb(h—e)n
d’ou: g e=0,212A

On peut concevoir une poutre composée idéale, dont les membrures seraient celles
que nous venons de définir, et dont les liaisons entre ces membrures seraient telles que
la raideur de torsion et la raideur de flexion latérale de la poutre composée soient les
mémes que celles de la barre réelle.

La poutre composée idéale ainsi définie posséde la propriété remarquable d’avoir un
contrainte critique de déversement égale a celle de la poutre réelle.

Nous en donnons ci-dessous la démonstration.

On congoit immédiatement la simplification apportée au probléme tel que nous
I’avons posé, et il ne s’agit plus que de la stabilité au flambement d’une barre pris-
matique déterminée, dans un milieu dont on connait les réactions élastiques. Ce
probléme est classique, au moins si ’on reste dans I’hypothése de piéces parfaite est
indéfiniment résistantes.

Considérons (fig. 5) la section médiane de la z
poutre dans une position d’équilibre légérement |
fléchie. Nous ne faisons aucune hypothése sur o
la forme de section que nous supposons seule- 1—4
ment doublement symétrique. Nous ne la |
représentons rectangulaire que pour fixer les |
idées. |

La zbne 1 correspond a la membrure com- ;
primée de la poutre composée idéale; cette | |
membrure a un moment d’inertie transversal 7|, I
et une section £2,. 4

Les mémes valeurs s’appliquent a la mem- ——
brure tendue 2, a la zéne neutre 3 correspon- . -

dent i’ et £, & I’ensemble de la section i et £2. L_’—>
Fig. 5.

éo=valeur maxima de la rotation

f=fléche de la membrure comprimée

f'=fieche de la membrure tendue

po=Vvaleur maxima de la réaction de raideur de torsion

ro=valeur maxima de la réaction de raideur de flexion
/=longueur de la poutre

E=module d’¢élasticité de traction

G=module d’élasticité transversal

I,=moment d’inertie de torsion de la section

i

>

1

8

I I S
]

1
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ney=tension critique d’Euler de la membrure tendue (ou de la membrure
comprimée)
d=coefficient de majoration du moment d’inertie de la membrure tendue:
o=1 +n/ Ney
T/=module de résistance de la section (dans le sens vertical)
d=distance entre c. d. g. des membrures
M,=valeur maxima du moment de torsion.

Les équations d’équilibre donnent entre les différentes valeurs maxima définies

ci-dessus:
' I o YR . - i
=g ['=gpn =00
- d
M,=P,,d+roi=a¢o

expressions dans lesquelles a, b, ¢, sont des constantes: )
2 : ]4 [4

o
o =Gl Y=5Ey CoE
De ces expressions, on tire la relation:
. . A—B
J f8+A+B x i
ab b
avec: . | A=Ei—2 B=:12’

Le moment par rapport a la section médiane des réactions €lastiques s’opposant au
flambement de la membrure comprimée est:

12
Mo"—"(po"{“ro)w_z
’iT Ell

Or: Po =f =M

_f+f’_ 1+)\7r4 Ei'
o= 3 TH

o 2 Ei,8 A+1w2Ei
d’ou: ‘Mo—f(,. 11+ 5 wl, )—N]f
" |
d’ot: b—1=n1=nﬂs/\+(l\+1)nﬂu. v ww &8 oa po@h
1
. _7
avec: u—2ll

La tension critique de la membrure comprimée, qui est aussi celle de la piece réelle,
est donc:
H—= nl-}—nq—ncl(S/\—l—1)+(A+I)n¢1 s « « & e (18

équation du 2° degré en n qui, résolue, donne:

n=naV2A+1) (u+1) l. N (1)
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1 GI I? i’ w2 Ei,

avec. A= 2E11 d2 u=-2—i1 ﬂcl=m51“

Cas d’une section rectangulaire en acier doux

. ’ G 2 w2 Ei
i1=0.212i, d=0,188h, z=%, ny=n-=—rr0, u=136
La formule (19) devient: »
| n=ng LS3SV2AHL | . ... ... (0)
I, 12
avec: A=0,308 ',2

Cas d’une section en double té en acier doux

On a sensiblement: u=0 d=h
_71'2 Eil_ 0 V2_ V\2
ncl—m_nc 7—nc o

p ¢tant le rayon de giration dans le plan de I’dme et ¥'=x, n. étant la tension critique

2’
d’Euler de la barre dans le sens de son plus petit moment d’inertie.
La formule (19) devient:

Ry E T I ¢))
I 12
avec: : A= 00812—’]—2

Comparaison avec les formules obtenues par les méthodes classiques

Pour la section en double t¢, M. Timoshenko arrive & I’expression suivante de la
tension critique:

14
n=s 777\/51' G IV 1+ a2

' m2a? h? Ei w2 6165 [ h?
avec: ~ 12 - 1222G1 112

On peut vérifier que cette expression est identigue a (21)

Pour la section rectangulaire, I’expression de la tension critique obtenue par
M. Timoshenko est:

Vo
i’l=“1' 7'\/El G I,
expression identique a: B
n=n, 1,535v/24

donc différente de (20) par la suppression du chiffre 1 sous le radical.

Cette différence s’explique aisément. Dans une barre rectangulaire étroite, ayant
une extrémité encastrée et I’autre soumise a un moment de torsion, I’encastrement
s’oppose au gauchissement d’une tranche mince quelconque située a une distance d du
c.d.g. Ellesubit de ce fait une déformation de flexion qui influe sur I’angle de torsion.

C.R—19
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Cette déformation complémentaire de flexion est d’autant plus importante que la
distance d est plus grande et la longueur de la barre plus petite.

Ce phénomeéne n’a pas échappé a M. Timoshenko. Pour la section en double té,
il a donc évalué aprés coup, la raideur de flexion des ailes et 1’a introduite dans les
équations différentielles d’équilibre, ceci d’ailleurs au prix de certaines complications
mathématiques. Pour la section rectangulaire, il a négligé cette raideur de flexion
complémentaire, alors que par notre méthode elle est automatiquement prise en
compte dans tous les cas, et se traduit par le chiffre 1 sous le radical dans notre
formule (20).

En conclusion, nous pouvons dire que non seulement notre hypothése simplifica-
trice se trouve confirmée, mais encore qu’elle présente un avantage évident sur les
méthodes classiques puisqu’elle permet d’aboutir & une formule générale unique,
valable pour toutes les formes de section, et qu’elle prend automatiquement en compte
le phénoméne de raideur de flexion complémentaire que nous venons de signaler.

Remarquons que nous n’avons jusqu’ici, considéré que le cas
fondamental du moment constant mais on sait que les autres cas de
charge s’en déduisent par application de coefficients déterminés par
Timoshenko. Il n’y a donc aucun intérét a traiter directement ces
autres cas de charge. L’important est d’avoir ramené le probléme
du déversement a celui du flambement en milieu. élastique ce qui
rend possible ’application au déversement de la théorie par diver-
gence d’équilibre.

Avant d’établir les formules pratiques d’application, il est cepen-
dant nécessaire de préciser une particularité importante du probléme
fondamental du flambement d’une barre prismatique dans un milieu

Fig. 6. élastique.

Considérons une barre prismatique AB (fig. 6) parfaite de forme et de structure,
de longueur /, en position d’équilibre légérement fléchie, dans un milieu élastique
de constante B.

L’équation de sa ligne élastique peut étre considérée sans erreur appréciable comme
sinusoidale:

y=fsin177x

La compression axiale N correspondant a I’équilibre, se compose de deux parties
distinctes:

(1) N charge critique d’Euler équilibrée par le potentiel interne de la barre fléchie.

(i1} N; charge axiale complémentaire équilibrée par les réactions du milieu
élastique. Ce deuxiéme systéme de forces ne produit aucun moment fléchissant dans
la barre car le travail de la force N, dans son déplacement est égal au travail des
réactions élastiques, en négligeant bien entendu, comme habituellement, I'augmenta-
tion de potentiel interne dans la barre diie 2 son raccourcissement.

On peut donccalculer N, en écrivant que le moment dans la section médiane est nul.

La réaction du milieu élastique sur un élément dx de la barre est:

By dx=pf sin Zrl-x dx

La somme des réactions élastiques est:

_— 5
P=f. ﬁfsini;x dx=ﬁfl

™
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et le moment de ces réactions par rapport a la section médiane est:

Pl 12
M0=2_1r =ﬁf;2

On aura donc:

d’ot:  M=8—

et la charge critique totale de la barre sera:
N= NI +Nc

Il est important de remarquer que sous une charge axiale <N, seule la position
d’équilibre rectiligne est possible.

Si la caractéristique du milieu élastique B est suffisamment grande, la barre pourra
atteindre sa limite élastique sans flamber, ce qui revient & dire qu’elle travaille dans
ce cas en compression simple. 11 en résulte qu'une poutre fléchie peut ne pas étre
soumise au déversement et c’est 1a une différence essentielle avec le cas d’une barre
prismatique comprimée en milieu libre, qui se trouve toujours soumise au flambement
quel que soit son élancement.

Il en résulte également qu’il serait inexact d’appliquer un méme coefficient de
sécurité aux deux termes N; et N, dont se compose la charge critique totale, I’'un cor-
respondant a de la compression simple et I'autre a du flambement élastique. C’est
la I'une des circonstances qui rendent impossible tout systéme cohérent de sécurité,
dans la théorie par bifurcation d’équilibre.

Signalons enfin qu’il est inutile de considérer toute autre forme d’équilibre fléchi,
avec plusieurs demi-ondes, car dans le déversement, ces formes d’équilibre se tradui-
raient par une augmentation de la constante du milieu élastique a laquelle cor-
respondrait une charge critique plus élevée.

Passons a la barre prismatique réelle, et voyons comment s’applique la théorie
par divergence d’équilibre.

Tant que la contrainte de compression reste inférieure a la valeur limite:

la barre travaille en compression simple, le fléchissement est faible car les réactions du
milieu élastique s’opposent a toute amorce de flexion; il ne peut y avoir flambement.

Mais, lorsque la contrainte de compression est supérieure a ny, il y a équilibre
fléchi de flambement, et ’affaissement se produit pour une contrainte au bord de la
section médiane égale a:

n'e=n,—n,

Le probléme se trouve ainsi ramené a celui d’une barre soumise au flambement

libre, et la condition de stabilité & satisfaire s’écrit:

@—ﬁ)@+ﬂ<Rl N 7))
a g

avec: k,=

o coefficient de sécurité=n,/R
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L’expression ci-dessus n’est d’ailleurs valable qu’autant que:

ny
>

g
Pour<n . ny/o, il y a compression simple et I'inégalité & vérifier se réduit a:
n<R

Le probléme étudié est donc une combinaison de la compression simple et du
flambement. Dans la solution que nous lui donnons, la conception de la sécurité est
cohérente puisqu’a la contrainte critique de flambement, nous appliquons le coefficient
de sécurité de notre théorie de flambement, et & la contrainte de compression simple,
le coefficient de sécurité o=n,/R.

Ces considérations montrent comment s’applique la théorie par divergence
d’équilibre, au déversement.

ny étant la contrainte de flexion simple dans la poutre, résultant de sa charge, en
valeur d’exploitation, on peut poser immédiatement la condition de stabilité a
vérifier:

} (nf—%l) kot <R ' L@

g

p—1 Aecq
“u—+c) FTon—n,
la valeur de n, étant donnée par la formule précédemment établie:
ny=nc OA+(A+1) n,y u

Dans le cas d’une section en double té, ces formules se simplifient.
On a sensiblement:

avec: ko

u=0 d’ou n;=n. 8A
V2 w2 Ei
nﬂ=nc(;) avec nc=12—9
dans laquelle:

V=demi-hauteur de la section

p=rayon de giration dans le plan de I’dme
i=plus petit moment d’inertie

f2=surface de section

_,om 1 GLRE
8_1+n¢-1 A—_‘TTZE i ‘}TZ
A
A=5¥aA

VERIFICATION EXPERIMENTALE

Sur Dlinitiative de la Chambre Syndicale des Entrepreneurs de Construction
Métallique de France, des essais ont été effectués par le Laboratoire de I'Institut
Technique du Batiment et des Travaux Publics, en octobre 1950.

Ces essais ont porté sur cing poutres en I.P.N. 100 dont les longueurs sont indi-
quées dans le tableau I (colonne 1). Ces poutres ont été soumises & une flexion
circulaire, avec dispositif empéchant toute rotation des sections terminales autour de
I’axe longitudinal. Les rotations étaient libres autour des deux axes de symétrie de
la section. ‘
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TABLEAU [
M (2) (3) (4) (5)
Longueur des ner ner Erreur Ner
poutres calculée mesurée % pieces idéales

3m.00 16,4 16,10 +1,7 17,06

2m. 00 23.7 23,8 —0,4 26,4

1 m. 50 : ‘27.5 27,7 ' —0,8 37,1

1 m. 00 30,5 30,0 +1,6 61,8

O m. 50 flexion simple 31,0 165,7

Les contraintes critiques calculées (colonne 2) résultent de ’équation:

(np—ny) ko+ny=n,

. _Ll__ . M
avees ko_,u,—l,()83 #_nf—n
1. _ 4

b=1+" =3

Cette équation n’est autre que (23) appliquée a I’état critique, au moment de
l’affaissement, étant entendu que pour la vérification expérimentale, on remplace
c¢’'=1/2,4 par ¢c=1/12, ce qui donne 1+c¢=1,083.

On a pris pour #, la moyenne des valeurs mesurées dans 1’aile comprimeée.

Dans la cinquiéme colonne 4 droite, on a calculé les contraintes critiques relatives
aux piéces supposées parfaites, par nos formules équivalentes a celles de Timoshenko.
Ainsi qu’il fallait s’y attendre, ces valeurs s’écartent trés sensiblement des valeurs
mesurées, alors que dans notre théorie par divergence d’équilibre, ’écart n’est que de
2% au maximum.

De plus, des mesures précises de déformation ont été faites pour chacune des
valeurs progressives du moment appliqué. Ces mesures ont permis de constater,
pour les quatre premiers essais, que la forme d’équilibre est déja gauche pour de trés
faibles valeurs de la contrainte, ce qui contredit la théorie par bifurcation d’équilibre.

Dans le dernier essai, (poutre de Om. 50), notre calcul donne n;=n,, ce qui signifié
que la membrure comprimée travaille en compression simple et n’est pas soumise au
flambement. Effectivement dans cet essai, il n’a pu étre mesuré de déformation
latérale appréciable.

On passerait du moment constant, cas fondamental, & toute autre sollicitation par
Papplication des coefficients de la théorie classique.

Toute autre liaison des sections terminales se traduirait également par ’application
de coefficients connus.

On résoudrait également sans difficultés le probléme des piéces simultanément
fléchies et comprimées. En raison du manque de place, nous renvoyons a4 Conférence
de Bruxelles déja citée. ‘

Ce qu’il est important de retenir, c’est que, par cette théorie, confirmée expéri-
mentalement, le raccordement entre le déversement et le flambement se trouve réalisé
pour la premiére fois.

Il en résulte des conséquences importantes pour I’homogénéité du degré de sécurité
et ]la cohérence de la Résistance des Matériaux.
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Résumé
Flambement ,

La théorie d’Euler ne s’applique qu’au cas idéal d’une barre parfaite et indéfiniment
élastique (flambement par bifurcation d’équilibre). L’expérience montre qu’il y a
équilibre fléchi dés le début de ’application de la charge, et la rupture d’équilibre
dépend de la contrainte au bord de la section médiane: il y a instabilité par divergence
d’équilibre.

Il a été proposé beaucoup d’hypothéses pour interpréter les défectuosités
inévitables qui sont la cause du fléchissement prématuré. Une analyse serrée des
conditions a remplir montre qu’il y en a peu de correctes. Une seule semble convenir
pour aboutir 4 une solution cohérente et générale des problémes simples et complexes
de flambement (piéces prismatiques, ou composées de membrures assemblées par
treillis ou barrettes, simplement comprimées ou simultanément fléchies, prise en
compte de la déformation d’effort tranchant, etc.).

Déversement (ou flambement latéral des poutres soumises a la flexion)

Les théories classiques connues (notamment celle de Timoshenko) ne s’appliquent
qu’a des picces parfaites et indéfiniment élastiques (déversement par bifurcation
d’équilibre). En réalité, il y a, comme dans le cas du flambement, déversement par
divergence d’équilibre. A notre connaissance, ce probléme n’a pas regu de solution
pratique. Nous en proposons une en montrant que le déversement d’une poutre
fléchie s’identifie avec le flambement d’une barre prismatique dans un milieu élastique.

Cette théorie conduit pour les piéces supposées parfaites, a des expressions de la
charge critique identique a celles de Timoshenko, avec ’avantage d’une prise en
compte automatique de la raideur latérale de flexion. Ceci étant acquis, la théorie
du déversement par divergence en découle immédiatement.

Les essais récents exécutés au Laboratoire de I'Institut Technique du Béatiment et
des Travaux Publics confirment cette théorie.

Summary

Buckling

Euler’s theory holds good only for the ideal case of a perfectly straight and per-
fectly elastic bar (buckling through deviation of the equilibrium). Experience shows
that a bent equilibrium condition exists right from the beginning of the loading and
that the disturbance of equilibrium is dependent on the edge stressing of the middle
section: there arises an instability through disturbance of the equilibrium.

Many hypotheses have already been advanced to account for the inevitable defects
that cause premature bending. A compendious investigation into the conditions
that have to be fulfilled shows that only a few are correct. One alone appears to be
suitable to allow of obtaining a comprehensive and general solution of the simple and
of the complex problems of buckling (prismatic members or built-up grid or frame
bars, bars that are only compressed or at the same time also bent, takmg account of
the plastic deformation in consequence of a transverse force, etc.).

Lateral buckling (lateral buckling of beams subjected to bending)

The well-known classic theories (especially that of Timoshenko) hold good only
for perfect and perfectly elastic beams (lateral buckling through deviation of the
equilibrium). In reality, there occurs, as in the case of buckling, lateral buckling
through disturbance of the equilibrium. As far as we are aware, this problem has
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never been solved practically. The author proposes a solution, in that he shows that
the lateral buckling of a beam subjected to bending is identical with the buckling of a
prismatic bar in an elastic medium.

For bodies that are assumed to be perfect, this theory leads to expressions for the
critical Toads which agree with those of Timoshenko but have the advantage, however,
of automatically taking the lateral bending-stiffness into consideration. From this
there follows directly the theory of buckling through deviation of the equilibrium.

The most recent tests carried out in the laboratory of the Institut Technique du
Batiment et des Travaux Publics confirm this theory.

Zusammenfassung

Knicken

Die Theorie von Euler gilt nur fiir den Idealfall des vollkommen geraden und
vollkommen elastischen Stabes (Knicken durch Verzweigung des Gleichgewichts).
Die Erfahrung zeigt, dass schon vom Beginn der Belastung an eine ausgebogene
Gleichgewichtslage existiert und dass die Stérung des Gleichgewichts abhidngt von
der Randspannung des Mittelschnitts: es entsteht eine Instabilitat durch Stdrung des
Gleichgewichts.

Um die unvermeidlichen Mingel zu erkldren, die die Ursache der friihzeitigen
Ausbiegung sind, wurden schon viele Hypothesen aufgestellt. Eine gedréngte Unter-
suchung der Bedingungen, die zu erfiillen sind, zeigt, dass nur wenige korrekt sind.
Eine einzige schien geeignet, um zu einer zusammenhidngenden und allgemeinen
Losung der einfachen und der komplexen Probleme des Knickens zu gelangen (pris-
matische Korper oder zusammengesetzte Gitter- oder Rahmenstidbe, nur gedriickte
oder gleichzeitig auch gebogene Stibe, Beriicksichtigung der Verformung infolge der
Querkraft, usw.).

Kippen (oder seitliches Knicken der Biegebalken)

Die bekannten klassischen Theorien (namentlich diejenige von Timoshenko)
gelten nur fiir vollkommene und vollkommen elastische Balken. (Kippen durch Ver-
zweigung des Gleichgewichts). In Wirklichkeit kommt es, wie im Knickfall, zum
Kippen durch Stdrung des Gleichgewichts. Dieses Problem ist unseres Wissens bisher
nie praktisch gelost worden. Der Verfasser schlégt eine Losung vor, indem er zeigt,
dass das K:ppen eines Biegetrédgers identisch ist mit dem Knicken eines prlsmatlschen
Stabes in einem elastischen Medium.

Diese Theorie fiihrt fiir die vollkommen vorausgesetzten Korper auf Ausdriicke
fiir die kritischen Lasten, die mit denjenigen von Timoshenko iibereinstimmen, jedoch
den Vorteil haben, die seitliche Biegesteifigkeit automatisch zu beriicksichtigen.
Hieraus folgt unmittelbar die Theorie des Kippens durch Abweichung des
 Gleichgewichts.

_ Die neuesten im Laboratorium Institut Technique du Batiment et des Travaux
Publics durchgefiihrten Versuche bestiitigen diese Theorie.
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Etude théorique expérimentale et pratique des encastrements

de flexions

Theoretical, experimental and practical investigations of bending

stresses

Theoretische, experimentelle und praktische Untersuchung der

Biegeeinspannungen

R. PASCAL

Ingénieur-Docteur E.P.C., Paris

I. ACTION D'UN EFFORT CONCENTRE APPLIQUE SUR LE PLAN LIMITANT UN SOLIDE

INDEFINI (fig. 1)

Boussinesq puis Flament ont étudié I’action d’une force concentrée agissant en un

point du plan limite d’un solide ¢lastique indéfini.

Grice a I'utilisation des solutions générales données par Boussinesq on obtient
sans difficulté notable les valeurs des déplacements w, v, w, et des contraintes N, N,,
N,, Ty, T», T, en tout point du solide élastique. Les notations étant celles qu'indique
la figure 1, nous avons abouti aux résultats suivants pour le point m (x, y, o) du plan

limite:

Déplacements :

'_‘__(H-n)(l—-Zwy) L) (1=27) y w_

?

n- 2nEp? n_ 2nEp? " n

Contraintes normales :

Nl 1 2 .2 , )2
7_27r_;)2[l-;{.\ (1=3)—} n}]
N, 1

2
e L L R }]
Ny _

n

_(=-m)
wEp
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Contraintes tangentielles :

3 (1-29)
Tl=0, T2=O: ;=_ ,n.P4 Xy
Y
: Je d
E : module de yo_un‘g_ m(xy0)
s
0 -— . L
T =
Yn
+)
vl: coefficient de Foixon. w vt '
O‘Z u® _ _ deplocementes

* Ny M2
" Ni 5 controinleS normales

5 A Tng_

— T2
4 il . controintes de cisaillement
T

Fig. 1. Action d’un effort » normal au plan limite au point o. Action d’un
effort f porté suivant ox et agissant en 0. Notations pour les déplacements et les
contraintes normales et tangentielles suivant le triedre o, x, y, z

Un calcul du méme genre pour ’effort horizontal f agissant en o, suivant ox,
nous a donné pour le point m (x, y, 0):

Déplacements:
y_l+77( o) v_1+7 w_(14+9) (1—29)
f mEp? PR f—ﬁEp3n ¥ f 2nEp?

Contraintes normales :

1 x . xp? 2(1—n)x<p+n‘x)] »
et | ({2 s S i [
ﬂ(1—2n)92[( B )P Tp3 +y(1=m) (1—27) p?

N — 2

P 0 2]
Ns__ 1
f m(1—=2n)p?

N
7=

p2—2x2 xyz]
33
P

(=72

Contraintes tangentielles :
Iy = Sxp
[ 2mpt
‘Tz 1. x x2
7—-%_;)2[—’7;_'_;&-'_”)]
T, y [ x 3x2]

= R P
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L’examen de ces deux groupes montre que les déplacements sont inversement pro-
portionnels & E. Il prouve aussi que les contraintes dépendent du coefficient de
Poisson.

II. CALCUL DES DEPLACEMENTS NORMAUX: W PROVENANT D’UNE SECTION RECTANGU-
LAIRE APPARTENANT AU PLAN LIMITE ET A UN PRISME ENCASTRE NORMALEMENT
DANS LE SOLIDE INDEFINI (fig. 2)

Nous supposerons que la piéce prismatique améne un effort normal N, un moment
fléchissant M, correspondant a une rotation autour d’un axe parallele & oy et un effort
tranchant T paralléle 4 ox. Nous admettons que la répartition des efforts élastiques
correspondants, a l'intérieur du rectangle de contact, est celle que donne la résistance
des matériaux. Les efforts normaux sont représentables par un plan:

_2M N 6M( 2a\ .o
n_abx+ab+a2b + a soit n=Ax+

AY T
+b "; /
2 r}
x Ly
~ |
IH(I—“”") =
——”#A T} :
d
N . 3 H_ﬂ ’
2 : "dx :
a4 | a= (g2-41) ]
|
|
a2z ol

Fig. 2. Contour rectangulaire d’encastrement.
(Vecteur de flexion parallele 4 Py)

Le déplacement vertical du point P et provenant de la flexion composée est,
d’apreés ce qui précéde, donné par I’expression:

1_,72J‘02J‘+b/2 Ax+B de d
= — ——dx
mE —b2 VX242 4

On peut écrire W;=W;;+ W,,; la premicre intégrale correspond & Ax et la
seconde A B.
W11 est une expression impaire:

l—nzA[c_z_zz b+Vb2+4a2 a2 b+Vb2+4a?
=E 7| 2 2la;) 2 2lay/

Wi=—

b
+§(\/b2+4022—\/_b2+4a12)]
W1, est une expression paire:
1—n2 B[ b++b2+4ay? b+vb2+4a2 b 2d2+\/b2+4a22]
aL———F—

We=—"% I TP A S PIRRY/ <wwvae
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Le déplacement vertical W, du point P provenant de l'effort tranchant s’obtient
d’une fagon identique en partant de la fonction:

(x—ay) (x—a,)
a3b

expression conforme aux régles de la résistance des matériaux. On obtient ainsi:

3(1+7) (1—27) TR e (x—ay) (x—ay)
W2= 3b B T, =) 2

asbm —bj2J a (x24y2)
On trouve, apres intégration, 1’expression impaire W5:

_3(1+47) (1—27) b\ a? a b\ a? a;
W= PhnE T, arc’cgz—a2 R Gl e —(arctgz—al c a2h§)

b b2 4a,2+b2| b2 2a, 2a,1 b

+21 (al a,— 1—2) wels 3 A#ibz +§ (a1+ay) [arc tg —b~'—arc tg TIJ —a(azz—alz)]

On s’aper ¢oit que le déplacement total W= W+ W, ne correspond pas a la droite de
Navier, méme en cas de compression pure. En étendant les calculs aux points du plan
situés de part et d’autre de ’axe ox, on peut obtenir la déformation du rectangle
d’appui telle qu’elle ressort de I’application de la théorie de I’élasticité et des
principes de la résistance des matériaux. L’allure du rectangle T; déformé fait I’objet
de la figure 3. Les calculs sont faits rapidement & partir de ceux qui précédent par
un procédé de contours superposés.

On remarque que la surface T, contient I’axe oy, elle n’est symétrique, par rapport
a oy qu’en 'absence d’effort normal.

Elle est toujours symétriques, avec les bases adoptées par rapport au plan y=0.

Le résultat auquel nous venons d’aboutir est caractérisé par une anomalie rigou-
reusement établie dont 1’existence nécessite le recours a la méthode expérimentale.

f=6T

dy dx

To . conlour initial

’I‘1 : contour lransforme

Fig. 3. Déplacement et déformation du contour rectangulaire T.
(Vecteur de flexion pure suivant oy)

III. PROBLEME DE L’ENCASTREMENT PLAN ‘ETUDIE A PARTIR DES MEMES BASES QUE
PRECEDEMMENT—RECHERCHE DES CONTRAINTES DANS LE SOLIDE INDEFINI (fig. 4)

En utilisant les études de Boussinesq et de Flament, nous avons obtenu sans grandes
difficultés les expressions donnant les valeurs des tensions Nz et N; agissant au point m,
de coordonnées («, o, ¥) ainsi que les valeurs 7, du cisaillement correspondant. On
sait que No=n (N+N’).
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Les résultats qui, sauf pour N,, sont indépendants de E et de 7, peuvent étre
résumés ci-dessous en coordonnées bipolaires, les poles étant les extrémités de la péné-
tration de la lame indéfinie.

X = compression pure

F= flexion pure

|
|
|
' .
' |
| A i A
+ “3 TITrrrryryree ! FIFTTITITE7T
) = cdsaillement pur :

£ 3T (a*-x%) g (d-7)
4 a3

Fig. 4. Encastrement plan d’une lame normale au solide indéfini

ler cas: compression pure (résultat classique)

Les tensions principales correspondant aux bissectrices de I’angle AMA’ ont pour
expressions :

N=:—:[(0'—€)+sin @ —0)]

N'==[(0'—6)—sin (&' —6)]

et N,=n (N+N’) en épaisseur indéfinie.

2éme cas: flexion pure

~On obtient la valeur des tensions principales et leur orientation par la construction
de Mohr, a partir des résultats suivants (avec K=3M/ma?, y étant déterminé par 6 et 6"):

Nl ’ o . . ’ l+tg29 ) 2 R
T = (CE )—i(sm 20—sin 20")—vyL m_y (cos2 f—cos? ')
N-
f:a (0—8")+o (sin 20—sin 26')+y (cos? §—cos2 &)
T, ; Bl s ' o
=" (cos2 8—cos2 8 )—y (6—0 )+§~ (sin 260—sin 28")

et Ny=7 (N;+N;) en épaisseur indéfinie.

3éme cas: cisaillement pur

On procédera comme ci-dessus pour obtenir ¥, N’ et leur orientation a partir des
résultats suivants (avec K'=3Ty/4na3):
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N, cos ¢ 1 1
' 9 3 e B - - R_ —
=7 (cos?2 —cos2? 8')—4yL o5 0 y[cosz 7 cos? 0] +4a (tg 0'—tg 9)
6a (0'—6)+a (sin 26’ —sin 26)
N, Iz _ .
=(c0s? §'—cos? 6)—2yL | — | —2a (6"~ 0)-+a (sin 20'—sin 26)
T 4ar|% Y | _ 24 (cos? 8 —cos? 8)+ 2y (tg & —tg 8)— 3y (6'—6)+ Lsin 26’ —sin 26)
g =daL| g —2a (cos? 8'—cos2 0)+ 2y (tg g y 3 i

et N,=n (N;+ N;) en épaisseur indéfinie.
Ces formules n’ont été indiquées que parce que nous les avons utilisées plus loin.

EXPERIENCES PRELIMINAIRES SUR UN MODELE EN CAOUTCHOUC (DEFORMATIONS REVER-
SIBLES MAIS FINIES)—EXPERIENCES DE M. TESAR—EXPERIENCES DE MM. FAVRE
ET BEREUTER

La nécessité d’un recours a I’expérience découle du résultat trouvé pour I’encastre-
ment 4 la flexion d’une piece prismatique. O le calcul est insuffisant, parce que trop
simplifié dans ses bases, |’expérience éclaire, parce qu’elle contient les données intactes
du probleme étudié.

Afin d’avoir une idée sensible du phénoméne, nous avons procédé a des expériences
purement démonstratives de déformations finies. Pour cela nous avons découpé une
éprouvette dans une lame de caoutchouc et celle-ci recouverte d’une laque blanche a
¢été soumise a trois sortes de sollicitations:

1° traction pure dans la partie de largeur constante
2° flexion pure dans la partie de largeur constante
3° flexion et cisaillement dans la partie de largeur constante

La photo n° 1 correspond & I'effet de la traction, la photo n° 2 correspond & celui
de la flexion pure, et la photo n° 3 & celui de la flexion alliée au cisaillement et 4 une
légére traction.

Sur la laque nous avons tracé un quadrillage et chaque carré contenait un cercle
inscrit. La déformation du quadrillage et des cercles inscrits renseigne parfaite-
ment sur le sens des efforts et montre aussi les déformations finies dont les proportions
correspondent a celles d’un modele a déformations infinitésimales. La fissuration de
la laque, comme la déformation des cercles, pourrait donner lieu a des mesures, mais
ce domaine n’est pas celui de I’élasticité, puisque les déplacements et déformations qui
sont bien reversibles, ne sont pas en méme temps infinitésimales.

Ces essais n’ont qu’une valeur démonstrative.

Examen de la photo n° I (fig. 5)

Les résultats obtenus valent pour la compression pure au signe preés. La courbe
des déplacements W, que nous avions tracée pour le cas du béton (»=0,20, E=
220 t./cm.2) se retrouve ici, trés nette. On voit aussi une légere différence entre les
tensions principales du centre de la zone de transition et celles des parties latérales.
Cette différence concerne leur valeur et leur orientation. L’intensité des efforts de
traction doit étre vraisemblablement proportionnelle au nombre de fissures par unité
de longueur. On constate que les directions principales de traction s’épanouissent a
peu pres a 45°, un peu plus bas que le congé. Les déformations sont encore sensibles
a une profondeur égale a la largeur de la piece. Sauf pour les régions extrémes, les
sections droites restent droites.
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Fig.5. Photon°1

Fig. 6. Photon®2
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Examen de la photo n° 2 (fig.6)

La flexion est circulaire, c’est-a-dire qu’il n’y a pas d’effort tranchant. On retrouve
ici avec la méme netteté que précédemment la courbe de déplacements W, symétrique
par rapport a sa tangente inflexionelle. Les cercles sont déformés d’une fagon trés
nette. Malheureusement, la pellicule de laque parait avoir flambé dans les régions
comprimées, mais le phénoméne est clair et confirme bien les résultats de notre
premier calcul, du moins au point de vue qualitatif. Les sections droites sont trans-
formées en courbes inflexionelles & proximité de ’appui, mais les rayons de ces courbes
sont tres grands.

Examen de la photo n° 3 (fig. 7)

Ce cliché correspond 4 un cas rencontré fréquemment dans la pratique. La droite
de transition est encore inflexionelle, mais elle subit un déversement dii & I'importance
du cisaillement. La dissymétrie corrélative des contraintes se lit sur les ellipses dont
les excentricités sont nettement différenciées autour de la déformée de transition.
Celle-ci semble bien étre le résultat d’'une addition des courbes W, W, et W,, dont
les formules ont été données au début et pour lesquelles une application numérique a
été faite.

Fig. 7. Photon°3

Les sections droites ne restent droites que dans la partie centrale de la bande.

Ces expériences pourraient étre reprises avec un matériau moins déformable et
dont le coefficient de Poisson se rapproche de celui du béton (n=0,20) ou de l’acier
(n=0,30). Il faudrait procéder avec des objectifs spéciaux et réaliser un quadrillage
beaucoup plus ténu. Les excentricités des ellipses seraient d’ailleurs moins grandes
que pour 7=0,50.
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La conclusion de ces expériences démonstratives, c’est que les hypothéses simpli-
ficatrices de la résistance des matériaux, qui sont parfaitement vérifiées & mi-distance
des masses d’encastrement, ne le sont aucunement autour de la droite de transition.

Rappel des expériences de M. Tésar *

Sous le titre “Section d’encastrement d’une voiite épaisse a retombée normale,”
M. Tésar a décrit les expériences de photoélasticimétrie qu’il a entreprises en 1936 et
1937 au Laboratoire de I’Ecole des Ponts et Chaussées.

En soumettant un modele de xylolithe a une série de trois efforts différents cor-
respondant donc a trois montages différents, M. Tésar a obtenu par combinaison
linéaire des résultats recueillis (opération légitime en élasticité pure) les actions
séparées d’un effort normal, d’un effort tangentiel et d’une flexion apportés par la
voute.

Les résultats publiés par M. Tésar concernent les tensions agissant sur la droite de
transition entre les extrémités horizontales des congés.

En analysant ces résultats et en les comparant avec ceux qu’un calcul habituel
aurait donnés, ’expérimentateur a trouvé des différences considérables dont quelques
unes proviennent certainement du fait que la piéce encastrée présente une forte cour-
bure. Nous avons comparé les résultats de I’action du moment avec celui que don-
nent les formules de Ribiére (C.R. 1889 et 1891) et non pas de Navier comme [’avait
fait M. Tésar.

La divergence entre les résultats mesurés et ceux du calcul est moins considérable,
mais reste sensible.

En tragant les cercles de Mohr pour I’extrados dans le cas de la compression pure,
de la flexion pure et du cisaillement pur, nous sommes arrivés aux résultats graphique-
ment représentés sur la fig. 8. Le résultat de la comparaison est suggestif pour le
cisaillement pur, dans le cas du béton.

-
Gmpression pure NI cercle de Mobr calcule N2, cercle dc/ﬁabf obleny

Fig.8. Expérience de M. Tésar.—Comparaison des cercles.de Mohr correspondant
au point E, d’aprés les résultats publiés

* Annales des Ponts et Chaussées, 1937.
Cc.R.—20
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Rappel des expériences de MM. Favre et Bereuter *

Les auteurs des essais ont utilisé un verre spécial dit ““optique™ et sur lequel ils ont
d’abord évalué les tensions originelles. Utilisant la méthode d’examen optique que
M. Favre a mis au point a Zurich, ils ont cherché I'influence de I'angle d’inclinaison
d’une console encastrée dans une masse indéfinie, sur la distribution des contraintes.
Dans chaque cas la console était sollicitée par un effort paralléle au plan limite de
situation et d’intensité identiques. De la sorte, I'éprouvette était soumise a une trac-
tion normale, a un cisaillement et & une flexion. :

Les résultats a retenir de ces expériences sont la concentration des efforts aux
congés et particuliérement aux congés rentrants & mesure que l’angle d’incidence
augmente, I’amortissement assez rapide des contraintes a l'intérieur de la masse
d’encastrement et enfin la présence d’un point singulier du spectre isostatique que
nous retrouverons plus loin et que nous désignerons sous le nom de péle d’encastre-
ment. Ce point légérement au-dessus de la ligne des raccords supérieurs des congés
se déplace vers I'angle rentrant a2 mesure que I’angle ¢ augmente. Le congé extérieur
supporte des tensions décroissantes avec ¢. C’est le contraire pour le congé intérieur.
La somme des deux maxima est a peu pres indépendante de I’angle.

On remarquera que si I’encastrement avait été parfait, le point singulier aurait été
situé sur la droite limitant la masse d’encastrement quelle que soit la valeur de ¢.
Nous notons ce fait en passant, car nous reviendrons sur la notion d’encastrement
parfait.

ESSAIS DE L’AUTEUR ENTREPRIS AU LABORATOIRE DE LA S.N.C.F. sOUS LA DIRECTION
EFFECTIVE DE M. KAMMERER, INGR. DR. ES SCIENCES, ASSISTE DE M. CANAL,
Ingr. P.C. (1947)

Ces expériences ont été faites avec le soin et la précision que M. Kammerer et son
assistant ont toujours montré dans leurs travaux du Laboratoire de Levallois Perret.
Le but des essais et des mesures entrepris a été d’étudier dans ses détails, I’encastre-

Fig. 9.
*EP.Z 44
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ment d’une piéce fléchie encastrée dans une masse indéfinie. Cette étude d’élasticité
plane a été faite avec deux rayons de congé et sans congés.

Nous avons procédé a une comparaison des résultats fournis par le calcul avec
ceux qui ont été trouvés aux essais.

La figure 9 montre le modéle étudié dans son cadre. La piéce aboutissant a la
masse d’encastrement lui ameéne uniquement un effort de flexion. La matiére utilisée
était du Plexiglass d’un module élastique de 29.000 kg./cm.2 avec un coefficient de
Poisson égal a 0,30 et un coefficient photoélastique K=41. L’épaisseur du modéle
était de 10 mm. et le couple agissant avait été mesuré avec toute la précision utile.

Le banc de photoélasticité utilisé était celui de la S.N.C.F. dont M. Kammerer a
donné la description dans son excellent livre intitulé Recherches sur la photo-
élasticimétrie (Edition Hermann). On a déterminé d’abord les isoclines, ce qui
fournissait les points de tension maxima aux contours puisque ce sont ceux pour les-
quels I'isocline arrive normalement. On a pu tracer ensuite les isochromes et grice
au compensateur mesurer les tensions. '

Les résultats a retenir sont tous contenus dans le spectre chiffré des isostatiques.

Nous avons montré les résultats obtenus sous forme de triptyque. (Figs. 10,
11 et 12).

VARIATIONS SUIVANT LE LONG DU
CONTOUR DE LA PIECE DE LA CONTRAINTE
 NORMALE PARALLELE AU CONTOUR

w1755 PO AL L SR

Couple _ sppligué
150 Kmm

_____ o 1%35 «i%ss) ___J

1578

TTe2Xes 2%

* 219 -2Y9s

Fig. 10 (b). Partie 1. Angle vif
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Chacune des trois planches fournit les dimensions du mod¢le et le spectre des iso-
statiques. Les données numériques sont indiquées sur les épures jointes. Ce sont
les répartitions des contraintes dans la piéce fléchie et sur la droite d’appui.

Les résultats ont été reproduits avec la méme représentation pour faciliter les
comparaisons. .

" L’examen comparatif de ces planches est facilité par I’examen du tableau ci-dessous
et du graphique des contraintes agissant sur la droite de transition.

+ 1158

\.,,-.' VARIATIONS des CONTRAINTES

X N3, N1, T2, LE LONG DES SECTIONS
AB_CD_EF

Variations de N3:

12

1758

fxy

2793

Fig. 10 (b). Partie 2. Angle vif—Couple appliqué 150 kg-mm.



310 AIl3—R. PASCAL

ol
£ v g|3
gy §p
o m. a
: - XS
& GiS
-2 F <.
L E 3|2
a g it
. ¥ 33
e al ]
2 &
et HI
N
LI R
~ L3S
S
dosle
§54 - : 9507 S50 Ll gt
g
T
ot — St el T
&1 | Y k)
———t ] Al o 9 __3
sai=1 ! gl
i L
w1 -
_ RN
I | E Gl ‘s
;ll T —— LY
o | _m ! rd.l.F
L ] /
el T o
e 4_. Ty aJ\ &,
L 53 )
Ll ¥ S
8 e R o AN
e~ v /S
% w7,
s S A S, & PP
Sk vum N
I | % &
ﬁ..‘...‘— wor| @or s00\g \_.\W\ /a..\u.
e St S Sy G S— - T N3, 4
2507 aoe | T as Fory ST S %,
| I3 L 4 \eo _: = oY =
ey S | UG S GUI. D \ 8
N:‘“\ g| T Tz 57| & qx”\ W
Y : 1 n ok &
I e L S B W _y-geny
x99 o) e20°| IIIIMQ-__ Rl.al..“\ s us..w
| I — A
“ 1 - ! W 3 h.n.l‘.._.u
=y S (N W R - e
L I 2l Pot .L_u. sreeT et
SO L | R | S . T - \
T N B o O A S L
N S W I i v Sy Wi A R VA TR O SR
ar'iel N.:_-_ 2riT] s 3.J_ .-Huﬂ"llllnll‘dlt_ rluw.c)um.l hm.. m “w /W ,M \ l\L,\
. " © " " —_—
AR g e e e e
55, LA LAY 9uc 0 L L_i..lt.n L_| © \
| ' 1 |
I __ | !
] | ]
g I I, ! [
=N v IS I |
o Q) oy L3 |
0= e fi .
=l Ho ey~ | 1
8.g ! T~ 1
i e,
=g, / [ 1
fon ~ ! I
Aw b= of-t \ ondo A.w/..rN fo l __
0O ~ [N o TN /8
ar= [ - / PIAS ! I
o & A & FonL s ! ]
o3 BTN RS /s / i
8% e N N AN
p=ato v N St AN A S~ i
® o VN B wyY * /
Ay (72 < Il“/\\\ ot 4 / B
%1 = A% » \\ ™~ o~ !
S, — \ \ ~ / ~
o Y 2\ 7 ~ ~
\a.fp == \ / RN 0\ N \\ ;
~'0 _, =y AN /x/ /
= m el «u./ \\\ // 7N /
l_m._ 3 \\)M N \\ * /
. o - e N
=] op———"To \ b < \
= S \ el %
\ \ .




ETUDE DES ENCASTREMENTS DE FLEXIONS

¢
$
(2} $
—w_.u_—” ".
WC [
w Lo
v b
Z Wun
L
G_NNT
s £ 0
dmc.m__
I n
[1p]
z4m §
O .4g ®
E o T
g4 + @
T ~
q Z
>
m
z

v 17558

~

MALE PARALLELE AU CONTOUR

~

VARIATIONS LE LONG DU CONTOUR
DE LA PIECE DE LA CONTRAINTE NOR._

"y ;
g £
Q =~
g 9

3

L ~
By

S$

-1135

#7585

ks | _ ]
-8

r 155
o185
v 1,65

e1fe

- - -

311

Petit congé

Fig. 11 ().



312 AIl 3—R. PASCAL

Grand congé—Tensions
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Moment appliqué: M=15 kg.-cm.—Contraintes exprimées en kg./mm.2

Angle vif: r=0 Petit congé: r=3 mm. | Grand congé: r=6 mm,
Situation des points sin- | 1 point singulier de | 1 point singulier vir- | 1 point singulier vir-
guliers: léere espéce aux tuel de chaque coté tuel de chaque coté a
angles. 4 Pextérieur et dans Pextérieur et dans le
le quadran du congé. quadran du congé?
Hauteur du péle d’encas-
trement (point singulier
de lére espéce) . 121 mm. 145 mm. 174 mm.
Tensions maxima et dia- 2,95 kg./mm.2 2,30 kg./mm.2 1,95 kg./mm.2
métre maximum du _2,95_1 90 _2,30_1 48 _ 1,95_l 25
cercle de Mohr coeffi- P=155" > P=155~ P=155
cient d’augmentation. '
Contrainte maximum
dans la piéce au-dessus
du pole 1,55 1,55 1,55
Coeeniition: Fan e | =150 N max. =0,192 N max.=0,115
des contraintes princi- ! 3 ey 3 | ox iy 3 | ox K 5
pales (sur les congés) aN; g./mm.= | o N &./mm.= | o N g./mm.
5, max. =0,425 5, max. =0,250 >, ™max. =0,120
y kg./mm.3 | % kg./mm.3 | ¥ kg./mm.3

COMPARAISON DES RESULTATS DU CALCUL ET DES RESULTATS EXPERIMENTAUX POUR LA
PIECE ESSAYEE

Possédant des données numériques précises pour le plexiglass, nous avons pensé
qu’il serait intéressant de procéder au calcul des efforts en plusieurs points de la masse
d’encastrement choisis a proximité de I'encastrement et de les comparer avec les
résultats des calculs. Les figures qui précédent suffisent a montrer I'importance des
différences dans la section de transition avec et sans congeés.

A Tlintérieur de la piéce encastrée, celles-ci s’atténuent jusqu’a devenir pratique-
ment nulles, & mesure que I’on se dirige vers le pole d’encastrement.

La figure 13 montre d’abord la position des points choisis: A, B, C, B’, A’, puis
le résultat de chacun des essais pour chacune des trois éprouvettes analysées. On
observe que la présence d’un congé et son rayon ont une certaine influence en des
points situés a une demi-hauteur des piéces a I'intérieur de la masse d’encastrement.
Cette influence se traduit par une diminution des contraintes pouvant atteindre 20 %,
et une légére rotation de I’ellipse, des torsions dans certaines régions.

En utilisant les formules du Paragraphe III et en suivant les régles habituelles du
calcul pour I'évaluation des contraintes sur la droite limite, les congés étant supposés
absents, nous avons obtenus des résultats, ceux que le calcul ordinaire laisserait pré-
voir comme provenant d’un moment de 15 kg.-cm. agissant linéairement sur un seg-
ment de 24 mm. de longueur de la droite limite.

La comparaison de ceux-ci pour les points choisis dans le cas de I’angle vif avec
les résultats expérimentaux est explicitée dans la figure 14.

On notera une différence marquée pour les points A et A’, accompagnée d’une
divergence de directions principales. Cette différence s’attenue & mesure que I’on se
dirige vers I’axe vertical.

Ces expériences 4 deux dimensions, nous avions envisagé de les étendre a trois
dimensions.
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Fig. 13. Position des points étudiés dans la masse d’encastrement

La premiére idée consiste a utiliser le procédé nouveau de figeage. Mais il faudrait
attendre que cette sorte de mesure soit définitivement entrée dans la technique des
laboratoires spécialisés. L’étude détaillée de la distribution des efforts dans les pieces
prismatiques montre, d’aprés le tracé des surfaces de cisaillement dans les piéces
symétriques, suivant la théorie de Saint Venant, que les résultats recueillis ailleurs que
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L 12 mm 12 mm ; 12 mm

calcul’ l
|

2mm

! calcul | obvervalion

observalion

B

Echelle des lengrond :

| ekt

Q 920 040 080 o080 100

Fig. 14. Comparaison des résultats du calcul et de I’expérience pour le
modele 4 angle vif. (Ellipses des tensions)

dans la région médiane sont faussés & cause de la grande inclinaison de ces surfaces
par rapport au plan moyen dés que ’on s’approche de ’extrados ou de I'intrados.
Si, par exemple, une excentricité a/b=1/5 est satisfaisante pour les mesures, 1’excen-
tricité inverse b/a=>5 ’est beaucoup moins.

D’autre part, la différence des coefficients de Poisson conduit & une répartition
différente des contraintes autour de points homologues a cause de la présence d’un
facteur 5/(1—27) dans les formules donnant les efforts normaux en fonction des
déformations. Ce facteur=0,75 pour le plexiglass, peut varier de 0,25 a 0,50 pour
le béton.

Nous aurions voulu construire des modéles en béton armé en utilisant une échelle
acceptable. Nous avions pensé a des piéces de I’ordre de 20 X 40 encastrées dans des
massifs de ’ordre de 1,00 X 2,00 m. et d’au moins 1,00 m. de profondeur.

En faisant varier la proportion des c6tés et le pourcentage d’armatures, on
aboutirait a une collection de résultats intéressants. Les mesures des déplacements
angulaires et linéaires pourraient étre faites avec des cordes vibrantes et celles des
contraintes a ’aide de strain-gauges placés sur la périphérie contre les armatures et a
Pintérieur du béton. Ce travail expérimental étant terminé, il resterait & comparer
les résultats que I’on en retirerait avec ceux qu’on obtiendrait grice a ’emploi des
formules que nous avons données au Paragraphe I.

ZONE DE TRANSITION: INFLUENCE DES CONGES: ROTATION SUPPLEMENTAIRE

Il existe donc une zOne de transition pour les encastrements de fiexion pure ou de
flexion composée et celle-ci est comprise entre la droite limitant la masse d’appui et le
pdle d’encastrement. Ce pdle ou cette droite polaire est toujours située dans ’axe
de la piéce pourvu que I’angle d’incidence soit droit. ~ S’il varie, le pdle d’encastrement
se déplace vers le coté correspondant a I’angle fermé mais en restant & peu prés au
méme niveau.

La figure 15 montre I'importance du tracé des congés. 1/ suffit donc d’un supplé-
ment de matiére insignifiant pour améliorer la sécurité dans des proportions importantes.
On peut compléter le role du congé par un traitement localisé de la région critique, telle
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Fig. 15. Comparaison des régions critiques du raccordement. (Encastrement de flexion pure)

qu’elle est définie dans la figure 15, et I'on peut dire qu’elle est limitée par I’isochrome
correspondant a la tension maximum réalisée au niveau du pdle d’encastrement.

Voici, résumés, les enseignements de nos essais:

(1) Le diamétre maximum du cercle de Mohr et-par suite le cisaillement maximum
varient en raison inverse du rayon du congé. Un rayon convenable permet de réduire
beaucoup la majoration de contrainte et I’étendue de la région critique.

(2) L’absence de congé peut conduire a I’apparition d’une région critique relative-
ment étendue et présentant une grande concentration de tensions au point singulier,
principalement sur la droite extérieure d’appui. .La majoration des contraintes a
atteint 909, dans nos essais (voir tableau précédent). Au point singulier, on a:
N1=MN, le rayon du cercle de Mohr est nul, mais il suffit de s’écarter trés peu de ce
point pour que I'une des deux tensions soit négligeable, ’autre restant peu variable.

(3) Le pdle d’encastrement est situé dans les essais entrepris a une hauteur approxi-
mativement égale a la demi-largeur de section au-dessus du centre du congé. Cecin’étant
indiqué que pour fixer les idées n’est évidemment pas une régle. D’ailleurs, les essais
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de Zurich indiquaient une hauteur relative plus faible, mais avec accompagnement de
cisaillement. On remarquera enfin que I’encastrement est d’autant moins imparfait
que la distance du pdle & la droite limite est plus faible (nous reviendrons sur ce point)

(4) A ces remarques, il faut ajouter I’'un des enseignements des expériences de
Zurich. Celles-ci montrent clairement que la valeur de la contrainte maxima et celle
de la concentration de tension varient pour un effort extérieur égal, en raison inverse
de la mesure du diedre.

Ces renseignements sont utilisables dans la construction mécanique et en fonderie
aussi bien que pour les ossatures de constructions et I’étude des cordons de soudure.

Il est probable que I’arc de cercle n’est pas le tracé optimum de raccordement.
Rien ne s’opposerait, en fonderie ou en construction métallique a lui substituer un
tracé & courbure progressive. Pour cela, on peut employer des arcs de lemniscate,
de radioide ou de clothoide symétriques par rapport a la bissectrice de I'angle qui
serait une normale commune.

D’aprés ce qui a été vu et mesuré, on sait que la zéne située entre le pole et la droite
d’appui est une région a déformations angulaires importantes. Cette observation est
intéressante car elle peut donner lieu a un calcul de correction utile pour les ouvrages
importants. Dans cette région les sections droites ne restent pas tout a fait droites.
Elles paraissent transformées en sections inflexionelles a trés faible fléche, symétriques
ou non, suivant que la flexion est simple et composée. On pourrait évaluer la rotation
élémentaire correspondant a une longueur ds de la fibre neutre (en cas de flexion pure)
en la choisissant comme la demi-somme de la rotation calculée d’aprés les contraintes
extrémes et de la rotation calculée comme d’habitude avec I’hypothese de la linéarité
des tensions celles-ci étant déduites du moment effectif. Le supplément de
déformation angulaire entre la droite d’appui et le péle d’encastrement dont la situa-
tion peut étre décelée soit par ’examen d’un enduit de laque fissurable soit sur modéle
serait alors facile a obtenir. Pour le faire, le mieux est d’employer la méthode
graphique. A ce supplément de rotation il faudrait ajouter celui qui provient de la
. rotation de la droite d’appui. Quand il est possible de construire un modéle bien
étudié, il est facile de calculer cette derniére rotation, soit par intégration graphique,
soit par observation sur le modéle.

Ces remarques n’intéressent, bien entendu, que les ouvrages importants.

Nous examinerons plus loin le calcul de correction correspondant.

En procédant a un calcul numérique sur le modéle de plexiglass nous avons trouvé,
comme rotation supplémentaire totale, compte tenu de la déformation de la masse
dans la région de I’encastrement, un supplément de rotation entre la droite de transition
et le centre d’encastrement s’élevant a 6/10 environ de la rotation calculée d’aprés la
méthode habituelle entre ces deux points. Mais ce calcul a été fait en ne tenant
compte pour les déplacements que des contraintes extrémes. C’est pourquoi il con-
stitue une limite supérieure ou si I’on veut un ordre de grandeur maximum. D’autres
essais nous paraissent indispensables pour aboutir & un résultat utilisable dans la
pratique.

L’étude d’une piéce prismatique encastrée dans une masse indéfinie doit d’ailleurs
faire ressortir une valeur plus faible de la rotation du plan d’appui, en raison de
I'importance plus grande de la masse d’encastrement, dans la direction perpendiculaire
au plan de figure.

EVOLUTION PLASTIQUE ET RUPTURE D’UN ENCASTREMENT DE FLEXION (BETON ARME, ACIER)

Dans la pratique, on dimensionne les encastrements pour que les contraintes
données par le calcul soient inférieures a des limites bien déterminées par la connais-
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sance des matériaux. Mais il est utile d’examiner I'influence d’une majoration des
efforts sur I’ouvrage, afin de suivre la variation des coefficients de sécurité locaux par
rapport a la limite élastique ou par rapport a la limite de rupture.

L’application du théoréme de M. Colonetti, lorsqu’elle est facile a faire et lorsque
les conditions nécessaires qu’il requiert sont satisfaites, aboutit a un systéme d’équa- .
tions indépendantes, dont le nombre est égal au degré d’hyperstaticité du systéme.
Parmi les variables indépendantes figurent les réactions d’appui qui, pour I’encastre-
ment, sont au nombre de trois (moments de flexion, réaction complémentaire verticale
et poussée). Mais si l’on s’apergoit en faisant ce calcul que I’'une des régions plastifiées
intéresse le voisinage de I'un des appuis, le résultat obtenu est douteux. Il faudrait
d’abord avoir une idée exacte du comportement de ’appui considéré du point de vue
des déformations et surtout de la déformation angulaire.

Dr’apres ce qui précede, nous pouvons donner quelques indications d’ordre général,
mais qui cernent le probléme numérique a résoudre pour chaque cas particulier.

(i) La rotation élastique aux naissances varie en raison inverse du rayon des
congés, quand ils sont circulaires, cette rotation étant définie comme on I’a indiqué
précédemment et concernant la région limitée par le pdle d’encastrement.

(i1) La phase plastique dans la région considérée prendra naissance dans la région
du congé et, s’il n’y en a pas, a I’angle vif.

(iii) L’étendue de cette phase dépend du matériau et du rayon du congé, probable-
ment de la forme de celui-ci, toutes choses égales d’ailleurs. Un tracé judicieux du
congé suffirait pour réduire beaucoup cette étendue et pour augmenter la sécurité
d’autant plus que le déclanchement de la période des grandes déformations irréversibles
ne semble se manifester suivant certaines expenmentatlons que si une zone minimum
est sollicitée au-dessus de la limite élastique.

(iv) Pour les matériaux dits plastiques ou a élasticité retardée, les déformations
dont il vient d’étre question sont fonctions croissantes du temps. Le type de ces
fonctions a été donné par divers expérimentateurs et notamment per M. L’Hermitte.

A la lumiére des essais que nous avons décrits on peut prévoir, sous réserve bien
entendu d’un contrdle expérimental, I’attitude évolutive d’un encastrement de flexion
pour deux cas différents, I’acier et le béton armé.

Pour I’acier, matériau considéré comme isotrope, ou supposé tel, on verra
apparaitre les premiéres lignes de Hartmann en relief au point le plus sollicité du

. congé comprimé ou a ses environs immédiats et en creux dans la région correspondante
du congé tendu. Le tracé des courbes de glissement déduit de la considération de la
courbe intrinséque de la limite élastique est commode, soit en partant des isoclines,
soit en partant du réseau des isostatiques, puisque ces courbes sont des trajectoires a
45° des isostatiques. [En se reportant a I’'une ou a I’autre-de ces catégories de courbes,
on voit que le secteur plastique de Hencky qui est de 90° dans le cas de ’effort normal
est d’environ 60° pour nos trois essais de flexion pure. Il s’en suit une variation
d’environ 30° moins grande des contraintes le long des trajectoires de glissement
tournant autour de I’angle vif ou du congé. L’amorce de rupture partirait probable-
ment d’un point voisin de la tension élastique maxima en suivant le tracé d’une
courbe de glissement.

En continuant & augmenter I’effort extérieur, la phase des grandes déformations
suivant la phase élastique aboutirait a la plastification d’une surface importante et a
la rupture généralisée.*

Pour le béton armé, il est plus difficile de prévoir en dehors de I’expérience directe.

* Nous comptons entreprendre prochainement une série d’essais de rupture sur modéles métalliques.
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Les essais de M. Chambaud, qui ont suivi en 1947 les expériences préliminaires
que nous avions faites sous sa direction, ont jeté¢ pourtant quelque lumiere sur I'évolu-
tion de rupture d’un encastrement des picces fortement armées et armées dans un seul
sens. _

La région centrale pouvait €ire a peu de chose pres considérée comme un double
encastrement a cause de la symétrie des efforts et des structures et de la faible distance
des charges jumelles concentrées.*

DIVERS TYPES D’ENCASTREMENTS: TRAVAIL D’ENCASTREMENT: ENCASTREMENT PARFAIT
A LA FLEXION: PROPOSITION DE SYMETRIE ET METHODE DES MODELES DOUBLES:
CRITERE DE VIBRATION POUR APPRECIER LA VALEUR D’UN ENCASTREMENT A LA
FLEXION

La notion d’encastrement ayant donné lieu a des expressions incertaines de-
mande a étre précisée. Disons brievement que I’on peut classer les encastrements
d’apres leur nature constructive. Il y a d’abord ceux analogues a celui des essais a
lumiére polarisée qui proviennent de la solidarité d’une piéce prismatique ou d’une
plaque ou d’une coquille avec un massif beaucoup plus important par son étendue et
sa masse. C’est le cas de nombreux ponts encastrés et dont ’appui est constitué
par une culée a peu pres indéformable.

Un autre exemple plus fréquent est celui des nceuds de charpente triangulée ou
a échelle. Ces encastrements comportent un déplacement linéaire et un déplacement
angulaire trés faibles généralement et communs a toutes les barres aboutissant au
nceeud. Ce déplacement peut conduire a des hypo-encastrements ou a des hyper-
encastrements suivant les sens de rotation du nceud considéré et de ceux qui I’entourent.

Citons enfin I’encastrement par pénétration réalisé souvent en mécanique comme
pour la charpente tubulaire et assez fréquemment dans les travaux publics. Encastre-
ment d’une volite de barrage dans le rocher, encastrement d’un rideau de palplanches
ou d’un massif de pyléne, d’un pieu ou d’un scellement fléchis. Ces trois derniéres
sortes de réalisations ont fait I’objet d’une étude que nous avons récemment publiée.

Nous désignons sous l'expression de ‘““Travail d’Encastrement” celui qui est
développé dans la masse de ’appui. Il se décompose dans le cas que nous traitons en
trois parties, dont la derniére est généralement la plus importante:

(a) Travail di a ’action de la force normale.
(b) Travail di a I’action de la force tangentielle ou effort tranchant.
(¢) Travail di a I’action de la flexion au moment d’encastrement.

Si I’appui était infiniment dur 1l n’y aurait pas de travail d’encastrement parce que
les contraintes d’appui ne se déplaceraient rigoureusement pas. Au contraire, le
travail d’encastrement sera d’autant plus grand que ’appui est plus déformable.

En procédant a la comparaison d’un encastrement parfait et d’un encastrement
sur une masse, nous avons pu vérifier pour I’essai entrepris que le travail d’encastre-
ment était trop faible pour étre appréciable avec les moyens de mesure que nous avions
adoptés. Il s’agissait de deux pieces découpées dans le méme échantillon de métal,
I’'une constituée par une poutre de 7x 7 et de 40 cm. de portée chargée en son centre,
I’autre issue du méme bloc et usinée pour en laisser un massif de 200 x 100 x 100 et
une console de 7x 7 et d’une longueur de 20 cm. Le métal avait été recuit avant
usinage et les déformations avaient été observées a I’aide d’un comparateur donnant
le 1/100 de mm. Le module élastique avait été déterminé d’apres la fléche de la

* L’analyse détailée des expériences précitées a fait 'objet de deux notes parues I'une en février
1949, I’autre en novembre 1949, sous la signature de M. Chambaud.
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premiére poutre en utilisant la formule exacte dela fiéche, c’est-a-dire en tenant compte
de la hauteur de la piéce.

Nous avions réalisé avec la poutre un encastrement parfait et avec la console un
encastrement également parfait, et ceci nous améne a la notion d’encastrement parfait
de flexion qui est essentielle pour certaines applications.

Si nous nous bornons au cas général des structures a section symétrique, on peut
énoncer ce qui suit:

“Il y a encastrement parfait de flexion lorsque la section d’appui ne tourne pas
sous I’action du moment qu’elle supporte. Ce cas est rigoureusement réalisé pour
toutes les structures planes de forme quelconque lorsque la forme et le systéme de
Jorces les sollicitant sont symétriques par rapport au méme plan et que, de plus, la
distance des points d’intersection de la structure avec le plan de symétrie restent
invariablement distants.”

Notons que dans ce cas, le pdle d’encastrement de chaque section défini par le plan
de symétrie est contenu dans ce plan.

Une poutre simple posée sur appuis et symétriquement chargée peut étre considérée
comme encastrée par rapport & sa section médiane si elle est & section constante.

Supposons que nous voulions apprécier la déformabilité par rotation d’un appui
pour une structure déterminée. On pourrait y arriver en réalisant un modéle simple
et un modele doublé et en comparant les isoclines et les isochromes aux appuis pour
chacun des cas les sollicitations étant bien entendu les mémes. Dans le premier cas
on observerait un pdle d’encastrement & proximité de la ligne d’appui et dans I’autre
il serait sur cette ligne d’appui. L’éloignement du pdle d’encastrement renseignerait
au moins approximativement sur la valeur de ’encastrement ou, si ’on veut, sur sa
rigidité,

Le critére de la valeur d’un encastrement de flexion pour une poutre a section con-
stante comme 1’est un mat ou un pyldne sans fruit, peut étre défini avec précision en
comparant la période calculée et la période observée. M. Y. Rocard dans son ouvrage
assez récent intitulé Dynamique Générale des Vibrations a traité du probléme de la
tige imparfaitement encastrée pour laquelle il désigne par 4w ’amplitude angulaire de

48m2Q
= ]It (8 désignant

EIT?
la densité, 2 et I la section et I'inertie, T la période, E le module de Young).
L’élongation y du point d’abcisse x a pour expression:

la base. En désignant par « I’expression sans dimension: /X [

y= {A ch ot;+B sh 1)7(+C cos oz)lf—l-D sin oc%‘]
1 .
avec: A=wa2a tlFoh @ 605 a)x(smach oo—sh « cos &)
B= id. X (ch o sin a—sh « sin a)
C= id. X (sh o cos ae—sin o ch )
D= id. X (14ch o cos oe+sh « sin o)

Supposons I’encastrement parfait, alors dw=0, il en résulte nécessairement
’identité: ch o cos a+1=0, d’ol1 I’on tire la valeur de la période fondamentale @ cor-
respondant a I’encastrement parfait:

5,55 Y]

— 2 =
2 71'1 EJ

En comparant la fréquence correspondante a celle d’'un vibrometre, on aura déja
c.r.—21
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une idée de I’encastrement sans aucun calcul. L’évaluation de la période réelle don-
nera o et la mesure de y en un point convenablement choisi fournira la valeur de dw.
Bien qu’il conduise & des calculs compliqués pour des structures moins simples qu’un
mat a section constante, il semble que le critére de vibration puisse donner lieu 4 des
considérations utiles, en opérant, par exemple, sur un modc¢le.

DEPLACEMENTS DES APPUIS D’ENCASTREMENT DANS LES GRANDS OUVRAGES (DALLES,
ARCS OU COQUES)

Bien que dans la pratique les déplacements des appuis d’encastrement soient tres
faibles, leurs conséquences, surtout quand il s’agit de variations angulaires, ne laissent
pas d’étre appréciables dés que les ouvrages sont rigides et de grande portée. Il
suffit d’ailleurs de se reporter aux formules de Bresse pour le saisir. La mesure des
contraintes dans les ouvrages exécutés et celles des déplacements en ont déja donné
des indices et il semble que si ’on devait entreprendre pour de grands ouvrages une
note de mesures et de calculs, aprés exécution, on y trouverait assez souvent I'influence
de 'imperfection de certains encastrements. Citons par exemple la communication
de M. Dantarella au congrés de 1930 et concernant deux ponts de chemin de fer, d’une
méme ligne, franchissant la Brambilla et le Rino, les ouvrages en arc encastré et
presque identiques, ayant subi les mémes efforts aux mémes époques ont donné des
lignes d’influence de déformation assez dissemblables et différent sensiblement ['une
et I'autre des lignes calculées. Nous pensons que la raison de la dissonance constatée
doit provenir de la nature des enrochements. C’est le pont franchissant le Rino, plus
massivement encastré que I’autre, qui a donné en clé déplacements les plus faibles et
pour lequel les variations de ces déplacements en fonction du temps étaient les moins
élevées.

Dans un arc, les déplacements de ’appui a considérer sont: dx, 4y et 4w. Nous
passons sous silence les efforts de torsion diis au vent et ceux qui sont accidentels
comme, par exemple, les effets d’une implantation défectueuse. Pour les grands
ouvrages, les variations verticales 4y, toujours faibles, sont sans intérét pratique.
Une variation positive ou négative 4x équivaut, soit a un refroidissement soit & un
allongement de la portée, c’est-a-dire, tout compte fait, a I'influence d’une variation
de température, ce dont on peut tenir compte dans.les calculs en augmentant la marge
habituelle a considérer en fonction du climat et des prévisions de retrait. Le déplace-
ment le plus a craindre est le troisiéme, c’est celui qui correspond a ’encastrement de
flexion pure ayant fait I’objet de nos calculs et de nos essais.

Dans ce qui précede, nous avons examiné les causes de perturbation provenant de
I'imperfection des méthodes de calcul, mais nous n’avons rien dit de celles qui trouvent
leur origine dans la nature du sol et dans la constitution méme des massifs d’encastre-
ment. Et ce sont, sans doute, les plus importantes.

Qu’il s’agisse d’un pont arqué ou d’un tablier droit encastré ou d’une coquille de
barrage, les caractéristiques du rocher mesurées en place (par exemple par la méthode
acoustique mise au point récemment par MM. Chefdeville et Dawance sous la
direction de M. L’Hermitte) son ou ses modules de Young, son ou ses modules de
Poisson, son anisotropie, ses clivages ou ses failles, variables d’une rive a une autre, et
d’une couche géologique a une autre, ont une importance évidente. En laissant au
bureau le soin de deviner les conditions aux limites, on produit une note de calculs
fallacieuse. Si, de plus, un organe intermédiaire existe, que ce soit une culée de
pont ou bien des blocages massifs latéraux, il y a une nouvelle cause de variation
de dw a ajouter a celles qui précédent.
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De nombreux ponts encastrés le sont sur des massifs de répartition. Les déplace-
ments des culées devant étre considérés sont ceux qui accompagnent et ceux qui
suivent le décintrement. Si celui-ci est exécuté avec des vérins, on ne doit retenir
dans les calculs que I’action des efforts ultérieurs correspondant a 'achévement de
I’ouvrage, aux surcharges qu’il doit subir et a I’ensemble des variations en fonction
du temps, affectant soit ’ouvrage soit le terrain de fondation.

L’évaluation a priori de ces déplacements qui s’ajoutent a ceux que nous avons
envisagés nous parait nécessaire pour les grands ouvrages a moins qu’on préfere
adopter un dispositif de réglage. Grace a une méthode d’assujetissement il est facile
de procéder a ce calcul pourvu que I’on connaisse les efforts extérieurs de premiére
approximation, les caractéristiques du terrain en place, en particulier ses coefficients
de compressibilité verticale et horizontale.

Il est bien entendu que ces coefficients peuvent varier avec le temps et que les déter-
minations sur place ne doivent pas uniquement concerner des résultats instantanés.

Nous voyons l1a un nouvel exemple d’association entre le bureau d’études, le
chantier et le laboratoire, en vue d’une construction rationnelle.

CALCUL DE CORRECTION EN VUE DE TENIR COMPTE DES ROTATIONS Awo ET Awl AUX
NAISSANCES D’UN ARC ENCASTRE

M. Chambaud a publié en 1941 une importante €tude intitulée: ““Le rdle des
théories élastiques du second ordre dans le calcul des ponts en arcs de grande portée.”
Elle avait pour but la recherche, dans les grands ouvrages, des efforts secondaires
provenant des déplacements de la fibre moyenne. Il a supposé les appuis immuables.
La méthode de calcul que nous allons exposer pour les arcs encastrés dérive en somme
du méme souci, mais ne concerne que I'influence des déplacements généralement tres
faibles de ces appuis sur la valeur des réactions. Elle est généralisable.

Soit que I’on se contente d’une évaluation des déplacements W,,, W, et W5, soit
que I’on ait évalué approximativement les déplacements linéaires des massifs extrémes
Ax,, dyy, dx,, 4y, et les déplacements angulaires dwy, dw; généralement plus im-
portants que les déplacements w, on peut alors évaluer I'importance des contraintes
secondaires dues a ces six déplacements. Les déplacements 4y, et 4y, n’auraient
généralement pas d’importance pratique. Les déplacements 4x, et 4x; donneraient
lieu a un calcul identique a celui de I’effet d’un refroidissement, ou du retrait d’en-
semble, probléme classique généralement aisé a résoudre. Restent les déplacements
angulaires, d’ailleurs tres faibles, des sections d’encastrement: G, et Gj. '

Pour effectuer le calcul des réactions secondaires, nous imaginerons un arc de
méme définition que le précédent et chargé identiquement mais dont les naissances
Gy et G, sont articulées. On commencera par calculer les angles de rotation aux
naissances £2;, et £2; de cet arc sous I’influence des charges et surcharges supportées par
I’arc encastré. Puis, on assujetira ’arc articulé a ’action de deux moments arbitraires
M, et M, appliqués aux naissances pour ramener £, a dw, et £2; a dw,;. On déter-
minera les coefficients‘a et B fournissant les rotations en Gy et G; dues aux moments
MO et Ml'

On aura, dans le cas d’un arc symétrique les valeurs de M, et M, grice aux
relations: :

Moo+ M\ B+(£2p—dwg)=0
MO,B‘I‘M](X_(Q[_AU)]):O

S’il n’ya pas de symétrie, il y a quatre coefficients «, o', 8, 8’ & déterminer aussi

simplement.
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Si M et MM, désignent les moments correspondants a I’encastrement parfait de
I’arc étudié, les moments correctifs seront (eMy— M) et (M —M,).

Les réactions verticales secondaires sont obtenues sans difficultés ainsi que la
poussée secondaire qui est la différence entre la poussée théorique de I'arc
encastré et celle de I’arc articulé soumis aux moments M, appliqué en G,, et M,
appliquée en G, ainsi qu’a tous les efforts de charge et de surcharge agissant sur I’arc
encastre.

Pour fixer les idées, nous avons considéré 'un des deux arcs encastrés du pont
faisant I’objet de la figure 16. Avec les indications numenques contenues dans la
figure, un premier calcul donne:

Poussée de I’arc encastré: . 4875 tonnes (appliquée en Gy)
Réactions verticales en Gy et Gy: 2600 tonnes
Moments en Gy et Gy . .+1659 t-m.
2
La rotation d’appui arbitrairement choisie a été en Gy : dwy=(—=— 1000 et en

2
G;: Aw1=—m), elles sont faibles.

Arc articulé correspondant, poussée: 4781 tonnes

Réactions verticales: . ) . 2600 tonnes
. . - 32
Rotation des appuis: 20X ( —— I OOO Q= I—OTOD

32 4 .
Les va-leurs des moments M, et M, réduisent cette rotation de 1000 a— 1000° soit:

32—-2
=+41659 x 3 =1556 tonnes.
1659 x 2
Moment secondaire : e7l/.fo—Mo=T= —103,60 t-m.

Le moment d’appui a retenir est donc: +1555,40 t-m. au lieu de 1659 t-m.

Les réactions verticales secondaires sont nulles a cause de la symétrie et un calcul
facile nous donne a partir des angles (£2y—dwy) et (2, —A4w,) la valeur de la réaction
horizontale a retenir. Elle est donnée par I’égalité.

Q0=4781 tonnes+0,0285 (My—M,)=4781 tonnes+0,057 M,=4869,70 tonnes
au lieu de 4875 tonnes.

MESURES POUVANT ETRE EFFECTUEES SUR LES APPUIS DES GRANDS OUVRAGES, MODIFICA-
TION ET REGLAGE DE CEUX-CI

L’influence appréciable de I'imperfection de ’encastrement de flexion pour les
portées importantes fait penser qu’il y aurait intérét a vérifier la tenue des appuis des
grands ouvrages encastrés, qu’il s’agisse de barrages, de vofites de tunnels ou de ponts.
Ces vérifications opérées a intervalles réguliers et avec des surcharges parfaitement
connues seraient surtout utiles au début du fonctionnement des structures. Elles
donneraient des précisions sur la variation des conditions d’appui avec le temps, et
du méme coup, on aurait le plus souvent sans difficultés, la répartition exacte des con-
traintes entre appuis.

On dispose de clinométres trés précis et de témoins sonores, noyés ou extérieurs
insensibles & I’humidité ambiante et fournissant, compte tenu de la variation de tem-
pérature des fréquences traduisant avec fidélité et 4 n’importe quel moment les dé-
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formations des régions auscultées. La récente mise au point de ’auscultation sonore
par les ingénieurs de 'L T.B.T.P. permettrait d’avoir & tout moment la mesure du
module élastique du béton ou de la magonnerie en place.

Nous croyons d’ailleurs que I’auscultation méthodique des grands ouvrages per-
mettrait de rédiger des notes de calcul a posteriori plus convaincantes et plus pré-
cieuses que celles que I’on exige ordinairement des bureaux d’études.

Une autre idée qui se présente a I'esprit, c’est celle de 'amélioration des appuis
existants par les procédés de synthése statigue qui, comme la précontrainte mais d’une
fagon plus générale marque la trace de la volonté de I'ingénieur sur la tenue des con- .
structions. Nous avons pour cela a notre disposition des boucliers de butée, des
dalles sur pieux ou pendules droits ou inclinés, des ancrages du type Coyne et des
vérins plats du type Freyssinet.

Ces diverses sortes de dispositifs utilisés isolément ou associés entre eux per-
mettraient de modifier d’une fagon arb1tra1re les déplacements d’appui et, partant,
les réactions correspondantes.

On peut d’ailleurs stabiliser les efforts malgré de faibles variations élastiques ou
plastiques, des cdbles ou des terrains, grice a I’emploi de tensiostats (lire: “Les ten-
siostats et leur application a la synthese statique”).*

On peut enfin envisager un troisiéme parti comme variante du précédent, celui de
construire les appuis pour en rendre le réglage trés facile sans ancrages ni butées.

Résumé

Partant de formules déduites de celles de Boussinesq et Flament qui concernent
I’action de charges ponctuelles sur le plan limitant un solide indéfini, on passe a
I’étude des déplacements du plan limite dans la région d’encastrement d’une piéce
prismatique qui est solidaire du solide indéfini et aboutit perpendiculairement au plan
qui le limite.

Ce calcul conduit a une contradiction et celle-ci ne peut étre réduite que par la
méthode expérimentale.

Apres avoir rappelé les résultats des essais de M. Tésar (1936) et de MM. kavre et
Bereuter (1944) on déduit des expériences démonstratives sur un modeéle en caoutchouc.

Ensuite on expose les résultats des essais d’encastrement de flexion pure entrepris
au laboratoire de la S.N.C.F. sur mod¢les en plexiglass soumis a la lumiére polarisée.

L’analyse de ces résultats montre I'insuffisance localisée des regles de la résistance
des matériaux. Il conduit a la notion de pole d’encastrement et a 1’étude de 'influence
d’une z6ne de transition située entre la section normale du pdle et le plan limite. Le
role des congés circulaires et I'influence de leur rayon sur llmportance de la zOne
critique a été mis en évidence et chiffré.

Les renseignements recueillis ont permis de décrire [’évolution plastique jusqu’a
la rupture des encastrements de flexion pour le béton peu ou abondamment armé et
pour I’acier doux.

Apres avoir trés rapidement passé en revue divers types courants d’encastrements,
on étudie le travail d’encastrement et I’on donne une définition de I’encastrement par-
fait a la flexion. Enongant une proposition de symétrie on en tire une conclusion
pratique pour I’étude sur modele des dispositifs d’encastrement des structures planes.
On propose ensuite un critére de vibration sur modéle ou sur ’ouvrage pour juger de
la valeur des encastrements d’appui.

On examine ensuite les causes de déplacement d’appuis d’encastrement dans les

* Techmque Moderne—Construction, juin, 1949.
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constructions (dalles, axes ou coquilles) et ’on propose une méthode de calcul pour
tenir compte des rotations aux appuis des arcs ou des poutres encastrés.

On envisage enfin ’examen, le contrdle, 'amélioration éventuelle et le réglage des
appuis d’encastrement pour les grandes constructions.

L’exposé ne concerne pas d’applications étrangéres aux travaux publics et les
encastrements de torsions n’ont pas été étudiés.

Summary

The author starts with equations derived from the formulae of Boussinesq and
Flament regarding the influence of a point load acting on the boundary plane of a
semi-infinite area. He investigates the effect on its surroundings of a prismatic,
rectangular body fixed in this semi-infinite area at right angles to its boundary plane.
The calculations lead to a contradiction which can only be solved by tests.

After mentioning the results of the tests of Tésar (1936), Prof. Dr. Favre and
Dr. Bereuter (1944), investigations made on a rubber model are described. These
tests alone were of instructive and demonstrative significance.

Next, the results are given of tests carried out with polarised light on models of
plexiglas in the laboratory of the S.N.C.F. The conclusions drawn from these results
lead to the conception of the *‘ fixing pole’” and to the consideration of the influence
of a transition zone. The importance of radii and of the influence of the dimensions
of the radii on the size of the critical zone is emphasised and explained.

The experience collected has made it possible to describe the plasticity up to rup-
ture of reinforced concrete and steel.

After mentioning current practice for fixed-ended beams, the author investigates
the fixing effort and gives a definition of perfect fixing for bending.

He thereby comes to a conclusion, from which he gives useful directions for model
tests with fixed foundations and abutments. Further, he suggests the adoption of a
vibration criterion for forming a judgment on the value of fixed supports. .

In addition, the causes of the displacements of housings and abutments are
investigated, a simple method of calculation being given for considering the slight
twisting occurring at the end points of fixed arches.

Finally, the inspection, any necessary lmprovement and the regulating of fixed
supports of big structures are dealt with.

The paper considers only applications in the field of structural engineering.
Various extensions of the investigation are possible which are not discussed here.

Zusammenfassung

Der Verfasser geht von Gleichungen aus, die aus den Formeln von Boussinesq und
Flament iiber den Einfluss einer punktférmigen, auf die Begrenzungsebene des Halb-
raumes wirkenden Belastung abgeleitet sind. Er untersucht die Wirkung eines
prismatischen, rechteckigen, senkrecht zur Begrenzungsebene des Halbraumes in
diesen eingespannten Korpers auf seine Umgebung. Die Berechnungen fiihren zu
einem Widerspruch, der nur durch Versuche gelost werden kann.

Nach Erwidhnung der Ergebnisse der Versuche von Tésar (1936), Prof. Dr. Favre
und Dr. Bereuter (1944) werden Untersuchungen an einem Modell aus Gummi
beschrieben. Diese Untersuchungen waren einzig von instruktiver und demon-
strativer Bedeutung.

Es werden darauf die Resultate von Versuchen angegeben, die im Laboratorium
der S.N.C.F. an Modellen aus Plexiglas durch Priifung mit polarisiertem Licht
durchgefiihrt wurden. Die Schlussfolgerungen aus diesen Resultaten fithren zum
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Begriff des “Einspannungspols” und zur Betrachtung des Einflusses einer Ueber-
gangszone. Die Bedeutung der Ausrundungen und des Einflusses ihres Radius auf
die Grosse der kritischen Zone wurde hervorgehoben und abgeklirt.

Die gesammelten Erfahrungen haben die Beschreibung der Plastifizierung bis zum
Bruch unter Biegeeinspannung fiir Eisenbeton und Stahl ermoglicht. '

Nach Erwidhnung verschiedener geldufiger Ausfithrungen von Einspannungen
untersucht der Verfasser die Einspannungsarbeit und gibt eine Definition der vollkom-
menen Einspannung bei Biegung.

Er kommt damit zu einem im {ibrigen ziemlich offensichtlichen Schluss, aus dem er
eine fiir Modellversuche mit Einspann-Fundamenten und Widerlagern niitzliche
Folgerung zieht. Er schligt weiter die Anwendung eines Vibrations-Kriteriums zur
Beurteilung des Einspanngrades vor.

Es werden zudem die Ursachen der Verschiebungen von Einspannstellen und
Widerlager untersucht, wobei eine einfache Berechnungsmethode zur Beriicksichti-
gung der an den Endpunkten der eingespannten Bogen auftretenden kleinen Ver-
drehungen angegeben wird.

Schliesslich wird noch die Kontrolle, ev. Verbesserung und Regulierung einge-
spannter Auflager grosser Bauwerke behandelt.

Der Artikel umfasst nur Anwendungen auf dem Gebiete des Bauingenieurwesens.
Es sind verschiedene Erweiterungen der Untersuchung moglich, die hier aber nicht
erortert worden sind.
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EXPERIMENTAL AND ANALYTICAL METHODS OF DESIGN

When considering the experimental method of structural design, the problem
arises of knowing its position in relation to the analytical methods of the Theory of
Elasticity and Strength of Materials. These methods sum up the knowledge on the
behaviour of solid bodies subject to loadings which could be interpreted and expressed
quantitatively, that is, dealt with theoretically.

The analytical methods of design, like all physical theories, have the great advan-
tage of providing knowledge of all the phenomena in a given domain. A theory fills
the gaps existing in the knowledge of the isolated cases which led to its creation; it
even permits the observed phenomena to be surpassed to an extent which reveals the
audacity of the theory.

Thus, the bending theory of Strength of Materials, which has been of so great a
service to mankind, both in relation to safety of structures as well as to economy of
materials, has allowed the prediction of the behaviour of a very large number of
structural members which had never been observed before, as regards either materials,
shape, dimensions or loading.

In contrast with the analytical methods, the experimental methods provide know-
ledge about isolated cases, since each structure to be studied requires the construction
and observation of a model. This does not strictly hold, since there is always, at
least qualitatively, an application of theory to the phenomena which permits the
behaviour of structures not very different from others previously studied to be
foreseen.

With regard to analytical methods, the question which arises is as follows: do
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they permit, in their present status, the behaviour of structures to be foreseen with
the accuracy demanded in practical engineering ?

The analytical methods give results applicable to solids of given shapes and sub-

mitted to certain loadings. Besides this, except in a very few cases, they are established
on the assumption that the materials are homogeneous, isotropic, and obey Hooke’s
law. Since they are theories, they are open to the possibility of being applied beyond
the field for which they were established, which will result in a loss of accuracy, and
extremely unreliable results may even be obtained.
- Thus, with regard to the shape of structures, which are of an infinite variety, the
designer constantly applies theories to solids of shapes very. different from those for
“which they were established. Besides this, he divides the structure in parts whose
reciprocal reactions he at times ignores and at other times fixes arbitrarily, considering
them as hinged, built in, etc. :

With regard to loadings, it is also very often necessary to make considerable
simplifications so as to convert the real loadings into others the effect of which can be
calculated.

It was mentioned that the analytical methods are in general developed in the
hypothesis that the materials obey Hooke’s law. In the concept of safety which is
generally followed today, by which, for given loadings, known as working loadings,
the stresses developed should not exceed the safety stresses, this hypothesis has not,
as a general rule, an important effect on the results of the calculations compared with
that derived from the simplification of the shapes and of the loadings. This is
because with common building materials the curvature of the stress—strain diagrams,
up to values of stresses generally adopted as safe stresses, is small. Also up to these
stresses the creep of the materials does not often influence the stress distribution to a
degree which need be taken into consideration.

However, either in the application of the probabilistic concept of safety, at present
awakening great interest, - 2 or of the concept of safety in relation to failure, which is
already frequently applied, the hypothesis of the materials following Hooke’s law
takes all the value from nearly all the existing analytical methods of design.

In fact, within the probabilistic concept it is necessary to predict the behaviour of
structures for all possible intensities of loading, even for those which are not very
probable, for which the structures may suffer deformations which go far beyond the
elastic range or even suffer failures. The dimensions to be chosen for a structure are
those which minimise the sum of the initial cost of the structure and the cost of main-
tenance; in the latter there should be included the repair expenses due to the action of
loadings of great magnitude, and also the expenses due to any damage, such as exces-

-sive deformations, personal accidents, etc.

For the application of the concept of safety with regard to failure it is only neces-
sary to determine the magnitude of the loadings which cause failure.

It can safely be said that the possibilities of the analytical methods are very limited
in relation to the behaviour of structures for great deformations. This results from
the great analytical difficulties which arise when non-linear relations between strain
and stress have to be considered; the situation is made worse by the need to consider
simultaneously the dependence of the phenomena on time.

It was just the difficulty of establishing non-linear theories associated with the fact

“that the structures suffer, in general, deformations too great for their use when the
elastic range is well passed, which led to the deficient concept of safety based on the
consideration of working loads.

1 For references see end of paper.
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As the designer, up to a few decades ago, besides the knowledge of the behaviour
of similar structures and his intuition, only had at his disposition analytical methods,
he had to establish the necessary hypotheses, however extraordinary they may have
been, so that the problems he had to solve fell within the theories at his disposal,
having at times to choose, not the most convenient solutions, but those which could
be handled by those methods.

This situation, with the difficulty of comparing the predictions of the analytical
methods, especially with regard to the values of strains and stresses, and the real
behaviour of the structures, has led to an excessive confidence in the precision of those
methods, and even to a certain conventionalism in their application.

The progressive improvement of the techniques for measuring strains and stresses
and the appearance of new materials suitable for building models have led to a great
development of the experimental method of structural design, especially in the last
decade.

When the analytical methods are not satisfactory, it is in general possible to predict
with the necessary accuracy and within reasonable time and expense the behaviour of
structures by the use of models.3

In the following paragraphs the similarity conditions which the models should
satisfy are presented briefly.

MECHANICAL SIMILARITY

(a) Models made from the same materials_as the prototype

" Let us consider a prototype (fig. 1) made from any materials, homogeneous or
heterogeneous, isotropic or non-isotropic, which, for the loadings applied, do not
obey Hooke’s law. Suppose that the prototype is in static equilibrium under the
action of surface forces F'p, F”p, . . . (generally represented by F}), and of the reactions
of supports, fixed or movable, R',, R"p, . . . (generally represented by R)).

Fig. 1

Let us build a model geometrically similar to the scale of 1/A, made from the same
materials as the prototype, bound in the same way, and supported by homologous
supports of the same type. ~Subject it to homologous forces, F,,, to a scale of 1/A2,
F,,=F,/X?, so that the surface stresses, f,, equal the homologous stresses of the

prototype, fo, fn=/p. _
It can be shown that the displacements of homologous points of the prototype
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and of the model, 8, and 3, the strains of homologous segments, ¢, and ¢,,, and the
stresses in homologous elemental surfaces, 7, and #,,, are related by.
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whatever may be the deformation, even if failures take place, either for stable or
unstable equilibriums. The reactions of the supports of the model are given by
R,,=R,/A2, that is, the homologous reaction stresses, r, and r,, are equal, r,,=r,.

It has been said that the supports would have to be of the same type; that is, for
fixed supports, either hinged or built in, there would have to correspond fixed supports
of the same type, and for supports which suffer displacement there would have to
correspond suppoits such that their displacements, under the loading R,,= R,/A2, or
rm=rp, would be 1/A of the displacements suffered by the supports of the prototype
when submitted to the action of R, or r,.

It is obvious that the similarity condition presented demands that the initial states
of strain and stress of the model be the same as in the prototype.

As for body forces, such as the weight, similarity does not exist unless steps be
taken to convert the homologous body forces to a scale of 1/A2, that is, in the case of
the weight, the equivalent of multiplying the specific weights of the materials of the
model by A. For this purpose appropriate forces may be applied to the model or it
may be subject to a rotation which produces convenient centrifugal forces.

Also in the case of dynamical equilibriums there is not similarity even when the
surface forces only are considered.

As to the effects of loads which tend to produce change in volume, such as tem-
perature or contraction in the case of concrete, the relations (1) hold as long as the
unit volume change is the same, which implies, in the case of temperature, subjecting
the model to variations of temperature equal to those suffered by the homologous
points of the prototype.

The similarity conditions presented so far demand that it be assumed that if the
elements of volume of a model are subject to the same state of stress (in general
varying with time) as the homologous elements of the prototype, the state of strain
will also be the same even for strains in the neighbourhood of failure. The state of
stress of the model being the same as that of the prototype, two homologous points
are immersed in media whose states of stress are analogous but where the stress
gradient, in any direction, is A times greater in the model.

Hence the conclusions presented were derived on the assumption that the relation
between strain and stress of an element of volume does not depend on the stress
gradient which exists around this element. In the case of solids in elastic deformation,
the Theory of Elasticity even admits the hypothesis, which has been amply verified,
that the relation between strain and stress of an element of volume does not depend
on the state of stress around the element.

However, it is conceivable when leaving the elastic range, especially when dealing
with ductile materials, that that relation depends on the state of stress which exists
around the element of volume, and that it may vary even when only the gradient of
the state of stress varies.

The experimental verification of the influence of stress gradient has frequently led
to results which do not agree. In the case of steel, which has been the material most
studied, the results which show the existence of this influence are more numerous.% 3



EXPERIMENTAL STRUCTURAL DESIGN 333

It should be noted, however, that the influence of the stress gradient on the
similarity relations will only be important in the case of very large strains and of scale
values under certain limits, the equilibrium studied and the degree of accuracy required
for the model study having to be taken into account.

Another objection to the conclusions presented results from the consideration of
the influence of the volume on the probability of failure,® which has been observed in
brittle materials? and in the brittle rupture of ductile materials 8 subject to tensile
stresses. The mean tensile strength varies with the volume of the piece, a reduction
occurring when volume increases.

Hence when wishing to study models in which failures are produced by tension it
may be necessary to take this effect into consideration, especially as there exists the
possibility of the results not being on the side of safety. But, as in the majority of
cases the structures built from brittle materials are designed in such a way that tensile
failures do not expose them to risk, the objection which has just been raised is not of
great significance.

In an¥ case, to verify if there does exist any influence due to the scale and what the
influence would be, observations can be made on models of different scales and com-
parison of the results made by means of the expressions (1).

Except for special cases, we think that those influences of the stress gradient and
volume do not limit the conclusions arrived at with regard to similarity to the point
of having practical interest.

(b) Models made from materials different from those of the prototype 3

It often happens, as will be seen later, that it is not possible or even convenient
to make the models from the same materials as the prototype.

Consider the general case of the prototype of fig. 1 built from any materials.
Let ¢, be the extensions undergone by an elemental parallelepiped of any of the
materials when subject at its surface to the stresses 7, in equilibrium.

In a geometrically similar model, in order to observe displacements, strains and
stresses proportional to the homologous ones of the prototype, it is necessary, in the
first place, that the materials of the model be such that when an elemental parallel-
epiped is subject to stresses #,,=1,/a, the strains developed be ¢,,=¢,/B, o« and B being
constants. When the creep of the materials has to be taken into consideration, if the
stresses #, be reached at the time 6, the stresses 7,, will have to be reached at the time
0,,=0/7, 7 being a constant. Therefore, for the materials of the model there will have
to be scales for stresses 1/a, for strains 1/8, and for time 1/7.

The condition which we have just stated implies that, for any of the materials of
the model, the uni-axial loading o (tension, compression) curve as a function of the
strain € (fig. 2) be obtained from the curve of the homologous material of the
prototype by multiplying the ordinates and abscissae, respectively, by 1/« and 1/8,
that is to say, by a change of scales of the axes. When it is necessary to take the creep
of the materials into consideration this relation between the diagrams has to be veri-
fied whichever way the stresses applied to the prototype material change with time;
as was seen, the stresses of the model material can be applied according to a certain
scale of time.

The above-mentioned relation between the uni-axial loading diagrams is not suffi-
cient to verify the general condition stated before, which refers to any loading.
However, it is sufficient that in the majority of cases this relation holds to allow us to
assume, with sufficient accuracy, that the materials of the model satisfy the general
condition. Besides this, it should be noted that in the case where it is not demanded
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‘that the relation holds up to failure, it is sufficient that the development of the curves

be similar to be able to determine the factors 1/ and 1/8 with reasonable accuracy.
If it is desired to foresee the behaviour of the prototype even after failures have

appeared, the materials of the model should satisfy the condition stated, even for
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stresses which bring about failure of the parallelepiped. It will be necessary there-
fore that in the curves of fig. 2 the ultimate strengths of homologous materials be in
the relation of 1/« and that they correspond to strains in the relation of 1/8.

Conditions have so far been considered which should be satisfied by the materials
of the model. In the case of the prototype being submitted to surface forces F, in
static equilibrium, if homologous forces F,,=F,/A2x, that is, stresses f,=fp/et, be
applied to the model of scale 1/A at homologous times, the relations
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are verified in homologous times provided that the displacements are small,

The model has to be supported on homologous supports of the same type. To
the supports of the prototype with displacement there will have to correspond supports
such that under the action of forces R,,=R,/A2x or r,=rp/a, they will undergo dis-
placements 1/A8 of those undergone by the homologous supports of the prototype
when subject to R, or r,.

In the case of 1/8=1, that is, of a parallelepiped of any of the materials of the
model having the same strains as a parallelepiped of the homologous materials of
the prototype for the loading #,=1,/x, the relations (2) hold even for large displace-
ments. It is possible then to study by models equilibriums in which phenomena of
instability appear, the scale of 1/A2« being that of critical homologous loads.
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In the general case of the prototype in dynamical equilibrium under the action of
surface forces and body forces, especially the weight, in order that the relations (2)
should hold for homologous times, it is necessary that, besides the surface forces
satisfying the relation F,,=F,/A%x, or f,,=/,/«, the following relations should hold:

1 A
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where 1/p=d,/dp, d» and d, being the specific weights of the materials of the model
and prototype respectively. In general it is not possible to satisfy all these conditions.

When dealing with vibrations, the scale of the homologous periods of vibration is
given by (4).

In the particular case where the effects of weight are negligible, it will only be
necessary to verify relation (4). If, besides this, it is not necessary to take the effects
of creep into consideration, then the material does not demand a time scale, from
which it results that for each value of the scale of the model there is one value of the
time scale.

In the case of static equilibriums in which the effect of weight has to be considered,
it will only be necessary to verify the condition (3). For the current values of the
scales this condition demands that the model materials have high specific weight and
high deformability.

With regard to the effects of the temperature and other loads whlch tend to produce
changes in volume, the relations (2) hold provided that the model is subject to tem-
perature changes 4,, given by

A,,,:%A,,

where 4, is the temperature change at the homologous point of the prototype and 1/X
is the scale of the coefficients of thermal expansion.

All the conclusions presented are obviously subject to the same objections pre-
sented in section (a).

(c) Prototype under elastic deformation
Consider a prototype made up of various elastic materials with moduli of elasticity

E'y, E”,, . . ., and Poisson’s ratios v'p, vp, . . . From the results presented in (b)
it is concluded that for similarity to exist it is necessary that a geometrically similar
model be made of elastic materials whose homologous constants £, Ep, . . .,
and v'p, v'm, . . ., satisfy the relations .
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where 1/u is the scale of the moduli of elasticity. Since the influence of Poisson’s
ratio on the states of stress and strain is often negligible, the conditions of equality
for these ratios may often be ignored. In this case if the prototype be made of only
one material it is sufficient that the model material be elastic.

When the prototype is only submitted to the action of surface forces, the scale
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of these forces 1/¢, may be given any value, provided that the elastic limit is not sur-
passed, the relations (2) taking the form
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on the condition that the displacements be small and the model be supported in a way
analogous to that of the prototype. To the supports with displacement have to
correspond supports which undergo displacements to the scale uA/é, when subject
to reactions R,=R,/¢ or r,=2A%r,/¢. :

When it is assumed that the materials of the prototype and of the model follow
Hooke’s law up to failure, in order to be able to study the effects of loads which
- produce failures, it is necessary that the ultimate stresses, o, and o, satisfy the
conditions (6,m/p) rension =(Om/0p) compression =A%/¢ which fix the value of the scale
of forces. In the case of studies in which failures occur, since the superposition of the
effects of loads does not hold, it is generally necessary to apply all the loads
simultaneously.

In the case of large displacements, the conclusions arrived at in this section hold
as long as the scale of forces be

1
Fa= =% ~—F, or fu= f,,
and the relations (5) will take the form
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We thus see that the model has to remain geometrically similar to the prototype
after deformation.

Phenomena of instability can then be studied on models, the critical homologous
loads being to the scale of 1/A2u.

In the more general case of the prototype being in dynamic equilibrium under the
action of surface and body forces, especially the weight, it is necessary that the materials
of the model satisfy the conditions stated and also that

l_l
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That is, once the scale 1/A and the materials of the prototype and the model have been
defined, the values of the force and time scales are fixed; the homologous forces have
then to be applied at times to the scale of 1/r. The relations (5) will hold when the
model, supported in a manner similar to the prototype, starts from a position in which
the displacements are to the scale of uA/¢ and the velocities to the scale of pir/é.
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When dealing with vibrations, 1/r is the scale of the homologous periods of
vibration.

In the particular case when it is not necessary to consider the weight, only the time
scale will be fixed. Once the force scale has been fixed, the first of the relations (5)
fixes the scale of displacements, and hence also the initial position of the model, from
which the velocities, to the scale already referred to, have to be applied.

In the case of static equilibriums where the effect of surface forces and weight have
to be taken into consideration simultaneously, the first relation of (6) will have to
be verified.

For the common scales of the models it is often difficult to study the effect of
weight due to the low value of the strains. Hence at times recourse is taken to the
methods already mentioned, equivalent to increasing the specific weight.

(d) Elastic equilibrium in two dimensions and equilibrium of structures consisting of bars

The Theory of Elasticity shows that in a homogeneous plate in two-dimensional
elastic equilibrium, the state of stress does not depend on Poisson’s ratio, unless the
plate has holes, and that in the boundary of each hole or in the outer boundary of the
plate, forces act whose resultant is not equivalent to zero or to a couple.

Hence the conditions referred to in the section (c) for the model material are sim-
plified in the present case; for the determination of the state of stress it is sufficient
that the material of the model be elastic.

When the materials of the prototype and the model have different values for
Poisson’s ratio, the homologous strains and displacements are not proportional.
Therefore, when there are statically indeterminate supports, even the proportionality
of the stresses ceases to hold.

For the same reason if the plate be made of different elastic materials there will
only be similarity when the homologous Poisson’s ratios are equal.

If a plate is subject to body forces acting in its plane, the state of stress is still in
general independent of Poisson’s ratio when the body forces are of constant intensity,
which condition is satisfied by the weight.

In two-dimensional equilibriums it is easy, in view of the small thickness of the
plate, to apply to the model complementary forces equivalent to the increase of specific
weight.

By the use of Biot’s analogy it is possible to determine the effect of weight and in
general the effect of body forces, substituting these forces: for forces acting in the
boundary of the plate.? '

If the plate is subject to variations of temperature or other causes of change in
volume, as it is necessary to introduce conditions relative to the strains, in order to
have similarity it is necessary that v, =v,.

It should be noticed that in the cases mentioned in which the state of stress depends
on Poisson’s ratio, the influence of this ratio is generally small and in the majority of
cases may be ignored.

In solids subject to plane strain the determination of stresses can be easily made
from a plate in two-dimensional equiibrium, which frequently has a considerable
practical interest.

Finally, consider the case of structures consisting of straight or curved bars
existing, or not, in a plane.

Within the simplifying hypotheses of the Strength of Materials it is generally
possible to analyse these structures on models in which the cross-sections of the bars
are not geometrically similar to those of the prototype.3 This possibility has great

C.R.—22
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practical interest, as it permits the substitution of the shapes of these sections, often
very complex, for others easier to reproduce in the models.

When models whose sections are not geometrically similar are used, proportion-
ality can only hold between homologous shearing forces, normal forces, and bending
moments.

In the particular case of plane structures consisting of bars in static equilibrium
under the action of forces acting in their plane, for such a proportionality to exist it
is in general sufficient that, along all the bars, the moments of inertia /, and 7, of the
homologous cross-sections of the prototype and of the model be proportional,
Inllb=1]C.

This permits the construction of models with rectangular sections of constant
thickness, which greatly simplifies the construction of models.

The forces may be applied at any scale, 1/¢, which will be the scale of the shearing
and normal forces developed; 1/A¢ will be the scale of the moments, denoting now by
1/A the scale of the axes of the bars.

In the dynamic equilibriums under the actions of surface forces and of the weight
it is in general sufficient that, besides the mentioned proportionality between the
moments of inertia, the areas S, and S,, of the homologous cross-sections be propor-
tional, S,,/S,=1/C,, the constant C, being of any value. The scale of the applied
forces and of the time must have the values : '

1.1
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The model should start from a position in which the displacements are to the scale
Cu/A3¢ and the velocities of the scale 7Cu/A3¢. When the weight can be neglected
the forces scale can assume any value.

CONSTRUCTION OF THE MODELS

Mechanical similarity, as has just been seen, requires certain conditions in the
models with regard to shape, materials and loadings. Let us see what are the possibil-
ities to fulfil these conditions.

(a) Scales

Except in special cases similarity demands that the models be geometrically similar
to the prototype, but without fixing the scale value.

A scale near unity has the advantage of permitting the reproduction in the model
of the characteristics of the prototype, such as shapes, joints between parts, residual
stresses, etc.

However, in the case of large structures, which are the most common in civil
engineering, such a scale cannot generally be adopted, both for economic reasons and
the time needed for the construction of the models. Furthermore the application of
loads in large models demands very expensive equipment, and the observations,
besides taking a lot of time, are more difficult and less accurate, especially if they have
to be made in the open air.

The reduction of the scale is accompanied in general by economy, rapidity and
ease of model studies. In the majority of cases these factors vary greatly with the
change in scale.
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On the other hand, the smaller the scale the greater is the difficulty of reproducing
the shapes. As a rule, however, it is possible to simplify the shapes considerably,
either by omitting some details or by replacing parts for others of a convenient deform-
ability, without prejudicing the precision of the results. In the case of structures of
large dimensions with simple shapes, at times scales of about 1/500 are adopted.

In fixing the minimum possible scale it is necessary to bear in mind:

the smallest parts to be reproduced in the model, which should not be so
small as to make their construction and observation difficult;

the accuracy with which it is possible to set up the equipment for applying
forces and other loading;

the accuracy, dimensions and way of placing -the measuring apparatus,
especially the magnitude of the bases of the extensometers in view of the
gradients of strains which are anticipated.

(b) Materials

The materials chosen for construction of models should, in a general way, obey
the following conditions:

have the mechanical properties demanded by similarity which should not be
appreciably affected by the common ambient variations of temperature and
humidity;

be easily worked and joined;

have such deformability that, under the action of easily obtainable loading
intensities, the accuracy demanded for the measurement of displacements and
-strains be reached;

allow the measuring apparatus to be easily mounted either on the surface
as inside;

be economical.

When it is wished to study by a model the behaviour of a prototype in which
complex mechanical properties have to be taken into consideration, such as non-
linear relations between stresses and strains, non-reversible strains and creep, it should
be seen in the first place if it is possible to build the model with the same materials as
the prototype.

This is at times difficult even for scales that are not very small. Thus in the case
of models of structures of reinforced concrete the difficulty often arises of the aggre-
gate being too large; when using the same concrete for the model it may also be
necessary to take into consideration the variation of wall effect and rate of drying.
In metallic and in reinforced-concrete models, it is difficult to find on the market sec-
tions, plates and bars with the necessary dimensions and with the same properties as
those of the steels used in the construction. For this reason it is necessary at times to
make the sections specially from plates laminated to the appropriate thickness (fig. 3).
In reinforced-concrete models it is, in general, possible to substitute a single bar for
groups of bars and thus use commercial sizes.

The plates and bars of small dimensions which exist on the market are often
annealed, but it is as a general rule possible to give them properties analogous to
those of the steels of construction by stretching them.

It is,.however, possible to use materials in the models different from those of the
prototype. Thus for concrete structures it is easy to find mortars satisfying the
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Fig. 3. Part of a steel model to a scale of 1/6 of a high-voltage steel mast 33 m. high. Huggenberger
extensometers were used for strain measurements

Fig. 4. Reinforced-mortar model to a scale of 1/50 of a guide wall of a spillway dam. Used for
studying up to failure the forces exerted by the gates
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conditions stated (fig. 4); it is advisable that 1/« be small and 1/8 be great so as to
obtain, for small magnitudes of loading, deformations measurable with accuracy. In
the case of reinforced-concrete structures the steel should be replaced by a material
for which 1/« and 1/B8 have the same values as for the mortar.

When choosing a material for a model different from that of the prototype, it is
sufficient, in general, to verify if the similarity condition stated is satisfied in uni-axial
loading. Tests may also be carried out on pieces geometrically similar, made from
the materials of the prototype and the model, which are submitted to homologous
loadings to scale in order to determine if the relations (2) are satisfied. It is con-
venient, as is obvious, that the shapes of the pieces and the loadings be chosen to
obtain equilibriums analogous to those to be studied.

When the prototype is in elastic equilibrium there are many materials available
for the construction of models, among which can be mentioned celluloid, plastics,
plaster of Paris, metals and cork agglomerates.

In the choice of the material for a given case consideration should be given in the
first place to facility of construction. In the case of complex and curved shapes it is
convenient as a rule to make use of mouldable materials, such as plaster of Paris or
some plastics.

In the second place attention should be paid to the advantage of the material
having a high proportional limit and a low modulus of elasticity, to measure strains
accurately when applying small forces. The materials with these properties have, in
the majority of cases, an appreciable creep; however, in general, it can be assumed,

Fig. 5. Perspex model (laid horizontally), to the scale of 1/200, of a monument about 100 m. high
to be built in concrete. Electric strain gauges were used for both static and dynamic strain
measurements
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without affecting the accuracy, that the materials referred to above have a modulus
of elasticity which is a function of time when under the action of constant load; thus
the relations of similarity established for elastic materials will hold.

Of the materials mentioned the most used at present are plastics which together
with celluloid have the advantage of a high proportional limit, generally above 1%,
both in tension and compression. They are, also, easily workable.

Celluloid and the majority of plastics in use today, such as those known by the
trade names of perspex, plexiglas and lucite, which consist of polymethyl methacrylate,
and those known as bakelite, marblette and trolon, which are phenolformaldehydes,
have moduli of elasticity ranging from 15,000 to 45,000 kg./cm.2 Poisson’s ratio
varies between 0-30 and 0-40.

Celluloid and the three plastics first mentioned have the great advantage over the
other plastics of being easily glued (fig. 5).

Fig. 6. Alkathene model to a scale of 1/200 of a 35 m. high arch dam. The model was subjected
to mercury hydro-static pressure and the strains were measured by means of electric strain
gauges specially built for use on alkathene ’

Another plastic now used in the Laboratorio de Engenharia Civil (Lisbon) is
alkathene, a commercial name for a polythene. It has a very low modulus of
elasticity, about 2,000 kg./cm.2, and can be moulded at about 140° C. (fig. 6). This
plastic cannot be glued but the surfaces to be joined can be welded. This is done in
a way similar to the welding of metals, using a bar of alkathene and a jet of hot air.

The fact that alkathene can be welded, together with the great facility with which it
can be cut, even with wood working tools, permits the shapes of the models to be
modified at will in the search for the most convenient forms for the structure being
studied.

Another material mentioned, plaster of Paris, with which diatomite is often mixed,
has the advantage of being easily moulded and very economical (fig. 7).10- 11 It has,
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however, the grave inconvenience of being brittle and often develops invisible cracks
which can completely upset the field of stresses. Its mechanical properties vary
between wide limits with the water content and its humidity at the time of use. Its
modulus of elasticity may vary between 5,000 and 80,000 kg./cm.2, the lowest values

Fig. 7. Model to a scale of 1/300 of a 130 m. high arch dam and its foundations. It was built
from plaster diatomite mix and electric strain gauges were used for strain measurements

being obtained with the addition of diatomite. The strains at the proportional limit,
however, vary very little, having values of approximately 0-1 9, which at times upsets
the accuracy of the measurements of the deformations. Poisson’s ratio varies
between 0-15 and 0-25.

(c) Application of the loads

, Concentrated loads are easily applied to models by means of weights, jacks or
springs. As the values of the forces to be applied to produce the same deformation
diminish as the square of the scale, it is very convenient to use the lowest scale, since
the equipment for the application of the forces can become much more simple and
economical.

The distributed loads are at times substituted by concentrated forces, more or less
near each other according to the precision required and the space needed to be free
for observing the loaded surface.

When the distributed forces act normally to the loaded surface they can be applied
by means of fluids. When the intensity of these forces is very high, use can be made
of flexible cushions into which the fluid is introduced under the necessary pressure.

Referring to the determination of the effects of weight in models, it was mentioned
that in general it is necessary to use complementary forces or subject the model to a
rotation. The application of complementary forces does not present any difficulties
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when, as is common, dealing with structures with small thickness, since these forces
can be substituted by surface forces. However, when the forces have to be applied
to the interior of the models, the arrangements needed become very complicated ;12
the use of centrifugal forces is also not easy.

With alkathene it is already frequently possible to determine the effect of weight
on models of moderate dimensions.

The study on models of the effects of temperature presents two difficulties, the
application of given temperatures and the influence of these temperatures on the
measuring apparatus. For this reason very few studies have been made on this
aspect.13

OBSERVATIONS ON THE MODELS

To predict the behaviour of a structure by means of models implies, in a general
way, the determination of displacements, strains and stresses.

Following the common concept of safety, it is particularly important to determine
the stresses developed under the action of working loads, as it is from these stresses
that the structures are designed.

In the design in relation to failure it is only of essential interest to determine the
intensity ef the loadings which produce failure.

In design by the probabilistic concept there will be above all the need to measure
the displacements and the characteristics of the failures caused by the action of various
loadings with all possible intensities. From these measurements it will be possible
to evaluate the damage, such as that resulting from excessive deformation, the need
of repair, etc., which will occur in the prototype.

(a) Measurement of displacements, strains and stresses 14

The measurement of displacements in the models is carried out by means of
deflectometers with a sensibility of 1/10 and 1/100 mm. and, rarely, of 1/1,000 mm.

The measurement of strains is in the majority of cases the most important deter-
mination, as this permits the determination of the stresses once the relation between
strain and stress is known. For materials in elastic deformation it is sufficient to
know the modulus of elasticity and Poisson’s ratio.

The measurement of strains in models is made almost exclusively at points on the
surface. Measurements in the interior present besides the difficulties inherent in such
measurements, those originating in the reduced size of the models. However, as the
greatest strains and stresses appear in general at the surface, such difficulties are as a
rule of little importance.

Among the extensometers used in the measurements of strains on models, we
can mention the Huggenberger and Johansson mechanical extensometers. These
extensometers have a satisfactory accuracy on short bases, which, in general,
have to be used on models. The Johansson extensometers can be applied on
a base of 3 mm. Like all mechanical extensometers they only permit measure-
ments at the surface and they have the drawback of requiring, together with the
accessories, an excessive space; besides this they often require considerable time to
mount. )

The vibrating wire extensometer is also sometimes used.!! The minimum length
of the wires is about 2 cm., which at times is excessive; besides, the placing and obser-
vation of the wires is a prolonged operation. They permit, however, being read at a
distance, which is an advantage when there are inaccessible parts in the model or when

-
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the model is large. The wire extensometer is the most reliable for observations over
long periods.

Finally, electrical resistance extensometers!4 are, without doubt, the most appro-
priate for measurements on models and are almost exclusively used today. In fact,
they occupy least space and are the lightest, they are easily mounted without requiring
any accessories, and can be observed at a distance. The measuring bases can be of
any value above a few millimetres and their precision is satisfactory. Above all,
when, as is usual, it is necessary to determine a large number of strains, the electrical
gauges give results most rapidly and economically. The only inconvenience of the
electrical extensometers is their instability with time, though there are already some
types in which this inconvenience is reduced.

Fig. 8. Electric strain gauge inside a prism of a plastic. In a compressive test the values given
by this strain gauge were in full agreement with those placed on the surface

The electrical extensometers, due to their small dimensions, lend themselves to
the measurement of strains in the interior of models. In the case of mouldable
materials they can be placed in position at the time of moulding (fig. 8), and con-
veniently protected against humidity if necessary. With the appearance of the
electrical gauges it can be said that the difficulties in measuring strains in models have
almost ceased to exist.

The accuracy with which the extensometers measure the strains depends largely,
as is obvious, on the magnitude of the strains to be measured and on the experimental
conditions. All the extensometers referred to permit, as a general rule, measurements
to be made to within an error of de=10x 106,
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Assuming this value, the table below gives the approximate values of relative
errors within which the strains and stresses can be measured in materials most com-
monly used in model construction when they are strained to the proportional limit.
The influence of the error in the modulus of elasticity on the error in the stresses is
not considered, as in general it has no importance.

X Strains Relative error of the
Materials assumed strains and stresses
€ (%) defe (%)
Celluloid and plastics . 1 01
Plaster of Paris . 0-05 2
Mortars and concretes 0-02 5
Metals . 0-2 0-5

It can be seen that the strains and stresses can be obtained with an entirely satis-
factory accuracy. :

The determination of the isostatics, that is, of the principal directions on the
surface of models of celluloid, plastics and metals, can be made very easily, in view
of the great deformability of these materials, by the use of brittle coatings !4
(fig. 9). It is possible to obtain the appearance of cracks for strains of about 10—4.
The method is particularly advisable when dealing with models of complex shapes;
it can be applied in dynamic equilibriums. The knowledge of the isostatics has the
great advantage of permitting a reduction in the number of observations to be made
with the extensometers for determining the states of strain.

_ Fig. 9. Application of the brittle coating metho(;i to the determination of the isostatics in a spillway
guide wall
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Techniques for the application of the brittle coating method for the measurement
of the magnitude of the strains and stresses are being developed, and have already
reached some interesting results. The development of methods which may give
results over an area is of great interest as it avoids readings having to be taken at
various points, which is necessarily a prolonged operation, and the probability of
making errors is reduced.

When the relation between strain and stress is not linear and the creep has to be
considered, it is not generally possible to determine the stresses from the measurement
of strains.

Recently a property was brought to light !5 which permits the direct determination
of the stresses. This property is the following: if at a point in a solid made of any
" material, an elastic solid of small dimensions be introduced and intimately joined to
that solid, the stresses developed in the elastic solid only depend on the state of stress
in its neighbourhood as long as its modulus of elasticity be sufficiently small in relation
to that corresponding to the deformations of the surrounding solid. Thus by measur-
ing the stresses set up in the elastic solid, for example by means of its deformation
(fig. 10), it is possible to determine the state of stress in the solid made of any material.

Fig. 10. Small magneto-striction cells to be left inside models for direct stress measurements

(b) Photoelastic method

The determination of the stresses in two-dimensional elastic equilibriums can be
done by photoelasticity.16- 17 Compared with the general method of determining
the stresses from the measurements with extensometers, the photoelastic method has
the advantage of being more rapid and economical, and also reaching, in general,
greater accuracy. The fact that models with greatly reduced dimensions can be used
appreciably contributes to this economy. In the case of the study of high stress con-
centrations, this fact makes the use of this method very convenient, as the use of
extensometers in this case requires the use of large models.

The photoelastic method has the advantage of making observations all over an
area. The attempts to apply photoelasticity to three-dimensional equilibriums have
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not yet reached results of practical value. At present it is preferable to study such
equilibriums by leaving extensometers in the interior of mouldable models.

(c) Models of structures consisting of bars

The models of structures consisting of bars, which we will call briefly linear
structures, may be studied by using the general methods just referred to.

Before the appearance of electrical strain-gauges the measurement of strains was
made difficult by the extensometers and their accessories having excessive dimensions
and weight compared with the dimensions and rigidity which it is convenient to give
to the models of linear structures.

When the sections of the model are not geometrically similar to those of the profo-
type, the measurement of the strains permits the determination of the shearing and
normal forces and of the bending moments in the model, which can be transferred
to the prototype.

For the study of linear structures many special methods have been developed.
The methods most used are those which permit the determination of the influence
lines of the statically indeterminate forces (exterior and interior) from the reciprocity
theorem of Maxwell-Betti.18: 19 Obtaining the influence lines by this way has the
great advantage of avoiding the application of forces to the models, which is parti-
cularly important in the case of structures having a large number of members. In
spite of this determination of the influence lines being in principle possible for any
linear structure, the experimental difficulties have limited its application to structures
in plane equilibrium.

The various methods based on that theorem differ from each other in the mag-
nitude of displacements imposed on the model, in the technique of applying these
displacement and in the technique of the measurement of the displacements corres-
ponding to the forces whose effect it is desired to determine.

The methods which use large displacements have the advantage of making it
possible to observe directly the functioning of the structures, and to measure the
corresponding displacements easily. They have, however, the grave disadvantage of the
results being affected by the redistribution of stresses due to the large displacements
imposed; for this reason the methods today have little more than pedagogic value.

However, at times the inconvenience referred to is not important; thus in the case
of continuous beams, for the determination of the influence lines of the reactions of
the supports, these can be displaced even to one-fifth of the spans without errors of
more than a few per cent resulting. Itisin such a case a method to be recommended.

Of the methods based on the theorem of reciprocity, the one most employed is
that of Beggs,20 in which small displacements are imposed by means of a special
device and the measurement of corresponding displacements is made by means of
microscopes.

The application of this method is only advisable for the determination of the
influence lines corresponding to external indeterminate forces. In fact, for the deter-
minations corresponding to interior indeterminate forces in complex structures, which
are those requiring experimental study, there is not, in the majority of cases, room
enough to mount the device for imposing the displacements. Besides this they cannot
be imposed to the edges of the section but only at a distance which is often excessive.
On the other hand, time taken for mounting is prolonged and awkward and, fre-
quently, the rigidity of the model does not permit the imposition of sufficiently large
displacements.
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The measurements of the displacements, either small or large, are made very con-
veniently by the photographic method.2! In this method the model is photographed
on the same plate before and after a displacement is imposed; the displacements can
be measured with a microscope or on a screen on which the plate is projected (fig. 11).
This method permits rapid readings to be made and its accuracy even for small dis-
placements is the same as that obtained by direct readings on the model with a
microscope.

Fig. 11. Photograph obtained in studying a linear structure by the photographic method

The photographic method supplies a record of the results of the test and of the
conditions under which it was carried out. It can reveal certain causes of error, such
as deficient design of the model, accidental movements of built-in members, deficient
working of the device for imposing the displacements, etc.

In brief, in the experimental study of linear structures, it is advisable to apply the
general method, measuring the strains by means of electrical strain-gauges, except in
the determination of the influence lines corresponding to external indeterminate
forces when the structure is in plane equilibrium. For this determination it is advis-
able to use the Beggs method and measure the displacements by the photographic
method.

CONCLUSIONS

The essential aspects of the problem of experimental design of structures have
been presented in this paper. _

The conclusion is reached that the choice of shapes and determination of the
dimensions of any structure can be made, as a general rule, from observations on
models, even when it i1s wished to take into consideration its behaviour beyond the
elastic range. Models also lend themselves to the determination of the influence of
the variation of the properties of the materials throughout a structure.

At present it is in the choice of materials for models and in their construction that
difficulties are at times met with, whilst previously, before the appearance of electrical
strain-gauges, it was in the observation of the models that the greatest difficulties were
met, and which were frequently insoluble.



350 AIl 3—M. ROCHA

It can be truly said that a model, even on a very reduced scale, is in general a much
more faithful image of the prototype than the hypotheses adopted by analytical
methods, either from the point of view of the shape, or the material or even of the
loading. This does not, of course, minimise the value of analytical methods, which
have the great advantage of being, except in very special cases, more rapidly and
economically applied, of not requiring equipment and also of furnishing results which
are easily checked.

These advantages indicate the use of the analytical methods in the primary design
- of a structure, in which phase it is necessary to obtain a rough estimate of the possible
solutions, which, as a general rule, are numerous. For the final design of small and
medium structures the analytical methods are also generally the most adequate.

It is in the design of important structures, with, say, a value of over £10,000, that
the studies on models, whose cost is in the region of some hundreds of pounds, is
recommended, unless completely reliable analytical methods are available.

The analytical and experimental methods should not be put in opposition, as at
times is the tendency, but rather be considered as tools to be wisely used in the safe
and economical resolution of structural design problems.

It should be emphasised that to obtain results in periods compatible with those
usually required for the elaboration of plans and to win the confidence of the author-
ities interested in the plan, it is necessary to have specially equipped and organised
laboratories. For the laboratories to work economically they need to have an
important volume of permanent work.

The use on a large scale of the experimental method as a routine method of design
gives valuable opportunities for perfecting the knowledge and formulating theories of
the behaviour of structures. It often happens that when studying a model certain
effects which had not been considered are found to be the most important. The diffi-
culty and high cost of the observation of the prototypes is a further reason Wthh
weighs in favour of a wider use of models as a research instrument.
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Summary

The aim of the paper is to give a general view of the present status of the experi-
mental method of structural analysis within both the elastic and non-elastic ranges.

The requirements of mechanical similarity to be met for model shape, materials
and loading, for static or dynamic equilibriums are presented and the actual possibil-
ities are then indicated for such requirements being fulfilled.

Finally, the possibilities and the exigencies of the experimental method of struc-
tural analysis are mentioned.

Résumeé

Le présent rapport a pour but de donner un apergu de I’état actuel de la méthode
expérimentale de calcul des ouvrages, soit dans le domaine élastique, soit au dela de
ce domaine.

A cet effet, 'auteur commence par présenter les conditions auxquelles doivent
répondre les formes, les matériaux et les sollicitations des modéeles, en équilibre
statique ou dynamique; il expose ensuite les possibilités actuelles d’observation de ces
conditions.

En conclusion, il mentionne les possibilités et les exigences de la méthode expéri-
mentale de calcul des ouvrages.

Zusammenfassung

Mit vorliegendem Bericht wird versucht, einen Ueberblick iiber den heutigen
Stand der experimentellen Methoden zur Tragwerksuntersuchung, sowohl innerhalb
wie auch ausserhalb des elastischen Bereiches zu geben.

Dafiir wird zunichst auf die Bedingungen mechanischer Aehnlichkeit hingewiesen,
denen die Durchbildung, Baustoffe und Beanspruchungen der Modelle bei statischem
bezw. dynamischem Gleichgewicht geniigen miissen. Im weiteren werden die heutigen
Moglichkeiten, solche Bedingungen zu schaffen, dargelegt. _

Zum Schluss wird auf die Moglichkeiten und Anforderungen der experimentellen
Methode eingegangen.
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Photoelasticity applied to structural design
La photoélasticimétrie appliquée au calcul des ouvrages

Spannungsoptische Bemessung von Tragwerken

MANUEL ROCHA and FERRY BORGES
Chief Research Engineer, 2nd Department Engineer
Laboratodrio de Engenharia Civil, Lisbon

INTRODUCTION

This paper presents some experimental studies for the design of structures, carried
out in the Laboratério de Engenharia Civil (Ministério das Obras Publicas), Lisbon,
in which the photoelastic method was used.

Asis known, it is possible, in general, to reproduce the real behaviour of structures
in models even when very reduced dimensions are chosen. Once the model is built,
the general test method consists of the application of loads and the measurement of
displacements, stresses and strains.

In order to measure the stresses, extensometers or the photoelastic method are
commonly used. _

The advantage of the photoelastic method is the ease, rapidity and economy with
which it permits the determination of the fields of stress. The fact that photo-
elasticity supplies images in relation to the complete field of stress, besides avoiding
errors, allows the rapid localisation of the regions of important stresses. The small
scale to which the models can be built is one of its principal advantages; in fact, the
construction of models is simplified and the forces to be applied are small.

On the other hand photoelasticity requires the use of transparent materials and
it is only practicable to study plane states of stresses. The numerous attempts which
have been made to extend this method to the study of three-dimensional states of
stress have not reached a degree of real practical interest; in such cases the authors
think it advisable to use extensometers, left in the interior of mouldable models.

The restrictions mentioned considerably limit the field of application of photo-
elasticity. Besides, photoelasticity only serves to determine the state of stress within
the elastic limit.

The application of photoelasticity, like other experimental methods, is only
advisable when there are no analytical methods which furnish results with the desired
accuracy, or when their application is less economical.

c.R.—23
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The authors believe that the studies which follow show well how photoelasticity
can be used to advantage in solving problems of structural design.

STUDY OF THE INFLUENCE OF THE DEFORMABILITY OF THE FOUNDATIONS ON THE
BEHAVIOUR OF AN AQUEDUCT

The problem of studying the stress distribution in a concrete aqueduct for different
mechanical properties of the soil appeared in the study of the new Lisbon water supply.

The greater part of the aqueduct will be built in a trench.

Fig. 1 shows the shape of the cross-section initially proposed for the conduit,
together with some modifications which were tested. To carry out the tests the loads
were taken as those obtained from the usual design theories for the thrust of earth fills.

258 m

370m

Fig. 1. Cross-section of the aqueduct

I. Section initially proposed
11. Section with base of double thickness
II1. Modified section

A bakelite plane model was built to the scale of 1/20 with a thickness of 1-0 cm.
The distributed loads applied to the prototype were replaced by adequate concentrated
loads, which were applied by jacks as shown on fig. 2. In order to maintain a con-
stant load, the oil-pressure tube, common to all jacks, was connected to another jack
the piston of which was loaded by a weight.

Loadings corresponding to the following hypotheses were considered:

(a) full conduit, earth filling with an angle of fiiction of 35° and 4 m. thick at the
crown of the aqueduct;
(b) empty conduit, earth filling 8 m. thick with an angle of friction of 25°

These hypotheses had led to the highest stresses in analytical calculations, con-
sidering the upper part of the conduit as a built-in arch. An asymetric loading
was also considered, which corresponded to loading half the arch. Successive tests
were made on the model supported by foundations with different mechanical
properties.

For studying the hypothesis of the aqueduct and the foundation having the same
mechanical properties, the soil was reproduced from the same bakelite from which the
model was made. Afterwards, the model was supported on bases of cork agglo-
merate and rubber, materials which reproduce foundations respectively 30 and 300
times more deformable than the material of the conduit.
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To reproduce soil of much greater deformability than that of the structure, the
model was supported on a tube so as to obtain a uniform pressure on its base. For
this a rubber tube of 1-8 cm. external diameter was used, filled with water and closed
at the ends.

In order to compare with the analytical calculation previously made, a test was
carried out in which the arch was built-in by placing the model between two roughened
steel plates tightly joined together by bolts.

'{’ ;
] |
_ :

Fig. 2. Test arrangement Fig. 3. Isochromatics
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Fig. 4. Stresses in the prototype for different values of the foundation deformability
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For the structure dealt with it is sufficient to know the stresses at the boundaries.
These stresses were determined from the order of the isochromatics, one of which
1s shown in fig. 3.

The stresses at the crown and at sections near the springing points for model I
(fig. 1), when subject to loading a, are shown in fig. 4. Thus it will be seen that the
analytical results obtained for the built-in arch agree with those obtained experi-
mentally for the same condition.

As the deformability of the ground increases, the absolute values of the stresses
increase. Thus, at the crown, when the modulus of elasticity of the foundation
material, Ey, is 399 of that of the structure, E,, the compressive stresses rise from
6 kg./cm.2, the value obtained in the case of the built-in arch, to about 20 kg./cm?2; at
the same time tensile stresses of approximately 16 kg./cm.2 develop at the internal
face. In the section near the springing, for the same conditions, the compressive
stresses at the internal face increase from 4 to 17 kg./cm.2 and tensile stresses of about
10 kg./cm.2 appear at the external face.

The increase of the deformability of the foundation beyond that mentioned above
does not lead to any appreciable variation in the maximum stresses.

For loading b the influence of the deformability of the foundation is similar. The'
maximum stresses observed are not very different.

It should be noted that for common soils and particularly for those crossed by the
aqueduct, the stresses developed in the structure should correspond to the relation
E./E; of several hundreds.

With regard to the base of the aqueduct the increase of stresses in the middle of
its upper face is particularly important as the deformability of the foundation
increases. ‘

For the relation E./E;=300 the tensile stress reaches 25 kg./cm.2 for loading @ and
31 kg./cm.2 for loading b, stresses that would require considerable reinforcement in
the base.

A model was tested in which the base had double the thickness (fig. 1). The
solution of increasing the thickness of the base, though giving a reduction in the tensile
stresses when the foundation deformability is large, is not economical. In order to
“decrease the stresses at the base the authors also studied the solution of leaving the
central zone free (fig. 5) by means of a channel beneath the central part of the conduit,

Fig. 5. Aqueduct with the central zone of the base free
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which could be also used for drainage. Thus the uplift pressures would be avoided,
which otherwise might induce cracking at the base.

For a width of the channel of 1 m. the tensile stresses, which, as already mentioned,
were about 30 kg./cm.2 for the hypothesis of E./E;=300, become nearly nil. The
stresses in the arch were also reduced due to the channel.

The distribution of stresses observed in the tests carried out led to a modification
of the cross-section as shown in fig. 1. Tests similar to those already described were
carried out on this new cross-section.

In spite of this solution corresponding to a reduction of 209 in the volume of
concrete, the maximum stresses developed did not suffer any appreciable change.
The opening of a channel under the central part of the base reduced the stresses as in
the previous case.

It is of interest to mention that some years ago the authors carried out some
photoelastic tests on another conduit, in which the deformability of the foundation
was also taken in account. The results of these tests, which also showed a large
influence of the deformability of the foundation, were later fully confirmed by the
behaviour of the structure.

STUDY OF STRESS DISTRIBUTION AROUND THE SPILLWAY OPENINGS OF AN ARCH DAM

When designing the reinforcement to be placed around the flood-discharge
openings of Castelo do Bode Dam (fig. 6) it was found impossible to calculate the
reinforcement.

Fig. 6. Upstream view of the spillway openings of the Castelo do Bode Dam

To determine the stresses developed the experimental method was used. Measure-
ments were taken on three-dimensional plaster of Paris models, which faithfully
reproduced the dam and the rock of foundation.* These models were used not only
to study the stresses around the spillways but also those developed in the entire dam.

* ‘“Note on the Studies of Dam Problems carried out in the Laboratério de Engenharia Civil,”
Publication No. 13, Laboratério de Engenharia Civil, Lisbon, 1950.
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Fig. 7 shows the diagram of the normal stresses acting at the edges of the hori-
zontal section which passes at middle height of the openings, when the dam is subject
to the full hydrostatic pressure.

For the interpretation of these diagrams that are far from simple, photoelastic
tests were carried out.

Plane models to a scale of 1/500 of constant and variable thickness were used
(fig. 8), by which it was possible to study the influence of the thickness change on the
distribution of stresses around the spillway openings.
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Fig. 8. Photoelastic models

Fig. 7. Normal stresses in horizontal mean
section of the spillway openings
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Forces which reproduced the mean compressive stresses in the arches of the dam
were applied to these models. The values of these mean stresses were determined by
by the tests on the three-dimensional models.

Two models of constant thickness were made, one of bakelite to determine the
isochromatics, and another of celluloid to determine the isoclinics. Forces were
applied to these models to produce a uniform stress field in the region not affected by
the spillway openings.

The model of variable thickness was made by cementing together sheets of celluloid
so as to obtain steps of thickness corresponding in a simplified way to the shape of the
spillway and reproducing the increase of sectional area around the openings. Forces
were applied to this model which were proportional to the normal forces in the arches
at different levels and which also corresponded to an approximately uniform distribu-
tion of stresses in the area not affected by the spillway openings.

It was desired to determine, above all, the normal stresses along section I-1' (fig. 8).

The difference of the principal stresses was obtained from the isochromatics and
from the readings taken with a Babinet-Soleil compensator. To confirm the values
of the stresses at the faces of the spillways openings, measurements were carried out
with Johansson strain-gauges of a 0:3 cm. base.

Knowing the isoclinics and the difference of principal stresses along section I-I,
the normal stresses were calculated by integration along the section concerned. As
this section may be regarded as symmetrical the calculation was quite easy.

The diagrams of the normal stresses along the section I-1” for the models of con-
stant and variable thickness are shown in fig. 9. These stresses were calculated on
the assumption that the mean compressive stress developed in the arches of the dam
is 21 kg./cm.2 '
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Fig. 9. Normal stresses along the section I-1’, transferred to the prototype

1. Determined from the constant thickness model
11. Determined from the variable thickness model
111. Determined from the three-dimensional model (mean values of the stresses at corresponding
points of the upstream and downstream face). (Left bank)
IV. Determined from the three-dimensional model (mean values of the stresses at corresponding
points of the upstream and downstream face). (Right bank)
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The value of 18 kg./cm.2 for the tensile stress at the face of the spillway openings
obtained from the constant-thickness model is, as was to be expected, greater than
the value of 125 kg./cm.2 obtained from the variable-thickness model.

It is interesting to note that the maximum stress obtained from the variable-
thickness model agrees with the mean stress developed along the face of the spillway
opening measured on the three-dimensional models. It should be emphasised that
this mean stress is not far below the maximum stress developed at the face of the
spillway opening. This stress is in turn the maximum tensile stresses in the spillway
area.

In fig. 9 are also presented diagrams of the mean values of the stresses at cor-
responding points of the upstream and downstream faces obtained in the three-
dimensional models.

The agreement between these diagrams and that obtained from the variable-
thickness model is quite satisfactory. The photoelastic vatiable-thickness model, of
course, does not take into consideration the bending and other effects which were
determined by the three-dimensional model. However, the photoelastic method was
of good service to solve the proposed problem.

Fig. 10. Test arrangement

In order to eliminate the tensile stresses and the resulting cracks, which were incon-
venient specially due to the high velocity of the water at the spillways openings, the
use of prestressed concrete in this area was tried.

The distribution of the stresses due to the prestressing was studied on the variable-
thickness model using the test arrangement shown in fig. 10. It was also easy to
determine the stresses due to the weight and to the hydrostatic pressure on the upper
face of the openings. Fig. 11 shows the diagrams of the stresses thus obtained.

It is interesting to note that, at section I-I’, the effects of the prestressing and of
the weight of part of the dam over the spillways openings are distributed through a
large area, and so the vanishing of the tensile stresses is not attained.

Due to this fact it was thought advisable to limit the stress distribution area by
creating a vertical joint located about 3 m. from the openings (fig. 12).

Experimental tests made accordingly showed that the weight alone was enough
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Fig. 11. Normal stresses along section I-1’ transferred to the prototype
1. Tensile stresses due to normal stresses in the arches
II. Compressive stresses due to the weight
III. Total compressive stresses due to the weight and a prestress of 4,000 tons
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Fig. 12. Normal stresses along the section I-I", transferred to the prototype, on the hypothesis of
leaving a joint during construction

I. Compressive stresses due to weight (open joint)
II. Tensile stresses due to normal stresses in the arches

to produce a compression stress of 6-5 kg./cm.2 (fig. 12). Therefore, after grouting
the joint the maximum tensile stress in service will be 6 kg./cm.2; to absorb the tensile
stresses, which develop only in a small area, normal reinforcement was used. So it
was possible to achieve a considerable economy.

STUDY OF THE REINFORCEMENT OF THE GUIDE WALLS OF DAM SPILLWAYS TO SUPPORT
THE FORCES TRANSMITTED BY THE GATES

In Castelo do Bode dam the flood discharge called for two gates (fig. 13), each one

having to support 2 maximum thrust of about 4,000 tons. It was therefore necessary
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to provide the guide walls with reinforcements capable of transmitting this thrust to
the body of the dam.
For designing this reinforcement a photoelastic test was carried out on a bakelite

Fig. 13. Spillway of Castelo do Bode Dam

model to a scale of 1/200 (fig. 14). A force which reproduced the thrust was applied
to the model. '

In fig. 15 are shown the isochromatics obtained.

The isostatics plotted from the isoclinics are shown in fig. 16.

Fig. 14. Test arrangement
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The stresses were calculated using the method of integration along straight sec-
tions. Inthe fig. 17 are shown the values of these stresses transferred to the prototype.

The static equilibrium of several sections of the model was satisfied to within
errors of 39, which are fully satisfactory.
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Fig. 17. Normal stress transferred to the prototype

The reinforcements were placed following the isostatics and the area of their cross-
sections was established according to the stresses given by the model.

A similar problem arose in the Mabubas Dam (Portuguese West Africa), whose
guide walls are shown in fig. 18. The thrust of the gates is transmitted to the guide
walls by means of cantilevers and the maximum thrust in each wall is 1,200 tons.
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Fig. 18. Guide walls of Mabubas Dam

As in the previous case a bakelite model was made to a scale of 1/200. To deter-
mine the principal stresses in the wall a graphic integration was made along the
isostatics indicated in fig. 19.

Based on the results obtained the walls were reinforced as shown in fig. 20.

In order to study the local effect of the loads transmitted by the cantilevers to the
guide walls, a reinforced-concrete model was built to a scale of 1/10. Fig. 21 shows
a view of the test.

Stresses were measured on this model not only near the beam but also at some
points where the stresses had been determined by the photoelastic model. In fig. 22
are compared, along one of the isostatics, the stresses obtained in the photoelastic
test with those obtained on the concrete model when working in the elastic range.
As was expected, the stresses agree closely.

The test on the concrete model was carried beyond the elastic range and gave
" valuable information about the behaviour in the neighbourhood of the failure. The
first cracks, which were detected for a load equal to twice the working load, appeared
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Fig. 21. Reinforced-concrete model to a scale of 1/10

Fig. 22. Stresses along one isostatic

I. Determined from the photoelastic model
II. Determined from the concrete model
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near the upstream flange of the cantilever.
whole wall and led to the failure.
The results of this test suggested the need to strengthen the reinforcement near the
cantilever, as shown in fig. 20.
In order to study the legitimacy of undertaking tests until failure on small rein-

forced models, another model was built to a scale of 1/50 (fig. 23). In both models
the development of the failure was absolutely identical.

These cracks later spread through the
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Fig. 23. Concrete model to a scale of 1/50
CONCLUSIONS

The studies presented show well how advantage can be taken of photoelasticity
in spite of its only being applicable to plane elastic states of stress.

As was seen, it permits not only the choice of the best shapes but also, in the case
of reinforced concrete, to define the directions of the reinforcement from the iso-
statics and its sectional area from the tensile stresses observed.

However, as to the design of reinforced concrete from homogeneous and elastic
models there are two objections.

In the first place it should be noted that for the reinforcement to function under
stresses for which it is commonly designed, it is necessary for the concrete to crack;
from these cracks there will result a redistribution of stresses.

A second objection, and as a general rule a more important one, is that an elastic
behaviour analysis is being considered; that is, the behaviour of the structure for
loadings which cause large deformations or even ruptures are not taken into
consideration.

These same objections arise, however, in relation to the usual design of reinforced-
concrete structures from the results of the Theory of Elasticity and Strength of
Materials, obtained on the hypothesis of the materials being homogeneous and
elastic.

To reproduce perfectly the behaviour of reinforced-concrete structures it is advis-

able to use reinforced mortar or concrete models. In one of the studies mentioned,
models of this type were additionally used.
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Summary
The paper deals with some studies carried out at the Laboratorio de Engenharia
Civil, Ministério das Obras Publicas, Lisbon, in which use was made of the photo-
elastic method for model stress analysis.
The following studies are reported:
Influence of the deformability of the foundations on the behaviour of an
aqueduct.
Stress distribution around the spillway openings of an arch dam.
Reinforcement of the guide walls of dam spillways to support the forces trans-
mitted by the gates.
In each case the solution for construction resulted from the conclusions drawn

from the experiments.
Reference is also made to the position of the photoelastic method in relation to
the other methods of experimental stress analysis.

Résumé
Les auteurs exposent quelques études exécutées au Laboratorio de Engenharia
Civil, Ministério das Obras Publicas, Lisbonne, dans lesquelles la méthode photo-
élastique a été utilisée pour la détermination des contraintes sur des modéles
d’ouvrages.
Les études exposées sont les suivantes:
Influence de la déformabilité des fondations sur le comportement élastique d’un
aqueduc.
Distribution des contraintes autour des ouvertures du déversoir d’un barrage-
. voiite.
Ancrage des vannes aux gu1deaux des déversoirs de barrages.
Dans chaque cas, la solution constructive a été choisie d’apres les conclusions des

essais.
Les auteurs étudient également la position de la méthode photoélastique, par
rapport aux autres méthodes expérimentales de détermination des contraintes.

Zusammenfassung
In der vorliegenden Arbeit werden einige Untersuchungen beschrieben, bei denen
das spannungsoptische Verfahren zur Spannungsermittlung bei Modellen gebraucht

wurde.
Die erwidhnten Studien, die im Laboratorio de Engenharia Civil, Ministério das

Obras Publicas, Lisboa, durchgefiihrt wurden, betreffen:
Den Einfluss der Nachgiebigkeit des Baugrundes auf das elastische Verhalten
einer Wasserleitung.
Den Spannungszustand um die Oeffnung des Ueberfalls einer Bogenstaumauer.
Die Verankerung der Schiitzen an den Leitmauern des Ueberfalls einer Bogen-
staumauer.

Die konstruktive Ausbildung wurde in allen Féllen auf Grund der Versuchser-

~ gebnisse gewihlt.
Es wird auch auf den heutigen Stand der spannungsoptischen Verfahren gegeniiber

anderen experimentellen Methoden eingegangen.

C.R.—24
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Method of elastic compatibility in the solution of beams of finite
length on elastic foundations

Méthode de calcul élastique appliquée au calcul des poutres de
longueur finie reposant sur des bases élastiques

Methode zur Berechnung von endlichen Balken auf elastischer
Unterlage

SANTI P. BANERIJEE, ASSOC.M.AM.SOC.C.E., A.M.I.STRUCT.E.

Chartered Structural Engineer, London

L]

I. BEAMS AND FOUNDATION PRESSURES

1. Introduction

When a “rigid” beam carrying loads rests on elastic material, it develops pressure
underneath, which is uniform throughout when centrally loaded or uniformly varying
in a straight line if eccentrically loaded. If, on the other hand, the beam is *semi-
rigid,” i.e. one capable of resisting bending with certain amount of deflections, the
pressure is proportional to the deflection occurring at each point. This is because
the supporting soil below beams carrying engineering structures is considered to
behave elastically, which tends to recover from the relative settlements when the
superimposed loads on the beams are removed.

If the soil proves to be flowing plastically under loading, as may be the case with
very soft clay, the beam necessitates designing as “rigid” as if floating on liquid of
heavy density. On similar arguments an absolutely “flexible” member may be
sufficient to bear loads lying on rather rigid supporting medium, such as rock. The
appropriate stiffness required for a beam therefore depends upon the nature of the
soil below. The theory also gives easy means of determining the correct value of
stiffness required for a beam (Section V, examples 2 and 3).

2. Elastic line of a semi-rigid beam and the soil pressure

Fig. 1(b) shows the pressure distribution under a rigid beam LR loaded non-
centrally as in (a), the straight-line variation being represented by ¢d from the average
line LCR. If, instead, the beam is semi-rigid and rests on elastic material such that
the loaded points are made to remain in one plane (not necessarily horizontal), the
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beam would produce deflections between the points as in (c) denoted by 84 (termed
“local deflections”) and the pressure would vary as shown in (d), there being relief
between the loads and increase under.

If it is now considered that according to the loading the loaded points move out
of the plane so as to take different levels, the axis LCR of the beam would deflect to
~ take the form LC’R similar to a bow of some shape either indicating “hog”’ or “sag”
shown in (e¢). These deflections, represented by 8z (termed *“bow deflections ™), are
measured from a line connecting the ends of the beam. The deflections at various
points along the beam would therefore be the algebraic sum of 34 and 8z, asin (/). It
will be noticed that the values of 8, are negligible as compared with 8.

With these deflections taking place throughout the beam, additional variation in
earth pressure below comes into effect such that the lowest point in the beam exerts
the highest upward pressure and the highest point has the maximum relief or reduction
in upward pressure. These pressures would have at the same time the effect of reduc-
ing the deflections 8,4+ 83 by a certain amount and adjusting themselves accordingly.
The variations from the straight line ab of pressure distribution, which may take the
two possible forms corresponding to the two deflection forms in (f), are indicated in (g).

Finally, these additional pressure variations ghk due to beam deflections, when
superimposed on the average straight line ab of pressure distribution in (4), would give
the two possible pressure diagrams shown in (h)—one giving maximum pressure at
the ends and the other in the middle. It is therefore considered sufficient to check up
pressures at the ends and at the section of maximum deflection in the middle of a
beam. It should be realised, however, that the deflections referred to are only relative
and are additional to the general settlement of the beam as a whole.

II. FORCES ACTING ON A BEAM AND THE PRINCIPLE OF ANALYSIS

3. Forces acting on a beam in equilibrium

The forces are considered to be divided into two systems:

(a) System 1 _

From the superimposed loads on a beam and its bearing area the average earth
pressure wy per unit area is obtained. The pressure w per unit run of the beam is
uniform for a beam of constant width or varying accordingly. Only the prismatic
beams would be dealt with at present. Cases with non-prismatic sections will be
considered in Section V, para. 13.

Consider the forces acting on a beam, as if rigid, comprising the superimposed
loading above and w per unit run of earth pressure below as represented by LRba
in fig. 1(b). If the beam is centrally loaded, this would be in equilibrium or else these
forces would have an unbalanced resulting moment. This has to be balanced by an
assumed straight-line variation of earth pressure from positive (acting upward) at one
end to negative (acting downward) at the other, similar to that represented by line
cd in fig. 1(b). These pressures are termed ““balancing pressures” (B.P.).

The system of forces comprising these, such as would occur on a loaded beam if
it were perfectly rigid, is termed F,. The moments produced by F, throughout rhe
beam are M, and the deflections measured from a line connecting the ends 3,, which
are approximately equal to 84+ 85 referred to in fig. 1(f). The maximum deflection
occurring in the middle of the beam in particular is termed Y,.

(b) System 2
Due to the deflections throughout a semi-rigid beam, deviations from the straight-
line distribution of pressure, referred to in System 1, come to operate, having increased
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values at the lower points and relieved at the higher, such that the straight line repre-
senting w indicates the average of the deviations as in fig. 1(4), wherein ghk was the
deviated form from line ab. '

The increase and the relief of pressure involved in the deviations comprise the
“additional variation of pressure” and such a variation, similar to that in fig. 1(g), is
shown in fig. 2(a) in typical form, in which the increase is shown at the ends and relief
in the middle, consequent upon the middle of the beam deflecting upwards under
force system F,. The vice-versa would be the possible alternative.

These forces in the additional pressure variation, which tend to restore the beam
from the elastic deformations or deflections due to system F,, are called “‘elastic
restoring forces” and are comprised in a system termed F,. © The moments produced
by F. are M, and the related deflections 8,—in particular Y., the maximum in the
middle. - :

It would be realised from fig. 1 that it is the bow deflections 8 which are the essen-
tial factors in the development of the force system F, and the consequent deflections
d,, the influence of 84 being negligible. A

4, Principles of analysis

A centrally loaded beam, if rigid, would exert uniform pressure LRba shown in
fig. 2(b), where La equals w, and pressure LRkhg when semi-rigid. The eccentricity
of superimposed loading would only

1 introduce the balancing pressuies in

Relief of pressure 4 | _ addition. Since the line abinfig. 2(a)
2 T T ﬂf”’ represents the average of the forces F,,

( ")” _,L{ : >,L w the areas above and below the line
e 9 A tionall prediures k should therefore be equal. To sim-

plify calculations for moments and

L 4 1 ‘ deflections, the variation in F, is
w replaced by the straight dotted lines
(6) , 2 4 shown and drawn symmetrically a-

bout the centre of the beam, in lieu of
9 & line ghk. The maximum ordinates,
both above and below the line ab, in
the variation are represented by fw
per unit run or fw, per uhit area, f being a factor or coefficient. The maximum and
minimum pressures developed are therefore wy+/wy and wy— fw, respectively per unit
area.

It would be observed that the force system F, gives a deflection 8, always opposite
to 8,. The total deflections throughout a beam would therefore be the sum of 8§,
and 38, algebraically, and the final maximum deflection in the middle of the beam

Y=Y, +Y. . . . . . . . . (4D

considering the maximum deflections Y, and Y, to occur approximately at the same
section. (It may be worth noting that the shift of the position of the maximum
deflection in a prismatic beam, simply supported at the ends with a bending moment
diagram of one sign, can never exceed 1/13th of the length from the centre.) The
deflections are represented in fig. 3 for the beam under the system of forces in fig. 2.
The original deflection is Y, from the loading and the pressure I.Rba of system F,,
which reduces to Y due to the forces F, having pressure ordinates fw at the centre
and the ends (fig. 2(a)).

Fig. 2
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For the purposes of analysis, it is necessary to ascertain the value of fw so as to
obtain the pressures and the bending moments throughout a beam. To obtain the
value of f, the final maximum deflection Y is to be considered first, which is dependent
upon

(a) the elastic properties of the beam and
(b) the elastic properties of the soil,

so that the higher the ‘““flexural rigidity” (EI) or the ‘“modulus of foundation™ (ky),
the lesser is the deflection. The value of Y should be such as to be compatible with
the conditions for both (a) and (b).

beneral seltlement
Spngtvel %
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Fig. 3

The value of £, related to Y, having been ascertained, the bending moment diagram
for system F, can be obtained with its maximum ordinate M, at the centre, where
shear is nil. The moments throughout the beam would then equal ZM,+ M..

) For the purposes of maximum and minimum pressures underneath, the positions
of fw under system F, would be considered at the ends and in the middle of the beam
where maximum deflection occurs.

ITI. PRESSURES AND RELATED DEFLECTIONS

S. Signs
The signs in the operations will be considered as follows:
(1) “Moments”’ are positive when tension is created on the underside of beams.
(1) ““Deflections’ are positive given by positive moments.
(1) “f-system” is positive in the positive force system F, causing positive
moments M., and forces act upwards at the ends and downwards in the

middle of a beam. e
| b
6. Forms of pressure variation and the . [7—_¢f|]33 !
related deflections Y. ily” éhe), . |_imw
The value of deflection Y, for a | L J
beam is connected to the force system | l |

F,, which in turn depends on the value (67"
of f. Therefore the equations for de-
flections can be expressed in terms of f.
(A) Form of pressure distribution
in system F, with equal maxi-
mum ordinate above and below (g "
average

Fwl?
Yo = 0.00365 =

A positive force system F, with °

maximum ordinates fw above and below 8

. s . 't N ~

the average line is shown in fig. 4(a), SRS
with consequent positive deflection ¥, 3.8

at (b). The f-system at (a) is therefore Fig. 4
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positive. The arrangement could be of opposite kind with negative values. With
these forces acting on a beam, the moments M, at any section distant x from an end

is given by
= 2%
Me= [E_E:I fw,
and at centre, where x=L/2, the maximum value

M.=0-0416wL2f . . . . . . . . (6:1)

The deflection at any section distant x from an end
¥ x dLex ULP e
36=Er [2_4_@“% +ﬁ)] , where E7/=flexural rigidity
and the maximum deflection at centre, where x=L/2
wL4

Ye=0-00365E,—f i & ¢ om s o® s w (0E2)
shown at (). The maximum and minimum pressures are w-+fw and w—jfw per unit
run of beam respectively.

It would be observed from fig. 4 that the maximum ordinate fw of pressure

reduction can never exceed w in value and thus also the maximum ordinate of pressure
increase; in other words f can never exceed 1.

(B) Other forms of pressure distribution in system F,

R S
N

4 N

mrnjz_'b'/':/zu: HH\\L‘,’ Tw DR i 41 :{%;V
i !

PF
i (2) [mtp=2] (6)

Fig. 5

There may be other cases of distribution such that the maximum ordinates of
reduction and increase have unequal values. This would also be obvious from
figs. 5(a) and (b) with positive and negative f-systems respectively, where some parts
of the beams do not bear on the soil due to upward deflections.

For the purposes of analysis let mfw and pfw be the ordinates of the maximum
reduction and increase respectively below and above the average, so that their sum

mfw+pfw=2fw . . . . . . . . (6:39)

m+p=2 . . . . . . . . . (6:3b)

With such forms of pressure distribution as in fig. 5, mfw would be controlled by
the value of w, so that mfw=w or mf=1. Then from eqn. (6:3a),
14+pf=2f, or pf=(2f—1), or

as before, or

1 =
P=2_]~ . . . . . . . . . . . . (6:4)
The eqn. shows that
when f=1, p=1
J<l, p<l and

>1, p>1
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Since the areas of pressures under the force system F, above and below the average
lines should be equal, it is clear from the diagrams that the ordinates pfw have to be.
greater than mfw, i.e. from eqn. (6:3a),

pw>Q2—p)fw,orp>1 . . . . . . . (6:9
This shows therefore from eqn. (6:4) that the cases would involve values of />1.

The maximum and minimum pressures developed are 2fw and zero respectively
per unit run, as would be observed from fig. 5 also.

(C) Practical considerations
To serve all practical purposes, it is assumed that: -

(i) when /<1, the variation should be considered with equal maximum ordinates
fw above and below the average, and
(i) when f>1, the maximum reduction mfw has the limiting value w.

Some possible forms of pressure distribution and the connected diagrams for the
force systems F, are shown in Table I, in which the deflections Y, are shown represented
by the form

wL?
Ye:N'E' N (H))
The “deflection coefficients N against the values of ffor all the cases can also be taken
from fig. 6. Itis to be noted that the cases 2 and
6 in Table I, having unequal ordinates mfw and

pfw, would be covered by the cases 1 and 5, 4 | I
since mfw are not the limiting values w. l Numbers in circles
The foregoing assumptions give safe results, , . d ”;‘,’,’”;:z e s
as the values of N for Y, are on the higher side \ \af Table I
(see also para. 8). \
When 7, is negative, Y, is positive with pos- 1
itive f~system. Cases 1 to 4 are some of the /% 00 BN @
possible forms shown in Table I. Case 2 7\ N b S
represents an ideal fourth-degree curve in view ,___@r_’ d._‘_@:‘:\_ 2N
of the deflection being the fourth integral of g 2 &~ )
loading and is absolutely theoretical. Under ‘\ KN
normal conditions case 1 for f<I1, and case 3 % Q)
for f>1 would be apparent. 0602 \
When Y, is positive, Y, is negative with \
negative f~system, such that some of the possible h-n- Ly &N
forms may be as shown by the cases 5 to 8. N
Case 5 is the case 1 inverted and case 6 repre- 7% S
sents the theoretical fourth-degree curve. Under
normal conditions case 5 for <1, and case 7 for -

f>1 would be apparent, but a case with f>1 ¢ : :
will not occur in practice when Y, is positive ' ]
(para. 7(2)(6)). Fig: &

7. Factors affecting the final deflection Y in a beam

These will be considered in the following treatment of the deflections from the
elastic properties of the beam and the bearing soil (para. 4):

(1) Deflections from elastic properties of beam
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LA !
From eqns. (6:6) and (4:1), Y.=N. -%7 fand Y=2Y,+Y,, remembering that

Y, and Y, are always of opposite signs.

Fig. 7

(i) When Y, is negative, Y, is positive with positive f~system (ﬁg T(a)):

wL4
Y=—Y+N. 5 H)==Y+N. —f .. . (B
(i1) When Y, is positive, Y, isrnegative with negative f-system (fig. 7(b)):
LA
Y=+4+Y,—N. "—"(—f) +Y+N ... (B

These equations stand for all values of f, whether greater, equal or less than 1.

(2) Deflections from elastic properties of soil

Since the soil reaction per unit area of foundation is assumed proportional to the
pressure per unit area p .

settlement .S
is known as the “modulus of foundation.”” The above relation gives

settlement (para. 1), the ratio is a constant, termed kg, which

pmkoS o e W e w e e w (71)
_P :
Also = e (D)

The modulus may vary under a beam in various ways depending upon the nature
of the soil and the depths to which they occur. Let the minimum value under a beam
be ky and the maximum nk, per unit area, so that #=>1. In the analysis, the variations,
when taken into account, will be considered symmetrical about the centre line of the
beam such that ky and #nky occur under the ends and the centre or vice versa, the
variation being linear. Such variations are considered to cover the limits of all
possible cases.*

In the derivation of the deflection equations, the distribution of pressure under
force system F,. will be considered under two groups as follows:

(a) Force system F, when /<1
This system includes cases 1 and 5 of Table I, and under this group the pressure
variation has equal maximum ordinates fw above and below the average (para. 6(C)).

* Advantage can also be taken of such variations in the moduli in an attempt to take account of
the usual pressure variations experienced in cohesive and non-cohesive soils under engineering
structures.
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(i) When Y, is negative, f-system is positive (fig. 8):

|~ Jrworv
' ’ . . Fwa }
™ P J I/‘nq, (85 " [+ve F-system]

W, + Fry W, -J Fw, w,+fuy  (c) Unit pressures p*
|
| I
”ro /T ”Lt’ (d) Case-7 Found?
oduly
A nk, b (e)case-2 | """
Fig. 8

In the final position of the beam the deflection (ignoring the little displacement of
the position of maximum defiection from centre),

Y =settlement at centre minus settlement at ends

Case 1: if kg is the modulus at centre and nk, at ends, then from eqn. (7:2):
_WO—'fH’Q W0+fW0_ Wy 17 Wo 1
R it 1+;!_ f+?0 e N 5

Case 2. if nky is the modulus at centre and k. at ends, then:
Y=w0—fw0_w0+fw0_ wo[l-l-l _%)[ IJ
0

Y

n_

1—-
n

nko ko ko
(i) When Y, is positive, f~system is negative (fig. 9):

(S2)

E Fu, (6) “Fg”["}’é' F-system]

Hy = Fiw, W, ]fw,, W,-fi, (c) Unit pressures p*
; ' o '
nky /li,, nllro d) Case -7 Found?
moduli
ko nk, by (e) Case -2
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In the final position the maximum deflection,
Y=settlement at centre minus settlement at ends

Cuse 3: if kg is the modulus at centre and nk, at ends, then:

=w0+(—f)w0 wo—(— f)'Vo_F“_’[l+ }H_wo[]_l] . (Sy)
H

ko ﬂko ko
Case 4: if nkg is the modulus at centre and k, at ends, then
_wot(=fwy  wo—(=N)wg_ o Wo l]
Y=k kKol f‘ ok - (S
Case 5: when kg is uniform throughout, n=1 and all the above equations become:
2"'0
Y— —TO . . B . . . . . . (Ss)

(b) Force system F, when f>1
The cases 3, 4, 7 and 8 in Table I are covered by this group, where the maximum

ordinates of pressure reduction and increase are w and (2f— 1)w respectively (para. 6).
It is to be realized that since some

parts of the beams do not bear on the
soil due to the upward deflections when
f>1, the values of Y given by the soil
equations would not be the true values
of the maximum deflections occurring
in the beams, but would only represent
the values measured up to the ground
Fig. 10 lines as shown in fig. 10 by Y. The
relationship of this ¥; with true ¥ may
be approximately obtained by considering the deflection curves of the beams of at least
the fourth degree and are as follows when kj; is uniform:
(i) when Y, is negative,
for f=2, Y,=0-938Y
/=3, ¥,=0-803Y

(i) when Y, is positive,
‘ for /=2, ¥,=0-0625Y
f=3, ¥,=00124Y
Representing the number coefficients above by C, therefore, a soil equation would
take the form:
Y,=deflection value from derived equation=CY

1
Y=E (deflection value from derived equation) . . . (7:3)

The value of C on soil with variable foundation modulus may be very different and
difficult to judge. However, the value in a case can be ignored if the difference
obtained between Y and Y is limited to, say, 10-129%, and for this purpose it is
essential that for beams

(1) with negative Y,, f must not exceed 2-5, and

(i1) with positive Y,, f must not exceed 1-0.
Then the appropriate soil equations can be used without any reference to C.

It would normally be seen in practical problems that the above conditions are ful-

filled, since the maximum pressures below would control the designs calling for the
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appropriate stiffnesses for the beams. If in a certain problem either of the above
values of fis exceeded within the limiting pressure, the beam has to be made stiffer to
bring in more of the unsupported portions to bear on soil (fig. 10) and thus reduce
the value of . Alternatively, for beams with positive Y,, an effective shorter bearing
length may be considered (i.e. the portion of beam actually bearing on soil in fig. 10(5))
. in a revised design for both beam and soil equations.

The deflection equations when f>>1 are derived as follows, bearing in mind that

mf=1 and pf=2f—1:
(i) When Y, is negative, f-system is positive:
Case 1: kg at centre and nk, at ends:

0

ko d nko ko n
2 _ Wy 2f—l Wy 1 _ 2W’0 7
S L £ L - S

Y—

Wo—mfwo_WO'l'PfWo: Wo[ _{_T]f_wo[ 1]

nko ko kop n k_o n
W 1T wy 1 % ,
_—ko[zf—1+n}—k0[1—n]_—kof. LSy

(ii) When Y, is positive, f~system is negative:
A case with f>1 will not occur in practice as stated before.

Case 5: kg is uniform, i.e. n=1:

2
The above equations also give Y= —TWO /, as eqn. (Ss).
0

8. Values of final deflection Y and coefficient f

As stated in para. 4, the final deflection Y should satisfy conditions for both beam
and soil properties. Therefore for a particular case, a beam equation and an appro-
priate soil equation for deflections have to be solved simultaneously to obtain the
values of Y and f with proper signs.

In connection with the deflection Y, in a particular beam equation, it is evident

LA : .
that when /<1, Y,=0-0037 WE_If This value of N=0-0037 may therefore be used in

all practical cases as a trial value for solving the equations. If from the solution the
absolute value obtained for fis <1, the result would be satisfactory; and if >1, a
revision in the coefficient would be necessary, which can then be judged easily from
fig. 6, bearing in mind the probable nature of distribution of F,.

It may be worth while to note that a higher value of N than anticipated for a beam,
if adopted, should normally give safer results, as the solution would yield lesser values
of fand Y. In doubtful cases, however, a problem may be solved with two beam
equations representing possible upper and lower limits in the values of Y,, and the
worse values of obtained moment and shear taken care of at each section. Similarly
in a case of doubtful variation in the foundation modulus along a beam, the solution
may also be carried out with two soil equations representing the upper and the lower
limits.
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IV. FINAL MOMENTS AND PRESSURES

9. Moments M,

These are obtained from force system F, when the value of fis determined from
the solution of the deflection equations. Referring to the Table I it would be clear
that even when the value of fis known, the moments M,, with central ordinate M.,
would depend upon the nature of distribution of force system F, in a particular case.

The M,-curve was considered in fig. 4 with value of f <1 and was of the third
degree. With the increase in the value of f, the shape of the curve tends to change
only slightly. For the convenience of obtaining values at intermediate points along
the length of a beam, it is sufficient to consider an M .diagram as triangular with the

010 - =
1
: -
e
= (‘v/ /
008 > /4
ol

o007+

006 f
N « « « Numbers m circles mdicale
Y N ~ 7 o the cases of pressure
3} E3 X by distribution of Table I
28 3 2 © ;
S 8 8 3 004 2
XS 5 S
[ .S SN .

Mg = d/a_gram 003+
Mo=Q wi?
Fig. 11 0oz o)
o001+, s
0 L 1 £
0 ! 2 3
Fig. 12

ordinate M, at centre. Such a dlagram is shown in fig. 11 replacing the thu'd—degree
curve when f<<1. The differences in the ordinates are only little.

The values of A, under various cases are given in Table I in the form M,=Q . wL2,
where Q is a function of f. The values of Q under different cases can also be taken
from fig. 12 against the values of f. As stated in para. 6(C), cases 1, 3 and 5 of Table I
would normally cover all practical cases.

10.. Final moments M

At any section of a beam, the final moment M=2M,+4+ M, (para. 4), M, and M,
being opposite in signs. Note that M, would carry the sign of f.

11. Final pressures under a beam and settlements

From the value of f obtained, the pressures would be as follows (para. 6):
(1) when f<1, pn.x=wy+/Wy per unit area \
Pmm—wo_fwo 3 3 3]
(ll) Whenf>l pmax—szO ”» 23 93
pﬂ”ﬂ _0 bR 2 2
These would be clear from the pressure distributions shown in Table I. The balancing
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pressures B.P. due to the eccentricity of loading on a beam from force system F, are

also to be taken into account. 7
The settlements at various points in a beam can then be obtained from the related

pressures, employing eqn. (7:2).

V. ExaMPLES
12(a). Beam on soil with constant foundation modulus

Example 1*¥. A weightless beam 10 inches by 8 inches with the loading shown
in fig. 13(a) is resting on an elastic foundation having a modulus of 200 1b./in.3 The
elastic modulus of the beam material is 15. 106 1b./in.2 Obtain the moments and
pressures throughout the beam.

Thus, L=120 in., I=426-7 in.4, E=1-5. 106 Ib./in.2 and k(=200 Ib./in.3
Total load=P+489=>5,000+4,800=9,800 1b.

Bearing area of foundation=120. 10=1,200 in.2

?;2%:8-16 1b./in.2, and w=8-16 . 10=81-6 Ib./in. run.
Unbalanced moment and balancing pressures B.P.:

Considering w acting below and taking moments about point 6, unbalanced mo-

ment=>5,000 . 90+44,800 . 44—9,800 . 60=73,200 in.-1b.

Section modulus of foundation area

10. 1202
Z= 6 =24,000 in.}

73,200
24,000

Wo=

= 43-05 1b./in.2
=4-30-5 Ib./in. run

End pressures in BP.=4+-——

Moments M,
With the supenmposed load above and w and B.P. below values of moments

obtained are shown in Fig. 13(b).
Deflection ¥, :

From the M, diagram, the value of maximum deflection Y, is found conveniently
by the “Conjugate Beam Method™ at a section 54 in. from the left end as 0-0810 in.,
which is positive in value. (Approximation of the M, diagram by straight lines,
shown dotted, is permissible for this purpose.)

Beam equation:
Since Y, is positive eqn. (B,) of para. 7 applies,

81-6 . 1204
Y=+7Y, +N— f=+00810+0:0037 z—55—5e=

=4+00810400980f . . . . . . . . . . . (D

Soil equatlon
Since kg is constant and Y, is pos1t1ve eqn. (Ss) of para. 7 applies,

2w°f=—2 816f_-oosmf )

Solution: .
Solving eqns. (1) and (2) above, f=—0-45 and Y=+40-0368 in. The value of f

* The example is taken from Beams on Elastic Foundation, by M. Hetenyi, University of Michigan
Press, Ann _Arbor, 1946, p. 47.
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P=5000/bs.
g=100/s/in. run.

[ Joading

IR NEINEYEEE)
‘vll ZZI’I 24” 24’ MII
72 "
w(a)' s section mark. 7 2 3 4 5 6
fr .
[0 2 0 0 O O O O O3 08 Yo LA/
yoward ¥ : b.;/m‘
| pressures Py e — I : AT IO 5 16s .
Y ss 1 46! &n 12040
)
S
- R,
(6) M.”
(in.-1bs.)
(c) ‘M
(ia.~1bs.)
(d) “p*
(tbs.fin?)
= SEE | 2
S Probable distribution
i 3
8
+ 3000 -
+2000 4
-1000 4
(d) shear 3 LU .
(%6s.) - W
-7000
-2000
-3000

Fig. 13
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obtained is <1, which shows that the value of N adopted in beam equation is suitable
(para. 8). Note that the value is in the negative system.
Moment M, :
Since f<<1 and Y, is +ve, case 5 of Table I applies. From fig. 12, 0=0-0187
against f=0-45.
—QOwL2=—0-0187 . 81-6 . 1202=—22,000 in.-1b.
This is the central ordmate of the triangular M, diagram.

Final moments M (in.-1b.):

Section M, Me M I Hetenyi’s values of M
2 +48,040 —11,000 +37,040 ' + 35,460 (calculated)
3 +29,700 —19,100 + 10,600 l

Centre + 30,000 —22,000 + 8,000 + 9,623
4 +27,870 i —16,150 +11,720
5 +10,880 — 7,340 + 3,540

These are shown in fig. 13(c), with the M, and M, diagrams superimposed.
Final pressures p (Ib./in.2): fwy=0-45.8-16=3-67

Section Wo Jfwo ~ BP. p ] Hetenyi’s values of p
1 +8:16 —3-67 +3-05 + 754 | + 607 '
Section of J |
max. defin. +8:16 +3-67 +0-31 +12:14 | +10-39 (centre)
6 1816 —3-67 —3-05 + 144 | 4 126
1

These are shown in fig. 13(d).
Settlements (inches): From eqn. (7:2), S=p/k,

Section S - ‘ Hetenyi’s values of S
1 7-54/200=0-038 | 003036
Near centre 12-14/200=0-061 0-05193
6

1-44/200=0-0072 0-00628

Settlements at intermediate pomts may be found by obtaining the relatwc deflections.
Fig. 14. shows the beam in its final position.

G.L.

Frnal position of beam
Fig. 14

12(b). Value of I for beam to control deflection

Example 2. What should be the value of I for the beam in example 1 if the
maximum deflection Y is not to exceed 0-02 in.?

Using the soil eqn., - Y=-—0-0816f,

+0-02=—0-0816f, L. f=—=0-245
C.R—25
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34-6 41 8
Withdrawing the value of I, the beam eqn. is expressed as Y=+— 7 f and
substituting the appropriate values
1 1 24-4
+0:02=7[346+41'8(—0-245)]=7(346—10:2)="F
24-4 '
—_——= in.4
I 002 1,210 in.

121 12.1,210 .
With 10 in. width, depth d= / J =11-32 in.

12(c). Value of I for beam to control pressure _
Example 3. 'What may be the value of I for the beam of example 1 if the maximum
pressure underneath is not to exceed 14 Ib./in.2?

We have seen that in the middle of the beam
Pmax=wy+/wy+B.P.=+8164+8:16/+0-31=+8-47+8-16/
14=+8-474-8-16f, .. =g—:%§=0-675 (in negative system).
From the soil equation, therefore, |
Y=—0-0816f=—0-0816(—0-675)=+0-055 in.
Withdrawing the value of I from the beam eqn.,

1
Y=3[346+418f]

and substituting the approprlate values

6-4
+0- 055——[34 6+41-8(—0- 675)]—7
6-4
o7 4
I= 0055 116 in.
With 10 in. width, depth d=N/12 i0116=5-18 in.

12(d). Beam on soil with variable foundation modulus

Example 4. Solve the problem in example 1 assuming that the modulus varies
from 200 Ib./in.3 at centre to 350 1b./in.3 at ends. Then, the beam equation, as before

Y=+40-0810+0-0980 . . . . . . . . (1)
Soil eqn.:
350
Y, is 4 ve, and in anticipation of <1, eqn. (S;) applies.
8:16 1 816 |
Y=—50"6 [H_FS] f+m[l_ﬁ] =—00683/+00135 . . . . . . (2)

Solving (1) and (2), f=—0-405 and Y=+0-0413 in. From fig. 12, case 5, Q=0-0168.
. M.=—00168 . 816 . 1202=—19,700 in.-Ib.
The diagram is represented by M., in fig. 13.
M, 19’;OO=+38,190 in.-Ib.
Dmax at middle  =+8164(0-405 . 8:16)4+0-31=11-77 Ib./in.2
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13. Beam with non-prismatic section having constant width

The procedure is the same as shown before except for a little adjustment involved
in the value of Y,. For this purpose an equivalent “constant moment of inertia’ is
obtained for the same amount of maximum deflection within the beam. The example,
which follows, will clarify the problem.

Example 5*. A continuous footing 30 ft. wide, having a cross-section as shown
in fig. 15, restson soil with a modulus of 300 kips/ft.> There is a line load of 150 kips/ft.
Tun at the centre and the elastic modulus of the material may be taken as 432,000
kips/ft.2 The weight of the beam is neglected.

300,000
Thus, ko=—=— 12 ——5—=173 1b./in.3 (uniform),
432,000,000
E=——>"—=3,000,000 Ib./in.2,

P=150 kips/ft.=150,000 1b./ft.
Considering 1 ft. length of footing as width of beam, bearing area=360 in. X 12 in.
Also ,

150,000 416
—— ; — e A in. 2
w=— 416 1b./in. run, and wy 2 34-8 1b./in.

The system F, is shown in (a). The loading being symmetrical about the centre
there is no B.P.
M,:

With the load P above and w acting below, the moments developed in the beam are
shown in (¢). The variations in the moment of inertia are shown in (b).

Y,:

To obtain the maximum deflection Y,, a diagram for M,/I is obtained first as in
(d). From this the maximum deflection at centre, ¥,=-40:196 in.

Y.:

Equivalent constant moment of inertia /. for the beam to give the same amount
of maximum deflection in the middle under force system F, is to be considered first.
For this purpose the beam is to be considered loaded at the centre with a concentrated
unit load when supported at the ends. This is reasonable, since the M, diagram is
nearly triangular, which is corresponding to the above condition of loading.

Let the moment diagram from the unit load be called M, and the maximum
deflection Y. Then the central ordinate of M diagram

— w.L 1.360
M=+ 7 =+ 7] =49 in.-lb. . . . . (13:1)
shown in (¢). The maximum deflection with I,
1 WL 1 1.3603 0-324
Yi=+=.—=+==. =+ in-lb. . (13:2)

48 ° El, 48 * 3,000,000 . I, I,
With the present variable 7, the maximum deflection Y is found from M, /I diagram
as in (f), and the value at centre

=+0-00,000,365in. . . . . . . . (13:3)
From eqns. (13:2) and (13:3),
0-324
Py — in 4 .
15_0_00’000’365—89,000 in. e e . (13:9)

* The example is taken from ‘‘Successive Approximation for Beams on Elastic Foundations,”
by E. P. Popov, Proc.A.S.C.E., May, 1950, vol. 76, Separate No. 18, p. 5.
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The procedure hereafter is as for a prismatic beam with constant moment of inertia /.

Beam equation:
Since Y, is +ve, eqn. (B,) applies.
416 . 3604

Y=+40-19640-0037 . 3,000,000 . 89, 000f—+0-196+0-097f i s w s m Tk
Soil equation:
ko being uniform eqn. (Ss) applies.
2.34-8
Y=— 73 f=-=0402f . . . . . . (@
Solution:
From eqgns. (1) and (2) above, f/=—0-392 and Y=+0-158 in.
M.:

Since case 5 of TablE I applies, from fig. 12, Q=0-0163.
e=—0-0163 . 416 . 3602= —880,000 in.-lb.

M (in.-1b.):
These are shown in (g).
p (Ib./in.2):
Swy=0:392 . 34-80=13-65
Section Wo i Swo P ’ Popov’s values of p
1 +34-80 —13-65 +21-15 ’ +18:85
4 : +34-80 +13-65 +48-45 +45-00

These are shown in (/).

VI. REMARKS

14. Remarks

Comparing the present method with that developed mathematically from differen-
tial equations for elastic lines, the solution is reliable for a beam having a value of
Al>}27, when Y, is negative, and
M7, when Y, is positive,

4 [bk
where A= 7 EOI and b=width of beam.
With higher value of Al the pressures are in error, as the deflection curve of the

beam develops reverse curvatures at distant points from the loads. The maximum
possible bending moment will not, however, exceed the value obtained by this method,
and in practical designs with reinforced concrete foundation beams, recourse may have
to be made to nominal reinforcements in the compression faces.

Summary
The forces acting on a beam are considered to be divided into two systems:
System 1, comprising the superimposed loads on the beam and the pressure
underneath such as would occur if the beam were perfectly rigid, due considera-
tion being given to the eccentricity of loading, if any, involving straight-line
variation of pressure, and
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System 2, comprising only the additional variation of pressure under the
beam due to deflections throughout from the average straight-line variation ob-
tained in System 1.

The additional pressure variation of System 2 related to the deflections is obtained
from consideration of

(a) the elastic properties of the beam, and
(b) the elastic properties of the soil.

This being known, the corresponding moment diagram is readily approximated.
This diagram, when superimposed on that due to System 1, gives the final moment
values throughout the beam.

The advantage of the method lies in obtaining readily

(1) the final bending moment diagram,
(2) the maximum deflection occurring in a beam, and
(3) the maximum and minimum pressures underneath.

Other advantages available from the theory include the determination of the
appropriate moment of inertia of a beam to control

(a) maximum deflection, and
(b) maximum pressure underneath.

The method can be applied to beams, prismatic or non-prismatic, with any kind
of loading and solutions give with comparative ease results which are reasonably close
to those obtained by accurate analysis. The paper includes illustrative examples
already solved by other methods.

Résumé
On considére que les forces agissant sur une poutre se divisent en deux systémes:

ler Systeme: comprenant les charges appliquées a la poutre et la pression
s’exercant en-dessous, telles qu’elles se présenteraient si la poutre était parfaite-
ment rigide, compte tenu éventuellement de I’excentricité de la charge, impliquant
variation de pression en ligne droite.

2¢éme Systéme: comprenant uniquement la variation additionnelle de
pression sous la poutre, due aux déviations d’un bout a I’autre, a partir de la
variation moyenne en ligne droite obtenue dans le ler systéme.

La variation additionnelle de pression du deuxiéme systéme, relative au déviations,
est obtenue par la prise en considération:

(a) des propriétés élastiques de la poutre,
(b) des propriétés élastiques du sol.

Celles-ci étant connues, on obtient sans difficulté une approximation de la courbe
du moment correspondant. Cette courbe, lorsqu’on la superpose a celle qui résulte
du premier systéme, donne les valeurs définitives du moment d’un bout a ’autre de la
poutre.

L’avantage de la méthode réside dans le fait qu’on obtient instantanément:

(1) la courbe définitive du moment de flexion,
(2) la déviation maximum se produisant dans une poutre,
(3) les pressions maximum et minimum en-dessous.
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Parmi les autres avantages offerts par cette théorie, il fait mentionner la détermina-
tion du moment d’inertie d’'une poutre permettant d’équilibrer:

(a) la déviation maximum,
(b) la pression maximum au-dessous.

La méthode peut étre appliquée aux poutres prlsmathues ou autres, avec
n’importe quelle sorte de charge et les solutions donnent, avec une facilité rclatwe des
résultats qui sont suffisamment proches de ceux que I’on obtient par une analyse
rigoureuse. L’exposé contient des exemples explicatifs déja résolus par d’autres
méthodes.

Zusammenfassung
Die auf einen Balken wirkenden Krifte werden in zwei Systeme eingeteilt:

System 1 umfasst die auf ihn wirkenden Nutzlasten sowie die auf der
Unterlage entstehenden Pressungen fiir den Fall, dass der Balken vollkommen
steif ist. Eine etwaige Exzentrizitit der Belastung wird dabei im Sinne eines
geradlinigen Verlaufs der Pressungen beriicksichtigt.

System 2 umfasst lediglich die zusitzlichen Aenderungen dieser Pressungen
entsprechend den Durchbiegungen, die von der fiir das System 1 gewihlten
mittleren geradlinigen Verteilung abweichen.

Die zusétzliche Aenderung der Pressungen im System 2 ergibt sich aus der Betrachtung

(a) der elastischen Eigenschaften des Balkens,
(b) der elastischen Eigenschaften des Untergrundes.

Diese Eigenschaften als bekannt vorausgesetzt, ldsst sich die entsprechende
Momentenlinie schnell und in guter Annidherung ermitteln. Sie ergibt, nach Ueber-
lagerung derjenigen des Systems 1 den endgiiltigen Momentenverlauf im Balken,

Der Vorteil der Methode besteht darin, dass

(1) der endgiiltige Momentenverlauf im Balken,

(2) die grosste Durchbiegung des Balkens,

(3) die grosste und kleinste Pressung der Unterlage schnell und leicht ermittelt
werden kann.

Als weiterer Vorteil ergibt sich aus der Theorie die Méglichkeit, das Tragheits-
moment eines Balkens zweckmaissig so festzulegen, dass
(a) die grosste Durchbiegung,
(b) die grosste Pressung im Untergrund innerhalb bestimmter Grenzen bleiben.
Das Verfahren kann auf Balken prismatischen oder nicht prismatischen Quer-
schnitts und fiir jede Art von Belastungen angewandt werden. Es liefert auf ver-
hiltnismaéssig einfache Weise Ergebnisse, welche mit den genauen Losungen gut
libereinstimmen. Der Aufsatz enthilt Beispiele, die zum Vergleich auch mit Hilfe
anderer Methoden geldst wurden.
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L’influence de Pélasticité du sol sur les contraintes des barrages-poids
(Théorie et solution numérique)

The influence of the elasticity of the soil on the conditions of stress in
gravity dams
(Theory and numerical method)

Einfluss der Baugrundnachgiebigkeit auf den Spannungszustand von
Gewichtsstaumauern
(Theorie und numerische Methode)

Pror. Dr. P. LARDY ’
Secrétaire général de I’A.I.P.C., Ecole Polytechnique Fédérale, Zurich

INTRODUCTION -
Généralités

La prise en compte de I'influence de 1’élasticité du sol sur les contraintes des bar-
rages signifie un progreés dans leur investigation par le calcul. Les études effectuées
aussi bien sur les barrages arqués que sur les barrages-poids démontrent suffisamment
I'importance de la coaction du barrage et du sol de fondation.

Il s’agit 1a d’un probléme éminemment difficile de la théorie mathématique de
I’élasticité.

Ce travail donne avant tout un apergu trés succinct sur une méthode appropriée
de calcul numérique. L’exemple calculé montre avec suffisamment de clarté I'in-
fluence remarquable de I’élasticité du sol sur les contraintes, qui se trouvent grande-
ment altérées a la base et le long des parements amont et aval des barrages-poids.

Position du probléme

Nous nous bornons au cas le plus simple et ne considérons, comme forces
extérieures, que I’action du poids-propre et de la pression latérale de I’eau (bassin
rempli) sur le barrage-poids de section triangulaire sur sol €lastique, en négligeant les
effets de la sous-pression et de la température.

Le mur est défini par:
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Fig. 1.

Le parement amont est supposé vertical

h=hauteur du barrage
A=tg w (w=angle d’ouverture du mur)
b=A. h=largeur du barrage
ym=poids spécifique du mur
E,,=module d’élasticité du mur
vn=coefficient de contraction du mur

Le sol de fondation est assimilé a un demi-plan, défini par les constantes:

yr=poids spécifique du sol
Ey=module d’¢élasticité du sol
vs=coefficient de contraction du sol

Les contraintes sont désignées par:

o=contraintes normales
r=contraintes de cisaillement

Les déplacements sont:

u=déplacements horizontaux
v=déplacements verticaux.

Le sol de fondation est supposé élastique, homogene et isotrope. Le mur sera
calculé en état de contraintes planes (tranche isolée), le sol par contre en état de
déformations planes (étendue indéfinie du sol).

Le probléme est défini par les trois groupes de conditions suivants:

(1) Conditions d’équilibre et de compatibilité, données par la théorie de 1'élas-
ticité, dans le triangle (mur) d’une part et dans le demi-plan (sol) d’autre
part. _

(2) Conditions aux limites pour les efforts normaux o et les efforts tranchants =
sur le contour ABCDE. :

(3) Conditions de continuité des contraintes et des déplacements sur le bord
BD, commun au mur et au sol.
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Difficultés principales

La difficulté principale du probléme réside dans I’établissement de la connexion
entre le mur et le sol, c’est-a-dire dans I’expression de la continuité des contraintes et
des déplacements le long du bord commun BD. Cette difficulté se trouve accrue du
fait que les deux éléments en coaction, le mur et le sol, ont des caractéristiques
différentes:

Le mur: forme triangulaire, avec E,, et v,
Le sol: demi-plan, avec Ey et v;.

Chacun des deux domaines est caractérisé par une fonction d’Airy (fonction
“‘potentielle”” des contraintes), dont I’expression mathématique différe essentiellement
d’un domaine a ’autre, d’ou la difficulté de la connexion sur le bord commun BD.

Une autre difficulté apparait quand on exprime les conditions aux limites sur les
parements, ou les efforts tranchants =, ainsi que les efforts normaux o sur le parement
aval s’annullent. On est conduit & un probléme de ‘““valeurs propres’’ défini par des
arguments complexes et donnant lieu a des familles de “fonctions propres” dont
I’établissement est singuliérement laborieux.

Ce sont la les deux difficultés essentielles et caractéristiques du probleme.

Solutions analytiques

Tolke* a donné une solution analytique rigoureuse du probléme. Cependant,
cette solution est présentée de maniére a décourager le lecteur, tant les grandes lignes
de sa démonstration sont enfouies dans un fatras analytique inutile. Deux autres
critiques seront formulées ultérieurement.

Tolke décompose le probléme en deux parties et procéde en principe de fagon
analogue a celle utilisée dans le calcul des systémes hyperstatiques en statique
appliquée. !

Une coupure effectuée a la base BD permet de calculer le mur comme systéme
‘““1sostatique,” ce qui conduit a la régle du trapeze généralisée, c’est-a-dire a une réparti-
tion linéaires des contraintes. La coupure entre le mur et le sol, ouverte dans le
systeme isostatique, doit étre, pour satisfaire aux conditions d’élasticité, refermée au
moyen d’un systéme de contraintes “ hyperstatiques’’ (contraintes * propres ’). Il faut
donc exprimer que les déplacements relatifs effectifs # et v sont nuls en chaque point
de la base du mur.

Les calculs, extraordinairement laborieux, conduisent a des séries qui ne conver-
gent que lentement. La détermination des constantes d’intégration d’aprés la
méthode de Ritz n’est pas effectuée de maniére correcte dans le mémoire de Tolke.

On peut envisager d’autres solutions analytiques par un choix différent des
systemes de coordonnées, par exemple, mais "ampleur des calculs reste immense.

Pour ces différentes raisons, nous avons envisagé une solution pratique au moyen
du calcul aux différences qui conduit, en principe, toujours a une solution numérique
Cet avantage reste, bien entendu, lié a I'inconvénient qu’un tel résultat ne peut pré-
tendre a une solution de caractére général.

Dans notre probléme, le calcul aux différences s’est révélé extrémement fertile,
gréace au fait qu’il a été combiné avec la ‘““méthode de relaxation’ pour la résolution
des équations linéaires.

Quelques indications sur le principe de cette méthode numérique, ainsi que sur
les conclusions d’ordre pratique qui découlent de I’exemple traité, forment I’objet
principal de cet exposé.

* Tolke: Wasserkraftanlagen, Handbibliothek fir Bauingenieure, Verlag Springer, Berlin, 1938.
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CALCUL AUX DIFFERENCES ET METHODE DE RELAXATION
Remarques générales

Le calcul aux différences transforme les expressions différentielles en *“différences
finies,” dont la forme et la structure sont celles avant le passage a la limite (intervalle
de base tendant vers zéro), qui caractérise le calcul différentiel.

Les fonctions inconnues dépendent ici des deux variables mdependantes xety
et sont définies, dans notre probleme, par des équations aux dérivées partielles du
quatriéme ordre (équations biharmoniques) ainsi que par d’autres équations aux
dérivées partielles aux limites et sur la coupure entre le mur et le sol.

L’exactitude de la solution augmente en principe quand on diminue l'intervalle
de base, donc quand on augmente le nombre des points du réseau de base, mais le
nombre des équations linéaires a résoudre augmente, lui aussi, rapidement; I"ampleur
des calculs numériques peut devenir prohibitive et ’exactitude finale peut en souffrir.
Il existe en quelque sorte un optimum dans le choix de I'intervalle de base.

C’est pourquoi, les avantages du calcul aux différences ne peuvent étre jugés de
maniére absolue, mais uniquement en relation avec la méthode de résolution des
équations linéaires choisie dans chaque cas. .

Ayant a résoudre, dans notre probléme, quelques centaines d’équations linéaires,
nous avons renoncé aux méthodes classiques de résolution. D’autre part, il serait
illusoire de calculer les solutions des équations linéaires avec une exactitude exagérée,
alors que I’erreur provenant du fait que les intervalles de base sont finis, peut étre non
négligeable.

Nous avons donc adopté une méthode de résolution par approximation successive,
dite méthode de relaxation. '

M éthode de relaxation

Cette méthode, due a Southwell, posséde des avantages marqués sur les autres
méthodes procédant par approximation successive.

En désignant par L; (i=1, 2, . . . n) les membres de gauche d’un systeme de n
équations linéaires, on nomme ‘“résidu” de I’équation la valeur de L; quand on
assigne aux inconnues des valeurs quelconques. La solution du systéme correspond
a L;=0 pour chaque équation.

. Si dés lors on commence par un systéme de valeurs approchées pour les inconnues
(ce qui est toujours possible), les L; seront différents de zéro. La méthode de relaxa-
tion consiste a réduire, par opérations successives sur les inconnues, tous les résidus a
zéro. '

La maniéere d’opérer cette réduction forme précisément la technique de la méthode
de relaxation. Ces opérations peuvent étre effectuées aisément sur la base de schémas
géométriques, appelés ‘“Relaxation pattern’; ceux-ci sont caractéristiques de la
structure des équations et contiennent de maniére simple et claire le principe des calculs
numériques a effectuer.

Le Prof. Stiefel de I’Ecole Polytechnique Fédérale a Zurich a généralisé cette tech-
nique de la relaxation pour les équations biharmoniques de notre probléme en appli-
quant le principe de réduction par variation simultanée de plusieurs inconnues et en
établissant des méthodes appropriées pour accélérer la convergence de I'itération.

L’avantage principal de la méthode de relaxation réside dans le fait que le calcul
numérique est limité au calcul des résidus, ceci sans ’obligation de calculer directe-
ment les valeurs intermédiaires des inconnues, comme c’est le cas pour les méthodes
ordinaires d’itération.
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Les calculs effectués ont démontré le grand avantage de la méthode de relaxation,
adaptée de maniére appropriée aux problémes du genre traités ici.

EXEMPLE NUMERIQUE
Données
Les données sont celles de la fig. 1 avec les valeurs numériques suivantes:
h=1 (normée)
b=0,8
ym=yf=2,5 t./m.3

1
Em=4Ef, Vm=8, llf=Z

Le mur est soumis au poids-propre et & la pression latérale de [’eau, le sol aux
réactions du mur et a la pression verticale de 1’eau.

Conditions |
Les trois groupes de conditions (voir, Introduction, Position du probléme) sont a
remplir: _ .
(1) Conditions générales d’équilibre et de compatibilité (équations biharmoniques):
Dans le mur (triangle): 44w,,=0
Dans le sol (demi-plan): 44w=0
wm, Wr=Ffonctions d’Airy pour les domaines respectifs
2 o2
4

==t Fv opérateur laplacien

(2) Conditions aux limites sur le contour ABCDE:

) . OWm
Exprimées par les charges extérieures au moyen des grandeurs W, —a;?;
- 3Wf
/> on

n=direction de la normale

(3) Continuité des contraintes et des déplacements le long de la coupure BD:
3Wf_ 0 Wm
ey oy

Pwr 4 Pw, 13 2w,

215" 32 145" ox

83wf_ 4 3w, 19 3w, +13

oy3 15" ay3 45 ox2ay ' 18

La forme de ces deux derniéres équations, due a des considérations sur I’énergie

du systéme, se préte particuliérement bien au calcul de relaxation.

Wr=Wp,

Calcul numérique

Les conditions énoncées doivent étre transposées en équations aux différences.
Pour les besoins du calcul aux différences, le demi-plan doit €tre remplacé par un
rectangle suffisamment grand. Les deux domaines, triangle et rectangle de



398 All 3—P. LARDY

remplacement, sont recouverts d’un premier réseau de points (réseau caractéristique
du calcul aux différences).

Il s’avéra trés vite que la relaxation dans le rectangle était fort laborieuse. Cette
difficulté fut résolue par le Dr. Preissmann, Zurich, qui réussit a transformer les for-
mules de Boussinesq du demi-plan pour des fonctions d’influence en expressions
appropriées au calcul aux différences et a la méthode de relaxation. Cette simplifica-
tion supprime la relaxation dans le demi-plan; dés lors, la relaxation peut étre limitée
au domaine du triangle et aux deux bords de la coupure.

Les valeurs de départ sont celles données par la régle du trapéze.

La relaxation fut grandement facilité par ’emploi de la machine a calculer avec
commandes automatiques de I'Institut de Mathématiques appliquées de I’Ecole Poly-
technique Fédérale (Direction: Prof. Stiefel). Grace aussi a I’établissement de
“relaxation pattern” appropriés, 'ampleur du calcul de relaxation a pu étre tenue
dans des limites raisonnables.

Ce premier réseau, relativement large, a permis de résoudre le probléme avec
suffisamment d’exactitude dans la zone moyenne du mur et de sa base, mais s’est
révélé insuffisant pour les zones des parements ainsi que pour les deux extrémités de
la base qui forment des domaines singuliers.

Dés lors, un réseau de densité double fut introduit. Gréce a des procédés spéciaux
pour accélérer la convergence de la relaxation, la solution numérique de ces zones
particuliéres put étre menée a bien.

Résultats

Les trois tableaux qui suivent contiennent, en comparaison, les valeurs extrémes
aux deux parements. :
TABLEAU 1

Contraintes normales verticales o,

Section Contraintes: parement c6té eaux I Contraintes: parement aval
Distance de Reégle du Calcul Différence | Régle du Calcul Différence
la coupure trapéze exact % | trapéze | exact %

en metres kg./cm.2 kg./cm.2 | kg/em.2 | kg./cm.2
6-6 | -

42,5 m. 5.4 6,6 ’ 22 9,0 ; 10,6 18
Full ,

32,5 m. 6,3 8,4 | 33 10,5 ‘ 13,6 30
8-8 - &

22,5 7,3 10,4 49 | 12,1 : 17,6 46

i 8,2 46 | 78 13,7 | 22,4 63

10-10 1 ‘

2,5 m. 9,1 18,2 ! 100 15,2 ’ 30,0 97

Degré d’exactitude; ampleur des calculs

Les calculs ont été effectués avec cinq décimales. Les contraintes, découlant
des fonctions w par 'opération de la deuxiéme différence, sont évidemment moins
exactes que celles-ci. On arrive a une estimation de I’erreur moyenne d’environ 5%,
ce qui est amplement suffisant.

- Il est clair qu’a I’avenir, ’ampleur des calculs se trouvera réduite du fait que les
essais et titonnements du début ne se répéteront plus.
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TABLEAU 11

Contraintes de cisaillement 7

' Section Contraintes: parement aval
Distance de | Régle du Calcul —_—
la coupure trapéze exact Dxﬁgl/'ence

en meétres kg./cm.2 kg./cm.2 /0
66’ 5
40 m. 7,5 9,6 28
7-T
30 m. ‘ 8,8 12,0 36
g8 10,0 14,8 48
20 m. » 4
9'-9’

10 m. 11,2 18,2 63
1010 12,5 25,0 100
TABLEAU 111

Contraintes normales horizontales o

Section Contraintes: parement aval
Distance de Régle du Calcul oa,
la coupure trapéze exact Dlﬂ'g}-ence
en meétres kg./cm.2 kg./cm.2 /0

6-6
42,5 m. 5,8 7,2 24
7-7
32,5 m. 6,8 8,8 30
8-8 '
22,5 m. 7,8 12,0 56
L 8,8 15,0 70
12,5 m. 2 2
10-10
2,5m. 9,8 19,0 94

La technique de relaxation ayant été fortement développée au cours de ces calculs,
il est possible, a ’avenir, de profiter de I’expérience acquise (Etablissement de tableaux
définitifs de fonctions pour la résolution de I'équation 44w=0). Remarquons
également que certains résultats intermédiaires de caractere assez général, se trouvant
établis une fois pour toutes (transposition des formules de Boussinesq en équations
aux différences, etc.), peuvent étre utilisés tels quels par la suite.

I reste néanmoins.clair que ce genre de calculs s’adresse a des spécialistes qualifiés.

CONCLUSIONS

Les résultats obtenus prouvent qu’il est possible de traiter, sur une base numérique
appropriée, des problémes extrémement difficiles et compliqués de la théorie de
I’élasticité, ceci avec une exactitude suffisante et une ampleur de travail raisonnable, a
condition de tenir compte des expériences faites.

Les résultats (voir tableaux et fig. 2) sont remarquables et montrent que les écarts
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entre la solution indiquée et la regle du trapéze sont beaucoup plus importants qu’on
ne pouvait s’y attendre, avant tout dans la zone de base du mur (jusqu’a 100 %).

Des écarts de 10 9 se font sentir jusqu’a prés de la mi-hauteur du mur, donc dans
un domaine trés grand.

Dans les zones médianes des sections horizontales, les contraintes sont plus
petites que celles calculées par la régle du trapéze. Dans le sol de fondation, les con-
traintes o, s’atténuent plus rapidement que les autres. :

Ces résultats soulignent la valeur de tels calculs et posent, entre autre, a nouveau
la question de la sécurité et des contraintes admissibles dans le béton, puisque, dans
certaines zones, les écarts conduisent a une majoration des contraintes d’environ
1009 sur celles du calcul ordinaire. On peut envisager la généralisation de cette
méthode pour d’autres profils que le triangle et tirer profit des résultats acquis pour
simplifier et accélérer les calculs, qui peuvent étre complétés, dans les zones critiques,
par des développements analytiques. La prise en compte de la souspression et des
effets de la température ne présente aucune difficulté.

Cet exemple démontre D’efficacité et la valeur de méthodes numériques appro-
priées, appliquées a des problémes dont la solution analytique rigoureuse est,
aujourd’hui encore, pratiquement inaccessible.

Résumé

Ce mémoire donne un apergu succinct sur une méthode numérique donnant la
solution du probléme de “l'influence de I’élasticité du sol sur les contraintes des
barrages-poids.”

La transformation des équations différentielles en équations aux différences et leur
résolution au moyen du calcul de ““relaxation’” permet de résoudre le probleme avec
une exactitude suffisante et remplace avantageusement la solution purement analytique
pratiquement inaccessible.

Les conclusions mettent en évidence la nécessité de tels calculs en établissant
’altération profonde subie par les contraintes sous l'influence de [’élasticité du sol,
ceci principalement a la base du mur.

Summary

This paper includes a comprehensive survey of a numerical method for solving
the problem of the “Influence of the elasticity of the soil on the conditions of stress
in gravity dams.”

The conversion of the differential equations into equations of difference, and also
their solution by the “relaxation method,” leads to a sufficiently accurate solution of
the problem and replaces with advantage the purely analytical method, which is
unusable in practice.

The conclusions emphasise the necessity of such calculations and throw a very
impressive light on the important influence of the elasticity of the soil on the conditions
of stress in gravity dams, particularly at the foot of the dam-wall.

Zusammenfassung
Diese Arbeit vermittelt einen gedridngten Ueberblick iiber eine numerische
Methode zur Losung des Problems: ‘Einfluss der Baugrundnachgiebigkeit auf den
Spannungszustand von Gewichtsstaumauern.”
C.R.—26
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Die Verwandlung der Differentialgleichungen in Differenzengleichungen sowie
ihre Auflosung nach der “Relaxationsmethode” fiihrt zu einer geniigend genauen
Losung des Problems und ersetzt mit Vorteil die praktisch unzugidngliche, rein
analytische Methode.

Die Schlussfolgerungen unterstreichen die Notwendigkeit solcher Berechnungen
und beleuchten sehr eindriicklich den hervorragenden Einfluss der Baugrundnach-
giebigkeit auf den Spannungszustand der Gewichtsstaumauern, insbesondere in der
Umgebung der Fundamentfuge.
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Nouvelle méthode d’analyse tridimensionnelle sur modéles réduits
A new method of three-dimensional analysis using small-scale models

Ein neues Verfahren zur drei-dimensionalen Spannungsmessung in
Modell-Konstruktionen

C. BENITO

[ngénieur, Chef de la Section des Modéles Réduits du Laboratorio Central de Ensayo
de Materiales de Construccion, Madrid

1. GENERALITES

Malgré les trés grands progres réalisés par les différentes théories employées pour
le calcul des ouvrages, de nombreux techniciens du génie civil cherchent une
méthode pour la résolution des problémes d’élasticité a trois dimensions. Les
travaux préliminaires sont établis sur la base de la théorie de I’élasticité et on
n’entrevoit pas, jusqu’a maintenant, de processus mathématique général de résolution
qui pussie étre appliqué a la pratique. Sauf en certains cas relativement rares, qui
sont d’ailleurs devenus classiques pour étre répétés dans tous les traités spéciaux, la
connaissance de la répartition des centraintes ou des déformations dans I’intérieur du
" solide spatial exige la résolution d’un systéme d’équations différentielles qui constitue
un obstacle sérieux et infranchissable.

Cependant, on peut espérer parvenir par les méthodes expérimentales au résultat
cherché. C’est ce que montrent les investigations qui ont déja été faites dans ce sens
et qui nous rapprochent progressivement de la solution du cas général.

Dans un travail antérieur,* nous avons déja exposé les méthodes photo-
élastiques adoptées pour I’étude de certains modeles tridimensionnels construits en
bakélite, en trolon ou en gélatine. Dans cette étude, nous proposions I’emploi de la
gélatine pour les problémes ou interviendraient des efforts de masse ou dans lesquels
les modéles seraient de grandes dimensions ou de formes compliquées. Mais ainsi
que nous l'avons constaté, en appliquant les méthodes photo-élastiques tri-
dimensionnelles a ['observation de tranches planes des modéles dans lesquels les
contraintes avaient été préalablement ‘“fixées,” il n’a été possible. que d’évaluer les
directions et grandeurs des trois contraintes principales, aux points ou I’on connaissait

* C. Benito et A. Moreno, “Etudes photo-élastiques tridimensionnelles sur modeles en gélatine,”
Publication No. 73 du Laboratorio Central de Ensayo de Materiales de Construccién, Madrid, 1951.
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a priori la direction de 'une d’elles. Cette condition limite dans une large mesure
I’utilité pratique de cette méthode et réduit son application aux exemples dans lesquels
interviennent des symétries de forme et de charge.

En dehors du domaine de la photo-élasticité et dans tous les cas ol I'on a essayé
des modeéles réduits tridimensionnels, les études dont nous avons connaissance ont
été limitées a ’observation des déformations de surface; il est rare que I’on ait
introduit des organes d’auscultation en certains points intérieurs.

Nous nous proposons d’exposer dans ce qui suit une nouvelle méthode avec
laquelle nous pensons avoir réussi a trouver la solution expérimentale des problemes
tridimensionnels, méme avec intervention des efforts de masse.

2. EXPOSE DE LA METHODE D’ESSAI ET DES BASES DE RECHERCHE

Dans les études que nous avons faites des caractéristiques des gélatines, études
dont les résultats figurent dans la publication citée plus haut, nous avons mis en
évidence les variations observées dans la valeur du module longitudinal de Young en
fonction de la température et nous sommes arrivés a conclure que la valeur du module
augmentait au cours du refroidissement du matériau. Ce phénoméne nous a permis
de charger le modeéle réduit a étudier a la température ambiante (a peu pres 20° C.),
puis de diminuer cette température progressivement jusqu’a 2° C.; nous avons pu
ensuite décharger le modéle, puis le couper en tranches planes et paralléles et observer
les contraintes enregistrées, comme s’il s’agissait d’un cas de photo-élasticité 4 deux
dimensions. Nous avons également constaté qu’en élevant a nouveau la température
de ces tranches, la contrainte observée disparaissait.

Pour expliquer ce processus en nous rapportant aux déformations, nous pourrons
dire que si nous chargeons un modele construit avec un matériau présentant un
module d’élasticité E, il se produira en chaque point des déformations que nous
désignerons par e. En abaissant la température, le module passe a la valeur E'>E;
en supprimant les charges extérieures, les déformations récupérées ¢’ ont un signe
contraire aux déformations antérieures et leur sont inférieures. Il subsiste ainsi des
déformations fixées qui ne subissent aucune modification (comme nous 1’avons
démontré), méme si nous coupons le matériau en prismes ou en cubes. Si la
température s’éléve ensuite jusqu’a la valeur initiale, le module reprend sa valeur
primitive et les déformations se trouvent libérées.

La méthode que nous proposons est basée sur la mesure de ces ““déformations
libérées” qui, lorsqu’elles sont connues pour chaque point de I'intérieur du modéle,
peuvent étre rapportées aux valeurs des contraintes, au moyen des constantes
élastiques du matériau a température de 1’essai.

Conformément a ce qui précéde, les différentes phases de I’application de la
méthode sont les suivantes:

(1) Préparation du modéle avec un matériau remplissant les conditions qui
seront indiquées au chapitre suivant.

(2) Application des charges extérieures a la température ambiante (environ
22° C.).

(3) Refroidissement lent du modéle jusqu’a une température intérieure uniforme
de 2° C. et retrait des charges.

(4) A ce moment, les déformations initiales sont retenues en partie dans la
totalit¢é du modéle; on le coupe donc en tranches ou en cubes, sans que
cette déformation initiale résiduelle subisse une modification, de ce fait.

(5) Mesure des ““déformations libérées” dans les tranches ou les cubes, lorsque
I’on éléve a nouveau la température jusqu’a environ 22° C,
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Si les déformations mesurées sont suffisantes, on pourra déterminer ’ellipsoide
des déformations de chaque point; a partir de cet ellipsoide, il sera aisé de passer a
I’ellipsoide des contraintes, en faisant intervenir les valeurs du module d’élasticité et
les coeflicients de Poisson a 22° et a 2° C.

Gréce a cette nouvelle méthode, nous nous proposons d’aboutir a la connaissance
en amplitude, direction et sens des contraintes principales, en n’importe quel point de
Iintérieur ou de la surface d’un modéle de forme quelconque, lorsqu’agissent sur lui
des efforts extérieurs ou de masse.

Deux questions essentielles doivent étre résolues pour la mise en pratique de cette
méthode:

(a) Disposer d’un matériau qui remplisse les conditions correspondant aux
hypothéses de base de la théorie de I’élasticité, de I’analyse dimensionnelle
et de la méthode ci-dessus elle-méme.

(b) Employer un processus de mesure qui permette de connaitre les valeurs des
déformations, avec la précision exigée par ’essai.

Nous examinons ci-aprés chacune de ces deux questions.

3. RECHERCHES CONCERNANT LE MATERIAU

La technique des modéles réduits d’ouvrages implique pour les matériaux certaines
conditions particuliéres.

Le matériau doit, en premier lieu, permettre la fabrication du modéle; il doit donc
se préter au moulage ou bien au fagonnage jusqu’a ’obtention de la forme voulue.
Dans les deux cas, il ne doit en résulter aucune contrainte résiduelle susceptible
d’altérer les résultats des essais. .

Du point de vue de la théorie de I’élasticité, le corps est supposé homogéne,
isotrope et élastique. Ces conditions doivent étre d’autant plus étroitement respectées
qu’elles seront satisfaites par le ou les matériaux que ’on projette d’employer pour la
construction effective de ’ouvrage. Par ailleurs, ’analyse dimensionnelle qui dicte
les lois de similitude & respecter entre les dimensions du modéle et celles de ’ouvrage
réel impose une série de conditions déduites du théoréme = ou de Vaschy; dans le cas
de la similitude amplifiée (échelle différente de 1), ces conditions sont exprimées par
les relations ci-aprés:

P'u_Du o = i
P'rR Dr VR

en désignant par:

les déformations,

les déplacements,

les longueurs,

les contraintes,

les modules d’élasticité,

les pressions extérieures,

les poids spécifiques des matériaux,

les densités des surcharges (par exemple I’eau qui agit sur le parement d’un

barrage),
v les coefficients de Poisson.
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Tous ces symboles sont affectés d’un indice M ou R suivant qu’il s’agit du modéle
ou de I'ouvrage réel. A I’exception de la derniére relation qu'exprime [’égalité des
coefficients de Poisson dans le modele et dans I’ouvrage, il n’est pas possible de tirer
une conclusion sans que le probléme soit plus nettement déterminé. Par suite et
afin de connaitre 1’ordre de grandeur des caractéristiques du matériau que ’on doit
utiliser, nous allons faire appel & un cas particulier d’ouvrage tridimensionnel ou, en
plus des forces extérieures, les efforts de masse exercent également une grande influence.
L’ouvrage que nous considérons comme le plus représentatif est ici le barrage-poids
a base droite ou en arc.

L’idéal serait de connaitre de régime de contraintes qui se manifeste en n’'importe
quel point de I'intérieur du barrage, de ses fondations ou de ses rives, en tenant compte
des particularités élastiques des divers éléments qui composent I’ensemble de 'ouvrage
et de I'influence de leurs poids respectifs.

Nous ne connaissons que peu d’exemples d’essais tridimensionnels sur barrages;
cependant, leur petit nombre est amplement compensé par la valeur des résultats
obtenus. Nous ne tenterons pas de les résumer ici; nous indiquerons seulement que
les plus intéressants ont été réalisés aux Etats-Unis, au Portugal et en Italie. Dans
la plupart des cas, on n’a considéré qu’ultérieurement I’influence du poids propre du
barrage et dans tous les cas, on a mesuré les déplacements des éléments de surface de
I’ouvrage. Comme nous l'indiquions antérieurement, notre but est de mesurer les
contraintes en n’importe quel point de I'intérieur ou de la surface et tout particulicre-
ment a proximité des fondations et des rives. En nous limitant a cet objet précis,
nous pouvons déduire des expressions (1) les conditions suivantes:

1. Le coefficient de Poisson du matériau constituant le modele doit étre de 1’ordre
de 0,3.

2. L’échelle des poids spécifiques doit étre la méme que celle des densités des
liquides qui constituent la charge ou, ce qui revient au méme, le poids spécifique du
matériau doit étre 2,3 fois plus grand que celui du liquide utilisé pour la mise en charge.
Si, en tablant sur ’expérience que nous avons acquise au sujet des essais photo-
élastiques, nous envisageons ’emploi d’un matériau présentant des caractéristiques
analogues a celles de la gélatine, le liquide de mise en charge ne devra pas altérer ce
matériau et, par conséquent, il sera impossible d’utiliser I'’eau. D’autre part, il
convient que [’échelle des modules d’élasticité soit faible, pour que le module
d’élasticité du modeéle soit, lui aussi, faible, ce que I’on peut réaliser en employant des
liquides plus légers que I’eau. Ceci nous amene a admettre, a titre de premier
titonnement:

.DM ~
—=0,8, donc: p'y;=0,8p'g~1,9 gr./cm.3
Dg

3. Si 'on admet que les déformations du modeéle peuvent étre vingt fois plus
grandes que les déformations réelles (hypothése adoptée aux essais du Boulder Dam?*),
c’est-a-dire:

E—M=0,04 . m
Ir

L’échelle des longueurs varie assez notablement d’un essai a l'autre; elle dépend
essentiellement des dimensions de I'ouvrage a étudier. Nous pouvons fixer comme

€ 5 .
20, il en résulte:
€R ER

* Model Tests of Boulder Dam, Bureau of Reclamation, Boulder Canyon Project, Part 5, Bull.
3, Denver, Colorado, 1939.
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limites 1/100 et 1/200, d’ou I’on peut déduire ’ordre de grandeur des modules
d’¢élasticité correspondants:

- Epn=2x%105%x0,04/200=40 kg./cm.2
dans I’un des cas et 80 kg./cm.2 dans I’autre.

En tablant sur ces données, nous pouvons résumer comme suit les principales
particularités du matériau que nous considérons comme le meilleur a employer, pour
appliquer la méthode ici proposée aux essais de barrages sur lesquels interviennent
des efforts de masse.

Le matériau doit se préter aisément au moulage ou au faconnage; il doit étre
homogene, élastique, isotrope, avec un coefficient de Poisson voisin de 0,3, un module
d’élasticité de ’ordre de 60 kg./cm.2 et un poids spécifique de 1,9 gr./cm.3 Cesderniers
chiffres indiquent seulement un ordre de grandeur, car ils ont été obtenus en partant
d’une hypothése (échelles des longueurs et des déformations) qui peut varier assez
notablement suivant chaque essai ou chaque matériau dont on dispose.

Nous n’avons pas encore mentionné une condition dont la non-satisfaction
empéche I'application du processus ici exposé. Il s’agit de la condition suivant
laquelle le module d’élasticité du matériau doit augmenter lorsque la température
ambiante diminue, la différence entre les valeurs extrémes devant étre aussi grande
que possible.

Pour trouver le matériau susceptible de satisfaire a toutes ces conditions, nous
sommes partis des études que nous avons déja effectuées sur les propriétés élastiques
des gélatines. Dans ces corps, se trouve un produit que I’on peut mouler facilement
par gravité, qui est homogene, isotrope, dans lequel la somme des déformations
élastiques et plastiques est proportionnelle a la contrainte qui les produit et qui admet
un module d’élasticité trés sensible a 'influence de la température. Toutefois, la
valeur de ce module d’élasticité est faible (nous n’avons pas réussi a dépasser 20
kg./cm.2), son poids spécifique est trés petit et il admet un coefficient de Poisson
élevé (de I’ordre de 0,5), ce qui ne nous permeét pas de I'utiliser effectivement ici.
Malgré ces inconvénients, nous avons adopté la gélatine comme matériau initial pour
la recherche du matériau qui convient le mieux. Nous ne décrirons pas ici toutes
les tentatives que nous avons faites et les nombreux petits échecs que nous avons
subis; nous nous contenterons d’indiquer le chemin qui nous a permis d’arriver 4 une
solution satisfaisante. Ces échecs, d’un intérét apparemment limité, nous ont
néanmoins permis de développer nos connaissances de certains matériaux, con-
naissances que nous mettrons a profit au cours d’études ultérieures.

Nous avons envisagé un produit de base composé de gélatine, de glycérine et
d’eau. D’autre part, nous connaissions les propriétés du mélange de glycérine et de
litharge, qui durcit et forme un corps a grande densité et haut module d’élasticité.

Nous avons donc envisagé d’ajouter de la litharge aux produits de base ci-dessus
afin de corriger ses propres défauts. Quelques essais nous ont donné ’assurance que
nous étions sur la bonne voie. Il nous a suffi de procéder a un nombre suffisamment
grand d’essais par tditonnements pour améliorer les résultats. Afin de ne pas nous
étendre trop longuement sur les différentes compositions essayées, nous indiquons
dans le tableau I les constituants de quatre mélanges, dont les modules d’élasticité
atteignent 12, 27, 34 et 70 kg./cm.2 apres 30 jours. ‘

Ces matériaux se prétent aisément au moulage et prennent au refroidissement la
rigidité caractéristique de la gélatine; ils peuvent ainsi se démouler facilement et
rapidement, ce qui permet d’observer leurs caractéristiques élastiques peu d’heures
apreés le moulage. Pour cela, on prépare des éprouvettes cubiques de 15 cm. de coté
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que ’on soumet & une compression simple aprés avoir graissé les faces pour éviter les
altérations par évaporation de I’eau intersticielle et aussi pour supprimer le frottement
sur la base de I’éprouvette au cours de ’essai. Comme il s’agit seulement de connaitre

TABLEAU I
Aen % B C D
Gélatine . . . 15 25 25 20
Bal, « & s s 30 20 15 20
Litharge . . . 40 40 40 45
Glycérine . . . 15 15 20 15

I’amplitude des constantes élastiques du matériau, les déplacements longitudinaux sont
mesurés en quatre points sur le plan de la base supérieure et aux quatre points corres-
pondants de la base inférieure; les déplacements transversaux sont rapportés au milieu
des faces latérales. Tous ces déplacements ont été déterminés avec une erreur
lnferleure a 0,01 mm. a l’aide de fleximétres placés ainsi qu’il est indiqué sur la fig. 1.
Les essais effectués comme nous venons

l H l l hl de l'indiquer ont montré que ces matéri-
/_"I aux se comportaiént élastiquement, que

N

J ] A leurs modules d’élasticité augmentaient avec
14 g ar I’age de I'éprouvette et simultanément
(T i 2 diminuait la valeur de leur coefficient de

Poisson, phénomene favorable puisque nous
sommes partis d’une valeur de »=0,50 trop
élevée. Nous nous attendions a une dimi-
nution de v corrélativement a 'augmentation
de E, puisque ces grandeurs varient ordin-
airement en sens inverse l'une de [’autre.
Nous constatons en effet que £ augmente et
que v diminue au-dessous de 0,5 (limite théo-
rique de plasticité), le comportement élastique prédominant ainsi sur le comportement
plastique. Ce processus d’accroissement de durcissement avec I’dge n’est pas
indéfini; il se ralentit lentement. Nous avons pu observer que sur tous les mélanges
essayés il cessait aprés 28 ou 30 jours, temps au bout duquel on obtenait des valeurs
stabilisées.

Pour appuyer les affirmations ci-dessus, nous reproduisons sur la fig. 2 les
diagrammes contraintes-déformations obtenus sur certains essais a 1, 2, 7 et 48 jours,
sur ’échantillon 41-11, dont la composition est indiquée en A, dans le tableau I.
Sur tous les graphiques, on constate qu’il y a proportlonnallte entre les contraintes et
les déformations.

Ayant ainsi réussi a obtenir un matériau satisfaisant aux conditions élastiques,
avec un poids spécifique voisin de 2, il importait de vérifier si ce module d’élasticité
E augmentait effectivement lorsque la température diminuait; a cet effet, nous avons
refroidi les éprouvettes et lorsque la température atteignait 2° C.*, nous avons répété
le processus de mise en charge. Dans tous les cas, nous avons obtenu I'effet prévu
et nous avons pu Vérifier que I'augmentation est d’autant plus faible que le module
d’élasticité est lui-méme plus grand; ceci parait logique, puisque la rigidité doit étre
d’autant moins sensible aux fluctuations des températures qu’elle est plus grande.

]

Fig. 1. Mesure des déformations

* Pour refroidir I'éprouvette, on la mettait, ainsi que la machine d’essai, dans une chambre froide
dans laquelle les opérateurs étaient munis d’habits de protection contre le froid.
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Sur la fig. 3, nous avons résumé les résultats des essais de mise en charge a 2° C.
sur P’échantillon 41-11 et nous les comparons avec ceux qui ont été obtenus a 22° C,
(fig. 2); nous pouvons y observer les valeurs obtenues pour E et » aux températures
citées. La connaissance des caractéristiques élastiques des mélanges a 22° et 4 2° C.
nous a fait penser qu’il était opportun d’étudier I’évolution du processus au cours du
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Fig. 2. Diagrammes contraintes-déformations

refroidissement. A cet effet, nous avons soumis trois éprouvettes identiques a 22° C.
a la méme compression simple, maintenue constante, et nous avons mesuré les
racourcissements pendant ’abaissement de la température. Les résultats des trois
essais ont été pratiquement identiques, ce qui nous a fourni une bonne preuve de leur
homogénéité et de leur reproductibilité. Ces essais font I'objet de la fig. 4. Sur
le diagramme de la partie supérieure sont portées les variations de température; 2
la partie inférieure sont portées les déformations en fonction du temps. Au moment
de I'application de la compression & la température de 22° C., il se produit presque
instantanément un racourcissement qui augmente, mais 4 une allure décroissante,
pour se stabiliser aprés 17 heures. Ce comportement est, jusqu’ici, celui méme qui
caractérise les corps élasto-plastiques (comme nous ’avons déja indiqué, la somme des
déformations élastiques et plastiques est proportionnelle 4 la contrainte qui les produit).

Cette période écoulée, nous avons

., - i

abaissé lentement la température et _ 48 Jours
nous avons constaté une augmenta- % g —
tion des déformations,alaquelle nous <~ 3 _ X
attribuons une cause d’ordre ther- 2 6 R

3 L .2 5 )93—-
mique, puisque les autres facteurs ne T 4 — L
varient pas. I‘l Yy a ici contraction s ; = i eole 022°C
thermique, suivant un coefficient < | et S V. Tronsverscle 0 2°C—

pratiquement linéaire qui peut étre 0 2 30 4 50 6 7 8 80 100 1o
déduit des deux diagrammes. A la gr/cm?
fin de ce stade, nous avons déchargé Fig. 3. Diagrammes contraintes-déformations
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les éprouvettes et constaté des déformations de signe contraire aux déformations
antérieures et a peu pres égales a la moitié des déformations produites au cours de la
période de mise en charge (ceci pouvait -étre prévu, puisque le module d’élasticité a
2° C. est a peu prés le double de la valeur pour 22° C.). Enfin, en élevant la tempéra-
ture, nous avons constaté une nouvelle déformation correspondante a la dilatation
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Fig. 4. Diagramme thermique

et a la diminution du module d’élasticité. Le diagramme met en évidence une
déformation résiduelle diie a I'intervention de différentes étapes plastiques.

De cette figure, que nous désignons sous le nom de ‘‘diagramme thermique,” il
résulte deux valeurs qui sont indispensables pour pouvoir passer des valeurs
expérimentales mesurées a la détermination des contraintes; 'une d’elle est la
déformation ““libérée”” et I’autre est le coefficient de dilatation thermique. Ces deux
valeurs doivent étre déterminées avec la précision maximum, puisqu’elles sont
essentielles pour les calculs ultérieurs.

Le matériau se comportant élastiquement a 22° C. comme a 2° C. les déformations
““libérées,” sous déduction des dilatations et contractions thermiques, apparaissent
proportionnelles aux contraintes; il est ainsi possible de parvenir a la connaissance de
ces derniéres.

Nous en avons ainsi terminé avec la premiére partie du mémoire se rapportant
aux matériaux utilisables dans I’application de la méthode proposée. Nous avons
mis en évidence les principales caractéristiques de quelques mélanges qui permettent
d’entreprendre 1’étude générale des modéles tridimensionnels avec efforts de masse.
Ceci constitue une contribution, si faible soit-elle, 4 la résolution du probléme
excessivement complexe de la détermination des contraintes a I'intérieur d’un barrage.

4. ESSAIS DE MESURE DES DEFORMATIONS

Lorsque nous nous référons & l’ellipsoide des contraintes ou a D’ellipsoide des
déformations, en un point de I'intérieur ou de la surface d’un corps, nous tablons sur
des considérations théoriques qui ne peuvent étre concrétisées sans faire intervenir



ANALYSE SUR MODELES REDUITS 411

un espace. C’est pourquoi en nous efforcant de déterminer la position, I'amplitude
et la direction des axes de ces ellipsoides en un point, nous procédons a mesure dans
un espace suffisamment petit pour pouvoir admettre que, dans cet espace, le champ
des contraintes est pratiquement constant.

Nous avons déja vu que la méthode exposée comporte la mise en charge du modéle,
son refroidissement a 2°, puis, aprés décharge, le découpage en tranches conservant
les traces des déformations. Ces derniéres sont libérées ultérieurement par élévation
de la température. Etant donné que la mesure des déformations libérées fournit les
indications de base pour le calcul des contraintes, il est tout d’abord nécessaire de
fixer la forme et les dimensions des tranches du modéle corrélativement aux mesures
a prévoir.

A premiere vue, la forme idéale parait étre la sphere, puisque par *‘libération”
des déformations, cette sphere se convertirait en un ellipsoide; toutefois, nous avons
dli renoncer a découper une sphére dans le matériau indiqué précédemment. D’autre
part, tout en réussissant a obtenir I’ellipsoide final, I'ellipsoide de déformation aurait
une forme telle qu’il ne serait pas possible d’obtenir, dans des conditions pratiques et
par mesure directe, la position et la grandeur des axes; pour cette raison, et comme
I'indique le Professeur Torroja,* il serait nécessaire de mesurer les déformations
suivant les arétes et diagonales d’un octaédre régulier, inscrit dans la sphére primitive.
Pour y parvenir, il n’est pas indispensable de partir d’une sphere; en effet, en
découpant des morceaux du modele sous la forme de cubes, ce qui est aisé, on peut
mesurer les mémes grandeurs, qui sont celles que mentionne la fig. 5. Une autre
solution plus simple et qui est suffisante pour déterminer I’état des contraintes est
celle que cite Torroja, qui consiste a mesurer les déformations selon les trois arétes
orthogonales d’un cube et les diagonales de trois faces contenant le méme sommet,
ainsi que l'indique la fig. 6. Si le cube est suffisamment petit pour que I’on puisse

N\
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Fig. 5. Directions des mesures Fig. 6. Directions des mesures

admettre que I’état des contraintes est pratiquement constant, ces mesures permettent
de déterminer les valeurs des trois déformations longitudinales «,, «,, €, et des trois
glissements y.,, ¥xz, ¥yz; dans ces conditions, les équations de Lamé permettront de
résoudre le probléeme.

Pour mesurer d’une maniere pratique les arétes et les diagonales des faces de
chaque cube, sur de nombreux points, nous avons effectué un grand nombre d’essais
en employant des procédés et dispositifs divers. L’un des procédés, que nous
considérons comme le meilleur, consiste & découper le modéle retenant ses déforma-
tions a 2° C., sous forme de tranches planes sur lesquelles on dessine un quadrillage

* E. Torroja, ‘“El problema general de la auscultacion,” Publication No. 16 de I'Instituto Técnico
de la Construccion y del Cemento, Madrid.
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dont on observe les déformations corrélativement a I'élévation de la température.
La méthode de mesure est analogue a celle qu’appliquent Brewer et Glasco* sur des
piéces métalliques; cependant, nous n’avons pas pu reproduire photographiquement
le quadrillage sur le matériau constituant le modéle, comme ils le font eux-mémes
et nous avons di reproduire photographiquement sur la tranche de petites Croix
constituées par des traits extrémement fins. -
Pour éprouver la valeur du procédé de mesure, nous avons soumis a une com-
pression simple un prisme droit ayant une section de 10X 10 cm. et une hauteur de
20 cm.; dans le tiers central de 'une des faces latérales, nous avons reproduit une
série de croix formant un réticule de 2 cm. de c6té. L’ensemble a été photographiéf
avant et aprés la mise en charge et on a mesuré les intervalles avec une erreur de
moins de 0,01 mm., a I'aide d’un microscope micrométrique; on a ensuite déterminé
les valeurs indiquées sur la fig. 7. Les déformations longitudinales ont pu étre
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Fig. 7. Déformations et isostatiques expérimentales

déterminées avec des erreurs atteignant 109, sur la valeur moyenne et sur les points
de croisement qui ont été utilisés pour dessiner les courbes isostatiques; I'erreur
maximum a été de 2°45’. Bien que ces erreurs soient admissibles, nous pensons que
’on pourrait les réduire en améliorant la reproduction photographique et, par suite,
la précision de la mesure; nous y avons toutefois renoncé, car pour couper le modéle
en tranches planes, il nous était nécessaire d’établir et d’essayer trois modéles
identiques, pour pouvoir disposer de données portant sur trois plans perpendiculaires.

Pour tourner la difficulté, nous avons décidé de découper le modéle en cubes de
petites dimensions, puis de mesurer les distances entre les milieux de chaque paire

* Brewer et Glasco, “Determination of Strain Distribution by the Photogrid Process,” Journal of

Aeronautical Corp., Nov 1941, No. LV, 9.
1 Les photographles ont été prises avec des plaques & fort contraste.
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d’arétes ou de faces opposées. Ces points étaient matérialisés en enfongant de
petites aiguilles en acier inoxydable; le probléme se ramenait ainsi & mesurer
I'intervalle entre deux pointes métalliques; pour obtenir la précision maximum, nous

avons étudié et construit un appareil que nous décrivons ci-aprés briévement (fig. 8).

Fig. 8. Dispositif pour la mesure des déformations
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Fig. 9. Schéma électronique pour la mesure des déformations
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Cet appareil comporte deux vis micrométriques avec axes prolongés se terminant par
de petites surfaces circulaires planes. Ces micrométres sont montés sur un chassis
qui leur permet de pivoter sur deux axes, I'un vertical et I’autre horizontal. Au centre
de I’appareil, se trouve une petite plateforme A dont la position peut étre réglée en
hauteur et suivant deux axes horizontaux et perpendiculaires entre eux. La
disposition planétaire de I’appareil permet hereusement d’effectuer des mesures en
différentes positions, sans qu’il soit nécessaire de toucher le cube placé sur la plateforme
centrale. La difficulté était de déterminer le moment auquel la pointe de I’'une des vis
micrométriques vient en contact avec la pointe de I'une des aiguilles métalliques
enfoncées dans le cube. Cette difficulté a été résolue dans des conditions absolument
satisfaisantes, en mettant a profit le fait que le matériau utilisé est bon conducteur de
I’électricité. Le courant électrique passant a travers la masse du cube ne devant
nécessairement produire en lui aucune altération, nous avons adopté le montage
électronique indiqué sur la fig. 9 et dans lequel le contact entre les deux pointes
métalliques est indiqué par un signal lumineux émis par un indicateur d’accord, avec
une erreur inférieure a 0,005 mm. Dans ces conditions, le courant qui traverse le
cube est absolument négligeable et nous n’avons constaté aucune altération du
matériau lui-méme. Ce procédé permet de mesurer les déformations en neuf
directions, autour d’un point de I'intérieur du modéle; comme nous I’avons indiqué
antérieurement, ceci est suffisant pour déterminer la répartition des contraintes qui
agissent sur ce point.

Pour terminer, nous reproduisons ci-aprés les résultats de deux essais, au cours
desquels nous avons appliqué la présente méthode.

5. VERIFICATION EXPERIMENTALE

Pour vérifier une méthode expérimentale, il est nécessaire de I’appliquer 4 des
exemples ou a des problemes dont on connait a priori 1a solution. En considérant
comme valables les résultats de la théorie d’élasticité, nous avons réalisé plusieurs
essais dont deux sont décrits ci-aprés:

La premicre expérience consistait a charger un cube en compression simple avec
une charge connue et a lui appliquer la méthode indiqués en

' découpant intérieurement deux petits cubes orientés comme

1 l l ‘ [ l l J J \ l Iindique la fig. 10. Il s’agissait de vérifier si la direction
et 'amplitude des contraintes principales dans les deux
cubes, obtenues d’apres les résultats des mesures des défor-

z o O mations libérées, présentaient la concordance voulue avec
la charge initiale qui, comme nous l’avons déja dit, était
connue.

Ainsi qu’il a été indiqué a la fin de la troisiéme partie,
avant d’appliquer la méthode au modéle, c’est-a-dire au cube,
il était nécessaire de déterminer le coefficient de dilatation
thermique du matériau au passage de 2° a 22° C. et, a ’aide
d’un diagramme thermique analogue a celui de la fig. 4, de
rapporter les déformations libérées aux contraintes initiales.
Pour déterminer le coefficient de dilatation ou de contraction
thermique, nous avons utilisé les procédés classiques et
constaté qu’il était de 0,00031 entre 2° et 22° C.; pour rapporter les contraintes
initiales aux déformations libérées, nous avons déterminé les diagrammes thermiques
longitudinaux et transversaux d’une éprouvette de compression apres six jours de

T

Fig. 10. Position des
cubes intérieurs
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moulage; ensuite, et en appliquant a ce cas connu les équations de Lamé, nous avons
obtenu les valeurs suivantes:

G=2,3 kg./cm.2 (module de rigidité ou d’élasticité transversale),

Ae=0,046 kg./cm.2, en désignant par e la valeur de la dilatation cubique et avec
vE
=T aa—zy

En tablant sur ces valeurs caractéristiques du matériau que nous nous proposions
d’utiliser, nous avons entrepris 1’essai du cube comme suit:

Nous avons moulé un cube de 7 cm. d’aréte, puis nous I’avons mis en charge en
compression simple, aprés six jours, la salle de travail étant a 22° C. Aprés avoir
atteint I’équilibre, nous avons fait descendre la température a 2° C. et nous avons
retiré les charges, ce qui a amené la récupération d’une partie de la déformation, la
déformation résiduelle étant retenue. Nous avons ensuite découpé les deux cubes
comme l’indique la fig. 10 et nous avons mesuré les distances entre les points au
milieu de chaque paire d’arétes ou faces opposées en adoptant la méthode indiquée
dans la quatriéme partie. Toutes ces opérations ont été faites & 2° C. Les mesures
étant terminées, nous avons relevé la température a 22° C. et nous avons répété les
mesures. Les valeurs des glissements et des déformations libérées aprés élimination
de la dilatation thermique sont indiquées dans le tableau II.

TaABLEAU II
€x €y €; Yxy Yxz Yz
Cubel . 0,0103 0,0104 —0,0199 —0,0001 —0,0012 0,0020

Cube IT . -=0,0090 0,0115 —0,0043 0,0027  —0,0289 0,0004

En partant de ces résultats et 4 I’aide des équations de Lamé, nous avons calculé
les valeurs des contraintes en kg./cm.2 qu’indique le tableau III.

TaBLEAU 1]

Con-

traintes Oy ay o, Tay Txz Tyz
Cube I . 0,002 0,002 —0,138 0 —0,002 0,004
Cube I . —0,087 0,007 —0,065 +0,006 —0,066 -0

d’ou nous avons déduit les contraintes principales suivantes, en kg./cm.2, que nous
comparons dans le tableau IV avec la pression moyenne réelle.

TABLEAU 1V

Contraintes principales en kg./cm.2

a1 a1 410
CubeI . . . . . . 0,002 0,002 —0,138
CubelIl . . . . . . 0,008 —0,010 —0,143

Pression moyenne réelle . 0 0 —0,123
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En déterminant les cosinus directeurs des contraintes principales du cube I, nous
avons obtenu des résultats qui différaient de moins de 1° des valeurs exactes; pour

L o

—_ VY Gx

T

T

Fig. 11.

Position du cube intérieur

le cube II, ’erreur maximum a été de 4°. Ces
derniers résultats, ainsi que ceux du tableau IV,
constituent une excellente confirmation de la
valeur de la méthode.

Un autre essal a consisté 4 soumettre un
cube a une double compression et, en appli-
quant la méthode décrite, & en faire sortir un
petit cube (fig. 11). Dans ce cube, nous avons

-mesuré les déformations libérées, puis nous en

avons déduit les contraintes principales et nous
avons procédé a une comparaison avec les
charge extérieures. Nous n’indiquerons pas
ici tout le détail de I'opération qui, d’ailleurs,
est semblable a celle que nous venons de
décrire pour le cas précédent. Nous nous

bornerons a indiquer les résultats obtenus en les comparant aux valeurs réelles tirées

des charges extérieures connues.

TABLEAU V

Contraintes principales en kg./cm.2

Valeurs expérimentales .
,,  Tréelles

Valeurs expérimentales

9y R\ ¢ o
0 —0,32 —0,63
0 —0,29 —0,61
TABLEAU VI
Cosinus directeurs de oy
_ 1 m n
0,70 0 0,70
0,707 0 0,707

,,  Téelles

TABLEAU VII

Cosinus directeurs de oy

+ Valeurs expérimentales .
,,  Téelles

1 m n
0 1 0
0 _1 0

TABLEAU VIII

Cosinus directeurs de oy

Valeurs expérimentales .
,,  réelles

| m n
0,68 0 0,75
0,707 0 0,707

Les résultats ci-dessus exposés fournissent, dans tous les cas, une approximation

acceptable.



ANALYSE SUR MODELES REDUITS 417

6. CONCLUSION

A T’aide des exemples que nous venons de décrire, nous pensons avoir mis nettement
en évidence les qualités d’une méthode qui permet d’étudier les ouvrages sur trois
dimensions, malgré I'intervention des efforts de masse, en utilisant des modeles
réduits dans lesquels il est possible de déterminer la répartition des contraintes autour
de n’importe quel point, que ce soit & I’intérieur ou a la surface.

Pour y parvenir, il est nécessaire de construire ce modéle avec un matériau tel
que celui qui est indiqué en troisiéme partie et qui, non seulement, satisfasse aux
hypothéses de base de I’élasticité, mais soit en outre tel que son module d’élasticité
longitudinal augmente lorsque la température ambiante baisse. Ceci étant réalisé,
on peut mettre le modéle en charge a 22° C., le refroidir a 2° C., le décharger et le
couper en cubes ayant un volume suffisamment petit pour que ’on puisse admettre
que dans chacun de ces cubes le régime des contraintes en tous points est constant.
Ceci fait, il suffit de mesurer les déformations libérées dans les cubes par I’élévation
de la température a 22° C. (comme il est indiqué dans la quatriéme partie), puis de les
rapporter aux constantes élastiques du matériau pour pouvoir, a ’aide des équations
de Lamé, déterminer les valeurs en grandeur et en direction de chacune des contraintes
principales correspondant a chacun des points ayant fait I’objet de I’essal.

L’auteur est heureux d’exprimer ici sa gratitude a Mr. A. Moreno, Perito
Industrial, du L.C.E.M.C. de Madrid, pour la collaboration qu’il a bien voulu
apporter a la mise au point de cette étude.

Résumé

L’auteur expose une méthode expérimentale pour I’étude de la répartition des
contraintes en un point quelconque de l'intérieur ou de la surface d’un ouvrage
tridimensionnel, méme dans le cas ol en plus de forces extérieures, on fait intervenir
I'influence des efforts de masse.

L’auteur propose que I’étude de I’ouvrage soit effectuée au moyen d’un modele
réduit a construire dans un matériau dont il indique la composition. Il expose
également les caractéristiques de ce matériau ainsi que le procédé original désigné
sous le nom de “libération des déformations” et décrit les appareils utilisés pour
mesurer ces déformations. Il termine en exposant les résultats obtenus au cours de
deux essais effectués avec la méthode proposée, avec une conclusion satisfaisante.

Summary

In this paper an experimental process has been devised for the study of stress
distribution at any internal or surface spot of a three-dimensional structure, even in
the case where the influence of mass forces is considered, besides outside forces.

The author proposes the study of a structure by means of a small-scale model
made with a given material, the composition of which is indicated by him. He also
describes the characteristics of the said substance and the original process named
“liberation of deformations” and the apparatus he uses to measure the changes of
form. He ends up by showing the results obtained from two examples where he has
applied the proposed method with satisfactory results.

Zusammenfassung
Die vorliegende Abhandlung beschreibt ein experimentelles Verfahren zur
Untersuchung der Spannungsverteilung in irgend einem gegebenen Punkte im Innern
oder an der Oberfliche einer Konstruktion mit drei Dimensionen, auch fiir den Fall,
C.R.—27
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dass ausser dusseren Krafteinwirkungen auch der Einfluss der Massenkrifte in
Betracht gezogen wird.

Der Verfasser schldgt vor, die Untersuchung einer Konstruktion an einem
verkleinerten Modell vorzunehmen, das aus einem Material hergestellt ist, dessen
Zusammensetzung angegeben wird. Er beschreibt ebenfalls die Eigenschaften dieses
Materials, sowie das Originalverfahren, genannt ‘‘Befreiung von Verformungen,”
und die Apparate, die zum Messen dieser Verformungen dienen. Die Abhandlung
schliesst mit der Beschreibung der Ergebnisse, die bei zwei Probemessungen erzielt
wurden, wobei die vorgeschlagene Methode mit zufriedenstellenden Ergebnissen zur
Anwendung kam. '
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‘Lateral stability of beams
La stabilité latérale des poutres
Kippstabilitit von Trigern

K. BENTLEY, M.A.
Cambridge

INTRODUCTION

The problem of lateral stability of beams is not new: the solution for the case of
elastic buckling of a beam subjected to a pure bending moment was first given more
than half a century ago. This solution, however, was for a thin deep beam and
Timoshenko later extended the theory to include I-sections. The mathematical solu-
tions are, however, rather complicated and Timoshenko gave an approximate energy
method for an I-girder subjected to a central load. In this theory, however, he neg-
lected the ratio of principal moments of inertia as being small and the theory is only
applicable to I-girders. In the following paper it is proposed to give approximate
energy solutions for beams subjected to pure bending and to a central concentrated
load and no assumption is made as to the size or shape of the member except symmetry
about the major axis. '

The case of lateral buckling of beams when stressed above the proportional limit
has been considered very little. Timoshenko* suggests a possible method of pro-
cedure. The problem is considered in more detail in this paper and a method is
suggested for calculating the critical loads when the curvature of the stress—strain
relationship is taken into account.

ENERGY METHOD FOR OBTAINING THE CRITICAL MOMENT FOR LATERAL BUCKLING OF
BEAMS SUBJECTED TO PURE BENDING

Consider a beam of length L subjected to a pure bending moment M about the
major axis. Let the bending rigidity about the major axis be 4 and about the minor
axis B. Then due to the bending moment M the beam will take up a curvature of
M/A in the plane of bending. The stability of the beam may be considered by
supposing that it undergoes some small displacement from this position of equilibrium.
If consequent on this small displacement a decrease of energy take place, the beam is

* See Timoshenko, Theory of Elastic Stability.
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unstable. The critical condition such that the beam is in neutral equilibrium may
be found by finding the value of M so that there shall be no gain or loss in energy.

At a distance z from one end of the beam let the lateral deflection be u and the
angle of twist 8. There is thus a lateral bending moment of M sin § and a bending
moment of M cos 6 about the major axis. Thus for an elemental length of beam dz
there is an increase of strain energy of bending of :

MZ2cos28 M?2sin28 Mzd_le B 20 d
24 T 2B 24)%T2p\! T4) sl
If 8 is small, the total increase of strain energy is:
L M2 A
R —_—— 2
fOZB(I B)B.dz i w8 ® & % =« @ Y3

[t has been shown by many writers* that the torque acting at this cross-section may
be written as:

Cdf d3f
dz  ldz3
do . ) ) d3e
where CC?Z' is the torque according to the usual St. Venant solution and the term C; 7

allows for non-uniform torsion and warping of the cross-section and may be cal-
culated according to the method given by Timoshenko. :
The strain energy due to torsion is thus:

e R

Thus the sum of (a) and (b) at the critical condition will be equal to the work done
by the applied moments M when the beam is allowed to deflect. The work done
by M may be calculated by finding the angle through which it turns.

The lateral bending moment A sin & causes the ends of element dz to rotate

0 ) " :
. dz relative to each other. This occurs in a plane at an
M sin2 0
B

Due to bending about the major axis the ends of the element dz rotate by an amount

A_fd M cos2 8
=g T

the deflection 6 was given and the second term after. Thus the total relative rotation
of the ends is:

M sin
through an angle 3

angle ¢ to the horizontal and the relative rotation in a vertical plane is L.

. dz relative to each other, the first term being the angle before

. 3 Ldz—— .dz+ Y

The work done by M is therefore, for small :
L M2 B
el | 1R s
fo 5 (1 A)G . dz=(a)+(b)
Substituting for (a) and (b) and noting that the beam is symmetrical about the centre,
the equation from which the critical moment may be obtained is:

Liz pp2 B Liz. (d6\2 L2 do d3o
—(1—==162 . dz= i — = :
JO 2B(1 A)B .dz fo C(dz) .dz fo Cldz T dz' . . (1)

* See Timoshenko, Journal of the Franklin Institute, March, April, May, 1945.

ff- (M sin2 6 M M cos2 0 )
— . dz



LATERAL STABILITY OF BEAMS 421

If the relationship between 6 and z were known exactly the equation (1) would give
an exact value for M., the critical moment causing lateral instability. Usually an
exact relationship is not known, but if a relationship satisfying the end conditions
is assumed, then an approximation to the answer is obtained.

Thus when the ends of the beam are held in such a manner that they are free to
2

; : s d2
warp, 9=a, sin — satisfies the end conditions that f=>—-=0 at both ends of the

L dz2
beam. Substitution of this in equation (a) gives a value for the critical moment with
ends free to warp of: -

T BC w2 C4
M"l_i mJ1+EE : B 0% B & B (2)

This agrees with Timoshenko’s solution for an I-girder when the value of C; for an
I-girder is substituted and the value of B/A is neglected. The ratio of B/4 may be
as high as 0-4 in practice and in those cases its neglect would give appreciable error.
The value of the critical moment given in equation (2) is exact because in this case
the value of 6 assumed is exact.

In a practical case it is almost impossible to apply a moment at the ends without
preventing warping and so the case when the ends are completely restrained against

2
warping will now be considered. In this case =5, ( 1—cos %z) satisfies the end con-

do :
ditions that §=—=0 at both ends. When this value of 6 is substituted in equation (1)

dz
- it is found that the value of the critical moment Mc,2 is given by:

P BC [ 4x2
MC,Z—IISEA/I_B/A.J1+ﬁ.f N )

This solution is not exact due to inaccuracies in the assumed value of 6. By
taking 0 of the form (see Timoshenko, Theory of Elastic Stability):

6
9=b1(1—cos 2[‘12)+b2(1—cos 4%Z)—f-b3(l—cos lz)+ 4 @

L

a more accurate answer may be obtained. It can be shown that equation (3) is in
error by the order of 2 %, negligible for all practical purposes. One noticeable point
about (3) compared with (2) is that complete restraint against warping increases the
critical moment by more than 15 Y%,.

ENERGY SOLUTION FOR A BEAM SUBJECTED TO A CENTRAL CONCENTRATED LOAD THROUGH
THE SHEAR CENTRE

Suppose that a central load P is applied at a distance y above the shear centre so
as to produce no twist. The stability is considered as for the case of pure bending
by assuming the beam to deflect. Let 8, be the angle of twist at the centre.

Then in the manner already given, the strain energy due to lateral bending is:

L. P B
—(1=2)02,2
Jo %.45(1 A)H z2dz

and the strain energy due to torsion is:

L Cde Cdﬁ dJBd
o*[ (az)‘ a‘zr]
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The work done by the central load may be found by. considering it in two parts.
If the load is applied at the shear centre, the work done by it may be found in a manner
similar to that already described for the pure moment. Due to lateral bending the
Pz . d ) :
ends of element dz rotate through an angle EZ sin 0 —Bf relative to each other. Since
this bending occurs in a plane at angle 6 to the horizontal it causes a lowering of the
Pz sin 0

load of zsin 6. g dz. Similarly due to bending about the major axis the

P .
load rises by an amount >4 z2sin2 6, dz. Thus, if 8 is small, total work done by P is:
L2 p2 B
Z (1=2)62,2
Jfo 23(1 A)G z2dz

Due to the load being applied at a distance y above the shear centre there is an
additional work done of Py(l1 — cos 8,,)=Pyb,,2/2 approximately. Remembering the
symmetry about the centre of the beam, the energy equation then becomes:

L2p2/ B Py8,2 (L2 _(dh\2 L2 4§ 436
—{1==1)02 il Ak I i 7 — — . dr.
R TR PP T S L L
The solutions of this may be found as for the pure bending case and are given below:

_ ) 17-1 BC 72 C
When y=0 and ends free to warp: P, = 72 JI—B/A(1+E . ?) N )
18-3 BC 4n2 C,
When y=0 and ends ﬁxed.r Fopp= 72 4/1—8/A(1+? .—E) ... (6)

When the load is applied distance y above shear centre the critical load of equation (5)

is reduced to:
2

X
Pc,11=Pc,1(1—X+7) approx. -+ . . . . . . (M

where
30By

~ P, L3(1—BJA)

The theory considered so far has been concerned with beams of material which
behaved elastically. For beams of, say, aluminium alloy the range of elastic behaviour
is small and so the elastic critical loads will not give a good approximation to the
failing loads of the beams. Attempts have been made in an empirical fashion to
allow for this effect, among others, by assuming some initial imperfection for the
beam or some eccentricity of loading. The effect of this is that lateral deflections of
the beam occur from the first application of the load becoming infinite, theoretically,
near the critical load. The failing load is then determined as that load which causes
the stress in the beam to exceed the yield stress of the material or some other pre-
determined value. A value of the initial eccentricity is then chosen to give good.
agreement with experiment. This method, whilst giving reasonable agreement
between calculated and actual failing load, covers up the essential fact that much of
the reduction in failing below the elastic critical load is due to the relationship between -
stress and strain being non-linear. In this paper it is proposed to give an approach
which is dependent only on this fact.

The method follows that originally proposed by Engesser for struts in which the
curved stress—strain relationship may be- allowed for by an effective modulus of

X
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elasticity. For the problem of lateral stability of beams, the method is more com-
plicated due to the fact that there are four factors, 4, B, C and Cj;, in which the
modulus of elasticity plays a part. Since I-beams are most frequently used in practice
and are also the simpler to deal with theoretically, the following discussion will be
restricted to beams of I-section. The usual proportions of I-section will be taken, so
that it is possible to assume that the web has a small effect on the bending and that
in bending about the major axis there is a uniform stress in the flanges.

Let us assume the theoretical approach of a beam which remains straight until
buckling and then fails by bending laterally and twisting. Before buckling the stress
distribution in the I-girder may be considered to be very nearly a uniform compressive
stress in one flange and an equal tensile stress in the other. The strain of the flanges
will be that corresponding to the stress for the material concerned, and the curvature
of the beam will be the strain divided by the distance to the centre of the section. If
the stress is greater than the limit of proportionality this curvature is greater than the
elastic value given by M/A. It 1s fairly easy to see that the curvature is increased in
the ratio E/E; where E;, the secant modulus, is the actual ratio of stress to strain.
As will be seen from equation (a), it is the curvature in the plane of bending which
introduces the factor 4, and it is therefore proposed to allow for this by assuming 4
to be factored in the ratio E/E. This, of course, has no effect when the stress is
below the limit of proportionality.

At the critical load,- when the beam suddenly deflects laterally and twists, the
direct stresses due to lateral bending and the shear stresses due to twist both increase
rapidly, whilst the mean direct stress due to the applied moment remains constant.
Thus at some points in the beam the direct stress will decrease below that caused by
the applied moment, and if the mean direct stress is above the elastic limit, then the
reduction in stress will occur as an unloading from the plastic region. Thus the stress
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distribution across a flange will be somewhat as shown in fig. 1, where the increase of
loading follows the usual stress-strain curve, but unloading from the plastic region
follows the usual Hooke’s law.

For small lateral bending moments the increase of stress can be approximated
to by a straight line whose gradient E; is that of a tangent to the stress—strain curve
at the point considered. E,is called the tangent modulus. This effect was first men-
tioned by Engesser for struts, and it has been suggested that for small lateral bending
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stresses the effective lateral bending modulus may be taken as a reduced modulus E *
where:

E, 4E\|E E,

E-(+VE/EY E
The effective value of B to be used in formulae is then the elastic value factored by
E./E.

In this purely theoretical case of a beam which remains straight until buckling,
the shear stress due to twisting increases rapidly as the direct stress remains con-
stant. There is a certain amount of evidencet that for this case the shear modulus
1s unchanged and the value of C remains unaltered.

Let us now consider the more practical case where the beam undergoes lateral
deflections and rotations before the critical load is reached. These lateral deflections
are due to inevitable imperfections in the beam. In this case the deflections first of
all occur gradually and then more rapidly when near to the critical load. Thus the
shear stress due to twisting increases gradually as the bending moment is applied.
When the shear stress increases very gradually in this way while the direct stress
increases more rapidly there is evidence{ to show that the shear modulus is very
nearly the elastic value G factored by E;/E. Accordingly the torsional stiffness C
will be factored in the ratio E;/E. For more rapid increases of shear stress the
effective modulus would be higher and closer to the elastic value which applies when
the increase of stress is very rapid. In a similar manner, lateral bending occurs
gradually and the direct stress distribution in a flange will change somewhat as shown
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Fig. 2. Variation of stresses in beam with small eccentricity

in fig. 2. The stresses continually increase and the direct stress distribution due to
lateral bending of small magnitude is such as to approximate to that given by a
tangent to the stress—strain curve.

The effective value of modulus B is thus its elastic value factored by E,/E. The
effective value of the major stiffness 4 will be the same as that already discussed,
that is, A X E5/E. Since the warping rigidity of an I-girder is provided by differential
bending of the flanges, this also will be modified in the ratio E,/E.

Thus it will be seen that in the more practical case of deflections occurring below
the critical moment, the effective values of B and C are lower, giving a lower value
of the critical moment. In practice therefore it is to be expected that the values of

* S. Timoshenko, Theory of Elastic Stability, McGraw Hill.
T S. Batdorf, “Theories of Plastic Buckling,” Journal of Aeronautical Sciences, July 1949,
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the critical moment will approximate to this lower limit. The value of the critical
moment for a beam is now dependent on the material of the beam and not only on
the modulus of material as given in equations (2), (3), (5) and (6).

In order to find the critical moment for a beam the stress—strain curve of the
material must first be obtained and the values of E,/E and E;/E noted for various
values of the stress. The value of the critical moment may then be most easily found
from (2) and (3) by a trial and error procedure. A value for the stress in the flange
caused by the critical moment is assumed so that the values of Ej/E and E,/E are
known. When these values are substituted in the equations a value of the critical
moment will be obtained which will probably differ from the originally assumed value.
A second approximation to the correct value can then be made until agreement is
reached.

The case of the centrally applied load is rather more difficult, since the stress and
therefore the effective moduli vary along the beam. Numerical methods of integra-
tion are required for the solution. With the assumptions made, the stress in the
flange varies linearly from zero at the end of the beam to a maximum p at the centre.
The value of P in equation (4) may thus be replaced by 4p/ZL where Z is the modulus
of bending about the major axis. Equation (4) may then be rewritten for the case
where load is applied through the shear centre:

4p2 [LI2 11 L2 ige\: (H2 g8 438
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where 4, B, C and C; are functions of p.

Assuming some value of p, the effective values of 4, B, C and C; may be found
and each of the integrals of equation found by numerical integration. The solution
gives a value of L which agrees with the chosen value of p and hence the value of the
critical load for a given L. This procedure may be repeated until the relationship
between P and L is found. Of course, in the above the value of Z to be used should
not be the usual elastic value but one which allows for the form-factor due to the
curved stress—strain relationship. For the usual I-section this correction is small.

EXPERIMENTAL RESULTS

Some experiments have been carried out at the Engineering Laboratory, Cam-
bridge, with the support of the Aluminium Development Association to check the
above theory. The beams had an I-section 21 in. deep, by 14 in. wide by # in. thick
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Fig. 3. Stress-strain curves Fig. 4. Moduli for M.G.5
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and two materials were used, one to specification D.T.D. 364 and the other M.G. 5,
typical stress—strain curves and effective moduli being shown in figs. 3 and 4.

The specimens were supported under conditions of simply supported ends, the
beam being free to deflect in vertical and horizontal planes but the ends prevented
from twisting. For the case of pure moment the load could not be applied so that
the ends were completely free to warp and the method of end fixing is shown in figs. 5
and 6. The blocks bolted to the flanges (fig. 5) located the specimen in the end fittings

Fig. 6. 50-in. beam at failure

(fig. 6) and also provided some restraint against warping. The blocks were clamped
tightly in the end fittings. End moments were applied by means of cantilevers pro-
jecting beyond the ends of the specimen. ,

With the central loading the ends were allowed to warp by supporting the I-section
through the web only. With the higher strength alloy, D.T.D. 364, restraint against
warping was provided for as in the pure bending case, but with the M.G.5 the ends
were welded to 4-in. thick blocks of aluminium in the hope of providing full restraint.

The results of the tests together with the calculated results are shown in figs. 7, 8,
9 and 10.

It will be seen that for long slender beams the failing load may be greater than
the critical load. This is to be expected since in this region the critical load falls
below the minimum strength of the beam. For the end fittings of type shown in fig. 5
the experimental results lie consistently between the two calculated curves showing
approximately the same amount of restraint against warping and that full restraint
was not obtained.
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On the whole the experimental results seem to agree well with the theory; the
largest discrepancies appear in the neighbourhood of the proportional limit, where
the ““elastic” curve diverges from that calculated by the use of effective moduli. Itis
in this region that the greatest divergence might be expected, due to the rapid change
in slope of the stress—strain curve. For example, consider a practical beam in which
there is inevitably some small deflection near the critical load, and let us suppose that
the length is such that the critical load just produces a stress equal to the proportional
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limit. Any small lateral bending therefore produces stresses which extend into the
region of curved stress—strain relationship and the ratio. E,/E is less than 1. The
simplified theory so far considered gives the effective modulus at this point as £ and
hence it is to be expected that in practice the failing load will be less than that cal-
culated. This difference will be greater, the greater the initial imperfections which
produce the lateral deflection, and it is only in this region that the initial imperfections
would be expected to have much effect.

Nowhere in the theory has any mention been made of the size of the initial
eccentricities which must be present in any practical beam. Some eccentricity was
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assumed in the theory, in order to produce small deflections below the critical load,
but no specific magnitude was attached to it. The basic assumption was that the
lateral deflections were small, so that the bending stress distribution could be approxi-
mated to by a straight line. It was also assumed that no unloading of the fibres
occurred. This second assumption is not strictly true. Measurements of deflection
which were taken enabled an estimate to be made of the point at which unloading
occurred and it appeared that unloading usually occurred but never below 95%, of
the failing load. This is sufficiently close to failure to make the assumption reason-
able. In this region the lateral bending becomes so large that the first major assump-
tion is no longer tenable and the bending stresses no longer follow a reasonably
straight-line law. It can be shown that the effect of unloading and this effect tend
to cancel each other and hence the reasonable agreement of the theory with experiment.

CONCLUSIONS

On the basis of the experimental data presented it seems that the calculated critical
load for lateral buckling does give a good approximation to the failing load of beams
in bending, even when the magnitude of the initial eccentricities is neglected.

Summary

The usual mathematical solutions for-the problem of lateral stability of beams
are long and complieated, particularly when allowance is made for the ratio of the
maximum and minimum bending stiffnesses. An approximate energy solution is
presented in this paper for the two cases of a beam in pure bending or under a central
concentrated load.

The theory is extended to allow for beams fabricated from materials whose stress—
strain curve is non-linear, which is the case with aluminium alloys. The method used
for this follows that originally presented by Engesser for struts when the usual elastic
modulus is replaced by an effective modulus. Experimental results are given for
I-beams fabricated from two different aluminium alloys. These results show good
agreement with the theory.

Résumé

Les solutions mathématiques habituelles du probleme de la stabilité latérale des
poutres sont longues et complexes, tout particulicrement lorsque le rapport entre les
valeurs maximum et minimum de la rigidité a la flexion est variable. L’auteur pré-
sente une solution approchée, basée sur des considérations énergétiques, dans les
deux cas de la flexion pure et de la concentration de la charge au milieu de la poutre.

La théorie est élargie aux poutres constituées en un matériau dont le diagramme
d’allongement est non-linéaire, comme c’est le cas par exemple pour les alliages
d’aluminium. La méthode employée suit celle qui a été indiquée initialement par
Engesser, dans laquelle le module habituel d’élasticité est remplacé par un module
efficace. L’auteur reproduit des résultats expérimentaux obtenus sur des poutres
constituées par deux alliages légers différents. Ces résultats présentent une bonne
concordance avec la théorie.

Zusammenfassung
Die liblichen mathematischen Losungen des Problems de seitlichen Stabilitdt von
Trdgern sind lang und kompliziert, besonders bei verdnderlichem Verhiltnis der
grossten zur kleinsten Biegesteifigkeit. Dieser Aufsatz bringt eine Ndherungslosung
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auf Grund einer Energiebetrachtung fiir die beiden Fille der reinen Biegung und
der Einzellast in der Mitte des Trédgers zur Darstellung.

Die Theorie wird erweitert auf Trager aus Material mit nichtlinearem Spannungs-
Dehnungsdiagramm, wie zum Beispiel Aluminiumlegierungen. Die dabei verwendete
Methode folgt der urspriinglich von Engesser fiir Streben angegebenen, bei der der
iibliche Elastizititsmodul durch einen effektiven Modul ersetzt wird. Es werden
Versuchsresultate fiir Triger aus zwei verschiedenen Aluminiumlegierungen angege-
ben. Diese Resultate zeigen eine gute Uebereinstimmung mit der Theorie.
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