
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 4 (1952)

Rubrik: AII3: Other methods of calculation (approximation methods, relaxation
method, calculation regarding rupture, experimental statics, etc.)

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


All 3

Measurement of strains in a slab subjected to a concentrated load

La mesure des contraintes dans une dalle soumise ä une charge
concentree

Spannungsmessungen an einer Platte unter Einzellast

Ir. H. J. KIST, Ir. A. L. BOUMA and Ir. J. G. HAGEMAN
Chief Engineer, Rijkswaterstaat Research Engineer, T.N.O., Delft Research Engineer, T.N.O., Delft

Introduction
For designing reinforced-concrete slabs it is desirable to know the stress

distribution produced by concentrated loads.
In the theory of plates as it has been developed up to now, the material is usually

supposed to be ideal: homogeneous, isotropic and elastic and meeting the requirements

of Hooke's law.
In order that the results of the measurements can be compared with these existing

theories, measurements have to be made on a practically ideal material. This is one
of the reasons why a steel model was chosen. Moreover a steel model can be
constructed on a fairly small scale, and besides it is possible to make a great number of
observations on such a model for many different schemes of loading.

In order to interpret the results of the measurements on reinforced-concrete
constructions it will be necessary to carry out tests on reinforced-concrete slabs during
which the specific behaviour of this material will be observed. Only part of the
investigation has been completed, however, several results have already been obtained
and some conclusions can be drawn.

Description of model and tests
The model (fig. 1) contains two rectangular slabs for testing. The upper slab is

the web of a beam DIN 100, length 580 cm. Rotation of the flanges is prevented,
so that the sides of the web are practically fixed. The web has a thickness of about
1-9 cm. The lower slab (about 96x1-9x506 cm.) has a hinge-bearing along the
entire length of each long side. The distance between these hinge-bearings is 92 cm
and is called the span.

One short side of each slab is completely fixed and the other short sides have
hinge-bearings. In the future these hinge-bearings may be removed in order to
make these short sides entirely free.
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Fig. 1. Cross-section of model

The model is rigidly united by vertical and diagonal members.
The load is applied by a hydraulic jack placed between the slabs. The magnitude

of the load is measured by a dynamometer provided with electrical resistance
strain-gauges and is kept limited to assure the validity of Hooke's law.

The load was concentrated on a circular area with a varying diameter D (7-6—5-4
—3-6—1-6 cm.) or transmitted by a ball with a diameter of 1 cm.

The influence of different packingsuchas 3 mm. of cardboard and 3 mm. of rubber
between the slab and the distribution piece was also tested.

Up to now, measurements have been taken only in the middle part of the lower
slab. It may be supposed that the supports along the short sides of the slabs do not
influence the stress distribution in the central part; in other words, in this case the
slab may be considered to be infinitely long. The load is placed respectively in
different points of this central part, while the strains are measured in several places.
Because no strain-rosettes were used, a special scheme had to be designed for fixing
the strain-gauges and placing the load, so that for a point at a certain distance from
the load the values of ex and ey could be determined in a simple way.

Philips strain-gauges mostly were used with a measuring length of 12 mm. In
some places Baldwin strain-gauges were used with a measuring length of 12 and 3 mm.

Results
From the strains measured (ex and ey) for a certain magnitude and position of the

load P, the bending moments Mx and My are determined by means ofthe formulae:

M*=TZ©2 • fe+" • «r) • ^2

M>'=\^v-2 ¦ ^>+v ¦ e*> • *;'2

in which the modulus of elasticity is assumed to be £=2-15 IO6 kg./cm.2, and
Poisson's ratio v=0-3.

Mx is the bending moment transmitted by sections perpendicular to the span, and
My the bending moment transmitted by sections parallel to the span.
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The relation between elongation and load (ex, ey and P) was fairly linear. For
that reason it was possible to use one certain magnitude of P for calculating.

Fig. 2 shows the values of Mx/P and My/P at several points of sections below P,
one in the direction of the span and the other parallel to the long side of the slab.
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Fig. 2. Moment-load ratio fro'm measured strains

In this case the load P is placed without any packing in the centre of the span.
In the neighbourhood ofthe load, and especially below the load, the influence of

the concentration of the load proves to be very important. This influence, however,
may be neglected when the point is chosen at a greater distance from the load. The
influence of the packing also appears to be limited to the close surroundings of the
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load. Generally the results of the formulae concerning the elementary theory of
plates1 agree well with the T.N.O. results.

Fig. 2 also shows the values of Mx/P and My/P at points in sections below P, one
parallel and the other perpendicular to the span. In this case a concentrated load
with diameter D—l-6 cm. without any packing is placed respectively at different
points of the span.

When the load is moved from the centre to the vicinity of the supports it appears
that in the beginning the values of Mx/P and My/P decrease only slightly.

Fig. 3 again shows the values of Mx/P below the load as a function of the
concentration of the load in the case where the load P is placed at the centre of the span.
The observations obtained with three different kinds of strain-gauges and with two
different packings and without any packing show a certain deviation. During
loading without any packing, generally lower values are found, and during loading
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Fig. 3.

with a rubber packing of 3 mm., higher values of Mx/P are found. For comparison
the values according to the elementary theory of plates l and those from the formula
of Westergaard 2 are also given. Those of Westergaard also agree well with the test
results when the load is concentrated on a very small area.

The T.N.O. results also agree with those of tests on rectangular slabs of aluminium
made by R. G. Sturm and R. L. Moore.3

The tests will be continued. The load will be placed at different points of the
lower slab near the short sides (different boundary conditions: hinged, fixed, free).
Thereafter tests will be made on the upper slab.

Fig. 3 also shows the maximum moments according to the Netherlands Code
(G.B.V. 1950).

When the load is concentrated on a small area, the moments determined from the
observations are considerably bigger than those according to this code. However,
it must be taken into consideration that a reinforced-concrete construction that is
loaded up to the limit of its bearing capacity does not follow Hooke's law. Usually
the thickness of a reinforced-concrete slab is, in relation to its span, bigger than for

1 For references see end of paper.
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the T.N.O. model. For this reason the results of this investigation are compared
with those of the tests of Prof. Dr. Ing. Morsch.4

During these tests on reinforced-concrete slabs (span 200 cm., thickness 14 cm.,
and sides perpendicular to the span 300 cm.) a load is applied that is distributed over
an annular area with an outer diameter of 10 cm. He concludes that it is allowable
to take into aecount a co-operating width in the slab equal to or bigger than the span.
This means that the moment is equal to or smaller than 0-25P. In the tests of Morsch
the diameter of the loaded area amounted to 0-05 of the span. In the steel model
the diameter would thus be 4-6 cm. From the results of the steel-model tests a maximum

moment of 0-40P to 0-47P would then be found (fig. 3).
It remains to be deeided how far the difference between these values and 0-25P

is due to the differences in the relation between the thickness of the slab and the
span or to the differences between the properties of steel and those of reinforced
concrete.

Another problem which arises is what moments must be taken into aecount for
the design of reinforced-concrete slabs that are very thin in relation to their span
and carry a load that is concentrated on an area as small as possible.

More data concerning the above problems can be obtained by testing reinforced-
concrete slabs upon which dead loads as well as live loads are applied.
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Summary
The purpose of these experiments is to obtain data for designing reinforced-

concrete floor slabs for bridges and other structures, subjected to concentrated loads.
The tested model was a steel slab which had been stress-relieved.
Electrical resistance strain-gauges have been used.
The results have been compared with some existing theories, other experiments

already made on this subject and the reinforced-concrete code of the Netherlands
(G.B.V. 1950).

R6sume

Le but des presentes recherches est de reunir des donnees en vue du calcul des
dalles de tablier en beton arme, pour ponts et autres ouvrages, dans le cas d'une
charge concentree.

cr.—16
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Le modele qui a ete soumis aux essais etait constitue par une dalle en acier ayant
subi un traitement d'egalisation. Les mesures ont ete effectuees ä l'aide d'extenso-
metres electriques ä resistance.

Les resultats obtenus sont compares avec certaines theories, avec ceux qui ont
ete fournis par d'autres recherches experimentales anterieures sur la meme question,
ainsi qu'avec les prescriptions neerlandaises concernant le beton arme.

Zusammenfassung

An einer spannungsfrei gemachten Stahlplatte, die durch eine konzentrierte Last
beansprucht wurde, sind Messungen ausgeführt worden, um Unterlagen für die
Berechnung von Stahlbetonplatten bei Brücken und sonstigen Konstruktionen zu
erhalten. Benützt wurden Dehnungsmess-streifen.

Die Ergebnisse wurden mit einigen schon bekannten Theorien, mit weiteren
Forschungen auf diesem Gebiete, sowie mit den niederländischen Stahlbetonbestimmungen

verglichen.
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Experimental and theoretical investigation of a flat slab floor

Recherches theoriques et experimentales sur une dalle-champignon

Experimentelle und theoretische Untersuchungen an einer Pilzdecke

Ir. J. G. HAGEMAN
Research Engineer T.N.O., Delft

Introduction
It is known that a three-dimensional stress distribution in a homogeneous elastic

material, which is moreover isotropic and meets the requirements of Hooke's law, is
established by three linear simultaneous differential equations with linear boundary
conditions. Only a few exaet solutions of these equations are known and the
procedure of finding the approximations by iteration is complicated and takes a lot of
time.

The economical use of monolithic reinforced-concrete construction could be

improved by a clear insight into the oecurring three-dimensional stress distributions.
Reinforced concrete does not meet the premises leading to the above three

simultaneous differential equations.
It appears that the development of the technique of reinforced concrete sur-

passed the existing calculation methods. These have even failed in such a way
that the general application of scientific concrete structures, e.g. flat slab floors, is
hampered or rather involves a waste of material which, if the insight into the oecurring
stress distribution had been clearer, could in many cases have been limited.

Empirical research
In order to be able to determine if the differences between theory and practice are

caused by the adopted premises, which refer to the properties of the materials, or by
the methods of calculation which are applied to this kind of construction, it was
deeided to use a steel model for the investigations, because, it may be supposed, steel
does follow the premises made in the theoretical considerations.

The floor slab (4,500 x 2,940 x 9 mm.), consisting of 15 square panels, is supported
by 24 steel columns (figs .1), each with a column capital shaped as an equilateral hyper-
boloid rotated on its vertical asymptote. This shape may be considered as the average
column capital.
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The overhanging length has been chosen in such a way that the oecurring moments
due to a uniformly distributed load in the floor slab approximate to the moments in a
flat slab floor infinitely stretched in both directions.

The connections in the column and in the floor slab are welded electrically. To
limit the resisting welding stresses as much as possible, the floor slab was annealed
twice.

The floor slab also acts as the bottom of a tank. Into this tank water can be

pumped to gain a uniformly distributed load.
Deformation of the floor due to action of sides of the tank during loading is

counteracted by means of a flexible connection between sides and bottom. These
sides are fixed to a frame. By jacking against this frame a concentrated loading on
the floor slab is accomplished.

The model is mounted on a rigidly constructed base of reinforced concrete, which
also serves as a storage tank for the water.

Uniformly distributed loads
First the deflection plane of the central panel due to a uniformly distributed load

was determined by means of dial gauges with a measuring precision of 0-01 mm.
These gauges are mounted on a structure revolving round a column (fig. 2).

The exaetness of these measurements was about 2 to 3 % of the greatest deflection.

hyptrbola dial gauges -lesf pfale

Ö66606 ' föoMS

Säjp aj&

—Hp—i

Sa SB

200 f.00 600 800

Fig. 2
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However, by determining the bending moments by differentiating the deflections
twice, the inexactitude may be great.

A more accurate determination raises the practical difficulty that, generally, very
accurate dial-gauges command only a very small measuring ränge, so that the dial-
gauges must be adjusted several times during the test. Therefore a specially designed
instrument is used for the determination of the bending moments. This instru-
ment gives the size ofthe curvature, namely the term w, + w2—2w0. It is known that
the curvature k at the point A0, provided the values for Ax are not too high, equals

w, + w2—2h'0

Ax2
(fig. 3).

Due to a special design it is possible to determine simultaneously the curvatures
in two directions (fig. 4) at right angles to each other.

ax i ax

Fig. 3

Fig. 4

A dial gauge with a measuring accuracy of 0-001 mm. was used. The value Ax
amounted to about 7 cm. The bending moments M are determined from the
formula:

Mx=K(kx+vky)
in which K Stands for rigidity of the slab and v for Poisson's ratio. This was done at
different points of the flat part of the slab under uniformly distributed loading.

In the centre of the panel in which the greatest positive moment occurs, the
measurements were controlled by means of strain-gauges and Huggenberger tenso-
meters (fig. 5).

It is clear that with the use of these curvature-meters it is not possible to determine
the bending moments in the neighbourhood of the column capital. For that reason
the stress distribution along the boundary of the column capital is measured by means
of strain-gauges with a measuring length of 2-5 cm. The negative moments thus
determined are controlled by means of Huggenberger tensometers.

Concentrated loads
By several characteristic positions of the concentrated load (in the centre of the

panel and in the middle between the columns at the boundary of two panels) the
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3P*1 I1

Fig. 5

influence of this load on the bending moments in the flat part ofthe floor was measured
by means of the curvature-meters. The stress below the load was also determined
by strain-gauges with a measuring length of 3 mm.

In this way an impression was obtained of the stress distribution in the neighbour-
hood of the concentrated load.

The bending moments at the boundary of the column capital were established in
the same way as with a uniformly distributed load.

The influence of the size of the area over which the concentrated load was
distributed was also examined.

Results
It appeared that with a uniformly distributed load the greatest positive moments

in all 15 panels differed only slightly from each other. The greatest difference
amounted to about 10% ofthe average.

Owing to the correct choiee for the overhanging length, which measured f of the
distance between two columns each panel thus approximated to the so-called ideal
central panel. The other measurements could be limited to the central panel of the
test slab.

Fig. 6 shows, among other things, the outstanding results ofthe deflection measurements

by a water-Ioad of 150 cm. height. The greatest deflection amounted to
0-77 mm. in respect to the column capital.

Fig. 6 also depicts the radial and tangential bending moments (Mraci and M,a„g)
measured also by a water-load of 150 cm.

The greatest positive moment (point B) amounted to 21 kg.-cm./cm.; for the
negative radial bending moment at the boundary of the column capital (0-4a from
the column axis, in which a Stands for half the panel length) an average of —47

kg.-cm./cm. was found.
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The bending moments Mx and My in point D (fig. 6) amounted to +25 kg.-cm./
cm. and — 8 kg.-cm./cm. respectively.

During the concentrated loading it appeared that the overhanging length also
indicated that the behaviour of all panels approximated to that of the central panel.

The load was concentrated on a circular area with a diameter d (fig. 7). To determine

the influence of the size of this diameter on the stresses below the concentrated
load, rfwas chosen as 1-6, 3-6, 5-4 and 7-4 cm. respectively.

Below the concentrated load the curvature-meters indicated about 15% lower
values than the strain-gauges with a measuring length of 3 mm.

Fig. 8 shows graphically the influence ofthe concentration of the load on the stress
distribution underneath in the case when the load is situated at point B. It appears
that the proportion M/P in which M Stands for the bending'moment and P for the
size of the concentrated force, follows from the formula a=M/W (o-=measured
stress, W=h2/6=moment of resistance, A=thickness of the slab), diminished from
0-26 to 0-22, ^increasing from 1-6 cm. to 7-6 cm.

Table I

Concentrated load Concentrated load
Influence of atB at D

T.N.O. E.M.P.A. T.N.O. E.M.P.A.

oc* at B\
aiy at BJ +0-263 +0-182 +0022

-0006
—

a^at D +0026 — +0-219 +0099 to +0192
ay at D -0015 — +0-177 +0-054 to +0-137
ax at L +0001 — +0028 —
ay at L -0008 — +0002 —

• ar at H -0056 — -0017 —
ol, at E -0028 — -0100 —

OLx MxIP 0Ly My/P OLr=OLradial=Mr/P.

Table I shows the bending moments at the points B, D, E, H and L, the load being
in position B or D.

If the concentrated load is at B (fig. 9) the greatest bending moment at D amounts
to about tö of the bending moments below B. At L some influence can be noticed.
The greatest moment at the boundary of the column capital amounts in this case to
i of the moment at B.

With the concentrated load at D, the bending moments are at B (=L) and E
about tö and about tö respectively of the moment at D.

A few results of the tests made by Prof. Ros (E.M.P.A.) are given in the table
to make comparison possible.

Theoretical research
The measured results are particularly compared with the results of the calculation

method of Dr. Ir. A. M. Haas.1 In this method, just as in the model, the most usual
shapes of column capital and drop panel are replaced by hyperboloids.

Haas approximates the stress distribution in the column supposing the stress
distribution to be axially symmetrical in this hyperboloid, by means of the formula
for a circular slab in which inertia is inserted varying only with the radius.

1 For references see end of paper.
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Table II
The numerical sum of the positive and negative bending moments (pa3)

Nichols

Measured
Haas
A.C.I

0-47
0-51
0-52

0-51
0-51
0-72

The flat part of the floor is shaped as shown in fig. 10. To calculate the part
ABG, minus the included part of the column capital, Haas applies, in imitation of
Tölke,2 the Solution in polar-co-ordirfates of the biharmonic differential equation
AAw==p/Kaccording to Clebsch3 (in whichp Stands for load per unit area).

P
w=—K rü+*o+B0ln-^a+C0r2+D0r2ln^a

+2 (Anr*n+Bnr-'i"+Cnr*"+2+Dnr-*n+2) cos 4«a

i

The above coefficients are determined by co-ordinating along the inside boundary
the average of the moments and shearing forces to those in the column capital and to
demand along the outer boundary the boundary conditions in a number of connecting
points (if more connecting points are chosen, more coefficients have to be added to
the calculation).

Fig. 6 shows the deflections and bending moments of the steel model found in
this way. The greatest deviation between the theoretically and experimentally
determined values for both the deflections and the bending moment appears to be
about 15% at maximum, the theory providing higher absolute issues than the test.

As the model test gives only values for the negative moment in the column capital
at a distance of 0-4a from the column axis the negative bending moment at a distance
of 0-225a from the column axis is calculated by means of the theory of Haas, which
has appeared to be sufficiently exaet. Thus the theoretically determined results for a
practical case could be compared to those according to the requirements of the
American Concrete Institute and those found by the Eidgenössische Material Prüfungs
Anstalt.

Fig. 10 also shows the course of the bending moments found from:

(a) the empirical research T.N.O.
(b) the theory of Haas,
(c) the American requirements (A.C.I. 318-51),4
(d) the empirical investigation of Prof. Ros (E.M.P.A.).5

For the purpose of control, the theoretical total amount of the moments for
c=0-45a and for c=0-Sa is also given according to the formula of J. R. Nichols 6:

ZM=pa*
c3 4c

+*8Ö3_2^a

A theoretical investigation which has not yet been completed gave the following
results:

(a) Tölke, who imagines the slab to be immovably fastened at a distance r=Q-2a,
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as well as Haas, does not take into aecount the coefficients B, Bn and
D, D„. Now this appears not only to be allowable but even desirable.

(b) When the number of connection points along the outer boundary increases,
all stress quantities in the slab approach a limit, provided the calculation was
done very aecurately. When three connection points and the coefficients
Ac, up to and including A2, C0 up to and including C2, B0 and D0 are used
the deviation from the limit amounts to 2 % in the centre of the panel.
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Conclusions
As a result of the above investigations the following conclusions concerning flat

slab floors having square panels may be drawn.
1. The calculation method of Haas provides that by a uniformly distributed load,

bending moments in the ideal central panel are maximal about 15 % higher than those
found during the investigation of the model. A satisfactory explanation of this
discrepancy has not yet been found. Partly it might have been caused by the cir-
cumstance that in the steel model the ideal central panel has been approximated but
not fully realised. In any case the conclusion may be drawn that the above theory
gives results that are sufficiently correct for practical use.

2. The measured results achieved by Prof. Ros with a uniformly distributed load
agree sufficiently with the results of T.N.O. so that these T.N.O. results can be applied
in practice directly to reinforced concrete, though found on a steel model.

3. Except at the boundary of the column capital the results found with the A.C.I.
requirements agree fairly well with those found by T.N.O. The negative bending
moments at the column capital, as found according to the theory of Haas, are con-
siderably greater than those of the A.C.I. The A.C.I. condition that, for determination

of the compressive stress in the concrete at the boundary of the column capital,
the width of the column strip must be decreased to -\ of its value does point in this
direction.

4. From T.N.O. experiments as well as from those of Prof. Ros it follows that,
for the bending moment below a not too strongly concentrated load, a value of -\ or
jP may be taken into aecount. If this concentrated load is placed in the centre of
the panel, the value of the negative moment at a distance 0-4a from the column axis
amounts to yöP and the negative as well as the positive moment right between the
columns amounts to about -^P. In the surrounding panels the influence of the
concentrated load can be neglected. When the load is placed right between the
columns on the boundary of two panels, then the moment below the load, near the
column capital and in the centre of the adjacent panel, amounts to \P, tö? and -fgP
respectively.

5. When a flat slab floor with an overhanging length of f of the span length of
support is used, all panels will behave as ideal central panels, with a uniformly
distributed load as well as with a concentrated load. In this way it is possible to diminish
the quantity of reinforcement in the concrete and to simplify the calculations and the
construction.
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Summary

By means of a steel model the Committee for Research on Constructions T.N.O.
investigated the conduct of an ideal square central panel of a flat slab floor with
uniformly distributed and concentrated loads.

The theoretical investigation was based on the theory of Dr. Ir. A. M. Haas, who
took into aecount the influence of the column capital on the stress distribution in the
floor.

The results of the T.N.O. investigation were compared with the latest American
Building Code Requirements for Reinforced Concrete (A.C.I. 318-51) and with tests
made by Prof. Dr. Ing. h.c. M. Ros.

Resume

A l'aide d'un modele en acier le Comite de Recherches sur les Constructions
T.N.O. a examine le comportement d'une zone centrale carree et ideale d'une dalle-
champignon soumise ä une charge uniformement repartie, puis ä une charge con-
centree.

La recherche theorique etait basee sur la theorie du Dr. Ing. A. M. Haas, qui,
dans ses calculs, a tenu compte de l'influence du chapiteau des colonnes sur la
repartition de la tension.

Les resultats des recherches de la T.N.O. sont compares avec les nouvelles
prescriptions sur le beton arme de l'Institut Americain du Beton (A.C.I 318-51) et avec
les recherches effectuees par M. le Prof. Dr. Ing. h.c. M. Ros.

Zusammenfassung

Der Ausschuss für Eisenbeton- und Stahlbauten T.N.O. hat an einem Stahlmodell
das Verhalten eines quadratischen ideellen Mittelfeldes einer Pilzdec'ke unter gleich-
massiger Belastung und unter Einzellast untersucht.

Die theoretische Forschung baut auf der Theorie von Herrn Dr. Ing. A. M. Haas
auf, der in seinen Berechnungen den Einfluss der Pilzköpfe auf die Spannungsverteilung
berücksichtigt hat.

Die Ergebnisse der T. N. O.-Forschungen wurden mit den neuesten Forderungen
der Amerikanischen Betonanstalt (A.C.I. 318-51) sowie mit den Untersuchungen
von Herrn Prof. Dr. Ing. h.c. M. Ros verglichen.
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The limit of stress in the compression flanges of beams

Contraintes limites dans les membrures comprimees des poutres

Die Grenzspannung in den Druckgurten von Trägern

Prof. CLIFFORD D. WILLIAMS
Chief Structural Engineer, Patchen and Zimmerman, Augusta, Georgia, U.S.A.*

Specifications for the design of structural metal beams usually limit the stress in
the compression flange by consideration of its unsupported length, its width, and in
some instances by its thickness and the depth of the beam. Most specifications do
not consider the type of loading which produces the flange stress nor the end conditions
which may affect the limit of that stress. A specification which provides one working
formula for all conditions of loading, for all conditions of end restraint, and for
flanges that may vary in section along their length, cannot provide constant factors
of safety for all of the possible conditions.

The work of S. Timoshenko, as summarised in the Theory of Elastic Stability,t has
been notable in the analysis ofthe elastic problem that is involved in the flanged beam
subjected to bending. Karl De Vries' paper, " Strength of Beams as Determined by
Lateral Buckling," with the several discussions,% has summarised the present Status

of the problem. Further consideration of the flange buckling problem seems justified
with the objective of simplification and more general application to the varying
conditions that may exist.

The following items are among the considerations that may affect Solution of the

problem:
(1) unsupported length of the compression flange,
(2) horizontal moment of inertia of the compression flange,
(3) torsional resistance of the beam,
(4) restraint to end rotation of the compression flange,
(5) thickness and width of the compression flange,
(6) variations in section of the flange,
(7) resistance of the tension flange. and
(8) point of application of load to the beam—whether at the top flange, bottom

flange, or intermediate between the flanges.

* Formerly Head Professor of Civil Engineering, University of Florida, Gainesville, U.S.A.
t S. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Co., 1936.

t Trans. Amer. Soc. Civ. Engrs., 112, 1245.
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Some comparison has been made between the compression flange of a beam and
a column, considering that the flange tends to buckle transverse to the web of the
beam. The flange is considered to receive its load by shear transfer from the web.
The manner in which this shear transfer is accomplished is a function of the manner
in which the beam is loaded. For example, if a beam is subjected to pure bending
the flanges receive füll load at their ends; when the load is concentrated at the centre
of the beam span the shear transfer is uniform per unit of length; and when the applied
load is uniform the shear transfer is uniformly decreasing from the ends to the centre
of the span. Thus the compression flanges may receive their load under conditions
that vary from end loading to loading uniformly distributed along the length of the
members.

The effect of the distribution of beam loading on the limit of stress may be
demonstrated by comparison of similar loading conditions on a slender column.
The classical Euler loading on a column of uniform section and having its ends free
to rotate is expressed as P=ir2EI/L2=9-87EI/L2. It may be shown that the same
column having uniform increments of load per unit of length has a limiting load of
P=3l-6EI/L2, and when loaded with uniformly decreasing increments from the end
to the centre, P=20SEI/L2. Thus it would appear that the manner of loading is a
major consideration affecting the limiting load by as much as 3-17 times.

Again, the effect of end restraint to rotation of the compression flange may be
demonstrated by consideration of the free end and the fixed end Euler limits, which
are in the ratio of 1 to 4. Degree of end restraint would affect values falling between
these two.

Variation of the cross-section of a column along its length becomes an important
consideration in establishing its limiting load. It is very difficult to assign an average
value to the moment of inertia of a column which will fully aecount for the manner of
Variation. For example, a column may have a heavy mid-section or it may have
heavy end-sections. In these cases the average moment of inertia may be the same
but the limit of load would be different.

The torsional resistance of a beam to buckling of the compression flange might
also be compared to a slender column having a spring placed to resist lateral deflection.

Let fig. 1 illustrate a column with a spring which has zero load when the
column is straight. When the column is bent toward the spring the restraining force
is dependent upon the amount of deflection. Similarly, the simply supported beam
illustrated in plan view in fig. l(b) will have each cross-section throughout its length
rotated through some angle ß. The amount of the deflection a will determine the
magnitude of the angles ß along the length of the beam and consequently the amount
of the torsional resistance. It would appear that the column of fig. 1 (a) and the
compression flange of the beam of fig. 1(6) would each have increasing loads required to
maintain deflections of increasing magnitudes. However, in each case the restraining
lateral force is zero when the member is straight and the critical load for the straight
condition is the same whether or not the restraint is pending. In order to evaluate
the effect of the torsional restraint of the beam for various amounts of lateral deflection

of the compression flange it is necessary to assign values to the maximum angle
of rotation of the beam and to define the law of Variation of that angle along the
length of the beam. The amount of torsional resistance must be small indeed when
the flanges of the beam are straight or nearly straight. A condition of neutral
equilibrium must exist while the beam flanges are straight. Higher values of load in
the compression flange are likely, possibly because of torsional restraint that develops
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with increasing angles of torsional rotation. The least value of load that will produce
neutral equilibrium would seem to be that which occurs when the flanges are straight.

It has been assumed that the vertical load applied to the top flange of a beam tends
to increase the torsional angle, resulting in a lowered limit of load. On this basis, a
load applied to the bottom flange increases the limit of load. It follows that, if the
flanges are straight, the vertical load would be in the plane of the web and consideration

of top or bottom location would be eliminated.
If the designer is concerned with the load that will produce neutral equilibrium

while the compression flange is straight, then a much simplified method may be used.
In this case füll consideration may be given to the effects of end restraint, variations
in type of loading, and variations in the section of the compression flange.

It is not the intention of this paper to discuss buckling phenomena in the plastic
ränge, that is, when the computed stress in the flange is greater than the proportional
limit of the material. Also, it is assumed that the thickness of the compression flange
is sufficient so that local crippling of the flange does not precede lateral buckling.
For the purpose of this discussion it is considered that there are two limiting values
of stress, either ofwhich may control. One of these limits is the stress which compares
with the yield point of the material and the other is the stress in the extreme fibres of
the beam when a state of neutral equilibrium exists in a straight compression flange.
It is acknowledged that higher stress values may be obtained before collapse of the
beam, but it is believed that a factor of safety should be maintained with respect to
the lower of these two defined critical stress values.

CR.—17
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In order that the critical stress may be found for any given compression flange, it
is assumed that the load will maintain a small lateral deflection of the flange. The
amount of this deflection is immaterial so long as it does not produce an appreciable
torsional resistance from the beam. The amount of the flange load is then such that
any decrease would permit the flange to straighten and any increase would cause
greater lateral deflection. The amount of the deflection that is assumed to be
maintained is further assumed to be small enough so that it is immaterial whether the load
is applied to the top flange or to the bottom flange of the beam. These assumptions
are consistent with determination of the critical load for the straight flange.

The assumption of a small lateral deflection of the compression flange is a tool
to be employed in evaluating the critical load in the compression flange. It is required
that the load maintain the deflection in amount and the deflection curve in shape.
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Since the shape of the deflection curve is usually not known in advance, a process of
iteration may be used to approach evaluation of the true curve. Fortunately, the
series is rapidly converging so that the work is minimised. Again, the analogy of a
column loaded at its ends may be used as an example. Assume that the deflection
is a and that the shape of the curve is parabolic (while it is known that the curve is

sinusoidal). Fig. 2(a) shows the ordinates to the parabolic curve for the centres of
five equal divisions of the half length. The load P produces bending moments along
the length of the column. The deflection at the centre may be computed from these
bending moments and is expressed as y=0-l037PaL2/EI. Since y=a, then
P=9-64EI/L2. If integrated continuously, the value of P would be found to be
9-60EI/L2. These values are about 3 % less than the accepted value of P=9%7EI/L2,
because of the assumption that the curve is parabolic. This approximation will
normally be sufficiently accurate in view of the fact that the value of E will vary by
more than 3 % from any assumed value. However, if deflections were computed at
the centres of the five divisions, a new closer curve shape might be developed as shown
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in fig. 2(b). When the new curve is used in the same manner as the first approximation
it is found that y=0-l025PaL2/EI, from which P=9-77EI/L2. This value is now
about 1 % below the accepted value. Continuation of the same process will yield
results with an even greater degree of accuracy. If the sinusoidal ordinates of fig. 3

were used, the resultant value of v=0-1009PaL2/EI produces P=9-91EI/L2. The
only reason this value differs from the value of 9-87EI/L2 is that the Integration was
performed in five finite parts rather than continuously.
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Fig. 3

In the case of pure bending in a flanged beam the flange stress is applied entirely
at the ends of the beam. If the ends of the compression flange are free to rotate and
the flange is of constant section, then the critical flange load is F=9S7EI/L2; the

average stress in the flange is F/A=9-S7EI/AL2, when A is the area ofthe flange and /
is the moment of inertia of the compression flange about the axis along the web (for
constant section rolled beams / is one-half ofthe Iy—y value given in steel handbooks);
the extreme fibre stress is f=9S7EIc/AL2y, when c is the distance from the neutral
axis of the beam to the extreme fibres and v is the distance to the centre of the flange.
Since f=M/S, in which 5 is the section modulus of the beam about its major axis, the
critical value of M=9-S7EIcS/AL2y.

Fig. 4(a) represents a flanged beam of uniform section simply supported and
loaded with a concentrated load P placed at the centre. It is desired to find the load P
which will induce a critical flange load F. If the half-span is divided into five equal
divisions, the increment of load F that is applied to each division is 0-2F. Assuming
that the compression flange deflects laterally in a parabolic shape with a maximum
deflection of a, fig. 4(c) represents the column loading. Bending moments at the
centre of the divisions are computed as follows:
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These bending moments are plotted in fig. 4(d). The horizontal deflection of the
centre of each division from the tangent to the elastic curve at the centre of the span
may be computed by the use of the Moment-Area principles in the following manner:

00320FaZ,/F/xO-10Z,=0-0032Ffli2/F/ Point 2

0-0256

XO-10 =000576
Point 3

Point 4

Point 5

0-02S32FaL2/EI End

Since the deflection of the end from the tangent to the elastic curve at the centre is

0-02832FaL2/EI, the deflection of the centre will be y=0-02%32FaL2/EI. The require-
ment is that y=a. Hence, 0-02832FL©E7=l, and F=35-3EI/L2, when / is the
moment of inertia ofthe compression flange about its vertical axis. This value of the
limiting load is approximate because it is based on an assumed shape of deflection
curve. A closer value will result from a curve that is nearer the true shape of the
deflection curve. Such a curve may be developed from the computed deflection at
each point, when each such deflection is divided by 0-02S32FE2/EI and the quotient
is subtracted from l-0a as in the following computation:

0-02832.7
1'00fl-Ö^Ö2832-=0 End

0-02432ö
VOOa-(üm3T=0-Ha Pomt5

M 0-01632« _„ n¦ h00a-^ömr=0-42a Point4

M 000896a _ n „
"Ö1J2832- Point 3

00032a
1-°0ö-ö^2832=°-89fl P0iDt2

The new curve is plotted in fig. 4(e). A closer value for the limit of the force F
may be found by repeating the calculations for bending moment and deflection, using
this last curve:

0-2FxO-28a=0-056Fa Point 4
0-2F
0-4FxO-26a=0-104Fa
0-2F 0-160Fo Point 3

Ö:6FxO-2la=0-l26Fa
0-2F 0-286Fa Point 2

0-8FxO-lla=0088Fa
0-374Fa Point 1
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0-0374FaZ./£/x0-10£=0-00374Fai:2/£/ Point 2
0-0286

Point 3

0-0660 x0-10Z.=

x0-10L=

xO-10£=

xO-05F=

=000660

00160 0-01034

0-0820 =0-00820

0-0056 001854

0-0876 =0-00876

0-0876
0-02730

=0-00438

Point 4

Point 5

0-03168FaL2/FJ End

The new closer value for the limit of F is then found from the equation y=a.
Thus, j>=0-03168FaZ.2/FJ, or 0-03168FL2/F/=l, and F=3l-6EI/L2.

The process might be continued, and it is found that a slight change in the value
of F will occur, resulting in a final value of F=3l-3EI/L2. Then f=3l-3EIc/AL2y
and sincef=PL/4S, P= l25-2EIcS/AL>y.

It is noted that the critical load in the top flange is expressed as F=KEI/L2, when
K varies with the manner in which the loads are applied to the compression flange, or
the continuity of the ends of the beam.

In the case of a uniformly loaded beam, the shear transfer from web to flange is

uniformly decreasing from the end to the centre. Fig. 5(c) illustrates an assumed

parabolic deflection curve with maximum ordinate a. The length of the beam is
divided into ten equal divisions. The load applied to the flange per unit of length
varies from a maximum value at the end to zero at the mid-span. The average value
of FC?//for division 5 is 9/10 ofthe value of Kg//for the end ofthe beam; the average
value is 7/10 for division 4, 5/10 for division 3, 3/10 for division 2, and 1/10 for
division 1. Fig. 5(c) shows the distribution of the force F to the five divisions with
F/25 at division 1, 3F/25 at division 2, 5F/25 at division 3, 7F/25 at 4, and 9F/25 at 5.

The bending moment at point 4 will be 0-36Fx(0-51a-0-19a)=0-1152Fa. The
calculations for the bending moment at each point and the deflection of each point
from the tangent to the elastic curve at the mid-span follow:

0-36Fx0-32a=0-1152Fa Point 4
0-28F

0-64Fx0-24<3=0-1536Fa

0-20F 0-2688Fa Point 3

0-84FxO-16a=01344Fa

0-12F 0-4032Fa Point 2

0-96FX 0-08.3=0-0768Fa

0-4800Fa Point 1
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Since the maximum deflection is found to be j>=0-04416FaZ,2/£7 and y=a, then
F=22-6EI/L2. This value of Fis approximate, since a parabolic curve was assumed.
The ordinates for a closer curve were found by dividing each deflection value by
0044l6FaL2/EI and subtracting these quotients from a. These new ordinates are
shown in fig. 5(o").
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By using the ordinates of (d), new values of bending moment, new deflections, and
still another deflection curve are computed as follows:

0-36FxO-29a=0-1044Fa
0-28F

Point 4

0-64FX 0-26a=0-1664Fa
0-20F 0-2708Fa Point 3

0-84FxO-20a=0-1680Fa
0-12F 0-4388Fa Point 2

0-96FxO-llo=0-1056Fa
0-5444Fa Point 1

0-05444FaL/F/x 0- 10F=0005444FaL2/FJ
0-04388

0-09832 X0-10L=0009832
002708 0015276
0-12540 xO-10L=0-012540
0-01044 0-027816

0-13584 xO-10F=0-013584
0-041400

0-13584 xO-05F=0-006792

New
Ordinate

Point 2 0-89.2

Point 3 0-68a

Point 4 0-42a

Point 5 014a

End 00-048 l92FaL2/EI
From this results the closer value of F=20-SEI/L2, which is 2-lln2EI/L2, when /is

the moment of inertia of the compression flange about the vertical axis.
Table I gives values of K for simply supported beams of constant section which

are supported against lateral movement only at their ends.

Table I
Values of K

Type of loading K
Plane bending 9-87
Uniform load 20-8
Concentrated load at 0-1L 20-9
Concentrated load at 0-2L 23-8
Concentrated load at 0-3L 27-9
Concentrated load at 0-4Z, 30-4
Concentrated load at centre 31-3

Equal loads at 0-1Z, and 0-9F 12-1

Equal loads at 0-2F and 0-8Z, 15-1

Equal loads at 0-3L and 0-7F 19-7

Equal loads at 0-4L and 0-6L 25-3

The method that has been applied to the constant-section beam may be expanded
to become applicable to the variable-section beam. Fig. 6(a) illustrates a welded beam
with varying flange thickness, loaded with a single concentrated load at the centre
of the span. The shear diagram is shown in fig. 6(b), and the moment of inertia of
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the entire beam about its horizontal axis is shown in fig. 6(c). The shear load
between the web and the flange at any point is equal to VQ/IX lb./in. Since the
numerical value of V is constant throughout the length of the beam, the shear
transferred to the flange of the beam from the web must be proportional to Q/Ix.

After the distribution of the flange loading from the web is determined, a
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parabolic horizontal deflection curve is assumed and corresponding bending moments
are computed. The deflection curve may be computed by the Moment-Area method,
areas of the M/EI diagram being used. The resulting deflection curve will be more
nearly the true curve of deflection maintained by the flange loads. When a value of
the maximum deflection is expressed in terms of the initial deflection and E, a value
for Fmay be found.

Fig. 6(e) shows values of VQ/IX and the percentage of the flange load that each
60-in. length of the web transfers to the flange. The half-length of the compression
flange is divided into six sections of 30 in. each for the computation, and the centre
of each length becomes a working point. These centres are numbered from 1 to 6 in
fig- 6(/). The sum of the increments of F that are shown applied to the centres of
these sections is equal to F, and these increments correspond with the VQ/IX values
in fig. 6(e). Ordinates to the assumed parabolic curve are shown in fig. 6(f) and are
used to compute the bending moments at points 1 to 5 in the following manner:

Bending Moments

0
0-144Fx0-27a=0-03888Fa
0-144F
0-288FX 0-22a=0-06336Fa
0-173F 010224Fa
0-461Fx0-17a=0-07837Fa
0-173F
0-634FX
0-183F
0-817FX
0-183F

0-18061Fa

0-lla=0-06974Fa
0-25035Fa

0-05a=0-04085Fa
0-29120Fa

KJÖÖFx 0-01a=0-01000Fa
0-30120Fa

Point 6

Point 5

Point 4

Point 3

Point 2

Point 1

Centre

M

Computation of Deflection

dx/I Mdx/I x

(1) 0-29120Fax30/15-6=0-5600Fa 30

(2) 0-25035Fax30/15-6=0-4814Fa

Mxdx/I Deflection New
at ordinate

16-800Fa Point 2 0-93.7

l-0414Fa 30 31-242Fa

(3) 0-18061Fax30/10-4=0-5210Fa 48-042Fa Point 3 0-80a

l-5624Fa 30 46-872Fa

(4) 0-10224Fax30/10-4=0-2949Fa 94-9l4Fa Point 4 0-61a

l-8573Fa 30 55-719Fa

(5) 0-03888Fax 30/5-2 =0-2243Fa 150-633Fa Point 5 0-38a

2-0816Fa 30 62-448Fa

213-081Fa Point 6 0-13a
2-0816Fa 15 31-224Fa

244-305Fa End 0
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In the foregoing computations it is found that the deflection of the end of the
beam from the tangent to the elastic curve at the centre is j=244-305Fa/F. By
definition, the force F must just maintain the small deflection a. Hence, y=a and

F= £7244-305 122,800 lb. The average flange stress at the centre of the beam will
be F/A, or 122,800/7-5= 16,375 lb./in.2. The extreme fibre stress will be greater than
the average flange stress, being equal to 16,375 X 10-5/9-75= 17,635 lb./in.2 The load
P on the beam for which Mc/I= 17,635 lb./in.2 will be such that 90Px 10-5/1,663
17,635. Thus P=31,0301b.

These values were computed on the assumption that the shape of the deflection
curve that would be maintained by the force F is parabolic. If each of the deflections
(times E) that were computed for points 2 to 6 is divided by 244-305F^ and the

quotients are subtracted from a, a new shape of curve will be indicated which would
be closer to the true curve.

The new ordinates in the foregoing computations are these values. The
computations may now be repeated to obtain a closer value of F:

Bending Moment

0-144Fx0-25a=0-03600Fa Point 5

0-144F

0-288FX 0-23a=0-06624Fa
0-173F
0-461FX
0-173F

0-634FX
0-183F

0-817FX
0-183F

0-10224Fa Point 4

O-19a=0-08759Fa
0-18983Fa Point 3

0-13a=0-08242Fa
0-27225Fa Point 2

0-07a=0-05719Fa
0-32944Fa Point 1

l-OOOFxO =0
0-32944Fa Centre

M
Computation of Deflections

dx/I Mdx/I

(1) 0-32944Fax30/15-6=0-6335Fa
(2) 0-27225Fax30/15-6=0-5236Fa

x Mxdx/I Deflection New
at ordinate

30 19-005Fa Point 2 0-93a

l-1571Fa 30 34-713Fa

(3) 0-18983Fax30/10-4=0-5476Fa 53-718Fa Point 3 0-80a

l-7047Fa 30 5M41Fa
(4) 0-10224Fax30/10-4=0-2949Fa 104-859Fa Point 4 0-60a

l-9996Fa 30 59-988Fa

(5) 0-03600FaX 30/5-2 =0-2077Fa 164-847Fa Point 5 0-38a

2-2073Fa 30 66-219Fa

231-066Fa Point 6 0-13a
2-2073Fa 15 33-109Fa

264-175Fa End 0



268 All 3—C. D. WILLIAMS

Since y=264-l75Fa/E or 264-175F/F=l, then F =113,561 lb. Also, F/A
113,561/7-5=15,141 lb./in.2, and the maximum flange stress at the centre ofthe span
is 10-5/9-75x15,141 16,306 lb./in.2 Then Mc/I=90Px 10-5/1,663 16,306 lb./in.2
or P=28,695 lb.

y -
ir // ' /¦ // ' ', ,,/
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//
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(b)

SHEAR DISTRIBUTION
IC)
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(d)

Fig. 7

It will be noted that the new values differ from the values first computed by less
than 10 %. Ordinates to a second new curve appear to be almost identical with those
used for the second computation. Hence it would seem unnecessary to carry the
computation further.

Fig. 7(a) illustrates the plan view of a simply supported beam of constant section.
The top flange is assumed to be restrained from rotation in a horizontal plane.
Fig. 7(d) shows the half-span divided into ten equal divisions and an assumed reverse
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parabolic deflection curve. The beam is loaded with a centrally placed concentrated
load Pas shown in fig. 7(b), hence an increment of 0-1F will be applied to the
compression flange at each division of the length.

Using the assumed curve shape, the simple bending moments are calculated in
the usual manner. Since the end tangents to the elastic curve are prevented from
rotating, the total Af/F/area between the end and the centre of the span must be zero;
hence, end moments must be of the magnitude that will accomplish this result. The
sum ofthe simple moments at the ten divisions divided by 10 will then equal the end

moment and the bending moment at any point will be the difference between the end

moment and the simple moment at that point.

Bending Moments

M

0-lFxO-04a=
0

=0-004Fa
Point 1

Point 2
-0-207
-0-202

0-1F
0-2FxO-07a==0-014Fa

Point 30-1F 0-018Fa -0-189

0-3Fx0-12a==0-036Fa

Point 40-1F 0-054Fa -0-153

0-4Fx0-16a==0-064Fa

Point 5(MF 0-118Fa -0-089

0-5Fx0-20a=0-100Fa

0-1F 0-218Fa Point 6 +0-011

0-6Fx0-16a=0-096Fa

0-1F 0-314Fa Point 7 +0-107

0-7Fx0-12a=0-084Fa

0-1F 0-398Fa Point 8 +0-191

0-8FxO-07a=0-056Fa

0-1F 0-454Fa Point 9 +0-247

0-9Fx0-04a=0-036Fa

0-1F 0-490Fa Point 10 +0-284

1-0F

Deflections from the tangent to the elastic curve at the end may now be calculated
as follows:
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M
-0-207Fax
-0-202Fa

dx x
005Z,x005F=

Deflection

-00005FaZ.2

-O-OOlOFaF

Point 2

Point 3

point 4

Point 5

Point 6

Point 7

Point 8

Point 9

Point 10

New curve
0-038a

-0-409Fa

-0189Fa -0-0015Fa£2

-0-0015FaZ.2

0116a

-0-598Fa

-0153Fa -0O030FaF2

-00019FaF2

0-232a

-0-751Fa

-0089Fa -0-0049Fa£2

-0-002 lFa/2

0-380a

-0-840Fa

+001 lFa -00070FaF2

-0-0021Fa£2

0-543a

-0-829Fa

+0107Fa

-0-722Fa

-00091FaF2

-0-0018FaF2

0-705a

+0191Fa -0-1009Fa£2

-O-OODFaF2

0-845a

-0-531Fa

+0-247Fa -0-0122FaL2

-0-0007FaL2

0-946a

-0-284Fa

+0-284Fa -00129FaF2 l-000a

Since y=00l29FaL2/EI and y=a, F=77-5EI/L2. The next approximation,
using the curve developed from the first approximation, results in F=75-5EI/L2.

It will be seen by the illustrative examples that the procedure for finding the limit
of stress in the compression flange of a beam follows a very definite plan. The step-
by-step procedure may be outlined as follows:

(1) Identify the conditions of end restraint that affect the shape of the elastic
curve for lateral buckling of the compression flange.

(2) Assume a nominal finite lateral deflection of the compression flange and a

shape of curve that is in general agreement with the conditions of end
restraint.

(3) Define the manner of loading of the compression flange consistent with the

manner in which the beam is loaded.
(4) Compute bending moments along the length of the compression flange

caused by the flange load and the assumed lateral deflections, and
consistent with the conditions of end restraint.

(5) Compute the magnitude of the lateral deflection of the flange from the
values of M, E, I, and the length of the beam, and expressed in terms of the

magnitude of the assumed lateral deflection.
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(6) A new deflection curve may be developed from the above step (5) and com¬
pared with the assumed shape of curve.

(7) When the assumed shape of deflection curve and the shape of the deflection
curve found by use of the assumed curve agree, an equation between the
computed maximum deflection and the assumed deflection will yield an
expression for the limit of load in the straight compression flange of the
beam.

Experimenters are familiär with certain phenomena in the testing of flanged
beams. Load may be applied gradually to the beam with no apparent tendency for
the compression flange to buckle sidewise until a certain load value has been reached.
Once this critical value of flange stress has been reached, the compression flange may
exhibit a tendency to bend principally in one lateral direction. Upon reaching a
second critical value of flange stress, the compression flange may be easily moved
from one deflected position to a deflected position in the opposite direction. Then,
as increasing values of load are placed on the beam, the amount of lateral deflection
that will remain placed in either direction increases also. The ultimate result occurs
when the beam has been loaded so that lateral deflection in one direction continues
to complete collapse.

It is noted by the experimenters that when a given load is suspended vertically
from the bottom flange of the beam, the amount of lateral deflection of the
compression flange is smaller than when the same load is placed on the top flange. This
fact is consistent with principles developed by previous investigators pertaining to
action after certain bending has taken place in a lateral direction.

It would seem that it should be possible experimentally to measure the angle of
rotation of the central portion of the beam span that agrees with any value of
superimposed load; then, with a sufficient number of measurements of such relations, the
load at zero angle of rotation could be projected. Such measurements have been
carried out successfully for several types of loading, but certain phenomena are
troublesome to the experimenter.

The lateral deflection of the compression flange is sensitive to conditions of end
restraint. It is not easy to obtain a truly simply supported beam with lateral support
of the compression flange not restrained from end rotation. Also, it is found that
the immediate past history of stress in the flange appears to affect the magnitudes of
rotation angles of the beam cross-section that will be maintained by any given vertical
load. The probable reason for this Variation is that the experimenter is unable to
control the maximum amount of rotation and the beam flange is subjected to stresses
above the yield point in certain fibres. A different number of fibres have stress
above the yield point with each value of rotation angle.

The following procedure has been found to produce satisfactory results
experimentally. A load is placed upon the beam which does not cause general yielding but
which is known to be well above that producing critical stress while the beam is

straight. While the beam is under this load the compression flange may be moved
in a lateral direction by a pressure of the hand, say to the left, and will stay in some
such deflected position. Now the load may be gradually reduced and a record made
of angles of rotation and corresponding loads. If the same procedure is repeated by
rotating the beam to the right and recording the loads and angles, two sets of load-
angle values will have been produced. Now, if these data are plotted, curves defining
the two sets of data will intersect at a value of load checking very well the value of
loading that produces critical flange load, while the beam is straight. A second set
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of data may produce a new set of different angle-load values, but the intersection of
the two such curves produced continuously will usually give the same result for the
critical point. Whether the load is applied to the top flange or to the bottom flange,
and whether the load is vertical or inclined from some centre of loading, will affect
the magnitudes of the angles maintained by any given loads on the beam. But it is
of interest that any set of data produced from the same conditions of loading appear
to project to the same critical value for the compression flange—while straight.

Summary

Determination of the limit of stress in the compression flanges of beams involves
many considerations. Factors that are important in the literature on the subject
include such items as the distribution of the load causing stress, the torsional resistance
of the beam, the lateral stability of the compression flange, and others. Because of
the complicated nature of a complete Solution in the general case, specifications for
design contain empirical formulae guiding the designer. The effects of the distribution

of the loading, the type of end restraint, and variations in the section of the beam
are known to have large effects but are not included as considerations in the design
formulae.

It is herein presented that a revised definition of the neutral state of equilibrium
will greatly simplify the considerations and provide the designer with a logical
procedure for analysis. In this way he will not be dependent upon empirical formulae
that must be conservative to a large degree. It is proposed that the neutral state of
equilibrium for design purposes be defined as that having the smallest value; this
value occurs while the flange is straight but buckling is imminent. Such a definition
eliminates the necessity for consideration of the torsional resistance of the beam and
of the loading position, that is, whether the load is on the top or bottom flange of the
beam. The definition permits füll attention to be given to the large factors affecting
Solution of the particular case considered. These large factors include the distribution

of the loading on the beam, the condition of end restraint, and variations of
section.

Special cases illustrate a general method of Solution involving the use of common
iteration processes and in some cases successive approximations.

R6sume

Le calcul des charges limites des membrures de compression des poutres fait
intervenir plusieurs considerations. Les points importants traites dans la litterature
specialisee sont la distribution de la charge, la resistance ä la torsion de la poutre,
la stabilite laterale de la membrure de compression, etc. Par suite de la complexite
d'une Solution complete du cas general, les specifications de detail fönt intervenir des
formules empiriques destinees ä guider le dessinateur. On sait que la distribution de
la charge, le mode de fixation de l'extremite de la poutre et les variations de son profil
jouent ici un grand röle, mais ne sont pas pris en consideration dans les formules
de dessin.

Nous montrons qu'une revision de la definition de l'etat d'equilibre stable sim-
plifiera sensiblement la question et fournira au dessinateur un processus logique
d'analyse. II n'aura ainsi pas ä se fier ä des formules empiriques qui sont necessairement

tres conservatrices. Nous proposons de definir, pour le dessin, l'etat d'equilibre
stable comme celui qui a la moindre valeur; cette valeur se manifeste lorsque la membrure

est droite, mais sur le point de se deformer. Une teile definition elimine la
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necessite de considerer la resistance ä la torsion de la poutre et de faire intervenir le
mode d'application de la charge, suivant qu'elle est placee sur la membrure superieure
ou sur la membrure inferieure. Cette definition permet de concentrer toute l'attention

sur les facteurs essentiels qui determinent la Solution dans le cas particulier etudie.
Ces facteurs comprennent la distribution de la charge sur la poutre, le mode de
fixation de l'extremite de cette poutre et les variations de sa section.

Des cas particuliers illustrent une methode generale de resolution qui entraine le
recours ä des procedes d'iteration courants et parfois ä des approximations
successives.

Zusammenfassung

Die Bestimmung der Grenzspannung in den Druckgurten von Trägern umfasst
zahlreiche Ueberlegungen. Die in der Fachliteratur behandelten wichtigen Punkte
sind die Lastverteilung, die Torsionssteifigkeit des Trägers, die seitliche Stabilität des

Druckgurtes, u.a. Wegen der komplizierten Form der vollständigen Lösung im
allgemeinen Fall finden sich in den Entwurfs-Normen empirische Formeln als
Wegleitung für den Konstrukteur. Die grosse Bedeutung der Einflüsse der Lastverteilung,
der Form der End-Festhaltung und der Veränderlichkeit des Querschnitts ist bekannt,
doch sind diese Faktoren in den Entwurfsformeln nicht berücksichtigt.

Der Verfasser zeigt, dass eine verbesserte Definition des neutralen
Gleichgewichtszustandes das Problem stark vereinfachen und dem Konstrukteur eine
vernünftige Berechnungsmethode in die Hand geben kann. Er ist damit nicht mehr auf
empirische Formeln angewiesen, die weitgehend veraltet sind. Der Verfasser
schlägt vor, den neutralen Gleichgewichtszustand für den Entwurf dahin zu definieren,
dass er den kleinsten Wert aufweisen soll; dieser Wert ergibt sich bei geradem Flansch
unmittelbar vor dem Ausknicken. Die vorgeschlagene Definition macht die
Notwendigkeit einer Berücksichtigung der Torsionssteifigkeit des Trägers und der Lage
der Belastung, d.h. ob die Last am oberen oder unteren Flansch des Trägers wirkt,
überflüssig. Die Definition erlaubt uns, unsere volle Aufmerksamkeit den
entscheidenden Faktoren, die die Lösung des betrachteten, besonderen Falles
beeinflussen, zuzuwenden. Diese entscheidenden Faktoren sind die Verteilung der
Belastung über dem Träger, die Festhalte-Bedingungen an den Enden und die
Veränderlichkeit des Querschnitts.

An Hand von Sonderfällen wird ein allgemeines Lösungsverfahren aufgezeigt, das
die üblichen Iterationsvorgänge und in gewissen Fällen auch successive Approximationen

umfasst.

CR.—18
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Theorie de l'instabilite par divergence d'equilibre

The theory of instability through disturbance of equilibrium

Instabilitätstheorie durch Störung des Gleichgewichts

JEAN DUTHEIL
Dijon

Les solutions classiques donnees aux problemes d'instabilite determinent, en
general, une charge critique qui correspond ä la limite entre deux etats d'equilibre
differents: il y a bifurcation d'equilibre.

L'experience ne fait pas apparaitre un tel changement d'etat d'equilibre. En
general, des le debut de I'application de la charge, on constate une forme d'equilibre
stable, qui subsiste jusqu'ä la ruine.

II s'agit en fait d'un simple phenomene de statique dans lequel l'etat de
contrainte du materiau et sa deformation interviennent pour determiner l'affaissement.
A partir d'une certaine contrainte, le caractere inelastique de la deformation est tel
que les moments exterieurs et Interieurs varient suivant des lois divergentes, il n'y a
plus d'equilibre possible, on dit qu'il y a instabilite par divergence d'equilibre.

On sait enfin que, theoriquement, la charge critique classique peut etre döpassee,
et le second etat d'equilibre etre stable.

Dans les cas les plus defavorables, il ne peut y avoir, en tous cas, instabilite pour
une charge inferieure ä la charge critique. Or, experimentalement, la ruine se produit
pour des charges toujours inferieures aux charges critiques.

Si le rapport de la charge critique k la charge de rupture peut etre voisin de 1 dans
certaines zönes, il peut aussi tendre vers l'infini dans d'autres zönes.

Cette contradiction entre la theorie et l'experience n'est pas surprenante. L'allure
ideale d'un phenomene est toujours plus ou moins influencee, en pratique, par de
multiples causes qui peuvent le deformer au point de n'en laisser subsister qu'une
caricature.

Dans les problemes d'instabilite, la theorie ne considere que des elements parfaits,
tant de forme que de structure et indefiniment elastiques et resistants.

Les eprouvettes d'essai, comme les elements mis en oeuvre, sont tres loin de cette



276 All 3—J. DUTHEIL

perfection: les materiaux sont inhomogenes, et ils ne sont elastiques qu'approximative-
ment, et dans certaines limites. II en resulte que la deformation theorique est pro-
fondement alteree, et comme eile joue dans les problemes d'instabilite un röle
preponderant, le phenomene est lui-meme profondement altere, au point qu'il
paraisse ne plus avoir de rapport avec son allure theorique.

La notion classique d'instabilite par bifurcation d'equilibre est donc purement
abstraite. Elle ne peut evidemment suffire ä Fetablissement de regles pratiques
rationnelles, qui doivent s'axer sur une concordance experimentale etendue, et
s'inspirer d'une coneeption coherente de la securite.

Mais, quoique purement abstraite, cette notion conserve cependant une signification

essentielle, et il est important de se penitrer du caractere dualiste de la notion
d'instabilite.

II est egalement important de remarquer qu'en raison du caractere aleatoire des

perturbations qui influent sur la stabilite, une coneeption rationnelle de la securite ne
peut etre que probabiliste. C'est sur ces deux principes essentiels que s'appuie la
theorie que nous exposons brievement dans son application aux deux problemes
fondamentaux d'instabilite: le flambement et le deversement.

I Le Flambement

Le flambement des barres droites ä section constante
Le probleme de la stabilite d'une barre prismatique droite, articulee ä ses deux

extremites et soumise ä une compression axiale est fondamental.
La theorie bien connue d'Euler le resoud dans le cas ideal d'une barre parfaite et

indefiniment elastique et resistante: le bifurcation d'equilibre se produit pour la valeur
critique de la charge calculee par Euler:

N J***ly» \2

Pour une charge inferieure, l'equilibre stable est rectiligne; pour une charge
superieure, il est flechi.

II faut ensuite passer de la piece ideale ä la piece reelle. Au debut, on a simplement
considere que, puisque les barres utilisees en construction ont des proportions telles
que leur contrainte de rupture qui correspond ä une courbe deformee tres tendue est
atteinte pour une charge tres peu superieure ä la charge critique d'Euler, celle-ci cor-
respondrait pratiquement ä la rupture par flambement. Le fait d'avoir ainsi neglige
les deformations plastiques des materiaux et notamment de l'acier, a eu comme
consequences de nombreuses et retentissantes catastrophes et les controverses bien
connues entre Euleriens et non-Euleriens.

Ces controverses n'ont abouti qu'ä des formules empiriques de raecordement se
substituant ä la formule d'Euler, dans les zönes oü eile est inapplicable.

Un certain nombre de chercheurs ont cependant essaye d'echafauder une theorie
du flambement par divergence d'equilibre, se basant sur le fait experimental incon-
testable que l'equilibre flechi apparait pour une valeur de la charge tres faible et large-
ment inferieure ä la charge critique d'Euler.

Nous pensons avec eux que ces constatations montrent que la theorie par bifurcation

d'equilibre est une abstraction. L'experience reste notre grande maitresse, et il
serait vain d'aller contre ses enseignements.

L'instabilite de flambement se produit reellement par divergence d'equilibre, et
c'est cette constatation qui doit etre ä la base de toute Solution realiste.
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Quelles sont donc les causes de cette apparition prematuree de l'equilibre flechi?
Elles peuvent se classer en deux categories:

(i) Defectuosites de structure: Les materiaux sont inhomogenes, leurs proprietes
mecaniques variables dans leur masse, ainsi que leur etat de contrainte
interne.

(ii) Defectuosites de forme: Defaut de rectitude, de centrage pour ne citer que
les principaux.

Quoi qu'il en soit, le probleme reside dans la recherche d'une interpretation des
effets de ces differentes defectuosites, au moyen d'une hypothese les rendant acces-
sibles au calcul.

On est ainsi amene ä supposer la piece en materiau parfaitement homogene, doue
de proprietes elasto-plastiques bien definies, mais presentant initialement certaines
defectuosites de formes.

Partant de l'hypothese ainsi posee, on peut calculer la contrainte maximum dans
la barre. Une certaine valeur de cette contrainte amenant l'affaisement, on peut
calculer la charge correspondante, ou charge critique probable. Une comparaison
avec les essais, renseigne sur la validite de l'hypothese admise.

Des tentatives de ce genre ont ete faites par de nombreux auteurs. Surtout pour
l'acier, la nature de l'imperfection initiale a ete, suivant le cas, une fleche initiale ou
une excentricite initiale ou une combinaison des deux.

Toutes les hypotheses emises presentent le caractere commun de n'exprimer
l'imperfection initiale qu'en fonction de certaines dimensions caracteristiques des

pieces, telles que: longueur, demi-hauteur de la section droite, rayon du noyau central,
etc.

II est certain qu'une teile coneeption ne peut avoir qu'une validite tres limitee. On
peut considerer, en effet, que dans le cas d'eprouvettes usinees, les defectuosites de
forme: courbure initiale et excentricite de charge, peuvent etre suffisamment reduites
pour n'avoir que des effet absolument negligeables. La flexion prematuree est donc
düe ä peu pres uniquement, aux defectuosites de structures.

Ces defectuosites de structures ne pouvant se manifester que sous contrainte, il
est clair que la defectuosite conventionnelle qui interprete leurs effets, doit etre fonction

de cette contrainte.
Toute expression d'une fleche initiale, ou d'une excentricite initiale qui n'est fonction

que des dimensions de la piece, ne peut donc etre consideree comme valable que
pour un materiau bien determine, car eile admet implicitement que la contrainte qui
lui correspond est la limite d'ecoulement du dit materiau.

Ces considerations eliminent donc l'excentricite en tant que moyen d'interpretation
des defectuosites inevitables. On ne voit pas bien, en effet, comment on pourrait
justifier la Variation necessaire de la dite excentricite avec la nature du materiau.

II reste donc la fleche initiale, avec la necessite d'affecter son expression d'un coefficient

variable avec le materiau, ou les nuances d'un meme materiau. Ceci laisse
prevoir les difficultes qui surgiraient dans le cas de I'application ä des barres ä treillis,
et ä des problemes plus complexes.

Ces considerations preliminaires suffisent ä expliquer l'insucces des differentes
tentatives connues.

Elles montrent egalement que les hypotheses d'une fleche initiale ou d'une
excentricite initiale doivent etre abandonnees, en leur substituant celle d'une prefleche
conventionnelle, fonction de la contrainte.

L'expression de cette prefleche conventionnelle ne saurait etre quelconque si l'on
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veut aboutir ä une Solution generale; eile doit satisfaire ä certaines conditions que
nous allons examiner successivement.

Elle doit satisfaire aux lois de la flexion sinusoidale

Dans les essais de flexion simple, operes sur des poutres d'acier doux par exemple,
on peut constater des fluages locaux qui ont comme consequence une certaine majoration

de la deformation. On constate d'ailleurs que, pour l'ensemble de la poutre, la
loi deformation/allongement reste sensiblement lineaire tant que la contrainte maximum

reste au-dessous de la limite d'ecoulement, et meme un peu au-dessus en
consequence du phenomene d'adaptation dans la section.

On pourrait donc, pour determiner la fleche reelle, calculer d'abord la fleche
elastique theorique, et lui ajouter une fleche complementaire d'inhomogeneite.
Puisque la deformation reste sensiblement lineaire, l'expression de cette fleche
complementaire aurait, ä un coefficient pres, la meme expression que la fleche theorique
d'elasticite pure.

En flexion sinusoidale, la fleche elastique d'un poutre de longueur /, de moment
d'inertie /, coefficient d'elasticite E, sous moment maximum au milieu M0 s'exprime par:

M0l2
J TT2 EI

La fleche complementaire d'inhomogeneite s'exprimerait donc par :

M0l2 W
f°=c^ErCn'N-c (1)

dans laquelle:
C=constante experimentale
n./=contrainte maximum de flexion au bord de la section mediane
W= module de section (//Fpour une piece pleine)
Nc=tt2EI/12, charge critique d'Euler.

En flexion simple, cette fleche complementaire est pratiquement sans importance.
Quand il s'agit de flambement, il n'en est plus de meme. L'inhomogeneite du
materiau cree des le debut de I'application des charges, une dissymetrie des deformations

qui provoque une flexion influant directement sur la contrainte au bord de la
section mediane, et l'on ne peut negliger cette consequence.

II resulte de notre expose preliminaire, qu'on ne peut rationnellement interpreter
les effets de cette defectuosite que par la consideration d'une prefleche conventionnelle
fonction de la contrainte.

Les considerations suivantes precisent la forme ä donner ä cette prefleche
conventionnelle.

On sait que la flexion de flambement suit tres sensiblement la loi sinusoidale. Or
ä mesure que l'elancement augmente, Ie flambement se rapproche de la flexion simple,
puisque la contrainte de compression diminue. A la limite pour un eiancement
infiniment grand il faut donc que l'expression de la prefleche conventionnelle tende
vers l'expression (1).

Cette condition est indispensable si l'on veut aboutir ä une Solution generale qui
raccorde le flambement ä la flexion simple.

La contrainte maximum nm au bord de la section mediane etant la somme d'une
contrainte de compression simple n et d'une contrainte de flexion «/, il en resulte qu'il
n'y a d'ores et dejä, que deux expressions possibles de la prefleche conventionnelle:
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W
f0=Cnm

fo=Cnf

Nc

W_

Nc
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(2)

(3)

hyperbole d'Euler

' r2

Elle doit etre theoriquement correcte

Nous entendons par lä que, si l'on suppose nulle
la prefleche conventionnelle, la piece redevenant ainsi
parfaite, les charges critiques de la theorie par divergence

d'equilibre doivent devenir identiques ä celles de
la theorie par bifurcation d'equilibre. En supposant
un materiau parfaitement elastique jusqu'ä sa limite
d'ecoulement ne, le diagramme ideal de la contrainte
critique de flambement est represente en ABC sur la
figure 1.

Dans la theorie par divergence d'equilibre, on
admet que 1'affaissement se produit lorsque la
contrainte maximum au bord de la section mediane est
egale ä la limite d'ecoulement du materiau. En fait,
c'est pour une contrainte legerement superieure que 1'affaissement se produit du fait
de Fadaptation de plasticite, mais dans le flambement pur, l'erreur commise, en se

limitant ä ne est negligeable.
Tenant compte qu'en flexion sinusoidale le facteur d'amplification de la fleche

sous la contrainte axiale nz est:

\

Eiancement

Fig. 1.

nc—n.

la contrainte d'affaissement nz se calculera en posant:
nzQf0 nc

nz+- W nc—n
=ne (4)

dans laquelle:
ß=surface de section de la barre
«c=contrainte critique d'Euler

Nc T2£

y=eiancement=
/

/=longueur de la piece

r=rayon de giration dans le plan de flambement.

Avec l'expression (2) de/0, on arrive ä l'equation du second degre:

nz2-nz[nc+ne(C+l)]+nenc=0 (5)
dont la Solution est:

nz=n4 — Vn42—ncne ]
avec: ,„..,, (6)

«4=i [nc+ne(C+l)]j
Pour une valeur determinee de C, la Variation de n en fonction de y se fait suivant

une courbe ayant Failure AD indiquee en pointille sur la figure 1. Si l'on fait C=0,
ce qui revient ä supposer la piece parfaite, on voit qu'on a bien:
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nz=nc pour nc<jte

nz=ne pour np>ne

L'expression (2) satisfait donc ä la condition posee: la courbe de nz en fonction
de y coincide avec ABC.

Avec l'expression (3) de/„, on arrive ä l'equation:

nz2(C+l)-nz[ne(C+l)+nc]+nenc=0 (7)

On voit qu'en faisant C=0 dans les equations (5) et (7), elles deviennent identiques.
L'expression (3) satisfait donc egalement ä la condition posee.

Elle doit assurer la concordance experimentale
Le caractere aleatoire des imperfections, les variations constatees dans la valeur

de la limite d'ecoulement d'un meme materiau, l'influence de Fadaptation de plasticite,

sont autant de causes de dispersion dans les essais de flambement. Pour verifier
une concordance experimentale, il faut donc disposer, autant que possible, d'un grand
nombre de points d'essais. Les essais de Tetmayer sur l'acier doux sont, ä ce point
de vue, parmi les plus interessants.

La valeur de la limite d'ecoulement ne ä prendre en compte, doit etre la valeur
moyenne d'un grand nombre d'essais.

II resulte des essais de traction, effectues recemment sur dix mille (10 000)
eprouvettes en acier doux ordinaire, par la Chambre Syndicale des Entrepreneurs de
Construction Metallique de France, et la S.N.C.F., que cette valeur moyenne ressort
ä 28,6 kg./mm.2 En prenant cette valeur pour ne et C= 1/12 dans la formule (6)
donnant nz en partant de l'expression (2) de la prefleche conventionnelle on voit que la
courbe de nz, en fonction de Felancement y passe sensiblement par la moyenne des

points d'essais de Tetmayer (courbe 1 fig. 2). La concordance experimentale de
l'expression (2) peut donc etre consideree comme aussi bonne que possible pour
l'acier doux ordinaire.

Toujours avec C=l/12, eile parait d'ailleurs
aussi bonne pour l'acier ä haute resistance, le
duralumin, le bois de construction (sapin blanc).
(Essais de Ros, Publication Preliminaire du 1er

Congres de FA.I.P.C).
Partant de l'expression (3) de /„, on peut egalement

tracer la courbe de Variation de n: en fonction
de y. Avec C= 1/12, la concordance semble bonne
pour les grands elancements mais beaucoup moins
bonne pour les petits et moyens; la courbe calculee
passe nettement plus haut que la moyenne des

points d'essais. On ne peut trouver de valeur de C
donnant une concordance aussi bonne qu'avec
C=l/12, et l'expression (2). II y a donc ici nettement

avantage en faveur de l'expression (2).

kg n

?8 •
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?1

' \Ö)
~5 ¦.

?0
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•
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Fig. 2.

Elle doit permettre une coneeption probabiliste de la securite
La coneeption de la securite est evidemment le point le plus faible des methodes

de calcul au flambement derivant directement de la theorie par bifurcation d'equilibre.
On ne peut obtenir en effet autre chose que la valeur d'une contrainte critique de

flambement concordant plus ou moins avec les essais. De ces valeurs critiques, on
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passe aux valeurs admissibles par I'application d'un coefficient de securite. Mais
c'est lä que se presente la difficulte, on ne peut prendre un coefficient de securite
unique pour tous les elancements. Pour l'acier doux par exemple, si l'on prend 2,5 ou
3 par rapport ä la charge critique d'Euler, on ne peut conserver ce chiffre pour les tres
petits elancements car on arriverait ä ne travailler qu'ä 8 ou 9 kg./mm.2, en compression

simple. Inversement, le coefficient de securite normalement admis en compression

simple etant de 1,66, qui oserait Fappliquer aux grands elancements par rapport
ä la charge critique d'Euler? On s'en tire donc en faisant varier empiriquement la
valeur de ce coefficient de securite avec l'elancement.

Cependant, en toute rigueur, si les contraintes critiques calculees sont bien reelles,
les coefficients de securite differents amenent evidemment ä Finverse du resultat qu'on
se propose normalement d'obtenir, et qui est l'homogeneite du degre de securite entre
les differents elements d'une construction; il ne viendrait pas ä Fidee de mettre dans
une chaine de levage des maillons de differentes resistances.

II ne faut pas etre difficile pour admettre un procede qui, contraite ä toute logique,
consacre enfait Vechec de la theorie par bifurcation d'equilibre.

Cet echec est inevitable si l'on ne veut pas considerer, malgre leur evidence, les

perturbations apportees par les defectuosites.
Ces perturbations etant aleatoires, la coneeption de la securite ne peut etre que

probabiliste. Une contrainte critique calculee ne peut etre qu'une contrainte critique
plus ou moins probable qui ne peut constituer la base d'une coneeption rationnelle
de la securite.

Le probleme du flambement n'est qu'un probleme de resistance des materiaux
comme les autres, et de ce fait, justiciable des memes methodes.

En traction simple par exemple, la contrainte critique est la limite d'ecoulement.
Sa valeur, pour l'acier doux, varie de 22 ä 35 kg./mm.2, et sa valeur moyenne a ete
calculee ä 28,6 kg./mm.2 sur 10 000 essais. On n'applique cependant pas Ie coefficient
de securite par rapport ä ce chiffre, mais par rapport ä 24 kg./mm.2, car on estime que
la probabilite de se trouver devant une valeur inferieure est suffisamment faible.

De meme le cas du flambement, nz etant la contrainte probable d'affaissement, il
faut determiner ns, contrainte limite d'affdissement, teile que la probabilite d'observer
une valeur inferieure, soit suffisamment faible. Et c'est par rapport ä ns que le coefficient

de securite doit etre applique et non par rapport ä nz; enfin, ce coefficient de
securite doit etre unique et valable pour tous les elancements.

ns doit se deduire de nz par Ie jeu d'une majoration du coefficient experimental C,
en tenant compte d'autre part, des deux conditions suivantes:

Pour un eiancement nul, il faut prendre pour ne la valeur limite et non la
valeur moyenne, par exemple pour l'acier doux, il faut prendre 24 kg./mm.2 et
non 28,6 kg./mm.2

Pour un eiancement infiniment grand, il ne faut pas que la valeur de ns tende
vers nc, le rapport nc/ns de la contrainte critique d'Euler ä la contrainte limite
doit tendre vers une valeur finie, plus grande que 1 quand l'elancement croit
indefiniment.

Partant de l'hypothese (2), la valeur de ns est donnee par la meme expression (6)
que nz, etant entendu qu'on donne ä ne la valeur limite, et qu'on substitue ä C un
coefficient C>C.

La valeur de ns peut donc se mettre sous la forme:

'-/«j=«4 1" - *' «42
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Quand l'elancement devient tres grand, nc tend vers zero, on peut developper le
radical en serie et ne conserver que les deux premiers termes, d'oü:

nc ne
ns=n4H'-M 2«4

nc ne

(1 + C'K 1 + C

d'oü: -=1 + C (8)
ns

En prenant C' 5C= 1/2,4, on ne constate aucun point d'essai en dessous de la
courbe de ns en fonction de y. Cette courbe est tracee pour l'acier doux en 2 sur la
figure 2.

Partant de l'hypothese (3), on obtiendrait encore pour un eiancement infiniment
grand:

"-e=l + C
ns

Elle doit permettre V etablisement de formules pratiques suffisamment simples

L'examen des equations (5) et (7) montre immediatement que Favantage de la
simplicite est entierement en faveur de l'hypothese (2) qui reste donc finalement la
seule ä retenir.

Conclusion
Une opinion repandue jusqu'ä present etait qu'on pouvait faire, sur les imperfec-

tions initiales, un nombre ä peu pres illimite d'hypotheses valables. Effectivement, il
y en a eu beaucoup d'emises; un certain nombre d'entre elles sont enumerees par M. le
Prof. Massonnet dans son article "Reflexions concernant Fetablissement de prescriptions

rationnelles de flambage des barres d'acier" (Ossature Metallique, No. 7-8,
juillet-aoüt 1950); d'autres par M. le Prof. Campus dans son article "Reflexions sur
la Methode de M. Dutheil pour le calcul des pieces comprimees et flechies" (Ossature
Metallique, No. 1, janvier 1951).

De toutes ces hypotheses, aucune ne repond ä toutes les conditions posees, et ne
peut serieusement etre opposee ä notre hypothese (2) qui semble, seule, permettre une
Solution simple, generale et coherente du probleme. Elle illustre bien notre opinion
que la theorie du flambement par bifurcation d'equilibre, tout en n'etant qu'une
abstraction, conserve cependant une signification essentielle: l'expression (2) de la
prefleche conventionnelle, renfermant en effet le terme nc, charge critique d'Euler, et
dans toutes les formules qui en decoulent on retrouve la contrainte critique d'Euler nc
et la limite d'ecoulement ne. Elle est donc fondamentalement Eulerienne.

Formules d'application
Pour tous les elancements, on peut calculer ns par:

ns=n4-Vn42—nenc 1

avec: n4=i [nc+nc(C+l)] J U
En posant: k=ne/ns, on peut aussi donner un tableau ou une courbe des valeurs de k
en fonction de l'elancement.

La condition ä verifier sera alors:
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(10)nk<R
dans laquelle:

/?=contrainte admissible
«=contrainte de compression simple
k=coefficient de flambement.

C'est la methode suivie dans les Regles d'Utilisation de l'acier, applicable en
France, aux Travaux dependant du Ministere de la Reconstruction et de FUrbanisme,
et aux Travaux Prives. (Regles CM 46).

Notons que, dans ces Regles nous avions exprime la fleche initiale par:

>CÄ7 <">

Cette fleche initiale n'etait que la prefleche conventionnelle correspondant ä une
contrainte au bord de la section mediane egale ä ne, soit une valeur particuliere de:

W
f0=C'nmWc (12)

qui peut etre consideree comme une generalisation de (11). Cette generalisation
presente des avantages dans certains problemes complexes de flambement et pour
I'application ä differents materiaux.

Problemes complexes de flambement
Poutres composees de membrures assemblees par treillis ou barrettes

Une teile poutre composee, comprimee axialement se comporte du point de vue
de la forme d'equilibre, comme une poutre prismatique, c'est-ä-dire qu'elle prend, des
le debut de I'application de la charge, une position d'equilibre flechi. II en resulte
que les troncons de membrures sont inegalement comprimes, et qu'il y a certainement
danger ä considerer que la charge se repartit egalement, comme on doit logiquement
le faire dans la methode par bifurcation d'equilibre. Ce danger, confirme par
l'experience, est apparu d'ailleurs ä un certain nombre d'ingenieurs qui ont essaye d'y
remedier par l'emploi de formules empiriques.

Notre methode donne une Solution immediate ä ce probleme: la contrainte maximum

au bord de la section mediane et determinant 1'affaissement, ne doit plus etre
prise egale ä ne, mais ä «,, contrainte limite d'affaissement du troncon de membrure
qui est connue puisqu'il s'agit d'une barre prismatique.

Partant de l'expression (12), on exprime la contrainte nm par:
nc—on

n„,=n nc—(l-l-c)o-n
ou, en posant:

/*— 1 nc
k»= /, ,x avec: /*=—fi—(1+c) an

n„,=nk0
Alors que dans une poutre prismatique, la condition ä verifier serait:

nk0<R
dans le cas de la poutre ä treillis, eile devient:

nko<nn (13)
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m, etant la contrainte limite admissible du troncon de membrure soit:

ni,=n,/a

Prise en compte de la deformation d'effort tranchant

Dans les poutres simplement flechies, on neglige en general cette deformation qui
n'a pas grands inconvenients.

Dans les poutres comprimees axialement, la fleche complementaire qui en resulte

provoque une augmentation de la contrainte au bord de la section mediane, eile a

donc une influence directe sur la stabilite.
Considerons d'abord le cas oü la raideur propre des membrures est negligeable

devant celle de Fensemble de la poutre.
La deformation d'effort tranchant peut s'assimiler ä une diminution du module de

raideur EI de la poutre, ce module devenant :

EI/X avec A>1
On etablit facilement la valeur de A:

nc Q
X=1+GDa

dans laquelle:
G=module d'elasticite transversal
ß=section totale des membrures

Qa=section de l'äme equivalente.

II en resulte immediatement que la contrainte critique d'Euler nc devient:

n'c=nc/X

et le facteur d'amplification de la fleche:

(ces deux proprietes pouvant s'etablir d'ailleurs directement par l'analyse).
Le probleme est ainsi simplement resolu, il suffit de remplacer nc par n'c dans les

formules qui precedent, et la condition ä verifier devient:

nk'oOtu (14)

Si la raideur des membrures est appreciable, on etablit facilement que le module
de raideur devient:

E(I/X+Zi)
dans laquelle:

Ei= somme des moments d'inertie des membrures
/=moment d'inertie de l'effet poutre, c'est-ä-dire calcule sans tenir compte
des i des membrures.

On en deduit:

"'<="< (1+7J (15)

Remarquons en passant qu'ä notre connaissance cette valeur de la contrainte
critique d'Euler n'a jamais ete calculee. Timoshenko, dans son ouvrage Theorie de la
Stabilite Elastique, ne considere que le cas oü la raideur des membrures est
negligeable. L'influence de cette raideur est cependant, dans certains cas, importante;
l'erreur commise en la negligeant peut etre superieure ä 20%.
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Determination de l'effort tranchant de flambement
Ce probleme a fait couler beaucoup d'encre et donne naissance ä de nombreuses

formules plus ou moins empiriques mais la plupart tres divergentes.
II se trouve ici resolu immediatement.
En negligeant la deformation d'effort tranchant, n k0 represente la contrainte totale

au bord de la section mediane. La contrainte de flexion est donc:

nka—n=n (k0—l)
et comme il s'agit de flexion sinusoidale, Feffort tranchant maximum est:

T=W^n(k0-l) I

(16)

Dans le cas oü deformation d'effort tranchant est appreciable, il suffit de remplacer
nc par n'c et de substituer ä k0, dans l'expression (16), la valeur correspondante de k'0.

Poutres flechies et comprimees

La prise en compte de la prefleche conventionnelle permet de donner ä ce probleme
une Solution rationnelle, et d'obtenir le raecordement total entre la flexion simple et
le flambement.

Par crainte d'abuser de la place qui nous est reservee, nous renvoyons le lecteur
au texte de la Conference que nous avons eu Fhonneur de presenter ä la Tribüne de la
Societe Royale Beige des Ingenieurs et Industrieis, le 3 mai 1950, et publiee dans le
Bulletin No. 3, 1950, de cette societe.

Ce texte sert de base ä la revision du texte concernant le flambement dans les

Regles CM 1946, revision demandee par la Chambre Syndicale des Entrepreneurs de
Construction Metallique de France. Le nouveau texte marquera d'importants progres

et sera plus simple.
Nous esperons que les exemples qui precedent suffiront cependant pour donner une

idee des possibilites de cette methode.
Par eile, et du fait de sa coneeption probabiliste de la securite, le probleme du

flambement cesse de presenter le caractere particulier qui le distinguait des autres
modes de sollicitation, et la Resistance des Materiaux y gagne en coherence.

II Le Deversement

Le deversement des poutres droites flechies
Une poutre droite flechie dans un plan de symetrie peut etre instable sous une

contrainte maximum tres inferieure ä sa limite d'ecoulement. Suivant ses proportions,
il arrive qu'elle flambe lateralement on dit qu'elle se deverse.

II s'agit d'un probleme d'instabilite qui presente de grandes analogies avec celui
du flambement.

La theorie bien connue de Timoshenko (Annales des Ponts et Chaussees, fasc. III,
IV et V, 1913, et son ouvrage—Theorie de la Stabilite Elastique—lui donne une Solution

dans le cas d'une poutre parfaite, et en materiau indefiniment elastique et resistant.
La bifurcation d'equilibre doit se produire theoriquement pour la valeur critique du
moment calculee par Timoshenko dans differents cas de charge, et differentes formes
de section.

Pour un moment inferieur, l'equilibre stable reste plan; pour un moment superieur,
il devient gauche. Mais cette theorie n'est pas plus confirmee experimentalement que
celle d'Euler.
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En fait, le gauchissement apparait des le debut de I'application de la charge, et
l'instabilite se produit par divergence d'equilibre, comme dans le flambement. A ce

point de vue, les experiences de deversement effectuees courant 1951 par l'Institut
Technique du Bätiment et des Travaux Publics, sur des I.P.N. soumis ä moment
constant, sont caracteristiques. Les formules de Timoshenko presentent d'ailleurs les

memes dangers que celles d'Euler.
Hormis quelques formules empiriques, la plupart sans grand fondement, il n'y a

pas eu de tentative qui merite d'etre rapportee en vue d'etablir une theorie de deversement

par divergence d'equilibre; c'est cependant bien ainsi que se produit l'instabilite,
et c'est cette constatation qui doit etre ä la base de toute Solution realiste.

S'il n'y a pas eu de tentative serieuse, alors qu'elles ont ete si nombreuses dans les

cas du flambement, c'est que le probleme est ici infiniment plus complexe.
Considerons une barre rectangulaire etroite, rectangulaire, flechie dans son propre

plan sous un moment constant M. Sur les appuis, il y a une seule liaison des sections
terminales: toute rotation est impossible autour de Faxe OX (fig. 3).

1 '
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Fig. 3.

Supposons une position d'equilibre accompagnee d'un leger flechissement lateral.
La methode de l'energie permet de determiner la forme d'equilibre; on sait que le

deplacement lateral du centre de gravite de la section est ä Variation sinusoidale.

de meme que Fangle de torsion:

y=y0 sin -. x

cf>=</>0 sin-rx

Considerons dans la section, et sur toute la longueur / de la barre, une tranche
infiniment mince AB ä la partie superieure de la zone comprimee. Cette barre
prismatique elementaire uniformement comprimee, tend ä flamber lateralement, mais les
reactions elastiques de la barre entiere s'opposent ä ce flambement. Ces reactions

qui proviennent de la raideur de flexion d'une
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Fig. 4.

part, et de la raideur de torsion d'autre part,
sont evidemment ä variations sinusoidales
puisque proportionnelles aux deformations.

La barre prismatique elementaire se trouve
donc exactement placee dans les conditions d'une
barre soumise au flambement dans un milieu
elastique. On sait, en effet, que dans ce cas, la
ligne elastique en position d'equilibre flechie est
sinusoidale et que, par consequent, les reactions
du milieu elastique sont elles-memes ä variations
sinusoidales.
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Si nous connaissions la constante du milieu elastique correspondant ä la barre
elementaire, le probleme pourrait etre considere comme resolu.

Du fait de la Variation de la contrainte dans la section le long de Faxe OZ, le calcul
de cette constante est inextricable. La difficulte peut etre tournee au moyen de Farti-
fice suivant: On peut delimiter, dans la section de la poutre, deux membrures fictives
(fig. 4) d'epaisseur e, qui seraient soumises ä une contrainte uniforme:

M
'UV

dont le moment resistant serait egal ä M.
II suffit d'ecrire:

—t- n=eb (h-
o

¦e) n

d'oü: e=0,2l2h
On peut concevoir une poutre composee ideale, dont les membrures seraient celles

que nous venons de definir, et dont les liaisons entre ces membrures seraient telles que
la raideur de torsion et la raideur de flexion laterale de la poutre composee soient les

memes que celles de la barre reelle.
La poutre composee ideale ainsi definie possede la propriete remarquable d'avoir un

contrainte critique de deversement egale ä celle de la poutre reelle.
Nous en donnons ci-dessous la demonstration.
On concoit immediatement la simplification apportee au probleme tel que nous

Favons pose, et il ne s'agit plus que de la stabilite au flambement d'une barre
prismatique determinee, dans un milieu dont on connait les reactions elastiques. Ce

probleme est classique, au moins si l'on reste dans l'hypothese de pieces parfaite est
indefiniment resistantes.

Considerons (fig. 5) la section mediane de la
poutre dans une position d'equilibre legerement
flechie. Nous ne faisons aucune hypothese sur
la forme de section que nous supposons seulement

doublement symetrique. Nous ne la
representons rectangulaire que pour fixer les
idees.

La zöne 1 correspond ä la membrure
comprimee de la poutre composee ideale; cette
membrure a un moment d'inertie transversal i,,
et une section Q\.

Les memes valeurs s'appliquent ä la membrure

tendue 2, ä la zöne neutre 3 correspon-
dent i' et Q', ä l'ensemble de la section i et Q.

<f>0=valeur maxima de la rotation
f=fleche de la membrure comprimee

/'=fleche de la membrure tendue
p0=valeur maxima de la reaction de raideur de torsion
r0=valeur maxima de la reaction de raideur de flexion
/= longueur de la poutre

F=module d'elasticite de traction
C7=module d'elasticite transversal
/,=moment d'inertie de torsion de la section

i,a,

r-1
A

h+H

I.S1

Fig
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nc,=tension critique d'Euler de la membrure tendue (ou de la membrure
comprimee)

8=coefficient de majoration du moment d'inertie de la membrure tendue:
8 l+n/nci

-r,=module de resistance de la section (dans le sens vertical)

J=distance entre c. d. g. des membrures
M,—valeur maxima du moment de torsion.

Les equations d'equilibre donnent entre les differentes valeurs maxima definies
ci-dessus:

/-/' b f+f

M,=Pod+r0^=a</>0

expressions dans lesquelles a, b, c, sont des constantes: ¦

772 /4 /4

a=GI'T2' b=^Ii,' c=^e7'
De ces expressions, on tire la relation:

f., f A-B

ab b
avec: A =-= 5= —

d2 4c

Le moment par rapport ä la section mediane des reactions elastiques s'opposant au
flambement de la membrure comprimee est:

l2
M0=(p0+r0)—2

IT'-

Or: p0=f'-b=Xf—p±-

f+f A + Xn^Ei'
ro=-^r=f

(2
r**

2c J 2 /4

S A+l 7r2 Ei'
T l2

d'oü: ¦^=n,=nc,SX+(X+l)nc,u (17)

i
avec: w=

2i,
La tension critique de la membrure comprimee, qui est aussi celle de la piece reelle,
est donc:

n=n1+nc,=nc,(SX+l) + (X+l)nc,u (18)

equation du 2° degre en n qui, resolue, donne:

n=nc,V(2A + l)(u+l) (19)
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1 Gl l2 V tt2 Ei,
avec: A=-^-=r -~ u=^- ncl= n nit2 Ei, d2 2i, l2ü,

Cas d'une section rectangulaire en acier doux

G 2 rt2 Ei
rf=0,788/i,

La formule (19) devient:

i,=0,2l2i, a=0,788/i, T.=y ncl=nc=-ß^-, w=l,36

I

n=nc, l,53SV2A+l (20)

/, l2
avec: ,4=0,308 - j-i h2

Cas d'une section en double te en acier doux

On a sensiblement: u=0 d=h
¦n2 Ei,

n.cl-
TT2 Ei, V2 IV\2

h
P etant le rayon de giration dans le plan de l'äme et V=-, nc etant la tension critique

d'Euler de la barre dans le sens de son plus petit moment d'inertie.
La formule (19) devient:

n=nc,V2A + l (21)

It l2
avec: .4=0,0812 4-^

i h2

Comparaison avec les formules obtenues par les methodes classiques

Pour la section en double te, M. Timoshenko arrive ä l'expression suivante de la
tension critique:

n=- -jVEi G I,Vl+7T2 a2/l2

¦n2 d2 h2 Ei tt2 i h2

-T=T2T2Glt=6'l6i,T2

On peut verifier que cette expression est identique ä (21)

Pour la section rectangulaire, l'expression de la tension critique obtenue par
M. Timoshenko est:

Vit
n=-jjVEiGI,

expression identique ä:

n=nc 1,535©Z4

donc differente de (20) par la suppression du chiffre 1 sous le radical.
Cette difference s'explique aisement. Dans une barre rectangulaire etroite, ayant

une extremite encastree et l'autre soumise ä un moment de torsion, Fencastrement
s'oppose au gauchissement d'une tranche mince quelconque situee ä une distance d du
c. d. g. Elle subit de ce fait une deformation de flexion qui influe sur Fangle de torsion.

C.R.—19
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Cette deformation complementaire de flexion est d'autant plus importante que la
distance d est plus grande et la longueur de la barre plus petite.

Ce phenomene n'a pas echappe ä M. Timoshenko. Pour la section en double te,
il a donc evalue apres coup, la raideur de flexion des ailes et Fa introduite dans les

equations differentielles d'equilibre, ceci d'ailleurs au prix de certaines complications
mathematiques. Pour la section rectangulaire, il a neglige cette raideur de flexion
complementaire, alors que par notre methode eile est automatiquement prise en
compte dans tous les cas, et se traduit par le chiffre 1 sous le radical dans notre
formule (20).

En conclusion, nous pouvons dire que non seulement notre hypothese simplifica-
trice se trouve confirmee, mais encore qu'elle presente un avantage evident sur les
methodes classiques puisqu'elle permet d'aboutir ä une formule generale unique,
valable pour toutes les formes de section, et qu'elle prend automatiquement en compte
le phenomene de raideur de flexion complementaire que nous venons de signaler.

Remarquons que nous n'avons jusqu'ici, considere que le cas
fundamental du moment constant mais on sait que les autres cas de
charge s'en deduisent par application de coefficients determines par
Timoshenko. II n'y a donc aucun interet ä traiter directement ces
autres cas de charge. L'important est d'avoir ramene le probleme
du deversement ä celui du flambement en milieu. elastique ce qui
rend possible I'application au deversement de la theorie par divergence

d'equilibre.
Avant d'etablir les formules pratiques d'application, il est cependant

necessaire de preciser une particularite importante du probleme
fondamental du flambement d'une barre prismatique dans un milieu

Fig. 6. elastique.
Considerons une barre prismatique AB (fig. 6) parfaite de forme et de structure,

de longueur /, en position d'equilibre legerement flechie, dans un milieu elastique
de constante ß.

L'equation de sa ligne elastique peut etre consideree sans erreur appreciable comme
sinusoidale:

y=f&mjx
La compression axiale N correspondant ä l'equilibre, se compose de deux parties

distinctes:

(i) Nc charge critique d'Euler equilibree par le potentiel interne de la barre flechie.
(ii) N, charge axiale complementaire equilibree par les reactions du milieu

elastique. Ce deuxieme Systeme de forces ne produit aucun moment flechissant dans
la barre car le travail de la force N, dans son deplacement est egal au travail des
reactions elastiques, en negligeant bien entendu, comme habituellement, l'augmentation

de potentiel interne dans la barre düe ä son raccourcissement.
On peut donccalculer N, en ecrivant que le moment dans la section mediane est nul.
La reaction du milieu elastique sur un element dx de la barre est:

77

ßy dx—ßf sin - x dx

La somme des reactions elastiques est:

.21

iV.

H.

P=\ ßf sin-. xdx=ßf-
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et le moment de ces reactions par rapport ä la section mediane est:

PI cJ2
• M°=T^fn2

On aura donc:
l2

Xlf=ßf~2
TT*-

l2
d'oü: ¦ Ni=ß-x

TT^

et la charge critique totale de la barre sera:

N=N,+NC
II est important de remarquer que sous une charge axiale <N, seule la position

d'equilibre rectiligne est possible.
Si la caracteristique du milieu elastique ß est suffisamment grande, la barre pourra

atteindre sa limite elastique sans flamber, ce qui revient ä dire qu'elle travaille dans
ce cas en compression simple. II en resulte qu'une poutre flechie peut ne pas etre
soumise au deversement et c'est lä une difference essentielle avec le cas d'une barre
prismatique comprimee en milieu libre, qui se trouve toujours soumise au flambement
quel que soit son eiancement.

II en resulte egalement qu'il serait inexact d'appliquer un meme coefficient de
securite aux deux termes N, et Nc dont se compose la charge critique totale, Fun
correspondant ä de la compression simple et l'autre ä du flambement elastique. C'est
lä l'une des circonstances qui rendent impossible tout Systeme coherent de securite,
dans la theorie par bifurcation d'equilibre.

Signaions enfin qu'il est inutile de considerer toute autre forme d'equilibre flechi,
avec plusieurs demi-ondes, car dans le deversement, ces formes d'equilibre se tradui-
raient par une augmentation de la constante du milieu elastique ä laquelle cor-
respondrait une charge critique plus elevee.

Passons ä la barre prismatique reelle, et voyons comment s'applique la theorie
par divergence d'equilibre.

Tant que la contrainte de compression reste inferieure ä la valeur limite:

' Q Qtt2
la barre travaille en compression simple, le flechissement est faible car les reactions du
milieu elastique s'opposent ä toute amorce de flexion; il ne peut y avoir flambement.

Mais, lorsque la contrainte de compression est superieure ä n,, il y a equilibre
flechi de flambement, et 1'affaissement se produit pour une contrainte au bord de la
section mediane egale ä:

n'e=ne—n,
Le probleme se trouve ainsi ramene ä celui d'une barre soumise au flambement

libre, et la condition de stabilite ä satisfaire s'ecrit:

«,=

H) k0+"-<R (22)

ß— 1 «c
avec: k0=—jz——-. p.= -

-(1+c') an—n,
<7 coefficient de securite—ne/R
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L'expression ci-dessus n'est d'ailleurs valable qu'autant que:

CT

Pour<« «i/o-, il y a compression simple et Finegalite ä verifier se reduit ä:

n<R
Le probleme etudie est donc une combinaison de la compression simple et du

flambement. Dans la Solution que nous lui donnons, la coneeption de la securite est
coherente puisqu'ä la contrainte critique de flambement, nous appliquons le coefficient
de securite de notre theorie de flambement, et ä la contrainte de compression simple,
le coefficient de securite o-=ne/R.

Ces considerations montrent comment s'applique la theorie par divergence
d'equilibre, au deversement.

n/ etant la contrainte de flexion simple dans la poutre, resultant de sa charge, en
valeur d'exploitation, on peut poser immediatement la condition de stabilite ä
verifier:

(«i\ rt\
(23)

r*—l "cl
avec: k0=—tt-—7. p,=-p.—(l+c') r anf—n,
la valeur de n, etant donnee par la formule precedemment etablie:

n,=nc, SA+(A+1) nc, u

Dans le cas d'une section en double te, ces formules se simplifient.
On a sensiblement:

w=0 d'oü n,=nc, SX

TT2 Ei
«el=«c(-) avec «c=-^

dans laquelle:
F=demi-hauteur de la section

P=rayon de giration dans le plan de l'äme
z=plus petit moment d'inertie

ß=surface de section

anr IG/,/2°=H A — - —
«ci tr2 E 1 h2

A
A=

8+^

VERIFICATION EXPERIMENTALE

Sur Finitiative de la Chambre Syndicale des Entrepreneurs de Construction
Metallique de France, des essais ont ete effectues par le Laboratoire de l'Institut
Technique du Bätiment et des Travaux Publics, en octobre 1950.

Ces essais ont porte sur cinq poutres en I.P.N. 100 dont les longueurs sont indi-
quees dans le tableau I (colonne 1). Ces poutres ont ete soumises ä une flexion
circulaire, avec dispositif empechant toute rotation des sections terminales autour de
l'axe longitudinal. Les rotations etaient libres autour des deux axes de symetrie de
la section.
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Tableau I
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(1) (2) (3) (4) (5)
Longueur des Tier rtcr Erreur Her

poutres calculee mesuree % pieces ideales

3 m. 00 16,4 16,10 + 1,7 17,06
2 m. 00 23.7 23,8 -0,4 26,4
1 m. 50 27.5 27,7 -0,8 37,1
1 m. 00 30,5 30,0 + 1,6 61,8
Om. 50 flexion simple 31,0 165,7

Les contraintes critiques calculees (colonne 2) resultent de l'equation:

(n/—n,) k0+n,=ne

avec: Kq-
•1 nc

8=1 +

•1,083

OL

ncl

f^=n/—n

X=
8 + y4

Cette equation n'est autre que (23) appliquee ä l'etat critique, au moment de
1'affaissement, etant entendu que pour la verification experimentale, on remplace
c'= 1/2,4 par c=l/12, ce qui donne l + c= 1,083.

On a pris pour ne la moyenne des valeurs mesurees dans Faile comprimee.
Dans la cinquieme colonne ä droite, on a calcule les contraintes critiques relatives

aux pieces supposees parfaites, par nos formules equivalentes ä celles de Timoshenko.
Ainsi qu'il fallait s'y attendre, ces valeurs s'ecartent tres sensiblement des valeurs
mesurees, alors que dans notre theorie par divergence d'equilibre, l'ecart n'est que de
2 % au maximum.

De plus, des mesures precises de deformation ont ete faites pour chacune des
valeurs progressives du moment applique. Ces mesures ont permis de constater,
pour les quatre premiers essais, que la forme d'equilibre est dejä gauche pour de tres
faibles valeurs de la contrainte, ce qui contredit la theorie par bifurcation d'equilibre.

Dans le dernier essai, (poutre de 0m. 50), notre calcul donne n,=nc, ce qui signifie
que la membrure comprimee travaille en compression simple et n'est pas soumise au
flambement. Effectivement dans cet essai, il n'a pu etre mesure de deformation
laterale appreciable.

On passerait du moment constant, cas fondamental, ä toute autre sollicitation par
I'application des coefficients de la theorie classique.

Toute autre liaison des sections terminales se traduirait egalement par I'application
de coefficients connus.

On resoudrait egalement sans difficultes Ie probleme des pieces simultanement
flechies et comprimees. En raison du manque de place, nous renvoyons ä Conference
de Bruxelles dejä citee.

Ce qu'il est important de retenir, c'est que, par cette theorie, confirmee experi-
mentalement, le raecordement entre le deversement et le flambement se trouve realise

pour la premiere fois.
II en resulte des consequences importantes pour Fhomogeneite du degre de securite

et la coherence de la Resistance des Materiaux.
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Resume
Flambement

La theorie d'Euler ne s'applique qu'au cas ideal d'une barre parfaite et indefiniment
elastique (flambement par bifurcation d'equilibre). L'experience montre qu'il y a
equilibre flechi des le debut de I'application de la charge, et la rupture d'equilibre
depend de la contrainte au bord de la section mediane: il y a instabilite par divergence
d'equilibre.

II a ete propose beaucoup d'hypotheses pour Interpreter les defectuosites
inevitables qui sont la cause du flechissement prämature. Une analyse serree des

conditions ä remplir montre qu'il y en a peu de correctes. Une seule semble convenir
pour aboutir ä une Solution coherente et generale des problemes simples et complexes
de flambement (pieces prismatiques, ou composees de membrures assemblees par
treillis ou barrettes, simplement comprimees ou simultanement flechies, prise en
compte de la deformation d'effort tranchant, etc.).

Deversement (ou flambement lateral des poutres soumises ä la flexion)
Les theories classiques connues (notamment celle de Timoshenko) ne s'appliquent

qu'ä des pieces parfaites et indefiniment elastiques (deversement par bifurcation
d'equilibre). En realite, il y a, comme dans le cas du flambement, deversement par
divergence d'equilibre. A notre connaissance, ce probleme n'a pas recu de Solution
pratique. Nous en proposons une en montrant que le deversement d'une poutre
flechie s'identifie avec le flambement d'une barre prismatique dans un milieu elastique.

Cette theorie conduit pour les pieces supposees parfaites, ä des expressions de la
charge critique identique ä celles de Timoshenko, avec Favantage d'une prise en
compte automatique de la raideur laterale de flexion. Ceci etant acquis, la theorie
du deversement par divergence en decoule immediatement.

Les essais recents executes au Laboratoire de l'Institut Technique du Bätiment et
des Travaux Publics confirment cette theorie.

Summary
Bückling

Euler's theory holds good only for the ideal case of a perfectly straight and per-
fectly elastic bar (buckling through deviation of the equilibrium). Experience shows
that a bent equilibrium condition exists right from the beginning of the loading and
that the disturbance of equiübrium is dependent on the edge stressing of the middle
section: there arises an instability through disturbance of the equilibrium.

Many hypotheses have already been advanced to aecount for the inevitable defects
that cause premature bending. A compendious investigation into the conditions
that have to be fulfilled shows that only a few are correct. One alone appears to be
suitable to allow of obtaining a comprehensive and general Solution of the simple and
of the complex problems of buckling (prismatic members or built-up grid or frame
bars, bars that are only compressed or at the same time also bent, taking aecount of
the plastic deformation in consequence of a transverse force, etc.).

Lateral buckling (lateral buckling of beams subjected to bending)

The well-known classic theories (especially that of Timoshenko) hold good only
for perfect and perfectly elastic beams (lateral buckling through deviation of the
equilibrium). In reality, there occurs, as in the case of buckling, lateral buckling
through disturbance of the equilibrium. As far as we are aware, this problem has
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never been solved practically. The author proposes a Solution, in that he shows that
the lateral buckling of a beam subjected to bending is identical with the buckling of a
prismatic bar in an elastic medium.

For bodies that are assumed to be perfect, this theory leads to expressions for the
critical loads which agree with those of Timoshenko but have the advantage, however,
of automatically taking the lateral bending-stiffness into consideration. From this
there follows directly the theory of buckling through deviation of the equilibrium.

The most recent tests carried out in the laboratory of the Institut Technique du
Bätiment et des Travaux Publics confirm this theory.

Zusammenfassung
Knicken

Die Theorie von Euler gilt nur für den Idealfall des vollkommen geraden und
vollkommen elastischen Stabes (Knicken durch Verzweigung des Gleichgewichts).
Die Erfahrung zeigt, dass schon vom Beginn der Belastung an eine ausgebogene
Gleichgewichtslage existiert und dass die Störung des Gleichgewichts abhängt von
der Randspannung des Mittelschnitts: es entsteht eine Instabilität durch Störung des

Gleichgewichts.
Um die unvermeidlichen Mängel zu erklären, die die Ursache der frühzeitigen

Ausbiegung sind, wurden schon viele Hypothesen aufgestellt. Eine gedrängte
Untersuchung der Bedingungen, die zu erfüllen sind, zeigt, dass nur wenige korrekt sind.
Eine einzige schien geeignet, um zu einer zusammenhängenden und allgemeinen
Lösung der einfachen und der komplexen Probleme des Knickens zu gelangen
(prismatische Körper oder zusammengesetzte Gitter- oder Rahmenstäbe, nur gedrückte
oder gleichzeitig auch gebogene Stäbe, Berücksichtigung der Verformung infolge der
Querkraft, usw.).

Kippen (oder seitliches Knicken der Biegebalken)

Die bekannten klassischen Theorien (namentlich diejenige von Timoshenko)
gelten nur für vollkommene und vollkommen elastische Balken (Kippen durch
Verzweigung des Gleichgewichts). In Wirklichkeit kommt es, wie im Knickfall, zum
Kippen durch Störung des Gleichgewichts. Dieses Problem ist unseres Wissens bisher
nie praktisch gelöst worden. Der Verfasser schlägt eine Lösung vor, indem er zeigt,
dass das Kippen eines Biegeträgers identisch ist mit dem Knicken eines prismatischen
Stabes in einem elastischen Medium.

Diese Theorie führt für die vollkommen vorausgesetzten Körper auf Ausdrücke
für die kritischen Lasten, die mit denjenigen von Timoshenko übereinstimmen, jedoch
den Vorteil haben, die seitliche Biegesteifigkeit automatisch zu berücksichtigen.
Hieraus folgt unmittelbar die Theorie des Kippens durch Abweichung des

Gleichgewichts.
Die neuesten im Laboratorium Institut Technique du Bätiment et des Travaux

Publics durchgeführten Versuche bestätigen diese Theorie.
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Etude theorique experimentale et pratique des encastrements
de flexions

Theoretical, experimental and practical investigations of bending
stresses

Theoretische, experimentelle und praktische Untersuchung der
Biegeeinspannungen

R. PASCAL
Ingenieur-Docteur E.P.C., Paris

I. Action d'un effort concentre applique sur le plan limitant un solide
indefini (flg. 1)

Boussinesq puis Flament ont etudie l'action d'une force concentree agissant en un
point du plan limite d'un solide elastique indefini.

Gräce ä l'utilisation des solutions generales donnees par Boussinesq on obtient
sans difficulte notable les valeurs des deplacements //, v, w, et des contraintes N,, N2,
N}> T\, 7\, Fj, en tout point du solide elastique. Les notations etant celles qu'indique
la figure 1, nous avons abouti aux resultats suivants pour le point m (.v, y, o) du plan
limite:

Deplacements:

U (1+17)(1-2T,)JC l-_ (l + r,) (1-27?) y W

n 2-nEp2 ' nn 2-trEp2 '

Contraintes normales

N, i r

n 2-rrp2

n

I

2t7P2

d-v2)
TrEp

l--{X2(l-y)-y2r,)
P

i--Ay2d-v)-x2v)
v,'=0
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Contraintes tangentielles:

AH 3—R. PASCAL

Tl=o, f2=o, Ti=-^*yfl TTp*

Za : rpoJu/e de TJotinq

r efficlent de FbiLaon

UL-
Tz

fe:
TiT>^
VZ

fr*

deplocemenfer

conlroinleJ normaleJ

contraintes dfi cijoillement

Fig. 1. Action d'un effort n normal au plan limite au point o. Action d'un
effort/porte suivant ox et agissant en o. Notations pour les deplacements et les
contraintes normales et tangentielles suivant le triedre o, x, y, z

Un calcul du meme genre pour l'effort horizontal / agissant en o, suivant ox,
nous a donne pour le point m (x, y, o):

Deplacements:

U 1 + 71 V 1+7? W (1 + 77)(1—277)
f=^Ep2(p+7}X)' ~r^EpXy> T 2ttEp2

X

Contraintes normales:

Nt 1 ,xy* 2(l—n)x(p+i)x)

f it(1-2v)p21
N2

(1+^) 3^.+y(l-,)- (1_w
-r,x

f n{l-2y)p*
N3 l

yi-
3(1—7?) 27JX

p

f n(l -2V)p3 L

Contraintes tangentielles:

„ ,P2-2*2 *v2
(l-7?)X+7?2 3J-T-

3j_ 3*j>

/ 2nfi*

i r x x2„
•

f
T*_JL
f 2-irpi

„ x 3.x2

«77.
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L'examen de ces deux groupes montre que les deplacements sont inversement pro-
portiormels ä E. II prouve aussi que les contraintes dependent du coefficient de
Poisson.

II. Calcul des deplacements normaux: If provenant d'une section rectangu¬
laire APPARTENANT AU PLAN LIMITE ET Ä UN PRISME ENCASTRE NORMALEMENT

DANS LE SOLIDE INDEFINI (fig. 2)

Nous supposerons que la piece prismatique amene un effort normal N, un moment
flechissant M, correspondant ä une rotation autour d'un axe parallele ä oy et un effort
tranchant T parallele ä ox. Nous admettons que la repartition des efforts elastiques
correspondants, ä l'interieur du rectangle de contact, est celle que donne la resistance
des materiaux. Les efforts normaux sont representables par un plan:

12Af
a3b ab

N 6M1 2a,\

SW +t) ™tn=Ax+B

W

ix
g. lo^-ai)

02

Fig. 2. Contour rectangulaire d'encastrement.
(Vecteur de flexion parallöle ä Py)

Le deplacement vertical du point P et provenant de la flexion composee est,
d'apres ce qui precede, donne par l'expression:

1_„2 r«2 r+b/2 Ax+B
W,= -=r\ ,——- dx dy1 vE J aJ-b/2 Vx2+y2

On peut ecrire W,= Wn+W,2; la premiere integrale correspond ä Ax et la
seconde ä B.
Wi, est une expression impaire:

Wn=-
1-t?2 \a22 b+Vb2+4az2 a,2 b+Vb2+4a,2
,EAnL 2/a2/ ~tL- 2/a,/

W12 est tme expression paire

l—n2

+^(Vb2+4a22-Vb2+4a12)]

W,12 -B
b+Vb2+4a22 b+Vb2+4a,2 b 2a2+Vb2+4a22

a2L -r-—: a,L —,—; f-^L;
2/02/ 2/atl 2 2a1+Vb2+4a12.
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Le deplacement vertical W2 du point P provenant de Feffort tranchant s'obtient
d'une facon identique en partant de la fonction:

-.(x—a,) (x-a2)
f=6Tx- a*b

expression conforme aux regles de la resistance des materiaux. On obtient ainsi:

W,=
3(1+7?) (1-27?)

aibirE

(•+6/2 Ca-,

J -6/2 J oi

fl-' (x-a,) (x-a2)
(x2+y2)

dy dx

On trouve, apres integration, l'expression impaire W2:

W,=
3(1 + 7?) (1-27?)

a3birE T.

+ \{a,a2-buy

(arc tg2^) • T • (fl'-l)-(arc *£) ¦ T • (fl2-l)

-ßt2)]4at2+b2

b_
2a~2!

b2
+^(a,+a2)

2a2
arc tg-r—arc tg

2a,
b

-ffe2

On s'apercoit que le deplacement total W= W, + W2 ne correspondpas ä la droite de
Navier, meme en cas de compression pure. En etendant les calculs aux points du plan
situes de part et d'autre de l'axe ox, on peut obtenir la deformation du rectangle
d'appui teile qu'elle ressort de I'application de la theorie de l'elasticite et des
principes de la resistance des materiaux. L'allure du rectangle T, deforme fait l'objet
de la figure 3. Les calculs sont faits rapidement ä partir de ceux qui precedent par
un procede de contours superposes.

On remarque que la surface T, contient Faxe oy, eile n'est symetrique, par rapport
ä oy qu'en Fabsence d'effort normal.

Elle est toujours symetriques, avec les bases adoptees par rapport au plan y=0.
Le resultat auquel nous venons d'aboutir est caracterise par une anomalie

rigoureusement etablie dont l'existence necessite le recours ä la methode experimentale.

lo : cor,hur initial

Ti

^

% T-l

L Ji

To -v

L : contnur transtorme -+-

Fig. 3. Deplacement et deformation du contour rectangulaire T.
(Vecteur de flexion pure suivant oy)

III. Probleme de l'encastrement plan 'etudie ä partir des memes bases que
PRECEDEMMENT—RECHERCHE DES CONTRAINTES DANS LE SOLIDE INDEFINI (fig. 4)

En utilisant les etudes de Boussinesq et de Flament, nous avons obtenu sans grandes
difficultes les expressions donnant les valeurs des tensions N3 et N, agissant au point m,
de coordonnees (a, o, y) ainsi que les valeurs T2 du cisaillement correspondant. On
sait que iV2=7? (N+N').



ETUDE DES ENCASTREMENTS DE FLEXIONS 301

Les resultats qui, sauf pour N2, sont independants de E et de 7?, peuvent etre
resumes ci-dessous en coordonnees bipolaires, les poles etant les extremites de la
penetration de la lame indefinie.

(-0)

CX compression pur^

ß s flexion pvrt

u - a'sar/lemenl pur

A X ' A
¦f^r [ nun,im,,1* nulluni,},

M'd.o.T)

o<

ihid/W)

n

(|J
'11)1)1)1))))))

3 M

2 a

vT
nininim. IUI.111)11)1),

Kx.

4 o3

Fig. 4. Encastrement plan d'une lame normale au solide indefini

ler cas: compression pure (resultat classique)

Les tensions principales correspondant aux bissectrices de Fangle AMA' ont pour
expressions:

N=-[(ff-ff)+sin (6'-ff)]

N'=-[(0'-0)-sin (ff-ff)]
77

et N2=t] (N+N') en epaisseur indefinie.

2eme cas: flexion pure
On obtient la valeur des tensions principales et leur orientation par la construction

de Mohr, ä partir des resultats suivants (avec K=3M/ira2, y etant determine par 8 et 6'):
N, OL l+tg20-±=a (0-0')--(sin 20-sin 2ff)-yL © a,-y (cos2 0-cos2 ff)K 2. 1 + \S~ o

K

K

+tg2

=a (0-0')+« (sin 20-sin 2ff)+y (cos2 0-cos2 ff)

(cos2 0-cos2 0')-y (d-ff)+t (sin 20-sin 2-5')

et N2=i) (N,+N3) en epaisseur indefinie.

3eme cas: cisaillement pur
On procedera comme ci-dessus pour obtenir N, N' et leur orientation ä partir des

resultats suivants (avec K'=3Ty/4ira3):
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Ni
-rr,—y (cos2 0—cos2 ff)—4yLK

COS i

COS I
—y

1 1

cos2 ff cos2 0
+4a (tg 0'-tg ff)-

6a (ff-6)+a (sin 20'-sin 20)

K-,=(cos2 ff-cos2 6)—2yL
cos ff'

cos 0 -2a (ff-ff)+a (sin 20'-sin 20)

^2 4 r-,=4aL
COS0'

COS 0
-2a (cos2 0'-cos2 0)+2y (tg 0'-tg 0)-3y (0'-0)+^(sin 20'-sin 20)

et N2=r) (N, + N3) en epaisseur indefinie.
Ces formules n'ont ete indiquees que parce que nous les avons utilisees plus loin.

Experiences preliminaires sur un modele en caoutchouc (deformations rever¬
sibles mais finies)—Experiences de M. Tesar—Experiences de MM. Favre
et Bereuter

La necessite d'un recours ä l'experience decoule du resultat trouve pour Fencastrement

ä la flexion d'une piece prismatique. Oü le calcul est insuffisant, parce que trop
simplifie dans ses bases, l'experience eclaire, parce qu'elle contient les donnees intactes
du probleme etudie.

Afin d'avoir une idee sensible du phenomene, nous avons procede ä des experiences
purement demonstratives de deformations finies. Pour cela nous avons decoupe une
eprouvette dans une lame de caoutchouc et celle-ci recouverte d'une laque blanche ä
ete soumise ä trois sortes de sollicitations:

1° traction pure dans la partie de largeur constante
2° flexion pure dans la partie de largeur constante
3° flexion et cisaillement dans la partie de largeur constante

La photo n° 1 correspond ä l'effet de la traction, la photo n° 2 correspond ä celui
de la flexion pure, et la photo n° 3 ä celui de la flexion alliee au cisaillement et ä une
legere traction.

Sur la laque nous avons trace un quadrillage et chaque carre contenait un cercle
inscrit. La deformation du quadrillage et des cercles inscrits renseigne parfaitement

sur le sens des efforts et montre aussi les deformations finies dont les proportions
correspondent ä celles d'un modele ä deformations infinitesimales. La fissuration de
la laque, comme la deformation des cercles, pourrait donner lieu ä des mesures, mais
ce domaine n'est pas celui de l'elasticite, puisque les deplacements et deformations qui
sont bien reversibles, ne sont pas en meme temps infinitesimales.

Ces essais n'ont qu'une valeur demonstrative.

Examen de la photo n° 1 (fig. 5)

Les resultats obtenus valent pour la compression pure au signe pres. La courbe
des deplacements W,2 que nous avions tracee pour le cas du beton (t?=0,20, £=
220 t./cm.2) se retrouve ici, tres nette. On voit aussi une legere difference entre les
tensions principales du centre de la zöne de transition et celles des parties laterales.
Cette difference concerne leur valeur et leur orientation. L'intensite des efforts de
traction doit etre vraisemblablement proportionnelle au nombre de fissures par unite
de longueur. On constate que les directions principales de traction s'epanouissent ä

peu pres ä 45°, im peu plus bas que le conge. Les deformations sont encore sensibles
ä une profondeur egale ä la largeur de la piece. Sauf pour les regions extremes, les
sections droites restent droites.
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Examen de la photo n° 2 (fig.6)

La flexion est circulaire, c'est-ä-dire qu'il n'y a pas d'effort tranchant. On retrouve
ici avec la meme nettete que precedemment la courbe de deplacements W„ symetrique
par rapport ä sa tangente inflexionelle. Les cercles sont deformes d'une facon tres
nette. Malheureusement, la pellicule de laque parait avoir flambe dans les regions
comprimees, mais le phenomene est clair et confirme bien les resultats de notre
premier calcul, du moins au point de vue qualitatif. Les sections droites sont trans-
formees en courbes inflexionelles ä proximite de l'appui, mais les rayons de ces courbes
sont tres grands.

Examen de la photo n° 3 (fig. 7)

Ce cliche correspond ä un cas rencontre frequemment dans la pratique. La droite
de transition est encore inflexionelle, mais eile subit un deversement du ä l'importance
du cisaillement. La dissymetrie correlative des contraintes se lit sur les ellipses dont
les excentricites sont nettement differenciees autour de la deformee de transition.
Celle-ci semble bien etre le resultat d'une addition des courbes W„, W,2 et W2, dont
les formules ont ete donnees au debut et pour lesquelles une application numerique a
ete faite.

nr-^rX-
B332

r

:-

ttm

Fig. 7. Photo n° 3

Les sections droites ne restent droites que dans la partie centrale de la bände.
Ces experiences pourraient etre reprises avec un materiau moins deformable et

dont le coefficient de Poisson se rapproche de celui du beton (t?=0,20) ou de l'acier
(t?=0,30). II faudrait proceder avec des objectifs speciaux et realiser un quadrillage
beaucoup plus tenu. Les excentricites des ellipses seraient d'ailleurs moins grandes
que pour t?=0,50.
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La conclusion de ces experiences demonstratives, c'est que les hypotheses simpli-
ficatrices de la resistance des materiaux, qui sont parfaitement verifiees ä mi-distance
des masses d'encastrement, ne le sont aucunement autour de la droite de transition.

Rappel des experiences de M. Te'sar *

Sous le titre "Section d'encastrement d'une voüte epaisse ä retombee normale,"
M. Tesar a decrit les experiences de photoelasticimetrie qu'il a entreprises en 1936 et
1937 au Laboratoire de l'Ecole des Ponts et Chaussees.

En soumettant un modele de xylolithe ä une serie de trois efforts differents
correspondant donc ä trois montages differents, M. Tesar a obtenu par combinaison
lineaire des resultats recueillis (Operation legitime en elasticite pure) les actions
separees d'un effort normal, d'un effort tangentiel et d'une flexion apportes par la
voöte.

Les resultats publies par M. Tesar concernent les tensions agissant sur la droite de
transition entre les extremites horizontales des conges.

En analysant ces resultats et en les comparant avec ceux qu'un calcul habituel
aurait donnes, Fexperimentateur a trouve des differences considerables dont quelques
unes proviennent certainement du fait que la piece encastree presente une forte courbure.

Nous avons compare les resultats de l'action du moment avec celui que donnent

les formules de Ribiere (CR. 1889 et 1891) et non pas de Navier comme Favait
fait M. Tesar.

La divergence entre les resultats mesures et ceux du calcul est moins considerable,
mais reste sensible.

En tracant les cercles de Mohr pour Fextrados dans le cas de la compression pure,
de la flexion pure et du cisaillement pur, nous sommes arrives aux resultats graphique-
ment representes sur la fig. 8. Le resultat de la comparaison est suggestif pour le
cisaillement pur, dans le cas du beton.

Cömprejjion pure Nl cercle f/e Mohr calcule N2, cercle, de liohr obtenu

Flexion pure Ff, cereft tie Mohr calcule, f% ^.fcrclc de thhr_o61enu/ /*'/ ©

-I

\ \\ ^Gjoillemenc pur 7j cerett de Mohr calcule
t /^cerefc de MoEr obtenu

N

44-

<b

Fig. 8. Experience de M. Tesar.—Comparaison des cercles de Mohr correspondant
au point E, d'apres les resultats publies

* Annales des Ponts et Chaussees, 1937.

CR.—20
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Rappel des experiences de MM. Favre et Bereuter *

Les auteurs des essais ont utilise un verre special dit "optique" et sur lequel ils ont
d'abord evalue les tensions originelles. Utilisant la methode d'examen optique que
M. Favre a mis au point ä Zürich, ils ont cherche Finfluence de Fangle d'inclinaison
d'une console encastree dans une masse indefinie, sur la distribution des contraintes.
Dans chaque cas la console etait sollicitee par un effort parallele au plan limite de
Situation et d'intensite identiques. De la sorte, l'eprouvette etait soumise ä une traction

normale, ä un cisaillement et ä une flexion.
Les resultats ä retenir de ces experiences sont la concentration des efforts aux

conges et particulierement aux conges rentrants ä mesure que Fangle d'incidence
augmente, Famortissement assez rapide des contraintes ä Finterieur de la masse
d'encastrement et enfin la presence d'un point singulier du spectre isostatique que
nous retrouverons plus loin et que nous designerons sous le nom de pole d'encastrement.

Ce point legerement au-dessus de la ligne des raccords superieurs des conges
se deplace vers Fangle rentrant ä mesure que Fangle </> augmente. Le conge exterieur
supporte des tensions decroissantes avec <j>. C'est le contraire pour le conge interieur.
La somme des deux maxima est ä peu pres independante de Fangle.

On remarquera que si Fencastrement avait ete parfait, le point singulier aurait ete
situe sur la droite limitant la masse d'encastrement quelle que soit la valeur de </>.

Nous notons ce fait en passant, car nous reviendrons sur la notion d'encastrement
parfait.

Essais de l'auteur entrepris au Laboratoire de la S.N.C.F. sous la direction
EFFECTIVE DE M. KAMMERER, INGR. Dr. ES SCIENCES, ASSISTE DE M. CANAL,
iNGr. P.C. (1947)

Ces experiences ont ete faites avec le soin et la precision que M. Kammerer et son
assistant ont toujours montre dans leurs travaux du Laboratoire de Levallois Perret.

Le but des essais et des mesures entrepris a ete d'etudier dans ses details, Fencastre-

Fig.9
* E.P.Z. 44
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ment d'une piece flechie encastree dans une masse indefinie. Cette etude d'elasticite
plane a ete faite avec deux rayons de conge et sans conges.

Nous avons procede ä une comparaison des resultats fournis par le calcul avec
ceux qui ont ete trouves aux essais.

La figure 9 montre le modele etudie dans son cadre. La piece aboutissant ä la
masse d'encastrement lui amene uniquement un effort de flexion. La matiere utilisee
etait du Plexiglass d'un module elastique de 29.000 kg./cm.2 avec un coefficient de
Poisson egal ä 0,30 et un coefficient photoelastique K=4l. L'epaisseur du modele
etait de 10 mm. et le couple agissant avait ete mesure avec toute la precision utile.

Le banc de photoelasticite utilise etait celui de la S.N.C.F. dont M. Kammerer a
donne la description dans son excellent livre intitule Recherches sur la photo-
elasticimetrie (Edition Hermann). On a determine d'abord les isoclines, ce qui
fournissait les points de tension maxima aux contours puisque ce sont ceux pour
lesquels Fisocline arrive normalement. On a pu tracer ensuite les isochromes et gräce
au compensateur mesurer les tensions.

Les resultats ä retenir sont tous contenus dans le spectre chiffre des isostatiques.
Nous avons montre les resultats obtenus sous forme de triptyque. (Figs. 10,

11 et 12).

VARIATIONS SUIVANT LE LONG DU

pONTOUR DE LA PIECE DE LA CONTRAINTE
NORMALE PARALLELE AU CONTOUR

,fjs .l'-rsL

?"S5 -*r»

Couple sppltcue

150 Kmm

Fig. 10(6). Partie 1. Angle vif
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Chacune des trois planches fournit les dimensions du modele et le spectre des

isostatiques. Les donnees numeriques sont indiquees sur les epures jointes. Ce sont
les repartitions des contraintes dans la piece flechie et sur la droite d'appui.

Les resultats ont ete reproduits avec la meme representation pour faciliter les

comparaisons.
L'examen comparatif de ces planches est facilite par l'examen du tableau ci-dessous

et du graphique des contraintes agissant sur la droite de transition.

VARIATIONS des CONTRAINTES
N3, N1.T2, LE LONG DES SECTIONS

AB-CD-EF
Variations de N3: \

_ N1 : |"
_ T2:

p-ss

12-tnrri

"i

E
h»,— '-Ä-- •

o'it '\e?e •*-"

rt I

»> X f.ofis

I f
I I
I

-'¦'\ i

-1-fS

Fig. 10 (b). Partie 2. Angle vif—Couple applique 150 kg-mm.



Fig. 11 (a). Petit conge—Tensions
principales—Couple applique

150 kg-mm.
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VARIATIONS LE LONG DU CONTOUR

DE LA PIECE DE LA CONTRAINTE NOR
MALE PARALLELE AU CONTOUR '

,1'M ¦•!"

VARIATIONS des CONTRAINTES

N3.N1.T2, LE LONG DES SECTIONS

AB _ CD_ EF

Variations de N3
I - - N1

_ T2

9.n

i o'si

Couple applique

150 Kaj/mm
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Fig. 11 (6). Petit conge



Fig. 12 (a). Grand conge—Tensions
principales—Couple applique

150 kg-mm.

!t"Wsi

I I

ttnftW1fft"t~tThiTfT
i t i 11 i j i i i i t

rh-
I i ii :

—i—I—i—t-t~£

-•/» 31

fble p enemstremtnt '

je.i_4_;:©©-^©|©7r}
J8»

©"

Wl
I

L

TT-
i i

I I

i

i i i \ \ ><©v / / ' M '

Za/ tensions principales sont
exprimees en ftgs/mm mrec t

signe .4- pour Us E/tcnSi'onS

pour les CompressionJ1A '¦*** .h4J.4-m.UrV --Hl

0»

--1T-
75-

y»

\ / \/ ?~—i—t- \ uA */Xf ,©~+—1" \ V v-^

\ / --©..« 1 _->- *.\ ©v / -*»&s_ 1.... A'> \ /
V />v

7
/

/

I
V-'j>?l
•/

—- L A—-"'©
x.

r -—4-- i
^7
t ~~-

-.. 1

s

>
o
1?



VARIATIONS LE LONG DU CONTOUR
DE LA PIECE DE LA CONTRAINTE NORMALE

PARALLELE AU CONTOUR

VARIATIONS des CONTRAINTES
N3, N1.T2, LE LONG DES SECTIONS

AB _ CD_EF

Variations de N3
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Fig. 12 (fc). Grand conge
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Moment applique: M=15 kg.-cm.—Contraintes exprimees en kg./mm.2

Angle vif: r=0 Petit conge: r i mm. Grand conge: r=6 mm.

Situation des points sin-
guliers:

1 point singulier de
lere espece aux
angles.

1 point singulier vir-
tuel de chaque cöte
ä l'exterieur et dans
le quadran du conge.

1 point singulier vir-
tuel de chaque cöte ä
l'exterieur et dans le
quadran du conge?

Hauteur du pole d'encastrement

(point singulier
de lere espece) 121 mm. 145 mm. 174 mm.

Tensions maxima et
diametre maximum du
cercle de Mohr coefficient

d'augmentation.

2,95 kg./mm.2
2 95

2,30 kg./mm.2
2.30

1 AC
P=LT5=1'48

1,95 kg./mm.2
1,95

p n55 1'25

Contrainte maximum
dans la piece au-dessus
du pole 1,55 1,55 1,55

Concentrations maxima
des contraintes principales

(sur les conges)
^W.=l,90* kg./mm.3
^max. =0,425
dy kg./mm.3

^W.=0,192
°x kg./mm.3
^max. =0,250
°y kg./mm.3

^W.=0,115
-* kg./mm.3

^-W*. =0,120
°y kg./mm.3

Comparaison des Resultats du calcul et des Resultats experimentaux pour la
piece essayee

Possedant des donnees numeriques precises pour le plexiglass, nous avons pense
qu'il serait interessant de proceder au calcul des efforts en plusieurs points de la masse
d'encastrement choisis ä proximite de Fencastrement et de les comparer avec les
resultats des calculs. Les figures qui precedent suffisent ä montrer l'importance des
differences dans la section de transition avec et sans conges.

A l'interieur de la piece encastree, celles-ci s'attenuent jusqu'ä devenir pratiquement

nulles, ä mesure que l'on se dirige vers le pole d'encastrement.
La figure 13 montre d'abord la position des points choisis: A, B, C, B', A', puis

le resultat de chacun des essais pour chacune des trois eprouvettes analysees. On
observe que la presence d'un conge et son rayon ont une certaine influence en des

points situes ä une demi-hauteur des pieces ä l'interieur de la masse d'encastrement.
Cette influence se traduit par une diminution des contraintes pouvant atteindre 20%
et une legere rotation de l'ellipse, des torsions dans certaines regions.

En utilisant les formules du Paragraphe 111 et en suivant les regles habituelles du
calcul pour l'evaluation des contraintes sur la droite limite, les conges etant supposes
absents, nous avons obtenus des resultats, ceux que le calcul ordinaire laisserait
prevoir comme provenant d'un moment de 15 kg.-cm. agissant lineairement sur un
Segment de 24 mm. de longueur de la droite limite.

La comparaison de ceux-ci pour les points choisis dans le cas de l'angle vif avec
les resultats experimentaux est explicitee dans la figure 14.

On notera une difference marquee pour les points A et A', accompagnee d'une
divergence de directions principales. Cette difference s'attenue ä mesure que l'on se

dirige vers l'axe vertical.
Ces experiences ä deux dimensions, nous avions envisage de les etendre ä trois

dimensions.
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Fig. 13. Position des points etudies dans la masse d'encastrement

La premiere idee consiste ä utiliser le procede nouveau de figeage. Mais il faudrait
attendre que cette sorte de mesure soit definitivement entree dans la technique des

laboratoires specialises. L'etude detaillee de la distribution des efforts dans les pieces
prismatiques montre, d'apres le trace des surfaces de cisaillement dans les pieces
symetriques, suivant la theorie de Saint Venant, que les resultats recueillis ailleurs que
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Fig. 14. Comparaison des resultats du calcul et de l'experience pour le
modele ä angle vif. (Ellipses des tensions)

dans la region mediane sont fausses ä cause de la grande inclinaison de ces surfaces

par rapport au plan moyen des que l'on s'approche de l'extrados ou de l'intrados.
Si, par exemple, une excentricite a/b= 1/5 est satisfaisante pour les mesures, l'excentricite

inverse b/a=5 l'est beaucoup moins.
D'autre part, la difference des coefficients de Poisson conduit ä une repartition

differente des contraintes autour de points homologues ä cause de la presence d'un
facteur -q/{l—2rj) dans les formules donnant les efforts normaux en fonction des

deformations. Ce facteur=0,75 pour le plexiglass, peut varier de 0,25 ä 0,50 pour
le beton.

Nous aurions voulu construire des modeles en beton arme en utilisant une echelle
acceptable. Nous avions pense ä des pieces de l'ordre de 20 x 40 encastrees dans des

massifs de l'ordre de 1,00x2,00 m. et d'au moins 1,00 m. de profondeur.
En faisant varier la proportion des cötes et le pourcentage d'armatures, on

aboutirait ä une collection de resultats interessants. Les mesures des deplacements
angulaires et lineaires pourraient etre faites avec des cordes vibrantes et celles des

contraintes ä l'aide de strain-gauges places sur la peripherie contre les armatures et ä

l'interieur du beton. Ce travail experimental etant termine, il resterait ä comparer
les resultats que l'on en retirerait avec ceux qu'on obtiendrait gräce ä l'emploi des

formules que nous avons donnees au Paragraphe I.

ZONE DE TRANSITION I INFLUENCE DES CONGES I ROTATION SUPPLEMENTAIRE

II existe donc une zöne de transition pour les encastrements de flexion pure ou de
flexion composee et celle-ci est comprise entre la droite limitant la masse d'appui et le
pole d'encastrement. Ce pole ou cette droite polaire est toujours situee dans Taxe
de la piece pourvu que l'angle d'incidence soit droit. S'il varie, le pole d'encastrement
se deplace vers le cöte correspondant ä l'angle ferme mais en restant ä peu pres au
meme niveau.

La figure 15 montre l'importance du trace des conges. // suffit donc d'un Supplement

de matiere insignifiantpour ameliorer la securite dans des proportions importantes.
On peut completer le röle du conge par un traitement localise de la region critique, teile
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Fig. 15. Comparaison des regions critiques du raecordement. (Encastrement de flexion pure)

qu'elle est definie dans la figure 15, et l'on peut dire qu'elle est limitee par l'isochrome
correspondant ä la tension maximum realisee au niveau du pole d'encastrement.

Voici, re'sumes, les enseignements de nos essais:

(1) Le diametre maximum du cercle de Mohr et par suite le cisaillement maximum
varient en raison inverse du rayon du conge. Un rayon convenable permet de reduire
beaucoup la majoration de contrainte et l'etendue de la region critique.

(2) L'absence de conge peut conduire ä fapparition d'une region critique relativement

etendue et presentant une grande concentration de tensions au point singulier,
principalement sur la droite exterieure d'appui. La majoration des contraintes a
atteint 90% dans nos essais (voir tableau precedent). Au point singulier, on a:
N1=N}„ le rayon du cercle de Mohr est nul, mais il suffit de s'ecarter tres peu de ce
point pour que l'une des deux tensions soit negligeable, l'autre restant peu variable.

(3) Le pole d'encastrement est situe dans les essais entrepris ä une hauteur approxi-
mativement egale ä la demi-largeur de section au-dessus du centre du conge. Ceci n'etant
indique que pour fixer les idees n'est evidemment pas une regle. D'ailleurs, les essais
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de Zürich indiquaient une hauteur relative plus faible, mais avec accompagnement de
cisaillement. On remarquera enfin que Fencastrement est d'autant moins imparfait
que la distance du pole ä la droite limite est plus faible (nous reviendrons sur ce point)

(4) A ces remarques, il faut ajouter l'un des enseignements des experiences de
Zürich. Celles-ci montrent clairement que la valeur de la contrainte maxima et celle
de la concentration de tension varient pour un effort exterieur egal, en raison inverse
de la mesure du diedre.

Ces renseignements sont utilisables dans la construction mecanique et en fonderie
aussi bien que pour les ossatures de constructions et l'etude des cordons de soudure.

II est probable que l'arc de cercle n'est pas le trace Optimum de raecordement.
Rien ne s'opposerait, en fonderie ou en construction metallique ä lui substituer un
trace ä courbure progressive. Pour cela, on peut employer des arcs de lemniscate,
de radiotde ou de clothoide symetriques par rapport ä la bissectrice de l'angle qui
serait une normale commune.

D'apres ce qui a ete vu et mesure, on sait que la zöne situee entre le pole et la droite
d'appui est une region ä deformations angulaires importantes. Cette Observation est
interessante car eile peut donner lieu ä un calcul de correction utile pour les ouvrages
importants. Dans cette region les sections droites ne restent pas tout ä fait droites.
Elles paraissent transformees en sections inflexionelles ä tres faible fleche, symetriques
ou non, suivant que la flexion est simple et composee. On pourrait evaluer la rotation
elementaire correspondant ä une longueur ds de la fibre neutre (en cas de flexion pure)
en la choisissant comme la demi-somme de la rotation calculee d'apres les contraintes
extremes et de la rotation calculee comme d'habitude avec l'hypothese de la linearite
des tensions celles-ci etant deduites du moment effectif. Le Supplement de
deformation angulaire entre la droite d'appui et le pole d'encastrement dont la Situation

peut etre decelee soit par l'examen d'un enduit de laque fissurable soit sur modele
serait alors facile ä obtenir. Pour le faire, le mieux est d'employer la methode
graphique. A ce Supplement de rotation il faudrait ajouter celui qui provient de la
rotation de la droite d'appui. Quand il est possible de construire un modele bien
etudie, il est facile de calculer cette derniere rotation, -soit par Integration graphique,
soit par Observation sur le modele.

Ces remarques n'interessent, bien entendu, que les ouvrages importants.
Nous examinerons plus loin le calcul de correction correspondant.
En procedant ä un calcul numerique sur le modele de plexiglass nous avons trouve,

comme rotation supplementaire totale, compte tenu de la deformation de la masse
dans la region de l'encastrement, un Supplement de rotation entre la droite de transition
et le centre d'encastrement s'elevant ä 6/10 environ de la rotation calculee d'apres la
methode habituelle entre ces deux points. Mais ce calcul a ete fait en ne tenant
compte pour les deplacements que des contraintes extremes. C'est pourquoi il
constitue une limite superieure ou si l'on veut un ordre de grandeur maximum. D'autres
essais nous paraissent indispensables pour aboutir ä un resultat utilisable dans la
pratique.

L'etude d'une piece prismatique encastree dans une masse indefinie doit d'ailleurs
faire ressortir une valeur plus faible de la rotation du plan d'appui, en raison de
l'importance plus grande de la masse d'encastrement, dans la direction perpendiculaire
au plan de figure.

Evolution plastique et rupture d'un encastrement de flexion (beton arme, acier)
Dans la pratique, on dimensionne les encastrements pour que les contraintes

donnees par le calcul soient inferieures ä des limites bien determinees par la connais-
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sance des materiaux. Mais il est utile d'examiner l'influence d'une majoration des
efforts sur l'ouvrage, afin de suivre la Variation des coefficients de securite locaux par
rapport ä la limite elastique pu par rapport ä la limite de rupture.

L'application du theoreme de M. Colonetti, lorsqu'elle est facile ä faire et lorsque
les conditions necessaires qu'il requiert sont satisfaites, aboutit ä un Systeme d'equations

independantes, dont le nombre est egal au degre d'hyperstaticite du Systeme.
Parmi les variables independantes figurent les reactions d'appui qui, pour Fencastrement,

sont au nombre de trois (moments de flexion, reaction complementaire verticale
et poussee). Mais si l'on s'apercoit en faisant ce calcul que l'une des regions plastifiees
interesse le voisinage de Fun des appuis, le resultat obtenu est douteux. II faudrait
d'abord avoir une idee exacte du comportement de l'appui considere du point de vue
des deformations et surtout de la deformation angulaire.

D'apres ce qui precede, nous pouvons donner quelques indications d'ordre general,
mais qui cernent le probleme numerique ä resoudre pour chaque cas particulier.

(i) La rotation elastique aux naissances varie en raison inverse du rayon des

conges, quand ils sont circulaires, cette rotation etant definie comme on Fa indique
precedemment et concernant la region limitee par le pole d'encastrement.

(ii) La phase plastique dans la region consideree prendra naissance dans la region
du conge et, s'il n'y en a pas, ä l'angle vif.

(iii) L'etendue de cette phase depend du materiau et du rayon du conge, probablement

de la forme de celui-ci, toutes choses egales d'ailleurs. Un trace judicieux du
conge suffirait pour reduire beaucoup cette etendue et pour augmenter la securite
d'autant plus que ledeclanchement de la periode des grandes deformations irreversibles
ne semble se manifester suivant certaines experimentations que si une zöne minimum
est sollicitee au-dessus de la limite elastique.

(iv) Pour les materiaux dits plastiques ou ä elasticite retardee, les deformations
dont il vient d'etre question sont fonctions croissantes du temps. Le type de ces
fonctions a ete donne par divers experimentateurs et notamment per M. L'Hermitte.

A la lumiere des essais que nous avons decrits on peut prevoir, sous reserve bien
entendu d'un contröle experimental, Fattitude evolutive d'un encastrement de flexion
pour deux cas differents, l'acier et le beton arme.

Pour l'acier, materiau considere comme isotrope, ou suppose tel, on verra
apparaitre les premieres lignes de Hartmann en relief au point le plus sollicite du
conge comprime ou ä ses environs immediats et en creux dans la region correspondante
du conge tendu. Le trace des courbes de glissement deduit de la consideration de la
courbe intrinseque de la limite elastique est commode, soit en partant des isoclines,
soit en partant du reseau des isostatiques, puisque ces courbes sont des trajectoires ä
45° des isostatiques. En se reportant ä l'une ou ä l'autre de ces categories de courbes,
on voit que le secteur plastique de Hencky qui est de 90° dans le cas de l'effort normal
est d'environ 60° pour nos trois essais de flexion pure. II s'en suit une Variation
d'environ 30° moins grande des contraintes le long des trajectoires de glissement
tournant autour de l'angle vif ou du conge. L'amorce de rupture partirait probablement

d'un point voisin de la tension elastique maxima en suivant le trace d'une
courbe de glissement.

En continuant ä augmenter l'effort exterieur, la phase des grandes deformations
suivant la phase elastique aboutirait ä la plastification d'une surface importante et ä

la rupture generalisee.*
Pour Ie beton arme, il est plus difficile de prevoir en dehors de l'experience directe.

* Nous comptons entreprendre prochainement une serie d'essais de rupture sur modeles metalliques.
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Les essais de M. Chambaud, qui ont suivi en 1947 les experiences preliminaires
que nous avions faites sous sa direction, ont jete pourtant quelque lumiere sur l'evolution

de rupture d'un encastrement des pieces fortement armees et armees dans un seul
sens.

La region centrale pouvait etre ä peu de chose pres consideree comme un double
encastrement ä cause de la symetrie des efforts et des structures et de la faible distance
des charges jumelles concentrees.*

Divers types d'encastrements: Travail d'encastrement: Encastrement parfait
ä la flexion: proposition de symetrie et methode des modeles doubles:
Critere de Vibration pour apprecier la valeur d'un encastrement ä la
FLEXION

La notion d'encastrement ayant donne lieu ä des expressions incertaines
demande ä etre precisee. Disons brievement que l'on peut classer les encastrements
d'apres leur nature constructive. II y a d'abord ceux analogues ä celui des essais ä

lumiere polarisee qui proviennent de la solidarite d'une piece prismatique ou d'une
plaque ou d'une coquille avec un massif beaucoup plus important par son etendue et
sa masse. C'est le cas de nombreux ponts encastres et dont l'appui est constitue
par une eulee ä peu pres indeformable.

Un autre exemple plus frequent est celui des nceuds de charpente triangulee ou
ä echelle. Ces encastrements comportent un deplacement lineaire et un deplacement
angulaire tres faibles generalement et communs ä toutes les barres aboutissant au
nceud. Ce deplacement peut conduire ä des hypo-encastrements ou ä des hyper-
encastrements suivant les sens de rotation du nceud considere et de ceux qui Fentourent.

Citons enfin Fencastrement par penetration realise souvent en mecanique comme
pour la charpente tubulaire et assez frequemment dans les travaux publics. Encastrement

d'une voüte de barrage dans le rocher, encastrement d'un rideau de palplanches
ou d'un massif de pylone, d'un pieu ou d'un scellement flechis. Ces trois dernieres
sortes de realisations ont fait l'objet d'une etude que nous avons recemment publiee.

Nous designons sous l'expression de "Travail d'Encastrement" celui qui est
developpe dans la masse de l'appui. II se decompose dans le cas que nous traitons en
trois parties, dont la derniere est generalement la plus importante:

(a) Travail du ä l'action de la force normale.
(b) Travail du ä l'action de la force tangentielle ou effort tranchant.
(c) Travail du ä l'action de la flexion au moment d'encastrement.

Si l'appui etait infiniment dur il n'y aurait pas de travail d'encastrement parce que
les contraintes d'appui ne se deplaceraient rigoureusement pas. Au contraire, le
travail d'encastrement sera d'autant plus grand que l'appui est plus deformable.

En procedant ä la comparaison d'un encastrement parfait et d'un encastrement
sur une masse, nous avons pu verifier pour l'essai entrepris que le travail d'encastrement

etait trop faible pour etre appreciable avec les moyens de mesure que nous avions
adoptes. II s'agissait de deux pieces decoupees dans le meme echantillon de metal,
l'une constituee par une poutre de 7 X 7 et de 40 cm. de portee chargee en son centre,
l'autre issue du meme bloc et usinee pour en laisser un massif de 200 x 100 x 100 et
une console de 7 X 7 et d'une longueur de 20 cm. Le metal avait ete recuit avant
usinage et les deformations avaient ete observees ä l'aide d'un comparateur donnant
le 1/100 de mm. Le module elastique avait ete determine d'apres la fleche de la

* L'analyse detailee des experiences precitees a fait l'objet de deux notes parues l'une en fevrier
1949, l'autre en novembre 1949, sous la signature de M. Chambaud.
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premiere poutre en utilisant la formule exacte de la fleche, c'est-ä-dire en tenant compte
de la hauteur de la piece.

Nous avions realise avec la poutre un encastrement parfait et avec la console un
encastrement egalement parfait, et ceci nous amene ä la notion d'encastrement parfait
de flexion qui est essentielle pour certaines applications.

Si nous nous bornons au cas general des structures ä section symetrique, on peut
enoncer ce qui suit:

"II y a encastrement parfait deflexion lorsque la section d'appui ne tourne pas
sous l'action du moment qu'elle supporte. Ce cas est rigoureusement realise pour
toutes les structures planes deforme quelconque lorsque la forme et le Systeme de

forces les sollicitant sont symetriques par rapport au meme plan et que, de plus, la
distance des points d'intersection de la structure avec le plan de symetrie restent
invariablement distants."

Notons que dans ce cas, le pole d'encastrement de chaque section defini par le plan
de symetrie est contenu dans ce plan.

Une poutre simple posee sur appuis et symetriquement chargee peut etre consideree
comme encastree par rapport ä sa section mediane si eile est ä section constante.

Supposons que nous voulions appretier la deformabilite par rotation d'un appui
pour une structure determinee. On pourrait y arriver en realisant un modele simple
et un modele double et en comparant les isoclines et les isochromes aux appuis pour
chacun des cas les sollicitations etant bien entendu les memes. Dans le premier cas
on observerait un pole d'encastrement ä proximite de la ligne d'appui et dans l'autre
il serait sur cette ligne d'appui. L'eloignement du pole d'encastrement renseignerait
au moins approximativement sur la valeur de Fencastrement ou, si l'on veut, sur sa

rigidite.
Le critere de la valeur d'un encastrement de flexion pour une poutre ä section

constante comme Fest un mät ou un pylone sans fruit, peut etre defini avec precision en
comparant la periode calculee et la periode observee. M. Y. Rocard dans son ouvrage
assez recent intitule Dynamique Generale des Vibrations a traite du probleme de la
tige imparfaitement encastree pour laquelle il designe par Acu Famplitude angulaire de

la base. En designant par ct. l'expression sans dimension: /x
4Sn2ü

EIT2
la densite, Q et / la section et l'inertie, T la periode, E le module de Young)

L'elongation y du point d'abcisse x a pour expression:

(8 designant

y= XX XXA ch a^+B sha-r + Ccos a7+D sina-r

avec: A=/la>x-—77——-. : x(sin<x cha—sha cosa)
2a (1-fchacosa)

B= id. X(cha sina—sha sina)
C id. X (sh a cos a—sin a ch a)
D= id. X(l+cha cos a+sha sina)

Supposons Fencastrement parfait, alors /lcu=0, il en resulte necessairement
Fidentite: ch a cos a+1 =0, d'oü l'on tire la valeur de la periode fundamentale 6

correspondant ä Fencastrement parfait:

En comparant la frequence correspondante ä celle d'un vibrometre, on aura dejä
CR.—21
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une idee de Fencastrement sans aucun calcul. L'evaluation de la periode reelle don-
nera a et la mesure de y en un point convenablement choisi fournira la valeur de A<o.

Bien qu'il conduise ä des calculs compliques pour des structures moins simples qu'un
mät ä section constante, il semble que le critere de Vibration puisse donner lieu ä des

considerations utiles, en operant, par exemple, sur un modele.

Deplacements des appuis d'encastrement dans les grands ouvrages (dalles,
arcs ou coques)

Bien que dans la pratique les deplacements des appuis d'encastrement soient tres
faibles, leurs consequences, surtout quand il s'agit de variations angulaires, ne laissent

pas d'etre appreciables des que les ouvrages sont rigides et de grande portee. II
suffit d'ailleurs de se reporter aux formules de Bresse pour le saisir. La mesure des

contraintes dans les ouvrages executes et celles des deplacements en ont dejä donne
des indices et il semble que si l'on devait entreprendre pour de grands ouvrages une
note de mesures et de calculs, apres execution, on y trouverait assez souvent l'influence
de l'imperfection de certains encastrements. Citons par exemple la communication
de M. Dantarella au congres de 1930 et concernant deux ponts de chemin de fer, d'une
meme ligne, franchissant la Brambilla et le Rino, les ouvrages en arc encastre et

presque identiques, ayant subi les memes efforts aux memes epoques ont donne des

lignes d'influence de deformation assez dissemblables et different sensiblement l'une
et l'autre des lignes calculees. Nous pensons que la raison de la dissonance constatee
doit provenir de la nature des enrochements. C'est le pont franchissant le Rino, plus
massivement encastre que l'autre, qui a donne en cie deplacements les plus faibles et

pour lequel les variations de ces deplacements en fonction du temps etaient les moins
elevees.

Dans un arc, les deplacements de l'appui ä considerer sont: Ax, Ay et Aa>. Nous
passons sous silence les efforts de torsion düs au vent et ceux qui sont accidentels
comme, par exemple, les effets d'une implantation defectueuse. Pour les grands
ouvrages, les variations verticales Ay, toujours faibles, sont sans interet pratique.
Une Variation positive ou negative Ax equivaut, soit ä un refroidissement soit ä un
allongement de la portee, c'est-ä-dire, tout compte fait, ä l'influence d'une Variation
de temperature, ce dont on peut tenir compte dans les calculs en augmentant la marge
habituelle ä considerer en fonction du climat et des previsions de retrait. Le deplacement

le plus ä craindre est Ie troisieme, c'est celui qui correspond ä Fencastrement de
flexion pure ayant fait l'objet de nos calculs et de nos essais.

Dans ce qui precede, nous avons examine les causes de perturbation provenant de

l'imperfection des methodes de calcul, mais nous n'avons rien dit de Celles qui trouvent
leur origine dans la nature du sol et dans la Constitution meme des massifs d'encastrement.

Et ce sont, sans doute, les plus importantes.
Qu'il s'agisse d'un pont arque ou d'un tablier droit encastre ou d'une coquille de

barrage, les caracteristiques du rocher mesurees en place (par exemple par la methode
acoustique mise au point recemment par MM. Chefdeville et Dawance sous la
direction de M. L'Hermitte) son ou ses modules de Young, son ou ses modules de
Poisson, son anisotropie, ses clivages ou ses failles, variables d'une rive ä une autre, et
d'une couche geologique ä une autre, ont une importance evidente. En laissant au
bureau le soin de deviner les conditions aux limites, on produit une note de calculs
fallacieuse. Si, de plus, un Organe intermediaire existe, que ce soit une eulee de

pont ou bien des blocages massifs lateraux, il y a une nouvelle cause de Variation
de Aoj ä ajouter ä celles qui precedent.
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De nombreux ponts encastres le sont sur des massifs de repartition. Les deplacements

des eulees devant etre consideres sont ceux qui aecompagnent et ceux qui
suivent le decintrement. Si celui-ci est execute avec des verins, on ne doit retenir
dans les calculs que l'action des efforts ulterieurs correspondant ä Fachevement de
l'ouvrage, aux surcharges qu'il doit subir et ä l'ensemble des variations en fonction
du temps, affeetant soit l'ouvrage soit le terrain de fondation.

L'evaluation a priori de ces deplacements qui s'ajoutent ä ceux que nous avons
envisages nous parait necessaire pour les grands ouvrages ä moins qu'on prefere
adopter un dispositif de reglage. Gräce ä une methode d'assujetissement il est facile
de proceder ä ce calcul pourvu que l'on connaisse les efforts exterieurs de premiere
approximation, les caracteristiques du terrain en place, en particulier ses coefficients
de compressibilite verticale et horizontale.

II est bien entendu que ces coefficients peuvent varier avec le temps et que les
determinations sur place ne doivent pas uniquement concerner des resultats instantanes.

Nous voyons lä un nouvel exemple d'association entre le bureau d'etudes, le
chantier et le laboratoire, en vue d'une construction rationnelle.

Calcul de correction en vue de tenir compte des Rotations Aio0 et zlco, aux
NAISSANCES D'UN ARC ENCASTRE

M. Chambaud a publie en 1941 une importante etude intitulee: "Le röle des
theories elastiques du second ordre dans le calcul des ponts en arcs de grande portee."
Elle avait pour but la recherche, dans les grands ouvrages, des efforts secondaires
provenant des deplacements de la fibre moyenne. II a suppose les appuis immuables.
La methode de calcul que nous allons exposer pour les arcs encastres derive en somme
du meme souci, mais ne concerne que Finfluence des deplacements generalement tres
faibles de ces appuis sur la valeur des reactions. Elle est generalisable.

Soit que l'on se contente d'une evaluation des deplacements Wn, Wn et W2, soit
que Fon ait evalue approximativement les deplacements lineaires des massifs extremes
Ax0, Ay0, Ax\, Ayx et les deplacements angulaires Aa>0, Aail generalement plus
importants que les deplacements co, on peut alors evaluer l'importance des contraintes
secondaires dues ä ces six deplacements. Les deplacements Ay0 et Ayl n'auraient
generalement pas d'importance pratique. Les deplacements Ax0 et Axx donneraient
lieu ä un calcul identique ä celui de l'effet d'un refroidissement, ou du retrait d'en-
semble, probleme classique generalement aise ä resoudre. Restent les deplacements
angulaires, d'ailleurs tres faibles, des sections d'encastrement: G0 et Gr..

Pour effectuer le calcul des reactions secondaires, nous imaginerons un arc de

meme definition que le precedent et charge identiquement mais dont les naissances
Go et Gj sont articulees. On commencera par calculer les angles de rotation aux
naissances ü0 et ßi de cet arc sous l'influence des charges et surcharges supportees par
l'arc encastre. Puis, on assujetira l'arc articule ä l'action de deux moments arbitraires
M0 et Mi appliques aux naissances pour ramener ß0 ä Aw0 et Qx ä AojX. On deter-
minera les coefficients a et ß fournissant les rotations en G0 et Gi dues aux moments
M0 et Mx.

On aura, dans le cas d'un arc symetrique les valeurs de M0 et My gräce aux
relations:

M0OL+Mlß+(Q0-Aaj0)=0
M0ß+Mlrt.-{Ql-Aa>i)=Q

S'il n'y a pas de symetrie, il y a quatre coefficients a, a', ß, ß' ä determiner aussi

simplement.
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Si clMq et <iMy designent les moments correspondants ä Fencastrement parfait de
l'arc etudie, les moments correctifs seront (<lM0—M0) et (gZMy — My).

Les reactions verticales secondaires sont obtenues sans difficultes ainsi que la
poussee secondaire qui est la difference entre la poussee theorique de l'arc
encastre et celle de l'arc articule soumis aux moments M0 applique en G0, et My
appliquee en G1; ainsi qu'ä tous les efforts de charge et de surcharge agissant sur l'arc
encastre.

Pour fixer les idees, nous avons considere Fun des deux arcs encastres du pont
faisant l'objet de la figure 16. Avec les indications numeriques contenues dans la
figure, un premier calcul donne :

Poussee de l'arc encastre: 4875 tonnes (appliquee en Gg)
Reactions verticales en G0 et Gi.' 2600 tonnes
Moments en G0 et Gy: +1659 t-m.

2
La rotation d'appui arbitrairement choisie a ete en G0 : Aw0=ijz-~: et en

2
Gi : Awy — 77^©, elles sont faibles.

10UU

Arc articule correspondant, poussee: 4781 tonnes
Reactions verticales: 2600 tonnes

32 32
Rotation des appuis: Q0 X (z-^, Qy j^)

32 4
Les valeurs des moments M0 et My reduisent cette rotation de 77^ ä -rr——, soit:

1000 1000
32 — 2

-f-1659x^rr-=1556 tonnes.

Moment secondaire: c7kf0—M0=—^r— — 103,60 t-m.

Le moment d'appui ä retenir est donc: +1555,40 t-m. au lieu de 1659 t-m.
Les reactions verticales secondaires sont nulles ä cause de la symetrie et un calcul

facile nous donne ä partir des angles (ß0—Aou0) et (Qy—Aaiy) la valeur de la reaction
horizontale ä retenir. Elle est donnee par Fegalite.

ß=4781 tonnes+0,0285 (M0-M1)=4781 tonnes+0,057 M0=4869,70 tonnes
au lieu de 4875 tonnes.

Mesures pouvant etre effectuees sur les appuis des grands ouvrages, modifica-
tion et reglage de ceux-ci

L'influence appreciable de l'imperfection de Fencastrement de flexion pour les
portees importantes fait penser qu'il y aurait interet ä verifier la tenue des appuis des
grands ouvrages encastres, qu'il s'agisse de barrages, de voütes de tunnels ou de ponts.
Ces verifications operees ä intervalles reguliere et avec des surcharges parfaitement
connues' seraient surtout utiles au debut du fonctionnement des structures. Elles
donneraient des precisions sur la Variation des conditions d'appui avec le temps, et
du meme coup, on aurait le plus souvent sans difficultes, la repartition exacte des
contraintes entre appuis.

On dispose de clinometres tres precis et de temoins sonores, noyes ou exterieurs
insensibles ä Fhumidite ambiante et fournissant, compte tenu de la Variation de
temperature des frequences traduisant avec fidelite et ä n'importe quel moment les de-
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formations des regions auscultees. La recente mise au point de l'auscultation sonore
par les ingenieurs de FI.T.B.T.P. permettrait d'avoir ä tout moment la mesure du
module elastique du beton ou de la maconnerie en place.

Nous croyons d'ailleurs que l'auscultation methodique des grands ouvrages
permettrait de rediger des notes de calcul a posteriori plus convaincantes et plus pre-
cieuses que celles que l'on exige ordinairement des bureaux d'etudes.

Une autre idee qui se presente ä l'esprit, c'est celle de Famelioration des appuis
existants par les procedes de synthese statique qui, comme la precontrainte mais d'une
facon plus generale marque la trace de la volonte de l'ingenieur sur la tenue des
constructions. Nous avons pour cela ä notre disposition des boucliers de butee, des

dalles sur pieux ou pendules droits ou inclines, des ancrages du type Coyne et des

verins plats du type Freyssinet.
Ces diverses sortes de dispositifs utilises isolement ou associes entre eux per-

mettraient de modifier d'une facon arbitraire les deplacements d'appui et, partant,
les reactions correspondantes.

On peut d'ailleurs s'tabiliser les efforts malgre de faibles variations elastiques ou
plastiques, des cäbles ou des terrains, gräce ä l'emploi de tensiostats (lire: "Les ten-
siostats et leur application ä la synthese statique").*

On peut enfin envisager un troisieme parti comme Variante du precedent, celui de

construire les appuis pour en rendre le reglage tres facile sans ancrages ni butees.

Resume

Partant de formules deduites de celles de Boussinesq et Flament qui concernent
l'action de charges ponctuelles sur le plan limitant un solide indefini, on passe ä

l'etude des deplacements du plan limite dans la region d'encastrement d'une piece
prismatique qui est solidaire du solide indefini et aboutit perpendiculairement au plan
qui le limite.

Ce calcul conduit ä une contradiction et celle-ci ne peut etre reduite que par la
methode experimentale.

Apres avoir rappele les resultats des essais de M. Tesar (1936) et de MM. Favre et
Bereuter (1944) on deduit des experiences demonstratives sur un modele en caoutchouc.

Ensuite on expose les resultats des essais d'encastrement de flexion pure entrepris
au laboratoire de la S.N.C.F. sur modeles en plexiglass soumis ä la lumiere polarisee.

L'analyse de ces resultats montre Finsuffisance localisee des regles de la resistance
des materiaux. II conduit ä la notion de pole d'encastrement et ä l'etude de l'influence
d'une zöne de transition situee entre la section normale du pole et le plan limite. Le
röle des conges circulaires et l'influence de leur rayon sur l'importance de la zöne
critique a ete mis en evidence et chiffre.

Les renseignements recueillis ont permis de decrire l'evolution plastique jusqu'ä
la rupture des encastrements de flexion pour le beton peu ou abondamment arme et
pour l'acier doux.

Apres avoir tres rapidement passe en revue divers types courants d'encastrements,
on etudie le travail d'encastrement et l'on donne une definition de Fencastrement parfait

ä la flexion. Enoncant une proposition de symetrie on en tire une conclusion
pratique pour l'etude sur modele des dispositifs d'encastrement des structures planes.
On propose ensuite un critere de Vibration sur modele ou sur l'ouvrage pour juger de
la valeur des encastrements d'appui.

On examine ensuite les causes de deplacement d'appuis d'encastrement dans les

* Technique Moderne—Construction, juin, 1949.
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constructions (dalles, axes ou coquilles) et l'on propose une methode de calcul pour
tenir compte des rotations aux appuis des arcs ou des poutres encastres.

On envisage enfin l'examen, le contröle, Famelioration eventuelle et le reglage des

appuis d'encastrement pour les grandes constructions.
L'expose ne concerne pas d'applications etrangeres aux travaux publics et les

encastrements de torsions n'ont pas ete etudies.

Summary

The author Starts with equations derived from the formulae of Boussinesq and
Flament regarding the influence of a point load acting on the boundary plane of a
semi-infinite area. He investigates the effect on its surroundings of a prismatic,
rectangular body fixed in this semi-infinite area at right angles to its boundary plane.
The calculations lead to a contradiction which can only be solved by tests.

After mentioning the results of the tests of Tesar (1936), Prof. Dr. Favre and
Dr. Bereuter (1944), investigations made on a rubber model are described. These
tests alone were of instructive and demonstrative significance.

Next, the results are given of tests carried out with polarised light on models of
plexiglas in the laboratory of the S.N.C.F. The conclusions drawn from these results
lead to the coneeption of the "fixing pole" and to the consideration of the influence
of a transition zone. The importance of radii and of the influence of the dimensions
ofthe radii on the size ofthe critical zone is emphasised and explained.

The experience collected has made it possible to describe the plasticity up to rupture

of reinforced concrete and steel.
After mentioning current practice for fixed-ended beams, the author investigates

the fixing effort and gives a definition of perfect fixing for bending.
He thereby comes to a conclusion, from which he gives useful directions for model

tests with fixed foundations and abutments. Further, he suggests the adoption of a
Vibration criterion for forming a judgment on the value of fixed supports.

In addition, the causes of the displacements of housings and abutments are
investigated, a simple method of calculation being given for considering the slight
twisting oecurring at the end points of fixed arches.

Finally, the inspection, any necessary improvement and the regulating of fixed
supports of big structures are dealt with.

The paper considers only applications in the field of structural engineering.
Various extensions of the investigation are possible which are not discussed here.

Zusammenfassung

Der Verfasser geht von Gleichungen aus, die aus den Formeln von Boussinesq und
Flament über den Einfluss einer punktförmigen, auf die Begrenzungsebene des
Halbraumes wirkenden Belastung abgeleitet sind. Er untersucht die Wirkung eines

prismatischen, rechteckigen, senkrecht zur Begrenzungsebene des Halbraumes in
diesen eingespannten Körpers auf seine Umgebung. Die Berechnungen führen zu
einem Widerspruch, der nur durch Versuche gelöst werden kann.

Nach Erwähnung der Ergebnisse der Versuche von Tesar (1936), Prof. Dr. Favre
und Dr. Bereuter (1944) werden Untersuchungen an einem Modell aus Gummi
beschrieben. Diese Untersuchungen waren einzig von instruktiver und
demonstrativer Bedeutung.

Es werden darauf die Resultate von Versuchen angegeben, die im Laboratorium
der S.N.C.F. an Modellen aus Plexiglas durch Prüfung mit polarisiertem Licht
durchgeführt wurden. Die Schlussfolgerungen aus diesen Resultaten führen zum
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Begriff des "Einspannungspols" und zur Betrachtung des Einflusses einer Ueber-

gangszone. Die Bedeutung der Ausrundungen und des Einflusses ihres Radius auf
die Grösse der kritischen Zone wurde hervorgehoben und abgeklärt.

Die gesammelten Erfahrungen haben die Beschreibung der Plastifizierung bis zum
Bruch unter Biegeeinspannung für Eisenbeton und Stahl ermöglicht.

Nach Erwähnung verschiedener geläufiger Ausführungen von Einspannungen
untersucht der Verfasser die Einspannungsarbeit und gibt eine Definition der vollkommenen

Einspannung bei Biegung.
Er kommt damit zu einem im übrigen ziemlich offensichtlichen Schluss, aus dem er

eine für Modellversuche mit Einspann-Fundamenten und Widerlagern nützliche
Folgerung zieht. Er schlägt weiter die Anwendung eines Vibrations-Kriteriums zur
Beurteilung des Einspanngrades vor.

Es werden zudem die Ursachen der Verschiebungen von Einspannstellen und
Widerlager untersucht, wobei eine einfache Berechnungsmethode zur Berücksichtigung

der an den Endpunkten der eingespannten Bogen auftretenden kleinen
Verdrehungen angegeben wird.

Schliesslich wird noch die Kontrolle, ev. Verbesserung und Regulierung
eingespannter Auflager grosser Bauwerke behandelt.

Der Artikel umfasst nur Anwendungen auf dem Gebiete des Bauingenieurwesens.
Es sind verschiedene Erweiterungen der Untersuchung möglich, die hier aber nicht
erörtert worden sind.
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Experimental and analytical methods of design

When considering the experimental method of structural design, the problem
arises of knowing its position in relation to the analytical methods of the Theory of
Elasticity and Strength of Materials. These methods sum up the knowledge on the
behaviour of solid bodies subject to loadings which could be interpreted and expressed
quantitatively, that is, dealt with theoretically.

The analytical methods of design, like all physical theories, have the great advantage

of providing knowledge of all the phenomena in a given domain. A theory fills
the gaps existing in the knowledge of the isolated cases which led to its creation; it
even permits the observed phenomena to be surpassed to an extent which reveals the
audacity of the theory.

Thus, the bending theory of Strength of Materials, which has been of so great a
service to mankind, both in relation to safety of structures as well as to economy of
materials, has allowed the prediction of the behaviour of a very large number of
structural members which had never been observed before, as regards either materials,
shape, dimensions or loading.

In contrast with the analytical methods, the experimental methods provide knowledge

about isolated cases, since each structure to be studied requires the construction
and Observation of a model. This does not strictly hold, since there is always, at
least qualitatively, an application of theory to the phenomena which permits the
behaviour of structures not very different from others previously studied to be
foreseen.

With regard to analytical methods, the question which arises is as follows: do
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they permit, in their present Status, the behaviour of structures to be foreseen with
the accuracy demanded in practical engineering?

The analytical methods give results applicable to solids of given shapes and
submitted to certain loadings. Besides this, except in a very few cases, they are established
on the assumption that the materials are homogeneous, isotropic, and obey Hooke's
law. Since they are theories, they are open to the possibility of being applied beyond
the field for which they were established, which will result in a loss of accuracy, and
extremely unreliable results may even be obtained.

Thus, with regard to the shape of structures, which are of an infinite variety, the
designer constantly applies theories to solids of shapes very different from those for
which they were established. Besides this, he divides the structure in parts whose
reciprocal reactions he at times ignores and at other times fixes arbitrarily, considering
them as hinged, built in, etc.

With regard to loadings, it is also very often necessary to make considerable
simplifications so as to convert the real loadings into others the effect of which can be
calculated.

It was mentioned that the analytical methods are in general developed in the
hypothesis that the materials obey Hooke's law. In the concept of safety which is

generally followed today, by which, for given loadings, known as working loadings,
the stresses developed should not exceed the safety stresses, this hypothesis has not,
as a general rule, an important effect on the results of the calculations compared with
that derived from the simplification of the shapes and of the loadings. This is
because with common building materials the curvature of the stress-strain diagrams,
up to values of stresses generally adopted as safe stresses, is small. Also up to these

stresses the creep of the materials does not often influence the stress distribution to a
degree which need be taken into consideration.

However, either in the application ofthe probabilistic concept of safety, at present
awakening great interest, '• 2 or of the concept of safety in relation to failure, which is
already frequently applied, the hypothesis of the materials following Hooke's law
takes all the value from nearly all the existing analytical methods of design.

In fact, within the probabilistic concept it is necessary to predict the behaviour of
structures for all possible intensities of loading, even for those which are not very
probable, for which the structures may suffer deformations which go far beyond the
elastic ränge or even suffer failures. The dimensions to be chosen for a structure are
those which minimise the sum of the initial cost of the structure and the cost of main-
tenance; in the latter there should be included the repair expenses due to the action of
loadings of great magnitude, and also the expenses due to any damage, such as excessive

deformations, personal accidents, etc.
For the application of the concept of safety with regard to failure it is only necessary

to determine the magnitude of the loadings which cause failure.
It can safely be said that the possibilities of the analytical methods are very limited

in relation to the behaviour of structures for great deformations. This results from
the great analytical difficulties which arise when non-linear relations between strain
and stress have to be considered; the Situation is made worse by the need to consider
simultaneously the dependence of the phenomena on time.

It was just the difficulty of establishing non-linear theories associated with the fact
that the structures suffer, in general, deformations too great for their use when the
elastic ränge is well passed, which led to the deficient concept of safety based on the
consideration of working loads.

1 For references see end of paper.
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As the designer, up to a few decades ago, besides the knowledge of the behaviour
of similar structures and his intuition, only had at his disposition analytical methods,
he had to establish the necessary hypotheses, however extraordinary they may have
been, so that the problems he had to solve feil within the theories at his disposal,
having at times to choose, not the most convenient solutions, but those which could
be handled by those methods.

This Situation, with the difficulty of comparing the predictions of the analytical
methods, especially with regard to the values of strains and stresses, and the real
behaviour of the structures, has led to an excessive confidence in the precision of those
methods, and even to a certain conventionalism in their application.

The progressive improvement of the techniques for measuring strains and stresses
and the appearance of new materials suitable for building models have led to a great
development of the experimental method of structural design, especially in the last
decade.

When the analytical methods are not satisfactory, it is in general possible to predict
with the necessary accuracy and within reasonable time and expense the behaviour of
structures by the use of models.3

In the following paragraphs the similarity conditions which the models should
satisfy are presented briefly.

Mechanical similarity

(a) Models made from the same materials.as the prototype
Let us consider a prototype (fig. 1) made from any materials, homogeneous or

heterogeneous, isotropic or non-isotropic, which, for the loadings applied, do not
obey Hooke's law, Suppose that the prototype is in static equilibrium under the
action of surface forces F'p, F"p,... (generally represented by Fp), and of the reactions
of supports, fixed or movable, R'p, R"p, (generally represented by Rp).

Material M2 / p

Material Hz/

ffffy. \^J^\Maierial M3

¦-^Material t13 WJ<^© Failure
\ \ "-Material li,\ Failure gm\

Malerial 14,

Fig. 1

Let us build a model geometrically similar to the scale of 1/A, made from the same
materials as the prototype, bound in the same way, and supported by homologous
supports of the same type. Subject it to homologous forces, Fm, to a scale of 1/A2,

Fm=Fp/Xz, so that the surface stresses, fm, equal the homologous stresses of the
prototype, fP,fm=fP.

It can be shown that the displacements of homologous points of the prototype

z
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and of the model, Sp and 8m, the strains of homologous segments, €p and e„„ and the
stresses in homologous elemental surfaces, tp and tm, are related by.

©1
*m 'D

(1)

whatever may be the deformation, even if failures take place, either for stable or
unstable equilibriums. The reactions of the supports of the model are given by
Rm=Rp/X2, that is, the homologous reaction stresses, rp and rm, are equal, rm=rp.

It has been said that the supports would have to be of the same type; that is, for
fixed supports, either hinged or built in, there would have to correspond fixed supports
of the same type, and for supports which suffer displacement there would have to
correspond suppotts such that their displacements, under the loading Rm=Rp/X2, or
rm=rP, would be 1/A of the displacements suffered by the supports of the prototype
when submitted to the action of Rp or rp.

It is obvious that the similarity condition presented demands that the initial states
of strain and stress of the model be the same as in the prototype.

As for body forces, such as the weight, similarity does not exist unless steps be

taken to convert the homologous body forces to a scale of 1/A2, that is, in the case of
the weight, the equivalent of multiplying the specific weights of the materials of the
model by A. For this purpose appropriate forces may be applied to the model or it
may be subject to a rotation which produces convenient centrifugal forces.

Also in the case of dynamical equilibriums there is not similarity even when the
surface forces only are considered.

As to the effects of loads which tend to produce change in volume, such as

temperature or contraction in the case of concrete, the relations (1) hold as long as the
unit volume change is the same, which implies, in the case of temperature, subjecting
the model to variations of temperature equal to those suffered by the homologous
points of the prototype.

The similarity conditions presented so far demand that it be assumed that if the
elements of volume of a model are subject to the same State of stress (in general
varying with time) as the homologous elements of the prototype, the state of strain
will also be the same even for strains in the neighbourhood of failure. The state of
stress of the model being the same as that of the prototype, two homologous points
are immersed in media whose states of stress are analogous but where the stress

gradient, in any direction, is A times greater in the model.
Hence the conclusions presented were derived on the assumption that the relation

between strain and stress of an element of volume does not depend on the stress

gradient which exists around this element. In the case of solids in elastic deformation,
the Theory of Elasticity even admits the hypothesis, which has been amply verified,
that the relation between strain and stress of an element of volume does not depend
on the state of stress around the element.

However, it is conceivable when leaving the elastic ränge, especially when dealing
with ductile materials, that that relation depends on the State of stress which exists
around the element of volume, and that it may vary even when only the gradient of
the state of stress varies.

The experimental verification of the influence of stress gradient has frequently led
to results which do not agree. In the case of steel, which has been the material most
studied, the results which show the existence of this influence are more numerous.4, 5
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It should be noted, however, that the influence of the stress gradient on the
similarity relations will only be important in the case of very large strains and of scale
values under certain limits, the equilibrium studied and the degree of accuracy required
for the model study having to be taken into aecount.

Another objeetion to the conclusions presented results from the consideration of
the influence of the volume on the probability of failure,6 which has been observed in
brittle materials7 and in the brittle rupture of duetile materials8 subject to tensile
stresses. The mean tensile strength varies with the volume of the piece, a reduction
oecurring when volume increases.

Hence when wishing to study models in which failures are produced by tension it
may be necessary to take this effect into consideration, especially as there exists the
possibility of the results not being on the side of safety. But, as in the majority of
cases the structures built from brittle materials are designed in such a way that tensile
failures do not expose them to risk, the objeetion which has just been raised is not of
great significance.

In any case, to verify if there does exist any influence due to the scale and what the
influence would be, observations can be made on models of different scales and
comparison of the results made by means of the expressions (1).

Except for special cases, we think that those influences of the stress gradient and
volume do not limit the conclusions arrived at with regard to similarity to the point
of having practical interest.

(b) Models made from materials different from those of the prototype 3

It often happens, as will be seen later, that it is not possible or even convenient
to make the models from the same materials as the prototype.

Consider the general case of the prototype of fig. 1 built from any materials.
Let ep be the extensions undergone by an elemental parallelepiped of any of the
materials when subject at its surface to the stresses tp in equilibrium.

In a geometrically similar model, in order to observe displacements, strains and
stresses proportional to the homologous ones of the prototype, it is necessary, in the
first place, that the materials of the model be such that when an elemental parallelepiped

is subject to stresses tm tp/a, the strains developed be em=*p/ß, ct. and ß being
constants. When the creep of the materials has to be taken into consideration, if the
stresses tp be reached at the time 6p, the stresses. tm will have to be reached at the time
dm=6pJT, t being a constant. Therefore, for the materials of the model there will have
to be scales for stresses 1/a, for strains l/ß, and for time 1/t.

The condition which we have just stated implies that, for any of the materials of
the model, the uni-axial loading a (tension, compression) curve as a function of the
strain e (fig. 2) be obtained from the curve of the homologous material of the
prototype by multiplying the ordinates and abscissae, respectively, by 1/a and l/ß,
that is to say, by a change of scales of the axes. When it is necessary to take the creep
of the materials into consideration this relation between the diagrams has to be veri-
fied whichever way the stresses applied to the prototype material change with time;
as was seen, the stresses of the model material can be applied according to a certain
scale of time.

The above-mentioned relation between the uni-axial loading diagrams is not
sufficient to verify the general condition stated before, which refers to any loading.
However, it is sufficient that in the majority of cases this relation holds to allow us to
assume, with sufficient accuracy, that the materials of the model satisfy the general
condition. Besides this, it should be noted that in the case where it is not demanded
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that the relation holds up to failure, it is sufficient that the development of the curves
be similar to be able to determine the factors 1/a and l/ß with reasonable accuracy.

If it is desired to foresee the behaviour of the prototype even after failures have
appeared, the materials of the model should satisfy the condition stated, even for
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Fig. 2

stresses which bring about failure of the parallelepiped. It will be necessary therefore

that in the curves of fig. 2 the ultimate strengths of homologous materials be in
the relation of 1/a and that they correspond to strains in the relation of 1//?.

Conditions have so far been considered which should be satisfied by the materials
of the model. In the case of the prototype being submitted to surface forces Fp in
static equilibrium, if homologous forces Fm=Fp/X2a., that is, stresses fm=fp/&, be

applied to the model of scale 1/A at homologous times, the relations

Sm=YßBp

¦¦„,=~£P r
1

T
i

*m — ~tn

(2)

are verified in homologous times provided that the displacements are small.
The model has to be supported on homologous supports of the same type. To

the supports ofthe prototype with displacement there will have to correspond supports
such that under the action of forces Rm Rp/X2<x. or rm=rp/ct., they will undergo
displacements l/Xß of those undergone by the homologous supports of the prototype
when subject to Rp or rp.

In the case of 1//?=1, that is, of a parallelepiped of any of the materials of the
model having the same strains as a parallelepiped of the homologous materials of
the prototype for the loading tm=tp/oL, the relations (2) hold even for large displacements.

It is possible then to study by models equilibriums in which phenomena of
instability appear, the scale of 1/A2a being that of critical homologous loads.
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In the general case of the prototype in dynamical equilibrium under the action of
surface forces and body forces, especially the weight, in order that the relations (2)
should hold for homologous times, it is necessary that, besides the surface forces
satisfying the relation Fm=Fp/X2ct, or fm=f„ja, the following relations should hold:

1 A

-=- (3)
P ct.

l'Jjß <4>

where l/p=dm/dp, dm and dp being the specific weights of the materials of the model
and prototype respectively. In general it is not possible to satisfy all these conditions.

When dealing with vibrations, the scale of the homologous periods of Vibration is
given by (4).

In the particular case where the effects of weight are negligible, it will only be

necessary to verify relation (4). If, besides this, it is not necessary to take the effects
of creep into consideration, then the material does not demand a time scale, from
which it results that for each value of the scale of the model there is one value of the
time scale.

In the case of static equilibriums in which the effect of weight has to be considered,
it will only be necessary to verify the condition (3). For the current values of the
scales this condition demands that the model materials have high specific weight and
high deformability.

With regard to the effects ofthe temperature and other loads which tend to produce
changes in volume, the relations (2) hold provided that the model is subject to
temperature changes Am given by

A„=yP
where Ap is the temperature change at the homologous point of the prototype and 1/X
is the scale of the coefficients of thermal expansion.

All the conclusions presented are obviously subject to the same objections
presented in section (a).

(c) Prototype under elastic deformation
Consider a prototype made up of various elastic materials with moduli of elasticity

E'p, E"p, and Poisson's ratios v'p, v"p, From the results presented in (b)
it is concluded that for similarity to exist it is necessary that a geometrically similar
model be made of elastic materials whose homologous constants E'm, E"m,
and v'm, v"m, satisfy the relations

F' F" 1

H. p Hi p fJ,

and
I i ll llv m=v p, v „, v p,

where l/p is the scale of the moduli of elasticity. Since the influence of Poisson's
ratio on the states of stress and strain is often negligible, the conditions of equality
for these ratios may often be ignored. In this case if the prototype be made of only
one material it is sufficient that the model material be elastic.

When the prototype is only submitted to the action of surface forces, the scale
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of these forces 1/f^, may be given any value, provided that the elastic limit is not sur-
passed, the relations (2) taking the form

A

°m—PI P

X2
em rL-T€P Y (5)

f _X2
tm — ~jtp

9

on the condition that the displacements be small and the model be supported in a way
analogous to that of the prototype. To the supports with displacement have to
correspond supports which undergo displacements to the scale /xA/t/>, when subject
to reactions Rm Rp/<b or rm=X2rp/cp.

When it is assumed that the materials of the prototype and of the model follow
Hooke's law up to failure, in order to be able to study the effects of loads which
produce failures, it is necessary that the ultimate stresses, u„, and ap, satisfy the
conditions (?m/eP) lension ={am/ap) compress!on =X2/</> which fix the value of the scale
of forces. In the case of studies in which failures occur, since the superposition of the
effects of loads does not hold, it is generally necessary to apply all the loads
simultaneously.

In the case of large displacements, the conclusions arrived at in this section hold
as long as the scale of forces be

Fm=W/p0rfm='/p
and the relations (5) will take the form

§;» =x8p

«m =ep

t„,
1

=-tp
I1

We thus see that the model has to remain geometrically similar to the prototype
after deformation.

Phenomena of instability can then be studied on models, the critical homologous
loads being to the scale of l/A2/x.

In the more general case of the prototype being in dynamic equilibrium under the
action of surface and body forces, especially the weight, it is necessary that the materials
of the model satisfy the conditions stated and also that

1

f
1

J_
~"xTP

.1 ft
"Aa/ p

(6)

That is, once the scale 1/A and the materials of the prototype and the model have been
defined, the values of the force and time scales are fixed; the homologous forces have
then to be applied at times to the scale of 1/t. The relations (5) will hold when the
model, supported in a manner similar to the prototype, Starts from a position in which
the displacements are to the scale of ^X/^ and the velocities to the scale of pXt/</>.
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When dealing with vibrations, 1/t is the scale of the homologous periods of
Vibration.

In the particular case when it is not necessary to consider the weight, only the time
scale will be fixed. Once the force scale has been fixed, the first of the relations (5)
fixes the scale of displacements, and hence also the initial position of the model, from
which the velocities, to the scale already referred to, have to be applied.

In the case of static equilibriums where the effect of surface forces and weight have
to be taken into consideration simultaneously, the first relation of (6) will have to
be verified.

For the common scales of the models it is often difficult to study the effect of
weight due to the low value of the strains. Hence at times recourse is taken to the
methods already mentioned, equivalent to increasing the specific weight.

(d) Elastic equilibrium in two dimensions and equilibrium ofstructures consisting ofbars
The Theory of Elasticity shows that in a homogeneous plate in two-dimensional

elastic equilibrium, the State of stress does not depend on Poisson's ratio, unless the
plate has holes, and that in the boundary of each hole or in the outer boundary of the
plate, forces act whose resultant is not equivalent to zero or to a couple.

Hence the conditions referred to in the section (c) for the model material are
simplified in the present case; for the determination of the State of stress it is sufficient
that the material of the model be elastic.

When the materials of the prototype and the model have different values for
Poisson's ratio, the homologous strains and displacements are not proportional.
Therefore, when there are statically indeterminate supports, even the proportionality
of the stresses ceases to hold.

For the same reason if the plate be made of different elastic materials there will
only be similarity when the homologous Poisson's ratios are equal.

If a plate is subject to body forces acting in its plane, the state of stress is still in
general independent of Poisson's ratio when the body forces are of constant intensity,
which condition is satisfied by the weight.

In two-dimensional equilibriums it is easy, in view of the small thickness of the
plate, to apply to the model complementary forces equivalent to the increase of specific
weight.

By the use of Biot's analogy it is possible to determine the effect of weight and in
general the effect of body forces, substituting these forces- for forces acting in the
boundary of the plate.9

If the plate is subject to variations of temperature or other causes of change in
volume, as it is necessary to introduce conditions relative to the strains, in order to
have similarity it is necessary that vm=vp.

It should be noticed that in the cases mentioned in which the State of stress depends
on Poisson's ratio, the influence of this ratio is generally small and in the majority of
cases may be ignored.

In solids subject to plane strain the determination of stresses can be easily made
from a plate in two-dimensional equilibrium, which frequently has a considerable
practical interest.

Finally, consider the case of structures consisting of straight or curved bars
existing, or not, in a plane.

Within the simplifying hypotheses of the Strength of Materials it is generally
possible to analyse these structures on models in which the cross-sections of the bars
are not geometrically similar to those of the prototype.3 This possibility has great

cr.—22
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practical interest, as it permits the Substitution of the shapes of these sections, often
very complex, for others easier to reproduce in the models.

When models whose sections are not geometrically similar are used, proportionality

can only hold between homologous shearing forces, normal forces, and bending
moments.

In the particular case of plane structures consisting of bars in static equilibrium
under the action of forces acting in their plane, for such a proportionality to exist it
is in general sufficient that, along all the bars, the moments of inertia Ip and /„, of the
homologous cross-sections of the prototype and of the model be proportional,
IJIP=l/C.

This permits the construction of models with rectangular sections of constant
thickness, which greatly simplifies the construction of models.

The forces may be applied at any scale, l/</>, which will be the scale of the shearing
and normal forces developed; l/X</> will be the scale ofthe moments, denoting now by
1/A the scale of the axes of the bars.

In the dynamic equilibriums under the actions of surface forces and of the weight
it is in general sufficient that, besides the mentioned proportionality between the
moments of inertia, the areas Sp and S„, of the homologous cross-sections be proportional,

Sm/Sp=l/Ci, the constant Cy being of any value. The scale of the applied
forces and of the time must have the values :

1 1

</> XpCy

1= /oi
T V A3f£

The model should start from a position in which the displacements are to the scale
Qx/A3i/> and the velocities of the scale tQx/A30. When the weight can be neglected
the forces scale can assume any value.

Construction of the models
Mechanical similarity, as has just been seen, requires certain conditions in the

models with regard to shape, materials and loadings. Let us see what are the possibilities

to fulfil these conditions.

(a) Scales

Except in special cases similarity demands that the models be geometrically similar
to the prototype, but without fixing the scale value.

A scale near unity has the advantage of permitting the reproduction in the model
of the characteristics of the prototype, such as shapes, joints between parts, residual
stresses, etc.

However, in the case of large structures, which are the most common in civil
engineering, such a scale cannot generally be adopted, both for economic reasons and
the time needed for the construction of the models. Furthermore the application of
loads in large models demands very expensive equipment, and the observations,
besides taking a lot of time, are more difficult and less accurate, especially if they have
to be made in the open air.

The reduction of the scale is accompanied in general by economy, rapidity and
ease of model studies. In the majority of cases these factors vary greatly with the
change in scale.
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On the other hand, the smaller the scale the greater is the difficulty of reproducing
the shapes. As a rule, however, it is possible to simplify the shapes considerably,
either by omitting some details or by replacing parts for others of a convenient deform-
ability, without prejudicing the precision of the results. In the case of structures of
large dimensions with simple shapes, at times scales of about 1/500 are adopted.

In fixing the minimum possible scale it is necessary to bear in mind:

the smallest parts to be reproduced in the model, which should not be so
small as to make their construction and Observation difficult;

the accuracy with which it is possible to set up the equipment for applying
forces and other loading;

the accuracy, dimensions and way of placing the measuring apparatus,
especially the magnitude of the bases of the extensometers in view of the
gradients of strains which are anticipated.

(b) Materials

The materials chosen for construction of models should, in a general way, obey
the following conditions:

have the mechanical properties demanded by similarity which should not be
appreciably affected by the common ambient variations of temperature and
humidity;

be easily worked and joined;
have such deformability that, under the action of easily obtainable loading

intensities, the accuracy demanded for the measurement of displacements and
strains be reached;

allow the measuring apparatus to be easily mounted either on the surface
as inside;

be economical.

When it is wished to study by a model the behaviour of a prototype in which
.complex mechanical properties have to be taken into consideration, such as
nonlinear relations between stresses and strains, non-reversible strains and creep, it should
be seen in the first place if it is possible to build the model with the same materials as
the prototype.

This is at times difficult even for scales that are not very small. Thus in the case
of models of structures of reinforced concrete the difficulty often arises of the aggregate

being too large; when using the same concrete for the model it may also be

necessary to take into consideration the Variation of wall effect and rate of drying.
In metallic and in reinforced-concrete models, it is difficult to find on the market
sections, plates and bars with the necessary dimensions and with the same properties as
those of the steels used in the construction. For this reason it is necessary at times to
make the sections specially from plates laminated to the appropriate thickness (fig. 3).
In reinforced-concrete models it is, in general, possible to Substitute a single bar for
groups of bars and thus use commercial sizes.

The plates and bars of small dimensions which exist on the market are often
annealed, but it is as a general rule possible to give them properties analogous to
those of the steels of construction by stretching them.

It is, .however, possible to use materials in the models different from those of the
prototype. Thus for concrete structures it is easy to find mortars satisfying the
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Fig. 3. Part of a steel model to a scale of 1/6 ofa high-voltage steel mast 33 m. high,
extensometers were used for strain measurements

Huggenberger

Fig. 4. Reinforced-mortar model to a scale of 1/50 of a guide wall of a spillway dam.
studying up to failure the forces exerted by the gates

Used for
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conditions stated (fig. 4); it is advisable that 1/a be small and l/ß be great so as to
obtain, for small magnitudes of loading, deformations measurable with accuracy. In
the case of reinforced-concrete structures the steel should be replaced by a material
for which 1/a and l/ß have the same values as for the mortar.

When choosing a material for a model different from that of the prototype, it is
sufficient, in general, to verify if the similarity condition stated is satisfied in uni-axial
loading. Tests may also be carried out on pieces geometrically similar, made from
the materials of the prototype and the model, which are submitted to homologous
loadings to scale in order to determine if the relations (2) are satisfied. It is con-
venient, as is obvious, that the shapes of the pieces and the loadings be chosen to
obtain equilibriums analogous to those to be studied.

When the prototype is in elastic equilibrium there are many materials available
for the construction of models, among which can be mentioned celluloid, plastics,
plaster of Paris, metals and cork agglomerates.

In the choiee of the material for a given case consideration should be given in the
first place to facility of construction. In the case of complex and curved shapes it is

convenient as a rule to make use of mouldable materials, such as plaster of Paris or
some plastics.

In the second place attention should be paid to the advantage of the material
having a high proportional limit and a low modulus of elasticity, to measure strains
accurately when applying small forces. The materials with these properties have, in
the majority of cases, an appreciable creep; however, in general, it can be assumed,

1

Fig. 5. Perspex model (laid horizontally), to the scale of 1/200, of a monument about 100 m. high
to be built in concrete. Electric strain gauges were used for both static and dynamic strain
measurements
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without affecting the accuracy, that the materials referred to above have a modulus
of elasticity which is a function of time when under the action of constant load; thus
the relations of similarity established for elastic materials will hold.

Of the materials mentioned the most used at present are plastics which together
with celluloid have the advantage of a high proportional limit, generally above 1 %,
both in tension and compression. They are, also, easily workable.

Celluloid and the majority of plastics in use today, such as those known by the
trade names of perspex, plexiglas and lucite, which consist of polymethyl methacrylate,
and those known as bakelite, marblette and trolon, which are phenolformaldehydes,
have moduli of elasticity ranging from 15,000 to 45,000 kg./cm.2 Poisson's ratio
varies between 0-30 and 0-40.

Celluloid and the three plastics first mentioned have the great advantage over the
other plastics of being easily glued (fig. 5).
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Fig. 6. Alkathene model to a scale of 1/200 of a 35 m. high arch dam. The model was subjected
to mercury hydro-static pressure and the strains were measured by means of electric strain
gauges specially built for use on alkathene

Another plastic now used in the Laboratorio de Engenharia Civil (Lisbon) is
alkathene, a commercial name for a polythene. It has a very low modulus of
elasticity, about 2,000 kg./cm.2, and can be moulded at about 140° C. (fig. 6). This
plastic cannot be glued but the surfaces to be joined can be welded. This is done in
a way similar to the welding of metals, using a bar of alkathene and a jet of hot air.

The fact that alkathene can be welded, together with the great facility with which it
can be eut, even with wood working tools, permits the shapes of the models to be
modified at will in the search for the most convenient forms for the structure being
studied.

Another material mentioned, plaster of Paris, with which diatomite is often mixed,
has the advantage of being easily moulded and very economical (fig. 7).10- n It has,
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however, the grave inconvenience of being brittle and often develops invisible cracks
which can completely upset the field of stresses. Its mechanical properties vary
between wide limits with the water content and its humidity at the time of use. Its
modulus of elasticity may vary between 5,000 and 80,000 kg./cm.2, the lowest values

"ITiJ
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Fig. 7. Model to a scale of 1/300 of a 130 m. high arch dam and its foundations. It was built
from plaster diatomite mix and electric strain gauges were used for strain measurements

being obtained with the addition of diatomite. The strains at the proportional limit,
however, vary very little, having values of approximately 0-1 %, which at times upsets
the accuracy of the measurements of the deformations. Poisson's ratio varies
between 0-15 and 0-25.

(c) Application of the loads

Concentrated loads are easily applied to models by means of weights, jacks or
Springs. As the values of the forces to be applied to produce the same deformation
diminish as the square of the scale, it is very convenient to use the lowest scale, since
the equipment for the application of the forces can become much more simple and
economical.

The distributed loads are at times substituted by concentrated forces, more or less

near each other according to the precision required and the space needed to be free
for observing the loaded surface.

When the distributed forces act normally to the loaded surface they can be applied
by means of fluids. When the intensity of these forces is very high, use can be made
of flexible cushions into which the fluid is introduced under the necessary pressure.

Referring to the determination of the effects of weight in models, it was mentioned
that in general it is necessary to use complementary forces or subject the model to a
rotation. The application of complementary forces does not present any difficulties
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when, as is common, dealing with structures with small thickness, since these forces
can be substituted by surface forces. However, when the forces have to be applied
to the interior of the models, the arrangements needed become very complicated;12
the use of centrifugal forces is also not easy.

With alkathene it is already frequently possible to determine the effect of weight
on models of moderate dimensions.

The study on models of the effects of temperature presents two difficulties, the
application of given temperatures and the influence of these temperatures on the
measuring apparatus. For this reason very few studies have been made on this
aspect.13

Observations on the models
To predict the behaviour of a structure by means of models implies, in a general

way, the determination of displacements, strains and stresses.
Following the common concept of safety, it is particularly important to determine

the stresses developed under the action of working loads, as it is from these stresses
that the structures are designed.

In the design in relation to failure it is only of essential interest to determine the
intensity of the loadings which produce failure.

In design by the probabilistic concept there will be above all the need to measure
the displacements and the characteristics ofthe failures caused by the action of various
loadings with all possible intensities. From these measurements it will be possible
to evaluate the damage, such as that resulting from excessive deformation, the need
of repair, etc., which will occur in the prototype.

(a) Measurement of displacements, strains and stresses 14

The measurement of displacements in the models is carried out by means of
deflectometers with a sensibility of 1/10 and 1/100 mm. and, rarely, of 1/1,000 mm.

The measurement of strains is in the majority of cases the most important
determination, as this permits the determination of the stresses once the relation between
strain and stress is known. For materials in elastic deformation it is sufficient to
know the modulus of elasticity and Poisson's ratio.

The measurement of strains in models is made almost exclusively at points on the
surface. Measurements in the interior present besides the difficulties inherent in such
measurements, those originating in the reduced size of the models. However, as the
greatest strains and stresses appear in general at the surface, such difficulties are as a
rule of little importance.

Among the extensometers used in the measurements of strains on models, we
can mention the Huggenberger and Johansson mechanical extensometers. These
extensometers have a satisfactory accuracy on short bases, which, in general,
have to be used on models. The Johansson extensometers can be applied on
a base of 3 mm. Like all mechanical extensometers they only permit measurements

at the surface and they have the drawback of requiring, together with the
accessories, an excessive space; besides this they often require considerable time to
mount.

The vibrating wire extensometer is also sometimes used.11 The minimum length
ofthe wires is about 2 cm., which at times is excessive; besides, the placing and
Observation of the wires is a prolonged Operation. They permit, however, being read at a
distance, which is an advantage when there are inaccessible parts in the model or when
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the model is large. The wire extensometer is the most reliable for observations over
long periods.

Finally, electrical resistance extensometers14 are, without doubt, the most appropriate

for measurements on models and are almost exclusively used today. In fact,
they occupy least space and are the lightest, they are easily mounted without requiring
any accessories, and can be observed at a distance. The measuring bases can be of
any value above a few millimetres and their precision is satisfactory. Above all,
when, as is usual, it is necessary to determine a large number of strains, the electrical
gauges give results most rapidly and economically. The only inconvenience of the
electrical extensometers is their instability with time, though there are already some
types in which this inconvenience is reduced.

Fig. 8. Electric strain gauge inside a prism of a plastic. In a compressive test the values given
by this strain gauge were in füll agreement with those placed on the surface

The electrical extensometers, due to their small dimensions, lend themselves to
the measurement of strains in the interior of models. In the case of mouldable
materials they can be placed in position at the time of moulding (fig. 8), and
conveniently protected against humidity if necessary. With the appearance of the
electrical gauges it can be said that the difficulties in measuring strains in models have
almost ceased to exist.

The accuracy with which the extensometers measure the strains depends largely,
as is obvious, on the magnitude of the strains to be measured and on the experimental
conditions. All the extensometers referred to permit, as a general rule, measurements
to be made to within an error of Ae=lOx 10©



346 All 3—M. ROCHA

Assuming this value, the table below gives the approximate values of relative
errors within which the strains and stresses can be measured in materials most com-
monly used in model construction when they are strained to the proportional limit.
The influence of the error in the modulus of elasticity on the error in the stresses is

not considered, as in general it has no importance.

Materials Strains
assumed

<r(%)

Relative error of the
strains and stresses

Ath (%)

Celluloid and plastics
Plaster of Paris
Mortars and concretes
Metals

1

005
0 02
0-2

0-1
2
5
0-5

It can be seen that the strains and stresses can be obtained with an entirely
satisfactory accuracy.

The determination of the isostatics, that is, of the prineipal directions on the
surface of models of celluloid, plastics and metals, can be made very easily, in view
of the great deformability of these materials, by the use of brittle coatings 14

(fig. 9). It is possible to obtain the appearance of cracks for strains of about 10~4.

The method is particularly advisable when dealing with models of complex shapes;
it can be applied in dynamic equilibriums. The knowledge of the isostatics has the
great advantage of permitting a reduction in the number of observations to be made
with the extensometers for determining the states of strain.

*.-•¦

Fig. 9. Application of the brittle coating method to the determination of the isostatics in a spillway
guide wall
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Techniques for the application of the brittle coating method for the measurement
of the magnitude of the strains and stresses are being developed, and have already
reached some interesting results. The development of methods which may give
results over an area is of great interest as it avoids readings having to be taken at
various points, which is necessarily a prolonged Operation, and the probability of
making errors is reduced.

When the relation between strain and stress is not linear and the creep has to be

considered, it is not generally possible to determine the stresses from the measurement
of strains.

Recently a property was brought to light 15 which permits the direct determination
of the stresses. This property is the following: if at a point in a solid made of any
material, an elastic solid of small dimensions be introduced and intimately joined to
that solid, the stresses developed in the elastic solid only depend on the state of stress
in its neighbourhood as long as its modulus of elasticity be sufficiently small in relation
to that corresponding to the deformations of the surrounding solid. Thus by measuring

the stresses set up in the elastic solid, for example by means of its deformation
(fig. 10), it is possible to determine the state of stress in the solid made of any material.

\
Fig. 10. Small magneto-striction cells to be left inside models for direct stress measurements

(b) Photoelastic method

The determination of the stresses in two-dimensional elastic equilibriums can be
done by photoelasticity.16- 17 Compared with the general method of determining
the stresses from the measurements with extensometers, the photoelastic method has
the advantage of being more rapid and economical, and also reaching, in general,
greater accuracy. The fact that models with greatly reduced dimensions can be used

appreciably contributes to this economy. In the case of the study of high stress
concentrations, this fact makes the use of this method very convenient, as the use of
extensometers in this case requires the use of large models.

The photoelastic method has the advantage of making observations all over an
area. The attempts to apply photoelasticity to three-dimensional equilibriums have
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not yet reached results of practical value. At present it is preferable to study such
equilibriums by leaving extensometers in the interior of mouldable models.

(c) Models of structures consisting ofbars
The models of structures consisting of bars, which we will call briefly linear

structures, may be studied by using the general methods just referred to.
Before the appearance of electrical strain-gauges the measurement of strains was

made difficult by the extensometers and their accessories having excessive dimensions
and weight compared with the dimensions and rigidity which it is convenient to give
to the models of linear structures.

When the sections of the model are not geometrically similar to those of the prototype,

the measurement of the strains permits the determination of the shearing and
normal forces and of the bending moments in the model, which can be transferred
to the prototype.

For the study of linear structures many special methods have been developed.
The methods most used are those which permit the determination of the influence
lines of the statically indeterminate forces (exterior and interior) from the reciprocity
theorem of Maxwell-Betti.18' 19 Obtaining the influence lines by this way has the
great advantage of avoiding the application of forces to the models, which is
particularly important in the case of structures having a large number of members. In
spite of this determination of the influence lines being in principle possible for any
linear structure, the experimental difficulties have limited its application to structures
in plane equilibrium.

The various methods based on that theorem differ from each other in the
magnitude of displacements imposed on the model, in the technique of applying these
displacement and in the technique of the measurement of the displacements
corresponding to the forces whose effect it is desired to determine.

The methods which use large displacements have the advantage of making it
possible to observe directly the functioning of the structures, and to measure the
corresponding displacements easily. They have, however, the grave disadvantage of the
results being affected by the redistribution of stresses due to the large displacements
imposed; for this reason the methods today have little more than pedagogic value.

However, at times the inconvenience referred to is not important; thus in the case
of continuous beams, for the determination of the influence lines of the reactions of
the supports, these can be displaced even to one-fifth of the spans without errors of
more than a few per cent resulting. It is in such a case a method to be recommended.

Of the methods based on the theorem of reciprocity, the one most employed is
that of Beggs,20 in which small displacements are imposed by means of a special
device and the measurement of corresponding displacements is made by means of
microscopes.

The application of this method is only advisable for the determination of the
influence lines corresponding to external indeterminate forces. In fact, for the
determinations corresponding to interior indeterminate forces in complex structures, which
are those requiring experimental study, there is not, in the majority of cases, room
enough to mount the device for imposing the displacements. Besides this they cannot
be imposed to the edges of the section but only at a distance which is often excessive.
On the other hand, time taken for mounting is prolonged and awkward and, fre-
quently, the rigidity of the model does not permit the imposition of sufficiently large
displacements.
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The measurements of the displacements, either small or large, are made very
conveniently by the Photographie method.21 In this method the model is photographed
on the same plate before and after a displacement is imposed; the displacements can
be measured with a microscope or on a screen on which the plate is projeeted (fig. 11).
This method permits rapid readings to be made and its accuracy even for small
displacements is the same as that obtained by direct readings on the model with a
microscope.

i
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Fig. 11. Photograph obtained in studying a linear structure by the Photographie method

The Photographie method supplies a record of the results of the test and of the
conditions under which it was carried out. It can reveal certain causes of error, such
as deficient design of the model, accidental movements of built-in members, deficient
working of the device for imposing the displacements, etc.

In brief, in the experimental study of linear structures, it is advisable to apply the
general method, measuring the strains by means of electrical strain-gauges, except in
the determination of the influence lines corresponding to external indeterminate
forces when the structure is in plane equilibrium. For this determination it is advisable

to use the Beggs method and measure the displacements by the Photographie
method.

Conclusions
The essential aspects of the problem of experimental design of structures have

been presented in this paper.
The conclusion is reached that the choiee of shapes and determination of the

dimensions of any structure can be made, as a general rule, from observations on
models, even when it is wished to take into consideration its behaviour beyond the
elastic ränge. Models also lend themselves to the determination of the influence of
the Variation of the properties of the materials throughout a structure.

At present it is in the choiee of materials for models and in their construction that
difficulties are at times met with, whilst previously, before the appearance of electrical
strain-gauges, it was in the Observation ofthe models that the greatest difficulties were
met, and which were frequently insoluble.
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It can be truly said that a model, even on a very reduced scale, is in general a much
more faithful image of the prototype than the hypotheses adopted by analytical
methods, either from the point of view of the shape, or the material or even of the

loading. This does not, of course, minimise the value of analytical methods, which
have the great advantage of being, except in very special cases, more rapidly and
economically applied, of not requiring equipment and also of furnishing results which
are easily checked.

These advantages indicate the use of the analytical methods in the primary design
of a structure, in which phase it is necessary to obtain a rough estimate ofthe possible
solutions, which, as a general rule, are numerous. For the final design of small and
medium structures the analytical methods are also generally the most adequate.

It is in the design of important structures, with, say, a value of over £10,000, that
the studies on models, whose cost is in the region of some hundreds of pounds, is

recommended, unless completely reliable analytical methods are available.
The analytical and experimental methods should not be put in Opposition, as at

times is the tendency, but rather be considered as tools to be wisely used in the safe
and economical resolution of structural design problems.

It should be emphasised that to obtain results in periods compatible with those

usually required for the elaboration of plans and to win the confidence ofthe author-
ities interested in the plan, it is necessary to have specially equipped and organised
laboratories. For the laboratories to work economically they need to have an
important volume of permanent work.

The use on a large scale ofthe experimental method as a routine method of design
gives valuable opportunities for perfecting the knowledge and formulating theories of
the behaviour of structures. It often happens that when studying a model certain
effects which had not been considered are found to be the most important. The
difficulty and high cost of the Observation of the prototypes is a further reason which
weighs in favour of a wider use of models as a research instrument.
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Summary

The aim of the paper is to give a general view of the present Status of the experimental

method of structural analysis within both the elastic and non-elastic ranges.
The requirements of mechanical similarity to be met for model shape, materials

and loading, for static or dynamic equilibriums are presented and the actual possibilities

are then indicated for such requirements being fulfilled.
Finally, the possibilities and the exigencies of the experimental method of structural

analysis are mentioned.

Resume

Le present rapport a pour but de donner un apercu de l'etat actuel de la methode
experimentale de calcul des ouvrages, soit dans le domaine elastique, soit au delä de
ce domaine.

A cet effet, l'auteur commence par presenter les conditions auxquelles doivent
repondre les formes, les materiaux et les sollicitations des modeles, en equilibre
statique ou dynamique; il expose ensuite les possibilites actuelles d'observation de ces
conditions.

En conclusion, il mentionne les possibilites et les exigences de la methode
experimentale de calcul des ouvrages.

Zusammenfassung

Mit vorliegendem Bericht wird versucht, einen Ueberblick über den heutigen
Stand der experimentellen Methoden zur Tragwerksuntersuchung, sowohl innerhalb
wie auch ausserhalb des elastischen Bereiches zu geben.

Dafür wird zunächst auf die Bedingungen mechanischer Aehnlichkeit hingewiesen,
denen die Durchbildung, Baustoffe und Beanspruchungen der Modelle bei statischem
bezw. dynamischem Gleichgewicht genügen müssen. Im weiteren werden die heutigen
Möglichkeiten, solche Bedingungen zu schaffen, dargelegt.

Zum Schluss wird auf die Möglichkeiten und Anforderungen der experimentellen
Methode eingegangen.
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Photoelasticity applied to structural design

La photoelasticimetrie appliquee au calcul des ouvrages

Spannungsoptische Bemessung von Tragwerken

MANUEL ROCHA and FERRY BORGES
Chief Research Engineer, 2nd Department Engineer

Laboratorio de Engenharia Civil, Lisbon

Introduction
This paper presents some experimental studies for the design of structures, carried

out in the Laboratorio de Engenharia Civil (Ministerio das Obras Püblicas), Lisbon,
in which the photoelastic method was used.

As is known, it is possible, in general, to reproduce the real behaviour of structures
in models even when very reduced dimensions are chosen. Once the model is built,
the general test method consists of the application of loads and the measurement of
displacements, stresses and strains.

In order to measure the stresses, extensometers or the photoelastic method are
commonly used.

The advantage of the photoelastic method is the ease, rapidity and economy with
which it permits the determination of the fields of stress. The fact that
photoelasticity supplies images in relation to the complete field of stress, besides avoiding
errors, allows the rapid localisation of the regions of important stresses. The small
scale to which the models can be built is one of its prineipal advantages; in fact, the
construction of models is simplified and the forces to be applied are small.

On the other hand photoelasticity requires the use of transparent materials and
it is only practicable to study plane states of stresses. The numerous attempts which
have been made to extend this method to the study of three-dimensional states of
stress have not reached a degree of real practical interest; in such cases the authors
think it advisable to use extensometers, left in the interior of mouldable models.

The restrictions mentioned considerably limit the field of application of
photoelasticity. Besides, photoelasticity only serves to determine the state of stress within
the elastic limit.

The application of photoelasticity, like other experimental methods, is only
advisable when there are no analytical methods which furnish results with the desired
accuracy, or when their application is less economical.

cr.—23
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The authors believe that the studies which follow show well how photoelasticity
can be used to advantage in solving problems of structural design.

Study of the influence of the deformability of the foundations on the
behaviour of an aqueduct

The problem of studying the stress distribution in a concrete aqueduct for different
mechanical properties ofthe soil appeared in the study ofthe new Lisbon water supply.

The greater part of the aqueduct will be built in a trench.
Fig. 1 shows the shape of the cross-section initially proposed for the conduit,

together with some modifications which were tested. To carry out the tests the loads
were taken as those obtained from the usual design theories for the thrust of earth fills.

H

\i3.70 m

Fig. 1. Cross-section of the aqueduct
I. Section initially proposed

II. Section with base of double thickness
III. Modified section

A bakelite plane model was built to the scale of 1/20 with a thickness of 1-0 cm.
The distributed loads applied to the prototype were replaced by adequate concentrated
loads, which were applied by jacks as shown on fig. 2. In order to maintain a
constant load, the oil-pressure tube, common to all jacks, was connected to another jack
the piston of which was loaded by a weight.

Loadings corresponding to the following hypotheses were considered:

(a) füll conduit, earth filling with an angle of friction of 35° and 4 m. thick at the
crown of the aqueduct;

(b) empty conduit, earth filling 8 m. thick with an angle of friction of 25°.

These hypotheses had led to the highest stresses in analytical calculations, con-
sidering the upper part of the conduit as a built-in arch. An asymetric loading
was also considered, which corresponded to loading half the arch. Successive tests
were made on the model supported by foundations with different mechanical
properties.

For studying the hypothesis of the aqueduct and the foundation having the same
mechanical properties, the soil was reproduced from the same bakelite from which the
model was made. Afterwards, the model was supported on bases of cork agglo-
merate and rubber, materials which reproduce foundations respectively 30 and 300
times more deformable than the material of the conduit.
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To reproduce soil of much greater deformability than that of the structure, the
model was supported on a tube so as to obtain a Uniform pressure on its base. For
this a rubber tube of 1-8 cm. external diameter was used, filled with water and closed
at the ends.

In order to compare with the analytical calculation previously made, a test was
carried out in which the arch was built-in by placing the model between two roughened
steel plates tightly joined together by bolts.

* ifiniiiiitn •

¦Ü^^"

Sä*

Fig. 2. Test arrangement Fig. 3. Isochromatics
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Fig. 4. Stresses in the prototype for different values of the foundation deformability
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For the structure dealt with it is sufficient to know the stresses at the boundaries.
These stresses were determined from the order of the isochromatics, one of which
is shown in fig. 3.

The stresses at the crown and at sections near the springing points for model I
(fig. 1), when subject to loading a, are shown in fig. 4. Thus it will be seen that the
analytical results obtained for the built-in arch agree with those obtained
experimentally for the same condition.

As the deformability of the ground increases, the absolute values of the stresses
increase. Thus, at the crown, when the modulus of elasticity of the foundation
material, E/, is t^ö of that of the structure, Ec, the compressive stresses rise from
6 kg./cm.2, the value obtained in the case of the built-in arch, to about 20 kg./cm2; at
the same time tensile stresses of approximately 16 kg./cm.2 develop at the internal
face. In the section near the springing, for the same conditions, the compressive
stresses at the internal face increase from 4 to 17 kg./cm.2 and tensile stresses of about
10 kg./cm.2 appear at the external face.

The increase of the deformability of the foundation beyond that mentioned above
does not lead to any appreciable Variation in the maximum stresses.

For loading b the influence of the deformability of the foundation is similar. The
maximum stresses observed are not very different.

It should be noted that for common soils and particularly for those crossed by the
aqueduct, the stresses developed in the structure should correspond to the relation
Ec/Ef of several hundreds.

With regard to the base of the aqueduct the increase of stresses in the middle of
its upper face is particularly important as the deformability of the foundation
increases.

For the relation EJEf=300 the tensile stress reaches 25 kg./cm.2 for loading a and
31 kg./cm.2 for loading b, stresses that would require considerable reinforcement in
the base.

A model was tested in which the base had double the thickness (fig. 1). The
Solution of increasing the thickness ofthe base, though giving a reduction in the tensile
stresses when the foundation deformability is large, is not economical. In order to
decrease the stresses at the base the authors also studied the Solution of leaving the
central zone free (fig. 5) by means of a Channel beneath the central part of the conduit,

IQOfn

Fig. 5. Aqueduct with the central zone ofthe base free
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which could be also used for drainage. Thus the uplift pressures would be avoided,
which otherwise might induce cracking at the base.

For a width ofthe Channel of 1 m. the tensile stresses, which, as already mentioned,
were about 30 kg./cm.2 for the hypothesis of Ec/Ef=300, become nearly nil. The
stresses in the arch were also reduced due to the Channel.

The distribution of stresses observed in the tests carried out led to a modification
of the cross-section as shown in fig. 1. Tests similar to those already described were
carried out on this new cross-section.

In spite of this Solution corresponding to a reduction of 20 % in the volume of
concrete, the maximum stresses developed did not suffer any appreciable change.
The opening of a Channel under the central part of the base reduced the stresses as in
the previous case.

It is of interest to mention that some years ago the authors carried out some
photoelastic tests on another conduit, in which the deformability of the foundation
was also taken in aecount. The results of these tests, which also showed a large
influence of the deformability of the foundation, were later fully confirmed by the
behaviour of the structure.

Study of stress distribution around the spillway openings of an arch dam

When designing the reinforcement to be placed around the flood-discharge
openings of Castelo do Bode Dam (fig. 6) it was found impossible to calculate the
reinforcement.

~" -
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Fig. 6. Upstream view of the spillway openings of the Castelo do Bode Dam

To determine the stresses developed the experimental method was used. Measurements

were taken on three-dimensional plaster of Paris models, which faithfully
reproduced the dam and the rock of foundation.* These models were used not only
to study the stresses around the spillways but also those developed in the entire dam.

* "Note on the Studies of Dam Problems carried out in the Laboratorio de Engenharia Civil,"
Publication No. 13, Laboratorio de Engenharia Civil, Lisbon, 1950.
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Fig. 7 shows the diagram of the normal stresses acting at the edges of the
horizontal section which passes at middle height ofthe openings, when the dam is subject
to the füll hydrostatic pressure.

For the Interpretation of these diagrams that are far from simple, photoelastic
tests were carried out.

Plane models to a scale of 1/500 of constant and variable thickness were used

(fig. 8), by which it was possible to study the influence of the thickness change on the
distribution of stresses around the spillway openings.
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Forces which reproduced the mean compressive stresses in the arches of the dam
were applied to these models. The values of these mean stresses were determined by
by the tests on the three-dimensional models.

Two models of constant thickness were made, one of bakelite to determine the
isochromatics, and another of celluloid to determine the isoclinics. Forces were
applied to these models to produce a uniform stress field in the region not affected by
the spillway openings.

The model of variable thickness was made by cementing together sheets of celluloid
so as to obtain steps of thickness corresponding in a simplified way to the shape ofthe
spillway and reproducing the increase of sectional area around the openings. Forces
were applied to this model which were proportional to the normal forces in the arches
at different levels and which also corresponded to an approximately uniform distribution

of stresses in the area not affected by the spillway openings.
It was desired to determine, above all, the normal stresses along section I-I' (fig. 8).
The difference of the prineipal stresses was obtained from the isochromatics and

from the readings taken with a Babinet-Soleil compensator. To confirm the values
of the stresses at the faces of the spillways openings, measurements were carried out
with Johansson strain-gauges of a 0-3 cm. base.

Knowing the isoclinics and the difference of prineipal stresses along section I-I',
the normal stresses were calculated by integration along the section concerned. As
this section may be regarded as symmetrical the calculation was quite easy.

The diagrams of the normal stresses along the section I-I' for the models of
constant and variable thickness are shown in fig. 9. These stresses were calculated on
the assumption that the mean compressive stress developed in the arches of the dam
is 21 kg./cm.2
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Fig. 9. Normal stresses along the section I-I', transferred to the prototype
I. Determined from the constant thickness model

II. Determined from the variable thickness model
III. Determined from the three-dimensional model (mean values ofthe stresses at corresponding

points of the upstream and downstream face). (Left bank)
IV. Determined from the three-dimensional model (mean values ofthe stresses at corresponding

points of the upstream and downstream face). (Right bank)
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The value of 18 kg./cm.2 for the tensile stress at the face of the spillway openings
obtained from the constant-thickness model is, as was to be expected, greater than
the value of 12-5 kg./cm.2 obtained from the variable-thickness model.

It is interesting to note that the maximum stress obtained from the variable-
thickness model agrees with the mean stress developed along the face of the spillway
opening measured on the three-dimensional models. It should be emphasised that
this mean stress is not far below the maximum stress developed at the face of the
spillway opening. This stress is in turn the maximum tensile stresses in the spillway
area.

In fig. 9 are also presented diagrams of the mean values of the stresses at
corresponding points of the upstream and downstream faces obtained in the three-
dimensional models.

The agreement between these diagrams and that obtained from the variable-
thickness model is quite satisfactory. The photoelastic variable-thickness model, of
course, does not take into consideration the bending and other effects which were
determined by the three-dimensional model. However, the photoelastic method was
of good service to solve the proposed problem.
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Fig. 10. Test arrangement

In order to eliminate the tensile stresses and the resulting cracks, which were incon-
venient specially due to the high velocity of the water at the spillways openings, the
use of prestressed concrete in this area was tried.

The distribution of the stresses due to the prestressing was studied on the variable-
thickness model using the test arrangement shown in fig. 10. It was also easy to
determine the stresses due to the weight and to the hydrostatic pressure on the upper
face of the openings. Fig. 11 shows the diagrams of the stresses thus obtained.

It is interesting to note that, at section I-I', the effects of the prestressing and of
the weight of part of the dam over the spillways openings are distributed through a
large area, and so the vanishing of the tensile stresses is not attained.

Due to this fact it was thought advisable to limit the stress distribution area by
creating a vertical Joint located about 3 m. from the openings (fig. 12).

Experimental tests made accordingly showed that the weight alone was enough
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Fig. 11. Normal stresses along section I-I' transferred to the prototype
I. Tensile stresses due to normal stresses in the arches

IL Compressive stresses due to the weight
III. Total compressive stresses due to the weight and a prestress of 4,000 tons

5tress
Joint

ft

Fig. 12. Normal stresses along the section I-I', transferred to the prototype, on the hypothesis of
leaving a Joint during construction

I. Compressive stresses due to weight (open Joint)
II. Tensile stresses due to normal stresses in the arches

to produce a compression stress of 6-5 kg./cm.2 (fig. 12). Therefore, after grouting
the Joint the maximum tensile stress in service will be 6 kg./cm.2; to absorb the tensile
stresses, which develop only in a small area, normal reinforcement was used. So it
was possible to achieve a considerable economy.

Study of the reinforcement of the Guide walls of dam spillways to support
the forces transmitted by the gates

In Castelo do Bode dam the flood discharge called for two gates (fig. 13), each one
having to support a maximum thrust of about 4,000 tons. It was therefore necessary
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to provide the guide walls with reinforcements capable of transmitting this thrust to
the body of the dam.

For designing this reinforcement a photoelastic test was carried out on a bakelite

[ r
¦ • •> ' —

•

Fig. 13. Spillway of Castelo do Bode Dam

model to a scale of 1/200 (fig. 14). A force which reproduced the thrust was applied
to the model.

In fig. 15 are shown the isochromatics obtained.
The isostatics plotted from the isoclinics are shown in fig. 16.

7

Ak

-

Fig. 14. Test arrangement
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The stresses were calculated using the method of Integration along straight
sections. In the fig. 17 are shown the values of these stresses transferred to the prototype.

The static equilibrium of several sections of the model was satisfied to within
errors of 3 %, which are fully satisfactory.
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Fig. 17. Normal stress transferred to the prototype

The reinforcements were placed following the isostatics and the area of their cross-
sections was established according to the stresses given by the model.

A similar problem arose in the Mabubas Dam (Portuguese West Africa), whose
guide walls are shown in fig. 18. The thrust of the gates is transmitted to the guide
walls by means of cantilevers and the maximum thrust in each wall is 1,200 tons.
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Fig. 18. Guide walls of Mabubas Dam

As in the previous case a bakelite model was made to a scale of 1/200. To determine

the prineipal stresses in the wall a graphic integration was made along the
isostatics indicated in fig. 19.

Based on the results obtained the walls were reinforced as shown in fig. 20.

In order to study the local effect of the loads transmitted by the cantilevers to the
guide walls, a reinforced-concrete model was built to a scale of 1/10. Fig. 21 shows
a view of the test.

Stresses were measured on this model not only near the beam but also at some
points where the stresses had been determined by the photoelastic model. In fig. 22
are compared, along one of the isostatics, the stresses obtained in the photoelastic
test with those obtained on the concrete model when working in the elastic ränge.
As was expected, the stresses agree closely.

The test on the concrete model was carried beyond the elastic ränge and gave
valuable information about the behaviour in the neighbourhood of the failure. The
first cracks, which were detected for a load equal to twice the working load, appeared
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Fig. 19. Isostatics

/
Fig. 20. Reinforcement in the guide wall designed from the photoelastic test
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Fig. 21. Reinforced-concrete model to a scale of 1/10
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Fig. 22. Stresses along one isostatic
I. Determined from the photoelastic model

II. Determined from the concrete model
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near the upstream flange of the cantilever. These cracks later spread through the
whole wall and led to the failure.

The results of this test suggested the need to strengthen the reinforcement near the
cantilever, as shown in fig. 20.

In order to study the legitimacy of undertaking tests until failure on small
reinforced models, another model was built to a scale of 1/50 (fig. 23). In both models
the development of the failure was absolutely identical.

Fig. 23. Concrete model to a scale of 1/50

Conclusions
The studies presented show well how advantage can be taken of photoelasticity

in spite of its only being applicable to plane elastic states of stress.
As was seen, it permits not only the choiee of the best shapes but also, in the case

of reinforced concrete, to define the directions of the reinforcement from the
isostatics and its sectional area from the tensile stresses observed.

However, as to the design of reinforced concrete from homogeneous and elastic
models there are two objections.

In the first place it should be noted that for the reinforcement to function under
stresses for which it is commonly designed, it is necessary for the concrete to crack;
from these cracks there will result a redistribution of stresses.

A second objeetion, and as a general rule a more important one, is that an elastic
behaviour analysis is being considered; that is, the behaviour of the structure for
loadings which cause large deformations or even ruptures are not taken into
consideration.

These same objections arise, however, in relation to the usual design of reinforced-
concrete structures from the results of the Theory of Elasticity and Strength of
Materials, obtained on the hypothesis of the materials being homogeneous and
elastic.

To reproduce perfectly the behaviour of reinforced-concrete structures it is advisable

to use reinforced mortar or concrete models. In one of the studies mentioned,
models of this type were additionally used.
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Summary

The paper deals with some studies carried out at the Laboratorio de Engenharia
Civil, Ministerio das Obras Püblicas, Lisbon, in which use was made of the photoelastic

method for model stress analysis.
The following studies are reported:

Influence of the deformability of the foundations on the behaviour of an
aqueduct.

Stress distribution around the spillway openings of an arch dam.
Reinforcement of the guide walls of dam spillways to support the forces trans¬

mitted by the gates.

In each case the Solution for construction resulted from the conclusions drawn
from the experiments.

Reference is also made to the position of the photoelastic method in relation to
the other methods of experimental stress analysis.

Resume

Les auteurs exposent quelques etudes executees au Laboratorio de Engenharia
Civil, Ministerio das Obras Püblicas, Lisbonne, dans lesquelles la methode photo-
elastique a ete utilisee pour la determination des contraintes sur des modeles
d'ouvrages.

Les etudes exposees sont les suivantes:

Influence de la deformabilite des fondations sur le comportement elastique d'un
aqueduc.

Distribution des contraintes autour des ouvertures du deversoir d'un barrage-
voüte.

Ancrage des vannes aux guideaux des deversoirs de barrages.

Dans chaque cas, la Solution constructive a ete choisie d'apres les conclusions des
essais.

Les auteurs etudient egalement la position de la methode photoelastique, par
rapport aux autres methodes experimentales de determination des contraintes.

Zusammenfassung

In der vorliegenden Arbeit werden einige Untersuchungen beschrieben, bei denen
das spannungsoptische Verfahren zur Spannungsermittlung bei Modellen gebraucht
wurde.

Die erwähnten Studien, die im Laboratorio de Engenharia Civil, Ministerio das
Obras Püblicas, Lisboa, durchgeführt wurden, betreffen:

Den Einfluss der Nachgiebigkeit des Baugrundes auf das elastische Verhalten
einer Wasserleitung.

Den Spannungszustand um die Oeffnung des Ueberfalls einer Bogenstaumauer.
Die Verankerung der Schützen an den Leitmauern des Ueberfalls einer

Bogenstaumauer.

Die konstruktive Ausbildung wurde in allen Fällen auf Grund der Versuchsergebnisse

gewählt.
Es wird auch auf den heutigen Stand der spannungsoptischen Verfahren gegenüber

anderen experimentellen Methoden eingegangen.

cr.—24
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Method of elastic compatibility in the Solution of beams of finite
length on elastic foundations

Methode de calcul elastique appliquee au calcul des poutres de

longueur finie reposant sur des bases elastiques

Methode zur Berechnung von endlichen Balken auf elastischer
Unterlage

SANTI P. BANERIEE, assoc.m.am.soc.c.e., a.m.i.struct.e.
Chartered Structural Engineer, London

I. Beams and foundation pressures

1. Introduction

When a "rigid" beam carrying loads rests on elastic material, it develops pressure
underneath, which is uniform throughout when centrally loaded or uniformly varying
in a straight line if eccentrically loaded. If, on the other hand, the beam is "semirigid,"

i.e. one capable of resisting bending with certain amount of deflections, the
pressure is proportional to the deflection oecurring at each point. This is because
the supporting soil below beams carrying engineering structures is considered to
behave elastically, which tends to recover from the relative Settlements when the
superimposed loads on the beams are removed.

If the soil proves to be flowing plastically under loading, as may be the case with
very soft clay, the beam necessitates designing as "rigid" as if floating on liquid of
heavy density. On similar arguments an absolutely "flexible" member may be
sufficient to bear loads Iying on rather rigid supporting medium, such as rock. The
appropriate stiffness required for a beam therefore depends upon the nature of the
soil below. The theory also gives easy means of determining the correct value of
stiffness required for a beam (Section V, examples 2 and 3).

2. Elastic line of a semi-rigid beam and the soil pressure

Fig. l(b) shows the pressure distribution under a rigid beam LR loaded non-
centrally as in (a), the straight-line Variation being represented by cd from the average
line LCR. If, instead, the beam is semi-rigid and rests on elastic material such that
the loaded points are made to remain in one plane (not necessarily horizontal), the
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beam would produce deflections between the points as in (c) denoted by S^ (termed
"local deflections") and the pressure would vary as shown in (d), there being relief
between the loads and increase under.

If it is now considered that according to the loading the loaded points move out
of the plane so as to take different levels, the axis LCR of the beam would deflect to
take the form LCR similar to a bow of some shape either indicating "hog" or "sag"
shown in (e). These deflections, represented by 8B (termed "bow deflections"), are
measured from a line connecting the ends of the beam. The deflections at various
points along the beam would therefore be the algebraic sum of 8,4 and 8B, as in (/). It
will be noticed that the values of 8^ are negligible as compared with 8B.

With these deflections taking place throughout the beam, additional Variation in
earth pressure below comes into effect such that the lowest point in the beam exerts
the highest upward pressure and the highest point has the maximum relief or reduction
in upward pressure. These pressures would have at the same time the effect of reduc-
ing the deflections 8^ + 8B by a certain amount and adjusting themselves accordingly.
The variations from the straight line ab of pressure distribution, which may take the
two possible forms corresponding to the two deflection forms in (/), are indicated in (g).

Finally, these additional pressure variations ghk due to beam deflections, when
superimposed on the average straight line ab of pressure distribution in (b), would give
the two possible pressure diagrams shown in (h)—one giving maximum pressure at
the ends and the other in the middle. It is therefore considered sufficient to check up
pressures at the ends and at the section of maximum deflection in the middle of a
beam. It should be realised, however, that the deflections referred to are only relative
and are additional to the general settlement of the beam as a whole.

II. Forces acting on a beam and the principle of analysis
3. Forces acting on a beam in equilibrium

The forces are considered to be divided into two Systems:

(a) System 1

From the superimposed loads on a beam and its bearing area the average earth
pressure w0 per unit area is obtained. The pressure w per unit run of the beam is

uniform for a beam of constant width or varying accordingly. Only the prismatic
beams would be dealt with at present. Cases with non-prismatic sections will be
considered in Section V, para. 13.

Consider the forces acting on a beam, as if rigid, comprising the superimposed
loading above and w per unit run of earth pressure below as represented by LRba
in fig. l(b). If the beam is centrally loaded, this would be in equilibrium or eise these
forces would have an unbalanced resulting moment. This has to be balanced by an
assumed straight-line Variation of earth pressure from positive (acting upward) at one
end to negative (acting downward) at the other, similar to that represented by line
cd in fig. l(b). These pressures are termed "balancing pressures" (B.P.).

The system of forces comprising these, such as would occur on a loaded beam if
it were perfectly rigid, is termed Fr. The moments produced by Fr throughout rhe
beam are Mr and the deflections measured from a line connecting the ends 8r, which
are approximately equal to S^-|-8B referred to in fig. 1(/). The maximum deflection
oecurring in the middle of the beam in particular is termed Yr.

(b) System 2

Due to the deflections throughout a semi-rigid beam, deviations from the straight-
line distribution of pressure, referred to in System 1, corne to operate, having increased
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values at the lower points and relieved at the higher, such that the straight line repre-
senting w indicates the average of the deviations as in fig. l(h), wherein ghk was the
deviated form from line ab.

The increase and the relief of pressure involved in the deviations comprise the
"additional Variation of pressure" and such a Variation, similar to that in fig. l(g), is
shown in fig. 2(a) in typical form, in which the increase is shown at the ends and relief
in the middle, consequent upon the middle of the beam deflecting upwards under
force system Fr. The vice-versa would be the possible alternative.

These forces in the additional pressure Variation, which tend to restore the beam
from the elastic deformations or deflections due to System Fr, are called "elastic
restoring forces" and are comprised in a system termed Fe. The moments produced
by Fe are Me and the related deflections 8e—in particular Ye, the maximum in the
middle.

It would be realised from fig. 1 that it is the bow deflections 8B which are the essential

factors in the development of the force system Fe and the consequent deflections
8e, the influence of 8^ being negligible.

4. Principles of analysis

A centrally loaded beam, if rigid, would exert uniform pressure LRba shown in
fig. 2(b), where La equals w, and pressure LRkhg when semi-rigid. The eccentricity

of superimposed loading would only

Relief ofpressure fy

(a)

(b)

V

-Additional pressures-
>q

fur

fw

L C R
i

©J-LiJ___
a /f__ ©©"©L^ 6

Fig. 2

introduce the balancing pressuies in
addition. Since the line ab in fig. 2(a)
represents the average of the forces Fe,
the areas above and below the line
should therefore be equal. To sim-
plify calculations for moments and
deflections, the Variation in Fe is
replaced by the straight dotted lines
shown and drawn symmetrically a-
bout the centre ofthe beam, in lieu of
line ghk. The maximum ordinates,
both above and below the line ab, in
the Variation are represented by fw

per unit run or fw0 per unit area, / being a factor or coefficient. The maximum and
minimum pressures developed are therefore w0+fw0 and w0—fw0 respectively per unit
area.

It would be observed that the force System Fe gives a deflection 8e always opposite
to 8r. The total deflections throughout a beam would therefore be the sum of 8r
and 8C algebraically, and the final maximum deflection in the middle of the beam

Y=ZYr+Ye (4:1)
considering the maximum deflections Yr and Ye to occur approximately at the same
section. (It may be worth noting that the shift of the position of the maximum
deflection in a prismatic beam, simply supported at the ends with a bending moment
diagram of one sign, can never exceed 1/13th of the length from the centre.) The
deflections are represented in fig. 3 for the beam under the system of forces in fig. 2.
The original deflection is Yr from the loading and the pressure LRba of system Fr,
which reduces to Y due to the forces Fe having pressure ordinates fw at the centre
and the ends (fig. 2(a)).
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For the purposes of analysis, it is necessary to ascertain the value of fw so as to
obtain the pressures and the bending moments throughout a beam. To obtain the
value of/, the final maximum deflection Y is to be considered first, which is dependent
upon

(a) the elastic properties of the beam and
(b) the elastic properties of the soil,

so that the higher the "flexural rigidity" (EI) or the "modulus of foundation" (k0),
the lesser is the deflection. The value of Y should be such as to be compatible with
the conditions for both (a) and (b).

ßenersl setllement

Original lerel \
-^h' Y*2Yr + YcPV,

Fig. 3

The value of/, related to Y, having been ascertained, the bending moment diagram
for system Fe can be obtained with its maximum Ordinate Me at the centre, where
shear is nil. The moments throughout the beam would then equal LMr-\-Me.

For the purposes of maximum and minimum pressures underneath, the positions
of/w under system Fe would be considered at the ends and in the middle of the beam
where maximum deflection occurs.

III. Pressures and related deflections
5. Signs

The signs in the Operations will be considered as follows:
(i) " Moments" are positive when tension is created on the underside of beams.
(ii)' "Deflections" are positive given by positive moments.
(iii) "/-system" is positive in the positive force System Fe causing positive

moments Me, and forces act upwards at the ends and downwards in the
middle of a beam. r -,-

6. Forms of pressure Variation and the
related deflections Ye

The value of deflection Ye for a
beam is connected to the force system
Fe, which in turn depends on the value
of/ Therefore the equations for
deflections can be expressed in terms of/

(A) Form of pressure distribution
in system Fe with equal maximum

Ordinate above and below
average

A positive force system Fe with
maximum ordinates/w above and below
the average line is shown in fig. 4(a),
with consequent positive deflection Ye

at (b). The©system at (a) is therefore

la)%" 2Fw

ft/V,

jj>^ -^rfTTr^
v^Jj /«-

(C) Me

fwL
Ye =0.003$5 £1

»'*

Fig. 4
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positive. The arrangement could be of opposite kind with negative values. With
these forces acting on a beam, the moments Me at any section distant x from an end
is given by

Me fw,
x2 2©
~2~3T

and at centre, where x=L/2, the maximum value

Me=0-0416wZ,2/ (6:1)
The deflection at any section distant x from an end

8,=
wf
Ti 24" '3ÖT

Ux IL*'
""96" + 192Ö

where EI= flexural rigidity

(6:2)

and the maximum deflection at centre, where x=L/2
wL4

re=0-00365-=rr/EI J

shown at (b). The maximum and minimum pressures are w+fw and w—fw per unit
run of beam respectively.

It would be observed from fig. 4 that the maximum ordinate fw of pressure
reduction can never exceed w in value and thus also the maximum ordinate of pressure
increase; in other words/can never exceed 1.

(B) Other forms of pressure distribution in system Fe

p----]-----^-f=^^B
/n/V

pfw

JU

w*

trr^ i» hk^m
[m+p=2]

Fig. 5

UP-^' pfir

(ö)

There may be other cases of distribution such that the maximum ordinates of
reduction and increase have unequal values. This would also be obvious from
figs. 5(a) and (b) with positive and negative/-Systems respectively, where some parts
of the beams do not bear on the soil due to upward deflections.

For the purposes of analysis let mfw and pfw be the ordinates of the maximum
reduction and increase respectively below and above the average, so that their sum

mfw+pfw=2fw (6:3a)
as before, or

m+p 2 (6:36)
With such forms of pressure distribution as in fig. 5, mfw would be controlled by

the value of w, so that mfw=w or mf=l. Then from eqn. (6:3a),
l+/>/=2/,or/>/=(2/-l),or

1

p=2-
The eqn. shows that

/ • • • '

when/=l,/?=l
f<l,p<\ and

/>!,/»!

(6:4)
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Since the areas of pressures under the force system Fe above and below the average
lines should be equal, it is clear from the diagrams that the ordinates pfw have to be
greater than mfw, i.e. from eqn. (6:3a),

pfw>'2-p)fw, ox p>l (6:5)
This shows therefore from eqn. (6:4) that the cases would involve values of/>l.
The maximum and minimum pressures developed are 2fw and zero respectively

per unit run, as would be observed from fig. 5 also.

(C) Practical considerations

To serve all practical purposes, it is assumed that: -

(i) when/<l, the Variation should be considered with equal maximum ordinates
fw above and below the average, and

(ii) when/>l, the maximum reduction mfw has the limiting value w.

Some possible forms of pressure distribution and the connected diagrams for the
force Systems Fe are shown in Table I, in which the deflections Ye are shown represented
by the form

wL4
Yc=N. — .f (6:6)

0-005

Numbers in ci'rctes
indicate Ihe cases
-oipressure distribution

of Table I

om
(D®

_3:_._\^._

The "deflection coefficients" N against the values of/for all the cases can also be taken
from fig. 6. It is to be noted that the cases 2 and
6 in Table I, having unequal ordinates mfw and
pfw, would be covered by the cases 1 and 5,
since mfw are not the limiting values w.

The foregoing assumptions give safe results,
as the values of N for Ye are on the higher side
(see also para. 8).

When Yr is negative, Ye is positive with
positive /-system. Cases 1 to 4 are some of the
possible forms shown in Table I. Case 2

represents an ideal fourth-degree curve in view
of the deflection being the fourth integral of
loading and is absolutely theoretical. Under
normal conditions case 1 for /<1, and case 3

for/>l would be apparent.
When Yr is positive, Yc is negative with

negative/-system, such that some ofthe possible
forms may be as shown by the cases 5 to 8.
Case 5 is the case 1 inverted and case 6 represents

the theoretical fourth-degree curve. Under
normal conditions case 5 for/<l, and case 7 for
f>l would be apparent, but a case with/>l
will not occur in practice when Yr is positive
(para. 7(2)0)).

0003

0002

0001

re -ai-

>•
'

©

®x

Fig. 6

7. Factors affect ing the final deflection Y in a beam

These will be considered in the following treatment of the deflections from the
elastic properties of the beam and the bearing soil (para. 4):

(1) Deflections from elastic properties of beam
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wL4
From eqns. (6:6) and (4:1), Ye=N. ~=yf and Y=ZYr+ Ye, remembenng that

hl
Yr and Ye are always of opposite signs.

r
Fw~

*K

32 Fw

(3) (b)

Fig. 7

(i) When Yr is negative, Te is positive with positive/-system (fig. 7(a)):
wL4

Y=-Yr+N.—{+f)--
wL4

(ii) When yr is positive, 7e is negative with negative/-system (fig. 7(6)):
wl,4¦».#-/> ¦ + Yr+N.^if

(B,)

(B2)

These equations stand for all values of/ whether greater, equal or less than 1.

(2) Deflections from elastic properties of soil
Since the soil reaction per unit area of foundation is assumed proportional to the

pressure per unit area psettlement (para. 1), the ratio is a constant, termed k0, which
settlement S1

is known as the "modulus of foundation." The above relation gives

P=k0S (7:1)

Also _P_
(7:2)

The modulus may vary under a beam in various ways depending upon the nature
of the soil and the depths to which they occur. Let the minimum value under a beam
be k0 and the maximum nk0 per unit area, so that «>1. In the analysis, the variations,
when taken into aecount, will be considered symmetrical about the centre line of the
beam such that k0 and nk0 occur under the ends and the centre or vice versa, the
Variation being linear. Such variations are considered to cover the limits of all
possible cases.*

In the derivation of the deflection equations, the distribution of pressure under
force system Fe will be considered under two groups as follows:

(a) Force system Fe when/<l
This system includes cases 1 and 5 of Table I, and under this group the pressure

Variation has equal maximum ordinates fw above and below the average (para. 6(C)).

* Advantage can also be taken of such variations in the moduli in an attempt to take aecount of
the usual pressure variations experienced in cohesive and non-cohesive soils under engineering
structures.
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(i) When Yr is negative, /-system is positive (fig. 8):
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Fig. 8

In the final position of the beam the deflection (ignoring the little displacement of
the position of maximum deflection from centre),

Y= settlement at centre minus settlement at ends

Case 1: if Ar0 is the modulus at centre and nkQ at ends, then from eqn. (7:2):

Y=
W0—fWo Wo+fWr, W0

h nk0 h
l

1+-
Ko

Case 2: if t?ä:0 is the modulus at centre and k0 at ends, then:

Y=
w0-fw0 w0+fw0 w0 .©

nnk0 k0 k0

(ii) When Yr is positive, /-system is negative (fig. 9):

3
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V
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In the final position the maximum deflection,
Y= settlement at centre minus settlement at ends

Case 3: if k0 is the modulus at centre and nk0 at ends, then:

Y= Wq+(-/>'o h'q-(-/>o^ _^0
kr, nkn kn

r
1+-

n f+
Case 4: if nk0 is the modulus at centre and k0 at ends, then:

w0+(-f)w0 w0—(—f)w0 w0Y=-
nkn h

1

1+-
n f-

1-i
n

1

1 —

(S3)

(S4)

Case 5: when k0 is uniform throughout, n=l and all the above equations become:

(S5)
2it'o

Y=-lc~fKo

<a)

z

5siäs*

Fig. 10

(b) Force system Fe when/>l
The cases 3, 4, 7 and 8 in Table I are covered by this group, where the maximum

ordinates of pressure reduction and increase are w and (2/— l)ie respectively (para. 6).
It is to be realized that since some

parts of the beams do not bear on the
soil due to the upward deflections when

/>1, the values of Y given by the soil
equations would not be the true values
of the maximum deflections oecurring
in the beams, but would only represent
the values measured up to the ground
lines as shown in fig. 10 by Ys. The
relationship of this Y, with true Y may

be approximately obtained by considering the deflection curves of the beams of at least
the fourth degree and are as follows when k0 is uniform:

(i) when Yr is negative,
for/=2, 7=0-938 7

/=3, 7,=0-803 7
(ii) when Yr is positive,

for/=2, 7=00625 7
/=3, 7^=00124 7

Representing the number coefficients above by C, therefore, a soil equation would
take the form:

7i=deflection value from derived equation C7

Y=-±, (deflection value from derived equation) (7:3)

The value of C on soil with variable foundation modulus may be very different and
difficult to judge. However, the value in a case can be ignored if the difference
obtained between Y and Ys is limited to, say, 10-12%, and for this purpose it is
essential that for beams

(i) with negative 7r,/must not exceed 2-5, and
(ii) with positive 7,.,/must not exceed 1-0.

Then the appropriate soil equations can be used without any reference to C.

It would normally be seen in practical problems that the above conditions are ful-
filled, since the maximum pressures below would control the designs calling for the
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appropriate stiffnesses for the beams. If in a certain problem either of the above
values of/is exceeded within the limiting pressure, the beam has to be made stiffer to
bring in more of the unsupported portions to bear on soil (fig. 10) and thus reduce
the value of/ Aiternatively, for beams with positive Yr, an effective shorter bearing
length may be considered (i.e. the portion of beam actually bearing on soil in fig. I0(b))
in a revised design for both beam and soil equations.

The deflection equations when/>l are derived as follows, bearing in mind that
mf= 1 and pf=2f— 1:

(i) When Yr is negative, /-system is positive:
Case I: k0 at centre and nk0 at ends:

7= w0-mfw0 w0+pfwQ

ko nk0

Wq

'k0 n
m + -

Wq

'koi

f+
1 +

k0

2/-1

Case 2: nk0 at centre and k0 at ends:

w0—mfw0 w0+pfwo_ _Wo
k0 ~ *oL'

7=-
nkn

m

Wq

'ko 2/-

,_WoJ k0

¦l +
l-

n

1 —n

+ k0

l-1-
n

l —

Wo

'k0
1-1

n

2iv0

nk0J

_2_^o.

(ii) When 7©s positive,/-system is negative:
A case with/>l will not occur in practice as stated before.

Case 5: k0 is uniform, i.e. «= 1:

The above equations also give 7= —— / as eqn. (S5).

(S,')

(S2')

8. Values offinal deflection 7 and coefficientf
As stated in para. 4, the final deflection 7should satisfy conditions for both beam

and soil properties. Therefore for a particular case, a beam equation and an appropriate

soil equation for deflections have to be solved simultaneously to obtain the
values of 7 and/with proper signs.

In connection with the deflection Ye in a particular beam equation, it is evident
wL4

that when/<l, 7c=0-0037 -=7/. This value of 7V=0-0037 may therefore be used in
hl

all practical cases as a trial value for solving the equations. If from the Solution the
absolute value obtained for/is <1, the result would be satisfactory; and if >1, a
revision in the coefficient would be necessary, which can then be judged easily from
fig. 6, bearing in mind the probable nature of distribution of Fe.

It may be worth while to note that a higher value ofN than anticipated for a beam,
if adopted, should normally give safer results, as the Solution would yield lesser values

of/and 7. In doubtful cases, however, a problem may be solved with two beam
equations representing possible upper and lower limits in the values of Ye, and the
worse values of obtained moment and shear taken care of at each section. Similarly
in a case of doubtful Variation in the foundation modulus along a beam, the Solution
may also be carried out with two soil equations representing the upper and the lower
limits.
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IV. Final moments and pressures

9. Moments Me
These are obtained from force system Fe when the value of/ is determined from

the Solution of the deflection equations. Referring to the Table I it would be clear
that even when the value of/is known, the moments Me, with central ordinate Me,
would depend upon the nature of distribution of force system Fe in a particular case.

The A/>curve was considered in fig. 4 with value of/<1 and was of the third
degree. With the increase in the value of/ the shape of the curve tends to change
only slightly. For the convenience of obtaining values at intermediate points along
the length of a beam, it is sufficient to consider an Me-diagram as triangulär with the

y^9 n\
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ff ¦* ¦*
§ f^r\ ^ <s r^ii.
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001 -II ¦
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Fig. 12

ordinate Me at centre. Such a diagram is shown in fig. 11 replacing the third-degree
curve when/<l. The differences in the ordinates are only little.

The values of Me under various cases are given in Table I in the form Me=Q ¦ wL2,
where Q is a function of/ The values of Q under different cases can also be taken
from fig. 12 against the values of/ As stated in para. 6(C), cases 1, 3 and 5 of Table I
would normally cover all practical cases.

10. Final moments M
At any section of a beam, the final moment M=UMr+Me (para. 4), MT and Me

being opposite in signs. Note that Me would carry the sign of/
11. Final pressures under a beam and Settlements

From the value of/obtained, the pressures would be as follows (para. 6):
(i) when/<l, pmax=w0+fw0 per unit area

Pmin=Wo—fWo
(ii) when/>l,/w=2/vt>0 » » »

These would be clear from the pressure distributions shown in Table I. The balancing
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pressures B.P. due to the eccentricity of loading on a beam from force system Fr are
also to be taken into aecount.

The Settlements at various points in a beam can then be obtained from the related
pressures, employing eqn. (7:2).

V. Examples
12(a). Beam on soil with constant foundation modulus

Example 1*. A weightless beam 10 inches by 8 inches with the loading shown
in fig. 13(a) is resting on an elastic foundation having a modulus of 200 lb./in.3 The
elastic modulus of the beam material is 1-5 IO6 lb./in.2 Obtain the moments and
pressures throughout the beam.

Thus, Z,= 120 in., 7=426-7 in.4, £=1-5 IO6 lb./in.2 and k0=200 lb./in.3
Total load=/J+48a=5,000+4,800=9,800 lb.
Bearing area of foundation =120 10=1,200 in.2

9,800
•'• VVo=nöÖ=8'16 lb-/in© and w=8-16 10=81-6 lb./in. run.

Unbalanced moment and balancing pressures B.P.:
Considering w acting below and taking moments about point 6, unbalanced mo-

ment=5,000 90+4,800 44-9,800 60=73,200 in.-lb.
Section modulus of foundation area

10 1202
Z= 2 =24,000 in.3

o
73,200

.". End pressures in B.P.=± non= ±3-05 lb./in.2

±30-5 lb./in. run
Moments Mr :

With the superimposed load above and w and B.P. below, values of moments
obtained are shown in Fig. 13(6).

Deflection Yr :

From the Mr diagram, the value of maximum deflection 7r is found conveniently
by the "Conjugate Beam Method" at a section 54 in. from the left end as 00810 in.,
which is positive in value. (Approximation of the Mr diagram by straight lines,
shown dotted, is permissible for this purpose.)
Beam equation:

Since Yr is positive, eqn. (B2) of para. 7 applies,
wL4 81-6. 1204

•• y= + ^+^/=+0-0810+0-0037r?- 1Q6 426,7/

+0-0810+0-0980/ (1)

Soil equation:
Since k0 is constant and Y, is positive, eqn. (S5) of para. 7 applies,

-¦¦ ^-^=-^-6/=-0.08,6/ «)

Solution:
Solving eqns. (1) and (2) above, /= -0-45 and 7=+0-0368 in. The value of/

* The example is taken from Beams on Elastic Foundation, by M. Hetenyi, University of Michigan
Press, Ann Arbor, 1946, p. 47.
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obtained is <1, which shows that the value of TV adopted in beam equation is suitable
(para. 8). Note that the value is in the negative system.

Moment Me :

Since/<1 and 7, is +ve, case 5 of Table I applies. From fig. 12, ß=00187
against/=0-45.

.-. Me=-QwL2= -0-0187 81-6 1202=-22,000 in.-lb.
This is the central ordinate of the triangulär Me diagram.
Final moments M (in.-lb.):

Section Mr Me M Hetenyi's values of M
2
3

Centre
4
5

+48,040
+29,700
+30,000
+27,870
+ 10,880

-11,000
-19,100
-22,000
-16,150
- 7,340

+ 37,040
+ 10,600
+ 8,000
+ 11,720
+ 3,540

+35,460 (calculated)

+ 9,623

These are shown in fig. 13(c), with the Mr and Me diagrams superimposed.

Final pressures/? (lb./in.2): /w0=0-45 8-16 3-67

Section w0 /Wo B.P. P Hetenyi's values ofp
1

Section of
max. defln.

6

+ 816

+ 8-16
+ 8-16

-3-67 +305

+ 3-67 +0-31
-3-67 -3-05

+ 7-54

+ 1214
+ 1-44

+ 607

+ 10-39 (centre)
+ 1-26

These are sh<

Settlements

wn in fig. I3(d).

inches): From eqn. (7:2), S=pjk0

Section 5 Hetenyi's values of 5

1

Near centre
6

7-54/200=0 038
1214/200=0061
1-44/200=00072

003036
005193
000628

Settlements at intermediate points may be found by obtaining the relative deflections.
Fig. 14. shows the beam in its final position.

ÄWAWW
CL.

Final position oF beam

Fig. 14

12(6). Value of Ifor beam to control deflection

Example 2. What should be the value of / for the beam in example 1 if the
maximum deflection 7 is not to exceed 0-02 in.

Using the soil eqn., 7= -0-0816/
.'. +0-02=-0-0816/ .'. /=-0-245

cr.—25
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34-6 41-8
Withdrawing the value of /, the beam eqn. is expressed as Y=-\——-\——/ and

substituting the appropriate values
1 1 24-4

+0-02=j[34-6+41-8(-0-245)]=j(34-6-10-2)= —
24-4

•• /=ö^2=1'210in-4
3 flTl 3 /12 1 210

With 10 in. width, depth d=J-y=J—'-^ =11-32 in.

12(c). Value of Ifor beam to control pressure
Example 3. What may be the value of / for the beam of example 1 if the maximum

pressure underneath is not to exceed 14 lb./in.2?
We have seen that in the middle of the beam

/W=h>0+M,+B.P.=+8-16+8-16/+0-31 =+8-47+8-16/
5-53

.-. 14=+8-47+8-16/ .'. /=—^=0-675 (in negative system).

From the soil equation, therefore,
7= -0-0816/= -0-0816(-0-675)= +0055 in.

Withdrawing the value of / from the beam eqn.,

7=J[34-6+41-8/]

and substituting the appropriate values
1 6-4

+0-055=j[34-6+41-8(-0-675)] —

6-4
•"• 7=ööT5=116in-4

With 10 in. width, depth d=¦-/—^-—=5-18 in.

12(0*). Beam on soil with variable foundation modulus

Example 4. Solve the problem in example 1 assuming that the modulus varies
from 200 lb./in.3 at centre to 350 lb./in.3 at ends. Then, the beam equation, as before

7= +0-0810+00980/ (1)
Soil eqn.:

350
"=2Ö0=1-5

7r is +ve, and in anticipation of/<l, eqn. (S3) applies.

Y--—\i 1 1
,-

8-16

'¦ 200 [ +l-5j-^+200 -tV -0-0683/+0-0135 (2)

Solving (1) and (2),/= -0-405 and 7= +0-0413 in. From fig. 12, case 5, ß=0-0168.
.-. M,= -0-0168. 81-6. 1202=-19,700 in.-lb.

The diagram is represented by Mel in fig. 13.

M„,a^at section 2=+48,040 '-r—=+38,190 in.-lb.

pmax at middle =+8-16+(0-405 8-16)+0-31 11-77 lb./in.2
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13. Beam with non-prismatic section having constant width
The procedure is the same as shown before except for a little adjustment involved

in the value of Ye. For this purpose an equivalent "constant moment of inertia" is
obtained for the same amount of maximum deflection within the beam. The example,
which follows, will clarify the problem.

Example 5*. A continuous footing 30 ft. wide, having a cross-section as shown
in fig. 15, rests-on soil with a modulus of 300 kips/ft.3 There is a line load of 150 kips/ft.
run at the centre and the elastic modulus of the material may be taken as 432,000
kips/ft.2 The weight of the beam is neglected.

300,000
Thus, k0=—t-^—=173 lb./in.3 (uniform),

432,000,000' =3,000,000 lb./in.2,
122

P=150 kips/ft. 150,000 lb./ft.
Considering 1 ft. length of footing as width of beam, bearing area=360 in. x 12 in.

Also
150,000 416

w= =416 lb./in. run, and w0=—-=34-8 lb./in.2

The system r> is shown in (a). The loading being symmetrical about the centre
there is no B.P.

With the load P above and w acting below, the moments developed in the beam are
shown in (c). The variations in the moment of inertia are shown in (b).

Yr:
To obtain the maximum deflection 7r, a diagram for Mr/I is obtained first as in

(d). From this the maximum deflection at centre, Yr= +0-196 in.
7e:

Equivalent constant moment of inertia Ic for the beam to give the same amount
of maximum deflection in the middle under force system Fe is to be considered first.
For this purpose the beam is to be considered loaded at the centre with a concentrated
unit load when supported at the ends. This is reasonable, since the Me diagram is
nearly triangulär, which is corresponding to the above condition of loading.

Let the moment diagram from the unit load be called My and the maximum
deflection 7:. Then the central ordinate of My diagram

W. L 1.360
My +—j- +—j—=+90 in.-lb (13:1)

shown in (e). The maximum deflection with Ic,
1 WLi 1 -36°3 °'324-

7l= +48 • 1TC +48 •

3,000,000 Ic= +~T mAb' ' (B:2)
With the present variable /, the maximum deflection Yy is found from Myjl diagram
as in (/), and the value at centre

+000,000,365 in (13:3)
From eqns. (13:2) and (13:3),

/c=äööÄ365 89'000in-4 (13:4)

* The example is taken from "Successive Approximation for Beams on Elastic Foundations,"
by E. P. Popov, Proc.A.S.C.E., May, 1950, vol. 76, Separate No. 18, p. 5.
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The procedure hereafter is as for a prismatic beam with constant moment of inertia Ic.

Beam equation:
Since Yr is + ve, eqn. (B2) applies.

416 3604
•¦ Y= +0-196+0-0037

3)000000 89000/=+0-196+0-097/ (1)

Soil equation:
k0 being uniform eqn. (S5) applies.

2 34-8
7=-- 173 /= -0-402/ (2)

Solution:
From eqns. (1) and (2) above, /= -0-392 and 7=+0-158 in.

Me-
Since case 5 of Table I applies, from fig. 12, 0=00163.

.'. Me= -0-0163 416 3602= -880,000 in.-lb.

M (in.-lb.):
These are shown in (g).

/©lb./in.2):
/vf0=0-392. 34-80=13-65

Section Wo /wo P Popov's values of p

1

4 •

+ 34-80
+34-80

-13-65
+ 13-65

+2115
+48-45

+ 18-85
+4500

These are shown in (h).

VI. Remarks

14. Remarks

Comparing the present method with that developed mathematically from differential

equations for elastic lines, the Solution is reliable for a beam having a value of
\l>2tr, when 7r is negative, and
A/>7r, when 7r is positive,

4 [bk~o~
where A= / —=-r and 6=width of beam.

V 4EI
With higher value of A/ the pressures are in error, as the deflection curve of the

beam develops reverse curvatures at distant points from the loads. The maximum
possible bending moment will not, however, exceed the value obtained by this method,
and in practical designs with reinforced concrete foundation beams, recourse may have
to be made to nominal reinforcements in the compression faces.

Summary

The forces acting on a beam are considered to be divided into two Systems:

System 1, comprising the superimposed loads on the beam and the pressure
underneath such as would occur if the beam were perfectly rigid, due consideration

being given to the eccentricity of loading, if any, involving straight-line
Variation of pressure, and
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System 2, comprising only the additional Variation of pressure under the
beam due to deflections throughout from the average straight-line Variation
obtained in System 1.

The additional pressure Variation of System 2 related to the deflections is obtained
from consideration of

(a) the elastic properties of the beam, and
(b) the elastic properties of the soil.

This being known, the corresponding moment diagram is readily approximated.
This diagram, when superimposed on that due to System 1, gives the final moment
values throughout the beam.

The advantage of the method lies in obtaining readily

(1) the final bending moment diagram,
(2) the maximum deflection oecurring in a beam, and
(3) the maximum and minimum pressures underneath.

Other advantages available from the theory include the determination of the
appropriate moment of inertia of a beam to control

(a) maximum deflection, and
(b) maximum pressure underneath.

The method can be applied to beams, prismatic or non-prismatic, with any kind
of loading and solutions give with comparative ease results which are reasonably close
to those obtained by accurate analysis. The paper includes illustrative examples
already solved by other methods.

Resume

On considere que les forces agissant sur une poutre se divisent en deux systemes:

ler Systeme: comprenant les charges appliquees ä la poutre et la pression
s'exercant en-dessous, telles qu'elles se presenteraient si la poutre etait parfaitement

rigide, compte tenu eventuellement de l'excentricite de la charge, impliquant
Variation de pression en ligne droite.

2eme Systeme: comprenant uniquement la Variation additionnelle de
pression sous la poutre, due aux deviations d'un bout ä l'autre, ä partir de la
Variation moyenne en ligne droite obtenue dans le ler Systeme.

La Variation additionnelle de pression du deuxieme Systeme, relative au deviations,
est obtenue par la prise en consideration:

(a) des proprietes elastiques de la poutre,
(b) des proprietes elastiques du sol.

Celles-ci etant connues, on obtient sans difficulte une approximation de la courbe
du moment correspondant. Cette courbe, lorsqu'on la superpose ä celle qui resulte
du premier Systeme, donne les valeurs definitives du moment d'un bout ä l'autre de la
poutre.

L'avantage de la methode reside dans le fait qu'on obtient instantanement:

(1) la courbe definitive du moment de flexion,
(2) la deviation maximum se produisant dans une poutre,
(3) les pressions maximum et minimum en-dessous.
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Parmi les autres avantages offerts par cette theorie, il fait mentionner la determination

du moment d'inertie d'une poutre permettant d'equilibrer:
(a) la deviation maximum,
(b) la pression maximum au-dessous.

La methode peut etre appliquee aux poutres prismatiques ou autres, avec
n'importe quelle sorte de charge et les solutions donnent, avec une facilite relative, des

resultats qui sont suffisamment proches de ceux que l'on obtient par une analyse
rigoureuse. L'expose contient des exemples explicatifs dejä resolus par d'autres
methodes.

Zusammenfassung

Die auf einen Balken wirkenden Kräfte werden in zwei Systeme eingeteilt:

System 1 umfasst die auf ihn wirkenden Nutzlasten sowie die auf der
Unterlage entstehenden Pressungen für den Fall, dass der Balken vollkommen
steif ist. Eine etwaige Exzentrizität der Belastung wird dabei im Sinne eines

geradlinigen Verlaufs der Pressungen berücksichtigt.
System 2 umfasst lediglich die zusätzlichen Aenderungen dieser Pressungen

entsprechend den Durchbiegungen, die von der für das System 1 gewählten
mittleren geradlinigen Verteilung abweichen.

Die zusätzliche Aenderung der Pressungen im System 2 ergibt sich aus der Betrachtung

(a) der elastischen Eigenschaften des Balkens,
(b) der elastischen Eigenschaften des Untergrundes.

Diese Eigenschaften als bekannt vorausgesetzt, lässt sich die entsprechende
Momentenlinie schnell und in guter Annäherung ermitteln. Sie ergibt, nach Ueber-
lagerung derjenigen des Systems 1 den endgültigen Momentenverlauf im Balken.

Der Vorteil der Methode besteht darin, dass

(1) der endgültige Momentenverlauf im Balken,
(2) die grösste Durchbiegung des Balkens,
(3) die grösste und kleinste Pressung der Unterlage schnell und leicht ermittelt

werden kann.

Als weiterer Vorteil ergibt sich aus der Theorie die Möglichkeit, das Trägheitsmoment

eines Balkens zweckmässig so festzulegen, dass

(a) die grösste Durchbiegung,
(b) die grösste Pressung im Untergrund innerhalb bestimmter Grenzen bleiben.

Das Verfahren kann auf Balken prismatischen oder nicht prismatischen
Querschnitts und für jede Art von Belastungen angewandt werden. Es liefert auf
verhältnismässig einfache Weise Ergebnisse, welche mit den genauen Lösungen gut
übereinstimmen. Der Aufsatz enthält Beispiele, die zum Vergleich auch mit Hilfe
anderer Methoden gelöst wurden.
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L'influence de l'elasticite du sol sur les contraintes des barrages-poids
(Theorie et Solution numerique)

The influence of the elasticity of the soil on the conditions of stress in
gravity dams

(Theory and numerical method)

Einfluss der Baugrundnachgiebigkeit auf den Spannungszustand von
Gewichtsstaumauern

(Theorie und numerische Methode)

Prof. Dr. P. LARDY
Secretaire gene>al de l'A.I.P.C, Ecole Polytechnique Federale, Zürich

Introduction
Generalite's

La prise en compte de l'influence de l'elasticite du sol sur les contraintes des

barrages signifie un progres dans leur investigation par le calcul. Les etudes effectuees
aussi bien sur les barrages arques que sur les barrages-poids demontrent suffisamment
l'importance de la coaction du barrage et du sol de fondation.

II s'agit lä d'un probleme eminemment difficile de la theorie mathematique de
l'elasticite.

Ce travail donne avant tout un apercu tres succinct sur une methode appropriee
de calcul numerique. L'exemple calcule montre avec suffisamment de clarte
l'influence remarquable de l'elasticite du sol sur les contraintes, qui se trouvent grande-
ment alterees ä la base et le long des parements amont et aval des barrages-poids.

Position du probleme

Nous nous bornons au cas le plus simple et ne considerons, comme forces
exterieures, que l'action du poids-propre et de la pression laterale de l'eau (bassin
rempli) sur le barrage-poids de section triangulaire sur sol elastique, en negligeant les
effets de la sous-pression et de la temperature.

Le mur est defini par:
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flfff, m.

fTf Ef ©

Fig. 1.

Le parement amont est suppose vertical

A=hauteur du barrage
A=tg w (cfj=angle d'ouverture du mur)

b=X A=largeur du barrage
ym=poids specifique du mur
£'m=module d'elasticite du mur
vm=coefficient de contraction du mur

Le sol de fondation est assimile ä un demi-plan, defini par les constantes:

y/=poids specifique du sol
£}-=module d'elasticite du sol
iy=coefficient de contraction du sol

Les contraintes sont designees par:
o-=contraintes normales
r=contraintes de cisaillement

Les deplacements sont:

w=deplacements horizontaux
w=deplacements verticaux.

Le sol de fondation est suppose elastique, homogene et isotrope. Le mur sera
calcule en etat de contraintes planes (tranche isolee), le sol par contre en etat de
deformations planes (etendue indefinie du sol).

Le probleme est defini par les trois groupes de conditions suivants:

(1) Conditions d'equilibre et de compatibilite, donnees par la theorie de l'elas¬
ticite, dans le triangle (mur) d'une part et dans le demi-plan (sol) d'autre
part.

(2) Conditions aux limites pour les efforts normaux o- et les efforts tranchants t
sur le contour ABCDE.

(3) Conditions de continuite des contraintes et des deplacements sur Ie bord
BD, commun au mur et au sol.
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Difficultes principales
La difficulte principale du probleme reside dans l'etablissement de la connexion

entre le mur et le sol, c'est-ä-dire dans l'expression de la continuite des contraintes et
des deplacements le long du bord commun BD. Cette difficulte se trouve accrue du
fait que les deux elements en coaction, le mur et le sol, ont des caracteristiques
differentes:

Le mur: forme triangulaire, avec Em et vm,
Le sol: demi-plan, avec Ej et Vf.

Chacun des deux domaines est caracterise par une fonction d'Airy (fonction
"'potentielle" des contraintes), dont l'expression mathematique differe essentiellement
d'un domaine ä l'autre, d'oü la difficulte de la connexion sur le bord commun BD.

Une autre difficulte apparait quand on exprime les conditions aux limites sur les

parements, oü les efforts tranchants t, ainsi que les efforts normaux a sur le parement
aval s'annullent. On est conduit ä un probleme de "valeurs propres" defini par des

arguments complexes et donnant lieu ä des familles de "fonctions propres" dont
Fetablissement est singulierement laborieux.

Ce sont lä les deux difficultes essentielles et caracteristiques du probleme.

Solutions analytiques
Tölke* a donne une Solution analytique rigoureuse du probleme. Cependant,

cette Solution est presentee de maniere ä decourager le lecteur, tant les grandes lignes
de sa demonstration sont enfouies dans un fatras analytique inutile. Deux autres
critiques seront formulees ulterieurement.

Tölke decompose le probleme en deux parties et procede en principe de facon
analogue ä celle utilisee dans le calcul des systemes hyperstatiques en statique
appliquee. '

Une coupure effectuee ä la base BD permet de calculer le mur comme Systeme
"isostatique," ce qui conduit ä la regle du trapeze generalisee, c'est-ä-dire ä une repartition

lineaires des contraintes. La coupure entre le mur et le sol, ouverte dans le

Systeme isostatique, doit etre, pour satisfaire aux conditions d'elasticite, referm.ee au
moyen d'un Systeme de contraintes " hyperstatiques " (contraintes " propres "). II faut
donc exprimer que les deplacements relatifs effectifs u et v sont nuls en chaque point
de la base du mur.

Les calculs, extraordinairement laborieux, conduisent ä des series qui ne conver-
gent que lentement. La determination des constantes d'integration d'apres la
methode de Ritz n'est pas effectuee de maniere correcte dans le memoire de Tölke.

On peut envisager d'autres solutions analytiques par un choix different des

systemes de coordonnees, par exemple, mais l'ampleur des calculs reste immense.
Pour ces differentes raisons, nous avons envisage une Solution pratique au moyen

du calcul aux differences qui conduit, en principe, toujours ä une Solution numerique.
Cet avantage reste, bien entendu, lie ä l'inconvenient qu'un tel resultat ne peut pre-
tendre ä une Solution de caractere general.

Dans notre probleme, le calcul aux differences s'est revele extremement fertile,
gräce au fait qu'il a ete combine avec la "methode de relaxation" pour la resolution
des equations lineaires.

Quelques indications sur le principe de cette methode numerique, ainsi que sur
les conclusions d'ordre pratique qui decoulent de l'exemple traite, forment l'objet
prineipal de cet expose.

* Tölke: Wasserkraftanlagen, Handbibliothek für Bauingenieure, Verlag Springer, Berlin, 1938.
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Calcul aux differences et Methode de relaxation
Remarques generales

Le calcul aux differences transforme les expressions differentielles en "differences
finies," dont la forme et la structure sont celles avant le passage ä la limite (intervalle
de base tendaht vers zero), qui caracterise le calcul differentiel.

Les fonctions inconnues dependent ici des deux variables independantes x et y
et sont definies, dans notre probleme, par des equations aux derivees partielles du
quatrieme ordre (equations biharmoniques) ainsi que par d'autres equations aux
derivees partielles aux limites et sur la coupure entre le mur et le sol.

L'exactitude de la Solution augmente en principe quand on diminue l'intervalle
de base, donc quand on augmente le nombre des points du reseau de base, mais le
nombre des equations lineaires ä resoudre augmente, lui aussi, rapidement; l'ampleur
des calculs numeriques peut devenir prohibitive et l'exactitude finale peut en souffrir.
II existe en quelque sorte un Optimum dans le choix de l'intervalle de base.

C'est pourquoi, les avantages du calcul aux differences ne peuvent etre juges de
maniere absolue, mais uniquement en relation avec la methode de resolution des

equations lineaires choisie dans chaque cas.

Ayant ä resoudre, dans notre probleme, quelques centaines d'equations lineaires,
nous avons renonce aux methodes classiques de resolution. D'autre part, il serait
illusoire de calculer les solutions des equations lineaires avec une exactitude exageree,
alors que l'erreur provenant du fait que les intervalles de base sont finis, peut etre non
negligeable.

Nous avons donc adopte une methode de resolution par approximation successive,
dite methode de relaxation.

Methode de relaxation
Cette methode, due ä Southwell, possede des avantages marques sur les autres

methodes procedant par approximation successive.
En designant par L, (/=1, 2, n) les membres de gauche d'un Systeme de n

equations lineaires, on nomme "residu" de l'equation la valeur de L, quand on
assigne aux inconnues des valeurs quelconques. La Solution du Systeme correspond
ä L,=0 pour chaque equation.

v Si des lors on commence par un systtine de valeurs approchees pour les inconnues
(ce qui est toujours possible), les /., seront differents de zero. La methode de relaxation

consiste ä reduire, par Operations successives sur les inconnues, tous les residus ä

zero.
La maniere d'operer cette reduction forme precisement la technique de la methode

de relaxation. Ces Operations peuvent etre effectuees aisement sur la base de Schemas

geometriques, appeles "Relaxation pattern"; ceux-ci sont caracteristiques de la
structure des equations et contiennent de maniere simple et claire le principe des calculs
numeriques ä effectuer.

Le Prof. Stiefel de l'Ecole Polytechnique Federale ä Zürich a generalise cette
technique de la relaxation pour les equations biharmoniques de notre probleme en appli-
quant le principe de reduction par Variation simultanee de plusieurs inconnues et en
etablissant des methodes appropriees pour accelerer la convergence de l'iteration.

L'avantage prineipal de la methode de relaxation reside dans le fait que le calcul
numerique est limite au calcul des residus, ceci sans l'obligation de calculer directement

les valeurs intermediaires des inconnues, comme c'est le cas pour les methodes
ordinaires d'iteration.
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Les calculs effectues ont demontre le grand avantage de la methode de relaxation,
adaptee de maniere appropriee aux problemes du genre traites ici.

Exemple numerique
Donnees

Les donnees sont celles de la fig. 1 avec les valeurs numeriques suivantes :

h=l (normee)
Z>=0,8

ym=y/=2,5 t./m.3

Em=4Ef, vm=ß, "/=4
Le mur est soumis au poids-propre et ä la pression laterale de l'eau, le sol aux

reactions du mur et ä la pression verticale de l'eau.

Conditions

Les trois groupes de conditions (voir, Introduction, Position du probleme) sont ä

remplir:
(1) Conditions generales d'equilibre et de compatibilite (equations biharmoniques):

Dans le mur (triangle): AAwm=0
Dans le sol (demi-plan): AAw/=0
wm, w/=fonctions d'Airy pour les domaines respectifs

82 d2
A=—2+-ö~2=Operateur laplacien

(2) Conditions aux limites sur le contour ABCDE:

Exprimees par les charges exterieures au moyen des grandeurs w„„ -r^;
8wr

W"-8rl

n=direction de la normale

(3) Continuite des contraintes et des deplacements le long de la coupure BD:

dwf dwm
Wf=W™> 8j=-öJ
d2Wf
~8y~2

4

15

8iWf 4

d2wm 13 d2w,

dy2 ' 45 ' dx2

8iwm 79 8iwm 13

8y* 15 "
8y> 45 ' 8x28y ' 18

La forme de ces deux dernieres equations, due ä des considerations sur l'energie
du Systeme, se prete particulierement bien au calcul de relaxation.

Calcul numerique
Les conditions enoncees doivent etre transposees en equations aux differences.
Pour les besoins du calcul aux differences, le demi-plan doit etre remplace par un

rectangle suffisamment grand. Les deux domaines, triangle et rectangle de
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remplacement, sont recouverts d'un premier reseau de points (reseau caracteristique
du calcul aux differences).

II s'avera tres vite que la relaxation dans le rectangle etait fort laborieuse. Cette
difficulte fut resolue par le Dr. Preissmann, Zürich, qui reussit ä transformer les
formules de Boussinesq du demi-plan pour des fonctions d'influence en expressions
appropriees au calcul aux differences et ä la methode de relaxation. Cette simplification

supprime la relaxation dans le demi-plan; des lors, la relaxation peut etre limitee
au domaine du triangle et aux deux bords de la coupure.

Les valeurs de depart sont celles donnees par la regle du trapeze.
La relaxation fut grandement facilite par l'emploi de la machine ä calculer avec

commandes automatiques de l'Institut de Mathematiques appliquees de l'Ecole
Polytechnique Federale (Direction: Prof. Stiefel). Gräce aussi ä l'etablissement de
"relaxation pattern" appropries, l'ampleur du calcul de relaxation a pu etre tenue
dans des limites raisonnables.

Ce premier reseau, relativement large, a permis de resoudre le probleme avec
suffisamment d'exactitude dans la zone moyenne du mur et de sa base, mais s'est
revele insuffisant pour les zones des parements ainsi que pour les deux extremites de
la base qui forment des domaines singuliers.

Des lors, un reseau de densite double fut introduit. Gräce ä des procedes speciaux
pour accelerer la convergence de la relaxation, la Solution numerique de ces zones
particulieres put etre menee ä bien.

Resultats

Les trois tableaux qui suivent contiennent, en comparaison, les valeurs extremes
aux deux parements.

Tableau I
Contraintes normales verticales er

Section Contraintes: parement cöte eaux Contraintes: parement aval

Distance de
la coupure
en metres

Regle du
trapeze
kg./cm.2

Calcul
exaet

kg./cm.2

Difference
o/

0

Regle du
trapeze

kg./cm.2

Calcul
exaet

kg./cm.2

Difference
0//o

6-6
42,5 m. 5,4 6,6 22 9,0 10,6 18

7-7
32,5 m. 6,3 8,4 33 10,5 13,6 30

8-8
22,5 m.

7,3 10,4
'

49 12,1 17,6 46

9-9
12,5 m.

8,2 14,6 78 13,7 22,4 63

10-10
2,5 m.

9,1 18,2 100 15,2 30,0 97

Degre d'exactitude; ampleur des calculs

Les calculs ont ete effectues avec cinq decimales. Les contraintes, decoulant
des fonctions w par l'operation de la deuxieme difference, sont evidemment moins
exactes que celles-ci. On arrive ä une estimation de l'erreur moyenne d'environ 5 %,
ce qui est amplement süffisant.

II est clair qu'ä Favenir, l'ampleur des calculs se trouvera reduite du fait que les
essais et tätonnements du debut ne se repeteront plus.
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Tableau II
Contraintes de cisaillement t

Section Contraintes: parement aval

Distance de
la coupure
en metres

Regle du
trapeze
kg./cm.2

Calcul
exaet

kg./cm.2

Difference
o/

o

6'-6'
40 m.

7,5 9,6 28

l'-l'
30 m.

8,8 12,0 36

8'-8'
20 m.

10,0 14,8 48

9-9'
10 m.

11,2 18,2 63

]0'-10' 12,5 25,0 100

Tableau III
Contraintes normales horizontales <jx

Section Contraintes: parement aval

Distance de
la coupure
en metres

Regle du
trapeze

kg./cm.2

Calcul
exaet

kg./cm.2

Difference
o/.0

6-6
42,5 m.

7-7
32,5 m.

8-8
22,5 m.

9-9
12,5 m.
10-10
2,5 m.

5,8

6,8

7,8

8,8

9,8

7,2

8,8

12,0

15,0

19,0

24

30

56

70

94

La technique de relaxation ayant ete fortement developpee au cours de ces calculs,
il est possible, ä l'avenir, de profiter de l'experience acquise (Etablissement de tableaux
definitifs de fonctions pour la resolution de l'equation AAw=0). Remarquons
egalement que certains resultats intermediaires de caractere assez general, se trouvant
etablis une fois pour toutes (transposition des formules de Boussinesq en equations
aux differences, etc.), peuvent etre utilises tels quels par la suite.

II reste neanmoins clair que ce genre de calculs s'adresse ä des specialistes qualifies.

Conclusions
Les resultats obtenus prouvent qu'il est possible de traiter, sur une base numerique

appropriee, des problemes extremement difficiles et compliques de la theorie de
l'elasticite, ceci avec une exactitude süffisante et une ampleur de travail raisonnable, ä

condition de tenir compte des experiences faites.
Les resultats (voir tableaux et fig. 2) sont remarquables et montrent que les ecarts



LES CONTRAINTES DES BARRAGE-POIDS 401

entre la Solution indiquee et la regle du trapeze sont beaucoup plus importants qu'on
ne pouvait s'y attendre, avant tout dans la zone de base du mur (jusqu'ä 100%).

Des ecarts de 10% se fönt sentir jusqu'ä pres de la mi-hauteur du mur, donc dans
un domaine tres grand.

Dans les zones medianes des sections horizontales, les contraintes sont plus
petites que celles calculees par la regle du trapeze. Dans le sol de fondation, les
contraintes oy s'attenuent plus rapidement que les autres.

Ces resultats soulignent la valeur de tels calculs et posent, entre autre, ä nouveau
la question de la securite et des contraintes admissibles dans le beton, puisque, dans
certaines zones, les ecarts conduisent ä une majoration des contraintes d'environ
100% sur celles du calcul ordinaire. On peut envisager la generalisation de cette
methode pour d'autres profus que le triangle et tirer profit des resultats acquis pour
simplifier et accelerer les calculs, qui peuvent etre completes, dans les zones critiques,
par des developpements analytiques. La prise en compte de la souspression et des
effets de la temperature ne presente aucune difficulte.

Cet exemple demontre l'efficacite et la valeur de methodes numeriques appro-
priees, appliquees ä des problemes dont la Solution analytique rigoureuse est,
aujourd'hui encore, pratiquement inaccessible.

Resume

Ce memoire donne un apercu succinct sur une methode numerique donnant la
Solution du probleme de "l'influence de l'elasticite du sol sur les contraintes des

barrages-poids."
La transformation des equations differentielles en equations aux differences et leur

resolution au moyen du calcul de "relaxation" permet de resoudre le probleme avec
une exactitude süffisante et remplace avantageusement la Solution purement analytique
pratiquement inaccessible.

Les conclusions mettent en evidence la necessite de tels calculs en etablissant
I'alteration profonde subie par les contraintes sous l'influence de l'elasticite du sol,
ceci principalement ä la base du mur.

Summary

This paper includes a comprehensive survey of a numerical method for solving
the problem of the "Influence of the elasticity of the soil on the conditions of stress
in gravity dams."

The conversion of the differential equations into equations of difference, and also
their Solution by the "relaxation method," leads to a sufficiently accurate Solution of
the problem and replaces with advantage the purely analytical method, which is

unusable in practice.
The conclusions emphasise the necessity of such calculations and throw a very

impressive light on the important influence ofthe elasticity ofthe soil on the conditions
of stress in gravity dams, particularly at the foot of the dam-wall.

Zusammenfassung

Diese Arbeit vermittelt einen gedrängten Ueberblick über eine numerische
Methode zur Lösung des Problems: "Einfluss der Baugrundnachgiebigkeit auf den
Spannungszustand von Gewichtsstaumauern."

cr.—26
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Die Verwandlung der Differentialgleichungen in Differenzengleichungen sowie
ihre Auflösung nach der "Relaxationsmethode" führt zu einer genügend genauen
Lösung des Problems und ersetzt mit Vorteil die praktisch unzugängliche, rein
analytische Methode.

Die Schlussfolgerungen unterstreichen die Notwendigkeit solcher Berechnungen
und beleuchten sehr eindrücklich den hervorragenden Einfluss der Baugrundnachgiebigkeit

auf den Spannungszustand der Gewichtsstaumauern, insbesondere in der
Umgebung der Fundamentfuge.
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Nouvelle methode d'analyse tridimensionnelle sur modeles reduits

A new method of three-dimensional analysis using small-scale models

Ein neues Verfahren zur drei-dimensionalen Spannungsmessung in
Modell-Konstruktionen

C. BENITO
Ingenieur, Chef de la Section des Modeles Reduits du Laboratorio Central de Ensayo

de Materiales de Construcciön, Madrid

1. Generalites
Malgre les tres grands progres realises par les differentes theories employees pour

le calcul des ouvrages, de nombreux techniciens du genie civil cherchent une
methode pour la resolution des problemes d'elasticite ä trois dimensions. Les
travaux preliminaires sont etablis sur la base de la theorie de l'elasticite et on
n'entrevoit pas, jusqu'ä maintenant, de processus mathematique general de resolution
qui pussie etre applique ä la pratique. Sauf en certains cas relativement rares, qui
sont d'ailleurs devenus classiques pour etre repetes dans tous les traites speciaux, la
connaissance de la repartition des centraintes ou des deformations dans l'interieur du
solide spatial exige la resolution d'un Systeme d'equations differentielles qui constitue
un obstacle serieux et infranchissable.

Cependant, on peut esperer parvenir par les methodes experimentales au resultat
cherche. C'est ce que montrent les investigations qui ont dejä ete faites dans ce sens
et qui nous rapprochent progressivement de la Solution du cas general.

Dans un travail anterieur,* nous avons dejä expose les methodes photo-
elastiques adoptees pour l'etude de certains modeles tridimensionnels construits en
bakelite, en trolon ou en gelatine. Dans cette etude, nous proposions l'emploi de la
gelatine pour les problemes oü interviendraient des efforts de masse ou dans lesquels
les modeles seraient de grandes dimensions ou de formes compliquees. Mais ainsi
que nous l'avons constate, en appliquant les methodes photo-elastiques tri-
dimensionnelles ä l'observation de tranches planes des modeles dans lesquels les
contraintes avaient ete prealablement "fixees," il n'a ete possible que d'evaluer les
directions et grandeurs des trois contraintes principales, aux points oü l'on connaissait

* C. Benito et A. Moreno, "Etudes photo-elastiques tridimensionnelles sur modeles en gelatine,"
Publication No. 73 du Laboratorio Central de Ensayo de Materiales de Construcciön, Madrid, 1951.
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a priori la direction de l'une d'elles. Cette condition limite dans une large mesure
l'utilite pratique de cette methode et reduit son application aux exemples dans lesquels
interviennent des symetries de forme et de charge.

En dehors du domaine de la photo-elasticfte et dans tous les cas oü l'on a essaye
des modeles reduits tridimensionnels, les etudes dont nous avons connaissance ont
ete limitees ä l'observation des deformations de surface; il est rare que l'on ait
introduit des organes d'auscultation en certains points interieurs.

Nous nous proposons d'exposer dans ce qui suit une nouvelle methode avec
laquelle nous pensons avoir reussi ä trouver la Solution experimentale des problemes
tridimensionnels, meme avec Intervention des efforts de masse.

2. Expose de la Methode d'essai et des bases de recherche
Dans les etudes que nous avons'faites des caracteristiques des gelatines, etudes

dont les resultats figurent dans la publication citee plus haut, nous avons mis en
evidence les variations observees dans la valeur du module longitudinal de Young en
fonction de la temperature et nous sommes arrives ä conclure que la valeur du module
augmentait au cours du refroidissement du materiau. Ce phenomene nous a permis
de charger le modele reduit ä etudier ä la temperature ambiante (ä peu pres 20° C),
puis de diminuer cette temperature progressivement jusqu'ä 2° C.; nous avons pu
ensuite decharger le modele, puis le couper en tranches planes et paralleles et observer
les contraintes enregistrees, comme s'il s'agissait d'un cas de photo-elasticite ä deux
dimensions. Nous avons egalement constate qu'en elevant ä nouveau la temperature
de ces tranches, la contrainte observee disparaissait.

Pour expliquer ce processus en nous rapportant aux deformations, nous pourrons
dire que si nous chargeons un modele construit avec un materiau presentant un
module d'elasticite E, il se produira en chaque point des deformations que nous
designerons par e. En abaissant la temperature, le module passe ä la valeur E'~p>E;
en supprimant les charges exterieures, les deformations recuperees e' ont un signe
contraire aux deformations anterieures et leur sont inferieures. II subsiste ainsi des
deformations fixees qui ne subissent aucune modification (comme nous l'avons
demontre), meme si nous coupons le materiau en prismes ou en cubes. Si la
temperature s'eleve ensuite jusqu'ä la valeur initiale, le module reprend sa valeur
primitive et les deformations se trouvent liberees.

La methode que nous proposons est basee sur la mesure de ces "deformations
liberees" qui, lorsqu'elles sont connues pour chaque point de l'interieur du modele,
peuvent etre rapportees aux valeurs des contraintes, äu moyen des constantes
elastiques du materiau ä temperature de l'essai.

Conformement ä ce qui precede, les differentes phases de I'application de la
methode sont les suivantes:

(1) Preparation du modele avec un materiau remplissant les conditions qui
seront indiquees au chapitre suivant.

(2) Application des charges exterieures ä la temperature ambiante (environ
22° C).

(3) Refroidissement lent du modele jusqu'ä une temperature interieure uniforme
de 2° C. et retrait des charges.

(4) A ce moment, les deformations initiales sont retenues en partie dans la
totalite du modele; on le coupe donc en tranches ou en cubes, sans que
cette deformation initiale residuelle subisse une modification, de ce fait.

(5) Mesure des "deformations liberees" dans les tranches ou les cubes, lorsque
l'on eleve ä nouveau la temperature jusqu'ä environ 22° C.
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Si les deformations mesurees sont süffisantes, on pourra determiner l'ellipsoide
des deformations de chaque point; ä partir de cet ellipsoide, il sera aise de passer ä

l'ellipsoide des contraintes, en faisant intervenir les valeurs du module d'elasticite et
les coefficients de Poisson ä 22° et ä 2° C.

Gräce ä cette nouvelle methode, nous nous proposons d'aboutir ä la connaissance
en amplitude, direction et sens des contraintes principales, en n'importe quel point de
l'interieur ou de la surface d'un modele de forme quelconque, lorsqu'agissent sur lui
des efforts exterieurs ou de masse.

Deux questions essentielles doivent etre resolues pour la mise en pratique de cette
methode:

(ö) Disposer d'un materiau qui remplisse les conditions correspondant aux
hypotheses de base de la theorie de l'elasticite, de l'analyse dimensionnelle
et de la methode ci-dessus elle-meme.

(b) Employer un processus de mesure qui permette de connaitre les valeurs des

deformations, avec la precision exigee par l'essai.

Nous examinons ci-apres chacune de ces deux questions.

3. Recherches concernant le materiau
La technique des modeles reduits d'ouvrages implique pour les materiaux certaines

conditions particulieres.
Le materiau doit, en premier lieu, permettre la fabrication du modele; il doit donc

se preter au moulage ou bien au faconnage jusqu'ä l'obtention de la forme voulue.
Dans les deux cas, il ne doit en resulter aucune contrainte residuelle susceptible
d'alterer les resultats des essais.

Du point de vue de la theorie de l'elasticite, le corps est suppose homogene,
isotrope et elastique. Ces conditions doivent 6tre d'autant plus etroitement respectees
qu'elles seront satisfaites par le ou les materiaux que l'on projette d'employer pour la
construction effective de l'ouvrage. Par ailleurs, l'analyse dimensionnelle qui dicte
les lois de similitude ä respecter entre les dimensions du modele et celles de l'ouvrage
reel impose une serie de conditions deduites du theoreme -n ou de Vaschy; dans le cas
de la similitude amplifiee (echelle differente de 1), ces conditions sont exprimees par
les relations ci-apres:

£m Cm/Cr aM Em*m Pm p'mIm
«R Im/Ir ' VR Er€r pR p'rIr

P'm Dm vm

P'r Dr vr

(1)

en designant par:
e les deformations,
C les deplacements,
/ les longueurs,
er les contraintes,
E les modules d'elasticite,
p les pressions exterieures,
p' les poids speeifiques des materiaux,
D les densites des surcharges (par exemple l'eau qui agit sur le parement d'un

barrage),
v les coefficients de Poisson.
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Tous ces symboles sont affectes d'un indice M ou R suivant qu'il s'agit du modele
ou de l'ouvrage reel. A l'exception de la derniere relation qu'exprime l'egalite des

coefficients de Poisson dans le modele et dans l'ouvrage, il n'est pas possible de tirer
une conclusion sans que le probleme soit plus nettement determine. Par suite et
afin de connaitre l'ordre de grandeur des caracteristiques du materiau que l'on doit
utiliser, nous allons faire appel ä un cas particulier d'ouvrage tridimensionnel oü, en
plus des forces exterieures, les efforts de masse exercent egalement une grande influence.
L'ouvrage que nous considerons comme le plus representatif est ici le barrage-poids
ä base droite ou en arc.

L'ideal serait de connaitre de regime de contraintes qui se manifeste en n'importe
quel point de l'interieur du barrage, de ses fondations ou de ses rives, en tenant compte
des particularites elastiques des divers elements qui composent l'ensemble de l'ouvrage
et de l'influence de leurs poids respectifs.

Nous ne connaissons que peu d'exemples d'essais tridimensionnels sur barrages;
cependant, leur petit nombre est amplement compense par la valeur des resultats
obtenus. Nous ne tenterons pas de les resumer ici; nous indiquerons seulement que
les plus interessants ont ete realises aux Etats-Unis, au Portugal et en Italie. Dans
la plupart des cas, on n'a considere qu'ulterieurement l'influence du poids propre du
barrage et dans tous les cas, on a mesure les deplacements des elements de surface de

l'ouvrage. Comme nous l'indiquions anterieurement, notre but est de mesurer les

contraintes en n'importe quel point de l'interieur ou de la surface et tout particulierement

ä proximite des fondations et des rives. En nous limitant ä cet objet precis,
nous pouvons deduire des expressions (1) les conditions suivantes:

1. Le coefficient de Poisson du materiau constituant le modele doit etre de l'ordre
de 0,3.

2. L'echelle des poids specifiques doit etre la meme que celle des densites des

liquides qui constituent la charge ou, ce qui revient au meme, le poids specifique du
materiau doit etre 2,3 fois plus grand que celui du liquide utilise pour la mise en charge.
Si, en tablant sur l'experience que nous avons acquise au sujet des essais photo-
elastiques, nous envisageons l'emploi d'un materiau presentant des caracteristiques
analogues ä celles de la gelatine, le liquide de mise en charge ne devra pas alterer ce
materiau et, par consequent, il sera impossible d'utiliser l'eau. D'autre part, il
convient que l'echelle des modules d'elasticite soit faible, pour que le module
d'elasticite du modele soit, lui aussi, faible, ce que l'on peut realiser en employant des

liquides plus legers que l'eau. Ceti nous amene ä admettre, ä titre de premier
tätonnement:

7^=0,8, donc:/7©=0,8/>'.R~l,9gr./cm.3
1JR

3. Si l'on admet que les deformations du modele peuvent etre vingt fois plus
grandes que les deformations reelles (hypothese adoptee aux essais du Boulder Dam*),
c'est-ä-dire:

-=20, ilen resulte: ^=0,04.^
*R Er Ir

L'echelle des longueurs varie assez notablement d'un essai ä l'autre; eile depend
essentiellement des dimensions de l'ouvrage ä etudier. Nous pouvons fixer comme

* Model Tests of Boulder Dam, Bureau of Reclamation, Boulder Canyon Project, Part 5, Bull.
3, Denver, Colorado, 1939.



ANALYSE SUR MODELES REDUITS 407

limites 1/100 et 1/200, d'oü l'on peut deduire l'ordre de grandeur des modules
d'elasticite correspondants:

EM=2 x 105x0,04/200=40 kg./cm.2
dans l'un des cas et 80 kg./cm.2 dans l'autre.

En tablant sur ces donnees, nous pouvons resumer comme suit les principales
particularites du materiau que nous considerons comme le meilleur ä employer, pour
appliquer la methode ici proposee aux essais de barrages sur lesquels interviennent
des efforts de masse.

Le materiau doit se preter aisement au moulage ou au faconnage; il doit etre
homogene, elastique, isotrope, avec un coefficient de Poisson voisin de 0,3, un module
d'elasticite de l'ordre de 60 kg./cm.2 et un poids specifique de l,9gr./cm.3 Ces derniers
chiffres indiquent seulement un ordre de grandeur, car ils ont ete obtenus en partant
d'une hypothese (echelles des longueurs et des deformations) qui peut varier assez
notablement suivant chaque essai ou chaque materiau dont on dispose.

Nous n'avons pas encore mentionne une condition dont la non-satisfaction
empeche I'application du processus ici expose. II s'agit de la condition suivant
laquelle le module d'elasticite du materiau doit augmenter lorsque la temperature
ambiante diminue, la difference entre les valeurs extremes devant etre aussi grande
que possible.

Pour trouver le materiau susceptible de satisfaire ä toutes ces conditions, nous
sommes partis des etudes que nous avons dejä effectuees sur les proprietes elastiques
des gelatines. Dans ces corps, se trouve un produit que l'on peut mouler facilement
par gravite, qui est homogene, isotrope, dans lequel la somme des deformations
elastiques et plastiques est proportionnelle ä la contrainte qui les produit et qui admet
un module d'elasticite tres sensible ä l'influence de la temperature. Toutefois, la
valeur de ce module d'elasticite est faible (nous n'avons pas reussi ä depasser 20
kg./cm.2), son poids specifique est tres petit et il admet un coefficient de Poisson
eleve (de l'ordre de 0,5), ce qui ne nous permet pas de l'utiliser effectivement ici.
Malgre ces inconvenients, nous avons adopte la gelatine comme materiau initial pour
la recherche du materiau qui convient le mieux. Nous ne decrirons pas ici toutes
les tentatives que nous avons faites et les nombreux petits echecs que nous avons
subis; nous nous contenterons d'indiquer le chemin qui nous a permis d'arriver ä une
Solution satisfaisante. Ces echecs, d'un interet apparemment limite, nous ont
neanmoins permis de developper nos connaissances de certains materiaux,
connaissances que nous mettrons ä profit au cours d'etudes ulterieures.

Nous avons envisage un produit de base compose de gelatine, de glycerine et
d'eau. D'autre part, nous connaissions les proprietes du melange de glycerine et de

litharge, qui durcit et forme un corps ä grande densite et haut module d'elasticite.
Nous avons donc envisage d'ajouter de la litharge aux produits de base ci-dessus

afin de corriger ses propres defauts. Quelques essais nous ont donne l'assurance que
nous etions sur la bonne voie. II nous a suffi de proceder ä un nombre suffisamment
grand d'essais par tätonnements pour ameliorer les resultats. Afin de ne pas nous
etendre trop longuement sur les differentes compositions essayees, nous indiquons
dans le tableau I les constituants de quatre melanges, dont les modules d'elasticite
atteignent 12, 27, 34 et 70 kg./cm.2 apres 30 jours.

Ces materiaux se pretent aisement au moulage et prennent au refroidissement la
rigidite caracteristique de la gelatine; ils peuvent ainsi se demouler facilement et
rapidement, ce qui permet d'observer leurs caracteristiques elastiques peu d'heures
apres le moulage. Pour celä, on prepare des eprouvettes cubiques de 15 cm. de cöte
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que l'on soumet ä une compression simple apres avoir graisse les faces pour eviter les

alterations par evaporation de l'eau interstitielle et aussi pour supprimer le frottement
sur la base de l'eprouvette au cours de l'essai. Comme il s'agit seulement de connaitre

Gelatine
Eau
Litharge
Glycerine

Tableau I
Aen% B C D

15 25 25 20
30 20 15 20
40 40 40 45
15 15 20 15

0.¦ü

<s>
c

0 0

Fig Mesure des deformations

l'amplitude des constantes elastiques du materiau, les deplacements longitudinaux sont
mesures en quatre points sur le plan de la base superieure et aux quatre points corres-
pondants de la base inferieure; les deplacements transversaux sont rapportes au milieu
des faces laterales. Tous ces deplacements ont ete determines avec une erreur
inferieure ä 0,01 mm. ä l'aide de fleximetres places ainsi qu'il est indique sur la fig. 1.

Les essais effectues comme nous venons
de l'indiquer ont montre que ces materiaux

se comportaient elastiquement, que
leurs modules d'elasticite augmentaient avec
l'äge de l'eprouvette et simultanement
diminuait la valeur de leur coefficient de

Poisson, phenomene favorable puisque nous
sommes partis d'une valeur de ^=0,50 trop
elevee. Nous nous attendions ä une
diminution de v correlativement ä l'augmentation
de E, puisque ces grandeurs varient ordin-
airement en sens inverse l'une de l'autre.
Nous constatons en effet que E augmente et
que v diminue au-dessous de 0,5 (limite

theorique de plasticite), le comportement elastique predominant ainsi sur le comportement
plastique. Ce processus d'accroissement de durcissement avec l'äge n'est pas
indefini; il se ralentit lentement. Nous avons pu observer que sur tous les melanges
essayes il cessait apres 28 ou 30 jours, temps au bout duquel on obtenait des valeurs
stabilisees.

Pour appuyer les affirmations ci-dessus, nous reproduisons sur la fig. 2 les
diagrammes contraintes-deformations obtenus sur certains essais ä 1, 2, 7 et 48 jours,
sur l'echantillon 41-11, dont la composition est indiquee en A, dans le tableau I.
Sur tous les graphiques, on constate qu'il y a proportionnalite entre les contraintes et
les deformations.

Ayant ainsi reussi ä obtenir un materiau satisfaisant aux conditions elastiques,
avec un poids specifique voisin de 2, il importait de verifier si ce module d'elasticite
E augmentait effectivement lorsque la temperature diminuait; ä cet effet, nous avons
refroidi les eprouvettes et lorsque la temperature atteignait 2° C.*, nous avons repete
le processus de mise en charge. Dans tous les cas, nous avons obtenu l'effet prevu
et nous avons pu verifier que l'augmentation est d'autant plus faible que le module
d'elasticite est lui-meme plus grand; ceci parait logique, puisque la rigidite doit etre
d'autant moins sensible aux fluctuations des temperatures qu'elle est plus grande.

* Pour refroidir l'eprouvette, on la mettait, ainsi que la machine d'essai, dans une chambre froide
dans laquelle les Operateurs etaient munis d'habits de protection contre le froid.
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Sur la fig. 3, nous avons resume les resultats des essais de mise en charge ä 2° C.
sur l'echantillon 41-11 et nous les comparons avec ceux qui ont ete obtenus ä 22° C.
(fig. 2); nous pouvons y observer les valeurs obtenues pour E et v aux temperatures
citees. La connaissance des caracteristiques elastiques des melanges ä 22° et ä 2° C.
nous a fait penser qu'il etait opportun d'etudier l'evolution du processus au cours du
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Fig. 2. Diagrammes contraintes-deformations

refroidissement. A cet effet, nous avons soumis trois eprouvettes identiques ä 22° C.
ä la meme compression simple, maintenue constante, et nous avons mesure les
racourcissements pendant l'abaissement de la temperature. Les resultats des trois
essais ont ete pratiquement identiques, ce qui nous a fourni une bonne preuve de leur
homogeneite et de leur reproductibilite. Ces essais fönt l'objet de la fig. 4. Sur
le diagramme de la partie superieure sont portees les variations de temperature; ä
la partie inferieure sont portees les deformations en fonction du temps. Au moment
de I'application de la compression ä la temperature de 22° C, il se produit presque
instantanement un racourcissement qui augmente, mais ä une allure decroissante,
pour se stabiliser apres 17 heures. Ce comportement est, jusqu'ici, celui meme qui
caracterise les corps elasto-plastiques (comme nous l'avons dejä indique, la somme des
deformations elastiques et plastiques est proportionnelle ä la contrainte qui les produit).

Cette periode ecoulee, nous avons
abaisse lentement la temperature et ,_,

nous avons constate une augmenta- f
tion des deformations, ä laquelle nous <l-"

attribuons une cause d'ordre ther- g

mique, puisque les autres facteurs ne "i
varient pas. II y a ici contraction _|
thermique, suivant un coefficient ä
pratiquement lineaire qui peut etre 0,02050 40 50 eo 70 9o ,0 too „0deduit des deux diagrammes. A la gr/cm1
fin de ce Stade, nous avons decharge Fig. 3. Diagrammes contraintes-deformations
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les eprouvettes et constate des deformations de signe contraire aux deformations
anterieures et ä peu pres egales ä la moitie des deformations produites au cours de la
periode de mise en charge (ceci pouvait etre prevu, puisque le module d'elasticite ä
2° C. est ä peu pres le double de la valeur pour 22° C). Enfin, en elevant la temperature,

nous avons constate une nouvelle deformation correspondante ä la dilatation
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Fig. 4. Diagramme thermique

et ä la diminution du module d'elasticite. Le diagramme met en evidence une
deformation residuelle düe ä l'intervention de differentes etapes plastiques.

De cette figure, que nous designons sous le nom de "diagramme thermique," il
resulte deux valeurs qui sont indispensables pour pouvoir passer des valeurs
experimentales mesurees ä la determination des contraintes; l'une d'elle est la
deformation "liberee" et l'autre est le coefficient de dilatation thermique. Ces deux
valeurs doivent etre determinees avec la precision maximum, puisqu'elles sont
essentielles pour les calculs ulterieurs.

Le materiau se comportant elastiquement ä 22° C. comme ä 2° C. les deformations
"liberees," sous deduetion des dilatations et contractions thermiques, apparaissent
proportionnelles aux contraintes; il est ainsi possible de parvenir ä la connaissance de
ces dernieres.

Nous en avons ainsi termine avec la premiere partie du memoire se rapportant
aux materiaux utilisables dans I'application de la methode proposee. Nous avons
mis en evidence les principales caracteristiques de quelques melanges qui permettent
d'entreprendre l'etude generale des modeles tridimensionnels avec efforts de masse.
Ceci constitue une contribution, si faible soit-elle, ä la resolution du probleme
excessivement complexe de la determination des contraintes ä l'interieur d'un barrage.

4. Essais de mesure des deformations
Lorsque nous nous referons ä l'ellipsoide des contraintes ou ä l'ellipsoide des

deformations, en un point de l'interieur ou de la surface d'un corps, nous tablons sur
des considerations theoriques qui ne peuvent etre concretisees sans faire intervenir
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un espace. C'est pourquoi en nous efforcant de determiner la position, Famplitude
et la direction des axes de ces ellipsoides en un point, nous procedons ä mesure dans
un espace suffisamment petit pour pouvoir admettre que, dans cet espace, le champ
des contraintes est pratiquement constant.

Nous avons dejä vu que la methode exposee comporte la mise en charge du modele,
son refroidissement ä 2°, puis, apres decharge, le decoupage en tranches conservant
les traces des deformations. Ces dernieres sont liberees ulterieurement par elevation
de la temperature. Etant donne que la mesure des deformations liberees fournit les
indications de base pour le calcul des contraintes, il est tout d'abord necessaire de
fixer la forme et les dimensions des tranches du modele correlativement aux mesures
ä prevoir.

A premiere vue, la forme ideale parait etre la sphere, puisque par "liberation"
des deformations, cette sphere se convertirait en un ellipsoide; toutefois, nous avons
du renoncer ä decouper une sphere dans le materiau indique precedemment. D'autre
part, tout en reussissant ä obtenir l'ellipsoide final, l'ellipsoide de deformation aurait
une forme teile qu'il ne serait pas possible d'obtenir, dans des conditions pratiques et

par mesure directe, la position et la grandeur des axes; pour cette raison, et comme
l'indique le Professeur Torroja,* il serait necessaire de mesurer les deformations
suivant les aretes et diagonales d'un octaedre regulier, inscrit dans la sphere primitive.
Pour y parvenir, il n'est pas indispensable de partir d'une sphere; en effet, en
decoupant des morceaux du modele sous la forme de cubes, ce qui est aise, on peut
mesurer les memes grandeurs, qui sont celles que mentionne la fig. 5. Une autre
Solution plus simple et qui est süffisante pour determiner l'etat des contraintes est
celle que cite Torroja, qui consiste ä mesurer les deformations selon les trois aretes
orthogonales d'un cube et les diagonales de trois faces contenant le meme sommet,
ainsi que l'indique la fig. 6. Si le cube est suffisamment petit pour que l'on puisse

vi

©_
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Fig. 5. Directions des mesures Fig. 6. Directions des mesures

admettre que l'etat des contraintes est pratiquement constant, ces mesures permettent
de determiner les valeurs des trois deformations longitudinales ex, ey, ez et des trois
glissements yxy, yxz, yyz; dans ces conditions, les equations de Lame permettront de
resoudre le probleme.

Pour mesurer d'une maniere pratique les aretes et les diagonales des faces de

chaque cube, sur de nombreux points, nous avons effectue un grand nombre d'essais
en employant des procedes et dispositifs divers. L'un des procedes, que nous
considerons comme le meilleur, consiste ä decouper le modele retenant ses deformations

ä 2° C, sous forme de tranches planes sur lesquelles on dessine un quadrillage
* E. Torroja, "El problema general de la auscultaciön," Publication No. 16de l'Instituto Teenico

de la Construcciön y del Cemento, Madrid.
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dont on observe les deformations correlativement ä l'elevation de la temperature.
La methode de mesure est analogue ä celle qu'appliquent Brewer et Glasco * sur des
pieces metalliques; cependant, nous n'avons pas pu reproduire photographiquement
le quadrillage sur le materiau constituant le modele, comme ils le fönt eux-memes
et nous avons du reproduire photographiquement sur la tranche de petites croix
constituees par des traits extremement fins.

Pour eprouver la valeur du procede de mesure, nous avons soumis ä une
compression simple un prisme droit ayant une section de 10 x 10 cm. et une hauteur de
20 cm.; dans le tiers central de l'une des faces laterales, nous avons reproduit une
serie de croix formant un reticule de 2 cm. de cöte. L'ensemble a ete photographief
avant et apres la mise en charge et on a mesure les intervalles avec une erreur de
moins de 0,01 mm., ä l'aide d'un microscope micrometrique; on a ensuite determine
les valeurs indiquees sur la fig. 7. Les deformations longitudinales ont pu etre
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Fig. 7. Deformations et isostatiques experimentales

determinees avec des erreurs atteignant 10% sur la valeur moyenne et sur les points
de croisement qui ont ete utilises pour dessiner les courbes isostatiques; l'erreur
maximum a ete de 2° 45'. Bien que ces erreurs soient admissibles, nous pensons que
l'on pourrait les reduire en ameliorant la reproduction photographique et, par suite,
la precision de la mesure; nous y avons toutefois renonce, car pour couper le modele
en tranches planes, il nous etait necessaire d'etablir et d'essayer trois modeles
identiques, pour pouvoir disposer de donnees portant sur trois plans perpendiculaires.

Pour tourner la difficulte, nous avons decide de decouper le modele en cubes de
petites dimensions, puis de mesurer les distances entre les milieux de chaque paire

* Brewer et Glasco, "Determination of Strain Distribution by the Photogrid Process," Journal of
Aeronautical Corp., Nov. 1941, No. LV, 9.

t Les photographies ont ete prises avec des plaques ä fort contraste.
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d'aretes ou de faces opposees. Ces points etaient materialises en enfoncant de
petites aiguilles en acier inoxydable; le probleme se ramenait ainsi ä mesurer
l'intervalle entre deux pointes metalliques; pour obtenir la precision maximum, nous
avons etudie et construit un appareil que nous decrivons ci-apres brievement (fig. 8).

Fig. 8. Dispositif pour la mesure des deformations

EFM-11

?20V

125 V

6.3 VS

Fig. 9. Schema electronique pour la mesure des deformations
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Cet appareil comporte deux vis micrometriques avec axes prolonges se terminant par
de petites surfaces circulaires planes. Ces micrometres sont montes sur un chässis
qui leur permet de pivoter sur deux axes, Tun vertical et l'autre horizontal. Au centre
de l'appareil, se trouve une petite plateforme A dont la position peut etre reglee en
hauteur et suivant deux axes horizontaux et perpendiculaires entre eux. La
disposition planetaire de l'appareil permet hereusement d'effectuer des mesures en
differentes positions, sans qu'il soit necessaire de toucher le cube place sur la plateforme
centrale. La difficulte etait de determiner le moment auquel la pointe de l'une des vis
micrometriques vient en contact avec la pointe de l'une des aiguilles metalliques
enfoncees dans le cube. Cette difficulte a ete resolue dans des conditions absolument
satisfaisantes, en mettant ä profit le fait que le materiau utilise est bon conducteur de
l'electricite. Le courant eiectrique passant ä travers la masse du cube ne devant
necessairement produire en lui aucune alteration, nous avons adopte le montage
electronique indique sur la fig. 9 et dans lequel le contact entre les deux pointes
metalliques est indique par un signal lumineux emis par un indicateur d'accord, avec
une erreur inferieure ä 0,005 mm. Dans ces conditions, le courant qui traverse le
cube est absolument negligeable et nous n'avons constate aucune alteration du
materiau lui-meme. Ce procede permet de mesurer les deformations en neuf
directions, autour d'un point de l'interieur du modele; comme nous l'avons indique
anterieurement, ceci est süffisant pour determiner la repartition des contraintes qui
agissent sur ce point.

Pour terminer, nous reproduisons ci-apres les resultats de deux essais, au cours
desquels nous avons applique la presente methode.

5. Verification experimentale
Pour verifier une methode experimentale, il est necessaire de I'appliquer ä des

exemples ou ä des problemes dont on connait a priori la Solution. En considerant
comme valables les resultats de la theorie d'elasticite, nous avons realise plusieurs
essais dont deux sont decrits ci-apres:

La. premiere experience consistait ä charger un cube en compression simple avec
une charge connue et ä lui appliquer la methode indiques en
decoupant interieurement deux petits cubes Orientes comme
l'indique la fig. 10. II s'agissait de verifier si la direction
et Famplitude des contraintes principales dans les deux
cubes, obtenues d'apres les resultats des mesures des
deformations liberees, presentaient la concordance voulue avec
la charge initiale qui, comme nous l'avons dejä dit, etait
connue.

Ainsi qu'il a ete indique ä la fin de la troisieme partie,
avant d'appliquer la methode au modele, c'est-ä-dire au cube,
il etait necessaire de determiner le coefficient de dilatation
thermique du materiau au passage de 2° ä 22° C. et, ä l'aide
d'un diagramme thermique analogue ä celui de la fig. 4, de

rapporter les deformations liberees aux contraintes initiales.
Pour determiner le coefficient de dilatation ou de contraction
thermique, nous avons utilise les procedes classiques et

constate qu'il etait de 0,00031 entre 2° et 22° C.; pour rapporter les contraintes
initiales aux deformations liberees, nous avons determine les diagrammes thermiques
longitudinaux et transversaux d'une eprouvette de compression apres six jours de

&

Fig. 10. Position des
cubes intörieurs
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moulage; ensuite, et en appliquant ä ce cas connu les equations de Lame, nous avons
obtenu les valeurs suivantes:

(7=2,3 kg./cm.2 (module de rigidite ou d'elasticite transversale),

Af?=0,046 kg./cm.2, en designant par e la valeur de la dilatation cubique et avec

a=: vE

(!+„)(! _2„)-

En tablant sur ces valeurs caracteristiques du materiau que nous nous proposions
d'utiliser, nous avons entrepris l'essai du cube comme suit:

Nous avons moule un cube de 7 cm. d'arete, puis nous l'avons mis en charge en
compression simple, apres six jours, la salle de travail etant ä 22° C. Apres avoir
atteint l'equilibre, nous avons fait descendre la temperature ä 2° C. et nous avons
retire les charges, ce qui a amene la recuperation d'une partie de la deformation, la
deformation residuelle etant retenue. Nous avons ensuite decoupe les deux cubes
comme l'indique la fig. 10 et nous avons mesure les distances entre les points au
milieu de chaque paire d'aretes ou faces opposees en adoptant la methode indiquee
dans la quatrieme partie. Toutes ces Operations ont ete faites ä 2° C. Les mesures
etant terminees, nous avons releve la temperature ä 22° C. et nous avons repete les

mesures. Les valeurs des glissements et des deformations liberees apres elimination
de la dilatation thermique sont indiquees dans le tableau II.

Tableau II

*x ey ez y.xy y.xZ y.rz

Cubel 0,0103 0,0104 -0,0199 -0,0001 -0,0012 0,0020
Cube II -0,0090 0,0115 -0,0043 0,0027 -0,0289 0,0004

En partant de ces resultats et ä l'aide des equations de Lame, nous avons calcule
les valeurs des contraintes en kg./cm.2 qu'indique Ie tableau III.

Tableau III

Contraintes Ox ay Oz T.xy Tv; Tyz

Cube I
Cube II

0,002
-0,087

0,002
0,007

-0,138 0
-0,065 +0,006

-0,002
-0,066

0,004
0

d'oü nous avons deduit les contraintes principales suivantes, en kg./cm.2, que nous
comparons dans le tableau IV avec la pression moyenne reelle.

Tableau IV

Contraintes principales en kg./cm.2

Cubel
Cube II
Pression moyenne reelle

°l ctii ctiii
0,002
0,008
0

0,002
-0,010

0

-0,138
-0,143
-0,123
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En determinant les cosinus directeurs des contraintes principales du cube I, nous
avons obtenu des resultats qui differaient de moins de 1° des valeurs exactes; pour

le cube II, l'erreur maximum a ete de 4°. Ces
derniers resultats, ainsi que ceux du tableau IV,
constituent une excellente confirmation de la
valeur de la methode.

Un autre essai a consiste ä soumettre un
cube ä une double compression et, en appli-
quant la methode decrite, ä en faire sortir un
petit cube (fig. 11). Dans ce cube, nous avons
mesure les deformations liberees, puis nous en
avons deduit les contraintes principales et nous
avons procede ä une comparaison avec les
charge exterieures. Nous n'indiquerons pas
ici tout le detail de l'operation qui, d'ailleurs,
est semblable ä celle que nous venons de
decrire pour le cas precedent. Nous nous

bornerons ä indiquer les resultats obtenus en les comparant aux valeurs reelles tirees
des charges exterieures connues.

U om

Fig. 11. Position du cube interieur

Tableau V
Contraintes principales en kg./cm.2

°I CTn CTm

Valeurs experimentales 0

„ reelles 0
-0,32
-0,29

-0,63
-0,61

Tableau VI
Cosinus directeurs de CTi

1 m n
Valeurs experimentales 0,70

„ reelles 0,707
0
0

0,70
0,707

Tableau VII
Cosinus directeurs de °n

1 m n
Valeurs experimentales 0

„ reelles 0
1

1

0
0

Tableau VIII
Cosinus directeurs de o-m

1 m
Valeurs experimentales

reelles
0,68
0,707

0
0

n

0,75
0,707

Les resultats ci-dessus exposes fournissent, dans tous les cas, une approximation
acceptable.
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6. Conclusion
A l'aide des exemples que nous venons de decrire, nous pensons avoir mis nettement

en evidence les qualites d'une methode qui permet d'etudier les ouvrages sur trois
dimensions, malgre l'intervention des efforts de masse, en utilisant des modeles
reduits dans lesquels il est possible de determiner la repartition des contraintes autour
de n'importe quel point, que ce soit ä l'interieur ou ä la surface.

Pour y parvenir, il est necessaire de construire ce modele avec un materiau tel
que celui qui est indique en troisieme partie et qui, non seulement, satisfasse aux
hypotheses de base de l'elasticite, mais soit en outre tel que son module d'elasticite
longitudinal augmente lorsque la temperature ambiante baisse. Ceci etant realise,
on peut mettre le modele en charge ä 22° C, le refroidir ä 2° C, le decharger et le

couper en cubes ayant un volume suffisamment petit pour que l'on puisse admettre
que dans chacun de ces cubes le regime des contraintes en tous points est constant.
Ceci fait, il suffit de mesurer les deformations liberees dans les cubes par l'elevation
de la temperature ä 22° C. (comme il est indique dans la quatrieme partie), puis de les

rapporter aux constantes elastiques du materiau pour pouvoir, ä l'aide des equations
de Lame, determiner les valeurs en grandeur et en direction de chacune des contraintes
principales correspondant ä chacun des points ayant fait l'objet de l'essai.

L'auteur est heureux d'exprimer ici sa gratitude ä Mr. A. Moreno, Perito
Industrial, du L.C.E.M.C. de Madrid, pour la collaboration qu'il a bien voulu
apporter ä la mise au point de cette etude.

Resume

L'auteur expose une methode experimentale pour l'etude de la repartition des
contraintes en un point quelconque de l'interieur ou de la surface d'un ouvrage
tridimensionnel, meme dans le cas oü, en plus de forces exterieures, on fait intervenir
l'influence des efforts de masse.

L'auteur propose que l'etude de l'ouvrage soit effectuee au moyen d'un modele
reduit ä construire dans un materiau dont il indique la composition. II expose
egalement les caracteristiques de ce materiau ainsi que le procede original designe
sous le nom de "liberation des deformations" et decrit les appareils utilises pour
mesurer ces deformations. II termine en exposant les resultats obtenus au cours de
deux essais effectues avec la methode proposee, avec une conclusion satisfaisante.

Summary

In this paper an experimental process has been devised for the study of stress
distribution at any internal or surface spot of a three-dimensional structure, even in
the case where the influence of mass forces is considered, besides outside forces.

The author proposes the study of a structure by means of a small-scale model
made with a given material, the composition of which is indicated by him. He also
describes the characteristics of the said substance and the original process named
"liberation of deformations" and the apparatus he uses to measure the changes of
form. He ends up by showing the results obtained from two examples where he has

applied the proposed method with satisfactory results.

Zusammenfassung

Die vorliegende Abhandlung beschreibt ein experimentelles Verfahren zur
Untersuchung der Spannungsverteilung in irgend einem gegebenen Punkte im Innern
oder an der Oberfläche einer Konstruktion mit drei Dimensionen, auch für den Fall,

cr.—27
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dass ausser äusseren Krafteinwirkungen auch der Einfluss der Massenkräfte in
Betracht gezogen wird.

Der Verfasser schlägt vor, die Untersuchung einer Konstruktion an einem
verkleinerten Modell vorzunehmen, das aus einem Material hergestellt ist, dessen

Zusammensetzung angegeben wird. Er beschreibt ebenfalls die Eigenschaften dieses

Materials, sowie das Originalverfahren, genannt "Befreiung von Verformungen,"
und die Apparate, die zum Messen dieser Verformungen dienen. Die Abhandlung
schliesst mit der Beschreibung der Ergebnisse, die bei zwei Probemessungen erzielt
wurden, wobei die vorgeschlagene Methode mit zufriedenstellenden Ergebnissen zur
Anwendung kam.
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Lateral stability of beams

La stabilite laterale des poutres

Kippstabilität von Trägern

K. BENTLEY, M.A.

Cambridge

Introduction
The problem of lateral stability of beams is not new: the Solution for the case of

elastic buckling of a beam subjected to a pure bending moment was first given more
than half a Century ago. This Solution, however, was for a thin deep beam and
Timoshenko later extended the theory to include I-sections. The mathematical solutions

are, however, rather complicated and Timoshenko gave an approximate energy
method for an I-girder subjected to a central load. In this theory, however, he
neglected the ratio of prineipal moments of inertia as being small and the theory is only
applicable to I-girders. In the following paper it is proposed to give approximate
energy solutions for beams subjected to pure bending and to a central concentrated
load and no assumption is made as to the size or shape of the member except symmetry
about the major axis.

The case of lateral buckling of beams when stressed above the proportional limit
has been considered very little. Timoshenko* suggests a possible method of
procedure. The problem is considered in more detail in this paper and a method is
suggested for calculating the critical loads when the curvature of the stress-strain
relationship is taken into aecount.

Energy method for obtaining the critical moment for lateral buckling of
beams subjected to pure bending

Consider a beam of length L subjected to a pure bending moment M about the
major axis. Let the bending rigidity about the major axis be A and about the minor
axis B. Then due to the bending moment M the beam will take up a curvature of
M/A in the plane of bending. The stability of the beam may be considered by
supposing that it undergoes some small displacement from this position of equilibrium.
If consequent on this small displacement a decrease of energy take place, the beam is

* See Timoshenko, Theory ofElastic Stability.
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unstable. The critical condition such that the beam is in neutral equilibrium may
be found by finding the value of M so that there shall be no gain or loss in energy.

At a distance z from one end of the beam let the lateral deflection be u and the
angle of twist 9. There is thus a lateral bending moment of M sin 6 and a bending
moment of M cos 8 about the major axis. Thus for an elemental length of beam dz
there is an increase of strain energy of bending of:

IM2 cos2 8 M2 sin2 6 M2
+\ 2A ' 2B 2A

If 6 is small, the total increase of strain energy is:

\ M2I B\
)d*=2B{l-A)™2e-dz

CL M2( A\„

rL / de dw in
cL j ide\2 i

dz (b)

It has been shown by many writers * that the torque acting at this cross-section may
be written as:

Cdd d^e
Jz~CWi

de d^e
where C-r is the torque according to the usual St. Venant Solution and the term Q-v-j
allows for non-uniform torsion and warping of the cross-section and may be
calculated according to the method given by Timoshenko.

The strain energy due to torsion is thus:
Idmdff
[dTydz

Thus the sum of (a) and (b) at the critical condition will be equal to the work done
by the applied moments M when the beam is allowed to deflect. The work done
by M may be calculated by finding the angle through which it turns.

The lateral bending moment M sin 6 causes the ends of element dz to rotate

through an angle =— dz relative to each other. This occurs in a plane at an

angle 8 to the horizontal and the relative rotation in a vertical plane is — dz.
B

Due to bending about the major axis the ends of the element dz rotate by an amount
M M cos2 6

—— dz-\ dz relative to each other, the first term being the angle before

the deflection e was given and the second term after. Thus the total relative rotation
ofthe ends is:

f£/Afsin20 M Mcos29 \}0{^--dZ-Ä-dz+—^--dz)
The work done by M is therefore, for small 6:

CL M2[ B\
)o-B{l-Är-dz^)+{h)

Substituting for (a) and (b) and noting that the beam is symmetrical about the centre,
the equation from which the critical moment may be obtained is:

rLi2M2/ b\m cL'2 ide\2 rL'2 de d>e

* See Timoshenko, Journal ofthe Franklin Institute, March, April, May, 1945.



LATERAL STABILITY OF BEAMS 421

If the relationship between 6 and z were known exactly the equation (1) would give
an exaet value for Mcr, the critical moment causing lateral instability. Usually an
exaet relationship is not known, but if a relationship satisfying the end conditions
is assumed, then an approximation to the answer is obtained.

Thus when the ends of the beam are held in such a manner that they are free to
ttz d26

warp, e=ay sin y satisfies the end conditions that 6=—2=0 at both ends of the

beam. Substitution of this in equation (a) gives a value for the critical moment with
ends free to warp of:

tr / BC / Tr2 C,
M'x'iJ(x=m-J1+D-.-i (2)

This agrees with Timoshenko's Solution for an I-girder when the value of Cy for an
I-girder is substituted and the value of B/A is neglected. The ratio of B/A may be
as high as 0-4 in practice and in those cases its neglect would give appreciable error.
The value of the critical moment given in equation (2) is exaet because in this case
the value of 6 assumed is exaet.

In a practical case it is almost impossible to apply a moment at the ends without
preventing warping and so the case when the ends are completely restrained against

con-warping will now be considered. In this case 9=by 11—cos -=- I satisfies the end

de
ditions that d=—=0 at both ends. When this value of 0 is substituted in equation (1)

it is found that the value of the critical moment M~ is given by:

IT / BC / 4lT2 Cy

^2=H5zVi©^-V1+^-c (3)

This Solution is not exaet due to inaecuracies in the assumed value of 6. By
taking 6 of the form (see Timoshenko, Theory ofElastic Stability):

0=Ml-cos— I-t-62(I—cos — I+63II-COS — 1+

a more accurate answer may be obtained. It can be shown that equation (3) is in
error by the order of 2 %, negligible for all practical purposes. One noticeable point
about (3) compared with (2) is that complete restraint against warping increases the
critical moment by more than 15 %.

Energy Solution for a beam subjected to a central concentrated load through
the shear centre
Suppose that a central load P is applied at a distance y above the shear centre so

as to produce no twist. The stability is considered as for the case of pure bending
by assuming the beam to deflect. Let 6m be the angle of twist at the centre.

Then in the manner already given, the strain energy due to lateral bending is:

jj-U'-^""12
and the strain energy due to torsion is:

\:w- de d^e
ldz' dzi

dz
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The work done by the central load may be found by considering it in two parts.
If the load is applied at the shear centre, the work done by it may be found in a manner
similar to that already described for the pure moment. Due to lateral bending the

ends of element dz rotate through an angle ¦=- sin 6 — relative to each other. Since
2 B

this bending occurs in a plane at angle 6 to the horizontal it causes a lowering of the

load of z sin 6 ——— dz. Similarly due to bending about the major axis the
2B

P
load rises by an amount r— z2 sin2 6 dz. Thus, if 0 is small, total work done by P is:

cm pit ß\/„ aH"«*
Due to the load being applied at a distance y above the shear centre there is an
additional work done ofPy(l — cos em)=Py6m2/2 approximately. Remembering the
symmetry about the centre of the beam, the energy equation then becomes:

rmpii ß\n Pydm2 CL'2 lde\2 rm dn diQ

The solutions of this may be found as for the pure bending case and are given below:

When j=0 and ends free to warp: pcn -jYJ\_ßiAy+j2 • *f) ¦ • ¦ (5)

18-3 / BC I 4tt2 CA
When y=0 and ends fixed: P"2=^ß'J l—BIA\+U '~Cl ' ' ' ^'
When the load is applied distance y above shear centre the critical load of equation (5)
is reduced to:

Pcn1=PcriU-X+^) approx. (7)

where

y_ 301»

PcryLi'l -B/A)
The theory considered so far has been concerned with beams of material which
behaved elastically. For beams of, say, aluminium alloy the ränge of elastic behaviour
is small and so the elastic critical loads will not give a good approximation to tbe
failing loads of the beams. Attempts have been made in an empirical fashion to
allow for this effect, among others, by assuming some initial imperfection for the
beam or some eccentricity of loading. The effect of this is that lateral deflections of
the beam occur from the first application of the load becoming infinite, theoretically,
near the critical load. The failing load is then determined as that load which causes
the stress in the beam to exceed the yield stress of the material or some other pre-
determined value. A value of the initial eccentricity is then chosen to give good.
agreement with experiment. This method, whilst giving reasonable agreement
between calculated and actual failing load, covers up the essential fact that much of
the reduction in failing below the elastic critical load is due to the relationship between
stress and strain being non-linear. In this paper it is proposed to give an approach
which is dependent only on this fact.

The method follows that originally proposed by Engesser for struts in which the
curved stress-strain relationship may be allowed for by an effective modulus of
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elasticity. For the problem of lateral stability of beams, the method is more com-
plicated due to the fact that there are four factors, A, B, C and Cy, in which the
modulus of elasticity plays a part. Since I-beams are most frequently used in practice
and are also the simpler to deal with theoretically, the following discussion will be
restricted to beams of I-section. The usual proportions of I-section will be taken, so
that it is possible to assume that the web has a small effect on the bending and that
in bending about the major axis there is a uniform stress in the flanges.

Let us assume the theoretical approach of a beam which remains straight until
buckling and then fails by bending laterally and twisting. Before buckling the stress
distribution in the I-girder may be considered to be very nearly a uniform compressive
stress in one flange and an equal tensile stress in the other. The strain of the flanges
will be that corresponding to the stress for the material concerned, and the curvature
of the beam will be the strain divided by the distance to the centre of the section. If
the stress is greater than the limit of proportionality this curvature is greater than the
elastic value given by M/A. It is fairly easy to see that the curvature is increased in
the ratio E/Es where Es, the secant modulus, is the actual ratio of stress to strain.
As will be seen from equation (a), it is the curvature in the plane of bending which
introduces the factor A, and it is therefore proposed to allow for this by assuming A
to be factored in the ratio Es/E. This, of course, has no effect when the stress is
below the limit of proportionality.

At the critical load, when the beam suddenly deflects laterally and twists, the
direct stresses due to lateral bending and the shear stresses due to twist both increase
rapidly, whilst the mean direct stress due to the applied moment remains constant.
Thus at some points in the beam the direct stress will decrease below that caused by
the applied moment, and if the mean direct stress is above the elastic limit, then the
reduction in stress will occur as an unloading from the plastic region. Thus the stress

Mesan stress
Flange

Slress

Unloading

Strain

Bending stress Following tangent
modulus law

Mean slress
in Flange

S^
fS *ÜÖ-*
Jf.ö-S«a«;«

Fig. 1

distribution across a flange will be somewhat as shown in fig. 1, where the increase of
loading follows the usual stress-strain curve, but unloading from the plastic region
follows the usual Hooke's law.

For small lateral bending moments the increase of stress can be approximated
to by a straight line whose gradient E, is that of a tangent to the stress-strain curve
at the point considered. E, is called the tangent modulus. This effect was first
mentioned by Engesser for struts, and it has been suggested that for small lateral bending
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stresses the effective lateral bending modulus may be taken as a reduced modulus Er *
where:

Er_ 4E,/E E,

E~(l + VEJE)2:>E
The effective value of B to be used in formulae is then the elastic value factored by
Er/E.

In this purely theoretical case of a beam which remains straight until buckling,
the shear stress due to twisting increases rapidly as the direct stress remains
constant. There is a certain amount of evidencef that for this case the shear modulus
is unchanged and the value of C remains unaltered.

Let us now consider the more practical case where the beam undergoes lateral
deflections and rotations before the critical load is reached. These lateral deflections
are due to inevitable imperfections in the beam. In this case the deflections first of
all occur gradually and then more rapidly when near to the critical load. Thus the
shear stress due to twisting increases gradually as the bending moment is applied.
When the shear stress increases very gradually in this way while the direct stress
increases more rapidly there is evidence t to show that the shear modulus is very
nearly the elastic value G factored by Es/E. Accordingly the torsional stiffness C
will be factored in the ratio Es/E. For more rapid increases of shear stress the
effective modulus would be higher and closer to the elastic value which applies when
the increase of stress is very rapid. In a similar manner, lateral bending occurs
gradually and the direct stress distribution in a flange will change somewhat as shown

Mean slress

AD

BC
Stress

Fading load

Moment

Fig. 2. Variation of stresses in beam with small eccentricity

in fig. 2. The stresses continually increase and the direct stress distribution due to
lateral bending of small magnitude is such as to approximate to that given by a
tangent to the stress-strain curve.

The effective value of modulus B is thus its elastic value factored by E,/E. The
effective value of the major stiffness A will be the same as that already discussed,
that is, A x Es/E. Since the warping rigidity of an I-girder is provided by differential
bending ofthe flanges, this also will be modified in the ratio E,/E.

Thus it will be seen that in the more practical case of deflections oecurring below
the critical moment, the effective values of B and C are lower, giving a lower value
of the critical moment. In practice therefore it is to be expected that the values of

* S. Timoshenko, Theory of Elastic Stability, McGraw Hill.
t S. Batdorf, "Theories of Plastic Buckling," Journal of Aeronautical Sciences, July 1949.
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the critical moment will approximate to this lower limit. The value of the critical
moment for a beam is now dependent on the material of the beam and not only on
the modulus of material as given in equations (2), (3), (5) and (6).

In order to find the critical moment for a beam the stress-strain curve of the
material must first be obtained and the values of E,/E and Es/E noted for various
values of the stress. The value of the critical moment may then be most easily found
from (2) and (3) by a trial and error procedure. A value for the stress in the flange
caused by the critical moment is assumed so that the values of E,/E and E,/E are
known. When these values are substituted in the equations a value of the critical
moment will be obtained which will probably differ from the originally assumed value.
A second approximation to the correct value can then be made until agreement is
reached.

The case of the centrally applied load is rather more difficult, since the stress and
therefore the effective moduli vary along the beam. Numerical methods of Integration

are required for the Solution. With the assumptions made, the stress in the
flange varies linearly from zero at the end of tbe beam to a maximum p at the centre.
The value of P in equation (4) may thus be replaced by 4p/ZL where Z is the modulus
of bending about the major axis. Equation (4) may then be rewritten for the case
where load is applied through the shear centre:

4p2

Z2L2

cL>2 ii i\ rL'2 tdey, cm de d3ß

where A, B, C and Cy are functions of p.
Assuming some value of p, the effective values of A, B, C and Cy may be found

and each of the integrals of equation found by numerical Integration. The Solution
gives a value of L which agrees with the chosen value of p and hence the value of the
critical load for a given L. This procedure may be repeated until the relationship
between P and L is found. Of course, in the above the value of Z to be used should
not be the usual elastic value but one which allows for the form-factor due to the
curved stress-strain relationship. For the usual I-section this correction is small.

Experimental results
Some experiments have been carried out at the Engineering Laboratory,

Cambridge, with the support of the Aluminium Development Association to check the
above theory. The beams had an I-section 2\ in. deep, by 1^ in. wide by i in. thick
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and two materials were used, one to specification D.T.D. 364 and the other M.G. 5,

typical stress-strain curves and effective moduli being shown in figs. 3 and 4.

The specimens were supported under conditions of simply supported ends, the
beam being free to deflect in vertical and horizontal planes but the ends prevented
from twisting. For the case of pure moment the load could not be applied so that
the ends were completely free to warp and the method of end fixing is shown in figs. 5

and 6. The blocks bolted to the flanges (fig. 5) located the specimen in the end fittings

%

».
Fig. 5. Blocks locating beams in end fitting

Fig. 6. 50-in. beam at failure

(fig. 6) and also provided some restraint against warping. The blocks were clamped
tightly in the end fittings. End moments were applied by means of cantilevers
projecting beyond the ends of the specimen.

With the central loading the ends were allowed to warp by supporting the I-section
through the web only. With the higher strength alloy, D.T.D. 364, restraint against
warping was provided for as in the pure bending case, but with the M.G.5 the ends
were welded to ^-in. thick blocks of aluminium in the hope of providing füll restraint.

The results of the tests together with the calculated results are shown in figs. 7, 8,
9 and 10.

It will be seen that for long slender beams the failing load may be greater than
the critical load. This is to be expected since in this region the critical load falls
below the minimum strength of the beam. For the end fittings of type shown in fig. 5

the experimental results lie consistently between the two calculated curves showing
approximately the same amount of restraint against warping and that füll restraint
was not obtained.
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On the whole the experimental results seem to agree well with the theory; the
largest discrepancies appear in the neighbourhood of the proportional limit, where
the "elastic" curve diverges from that calculated by the use of effective moduli. It is
in this region that the greatest divergence might be expected, due to the rapid change
in slope of the stress-strain curve. For example, consider a practical beam in which
there is inevitably some small deflection near the critical load, and let us suppose that
the length is such that the critical load just produces a stress equal to the proportional
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limit. Any small lateral bending therefore produces stresses which extend into the
region of curved stress-strain relationship and the ratio E,/E is less than 1. The
simplified theory so far considered gives the effective modulus at this point as E and
hence it is to be expected that in practice the failing load will be less than that
calculated. This difference will be greater, the greater the initial imperfections which
produce the lateral deflection, and it is only in this region that the initial imperfections
would be expected to have much effect.

Nowhere in the theory has any mention been made of the size of the initial
eccentricities which must be present in any practical beam. Some eccentricity was
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assumed in the theory, in order to produce small deflections below the critical load,
but no specific magnitude was attached to it. The basic assumption was that the
lateral deflections were small, so that the bending stress distribution could be approxi-
mated to by a straight line. It was also assumed that no unloading of the fibres
oecurred. This second assumption is not strictly true. Measurements of deflection
which were taken enabled an estimate to be made of the point at which unloading
oecurred and it appeared that unloading usually oecurred but never below 95 % of
the failing load. This is sufficiently close to failure to make the assumption reason-
able. In this region the lateral bending becomes so large that the first major assumption

is no longer tenable and the bending stresses no longer follow a reasonably
straight-line law. It can be shown that the effect of unloading and this effect tend
to cancel each other and hence the reasonable agreement of the theory with experiment.

Conclusions
On the basis of the experimental data presented it seems that the calculated critical

load for lateral buckling does give a good approximation to the failing load of beams
in bending, even when the magnitude ofthe initial eccentricities is neglected.

Summary

The usual mathematical solutions for'the problem of lateral stability of beams
are long and complieated, particularly when allowance is made for the ratio of the
maximum and minimum bending stiffnesses. An approximate energy Solution is

presented in this paper for the two cases of a beam in pure bending or under a central
concentrated load.

The theory is extended to allow for beams fabricated from materials whose stress-
strain curve is non-linear, which is the case with aluminium alloys. The method used

for this follows that originally presented by Engesser for struts when the usual elastic
modulus is replaced by an effective modulus. Experimental results are given for
I-beams fabricated from two different aluminium alloys. These results show good
agreement with the theory.

Resume

Les solutions mathematiques habituelles du probleme de la stabilite laterale des

poutres sont longues et complexes, tout particulierement lorsque le rapport entre les
valeurs maximum et minimum de la rigidite ä la flexion est variable. L'auteur
presente une Solution approchee, basee sur des considerations energetiques, dans les
deux cas de la flexion pure et de la concentration de la charge au milieu de la poutre.

La theorie est elargie aux poutres constituees en un materiau dont le diagramme
d'allongement est non-lineaire, comme c'est le cas par exemple pour les alliages
d'aluminium. La methode employee suit celle qui a ete indiquee initialement par
Engesser, dans laquelle le module habituel d'elasticite est remplace par un module
efficace. L'auteur reproduit des resultats experimentaux obtenus sur des poutres
constituees par deux alliages legers differents. Ces resultats presentent une bonne
concordance avec la theorie.

Zusammenfassung

Die üblichen mathematischen Lösungen des Problems de seitlichen Stabilität von
Trägern sind lang und kompliziert, besonders bei veränderlichem Verhältnis der
grössten zur kleinsten Biegesteifigkeit. Dieser Aufsatz bringt eine Näherungslösung
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auf Grund einer Energiebetrachtung für die beiden Fälle der reinen Biegung und
der Einzellast in der Mitte des Trägers zur Darstellung.

Die Theorie wird erweitert auf Träger aus Material mit nichtlinearem Spannungs-
Dehnungsdiagramm, wie zum Beispiel Aluminiumlegierungen. Die dabei verwendete
Methode folgt der ursprünglich von Engesser für Streben angegebenen, bei der der
übliche Elastizitätsmodul durch einen effektiven Modul ersetzt wird. Es werden
Versuchsresultate für Träger aus zwei verschiedenen Aluminiumlegierungen angegeben.

Diese Resultate zeigen eine gute Uebereinstimmung mit der Theorie.
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