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All2

Some special cases of buckling
Une étude du flambage en certains cas particuliers

Einige besondere Knickfille

Ir. W. J. vaAN DER EB
Research Engineer, T.N.O., Delft, Holland

BUCKLING OF LATTICED STRUTS WITH LONG BATTENS ONLY

When the lengths of the battens are not neglected, the system of the latticed strut
may be supposed to consist of coupled parts having a moment of inertia 7/, and a
length 2e, and parts to be coupled whose two components are self-supporting *“single
sections,” each having a moment of inertia /, and a length ¢. The distance between
the centres of the battens is termed /, so that equation /=c+2eis valid. Furthermore,
the angular displacement of the centre of the pth batten is indicated as i,, whilst the
difference between the angular displacements of the ends of this pth batten is referred
to as 4¢, (figs. 1 and 2).

In considering any given (p+ 1)th element (of a single section) of the parts to be
coupled, it is found that the following differential equation must be applied:

branch of the dellection curve

Fig. 1
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d%y P + M,

dx2— _H}y Erl,
whilst for the coupled parts
d?y 2P
axt B}
is valid. With the boundary conditions that must hold for the parts to be coupled:
where x=pl+e: Y'=dpriyn
x=(p+1)l—e: Y =0+
and for the coupling parts:
where x=pl—e: Y =4dp
x=pl+te: : Y'=bptm

(/ and r denoting ““left”” and “right”).
In this way, after introducing the conditions of equilibrium and continuity, the
equation of finite differences by which the problem is defined is found to be:

L2(1—
{Pc c?s a,e cos ale]42¢p+ [Pc ( cqs a,c)cos ae
d,C S1n asc Ui a,C S1n ajc .
2Pe . 2(1 —cos 2a,e) cos ae Pe 114 —4
+ ( 1 ) 1 ]pr_l_[ + ] ¢p+l qsp—~1=0

2ae sin 2a,e acsin a,c = 7 .

in which a;=2P/FErl,, a,=+/P/FErl,, 2P=total buckling force, n=4C/ErF,h2, F,=
cross-sectional area of the single section and ~=distance between the centres of gravity
of the single sections. As large battens, having great rigidity with respect to
“Vierendeel” deformation, are being dealt with, their deforming effects may be
assumed to be infinitely small and are therefore neglected.

An exact solution of this equation of finite differences which also satisfies the
boundary conditions, not to be mentioned here, is obtained at such a state of buckling
deformation that the deflection curves of the centre lines of the battens are all situated
on sinusoidal curves of the same form, displaced in a parallel sense with respect to
each other, of which only that with one wave between the bar-ends will, of course,
represent the least favourable condition. Introducing the solution indicated, the
general buckling condition is found to be:

2&17[ ﬁw( m om) ™ (1—0()77]+a(1—a)/3_7r C Br . o

m

cos —|cos - —cos— | —sin - sin "
m n m n 2n 2 m

) owr[ ,817'( 17) - w (l—oa)'rr:'
sin —|cos — [ 1—cos — | +sin —sin
m m n n 2n
in which a=c¢// and f=3(1—a)\/21,/I, and n=number of panels, whilst m is the
coefficient of the virtual buckling length defined by the equation:
m2FEr],
~ m2z

=
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and . h
’ 2i,2
This formula takes into account all extreme cases, for if ¢=0, that is, 2e=]/, then «
becomes 0, whilst B2=4I./I,, Moreover, cosom/m approximates to unity and
sin awr/m approximates to am/m.
The buckling condition is reduced to:

or B T
[3Z+1].cos -n—1=—[-;-Z+]] - €08 -
ﬁrr_ T T
€OS — = —COS 5-=C0S 7~
or fr_2n
m v
therefore m=28n

-Thus the total buckling force becomes, under condition g>=%1./1;:

2m2Erl, w2 . E.7.1,
4222~ ,12[2

2P=

which is correct.
When c¢=/, that is, e=0, then =1, B=0, and the following is obtained:

s o o
2-;1 cos ;—cos o
Z -

o ., ks
sin —| 1—cos —
m N

being the simple formula already found by several authors.
When the battens are very narrow, their * Vierendeel” deformation is no longer
negligible and it is necessary to equate for Z as follows:

h2
;2
7= 2
o
ErF,h3 (1 —CoS ;)
=T,

where I, is the moment of inertia of the battens with respect to their *Vierendeel”
effect. If the battens are infinitely weak, [,=0, and in that case Z=0. It is then
found from the buckling condition that m=n, and the total buckling force is then:
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2m2F7l,
e

which is also correct.
Therefore, as has already been shown, all the extreme cases have been taken into

account in the formula.

When transposing the above-mentioned buckling condition, a fortunate fact
appeared, viz. that in practical cases the effect of 8 is very slight. Thus, for example,
values were found as in the following table:

n=3 a=06 n=6 a=06
o =002 p=012 . p=002 | ﬁ;(iiz
07 29-39 28-41 0-9 49-80 49-36
1-1 523 521 14 15-26 1522
1-9 0-176 0172 2.7 230 2:29

The values of B applied in the above table were based on boundary values for
V2L/1; equal to about 0-1 and 0-6. This quantity varies in practice between ap-
proximately these amounts. It may be seen from the values shown above that
if tables are compiled for the average value, i.e. for 4/21,/1;=0-35, the error in-
curred in Z will at most be 1%, and furthermore this error rapidly diminishes if m
increases (i.e. with Z decreasing).

This affords considerable simplification in the numerical tables and in the appli-
cation of the theory. In computing Tables I to IV, a value of B based on 1/2L/I,
=(0-35 has been introduced. Furthermore, five values of « have been introduced,
viz. 0-6, 0-7, 0-8, 0-9 and 1. The various lines (figs. 4 to 7) have been plotted in ten
points, intermediate values being established from curves drawn as accurately as
possible.

Method of calculation

Calculate: Z=h?/2i,2 and a=c// in which c=/—2e.

The corresponding value of m can immediately be found from Tables I to IV.
Then the virtual ratio of slenderness of the strut is:

ml
/\w‘rr =
e

in which:

i, =radius of gyration of the single cross-section;

h =distance between centres of gravity of the component sections;

! =distance between centres of battens measured along centre-line of bar;

¢ =the length to be taken into account of the sections to be coupled;

2e=Ilength of battens minus twice the distance between two rivets in the case
of riveted constructions. In the case of welded constructions the entire
length of the batten is allowed to be taken into account.

The virtual ratio of slenderness being known, the required admissible compressive
stress oy can immediately be found in Table VI according to V.O.S.B. requirements.*

* V.0.5.B.=Netherlands Standards for the Designing of Steel Bridges.
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Hence the admissible compressive force=2F, . o4, in which 2F,=total gross cross-
sectional area.

‘Numerical example (fig. 3)

h=14-6 cm.; i,=2:02 cm.; (=695 cm.; ¢=90 cm. and /=120 cm., whilst n=4
and F,=28-0, so that:

14-62
Z=—+—7=—=26'1
: 2x2-022
whilst «=90/120=0-75, m is found to be about 1-05; hence
1-05x120
vit=—77 — =03
2:02
50 2&3% €=90 x C 18 <14.6
- N i —— i L :
S -z o
o 120 i 120 e 1=120cm 120 N
b [ =480 cm. .
Fig. 3
TaBLE I (fig. 4)
ZzZ VA Z Z A
m a=0-6 a=0-7 a=0-8 x=09 a=1
n=3 n=3 n=3 n=3 n=3
0-60 ~
0-65 48-10
0-70 29-00 ~
0-75 21-00 65-00
0-80 15-40 3690 ~
0-85 12:20 23-40 79-50
0-90 10-10 17-40 41-00 ~
0-95 8-40 13-70 27-90 97-30
1-00 7-05 11:25 20-30 48-80 ~
1-05 6-05 9-40 16-00 32-:00 119-70
1-10 5-20 8-05 13-00 23-85 59-20
1-15 4-60 695 10-85 18-70 38-90
1-20 4-05 6-05 9-35 15-20 28-60
1-25 3-40 5-20 8-00 1270 22-30
1-30 2-90 4-50 6-90 10-85 17-80
1-35 2-55 4-05 6-05 9-40 15-20
1-40 2-:20 3-50 5-30 8-10 12-90
1-50 1-70 2-65 4-10 6-30 9-65
1-60 1-:20 2:05 330 5-00 7-50
1-70 0-80 1:55 2:50 395 595
1-80 0-50 1-10 1-95 3-10 4-80
1-90 0-17 0-75 1-50 2-:50 3-85
2:00 .0 0-40 1-20 2-05 315
2:10 0-20 0-95 1-75 2-55
2:20 0-10 0-70 . 1-55 2:05
2-30 1-30 1-65
2-40 1-10 1-30
2-50 1-00
2-60 0-75
2:70 0-55
2-80 0-35
290 015
3-00 0
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The admissible compressive stress according to V.0O.S.B. requirements is then

1,021 kg./cm.2, so:
(P)=2x28-0x1,021 kg.=57-2 metric tons.

The ratio of slenderness with respect to the x direction is:
_ 480
T 695
and the admissible compressive stress is then 952 kg./cm.2, so

(P)=2x28-0%x952 kg.=53-2 metric tons.

The latticed stryt therefore appears stronger with respect to the y axis than the x axis.
If the length of the battens had been neglected, a virtual ratio of slenderness of
Avir=82 and an admissible compressive stress of 800 kg./cm.2 would have been

found. In this case P=44-7 metric tons, whilst according to Engesser’s formula
Avire=285 and P=42-7 metric tons.

Ax 69,

TaBLE II (fig. 5)

Z VA zZ VA ZzZ
m a=06 a=0-7 a=0-8 =09 =1

n=4 n=4 n=4 n=4 n=4
0-60 ~
0-65 97-60
0-70 57-50 ~
0-75 41-00 129-20
0-80 30-55 67-25 ~
0-85 24-80 45-10 157-00
0-90 20-30 34-75 79-70 ~
0-95 17-40 27-05 53-50 179-00
1:00 14-70 22-95 40-25 95-50 ~
1-05 12-75 ~19-65 32-:00 63-70 232-50
1-10 11-15 16-70 26-35 47-25 115-40
1-15 9-95 14-75 22-30 37-70 76-10
1-20 8-90 12-90 19-00 30-90 56-25
1-25 7-90 11-40 16-60 25-90 44-30
130 7-00 10-05 14-60 22-20 3625
1-35 6-20 895 12:90 19-30 30-35
1-40 5-55 8-00 11-50 17-00 26-05
1-50 4-40 6-50 9-55 13-60 19-95
1-60 3-50 5-40 8-:00 11-05 15-80
1-70 295 4-40 6-75 9-00 12-90
1-80 2:40 3-70 5-65 7-60 10.70
1-90 2:00 3-05 4-70 6-40 895
2:00 1-65 2-55 3-75 5-40 7-60
210 1:35 2-10 3-15 4-60 6:50
2:20 1-05 1-65 2-60 3-95 5-55
2-30 0-80 1-30 220 3-30 4-80
2-40 0-60 1-05 1-80 2-80 4-15
2:50 0-40 0-75 1-45 2-40 3-55
260 0-15 0-60 1-20 2:05 3-10
2-70 0 0-40 1-00 1-75 270
2:80 0-25 0-80 1-45 2:30
290 0-10 0-60 1-20 2-00
3-:00 —0-05 0-50 1-00 1-70

BUCKLING OF BARS ELASTICALLY SUPPORTED AT INTERMEDIATE POINTS

The second case refers to the calculation of the stability of the upper chord of a
low-truss bridge. There are already many publications on this subject. Thus, the
C.R;_ls =
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TasLE 1II (fig. 6)

227

Z Z VA zZ ZzZ
m a=0-6 a=0-7 a=0-8 a=09 a=1

n=>5 n=>5 n=>5 n=>5 n=3>5
0-60 ~
0-65 174-90
0-70 95-50 ~
0-75 65-40 212-30
0-80 50-50 110-60 ~
0-85 40-60 77-05 257-10
0-90 33-50 57-00 130-50 ~
0-95 28-20 46:05 89-05 311-40
1:00 24-60 37-90 66-00 156-50 ~
1-05 21-50 32-00 52-80 105-50 378-00
1-10 18-90 2770 43-50 77-40 178-80
1-15 16-85 24-20 37-00 62-00 123-95
1-20 15-05 21-50 31-90 50-90 91-85
1-:25 13-40 19-00 27-80 42-75 72-45
1-30 12-10 17-00 24-60 36-90 59-40
1-35 10-90 15-30 21-80 32-00 50-10
1-40 9-90 13-90 19-60 28-4Q 43-05
1-50 8-30 11-60 16-40 22-70 33-15
1:60 6:90 970 13:60 18-50 26-50
1-70 5-80 8-10 11-25 15-50 21-75
1-80 4-90 7-00 9-55 13-15 18-25
1-90 4:20 5-95 820 11-30 15:50
2-00 3-50 5-10 7-10 9-70 13-30
2-10 3-05 4-50 6:20 8-50 11-55
2-20 2-60 3-80 5:40 7-40 10-10
2-30 2-10 3-30 470 6:50 8-85
2:40 1-80 2-80 4-10 5-70 7-80
2:50 1-55 2-35 3-60 5-05 6-90
2:60 1-30 -2-00 315 4-50 6-15
270 1-05 1-75 270 3-90 5-50
2-80 0-90 1-50 2:40 3-50 4-90
2-:90 0-70 1-25 2-10 3-10 4-40
3-00 0-60 1-05 1-80 2-75 3-90

case of a bar elastically supported at intermediate points with hinged ends has already
been dealt with by Dr. Ing. Fr. Bleich in Theorie und Berechnung der eisernen Briicken
(Theory and Dimensioning of Steel Bridges), whilst the same theme was subsequently
treated by Prof. P. P. Bijlaard in De Ingenieur, No. 4, 1932, in an article entitled
“Knikzekerheid van de bovenrand van open wandbruggen’ (Buckling Resistance
of the Upper Chord of a Low-Truss Bridge). . -

The same problem is dealt with below,
but in this case with hinged elastically
supported ends. Fig. 8 shows the con-
dition for any given number of waves.

With a2=P/EI, the differential equa-
tion of any given .pth curve will appear
in the general form:

ay_
dx2~

in which S, and R, are values depending on the elastic reactions p; . .

_02y+

b las B, g g P“
, i
5, P y _/f ]
2 B fo iy as
A X |
Fig. 8

Spx+ Rpe
ETI

o
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TABLE 1V (fig. 7)

zZ VA VA Z Z
m a=06 a=0-7 o=0-8 =09 a=1
n=6 n=6 n=6 n=6 n==6

0-60 ~
0-65 258-80
0-70 144-00 ~
0-75 96-40 311-60
0-80 7300 163-30 ~
0-85 59-00 112-50 379-50
0-90 49-70 84-50 192-50 ~
0-95 42-50 68-05 131-50 458-90
1-00 36-50 56-50 97-60 229-70 ~
1-05 32:10 47-85 77-50 155-00 555-70
1-10 28:20 41-30 64-45 114-30 276-10
1-15 2520 36-60 54-90 89-50 182-40
1-20 22:65 32:20 4720 73-50 134-45
1-25 20-30 28-60 41-40 63-40 106-90
1-30 18:50 25-50 37-05 54-90 87-85
1-35 16:95 23-05 33-:00 4805 74:15
1-40 15-25 21-10 29-40 42-30 63-80
1-50 12-80- 17-70 24-50 33-05 49-30
1-60 10-80 14-90 20-30 27-20 39-60
1-70 9-30 12:70 17-25 23-55 32-70
1-80 7-95 11-10 14-85 20-30 27-50
1-90 6:90 9:65 12:90 17-50 23-50
2:00 6-00 830 11-20 15-10 2030
2-10 5:20 7-30 9-90 13-20 17-70
2:20 4-50 6-40 870 11-65 15-60
2-30 4-00 5:65 770 10-30 13-80
2-40 3-50 5-05 6-85 9-15 12-30
2-50 3-05 4-45 6:15 820 11-00
2:60 2:65 3-90 5-50 7-35 9-90
2:70 2:30 345 4-90 660 8:90
2-80 2:05 3-10 4-40 6-05 8-00
2:90 1-75 2:70 4-00 5-40 7-25
300 1-50 2:40 3-55 4-90 6-60

The boundary conditions for any given pth curve are as follows:

where
where

pP=pcC:

x=(p+1)c:

Y=Yp+1n
Y=Ye+1)r

(! and r again denote “left’” and “right™).
Introducing the conditions of equilibrium and continuity, the following system
of simultaneous equations of finite differences is obtained:

aP . 2aP(l1—cos ac)y,
Pp:sin ac” sin ac
and Azn,,=A2y,,+§P,,

. . C
in which np=yp—l;[PSp_1+Rp_1]

In the case of hinged elastically supported ends, the following equation is valid:
' Pp=A(yp—3)

where A4 is the force giving any elastic support a deflection of unity, and §;, is the
lateral movement of the left end, that is, for p=0.
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Now buckling of the bar is possible in two distinct ways. In the case of symmetric |

buckling, whereby 8,=39,, the following conditions are valid:

For p=0 and p=n, it follows that y,=y,=0 and ny=7,=0 and also ZP,=0

or, consequently, 2(y,—8;)=0.
In the case of reversed symmetric buckling §y=—3,.

In this case y,=0; y,=28,, and it follows that ny=1x,=0, furthermore

cEpP,=2PS,.

After several reductions the buckling condition is finally obtained, which can be

written in both cases in the general form:
14_IC]
[B] [D]

in which, in the case of symmetric buckling:

[A]=cosh (n+1)¢y—cosh (n+1)¢+cosh ¢ cos ng—cosh np cos ¢
[B]=sinh ny sin ¢—sinh ¢ sinh né

and in the case of reversed symmetric buckling:

[A]=cosh (n+ 1)$+cos (n+ 1)¢—cosh i cos ng—cosh np cos ¢
[B]=+sinh m sin ¢+sinh ¢ sin n¢

while in both cases:

[C]=[2(cosh y—cos ¢)]>+2B[cosh ¢ cos ¢—1]
[D]=2B sinh ¢ sin ¢

In these formulae ¢ and ¢ are given by
cos p=—1v/B+3v/B+4a+16
cosh $=+3v/B+1v/B+4e+16
in which:

a=B[n;1 sin %— l] -2 [1 —Cos %]
Ky
ﬁ=2B[1 —Cos$ ;1]
m representing the coefficient of virtual buckling length defined by the formula:
m2ETl

~ m2c?

hilst furth P
whilst furthermore = 2Ed Y

_WZETI
T Ac3

so that

In these equations:

A =the force required for giving any elastic support a deflection of the unity

(1 cm.);
n =the number of panels of the strut;
¢ =the length of a panel of the strut;
Er=modulus of buckling;

I =the moment of inertia valid for the buckling direction under consideration.
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In this way the most general expressions for buckling condition are given; they are
valid in any given number of panels.

iy and ¢, however, can be eliminated in a fairly simple manner, and, for any given
value of » in each particular case of buckling, two equations of higher degree in terms
of B as a function of m, are obtained, viz. one in the case of symmetric buckling and
the other in the case of reversed symmetric buckling. With

a=(1—T sin E) b=2(l—cos Z)
m m m

the values are found as follows:

where n=2:
3b—6
b—2a

symmetric buckling: B=

reversed symmetric buckling:

B=1 ... (fig.9)
where n=4:

Fig. 9

symmetric buckling: B2(b2—4ab+2a2)— B(5b2—Tab—13b+10a)+(5b2—20b+4+10=0
reversed symmetric buckling: B2%(b2—2ab)+ B(ab+ 5b—3b2)+(b2—2b)=0
where n=6:
symmetric buckling: B3(b3—6ab2+9a2b—2a3)+ B2(—7b3+19b2—52ab—11a2b+ 14a?
+23ab?)+ B(14b3 —68b2— 16ab2+ 70b+ 56ab—28a)+(—7b3+42b2— 63b+14)=0
reversed symmetric buckling: B3(3a2b—4ab2+ b3)+ B2(—a2b+9ab2—5b3— 14ab
+1162)+ B(—2ab2+6b3 +4ab—22b2+ 14b)+ (— b3 +4b2—3b)=0
The accompanying two graphs (figs. 10 and 11) give the results, established point
by point, for m ascending by 0-1, where n=4 and n=6. All roots have been deter-
mined, so that curves for all wave forms could be plotted. It will appear that in each
case only two wave forms are possible. The other wave forms are fairly possible,
but can only be produced ““with assistance.” Table V gives the maximum B values
as a function of m for n=4 and n=6, whilst Table VI represents a set of buckling
stresses determined in accordance with V.0.S.B. requirements (Netherl. Standards
for the Designing of Steel Bridges), the admissible compressive stresses and safety
factor given as functions of the ratio of slenderness A, A ascending from unity. In cal-
culating the rigidity of the elastic supports (determination of A4), the two deformation
possibilities of the cross-section of the low-truss bridge are to be taken into account.
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The following formula is recommended (fig. 12):

1
A=)y (H—Ih)%
3EIL 2EL

How can the theory given above be applied? One possibility is to require the
same safety factor in both the x and the y directions in the upper chord (the x axis
is horizontal, the y axis is vertical). In general the radius of gyration with respect
to the vertical axis (in this case, the y axis) will be larger than with respect to the x axis.

Then the following condition is valid:

A=A,
c m.c
hence =
) ix Iy
i
50 ==
Ix

The required value of B corresponding to m can then be found at once in Table v,
hence: '
_B . Pbuckling___B .. Pac!ual

C c

A
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n in this equation denotes the required coefficient of safety against buckling under
the condition A,=A,. This value can at once be found in Table VI, where A,=A4, is
known, which will obviously be the case.

The ratio m=1i,/i, will generally be fairly small, varying between about 1 and 1-5,
and will seldom be more. The corresponding values of B are then usually rather
high, so that rigid vertical members are required in order to ensure the same resistance
against buckling with respect to both x and y axis. This, particularly in the case of
high bridges without upper bracing, leads to heavy constructions. In such cases it
will be found more advantageous to construct the upper chord somewhat heavier
with regard to the y direction, considering the last direction decisive (the x direction
being safe). The procedure then is as follows.

The actual compressive stress is given by:

P actual

£

where F is the gross cross-sectional area of the upper chord; Table VI at once gives
the corresponding required ratio of slenderness with respect to the y axis. This value
being A,, the required m value will be:

ag=

m=iy . /\—cy
The corresponding value of B can now be found in Table V; moreover:
B.n. Paclual
¢
n denoting the required factor of safety against buckling according to A,, also to be
found in Table VI.

The most advantageous use of material can, of course, only be found by trial, that
is, by comparing various possibilities with regard to their total weight.

A=

TABLE V
B B

n m

n=4 n=>~6 n=4 n=6
1-0 3-62 3-80 23 0-99 0-81
1-1 2-39 2:50 2:4 0-95 073
1-2 217 2-055 25 0-90 0-695
1-3 1-96 1-855 2:6 0-85 0-68
1-4 173 1-655 27 0-81 0-6635
1-5 1-51 1-46 2:8 0-75 0-65
16 127 1-31 29 0-70 0-635
1-7 1-19 1-24 3-0 0-65 0-62
1-8 1-15 1-17 31 060 . 0-605
19 1-12 1-105 32 0-54 0-59
20 1-095 1-035 33 0-46 0-575
2-1 1:075 0-96 34 0-37 0-56
2:2 1-03 0-89 3-5 0-37 0-545

Method of calculation

Calculate o=P/F. Find in Table VI the required ratio of slenderness A, corre-
sponding to o. Hence:
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i, being the radius of gyration with respect to the y axis and ¢ being the length of a
panel. Then in Table V the corresponding value B to m can be found. Now, oy
corresponding to A, also known in Table VI, 4 can be calculated according to

_B e P buckling

A
C
so here Pbuck!inng . Ok
TABLE VI

A G’k n O'd A Uk n Ud A U'k n 0{1 A Uk n O‘d
0-30 2390|1703 | 1400( 73 |2276|2:52 | 904 | 116 | 1539] 35 | 440 | 159 | 820 | 35 | 234
31 |2379| 1713 [1388| 74 [2272|2:55 | 892 | 117 |1515| ,, | 432 | 160 | 810 | ,, | 231
32 |2377| 1726 | 1377] 75 | 2268|258 | 880 | 118 |1490| . | 425 | 161 | 800 | . | 228
33 |2376( 1740 | 1365| 76 |2263|2:61 | 869 | 119 |1465| . | 417 | 162|790 | . | 226
34 (2375|1754 [1354| 77 |2259|2-63 | 857 [ 120 |1440| . | 411 | 163 | 781 | . | 223
35 [2374| 1769 | 1342| 78 |2254|2-66 | 846 | 121 |1415| . | 404 | 164 | 771 | . | 220
36 (2373|1782 | 1331| 79 [2250|2:69 | 834 | 122 [1392| . |397 | 165|761 | . | 217
37 |2372| 1798 | 1319| 80 [2245|273 | 823 | 123 [1370| . | 391|166 | 752 | . | 215
38 |2370|1-811 | 1308| 81 [2239|276| 800 | 124 |1347| I | 385|167 | 743 | . | 212
39 |2369(1-827 [1296| 82 [2234|2:80| 800 | 125 |1327| . | 379 | 168 | 735 | . | 210
40 |2368|1-844 | 1284| 83 |2229|2:83 | 788 | 126 |1307| . | 373 | 169 | 726 | . | 208
41 |2366|1-858 | 1273| 84 |2223|2:87| 777 | 127 | 1286] . | 367|170 | 717 | . | 205
42 [2364|1-874 | 1261| 85 2218|290 | 765 | 128 |1266| . | 361 171 [ 700 | . | 203
43 |2362|1-890 | 1250 86 |2211|2:94 | 753 | 129 | 1245| . [355| 172 | 701 | . | 201
44 |2361|1-907 | 1238| 87 |2205|298 | 741 | 130 |1228| . |350 [ 173 | 692 | . | 198
45 2359|1922 |1227| 88 (2198|301 | 730 | 131 |1207| . | 345|174 | 684 | . | 196
46 |2357(1-940 | 1215| 89 |2192|305| 719 | 132 | 1189] . | 340|175 | 676 | . | 193
47 |2355|1-958 | 1204| 90 |2185|309 | 707 | 133 | 1171| . |335|176 | 669 | . | 191
48 |2353[1-975|1191] 91 (2176|313 | 694 | 134 | 1155| . |[330.[ 177 | 662 | . | 189
49 [2352(1-993 | 1180| 92 2167|316 | 684 | 135 | 1137| . | 325|178 | 654 | . | 187
50 [2350|2:011 |1169| 93 |2158(3-20 | 673 | 136 [1122] . |320| 179 | 674 | . | 185
51 |23a7|2:028 | 1157] 94 |2149[325 | 661 | 137 [1103| . | 315|180 | 640 | . | 183
52 |2344|2:045 | 1146| 95 |2140[3-29 | 650 | 138 [1080| .. | 309 | 181 | 633 | .. | 181
53 |2341|2:062 | 1134] 96 |2125[3-33 | 638 | 139 [1072| . | 305|182 | 626 | . | 179
54 |2338|2:082 | 1123| 97 |2110[3-36 | 627 | 120 |1056| .. | 301|183 | 619 | . | 177
55 (2335/2:10 |1111| 98 |2095|3-40 | 615 | 141 [1043| . | 297 | 184 | 612 | o | 175
56 |2332(2:12 |1100| 99 [2080(3-44 | 603 [ 142 [1027| . | 293 | 185 | 605 | .. | 173
57 (2329|214 |1085| 100 |2065|3-48 | 592 | 143 [1014| . | 289|186 | 599 | . | 171
58 |2326(2-16 |1077] 101 [2028|3-50 | 580 | 144 | 998| . | 285|187 | 593 | . | 169
50 |2323[2:18 |1065| 102 | 1990|3-50 | 569 | 145 | 985| . | 282|188 | 587 | . | 167
60 |2320(220 |1054| 103 |1954| ., | 558 {146 | 971| o | 278 | 189 | 581 | . | 166
61 (2317|222 |1042| 104 [1917| . | 547 | 147 | 958| . | 274|190 | 575 | . | 164
62 |2314|2:25 |1031| 105 |1880| . | 536 | 148 | 94s| . .| 270 [ 191 | 569 | . | 163
63 [2311|227 |1021] 106 |1845| . | 527|149 | 93a| . '| 267 [ 192|563 | o | 161
64 [2308|2:30 |1007{ 107 |1881| . |517|150 | 921| I | 263|193 |557| 2 | 159
65 (2305|232 | 994| 108 [1777] . | 507 [ 151 | 909| I | 259|194 | 551 | L | 157
66 |2302(2:34 | 984|109 [1751] . | 500|152 | 897| . | 256|195 |5a5| . | 156
67 2299|236 | 973| 110 [1714| . | 490 | 153 | 886| . |253 | 196 | 540 | . | 154
68 |2296|2:39 | 960| 111 |1682| . |480 | 154 | 874| . | 249|197 | 534 | I | 153
69 (2293|241 | 952|112 |1653| . |472|155| 862| o | 246|198 | 529 | I | 151
70 [2290|2:44 | 938| 113 [1623| . | 469 | 156 | 852| . | 243|199 [523| 7 | 129
71 |2286|2:46 | 927| 114 |1593| . | 546 | 157 | 841| . | 240|200 | 518 | I | 148
72 |2281|2:49 | 915| 115 |1566| . | 447 | 158 | 831| . | 237
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Numerical example

B No. 425 low-truss bridge of the State Railways in the former Netherlands
Indies; theoretical length 6x435 cm. Trapezoidal main girder. Upper chord
extending over four panels.

The data then are:

n=4; c=435cm.; i,=14"7 cm.;

F=178-6 cm.2 (gross cross-sectional area of upper chord);

Ppax=—141 metric tons (having A=0-550 metric tons/cm.);
141

178-6
Corresponding ratio of slenderness found in Table VI, A,=92.
Required coefficient of virtual buckling length:
92x14-7
=35 1

In Table V is found B=0-604 according to n=4 and m=3-1. To A,=92 corresponds
ox=2,140, hence Ppyckiing=178-6 X2,140=382 metric tons (Table VI).

0604 382
=485

Having 4A=0-550 metric tons/cm., the actual factor of safety is therefore somewhat
larger than calculated.

Actual compressive stress o= =0-789 metric tons/cm.?;

m

Required: =0-530 metric tons/cm.

Summary

This paper deals with the results of a theoretical study of two cases of buckling,
both of them under application of the theory of equations of finite differences.

The first case refers to the buckling of latticed struts with long battens only, the
lengths not being neglected. It proved possible to deduce an exact buckling con-
dition, in which all extreme cases are unequivocally included. .

The second case deals with the buckling of bars elastically supported at any
number of intermediate and equidistant points, while the two end supports are also
elastic, permitting lateral movement and having the same rigidity as the others. In
this case also it proved possible to deduce an exact buckling condition valid for any
given number of panels.

Both cases are documented with graphs, tables and calculation methods, enabling
easy application in practice. Two numerical examples are given by way of illustration.

For detailed information see: Ir. W. J. van der Eb, “Over enige bijzondere knik-
gevallen,” Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft Nederland.

Résumé

L’auteur expose une recherche théorique sur deux cas de flambage, effectuée en
appliquant le calcul des différentielles finies aux deux cas.

Le premier cas porte sur le flambage des barres en treillis, avec éléments d’as-
semblage relativement longs dans le sens de la longueur de la barre. On a pu arriver
a une condition de flambage exacte, qui englobe sans équivoque tous les cas extrémes.

Le second cas porte sur le flambage de barres supportées latéralement par un
nombre quelconque d’étais concentrés élastiques et équidistants, les deux étais d’ex-
trémité étant également élastiques, c’est-a-dire latéralement déplagables et de la
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méme rigidité que les autres. Ici encore, on a pu établir une condition de flambage
valable pour n’importe quel nombre de panneaux.

Les deux cas sont complétés par des graphiques, tableaux et méthodes de calcul,
permettant une application simple en pratique. Deux calculs sont effectués a titre
d’exemples.

Pour I’étude détaillée, voir: Ir. W. J. van der Eb, “Over enige bijzondere knik-
gevallen,” Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft, Nederland.

Zusammenfassung

Im vorstehenden Aufsatz wird das Endergebnis einer theoretischen Abhandlung
iiber zwei Knickfille unter Anwendung der Differenzrechnung ndher untersucht.,

Der erste Fall bezieht sich auf die Knickung von Rahmenstdben mit in der Stab-
richtung verhiltnismissig langen Bindeblechen. Es gelang, eine exakte Knick-
bedingung abzuleiten, in der alle extremen Fille eindeutig eingeschlossen sind.

Im zweiten Fall handelt es sich um die Knickung von Stidben, die in einer beliebigen
Anzahl gegenseitig gleichtweit entfernter Zwischenpunkte elastisch quergestiitzt sind,
wobei auch die beiden Endabstiitzungen elastisch, also seitlich verschieblich sind und
gleiche Steifigkeit wie die iibrigen Abstiitzungen aufweisen sollen. Auch in diesem
Fall gelang es, eine exakte und fiir beliebige Felderzahl giiltige Knickbedingung
abzuleiten.

In beiden Fillen wird die praktische Anwendung durch graphische Darstellungen,
Tabellen und Rechenvorschriften; sowie zwei numerische Beispiele erleichtert.

Die vollstindige Abhandlung einschliesslich allen Zwischenrechnungen ist zu
finden in: Ir. W. J. van. der Eb, “Over enige bijzondere knikgevallen,” Rapport
No. 21: Commissie inzake Onderzoek van Constructies T.N.O., Postbox 49, Delft,
Nederland.
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