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AÜ2

Some special cases of buckling

Une etude du flambage en certains cas particuliers

Einige besondere Knickfälle

Ir. W. J. van der EB
Research Engineer, T.N.O., Delft, Holland

Bückling of latticed struts with long battens only
When the lengths of the battens are not neglected, the System of the latticed strut

may be supposed to consist of coupled parts having a moment of inertia /, and a

length 2t?, and parts to be coupled whose two components are self-supporting "single
sections," each having a moment of inertia Ie and a length c. The distance between
the centres ofthe battens is termed /, so that equation l=c+2e is valid. Furthermore,
the angular displacement of the centre of the plh hatten is indicated as i/ip, whilst the
difference between the angular displacements of the ends of this plh hatten is referred
to as A<f>p (figs. 1 and 2).

In considering any given (p+l)th element (of a single section) of the parts to be

coupled, it is found that the following differential equation must be applied:
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whilst for the coupled parts

Fig. 2
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is valid
where

d2y
~dpf~ Erlf

With the boundary conditions that must hold for the parts to be coupled:

x=pl+e:
x=(p+l)l-e:

and for the coupling parts:
where x—pl—e:

x=pl+e:
(l and r denoting "left" and "right").

In this way, after introducing the conditions of equilibrium and continuity, the
equation of finite differences by which the problem is defined is found to be:

y' <t>(p+\)r

y'=<ppr
y'=<f>{p+iv

Pc cos a,e cos a,e
a2c sin a2c

A2<I>p+
Pc 2(1—cos ß2c)cos a,e

a2c sin a2c

+
2Pe 2(1 —cos 2a,e) cos a,e

2a,e sin 2a,e
0P+

Pc

a-,c sin a2c

Mt+i-A*, '- 0

in which a, 2P/ErIt, a2=^P/ErIe, 2P=total buckling force, ¦ri=4C/E-rFeh2, Fe=
cross-sectional area ofthe single section and h=distance between the centres of gravity
of the single sections. As large battens, having great rigidity with respect to
"Vierendeel" deformation, are being dealt with, their deforming effects may be
assumed to be infinitely small and are therefore neglected.

An exaet Solution of this equation of finite differences which also satisfies the
boundary conditions, not to be mentioned here, is obtained at such a State of buckling
deformation that the deflection curves ofthe centre lines ofthe battens are all situated
on sinusoidal curves of the same form, displaced in a parallel sense with respect to
each other, of which only that with one wave between the bar-ends will, of course,
represent the least favourable condition. Introducing the Solution indicated, the
general buckling condition is found to be:

2<X7;

tri

ßlT I 77

cos — cos —cos— I —sin
m\ n

OLTr\

ml sin
(l-a>

2«

0c(l —«) /?77 ßlT OL1T

H -c .sin — sin —
2 m mm

sin cos ß-(l-
m\

Tt\ 77 (1 ä)77
-cos - -f-sin - sin —r-nj n 2«

in which <x.=c/l and ß=^(l—y.)\t,2Ie/Il and «=number of panels, whilst m is the
coefficient of the virtual buckling length defined by the equation:

t2EtL
P=-

m2l2
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and h2

Z-27T2

This formula takes into aecount all extreme cases, for if c=0, that is, 2e=l, then <x

becomes 0, whilst ß2=\Ie/I,. Moreover, cos v.ir/m approximates to unity and
sin cm/m approximates to oLir/m.

The buckling condition is reduced to:

ßtirl 77 \ * 77 77
- cos — 1 —sin - sin —

iz -'\ n / n 2n

ßlT I 77 \ 77 77

cos —11 —cos - I +sin - sin ¦=-n] n 2n

cos

ßtr
cos —

m

m\
ßlT I 77 \ 77 / 77\

— cos — 1 —cos =-| 1—cos-
m\ n I 2n\ nj

(Tr\ 77 / 77\
1—cos - l+cos y\ 1—cos -I

Or jS77- 77

[JZ+l].oos——ÖZ+l].cos»-m 2n

ßr. TT

COS — —COS ;r- COS JT"
m 2« 2«

or /?77 2«

m 77

therefore m=2ßn

-Thus the total buckling force becomes, under condition ß2=\Ic/I,:
2n2ErIe tt2 E t I,
4ß2n2l2 ¥T2

which is correct.
When c=l, that is, e=0, then a=l, ^8=0, and the following is obtained:

77

2-
77 77

COS —cos —
n m

sin
77 / 77

— 11—cos -m\ n

being the simple formula already found by several authors.
When the battens are very narrow, their "Vierendeel" deformation is no longer

negligible and it is necessary to equate for Z as follows:

Ji2
©/©Z=-

ErFehi

1+-
(l-cosj)

7AcEIk

where Ik is the moment of inertia of the battens with respect to their "Vierendeel"
effect. If the battens are infinitely weak, /*=0, and in that case Z=0. ft is then
found from the buckling condition that m=n, and the total buckling force is then:
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2P=
2it2EtL

n2l2
which is also correct.

Therefore, as has already been shown, all the extreme cases have been taken into
aecount in the formula.

When transposing the above-mentioned buckling condition, a fortunate fact
appeared, viz. that in practical cases the effect of ß is very slight. Thus, for example,
values were found as in the following'table:

ti=3 a=0-6 n=6 a=0-6

m
(3=002
Z=

/3=012
Z= m

(3=0-02
Z=

0=012
Z=

0-7
1-1
1-9

29-39
5-23
0176

28-41
5-21
0-172

0-9
1-4
2-7

49-80
15-26
2-30

49-36
15-22
2-29

The values of ß applied in the above table were based on boundary values for
\/2Ie/I, equal to about 0-1 and 0-6. This quantity varies in practice between
approximately these amounts. It may be seen from the values shown above that
if tables are compiled for the average value, i.e. for \/2Ie/It—0-35, the error in-
curred in Z will at most be 1 %, and furthermore this error rapidly diminishes if m
increases (i.e. with Z decreasing).

This affords considerable simplification in the numerical tables and in the
application of the theory. In Computing Tables I to IV, a value of ß based on -\/2Ie/I,
=0-35 has been introduced. Furthermore, five values of <x have been introduced,
viz. 0-6, 0-7, 0-8, 0-9 and 1. The various lines (figs. 4 to 7) have been plotted in ten
points, intermediate values being established from curves drawn as accurately as

possible.

Method of calculation

Calculate: Z=h2/2ie2 and ct. c/l in which c=l—2e.
The corresponding value of m can immediately be found from Tables I to IV.

Then the virtual ratio of slenderness of the strut is:

ml
"vir!= ~j~

in which:
ie radius of gyration ofthe single cross-section;
h distance between centres of gravity of the component sections;
/ distance between centres of battens measured along centre-line of bar;
c =the length to be taken into aecount of the sections to be coupled;
2e=length of battens minus twice the distance between two rivets in the case

of riveted constructions. In the case of welded constructions the entire
length of the hatten is allowed to be taken into aecount.

The virtual ratio of slenderness being known, the required admissible compressive
stress crd can immediately be found in Table VI according to V.O.S.B. requirements.*

* V.O.S.B.=Netherlands Standards for the Designing of Steel Bridges.
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Hence the admissible compressive force=2Fe. ad, in which 2Fe=total gross cross-
sectional area.

Numerical example (fig. 3)

/j=14-6 cm.; ie=2-02 cm.; /=6-95 cm.; c=90 cm. and /=120 cm., whilst n=4
and Fe=28 0, so that:

14-62
scz==2xTöT2=26-1

whilst «=90/120=0-75, m is found to be about 1-05; hence

1-05x120
Ktr,- 2.02 -6J

2^=30, c =9050 C 18

Fig. 3

Table I (fig. 4)

14.6

—
I

120 120 l=120cm 120
L =480 cm. H

irpi

Z Z Z Z z
m a=0-6 a=0-7 a=0-8 a=0-9 a=l

71=3 71 3 71 3 /i=3 71=3

0-60 ^
0-65 4810
0-70 2900 ~
0-75 21-00 65-00
0-80 15-40 36-90 ~
0-85 12-20 23-40 79-50
0-90 1010 17-40 41 00 —¦
0-95 8-40 13-70 27-90 97-30
100 705 11-25 20-30 48-80 ~
105 605 9-40 1600 3200 119-70
110 5-20 805 1300 23-85 59-20
115 4-60 6-95 10-85 18-70 38-90
1-20 405 605 9-35 15-20 28-60
1-25 3-40 5-20 800 12-70 22-30
1 30 2-90 4-50 6-90 10-85 17-80
1-35 2-55 405 605 9-40 15-20
1-40 2-20 3-50 5-30 810 12-90
1-50 1-70 2-65 410 6-30 9-65
1-60 1-20 205 3-30 500 7-50
1-70 0-80 1-55 2-50 3-95 5-95
1-80 0-50 110 1-95 310 4-80
1-90 0-17 0-75 1-50 2-50 3-85
200 0 0-40 1-20 205 315
210 0-20 0-95 1-75 2-55
2-20 010 0-70 1-55 205
2-30 1-30 1-65
2-40 • 110 1-30
2-50 100
2-60 0-75
2-70 0-55
2-80 • 0-35
2-90 015
300 0
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The admissible compressive stress according to V.O.S.B. requirements is then
1,021 kg./cm.2, so:

(P)=2x28-0x 1,021 kg. 57-2 metric tons.

The ratio of slenderness with respect to the x direction is:

A-=6i>r69'
and the admissible compressive stress is then 952 kg./cm.2, so

(P)=2x 28-0x952 kg. 53-2 metric tons.

The latticed strut therefore appears stronger with respect to the y axis than the x axis.
If the length of the battens had been neglected, a virtual ratio of slenderness of
A„>,=82 and an admissible compressive stress of 800 kg./cm.2 would have been
found. In this case P=44-l metric tons, whilst according to Engesser's formula
A„>,=85 and P=42-l metric tons.

Table II (fig. 5)

Z Z Z z Z
771 a=0-6 a=0-7 a=0-8 a=0-9 a=l

71=4 71=4 7J 4 71=4 7J 4

0-60 r^j
0-65 97-60
0-70 57-50 ~
0-75 4100 129-20
0-80 30-55 67-25 ~
0-85 24-80 4510 15700
0-90 20-30 34-75 79-70 ~
0-95 17-40 2705 53-50 17900
100 14-70 22-95 40-25 95-50 ~
105 12-75 -19-65 3200 63-70 232-50
110 11-15. 16-70 26-35 47-25 115-40
115 9-95 14-75 22-30 37-70 7610
1-20 8-90 12-90 19-00 30-90 56-25
1-25 7-90 11-40 16-60 25-90 44-30
1-30 700 1005 14-60 22-20 36-25
1-35 6-20 8-95 12-90 19-30 30-35
1-40 5-55 800 11-50 1700 2605
1-50 4-40 6-50 9-55 13-60 19-95
1-60 3-50 5-40 800 1105 15-80
1-70 2-95 4-40 6-75 900 12-90
1 80 2-40 3-70 5-65 7-60 10-70
1-90 200 305 4-70 6-40 8-95
200 1-65 2-55 3-75 5-40 7-60
210 1 35 210 315 4-60 6-50
2-20 105 1-65 2-60 3-95 5-55
2-30 0-80 1-30 2-20 3-30 4-80
2-40 0-60 105 1-80 2-80 415
2-50 0-40 0-75 1-45 2-40 3-55
2-60 015 0-60 1-20 205 310
2-70 0 0-40 100 1-75 2-70
2-80 0-25 0-80 1-45 2-30
2-90 010 0-60 1-20 200
300 -005 0-50 100 1-70

Bückling of bars elastically supported at intermediate points
The second case refers to the calculation of the stability of the upper chord of a

Iow-truss bridge. There are already many publications on this subject. Thus, the
CR.—15
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Table III (fig. 6)

227

Z Z Z Z Z
m <x=0-6 a=0-7 <x=0-8 a=0-9 <x l

«=5 7! 5 n=5 n=5 7! 5

0-60 ^
0-65 174-90
0-70 95-50 ~
0-75 65-40 212-30
0-80 50-50 110-60 /^y
0-85 40-60 77-05 25710
0-90 33-50 5700 130-50 ~
0-95 28-20 4605 8905 311-40
100 24-60 37-90 6600 156-50 f»«-'

105 21-50 3200 52-80 105-50 37800
1-10 18-90 27-70 43-50 77-40 178-80
1-15 16-85 24-20 37-00 6200 123-95
1-20 1505 21-50 31-90 50-90 91-85
1-25 13-40 1900 27-80 42-75 72-45
1-30 1210 1700 24-60 36-90 59-40
1-35 10-90 15-30 21-80 3200 5010
1-40 9-90 13-90 19-60 28-40 4305
1-50 8-30 11 60 16-40 22-70 3315
1-60 6-90 9-70 13-60 18-50 26-50
1-70 5-80 810 11-25 15-50 21-75
1-80 4-90 700 9-55 1315 18-25
1-90 4-20 5-95 8-20 11-30 15-50
200 3-50 510 710 9-70 13-30
210 3 05 4-50 6-20 8-50 11-55
2-20 2-60 3-80 5-40 7-40 1010
2-30 210 3-30 4-70 6-50 8-85
2-40 1-80 2-80 410 5-70 7-80
2-50 1-55 2-35 3-60 505 6-90
2-60 1-30 200 315 4-50 615
2-70 105 1-75 2-70 3-90 5-50
2-80 0-90 1-50 2-40 3-50 4-90
2-90 0-70 1-25 210 310 4-40
300 0-60 105 1-80 2-75 3-90

case of a bar elastically supported at intermediate points with hinged ends has already
been dealt with by Dr. Ing. Fr. Bleich in Theorie und Berechnung der eisernen Brücken
(Theory and Dimensioning of Steel Bridges), whilst the same theme was subsequently
treated by Prof. P. P. Bijlaard in De Ingenieur, No. 4, 1932, in an article entitled
" Knikzekerheid van de bovenrand van open wandbruggen" (Buckling Resistance
of the Upper Chord of a Low-Truss Bridge). '

The same problem is dealt with below,
but in this case with hinged elastically
supported ends. Fig. 8 shows the
condition for any given number of waves.

With a2=P/EI, the differential equation

of any given pth curve will appear
in the general form: Fig. 8

y.as

ttfrii*

d2y

dx72=~a2y+
Spx+RpC

EtI

x as

in which Sp and Rp are values depending on the elastic reactions p. P«.
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Table IV (fig. 7)

Z Z Z Z Z
m <x=0-6 a=0-7 a=0-8 a=0-9 a l

71 6 71 6 71 6 71 6 71 6

0-60 ^
0-65 258-80
0-70 14400 ~
0-75 96-40 311-60
0-80 73-00 163-30 ~
0-85 5900 112-50 379-50
0-90 49-70 84-50 192-50 ~
0-95 42-50 6805 131-50 458-90
1-00 36-50 56-50 97-60 229-70 ~
105 3210 47-85 77-50 15500 555-70
110 28-20 41-30 64-45 114-30 276-10
115 25-20 36-60 54-90 89-50 182-40
1-20 22-65 32-20 47-20 73-50 134-45
1-25 20-30 28-60 41-40 63-40 106-90
1-30 18-50 25-50 3705 54-90 87-85
1-35 16-95 23-05 3300 4805 7415
1-40 15-25 2110 29-40 42-30 63-80
1-50 12-80 17-70 24-50 3305 49-30
1-60 10-80 14-90 20-30 27-20 39-60
1-70 9-30 12-70 17-25 23-55 32-70
1 80 7-95 1110 14-85 20-30 27-50
1-90 6-90 9-65 12-90 17-50 23-50
200 600 8-30 11-20 1510 20-30
210 5-20 7-30 9-90 13-20 17-70
2-20 4-50 6-40 8-70 11-65 15-60
2-30 400 5-65 7-70 10-30 13-80
2-40 3-50 505 6-85 915 12-30
2-50 3-05 4-45 6-15 8-20 11-00
2-60 2-65 3-90 5-50 7-35 9-90
2-70 2-30 3-45 4-90 6-60 8-90
2-80 205 3-10 4-40 6-05 800
2-90 1-75 2-70 400 5-40 7-25
3-00 1-50 2-40 3-55 4-90 6-60

The boundary conditions for any given pth curve are as follows:
where P=pc: J=J(P+i)/
where x=(p+l)c: >'=^o>+i)r
(/ and r again denote "left" and "right").

Introducing the conditions of equilibrium and continuity, the following system
of simultaneous equations of finite differences is obtained:

aP 2aP(l -cos ac)Vp
- ~ A2r]P+-

sin ac sm ac

and

in which

^P=^2yP+pPp

vp=yP--[pSP-i+RP-i]

In the case of hinged elastically supported ends, the following equation is vaüd:

PP=A(yp-S0)
where A is the force giving any elastic support a deflection of unity, and 80 is the
lateral movement of the left end, that is, for p=0.



SOME SPECIAL CASES OF BUCKLING 229

Now buckling of the bar is possible in two distinct ways. In the case of Symmetrie
buckling, whereby S0=8„, the following conditions are valid:

For p=0 and p=n, it follows that y0=yn=0 and rj0=r]n=0 and also ZPP=Q
or, consequently, 27(^—S0)=0.

In the case of reversed Symmetrie buckling S0= —S„.
In this case yo=0; yn=2S0, and it follows that 7]0=i]n=0, furthermore

cZpPp=2P80.

After several reduetions the buckling condition is finally obtained, which can be
written in both cases in the general form:

[A]JC]
[B] [D]

in which, in the case of Symmetrie buckling:

[yi]=cosh (n+ l)i/f—cosh («+ l)^+cosh i/i cos net—cosh n<l> cos <j>

[B]=sinh w/f sin <j>—sinh i/f sinh n<j>

and in the case of reversed Symmetrie buckling:

[/l]=cosh («+l)i/f+cos («+1)^—cosh 4> cos neb—cosh n>l> cos •/>

[B]= + sinh «f/f sin ^-fsinh 1/1 sin n<f>

while in both cases:

[C]=[2(cosh ./.-cos ^)]2+25[cosh ^cos ^-1]
[D]=2B sinh <p sin <£

In these formulae i/f and </> are given by

cos </>=-JVß+Wß+4*+16
cosh «£= -r-iv/i8+iv'i8+4a+16

in which:
77

a=5
m n
— sin 1

77 m
—2 1—cos

,6=2.8
77]

l—cos —
m\

m representing the coefficient of virtual buckling length defined by the formula:
72£V7

P=- 2r2m'-c

Am2c3 m2
whilst furthermore B= ,„ T—^7tt2EtI Y

tt2EtI
so that Y=—r-r-

Ac3

In these equations:

A =the force required for giving any elastic support a deflection of the unity
(1 cm.);

n =the number of panels of the strut;
c =the length of a panel of the strut;
£V=modulus of buckling;
I =the moment of inertia valid for the buckling direction under consideration.
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In this way the most general expressions for buckling condition are given; they are
valid in any given number of panels.

i/f and <f>, however, can be eliminated in a fairly simple manner, and, for any given
value of n in each particular case of buckling, two equations of higher degree in terms
of B as a function of m, are obtained, viz. one in the case of Symmetrie buckling and
the other in the case of reversed Symmetrie buckling. With

(m 77 \ / 77\
1 sm — I o=2 1— cos —

77 m] \ m]
the values are found as follows:
where n=2:

Symmetrie buckling:

reversed Symmetrie buckling:

where «=4:

B--
36-6

~~b-2a

B=l (fig. 9)

Fig. 9

Symmetrie buckling: B2(b2-4ab+2a2)-B(5b2-7ab-136+ 10fl)+(562-206+10=0
reversed Symmetrie buckling: B2(b2—2ab) + B(ab+5b — 362) + (62 — 26)=0
where «=6:
Symmetrie buckling: Bi(bi-6ab2+9a2b-2ai)+ B2(-7bi + l9b2-52ab-lla2b+l4a2

+23ab2)+B(l4bi-6Sb2-l6ab2+70b+56ab-28a)+(-7bi+42b2-63b+l4)=0
reversed Symmetrie buckling: B^(3a2b-4ab2+bi)+B2(-a2b+9ab2-5bi- I4ab

+ llb2)+B(-2ab2+6bi+4ab-22b2+l4b) + (-bi+ 4b2-3b)=0
The accompanying two graphs (figs. 10 and 11) give the results, established point

by point, for m ascending by 0-1, where n—4 and n=6. All roots have been
determined, so that curves for all wave forms could be plotted. It will appear that in each
case only two wave forms are possible. The other wave forms are fairly possible,
but can only be produced "with assistance." Table V gives the maximum B values
as a function of m for «=4 and «=6, whilst Table VI represents a set of buckling
stresses determined in aecordance with V.O.S.B. requirements (Netherl. Standards
for the Designing of Steel Bridges), the admissible compressive stresses and safety
factor given as functions of the ratio of slenderness A, A ascending from unity. In
calculating the rigidity of the elastic supports (determination of A), the two deformation
possibilities of the cross-section of the low-truss bridge are to be taken into aecount.
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The following formula is recommended (fig. 12):

A=
1

(a+$h,y (H-\h2)2b
3EIn 2EI,

How can the theory given above be applied? One possibility is to require the
same safety factor in both the x and the y directions in the upper chord (the x axis
is horizontal, the y axis is vertical). In general the radius of gyration with respect
to the vertical axis (in this case, the y axis) will be larger than with respect to the x axis.

Then the following condition is valid:

hence

Xx=Xy

c m c

ix~ iv

so 772 -lx
The required value of B corresponding to m can then be found at once in Table V,
hence:

B Pbuckling B n Pactual
A
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n in this equation denotes the required coefficient of safety against buckling under
the condition Xx=Xy. This value can at once be found in Table VI, where Xx=Xy is
known, which will obviously be the case.

The ratio m=iy/ix will generally be fairly small, varying between about 1 and 1-5,
and will seldom be more. The corresponding values of B are then usually rather
high, so that rigid vertical members are required in order to ensure the same resistance
against buckling with respect to both x and y axis. This, particularly in the case of
high bridges without upper bracing, leads to heavy constructions. In such cases it
will be found more advantageous to construct the upper chord somewhat heavier
with regard to the y direction, considering the last direction decisive (the x direction
being safe). The procedure then is as follows.

The actual compressive stress is given by:

* actual

where F is the gross cross-sectional area of the upper chord; Table VI at once gives
the corresponding required ratio of slenderness with respect to the y axis. This value
being Xy, the required m value will be:

K
y c

The corresponding value of B can now be found in Table V; moreover:
B n "actual

A :

C

n denoting the required factor of safety against buckling according to A^., also to be
found in Table VI.

The most advantageous use of material can, of course, only be found by trial, that
is, by comparing various possibilities with regard to their total weight.

Table V

m
B

m
B

71=4 71 6 71 4 71 6

10 3-62 3-80 2-3 0-99 0-81
11 2-39 2-50 2-4 0-95 0-73
1-2 217 2055 2-5 0-90 0-695
1-3 1-96 1-855 2-6 0-85 0-68
1-4 1-73 1-655 2-7 0-81 0-665
1-5 1-51 1-46 2-8 0-75 0-65
1-6 1-27 1-31 2-9 0-70 0-635
1-7 1-19 1-24 30 0-65 0-62
1-8 115 117 31 0-60 0-605
1-9 112 1105 3-2 0-54 0-59
20 1095 1035 3-3 0-46 0-575
21 1075 0-96 3-4 0-37 0-56
2-2 103 0-89 3-5 0-37 0-545

Method of calculation

Calculate a=P/F. Find in Table VI the required ratio of slenderness Xy

corresponding to a. Hence:
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Numerical example

B No. 425 low-truss bridge of the State Railways in the former Netherlands
Indies; theoretical length 6x435 cm. Trapezoidal main girder. Upper chord
extending over four panels.

The data then are:

n=4; c=435 cm.; 7^=14-7 cm.;
F= 178-6 cm.2 (gross cross-sectional area of upper chord);
Pma.x= — I4l metric tons (having ^4=0-550 metric tons/cm.);

141
Actual compressive stress od=-——=0-789 metric tons/cm.2;

I lo-b
Corresponding ratio of slenderness found in Table VI, A>,=92.

Required coefficient of Virtual buckling length:
92x14-7 „,/r7=-435- 3-1

In Table V is found 5=0-604 according to n=4 and w=3-l. To A,.=92 corresponds
ak 2,l40, hence PbuCkiing= 178-6x2,140=382 metric tons (Table VI).

^ 0-604x382 nMnRequired: A= j^t =0-530 metric tons/cm.

Having A =0-550 metric tons/cm., the actual factor of safety is therefore somewhat
larger than calculated.

Summary

This paper deals with the results of a theoretical study of two cases of buckling,
both of them under application of the theory of equations of finite differences.

The first case refers to the buckling of latticed struts with long battens only, the
lengths not being neglected. It proved possible to deduce an exaet buckling
condition, in which all extreme cases are unequivocally included.

The second case deals with the buckling of bars elastically supported at any
number of intermediate and equidistant points, while the two end supports are also
elastic, permitting lateral movement and having the same rigidity as the others. In
this case also it proved possible to deduce an exaet buckling condition valid for any
given number of panels.

Both cases are documented with graphs, tables and calculation methods, enabling
easy application in practice. Two numerical examples are given by way of illustration.

For detailed information see: Ir. W. J. van der Eb, "Over enige bijzondere knik-
gevallen," Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft Nederland.

Resume

L'auteur expose une recherche theorique sur deux cas de flambage, effectuee en
appliquant le calcul des differentielles finies aux deux cas.

Le premier cas porte sur le flambage des barres en treillis, avec elements
d'assemblage relativement longs dans le sens de la longueur de la barre. On a pu arriver
ä une condition de flambage exaete, qui englobe sans equivoque tous les cas extremes.

Le second cas porte sur le flambage de barres supportees lateralement par un
nombre quelconque d'etais concentres elastiques et equidistants, les deux etais d'ex-
tremite etant egalement elastiques, c'est-ä-dire lateralement deplacables et de la
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meme rigidite que les autres. Ici encore, on a pu etablir une condition de flambage
valable pour n'importe quel nombre de panneaux.

Les deux cas sont completes par des graphiques, tableaux et methodes de calcul,
permettant une application simple en pratique. Deux calculs sont effectues ä titre
d'exemples.

Pour l'etude detaillee, voir: Ir. W. J. van der Eb, "Over enige bijzondere knik-
gevallen," Rapport No. 21: Commissie inzake Onderzoek van Constructies T.N.O.,
Postbox 49, Delft, Nederland.

Zusammenfassung

Im vorstehenden Aufsatz wird das Endergebnis einer theoretischen Abhandlung
über zwei Knickfälle unter Anwendung der Differenzrechnung näher untersucht.

Der erste Fall bezieht sich auf die Knickung von Rahmenstäben mit in der
Stabrichtung verhältnismässig langen Bindeblechen. Es gelang, eine exakte
Knickbedingung abzuleiten, in der alle extremen Fälle eindeutig eingeschlossen sind.

Im zweiten Fall handelt es sich um die Knickung von Stäben, die in einer beliebigen
Anzahl gegenseitig gleichtweit entfernter Zwischenpunkte elastisch quergestützt sind,
wobei auch die beiden Endabstützungen elastisch, also seitlich verschieblich sind und
gleiche Steifigkeit wie die übrigen Abstützungen aufweisen sollen. Auch in diesem
Fall gelang es, eine exakte und für beliebige Felderzahl gültige Knickbedingung
abzuleiten.

In beiden Fällen wird die praktische Anwendung durch graphische Darstellungen,
Tabellen und Rechenvorschriften^ sowie zwei numerische Beispiele erleichtert.

Die vollständige Abhandlung einschliesslich allen Zwischenrechnungen ist zu
finden in: Ir. W. J. van. der Eb, "Over enige bijzondere knikgevallen," Rapport
No. 21: Commissie inzake Onderzoek van Constructies T.N.O., Postbox 49, Delft,
Nederland.
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