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Beitrag zur Elastizitiitstheorie der Schalen
Contribution to the theory of elasticity of shells

Contribution a la théorie de P’élasticité des voiites minces

A. KUHELJ

Ljubljana, Jugoslawien

EINLEITUNG

Die Ausgangsgleichungen der Biegetheorie diinner Schalen sind auch bei Benut-
zung der Bernoulli’schen Annahme iiber das Ebenbleiben der Querschnitte noch
immer ziemlich undurchsichtig (vgl. z.B. Schrifttum 7). Auch haben sich bei erneuter
anschaulicher Ableitung dieser Gleichungen einige Unstimmigkeiten ergeben
(Schrifttum 8), so dass das Auftreten einiger Glieder daselbst nicht vollkommen
begriindet erscheint. In diesem Beitrage wird versucht, einen neuen Rechnungsgang
bei der Aufstellung der Grundgleichungen anzudeuten, welcher von bekannten
Formeln der elementaren Differentialgeometrie der Flichen ausgeht und verhilt-
nismissig schnell und sicher zu eindeutigen Resultaten, dhnlich wie sie in neuerer
Zeit fiir spezielle Schalenformen aufgestellt wurden, fiihrt. Weiter werden auch
einige Vereinfachungen vorgeschlagen, welche bei allgemeinen Schalenformen und
Parametern zwar noch immer zu ziemlich verwickelten Formeln fiihren, welche aber
z.B. bei Anwendung auf zylindrische Schalen beliebigen Querschnittes verhiltnis-
massig einfache Resultate ergeben.

ZUSAMMENSTELLUNG EINIGER RESULTATE DER ELEMENTAREN FLACHENTHEORIE

Die fiir die Verzerrung der ganzen Schale massgebende Mittelfliche soll durch
zwei krummlinige Gauss’sche Koordinaten gegeben sein, die wir hier in Anlehnung
an A. E. H. Love (Schrifttum 7) mit « und B8 bezeichnen, und zwar sollen die beiden
Scharen der Koordinatenlinien («-Linie bei konstantem S, B-Linie bei konstantem o)
der Einfachheit halber Kriimmungslinien der Mittelfliche sein. Wir verwenden als
Hilfsmittel durchwegs die Vektorrechnung und benutzen dabei die im Lehrbuche
von R. S. Burington und C. C. Torrance (Schrifttum 3) angewandten Bezeichnungen
mit dem Unterschied, dass wir die Vektoren einfachheitshalber nur mit einem Quer-
striche bzw. Querpfeile andeuten. Die Hauptsdtze der elementaren Differential-
geometrie entnehmen wir dem Lehrbuche von W. Blaschke (Schrifttum 2, vgl. auch
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das entsprechende Kapitel in Schrifttum 3), dessen Bezeichnungen sich iibrigens von
unsrigen nur wenig unterscheiden.

Der Ortsvektor zu einem beliebigen Punkte P der Schalenmittelfliche sei als
Funktion von « und B durch

r=x(x, Bi+y(, Aj+z, Ak . . . . . . (D
gegeben, wobei x, y, z Kartesische Koordinaten von P bedeuten, wihrend i, j, k die
Einheitsvektoren in Richtung der Koordinatenachsen sind. Alle im folgenden
gebrauchte Ableitungen von 7 bzw. x, y, z nach «, bzw. 8 seien iiberall endlich und
stetig. Um die Uebersichtlichkeit auch in verwickelten Ausdriicken moglichst zu
wahren, wollen wir weiter verabreden, dass unten angesetzte Zeichen o bzw. B
ausschliesslich Ableitungen nach diesen Parametern bedeuten sollen, so dass z.B.

. _or _ ér o
ra::a—a, rﬁ:a'g, raa:-azz usw. s e s e . (2)
sein soll.

Die in (2) angegebenen Ableitungen r, und r; bedeuten bekanntlich Vektoren in
Richtung der Tangenten zu beiden Koordinatenlinien. Um zu Einheitsvektoren e,
bzw. e; in diesen Richtungen zu kommen, fithren wir nach A. E. H. Love (Schrifttum 7)
die positiv genommenen Wurzeln der beiden Koeffizienten £ und G der ersten Funda-
mentalform ein

A="VE="V7?, . %y, B="VG="V7i.7% . . . . (3
und erhalten
_fa, _Ts
=" e=p . . . . 4
wihrend der Einheitsvektor in Richtung der Flichennormale durch
e3=e1Xe€e . . . . . .+ .« 4 . s (5)

gegeben ist.

Die Ableitungen dieser Einheitsvektoren nach « und B sind im wesentlichen
durch die Ableitungsgleichungen nach Gauss und Weingarten (Schrifttum 2, S. 108
und 114) gegeben; es ist z.B.

fax . Au

€1a™ A _"az
Alle Ausdriicke vereinfachen sich wegen der Benutzung der Kriimmungslinien als
Koordinatenlinien sehr, weil dann bekanntlich
F=Fy.73=0 und M=r,,.e;=0
ist. Unter Benutzung der Ableitungsgleichungen erhilt man dann

A A A A
€1a=——B§€2+EC3, e2a=§ﬁe,, €3a=—E£’1 ©  w e (63.—C)
B, B ' B
“—’15=er’ e23=—fel+k—ze3, ep=—pe€ . - . (7a-c)

wobei statt der Koeffizienten L, M, N der zweiten Fundamentalform die beiden

Hauptkrimmungshalbmesser R; und R, mit
1 L L 1 N N -
EI.:E:Z_Z und E_E_E—Z e e e e e (8)
eingefiihrt worden sind. Dabei ist zu beachten, dass R, und R, als positiv zu nehmen
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sind, wenn die Kriimmungsmittelpunkte der Kriimmungshinien auf der positiven
Seite des Einheitsvektors e; liegen.

Mit diesen Formeln lassen sich, wie im folgenden gezeigt wird, verhdltnismassig
einfach alle Resultate der Biegetheorie der Schalen ableiten. Zur Vereinfachung der
Gleichungen brauchen wir nur noch folgende Beziehungen zwischen obigen Grossen,
die sich durch Vergleich der auf verschiedenen Wegen erhaltenen gemischten Ablei-
tungen von r, bzw. 7g ergeben. Aus Gaussens Theorema egregium (Schrifttum 2,

S. 117) erhélt man
Ag B\ 4B
(E)ﬁ(z);‘m  ws s w s )

wihrend die beiden Mainardi-Codazzischen (Schrifttum 2, /.c.) Gleichungen in unserem
Falle folgende einfache Form annehmen

A\ A, (B) B,
AV 4 (Z) B .. (0ab
(RI)B Ry \RyJq Ry - (10s, b)

VERFORMUNG DER SCHALENMITTELFLACHE

Die bei der Belastung der Schale entstehenden Verschiebungskomponenten eines
beliebigen Punktes P der Schalenmittelfliche in Richtung der Einheitsvektoren ey,
e,, ey seien mit u, v, w bezeichnet; der Ortsvektor 7’ zum Punkte P’, wohin der Punkt
P nach der Belastung verschoben wird, ist also durch

F'=r+p=rdue;+vey+we; . . . . . . (1]
gegeben. Unter Benutzung der Gleichungen (4), (6) und (7) erhilt man sehr leicht
die Ableitungen von 7' nach « und B, die natiirlich wieder Vektoren in Richtung der
Tangenten zu den Koordinatenlinien auf der verformten Mittelfliche darstellen. So
erhilt man z.B.

Fly=TFytuye, +vye,+wyes+tue o, +vey, +wes,
oder nach (6) und (7)
., A A A A :
F ch'= (A+ua+v§B—wE)el + (va—u—Bf)ez-}- (wa+uz)e3 . (12a)
und dhnlich

B B B B
el st

Durch abermalige Anwendung dieser Regeln lassen sich verhiltnismaéssig leicht auch
Ausdriicke fiir die zweiten Ableitungen von 7’ berechnen, auf deren Wiedergabe wir
aber verzichten, weil wir sie im folgenden nicht brauchen werden. Aus Gleichungen
fiir 7, und 7'g erhdlt man natiirlich auch sehr leicht entsprechende Ableitungen des
Verschiebungsvektors p, indem man von obigen Ausdriicken die, Ableitungen von 7
abzieht. :

Die Verzerrungen in der Schalenmittelfliche lassen sich nun mit Hilfe der ersten
Ableitungen von 7' sofort berechnen und zwar auch bis zu den Gliedern hdherer
Ordnung in den Verschiebungen. Da wir aber auf Stabilititsprobleme an dieser
Stelle nicht eingehen konnen, wollen wir uns im folgenden nur auf die Glieder erster
Ordnung beschrianken. Die Dehnung ¢; in Richtung der «-Linie ist z.B. bekanntlich
durch

_ds'—ds A'—A

qa=— —— mit A'=VF L Fe . . . (13a)
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gegeben, wobei ds’=A’.dx das Bogenelement dieser Linie nach der Verzerrung
bedeutet. Fiir die Scherung 'ylz des Flichenelementes mit den Léingen Ad«, BdS
erhélt man (vgl. Schrifttum 1, 4, 5, 9 und 10)

Feo. .l
_y12=°"’*.........(13b)

und durch Einsetzen entsprechender Ausdriicke aus (12a, b) erhilt man endgiiltig
fiir die Komponenten des Verzerrungstensors bis auf die Grossen von hoherer
Ordnung in den Verschiebungen

_Ua AB W h

AB R,
By w
E+“E_F2 > « e e e (14a—c)

Ausserdem werden wir bei folgenden Ausfiihrungen noch Ausdriicke fiir die
Einheitsvektoren e’;, e’, in Richtung der Tangenten zu den beiden Koordinatenlinien
nach der Verformung, sowie den Einheitsvektor e’y in Richtung der Flachennormale
brauchen. Es ist bis auf die Glieder héherer Ordnung

e (2o (P )
¢1=gr=ert|g—ugple A R,)¢
, F's (ug By v
e'r=p= (B AB)e1+e2+(B+R) m > (15a—c)
’ Cdd B4 ! / ’ w u- ‘ ?)
=X PIVEG—Fim— (24 £ )er— (o 1 Jertes
~

Mit diesen Gleichungen und unter Benutzung von (6) und (7) lassen sich leicht auch
- Ableitungen dieser Vektoren nach « und B berechnen. So erhilt man z.B.

. | Ba, (us B B, B2 B Y], )
o= |5+ (5), (73),Jort [, R
B v Wg
+ _+ E + B €3
B
|4 [u We Ag > (16a, b)
€ 3q="— R1+ R a Vi -}~'¢v—+wﬁB2

(z) +(w_s Ao, As [i+w_a
R).\B), 7 “Br, T "*aB|% " [“R2TR,|%

und ganz dhnliche Ausdriicke wiirde man auch fiir die {ibrigen Ableitungen erhalten.

VERFORMUNG EINES BELIEBIGEN SCHALENELEMENTES

Aehnlich wie bei der Plattentheorie beschrinkt man sich auch bei Untersuchung
der Schalen auf die Verzerrungen parallel zur Tangentialebene der Schalenmittel-
fliche. Wir nehmen daher auf dem Normalenvektor e; durch den Punkt P der
Schalenmittelfiiche (Abb. 1) einen Punkt P, an und legen durch diesen im konstanten
Abstand z von der Schalenmittelfliche eine neue Fliche. Alle Grossen in bezug
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Abb. 1. "Verschiebungen der Schale

auf diese Fliche wollen wir mit demselben Zeichen wie entsprechende Gréssen der
Mittelfliche bezeichnen, versehen sie aber noch mit dem Index ,.
Aus der Gleichung dieser Fliche

r:=r+ze; P N )

liesse sich nun nach allgemeinen Regeln der Differentialgeometrie leicht beweisen,
dass auch hier die Koordinatenlinien e=const. und B=const. Krummungshmen
sind und dass die Fliachengrossen folgende Werte haben

Rl— z Z
i —A(I—E), BZ—B(I—R—Z) . . (I8a, b)
z z
R1z=R1—Z=R1 (I-E), R23=R2(1—ﬁ"2) s w (19&, b)

was iibrigens anschaulich auch unmittelbar einleuchtet (Abb. 1). Weiter sind die
Einheitsvektoren dieser Flache zu Vektoren ey, e,, e; der Schalenmittelfliche parallel
und man kann deshalb die Formeln fiir die Verzerrungen in der Mittelfliche unver-
dndert auf unsere neue Fldche iibertragen, wenn wir nur die Verschiebungen u;, v,,
w, eines beliebigen Punktes P, unserer Flidche kennen.

Um nun diese Grossen zu bestimmen, gehen wir auch hier wie bei der Biegung
diinner Balken und Platten von der Bernoulli’schen Annahme aus, dass ebene Quer-
schnitte auch nach der Verformung eben bleiben und senkrecht zur verformten
Mittelfliche stehen. Fiir die Verschiebung p, erhilt man dann (vgl. Abb. 1) folgende
Gleichung

PP =z.e3+p,=p+z.e5
oder P:=p+z(e's—es) S ¢214)]
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oder in Komponentenform und unter Beachtung der Gleichungen (11) und (15c)

geschrieben
Wy  u\ )
u_-—u—z(? E)
Wg O - (21a—)
o3 )
We=w J

Zur Berechnung der Verzerrungskomponenten in der Tangentialebene wendet
man Gl. (14a—c) auf die neue Fldche an und erhilt z.B.

lﬁg_'_ Azﬂ W-
%0 B. Ry

Wenn man nun fiir Grossen rechts die Werte (18), (19) und (21) einsetzt und dazu
noch GI. (10a) beachtet, erhdlt man fiir €,

—ZK
=L L (@)

i

1——

R,

“wobei €; durch (14a) gegeben ist, wihrend man fiir die erste Kriimmungsdnderung «,

automatisch
1 (wy u Ag (wg )
KI_Z(I"-ITI)&_{'AB(B-'-RZ SRIRIE o

bekommt. Auf dieselbe Weise erhidlt man fiir die Dehnung e,. in Richtung der
zweiten Koordinatenlinie

S (22b)
=R,
. o ' 1(wsg B, ‘
mit Kz_.E( B“'"E)ﬁ' AB( +—) .. . . . (23b)

Achnlich verfihrt man auch bei der Berechnung der Scherung y;,.. Hier erweist es
sich am einfachsten, wenn man die mit dem Faktor z behafteten Glieder in zwei
Anteile zerlegt und man erhilt :

Z.Al Z.Az

VB eowowow e ow (220)
| -z 1-%
wobei die zweiten Krilmmungsédnderungen durch
1 (wg v Yo Ag
AI_Z(E-*-E)Q_A—Rl_Wd s m i e s s @ (230)
_l(wy  u U B,
und . AZ_B(Z“LRI) ~BR,” "¢ 4B (@3

gegeben sind. Gleichungen (22) und (23) stimmen vollkommen mit entsprechenden
Gleichungen von Love (Schrifttum 7, G1. 26 und 30, S. 524 bzw. 527) iiberein. Unsere
Kriimmungsénderung A, ist bei Love mit = bezeichnet, wihrend A, durch A; und y,,
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ausgedriickt wird, weil, wie sich leicht mit Hilfe der Mainardi-Codazzischen Glei-
chungen (10) direkt beweisen lasst,

1 1

i (i
ist. Trotz der neuerdings erhobenen Zweifel (vgl. Schrifttum 8, GIl. 6 und 7) ergeben
sich also obige Gleichungen zwangsldufig aus der Bernoulli’schen Annahme. Etwas
anders gebaute Ausdriicke erhidlt man, wenn man bei ihrer Ableitung von den Love-
schen Gleichungen fiir die Drehungen (Schrifttum 7, Gl. 24 und 25 auf S. 523)
ausgeht, wobei aber dort bei ¢’, und r’, augenscheinlich Versehen unterlaufen sind,
wie man sich leicht durch Vergleich von ¢, mit p’; und r’, mit r’; iiberzeugt. Aus
unseren Ausdriicken (16a, b) und dhnlich gebauten Gleichungen fiir andere Ablei-
tungen der Einheitsvektoren auf der verformten Mittelfliche konnte man iibrigens
auf Grund von bekannten Gleichungen fiir die Geschwindigkeitskomponenten bei
Drehung verhiltnisméssig leicht Ausdriicke fiir alle sechs Drehungskomponenten
erhalten, die vollkommen symmetrisch gebaut sind und von denen wir glauben, dass
sie bis auf die Glieder zweiter Ordnung in den Verschiebungen u, v, w korrekt sind.
Der Kiirze halber aber wollen wir darauf nicht ndher eingehen.

SCHNITTKRAFTE UND SCHNITTMOMENTE. GLEICHGEW ICHTSBEDINGUNGEN

Wir gehen nun zur Berechnung der den Verformungen ¢, €,:, ;- entsprechenden
Spannungen iiber. Wir vernachldssigen die Normalspannung o3. in Richtung von
e; und erhalten dann bekanntlich aus dem Hooke’schen Gesetze

E

E E
°'lz=1___v'2(€lz+"'522): Uzz=‘1_—vz(€zz+l’€1z), 712z=2(1—+v))’12z .. . (2420

wobei mit E der Elastizititsmodul und mit v=1/m die Poissonsche Konstante
bezeichnet ist. Bei der Aufstellung der Gleichgewichtsbedingungen erweist sich
weiter die Einfiihrung der resultierenden Kraft und des resultierenden Momentes der
Spannungen iiber die Schalendicke als vorteilhaft, wenn man sie auf die Lingenein-
heit der «- bzw. der B-Linie bezieht. Der Kiirze halber benennen wir diese Grossen
einfach als Schnittkréfte bzw. Schnittmomente und erhalten fiir diese Grossen in der
Schnittfliche a«=const. (Abb. 2) in der von Fliigge (Schrifttum 4) herriihrenden
Bezeichnung folgende Gleichungen (alle Integrale sind zwischen —#/2 und +4/2 zu
nehmen)

Abb. 2. Schnittkrifte und Momente
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In diesen und in dhnlich gebauten Gleichungen fiir den Schnitt S=const. miisste
man statt R; bzw. R, eigentlich die Werte der Kriimmungshalbmesser R’; und R’»
nach der Verformung einsetzen. Ebenso miisste man spdter auch die Gleich-
gewichtsbedingungen eigentlich fiir das verformte Schalenelement aufstellen und
deshalb statt der urspriinglichen Grossen 4, B die nach der Verformung enstandenen
Werte A, B’ usw. beniitzen. Wenn wir von Stabilititsuntersuchungen absehen,
konnen wir sowohl die auf die Lingeneinheit der unverformten Schalenmittelfiiche
bezogenen Schnittkridfte und Momente als auch die fiir das unverformte Schalenele-
ment angesetzten Gleichgewichtsbedingungen in erster Ndherung als richtig ansehen.
Durch Entwicklung von (1—z/R;)~! bzw. (1—z/R,)~1 in eine Potenzreihe und
Vernachlissigung aller hoherer Potenzen von der dritten ab erhidlt man fiir die
Krifte und Momente folgende Gleichungen

Ry—R,  Ry—Ry\)
_D(el—{—vez)—{—K(el " "R2R, +x; R.R,
R,—R, R,—R,
Nz—D(€2+V€1)+K(€2 “RRp? + RR,
1—v l—v_ R;—R,
le—“‘z““Dylz'i'TK R.R, Ay
1—v 1—v_R,—R
Nyy=—5—Dynt+—5— Kﬁ/\z _ ,
F (25a-h)
R,—R, ,
M,=—K|x4+vey+ R.R, €
RZ_RI
M _—K K2+VK1+ R R
1 —
M12=—“2‘3K( 1+,\2+'ﬂ%)
1—
M21=— 2V (1+A2+‘y’2)
J
Eh EhR3 K h2
i = e a——— 2 =
mit D=1—=0 K=pa—z *¥=p~1 (26)

Die verhiltnismissig kleinen Einheitskrifte O, und Q, berechnen wir dhnlich wie
bei Platten nicht aus den Forménderungen, sondern erst spiter aus den Gleich-
gewichtsbedingungen.

Auf die bei Fliigge (Schrifttum 4) auftretenden Sonderfille angewandt, stlmmen
obige Ausdriicke vollkommen mit den Fliiggeschen iiberein. Gegeniiber den
Loveschen Gleichungen (Schrifttum 7, Gl. 39, 42 und 44 auf S. 531, 532 bzw. 533)
bestehen Unterschiede, die aber zum Teil darauf hinzufiihren sind, dass bei Love
auch die fiir das Verschwinden von €;: notwendige Normalspannung o3, in Betracht
genommen wurde.

Mit den Schnittkridften und Momenten lassen sich die Gleichgewichtsbedingungen
am Schalenelement verhdltnismissig einfach ausdriicken. Wenn man—wie erwihnt
—einfachheitshalber die Gleichgewichtsbedingungen am unverzerrten Schalenelement
annimmt, die Aussenkraftkomponenten je Fldcheneinheit der Mittelfliche in
Richtung der Vektoren e;, e;, e; mit X;, X,, X; bezeichnet und die Momente der
Aussenkraft um die drei Achsen durch den Mittelpunkt des Schalenelementes ver-
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nachldssigt, dann lautet in vektorieller Form die Gleichgewichtsbedingung gegen
Verschiebung

[B(N\e;+ N2+ Q1e3)ly+[A(N21e1+ Naea+ 0e3)]g

+AB(X1€1+X2€2+X393)=0 . (273)
und die Gleichgewichtsbedingung gegen Drehung
ABle; X (Nzea+ Q1€3)+e; X (Naje+ Qqe3) ]+ [B(— M ze,+ M e))],

+[A(—Mye,+ M31e)][g=0 . (27b)
Unter Benutzung der Gl. (6a—) und (7a—c) erhélt man daraus sechs Gleichungen in
skalarer Form

~

AB
(BN )y +(AN21)g+AgN 2 — By N, — EQI +ABX,=0
AB
(BN12)y+(AN3)g—AgN |+ By N>, —‘RTZQ2+ABX2=O

i N, N
(BQI>a+(AQ2)B+AB(fi+ 172) +ABX,=0 L (28a-)

—(BM 5)q—(AM3)g+ AgM | — B, M+ ABQ,=0

(BM )+ (AM;)g+AgM 1 ;—B,M,— ABQ =0
M, My,

R TR

. Um nun die endgiiltigen Gleichungen fiir die Verschiebungen zu bekommen,
driickt man aus GI. (28d, e) die beiden Querkrifte Q; und Q, durch Momente aus
und setzt sie in Gl. (28a—c) ein. Unter Benutzung von Gl. (25a-h), (14a—c) und
(23a—d) erhilt man daraus ein System dreier partieller Differentialgleichungen fiir die
drei Verschiebungen u, », w, durch deren Integration bei Beriicksichtigung gegebener
Randbedingungen das Problem der Verschiebungen, und damit auch das der Span-
nungsbestimmung, prinzipiell gelost wird. Auf eine explizite Hinschreibung dieser
Gleichungen fiir den allgemeinsten Fall miissen wir allerdings verzichten, weil sie
ausserordentlich uniibersichtlich sind und ihre Aufstellung sich nicht lohnt. Die
letzte skalare Gleichgewichtsbedingung (28f) félit weg, weil sie schon in den Grdssen
€1, €2, Y12, K1, k2, A} und A, identisch befriedigt wird, wie man sich leicht durch
Einsetzen der Ausdriicke aus (25¢, d, g, h) iiberzeugt.

+Nj;—N;=0

J

NAHERUNGEN BEI DUNNEN SCHALEN

Aus der elementaren Elastizitdtstheorie ebener Spannungs- und Dehnungs-
zustinde ist bekannt, dass die Bernoulli’sche Hypothese nur bei einigermassen diinnen
Scheiben zutrifft und dass die Zusatzglieder bei Verschiebungen annidherend mit der
zweiten Potenz des Verhiltnisses Trdgerhoéhe : Trédgerldnge zunehmen. Daraus
kénnen wir schliessen, dass auch bei Schalen die Bernoulli’'sche Annahme nur dann
zutreffen wird, wenn das oben genannte Verhiltnis nicht zu gross sein wird. Wir
wollen weiter annehmen, dass das Verhéltnis der Schalendicke zu den beiden Haupt-
kriimmungshalbmessern klein gegeniiber eins sei und dass man es deshalb {iberall
vernachlissigen darf. Bei vielen praktischen Ausfithrungen betrigt dieses Verhiltnis
hochstens ein paar Prozent und ein solcher Fehler in der Spannungsberechnung ist
im Hinblick auf die Unsicherheiten bei der Bestimmung der Schalendicke, des
Elastizititsmoduls und anderer Grossen sicher zuldssig.
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Mit der Annahme, dass die Schalendicke klein gegeniiber den beiden Kriim-
mungshalbmessern sei, vereinfachen sich aber unsere Gleichungen ziemlich stark.
So sieht man z.B., dass schon in GIl. (21a-b) rechts die Verschiebungen » und v
einmal mit dem Faktor eins und das andere Mal aber mit z/R; bzw. z/R, auftreten.
Wir konnen also diese letzten Summanden streichen und erhalten fiir die Verschie-
bungen ausserhalb der Mittelfliche einfach dieselben Gleichungen

~

Wy
U=U—2. 7

Wy > (29a—c)
V:=V—2Z. B .
W;=w

J

wie bei Platten.. In Gleichungen (18a, b), (19a, b) und (22a—c) fiir die Gréssen A.,
B:, Rz, R,; und fiir die Verformungen ausserhalb der Mittelfliche streichen wir
ebenfalls iiberall die Verhiltnisse z/R; bzw. z/R, und erhalten so

€1z=€]—ZK)| )
€3:—€r—ZKy . e s . » . e . (3021—0)
Y12:=Y12—22A
mit etwas verdnderten Ausdriicken fiir die Kriimmungsdnderungen
1/wg) A )
“l—z(j)ﬁA—Bzwﬂ
1/w B
KZ:E(F;),B_*_Z%W“ > . . (3la—c)
1 WB AB 1 Wy BOL
AI_AZ"A"Z(E)"‘_AZBW““B(A ;T AB"?

Wenn man dann weiter noch in den Gleichungen fiir die Schnittkrifte und Schnitt-
momente dieselbe Vernachldssigung zuldsst, erhélt man statt (25a-h)

11—y
Ni=D(e;+vey) Ny=D(e3+ve,) N12=N21=—'2—D712 } .. (32a-0)
Mi=—K(k,+vry) My=—K(ka+ve;) Mpp=M, =—(1—v)KA

In den Gleichungen (25a-h) sind also jetzt alle sogenannte Zusatzglieder weggefallen.
Man konnte aber auch unmittelbar von Gl. (25) zu (32) gelangen unter der Voraus-
setzung, dass 4/R; und //R, klein sind gegen eins und dass es sich um einen Biegespan-
nungszustand handelt, bei welchem die grossten Biegungsverformungen 4, x»h und
Ah von derselben Grossenordnung sind wie €, €; und y,,. Jedes Glied in (25),"
welches in (32) nicht mehr auftritt, ist ndmlich mit dem Verhéltnis #/R; oder h/R,
multipliziert gegeniiber anderen, der Gréssenordnung nach gleichen Gliedern, und
kann deshalb vernachlissigt werden.

Auch die Gleichgewichtsbedingungen konnen bei kleinen 4/R; und A/R, etwas
vereinfacht werden. Wenn man nidmlich die durch Q; und Q, in Gl. (28a, b)
eingefiihrten Glieder néher betrachtet, findet man dass sie in diesen Gleichungen bei
Schnittkrédften N;, N, und N;, ausnahmslos vernachldssigt wurden. Man kann also
in beiden ersten Gleichungen (28) auch die Summanden (4BQ;)/R; bzw. (4BQ,)/R,
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streichen und erhilt so die fiir die Berechnung des Verschiebungs- und Spannungs-
zustandes massgebenden flinf Gleichungen aus (28a—e)

(BN )y + (AN )+ AgN 32— By N+ ABX, =0 )
(Ble)a-i-(ANz)B—AﬂNl +B,N, +4BX,=0

(BQ1)1+(AQ2)3+AB(%+%)+ABX3=0 f . . (33a-e)

ABQ\=(BM )y +(AM;\)g+AsM,— B, M,
ABQy=(BM3)q+(AM3)g— AM+ B, M5, |

Was nun die letzte Gleichgewichtsbedingung (28f) betrifft, so erweist sie sich nicht
mehr als Identitit. Aber wir konnen doch annehmen, dass sie durch unsere Aus-
driicke geniigend genau befriedigt wird, weil beim Biegespannungszustand die
Grossen M ,/R; und M,,;/R, klein sind gegeniiber N,,=N,, und deshalb gestrichen
werden konnen. Indem man ndmlich fiir die in (28f) auftretenden Krifte und
Momente die Ausdriicke aus (32) einfiihrt, erkennt man, dass in den beiden ersten
Summanden grossenordnungsmadssig gleiche Glieder wie bei den letzten zwei
auftreten, die aber dort noch mit 4/R; bzw. A/R, multipliziert sind.

Gleichungen (33a—e) bilden den Ausgangspunkt fiir die Aufstellung der Differen-
tialgleichungen fiir Verschiebungen. Dazu braucht man wieder nur die Grossen Q,
und Q, aus den letzten zwei Gleichungen in (33c) einzusetzen und dann alle in
(33a—) auftretenden Schnittkridfte und Schnittmomente durch Verschiebungen
mitiels der Gleichungen (14), (30), (31) und (32) auszudriicken. Im allgemeinen
erhdlt man zwar auch mit allen diesen Vereinfachungen noch immer sehr uniiber-
sichtliche Gleichungen; aber durch entsprechende Wahl der Koordinaten ¢ und B
erhélt man in vielen, praktisch sehr wichtigen Sonderféllen verhéltnismissig einfache
Ausdriicke, die sich fiir numerische Berechnungen viel besser eignen als die in voriger
Nummer erwihnten allgemeineren Beziehungen. Wir wollen dies ganz kurz am
Beispiel der Zylinderschalen zeigen, wo die Verhiltnisse besonders einfach sind. '

BIEGESPANNUNGSTHEORIE DUNNER ZYLINDERSCHALEN

Bei zylindrischen Schalen nehmen wir als Gauss’sche Koordinate « die Linge der
Erzeugenden auf der Schalenmittelfliche von einem gewissen Querschnitt und fiir 8
die Lange der Leitlinien von einem bestimmten Axialschnitt ab. Dann hat man

1 1 .
A=B=1, =0, =f®) . .. ... (9

Gleichungen (14) und (31) fiir die Verzerrungen und Kriimmungsinderungen
nehmen dann eine sehr einfache Form an und ergeben fiir die Schnittkrifte und
Momente folgende Ausdriicke

w =
=it (o)
1 Uy +v|vg R,
=(o o
=D|\vg— 5 +wvu
2 TR, iy
1—

14
Ni;=N; = TD(”.a‘l'?)a)

M= _K(Waa'l_vwﬁﬂ)
M2=_"‘K(Wﬂ3+ywaa)
M12=M21=—(1—1’)K. waﬂj

(35a-f)

—

C.R.—14
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wihrend die Gleichgewichtsbedingungen (33) nun folgendermassen lauten
Nig+Nopt+X;=0
Niz2y+Nypg+ X>=0

N
Q1a+ng+ff+X3=0 S . . . . . . (36ae)

O1=M,+Myg
Or=M >, + Mg J
Aus den letzten zwei Gleichungen erhilt man mittels (35d—e) Ausdriicke fiir Q,

und @, in der Verwolbung w und Gl. (36a—c), in Verschiebungen u, z, w ausgedriickt,
lauten daher

1—v I+v Wy X1 )
Yaat 3 Ut Vus VR, D=
14v 1—v ’ W X,
Tua5+7vaa+vﬁﬁ_(E)B 32=0 & . (373.—C)
1 w X3
— —_— | —k2 s 8
Rz(vlla""vﬁ Rz) k2 . AA”+D

-

mit Adw=“;aaaa+23vaaﬁﬁ+H’ﬁﬁﬁs . . . . . . (38)

Gleichungen (37) stellen die auf Schalen beliebiger Querschnittsform ausge-
dehnten, etwas vereinfachten Fliiggeschen Gleichungen (71) (Schrifttum 4, S. 118) dar.

Statt die Spannungsverteilung auf dem Umwege iiber Verschiebungen zu berech-
nen, ist es manchmal vorteilhafter, unmittelbar die Schnittkrifte zu bestimmen.
Indem wir in der Gleichgewichtsbedingung (36c) Q; und Q, durch w ausdriicken,
bekommen wir ndmlich aus (36a—) und aus der Vertraglichkeitsbedingung zwischen
N,, N,, N1, und w folgende Gleichungen

Njg+Nyp+ X,=0 1
Nizg+Nypg+ X5=0
N _
EZ—K. Adw+ X;=0 > (39a-d)
Z .
, Eh
NlﬂB_VNICXC(_i_Nde_VNzﬁﬁ_z(l +V) F NlZaB+ szad=0

Bei der Integration solcher Gleichungssysteme baut man aber gerbhnlich die
Losung aus Summen von Gliedern auf, in denen alle unbekannte Grdssen als
Produkte gewisser Funktionen einer unabhingigen Veridnderlichen mit unbekannten
Funktionen der anderen Verdnderlichen auftreten, wobei natiirlich die willkiirlich
gewihlten Funktionen gewissen Randbedingungen geniigen miissen. In solchen
Fillen tritt in den iibrigen Randbedingungen eine Schnittkraft nicht auf und es ist
daher ratsam, sie aus (39a-d) zu eliminieren. Wenn wir z.B. die Schnittkrifte und
die Verwolbung w als bekannte Funktionen von o« annehmen, tritt in den Schnitt-
ebenen B=const. die Schnittkraft N, nicht mehr auf; wir driicken sie also aus (39a)
durch andere Grossen aus und eliminieren sie dann aus (39d). Aus (39b-d) erhilt
man so drei Differentialgleicnangen fiir N5, N, und w

Njog+Nopg+ Xo=0

NZ—K' Rz i AAW+R2X3=O (403_0)

Eh
Nzaaa—VNzaﬁa“‘szﬁp‘—(2+V)N21aaa+§‘7waaa +rX g —X1g=0
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Mit unseren Annahmen kénnen wir aber unser Problem auch auf eine einzige
Differentialgleichung fiir die Verwolbung w zuriickfithren. Aus (40a—c) eliminiert
man N, und N,, und bekommt

Eh
K a AA(.RZ . AA}V)'}‘EZ'}Vaiaq'*‘VXIaau—leBB
+(2+V)Xzomﬁ+ XZBBB—AA(R2X3)=0

Auf Einzelheiten bei der numerischen Durchfiihrung der Rechnungen konnen

wir an dieser Stelle nicht eingehen, sondern verweisen auf das Schrifttum 6.

(41)
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Zusammenfassung

Aus Gauss’schen und Weingartenschen Ableitungsgleichungen der Flichen-
theorie und unter Benutzung der Bernoulli’schen Annahme iiber das Ebenbleiben der
Querschnitte lassen sich sehr leicht Ausdriicke fiir die Verzerrungen eines beliebigen
Schalenelementes ableiten. Lovesche Gleichungen fiir diese Grdssen werden
bestdtigt. Zur angenédherten Behandlung diinner Schalen wird die Vernachldssigung
der Schalendicke gegeniiber den beiden Hauptkriimmungshalbmessern der Mittel-
fliche vorgeschlagen. Daraus ergeben sich vereinfachte Ausdriicke fiir die Kriim-
mungsdnderungen und auch der Einfluss der Querkréfte auf das Gleichgewicht in
der Tangentialebene kann vernachlidssigt werden. Mit dieser Annahme lassen sich
bei zylindrischen Schalen verhiltnismissig einfache Gleichungen sowohl fiir die
Verschiebungen als auch fiir die Schnittkrifte angeben.

Summary

From the formule of Gauss and Weingarten for the theory of surfaces and under
Bernoulli’s assumption that plane sections remain plane, the expressions for the
strain in the shell are derived. On the above assumption, Love’s equations for the
components of strain are correct. To simplify the analytical treatment of thin shells,
it is proposed to neglect their thickness, when compared with the main radii of
curvature of the middle surface. This assumption gives simplified expressions for
the changes of curvature, and the influence of the stress-resultants normal to the
. middle surface in the equations of equilibrium in the tangential plane can be neglected.
In the case of a cylindrical shell, comparatively simple equations are derived both
for the components of displacement and for the stress-resultants.
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Résumé

A partir des équations établies par Gauss et par Weingarten pour la théorie des
surfaces et en utilisant ’hypothése de Bernoulli concernant la conservation de Ila
planéité des sections, on peut établir trés aisément des expressions donnant les
déformations d’un élément de volite mince arbitraire. Les équations de Love con-
cernant ces grandeurs sont ici confirmées. Pour traiter le probléme des vofltes
minces, il est proposé de négliger leur épaisseur par rapport aux deux rayons de cour-
bure principaux. Il en résulte des expressions simplifiées pour les variations de
courbure; I'influence des efforts de cisaillement sur les conditions de I’équilibre dans
le plan tangentiel peut également &tre négligée. Dans ces conditions, on obtient des
équations relativement simples pour les volites cylindriques, tant en ce qui concerne
les déformations que les efforts dans les sections.
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