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L’emploi de fonctions orthogonales spéciales pour la solution du
probléme de la torsion )

The use of special orthogonal functions for solving the torsion
problem

Anwendung von besonderen orthogonalen Funktionen fiir die Losung
von Torsionsproblemen

Pror. TELEMACO VAN LANGENDONCK

Ecole Polytechnique, Université de Sao Paulo, Brésil

GENERALITES
Le probléme de la torsion d’une piéce prismatique de section pleine, S, consiste

a resoudre I’équation aux dérivées partielles:

62w+82w

ox2 "oy
avec w=0 sur le contour. Les composantes de la contrainte de cisaillement parall¢les
aux axes des x et des y sont données par

owT owT

-2 dans S. . . . . . . . (1

sz:_a; 7’-, ‘T),z= '—a 7' . . . . . . . . (2)
ol T est le moment de torsion et J, est le “moment d’inertie a la torsion”:
J,=2ffwdxdy B )
s

avec lequel on peut calculer I'angle 8 de torsion, par unité de longueur de la piece
(G est le coefficient d’élasticité transversale):
T

b=gr « - @

% B
Si I'on pose z=w+x -2|—y 5w s ® & ®m 8 & ¥ & 3)
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la condition (1) devient:

0%z 822_0 6
: ax : by
qui est I’équation de Laplace, avec z=—p (7)

sur le contour.*
La solution générale de I’équation (6) est

z=fi(x+)+Lx—iy) . . . . . o . L. (8)
qu’on peut écrire, en developpant en série de puissances: »
z-_~?a”m(x+iy)"'+Zb”,,,(x—iy)"' T )
‘m_=(J) m=0

ou les coefficients a”,, et b”,, sont déterminés par la condition au contour (7).
On obtient la solution réelle du probléme en combinant les termes des séries (9)
de fagon a avoir:

o0

'_Z , G ip) - (x—ip)™ i D) — (=)
= 2o 2 + > b, -
m=0

2i

m=0

qu’on peut écrire:

z=za’mUm+Zb’me R ¢ 1)

m=0 m=0
ou Up=3%[(x+iy)"+(x—iy)"] et V,,=%i[(x+iy)"—(x—iy)"] sont les expressions trés
connues: :

Upy=1 Vo=0

U1=x Vl =y
U,=x2—y2 Vs=2x%
Us=x3—3x)2 Vi=3yx2—y3
Uy=x*—6x2p24p* Vi=4x3y—4x)3

lesquelles sont des polynomes homogenes de degré m. Par suite, I’égalité (10) ne
perdra pas sa généralité si on groupe les U, et les V,, de fagon & avoir, en posant
W2m= Um’ I/V2n1-}»1=1/ma C’2m=a’m et C’2m+1=b'ml

=
Z=ZC’me=Zam(Clo, mWO+C'1,mW1+ « o

m=0 m=0 0
+C,m-—1: me—1+ WM)=ZaMPm P (1 1)
m=0

les coefficients ¢’y ,, pouvant étre des nombres réels finis quelconques. On peut les

n=m

choisir de fagon que les polynémes Z ¢'n, mWn (avec ¢’y m=1) soient—quand on

n=0
* Dans quelques cas, il serait plus convenable de poser
z=w+x2 ou z=w+)?
- Péquation (6) restant valable, avec z=x2 ou z=y2 sur le contour.
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change, dans W,, y en f(x)—des fonctions orthogonales pour le contour C caractérisé
par I’équation y=f(x). On aura:

fP,,Rds:i:O et, si mn, fpmp,,ds=o 12
C C

Pour que z satisfasse a la condition (7) au contour, il faut que

242 =
(x +y) =ZamP,,, N (),
2 Jy—rw

m=0
c’est-a-dire, qu’il faut développer I’expression du premier membre en fonction des P,
ce qui est possible, car les P, sont des fonctions orthogonales. En conséquence, les
coefficients a,, resteront determinés et la valeur de z sera connue (11); on pourra,
alors, calculer w (5) et J, (3. En fait, d’aprés la théorie des séries de Fourier, on

aura. * 42 2
J p -;—y P,ds
PR . IS (14)
f P2,.ds
C

La solution obtenue convergira peut-étre quelquefois plus lentement que la
solution qu’on pourrait obtenir avec le procédé Ritz-Rayleigh; mais elle présente
I’avantage de dispenser de la résolution d’équations simultanées pour le calcul des
coefficients et de donner la solution avec une précision croissante avec le nombre des
termes qu’on prend, et qui converge en moyenne vers la solution exacte, en vertu de
la propriété des séries de fonctions orthogonales.

La solution décrite s’applique, évideminent, a tous les problémes de la physique
mathématique qui consistent a résoudre 1’équation de Laplace a deux dimensions, avec
certaines conditions sur des contours préfixés (probléme de Dirichlet).

Comme exemple d’autre cas d’application, nous terminerons en donnant la solu-
tion d’un probléme de calcul de la distribution des contraintes de cisaillement dans des
piéces fléchies. Le probléme de la plaque librement appuyée sur le contour peut étre
ramené a la solution de deux équations de Laplace et alors étre résolu par le procédé
indiqué. L’auteur étudie maintenant I’application d’une méthode semblable au calcul
des plaques avec conditions quelconques d’appui et a la résolution de I’équation
d’Airy y4w=f(x, y), en utilisant la solution générale de I’équation sans second membre:

w=f(x+ )+ r(x+ip)+f(x— )+ yfalx—iy)

APPLICATION AUX SECTIONS EN LOSANGE

Pour résoudre le probléme de la torsion d’une pi¢ce prismatique avec section en
forme de losange, on prend pour axe des coordonées, dans le plan de la section, les
diagonales du losange (fig. 1). On peut ainsi prendre seule-

ment, pour le développement (10) de z, les fonctions paires de x Ay

et de y, c’est-a-dire seulement les fonctions U, avec m pair.

L’égalité (11) sera valable si on pose W, =U,,,: ) 4
WO= 1 l o
W1=x2—y2 -G
Wo=x4—6x2y2 4 y*
Wy=x6—15x%24 15x2p4— 6
' —b

Fig. 1
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Les intégrales (12) peuvent s’étendre, a cause de la symétrie, a un seul coté du
losange. Si on prend le coté x=>5b(1—y/h), il vient ds=dy/cos « et I'intégrale sur le
contour du terme général xPy? est:

, Ay bR plg!
P Jo — rl1—_2 = N ST e A
fcxy i of 4 (1 /1) COS o COS o f d—nFmay=s> h( +q+1)!
Avec cette formule, on calcule toutes les intégrales 1, ,=[cW,W,ds et

X2 2
—-f 1Y ——=—W.ds, pour les valeurs entiéres de p et g entre O et le plus grand m que

I’on désire employer dans le développement (11) de z.  On calcule aussi, pour trouver

J. (3), les intégrales I” —ff W,dx dy, en notant que

f X"yt dy= f ydy fb i) sedy=apr 11— P
(p+q+1)!

Soit le cas du losange avec b=0,44; on dispose le calcul comme on a fait sur le
tableau I, qui finit par une colonne 01‘1 se trouvent déja les valeurs successives des
termes qui somment J,, et I’on s’arréte deés que la précision voulue est atteinte.

Dans la premiére colonne, se trouvent les valeurs des m qui correspondent a chaque
terme du développement (11) de z, dont le calcul est fait sur la ligne respective. Sur

24 12
Pyds=| Wy2dsetde f ng Y ds
c c c 2

la premiére ligne (m=0) on trouve les valeurs def

-2 2
— f Wy ;Ly
C

quantités donne a, (14), qui figure dans le tableau. Dans la colonne suivante, on

trouve ff Pydx dy=ff Wydx dy=1", et, dans la derni¢re, le deuxiéme terme du
s s

développement de J,, c’est-a-dire, le double du produit des nombres qui se trouvent
dans les deux colonnes précédentes 2x 2 x0,193333=0,773333; le premier terme de
ce développement est donné au-dessus du nombre 0,773333 et correspond a la difference

entre z (5) et w, qui est (3):
2 )2
= U - ';} dx dy=—0,386667
S

En général, sur la méme ligne, on trouve successivement m, o4, 14m . . . ,
m-1Ams m—1Bms m-2Bms - « -5 0Bms Cm (précédé dans la méme colonne par C,,_;, C,, 5,
etc.), D, En, F,, G,,. Ces valeurs sont obtenues de la fagon suivante, en fonction
des quantités déja calculées:

OAna:Im, 0
1Am=1Im, 1F+04m - 0B
2Am=1n, 2t0Am . 0B2+14m . 1B2

ds, déja calculées (I, o et Iy, parce que Py=W;); le quotient de ces deux

m-lAm

m—le=_

m-1

B _ m—ZAm
m-2Pm=——

Cm 2
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A

02m

OBm""_ CO

Cm=Im. m+m—1Am £ m—le+m—2Am € mk23m+ L +0Am . OBm
Dm=I,m+m—le . Dm—1+m-ZBm . Dm—2+ LI I +0Bm . DO

B, —Dm

m— Cm '

-Fm—_-lﬂm'i__m—le s En—1+m—ZBm ¢ Fm—-2+ LA +OBm : FO
Gn=2E,F,

Pour le calcul de J;, dans I’exemple du tableau I, il suffit de s’arréter a la ligne
m=3, ce qui donne, en faisant la somme
des nombres de la derniére colonne (dans %% |,

la ligne m=4, on trouverait —0,000572): T/\! s-26¢
J:=0,1666h3=0,415b2h? 3 S bhrbany

La répétition de ce calcul pour d’autres g5} I-8% ,i-2h o —
valeurs de la relation b/h permet de tracer Pl
le graphique de la fig. 2, ol est établie la A~
comparaison des valeurs de J, avec les 2# T |
valeurs obtenues par les formules usuelles s Sormule (15
(formule de St. Venant: J,=S54/40J,, et ,, A 4SI2 467 |
formule des sections allongées: ' i ’ \ jl,, ”6; ;ba/:ik

J,=41S12[(SI2+161). IR

On y trouve aussi les résultats de I'ap- o g2 o4 a6 o8 r e %
plication de la formule proposée, a la suite ‘
des calculs faits, pour I'usage pratique : Fig. 2

14 b3h3
.I',_-5 S Bh o N ¢ &)

APPLICATION AUX SECTIONS COMPOSEES DE DEUX OU TROIS RECTANGLES

Pour la détermination des J; des sections en croix, en T, en L, en U, etc. (fig. 3),
il y a des formules pratiques, qui toutefois s’appliquent & des cas ou la largeur des
rectangles est d’un ordre de grandeur plus petit que la longueur. Malgré la présence
des angles rentrants la méthode générale décrite permet de trouver la solution cherchée
pour des rectangles quelconques.* Par exemple, pour le cas de L symétrique (fig. 3),

Fig. 3

* Pour le cas de deux rectangles, I’auteur a proposé ailleurs une méthode dont la solution converge
plus rapidement, mais dans laquelle on ne peut pas éviter la résolution d’équations simultanées pour
trouver les coefficients des termes de la série. Cette solution est obtenue par deux séries trigono-
métriques, une pour chaque rectangle, dont les termes satisfont a ’équation (1). Les coefficients de
ces termes sont determinés par la condition de continuité sur la limite des deux rectangles.

C.R.—13



TABLEAU I
P —W, fx2+):2
mePodS IWmPIdS IWszdS m=Wm+ mezdS ‘ 2 am HPmdx d,}’ Ji
m =g p2m | =5 . j2m+2| =5 h2m+4 =5 . hm Puds =h2=2m | =ph2am+1 =hh3
Pm—lhz Pm—zll4 P.rn—3h6 =g . ham+2
—0,386667
0 — — — — — — — — |1,0000000 |+0,1933333|40,193333 [42,000000 |+-0,773333
1 {—0,2800000 — — — |+40,2800000 — ! — — 0,1160533 |—0,0433067|—0,373162 |+0,280000 |—0,208971
2 (40,1731200|—0,0848384 — — |4+0,7310294 [—0,1731200 — — 10,0129241 |+0,0021738({+0,168196 |—0,026138 |—0,008793
3 |—0,1230720 |+0,0675240 | —0,0144580 | — |+1,1186871|—0,5818361 |4+0,1230720| — [0,0016040 |+ 0,0002346|+0,146259 —0,007547 |—0,002208
m 0Am 1Am 2Am 3Am m—18Bm m—2Bm m—3Bm m—a4Bm Cm Dm Em Fon Gm
— v N v -
m colonnes m colonnes
TABLEAU 1
2+‘12
P =Wn (X - 0
m [WinPods [WmPds [WinPads " vk [Pm2ds . 2 am 1 {fa_:sdxd)' %.I:h“
=g . h2m =5 . R2m+2 | =5 . f12m-+4 — =5 . him Pds =h2-2m ’ -—],'?.m-! 2
I’mn--]h2 Pm-—zh“ }).rn'——-jh6 =5 .h2mit2 -
—0,066667
0 — — — — —— — 1,0000000 |+0,2666667 | +0,266667 | +0,500000 | +0,133333
1 —0,3333333 -— — +0,3333333 — — 0,3555556 |4-0,2088889 | +0,587500 | +0,166667 | +0,097917
2 +0,2000000 |—0,0761905 — +0,2142857 |—0,2000000 -— 0,2071655 |—0,0123810| —0,059764 | —0,030952 | +0,001850
3 —0,1428571 {+0,1269841 |—0,0351268 |+0,1695590 |—0,3571429 | 0,1428571 | 0,1024435 |+0,0026626| +0,025991 | 4-0,006657 | +0,000173

14!
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on prendra les fonctions W, en combinant les fonction U et ¥V de fagon a obtenir des
polyndmes symétriques en x et y:

Wo=1, Wi=x+y, W,=2xy, Wy=x3—3xy2—3yx2+)3, Wy=x%—6x2p24+)4 . . .
A cause de la symétrie les intégrales sur le contour s’étendent sur le parcours OABC,
ce qui donne, pour le terme générale x?y7+ x7y?:

(BRI _pgmentl pmy gl gmnd]
P.,4 q —_pym+n+1
fc(x Y+ xYP)ds=b ( g + = )

APPLICATION A LA DETERMINATION DES CONTRAINTES DE CISAILLEMENT DANS LES PIECES
FLECHIES
La théorie de I’élasticité donne, pour les composantes des contraintes de cisaille-
ment (le plan de la flexion contient ’axe des x):

b0 (a¢_ E yz)Q

Ky e Vi Fav Y

ol v est le coefficient de Poisson, Q I’effort tranchant, J le moment d’inertie de la
section par rapport a ’axe des y et ¢ une fonction qui satisfait & y2¢=0 et qui, au

contour, permet d’écrire
dy dx -
=Ty g 0 - 213

Pour le cas du losange (fig. 4), la fonction ¢ est impaire
en y et paire en x. On peut, en conséquence, la développer
en série suivant les fonctions ¥ avec indice impair:

3 , Voms1
"S“Z" "2m+1
m=0

.4

.. _ v X
La condition au contour s’écrit (en posant k=l +V) : Fig. 4
o o4 %
—_—— [ —— 2—— 2= !
oy Pax=x"—ky zamWn.
m=0
L (Vams1  2Vomir s
avec W, = 2m+1( 2y —B B =U,,,— BV, Cest-a-dire:

Wo=1, Wy=(x2—y?)—B(2xy), Wa=(x*—6x2y2+ %) —f(dxy—4xp?), . . .

A partir de ces W, on calcule, comme auparavant, les fonctions P,, orthogonales
pour le contour et on développe le bindme x2—ky?2:

o f o
(x2=ky?),_fi= Ea,,,P,,, avec a,,= <
m=0 ( szds
C

[

2 ky?))P, ds

Toutes les opérations sont faites, sans difficulté, comme pour le tableau I et le pro-
bléme est résolu. ‘Dans le tableau II, est donnée la solution pour le cas du carré
(losange avec f=1). La derniére colonne; qui contient les termes dont la somme
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doit étre égale a 1/6 pour que I’effort tranchant soit égal a 'intégrale des contraintes
Txz, permet de déterminer la précision obtenue. Sur la fig. 5 sont indiquées les valeurs
des 7x; pour les diagonales x=0 et y=0, pour le contour y=1—x et pour y=0,5,
valeurs obtenues avec les termes de la série jusqu’a m=3 (auquel correspond, dans la

—— valeurs calculdes

=\

s ﬂrmu/e classigue

' z =i/'_75_¢
£ xz™ g7

L 1 / \\"\
L — 7} &
A 1/
[ ’Ql 1 1 [ ‘g‘ /
I —
/:,"::5:l 'F?
83— '} S
i aT— I 'Q§ //
L 1 | h =
1 -
Lk %
\\ — o Y ] ’
g T || y
 J
x T,z pour x=0
2] |
pd —4 4 e o S b —— | +— 7 ﬂﬂﬂﬂﬂﬂﬂﬂﬂ J
1150
Fig. 5

derniére colonne, la somme 0,166.606 au lieu de 1/6). Le calcul de 7., a été fait, en
employant les divers coefficients, de la méme fagon que le calcul des deux derniéres
colonnes des tableaux I et II, suivant ’exemple du tableau III, pour x=y=0 et pour
x=0, y=0,6.

TaBLEAU III

formule générale y=0 y=0,6
0|1 1,00000 1,00000
1 | (x2—y2)+0,333.333f, 0,33333 —0,02667
2 | (x4—6x2y24y4)+0,214.286f1 —0,2/p —0,12857 —0,07614
3 | (x2—15x42415x2y4—y6)+40,169.559/2—0,357.143f
+0,142.857f 0,00201 0,09282
2—‘Irxz’5(0,266.667fo +0,587.500/1 —0,059.764/>4+0,025.991£3)
Q —x2+40,2p2= 0,4702 0,3300
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Résumé

Une nouvelle méthode est proposée pour la solution du probleme de la torsion;
elle consiste a utiliser certaines fonctions orthogonales spécialement choisies. La
méthode peut étre adoptée a la solution des problémes de la physique mathématique
consistant 4 résoudre 1’équation de Laplace, a deux dimensions, avec des conditions
données au contour. Un exemple d’application est indiqué pour le cas de la torsion
d’une piéce de section en losange et un autre au cas des contraintes de cisaillement
dans les pieces fléchies.

Summary
A new method for the solution of the problem of torsion is proposed. It consists
of the use of special orthogonal sets of functions. This method is extensible to the
problems of mathematical physics which involve the solution of Laplace’s equation
with given boundary conditions. Two examples are shown: one, the torsion of
a bar with rhombus-shaped section and the other, the distribution of the shearing
stresses in beams under bending.

Zusammenfassung

Eine neue Methode fiir die Lésung der Torsionsaufgabe wird vorgeschlagen. Sie
besteht in der Anwendung von besonderen orthogonalen Funktionssystemen. Diese
Methode ist anwendbar auf die Losung der Fragen, die in der mathematischen Physik
auftreten, wenn man eine Laplace’sche 2-dimensionale Gleichung mit gegebenen
Randbedingungen l6sen will. Zwei Beispiele werden angefithrt: eines fiir die Torsion
eines Stabes mit thombusformigem Querschnitt und das andere fiir die Verteilung der
Schubspannungen in Stiben, die durch Biegung beansprucht sind.
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