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AIIl

L'emploi de fonctions orthogonales speciales pour la Solution du

probleme de la torsion

The use of special orthogonal functions for solving the torsion
problem

Anwendung von besonderen orthogonalen Funktionen für die Lösung
von Torsionsproblemen

Prof. TELEMACO VAN LANGENDONCK
Ecole Polytechnique, Universite de Sao Paulo, Bresil

Generalites

Le probleme de la torsion d'une piece prismatique de section pleine, S, consiste
ä resoudre l'equation aux derivees partielles:

82w 82w

8x-2+W ~2 d*mS 0)

avec w=0 sur le contour. Les composantes de la contrainte de cisaillement paralleles
aux axes des x et des y sont donnees par

dw T dw T
Txz=~oyJ; Ty2=z~d~xlt (2)

oü Test le moment de torsion et /, est le "moment d'inertie ä la torsion":

"-ily,=2 wdxdy (3)

avec lequel on peut calculer Fangle 6 de torsion, par unite de longueur de la piece
(G est le coefficient d'elasticite transversale):

T
e=GJ, ¦ ' ¦

'
<4>

x2+y2
Si l'on pose z=w-\ -z— (5)
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la condition (1) devient:
82z 82z

W2+W=° ®
x2+y2

qui est l'equation de Laplace, avec z=—-— (7)

sur le contour.*
La Solution generale de l'equation (6) est

z=f1(x+iy)+f2(x-iy) (8)

qu'on peut ecrire, en developpant en serie de puissances:
oo oo

:=y^a"m(x+iyr+^b"m(x-iy)z= } a"m(x+iy)m+2_b"m(x-iyy (9)

m=0 m 0

oü les coefficients a"m et b"m sont determines par la condition au contour (7).
On obtient la Solution reelle du probleme en combinant les termes des series (9)

de facon ä avoir:

^© (x+iyy+(x-iy)m yL, (x+iy)m-(x-iyr
z=Za m 2 +Zb m 3

m 0 m r>

qu'on peut ecrire:
OO 00

^ji'mUm+Sb'mV,z=>a'mUm+>b'mVm (10)

m=0 m=0
oü Um=$[(x+iy)m+(x-iy)m] et Vm=hl(x+iy)m-(x-iy)m] sont les expressions tres
connues:

u0=\ v0=o
Ux=x Vx=y
U2=x2-y2 V2=2xy
U3=x*-3xy2 V3 3yx2-y*
U4=x*-6x2y2+y* Vi,=4xiy-4xyi

lesquelles sont des polynömes homogenes de degre m. Par suite, Fegalite (10) ne
perdra pas sa generalite si on groupe les Um et les Vm de fa?on ä avoir, en posant
"2m—Um> ff 2m + l== *m, C 2m a m et C 2m+i b m\

z= yc'mWm= yam(c'0, mW0+c'UmWl+z-

m=Ü m 0

+c'm_1>mWm_1+Wm)=2,amPm (11)

m 0

les coefficients c'„_ m pouvant etre des nombres reels finis quelconques. On peut les
n — m

choisir de facon que les polynömes > c'„imW„ (avec c'm<m=l) soient—quand on

* Dans quelques cas, il serait plus convenable de poser
z=w+x2 ou z=w+y2

l'equation (6) restant valable, avec z=x2 ou z=y2 sur le contour.
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change, dans Wn, y enf(x)—des fonctions orthogonales pour le contour C caracterise

par l'equation y=f(x). On aura:

PJds^O et, si m©«, PmPnds=0
Je Je

Pour que z satisfasse ä la condition (7) au contour, il faut que

m<y=Rx)

(12)

(13)

c'est-ä-dire, qu'il faut developper l'expression du premier membre en fonction des P„,
ce qui est possible, car les Pm sont des fonctions orthogonales. En consequence, les
coefficients am resteront determines et la valeur de z sera connue (11); on pourra,
alors, calculer w (5) et J, (3). En fait, d'apres la theorie des series de Fourier, on
aura:

am=
fr+r Pmds

l (14)
P2mds

La Solution obtenue convergira peut-etre quelquefois plus lentement que la
Solution qu'on pourrait obtenir avec le procede Ritz-Rayleigh; mais eile presente
Favantage de dispenser de la resolution d'equations simultanees pour le calcul des
coefficients et de donner la Solution avec une precision croissante avec le nombre des

termes qu'on prend, et qui converge en moyenne vers la Solution exaete, en vertu de

la propriete des series de fonctions orthogonales.
La Solution decrite s'applique, evidemment, ä tous les problemes de la physique

mathematique qui consistent ä resoudre l'equation de Laplace ä deux dimensions, avec
certaines conditions sur des contours prefixes (probleme de Dirichlet).

Comme exemple d'autre cas d'application, nous terminerons en donnant la Solution

d'un probleme de calcul de la distribution des contraintes de cisaillement dans des

pieces flechies. Le probleme de la plaque librement appuyee sur le contour peut etre
ramene ä la Solution de deux equations de Laplace et alors etre resolu par le procede
indique. L'auteur etudie maintenant I'application d'une methode semblable au calcul
des plaques avec conditions quelconques d'appui et ä la resolution de l'equation
d'Airy y4n'=f(x, y), en utilisant la Solution generale de l'equation sans second membre:

w=ft(x+ iy) +yf2(x+iy) +f2(x- iy) +yf4(x-iy)

Application aux sections en losange
Pour resoudre le probleme de la torsion d'une piece prismatique avec section en

forme de losange, on prend pour axe des coordonees, dans le plan de la section, les

diagonales du losange (fig. 1). On peut ainsi prendre
seulement, pour le developpement (10) de z, les fonctions paires de x
et de y, c'est-ä-dire seulement les fonctions Um avec m pair.
L'egalite (11) sera valable si on pose Wm=U2m:

W0=l
Wx=x2-y2
Wz=x*-6x2y2+y*
W^=x6- I5x*y2+ ISxty-y6

Fig. 1

©

-b-
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Les integrales (12) peuvent s'etendre, ä cause de la symetrie, ä un seul cote du
losange. Si on prend le cote x=b(l—y/h), il vient ds=dyjcos a et l'integrale sur le
contour du terme general xpy" est:

f f* / y\" dy W1 f1 p\q\
xpy"ds= WH /—= (l—nYv''dv=sb>H>, \_\„.Je oJ \ h) cosa cosa0J (p+q+l)\

Avec cette formule, on calcule toutes les integrales lp< q=\cWpWads et
r2+y2

¦ Wpds, pour les valeurs entieres de p et q entre 0 et le plus grand m que
f ©Hc-2

l'on desire employer dans le developpement (11) de z. On calcule aussi, pour trouver

¦¦--iL'J, (3), les integrales I"p= Wpdx dy, en notant que

/j©Vi*-4„M "; "¦""b'-"'-'(Pipw
Soit le cas du losange avec b=0,4h; on dispose le calcul comme on a fait sur le

tableau I, qui finit par une colonne oü se trouvent dejä les valeurs successives des
termes qui somment J,, et l'on s'arrete des que la precision voulue est atteinte.

Dans la premiere colonne, se trouvent les valeurs des m qui correspondent ä chaque
terme du developpement (11) de z, dont le calcul est fait sur la ligne respective. Sur

la premiere ligne (m=0)on trouve les valeurs de P02ds=\ W02dsetde\ P0—^—ds
C x2+y2

W0—j—ds, dejä calculees (70i 0 et I0', parce que P0= W0); le quotient de ces deux

quantites donne a0 (14), qui figure dans le tableau. Dans la colonne suivante, on

trouve P0dxdy=\ W0dxdy=I"0 et, dans la derniere, le deuxieme terme du

developpement de /,, c'est-ä-dire, le double du produit des nombres qui se trouvent
dans les deux colonnes precedentes 2x2x0,193333=0,773333; le premier terme de
ce developpement est donne au-dessus du nombre 0,773333 et correspond ä la difference
entre z (5) et w, qui est (3):

-2Jj X—Y~dxdy= -0,386667

En general, sur la meme ligne, on trouve successivement m, 0Am, xAm,

m-\Am, m-\Bm, m_2Bm, 0Bm, Cm (precede dans la meme colonne par Cm_u Cm _2,

etc.), Dm, Em, Fm, Gm. Ces valeurs sont obtenues de la facon ^uivante, en fonction
des quantites dejä calculees:

t}A'm==Im, 0

\Am Im, i+o^m-O^l
2^m ^m, 2 + 0^m • 0^2+ 1-^m ¦ 1^2

„ _
m~\Am

m-l"m—
<̂-m-l

D __
ni-lAm

m - 7."m — -pr
<-m-2
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ff - °A"

C =1 +
D —I' +

Dm

F =1" 4-x m * m> r.

m— \-™-m * in

,B„,. D„
¦ lBm+m-2-Am -

-l+m-2^m • Af
,~2ßm +
-2+ • • +0B„, ¦ D0

nB„

\B„ l+m-2-Rf« • ^m-2+ • +(A ¦ Ff)

Pour le calcul de J,, dans Fexemple du tableau I, il suffit de s'arreter ä la ligne

Gm — 2fcmb m

m=3, ce qui donne, en faisant la somme
des nombres de la derniere colonne (dans
la ligne m=4, on trouverait —0,000572):

7,=0,166M3=0,415Ä2/i2
La repetition de ce calcul pour d'autres

valeurs de la relation b/h permet de tracer
le graphique de la fig. 2, oü est etablie la
comparaison des valeurs de /, avec les
valeurs obtenues par les formules usuelles
(formule de St. Venant: J,=S4I40JP, et
formule des sections allongees:

/,=4/S72/(S72-|-16/).
On y trouve aussi les resultats de

I'application de la formule proposee, ä la suite
des calculs faits, pour Fusage pratique :

•M»' YZbA
S--2 6/i

,t-e/iIT

/© formale (I5J

41SI' 4b3h3
51 '+16/ 2b'+3h*

SP_ 6. b3h3
I

40Jp~ 5 b*+h*

o.2 OA o.s o.s '%

Fig. 2

bW
5 2b2+bh+2h2

(15)

Application aux sections composees de deux ou trois rectangles
Pour la determination des Jt des sections en croix, en T, en L, en U, etc. (fig. 3),

il y a des formules pratiques, qui toutefois s'appliquent ä des cas oü la largeur des

rectangles est d'un ordre de grandeur plus petit que la longueur. Malgre la presence
des angles rentrants la methode generale decrite permet de trouver la Solution cherchee

pour des rectangles quelconques.* Par exemple, pour le cas de L symetrique (fig. 3),

¦y
ß=a/6T

Cc

*-JC

\y
—*~x

'OC

Fig. 3

* Pour le cas de deux rectangles, l'auteur a propose ailleurs une methode dont la Solution converge
plus rapidement, mais dans laquelle on ne peut pas eviter la resolution d'equations simultanees pour
trouver les coefficients des termes de la serie. Cette Solution est obtenue par deux series trigono-
metriques, une pour chaque rectangle, dont les termes satisfont ä l'equation (1). Les coefficients de
ces termes sont determines par la condition de continuite sur la limite des deux rectangles.

CR.—13



Tableau I

m iWmPods
=s h2'"

jrVmPlds
=s /,2m+2

WmPlds
=S hp" + 4

Pm=Wm+ [PuMs
=s Il4'" Pmds

-S 1,2m+ 2

am
1,2-2,,,

IfPmdxdv
b/,2i„+)

Ji
=M-1

Pm-lh2 Pm-zlr* Pm—lhfi

0
1

2
3

in

-0,2800000
+0,1731200
-0,1230720

oAm

-0,0848384
+0,0675240

\Am

-0,0144580

lAm >Am

+0,2800000
+0,7310294
+ 1,1186871

m—\B„,

-0,1731200
-0,5818361

m—iBm

—

+0,1230720

m—3ö/» m—40//1

1,0000000
0,1160533
0,0129241
0,0016040

Cm

+ 0,1933333
-0,0433067
+ 0,0021738
+ 0,0002346

Dm

+0,193333
-0,373162
+0,168196
+0,146259

Eni

+ 2,000000
+0,280000
-0,026138
-0,007547

Fm

-0,386667
+0,773333
-0,208971
-0,008793
-0,002208

Gm

m colonnes m colonnes

X

<
>
7.

r>
lm

Tableau II

ffVmPods
=S II2"!

\W,„P\ds
S I\2m 1 2

\WmPlds
S 1,2m I 4

Pm=tVm +

Pm-\lt2 I Pm—lhfl Pm-ih6

iP„Ms-
=s Ii4'"

jap.
Pmds

-s h2"< 1 :

Clin
-.h2-2m

mm 1,2m I 2

U=li4

-0,3333333
+0,2000000
-0,1428571

-0,0761905
+0,1269841 -0,0351268

+0,3333333
+0,2142857
+0,1695590

-0,2000000
-0,3571429 0,1428571

1,0000000
0,3555556
0,2071655
0,1024435

+0,2666667
+0,2088889
-0,0123810
+0,0026626

+0,266667
+0,587500
-0,059764
+0,025991

+0,500000
+0,166667
-0,030952
+0,006657

-0,066667
+0,133333
+0,097917
+0,001850
+0,000173
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on prendra les fonctions W, en combinant les fonction U et V de facon ä obtenir des

polynömes symetriques en x et y:
W0=l, Wx=x+y, W2=2xy, Wi=x3-3xy2-3yx2+y\ fK4=x4-6x2>'2+/t,

A cause de la symetrie les integrales sur le contour s'etendent sur le parcours OAfi-C,
ce qui donne, pour le terme generale xpyq-\-xqyp:

I (xpyq+xqyp)ds=bm+r-1(—
i 0"'-l Om+n+l ßmj_0"H-l_fi»i+'i+l\

m+l n+l

m 2^ v i\Q
Vr-=\o-y-Xl+1 +7)21

Application a la Determination des contraintes de cisaillement dans les pieces
flechies
La theorie de l'elasticite donne, pour les composantes des contraintes de cisaillement

(le plan de la flexion contient l'axe des x):

JA9l
Tyz~ 8x2J'

oü v est le coefficient de Poisson, Q l'effort tranchant, / le moment d'inertie de la
section par rapport ä l'axe des y et <f> une fonction qui satisfait ä v2t£=0 et qui, au
contour, permet d'ecrire

dy dx

Pour le cas du losange (fig. 4), la fonction <j> est impaire
en y et paire en x. On peut, en consequence, la developper
en serie suivant les fonctions V avec indice impair:

*
oo

m=0

rZm+l
'2m+1

La condition au contour s'ecrit I en posant kI en posant k=-rr~):

-ßT

y W L

b~
X

Fig. 4

avec Wm=-
1

i(
m 0

9*Wj 8V2m+ l) U2m-ßV2m, c'est-ä-dire:2m+l\ dy r dx

W0=l, W1 (x2-y2)-ß(2xy), W2=(x*-6x2y2+y*)-ß(4x3y-4xyi),
A partir de ces W, on calcule, comme auparavant, les fonctions Pm orthogonales

pour le contour et on developpe le binöme x2—ky2:

(x2-ky2)yplxy

oo

/ amPm avec a„,=
J>-kyWJe

JePm2dS

Toutes les Operations sont faites, sans difficulte, comme pour le tableau I et le
probleme est resolu. Dans le tableau II, est donnee la Solution pour le cas du carre
(losange avec ß=l). La derniere colonne; qui contient les termes dont la somme
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doit etre egale ä 1/6 pour que l'effort tranchant soit egal ä l'integrale des contraintes
txz, permet de determiner la precision obtenue. Sur la fig. 5 sont indiquees les valeurs
des txz pour les diagonales x=0 et y=0, pour le contour y=l—x et pour >'=0,5,
valeurs obtenues avec les termes de la serie jusqu'ä w 3 (auquel correspond, dans la

va/eurs ca/cc/Ues

— formu/e c/ass/que
Q"st*** ej

-o

^e-

Sf,

fo"

Z¦ pocrx^O
xx

Fig. 5

derniere colonne, la somme 0,166.606 au lieu de 1/6). Le calcul de txz a ete fait, en
employant les divers coefficients, de la meme facon que le calcul des deux dernieres
colonnes des tableaux I et II, suivant Fexemple du tableau III, pour x=y=0 et pour
x=0, .y=0,6.

Tableau III

m WmPy-fm
formule generale

*=0
y=0

*=0
^=0,6

0
1

2
3

1

(*2->>2)+0,333.333/o
(^»-6^2>,2+yt)+o)214.286/i -0,2/0
(at2 —15jc*>'2+15x2>"t_y6)+o,169.559/"2—0,357.143/,

+0,142.857/"0

1,00000
0,33333

-0,12857

0,00201

1,00000
-0,02667
-0,07614

0,09282

^r«=(0,266.667/o+0,587.500/i-0,059.764/"2+0,025.991/3)
y -x2+0,2^2 0,4702 0,3300
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Resume

Une nouvelle methode est proposee pour la Solution du probleme de la torsion;
eile consiste ä utiliser certaines fonctions orthogonales specialement choisies. La
methode peut etre adoptee ä la Solution des problemes de la physique mathematique
consistant ä resoudre l'equation de Laplace, ä deux dimensions, avec des conditions
donnees au contour. Un exemple d'application est indique pour le cas de la torsion
d'une piece de section en losange et un autre au cas des contraintes de cisaillement
dans les pieces flechies.

Summary

A new method for the Solution of the problem of torsion is proposed. It consists
of the use of special orthogonal sets of functions. This method is extensible to the
problems of mathematical physics which involve the Solution of Laplace's equation
with given boundary conditions. Two examples are shown: one, the torsion of
a bar with rhombus-shaped section and the other, the distribution of the shearing
stresses in beams under bending.

Zusammenfassung

Eine neue Methode für die Lösung der Torsionsaufgabe wird vorgeschlagen. Sie

besteht in der Anwendung von besonderen orthogonalen Funktionssystemen. Diese
Methode ist anwendbar auf die Lösung der Fragen, die in der mathematischen Physik
auftreten, wenn man eine Laplace'sche 2-dimensionale Gleichung mit gegebenen
Randbedingungen lösen will. Zwei Beispiele werden angeführt: eines für die Torsion
eines Stabes mit rhombusförmigem Querschnitt und das andere für die Verteilung der
Schubspannungen in Stäben, die durch Biegung beansprucht sind.
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