Zeitschrift: IABSE congress report = Rapport du congres AIPC = IVBH

Kongressbericht
Band: 4 (1952)
Rubrik: All1l: Analytical methods of the theory of elasticity and plasticity

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

All 1

L’emploi de fonctions orthogonales spéciales pour la solution du
probléme de la torsion )

The use of special orthogonal functions for solving the torsion
problem

Anwendung von besonderen orthogonalen Funktionen fiir die Losung
von Torsionsproblemen

Pror. TELEMACO VAN LANGENDONCK

Ecole Polytechnique, Université de Sao Paulo, Brésil

GENERALITES
Le probléme de la torsion d’une piéce prismatique de section pleine, S, consiste

a resoudre I’équation aux dérivées partielles:

62w+82w

ox2 "oy
avec w=0 sur le contour. Les composantes de la contrainte de cisaillement parall¢les
aux axes des x et des y sont données par

owT owT

-2 dans S. . . . . . . . (1

sz:_a; 7’-, ‘T),z= '—a 7' . . . . . . . . (2)
ol T est le moment de torsion et J, est le “moment d’inertie a la torsion”:
J,=2ffwdxdy B )
s

avec lequel on peut calculer I'angle 8 de torsion, par unité de longueur de la piece
(G est le coefficient d’élasticité transversale):
T

b=gr « - @

% B
Si I'on pose z=w+x -2|—y 5w s ® & ®m 8 & ¥ & 3)
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la condition (1) devient:

0%z 822_0 6
: ax : by
qui est I’équation de Laplace, avec z=—p (7)

sur le contour.*
La solution générale de I’équation (6) est

z=fi(x+)+Lx—iy) . . . . . o . L. (8)
qu’on peut écrire, en developpant en série de puissances: »
z-_~?a”m(x+iy)"'+Zb”,,,(x—iy)"' T )
‘m_=(J) m=0

ou les coefficients a”,, et b”,, sont déterminés par la condition au contour (7).
On obtient la solution réelle du probléme en combinant les termes des séries (9)
de fagon a avoir:

o0

'_Z , G ip) - (x—ip)™ i D) — (=)
= 2o 2 + > b, -
m=0

2i

m=0

qu’on peut écrire:

z=za’mUm+Zb’me R ¢ 1)

m=0 m=0
ou Up=3%[(x+iy)"+(x—iy)"] et V,,=%i[(x+iy)"—(x—iy)"] sont les expressions trés
connues: :

Upy=1 Vo=0

U1=x Vl =y
U,=x2—y2 Vs=2x%
Us=x3—3x)2 Vi=3yx2—y3
Uy=x*—6x2p24p* Vi=4x3y—4x)3

lesquelles sont des polynomes homogenes de degré m. Par suite, I’égalité (10) ne
perdra pas sa généralité si on groupe les U, et les V,, de fagon & avoir, en posant
W2m= Um’ I/V2n1-}»1=1/ma C’2m=a’m et C’2m+1=b'ml

=
Z=ZC’me=Zam(Clo, mWO+C'1,mW1+ « o

m=0 m=0 0
+C,m-—1: me—1+ WM)=ZaMPm P (1 1)
m=0

les coefficients ¢’y ,, pouvant étre des nombres réels finis quelconques. On peut les

n=m

choisir de fagon que les polynémes Z ¢'n, mWn (avec ¢’y m=1) soient—quand on

n=0
* Dans quelques cas, il serait plus convenable de poser
z=w+x2 ou z=w+)?
- Péquation (6) restant valable, avec z=x2 ou z=y2 sur le contour.
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change, dans W,, y en f(x)—des fonctions orthogonales pour le contour C caractérisé
par I’équation y=f(x). On aura:

fP,,Rds:i:O et, si mn, fpmp,,ds=o 12
C C

Pour que z satisfasse a la condition (7) au contour, il faut que

242 =
(x +y) =ZamP,,, N (),
2 Jy—rw

m=0
c’est-a-dire, qu’il faut développer I’expression du premier membre en fonction des P,
ce qui est possible, car les P, sont des fonctions orthogonales. En conséquence, les
coefficients a,, resteront determinés et la valeur de z sera connue (11); on pourra,
alors, calculer w (5) et J, (3. En fait, d’aprés la théorie des séries de Fourier, on

aura. * 42 2
J p -;—y P,ds
PR . IS (14)
f P2,.ds
C

La solution obtenue convergira peut-étre quelquefois plus lentement que la
solution qu’on pourrait obtenir avec le procédé Ritz-Rayleigh; mais elle présente
I’avantage de dispenser de la résolution d’équations simultanées pour le calcul des
coefficients et de donner la solution avec une précision croissante avec le nombre des
termes qu’on prend, et qui converge en moyenne vers la solution exacte, en vertu de
la propriété des séries de fonctions orthogonales.

La solution décrite s’applique, évideminent, a tous les problémes de la physique
mathématique qui consistent a résoudre 1’équation de Laplace a deux dimensions, avec
certaines conditions sur des contours préfixés (probléme de Dirichlet).

Comme exemple d’autre cas d’application, nous terminerons en donnant la solu-
tion d’un probléme de calcul de la distribution des contraintes de cisaillement dans des
piéces fléchies. Le probléme de la plaque librement appuyée sur le contour peut étre
ramené a la solution de deux équations de Laplace et alors étre résolu par le procédé
indiqué. L’auteur étudie maintenant I’application d’une méthode semblable au calcul
des plaques avec conditions quelconques d’appui et a la résolution de I’équation
d’Airy y4w=f(x, y), en utilisant la solution générale de I’équation sans second membre:

w=f(x+ )+ r(x+ip)+f(x— )+ yfalx—iy)

APPLICATION AUX SECTIONS EN LOSANGE

Pour résoudre le probléme de la torsion d’une pi¢ce prismatique avec section en
forme de losange, on prend pour axe des coordonées, dans le plan de la section, les
diagonales du losange (fig. 1). On peut ainsi prendre seule-

ment, pour le développement (10) de z, les fonctions paires de x Ay

et de y, c’est-a-dire seulement les fonctions U, avec m pair.

L’égalité (11) sera valable si on pose W, =U,,,: ) 4
WO= 1 l o
W1=x2—y2 -G
Wo=x4—6x2y2 4 y*
Wy=x6—15x%24 15x2p4— 6
' —b

Fig. 1
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Les intégrales (12) peuvent s’étendre, a cause de la symétrie, a un seul coté du
losange. Si on prend le coté x=>5b(1—y/h), il vient ds=dy/cos « et I'intégrale sur le
contour du terme général xPy? est:

, Ay bR plg!
P Jo — rl1—_2 = N ST e A
fcxy i of 4 (1 /1) COS o COS o f d—nFmay=s> h( +q+1)!
Avec cette formule, on calcule toutes les intégrales 1, ,=[cW,W,ds et

X2 2
—-f 1Y ——=—W.ds, pour les valeurs entiéres de p et g entre O et le plus grand m que

I’on désire employer dans le développement (11) de z.  On calcule aussi, pour trouver

J. (3), les intégrales I” —ff W,dx dy, en notant que

f X"yt dy= f ydy fb i) sedy=apr 11— P
(p+q+1)!

Soit le cas du losange avec b=0,44; on dispose le calcul comme on a fait sur le
tableau I, qui finit par une colonne 01‘1 se trouvent déja les valeurs successives des
termes qui somment J,, et I’on s’arréte deés que la précision voulue est atteinte.

Dans la premiére colonne, se trouvent les valeurs des m qui correspondent a chaque
terme du développement (11) de z, dont le calcul est fait sur la ligne respective. Sur

24 12
Pyds=| Wy2dsetde f ng Y ds
c c c 2

la premiére ligne (m=0) on trouve les valeurs def

-2 2
— f Wy ;Ly
C

quantités donne a, (14), qui figure dans le tableau. Dans la colonne suivante, on

trouve ff Pydx dy=ff Wydx dy=1", et, dans la derni¢re, le deuxiéme terme du
s s

développement de J,, c’est-a-dire, le double du produit des nombres qui se trouvent
dans les deux colonnes précédentes 2x 2 x0,193333=0,773333; le premier terme de
ce développement est donné au-dessus du nombre 0,773333 et correspond a la difference

entre z (5) et w, qui est (3):
2 )2
= U - ';} dx dy=—0,386667
S

En général, sur la méme ligne, on trouve successivement m, o4, 14m . . . ,
m-1Ams m—1Bms m-2Bms - « -5 0Bms Cm (précédé dans la méme colonne par C,,_;, C,, 5,
etc.), D, En, F,, G,,. Ces valeurs sont obtenues de la fagon suivante, en fonction
des quantités déja calculées:

OAna:Im, 0
1Am=1Im, 1F+04m - 0B
2Am=1n, 2t0Am . 0B2+14m . 1B2

ds, déja calculées (I, o et Iy, parce que Py=W;); le quotient de ces deux

m-lAm

m—le=_

m-1

B _ m—ZAm
m-2Pm=——

Cm 2
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A

02m

OBm""_ CO

Cm=Im. m+m—1Am £ m—le+m—2Am € mk23m+ L +0Am . OBm
Dm=I,m+m—le . Dm—1+m-ZBm . Dm—2+ LI I +0Bm . DO

B, —Dm

m— Cm '

-Fm—_-lﬂm'i__m—le s En—1+m—ZBm ¢ Fm—-2+ LA +OBm : FO
Gn=2E,F,

Pour le calcul de J;, dans I’exemple du tableau I, il suffit de s’arréter a la ligne
m=3, ce qui donne, en faisant la somme
des nombres de la derniére colonne (dans %% |,

la ligne m=4, on trouverait —0,000572): T/\! s-26¢
J:=0,1666h3=0,415b2h? 3 S bhrbany

La répétition de ce calcul pour d’autres g5} I-8% ,i-2h o —
valeurs de la relation b/h permet de tracer Pl
le graphique de la fig. 2, ol est établie la A~
comparaison des valeurs de J, avec les 2# T |
valeurs obtenues par les formules usuelles s Sormule (15
(formule de St. Venant: J,=S54/40J,, et ,, A 4SI2 467 |
formule des sections allongées: ' i ’ \ jl,, ”6; ;ba/:ik

J,=41S12[(SI2+161). IR

On y trouve aussi les résultats de I'ap- o g2 o4 a6 o8 r e %
plication de la formule proposée, a la suite ‘
des calculs faits, pour I'usage pratique : Fig. 2

14 b3h3
.I',_-5 S Bh o N ¢ &)

APPLICATION AUX SECTIONS COMPOSEES DE DEUX OU TROIS RECTANGLES

Pour la détermination des J; des sections en croix, en T, en L, en U, etc. (fig. 3),
il y a des formules pratiques, qui toutefois s’appliquent & des cas ou la largeur des
rectangles est d’un ordre de grandeur plus petit que la longueur. Malgré la présence
des angles rentrants la méthode générale décrite permet de trouver la solution cherchée
pour des rectangles quelconques.* Par exemple, pour le cas de L symétrique (fig. 3),

Fig. 3

* Pour le cas de deux rectangles, I’auteur a proposé ailleurs une méthode dont la solution converge
plus rapidement, mais dans laquelle on ne peut pas éviter la résolution d’équations simultanées pour
trouver les coefficients des termes de la série. Cette solution est obtenue par deux séries trigono-
métriques, une pour chaque rectangle, dont les termes satisfont a ’équation (1). Les coefficients de
ces termes sont determinés par la condition de continuité sur la limite des deux rectangles.

C.R.—13



TABLEAU I
P —W, fx2+):2
mePodS IWmPIdS IWszdS m=Wm+ mezdS ‘ 2 am HPmdx d,}’ Ji
m =g p2m | =5 . j2m+2| =5 h2m+4 =5 . hm Puds =h2=2m | =ph2am+1 =hh3
Pm—lhz Pm—zll4 P.rn—3h6 =g . ham+2
—0,386667
0 — — — — — — — — |1,0000000 |+0,1933333|40,193333 [42,000000 |+-0,773333
1 {—0,2800000 — — — |+40,2800000 — ! — — 0,1160533 |—0,0433067|—0,373162 |+0,280000 |—0,208971
2 (40,1731200|—0,0848384 — — |4+0,7310294 [—0,1731200 — — 10,0129241 |+0,0021738({+0,168196 |—0,026138 |—0,008793
3 |—0,1230720 |+0,0675240 | —0,0144580 | — |+1,1186871|—0,5818361 |4+0,1230720| — [0,0016040 |+ 0,0002346|+0,146259 —0,007547 |—0,002208
m 0Am 1Am 2Am 3Am m—18Bm m—2Bm m—3Bm m—a4Bm Cm Dm Em Fon Gm
— v N v -
m colonnes m colonnes
TABLEAU 1
2+‘12
P =Wn (X - 0
m [WinPods [WmPds [WinPads " vk [Pm2ds . 2 am 1 {fa_:sdxd)' %.I:h“
=g . h2m =5 . R2m+2 | =5 . f12m-+4 — =5 . him Pds =h2-2m ’ -—],'?.m-! 2
I’mn--]h2 Pm-—zh“ }).rn'——-jh6 =5 .h2mit2 -
—0,066667
0 — — — — —— — 1,0000000 |+0,2666667 | +0,266667 | +0,500000 | +0,133333
1 —0,3333333 -— — +0,3333333 — — 0,3555556 |4-0,2088889 | +0,587500 | +0,166667 | +0,097917
2 +0,2000000 |—0,0761905 — +0,2142857 |—0,2000000 -— 0,2071655 |—0,0123810| —0,059764 | —0,030952 | +0,001850
3 —0,1428571 {+0,1269841 |—0,0351268 |+0,1695590 |—0,3571429 | 0,1428571 | 0,1024435 |+0,0026626| +0,025991 | 4-0,006657 | +0,000173

14!

JAONOANIDNYT NVA "L—I 1V
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on prendra les fonctions W, en combinant les fonction U et ¥V de fagon a obtenir des
polyndmes symétriques en x et y:

Wo=1, Wi=x+y, W,=2xy, Wy=x3—3xy2—3yx2+)3, Wy=x%—6x2p24+)4 . . .
A cause de la symétrie les intégrales sur le contour s’étendent sur le parcours OABC,
ce qui donne, pour le terme générale x?y7+ x7y?:

(BRI _pgmentl pmy gl gmnd]
P.,4 q —_pym+n+1
fc(x Y+ xYP)ds=b ( g + = )

APPLICATION A LA DETERMINATION DES CONTRAINTES DE CISAILLEMENT DANS LES PIECES
FLECHIES
La théorie de I’élasticité donne, pour les composantes des contraintes de cisaille-
ment (le plan de la flexion contient ’axe des x):

b0 (a¢_ E yz)Q

Ky e Vi Fav Y

ol v est le coefficient de Poisson, Q I’effort tranchant, J le moment d’inertie de la
section par rapport a ’axe des y et ¢ une fonction qui satisfait & y2¢=0 et qui, au

contour, permet d’écrire
dy dx -
=Ty g 0 - 213

Pour le cas du losange (fig. 4), la fonction ¢ est impaire
en y et paire en x. On peut, en conséquence, la développer
en série suivant les fonctions ¥ avec indice impair:

3 , Voms1
"S“Z" "2m+1
m=0

.4

.. _ v X
La condition au contour s’écrit (en posant k=l +V) : Fig. 4
o o4 %
—_—— [ —— 2—— 2= !
oy Pax=x"—ky zamWn.
m=0
L (Vams1  2Vomir s
avec W, = 2m+1( 2y —B B =U,,,— BV, Cest-a-dire:

Wo=1, Wy=(x2—y?)—B(2xy), Wa=(x*—6x2y2+ %) —f(dxy—4xp?), . . .

A partir de ces W, on calcule, comme auparavant, les fonctions P,, orthogonales
pour le contour et on développe le bindme x2—ky?2:

o f o
(x2=ky?),_fi= Ea,,,P,,, avec a,,= <
m=0 ( szds
C

[

2 ky?))P, ds

Toutes les opérations sont faites, sans difficulté, comme pour le tableau I et le pro-
bléme est résolu. ‘Dans le tableau II, est donnée la solution pour le cas du carré
(losange avec f=1). La derniére colonne; qui contient les termes dont la somme
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doit étre égale a 1/6 pour que I’effort tranchant soit égal a 'intégrale des contraintes
Txz, permet de déterminer la précision obtenue. Sur la fig. 5 sont indiquées les valeurs
des 7x; pour les diagonales x=0 et y=0, pour le contour y=1—x et pour y=0,5,
valeurs obtenues avec les termes de la série jusqu’a m=3 (auquel correspond, dans la

—— valeurs calculdes

=\

s ﬂrmu/e classigue

' z =i/'_75_¢
£ xz™ g7

L 1 / \\"\
L — 7} &
A 1/
[ ’Ql 1 1 [ ‘g‘ /
I —
/:,"::5:l 'F?
83— '} S
i aT— I 'Q§ //
L 1 | h =
1 -
Lk %
\\ — o Y ] ’
g T || y
 J
x T,z pour x=0
2] |
pd —4 4 e o S b —— | +— 7 ﬂﬂﬂﬂﬂﬂﬂﬂﬂ J
1150
Fig. 5

derniére colonne, la somme 0,166.606 au lieu de 1/6). Le calcul de 7., a été fait, en
employant les divers coefficients, de la méme fagon que le calcul des deux derniéres
colonnes des tableaux I et II, suivant ’exemple du tableau III, pour x=y=0 et pour
x=0, y=0,6.

TaBLEAU III

formule générale y=0 y=0,6
0|1 1,00000 1,00000
1 | (x2—y2)+0,333.333f, 0,33333 —0,02667
2 | (x4—6x2y24y4)+0,214.286f1 —0,2/p —0,12857 —0,07614
3 | (x2—15x42415x2y4—y6)+40,169.559/2—0,357.143f
+0,142.857f 0,00201 0,09282
2—‘Irxz’5(0,266.667fo +0,587.500/1 —0,059.764/>4+0,025.991£3)
Q —x2+40,2p2= 0,4702 0,3300
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Résumé

Une nouvelle méthode est proposée pour la solution du probleme de la torsion;
elle consiste a utiliser certaines fonctions orthogonales spécialement choisies. La
méthode peut étre adoptée a la solution des problémes de la physique mathématique
consistant 4 résoudre 1’équation de Laplace, a deux dimensions, avec des conditions
données au contour. Un exemple d’application est indiqué pour le cas de la torsion
d’une piéce de section en losange et un autre au cas des contraintes de cisaillement
dans les pieces fléchies.

Summary
A new method for the solution of the problem of torsion is proposed. It consists
of the use of special orthogonal sets of functions. This method is extensible to the
problems of mathematical physics which involve the solution of Laplace’s equation
with given boundary conditions. Two examples are shown: one, the torsion of
a bar with rhombus-shaped section and the other, the distribution of the shearing
stresses in beams under bending.

Zusammenfassung

Eine neue Methode fiir die Lésung der Torsionsaufgabe wird vorgeschlagen. Sie
besteht in der Anwendung von besonderen orthogonalen Funktionssystemen. Diese
Methode ist anwendbar auf die Losung der Fragen, die in der mathematischen Physik
auftreten, wenn man eine Laplace’sche 2-dimensionale Gleichung mit gegebenen
Randbedingungen l6sen will. Zwei Beispiele werden angefithrt: eines fiir die Torsion
eines Stabes mit thombusformigem Querschnitt und das andere fiir die Verteilung der
Schubspannungen in Stiben, die durch Biegung beansprucht sind.
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Beitrag zur Elastizitiitstheorie der Schalen
Contribution to the theory of elasticity of shells

Contribution a la théorie de P’élasticité des voiites minces

A. KUHELJ

Ljubljana, Jugoslawien

EINLEITUNG

Die Ausgangsgleichungen der Biegetheorie diinner Schalen sind auch bei Benut-
zung der Bernoulli’schen Annahme iiber das Ebenbleiben der Querschnitte noch
immer ziemlich undurchsichtig (vgl. z.B. Schrifttum 7). Auch haben sich bei erneuter
anschaulicher Ableitung dieser Gleichungen einige Unstimmigkeiten ergeben
(Schrifttum 8), so dass das Auftreten einiger Glieder daselbst nicht vollkommen
begriindet erscheint. In diesem Beitrage wird versucht, einen neuen Rechnungsgang
bei der Aufstellung der Grundgleichungen anzudeuten, welcher von bekannten
Formeln der elementaren Differentialgeometrie der Flichen ausgeht und verhilt-
nismissig schnell und sicher zu eindeutigen Resultaten, dhnlich wie sie in neuerer
Zeit fiir spezielle Schalenformen aufgestellt wurden, fiihrt. Weiter werden auch
einige Vereinfachungen vorgeschlagen, welche bei allgemeinen Schalenformen und
Parametern zwar noch immer zu ziemlich verwickelten Formeln fiihren, welche aber
z.B. bei Anwendung auf zylindrische Schalen beliebigen Querschnittes verhiltnis-
massig einfache Resultate ergeben.

ZUSAMMENSTELLUNG EINIGER RESULTATE DER ELEMENTAREN FLACHENTHEORIE

Die fiir die Verzerrung der ganzen Schale massgebende Mittelfliche soll durch
zwei krummlinige Gauss’sche Koordinaten gegeben sein, die wir hier in Anlehnung
an A. E. H. Love (Schrifttum 7) mit « und B8 bezeichnen, und zwar sollen die beiden
Scharen der Koordinatenlinien («-Linie bei konstantem S, B-Linie bei konstantem o)
der Einfachheit halber Kriimmungslinien der Mittelfliche sein. Wir verwenden als
Hilfsmittel durchwegs die Vektorrechnung und benutzen dabei die im Lehrbuche
von R. S. Burington und C. C. Torrance (Schrifttum 3) angewandten Bezeichnungen
mit dem Unterschied, dass wir die Vektoren einfachheitshalber nur mit einem Quer-
striche bzw. Querpfeile andeuten. Die Hauptsdtze der elementaren Differential-
geometrie entnehmen wir dem Lehrbuche von W. Blaschke (Schrifttum 2, vgl. auch
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das entsprechende Kapitel in Schrifttum 3), dessen Bezeichnungen sich iibrigens von
unsrigen nur wenig unterscheiden.

Der Ortsvektor zu einem beliebigen Punkte P der Schalenmittelfliche sei als
Funktion von « und B durch

r=x(x, Bi+y(, Aj+z, Ak . . . . . . (D
gegeben, wobei x, y, z Kartesische Koordinaten von P bedeuten, wihrend i, j, k die
Einheitsvektoren in Richtung der Koordinatenachsen sind. Alle im folgenden
gebrauchte Ableitungen von 7 bzw. x, y, z nach «, bzw. 8 seien iiberall endlich und
stetig. Um die Uebersichtlichkeit auch in verwickelten Ausdriicken moglichst zu
wahren, wollen wir weiter verabreden, dass unten angesetzte Zeichen o bzw. B
ausschliesslich Ableitungen nach diesen Parametern bedeuten sollen, so dass z.B.

. _or _ ér o
ra::a—a, rﬁ:a'g, raa:-azz usw. s e s e . (2)
sein soll.

Die in (2) angegebenen Ableitungen r, und r; bedeuten bekanntlich Vektoren in
Richtung der Tangenten zu beiden Koordinatenlinien. Um zu Einheitsvektoren e,
bzw. e; in diesen Richtungen zu kommen, fithren wir nach A. E. H. Love (Schrifttum 7)
die positiv genommenen Wurzeln der beiden Koeffizienten £ und G der ersten Funda-
mentalform ein

A="VE="V7?, . %y, B="VG="V7i.7% . . . . (3
und erhalten
_fa, _Ts
=" e=p . . . . 4
wihrend der Einheitsvektor in Richtung der Flichennormale durch
e3=e1Xe€e . . . . . .+ .« 4 . s (5)

gegeben ist.

Die Ableitungen dieser Einheitsvektoren nach « und B sind im wesentlichen
durch die Ableitungsgleichungen nach Gauss und Weingarten (Schrifttum 2, S. 108
und 114) gegeben; es ist z.B.

fax . Au

€1a™ A _"az
Alle Ausdriicke vereinfachen sich wegen der Benutzung der Kriimmungslinien als
Koordinatenlinien sehr, weil dann bekanntlich
F=Fy.73=0 und M=r,,.e;=0
ist. Unter Benutzung der Ableitungsgleichungen erhilt man dann

A A A A
€1a=——B§€2+EC3, e2a=§ﬁe,, €3a=—E£’1 ©  w e (63.—C)
B, B ' B
“—’15=er’ e23=—fel+k—ze3, ep=—pe€ . - . (7a-c)

wobei statt der Koeffizienten L, M, N der zweiten Fundamentalform die beiden

Hauptkrimmungshalbmesser R; und R, mit
1 L L 1 N N -
EI.:E:Z_Z und E_E_E—Z e e e e e (8)
eingefiihrt worden sind. Dabei ist zu beachten, dass R, und R, als positiv zu nehmen
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sind, wenn die Kriimmungsmittelpunkte der Kriimmungshinien auf der positiven
Seite des Einheitsvektors e; liegen.

Mit diesen Formeln lassen sich, wie im folgenden gezeigt wird, verhdltnismassig
einfach alle Resultate der Biegetheorie der Schalen ableiten. Zur Vereinfachung der
Gleichungen brauchen wir nur noch folgende Beziehungen zwischen obigen Grossen,
die sich durch Vergleich der auf verschiedenen Wegen erhaltenen gemischten Ablei-
tungen von r, bzw. 7g ergeben. Aus Gaussens Theorema egregium (Schrifttum 2,

S. 117) erhélt man
Ag B\ 4B
(E)ﬁ(z);‘m  ws s w s )

wihrend die beiden Mainardi-Codazzischen (Schrifttum 2, /.c.) Gleichungen in unserem
Falle folgende einfache Form annehmen

A\ A, (B) B,
AV 4 (Z) B .. (0ab
(RI)B Ry \RyJq Ry - (10s, b)

VERFORMUNG DER SCHALENMITTELFLACHE

Die bei der Belastung der Schale entstehenden Verschiebungskomponenten eines
beliebigen Punktes P der Schalenmittelfliche in Richtung der Einheitsvektoren ey,
e,, ey seien mit u, v, w bezeichnet; der Ortsvektor 7’ zum Punkte P’, wohin der Punkt
P nach der Belastung verschoben wird, ist also durch

F'=r+p=rdue;+vey+we; . . . . . . (1]
gegeben. Unter Benutzung der Gleichungen (4), (6) und (7) erhilt man sehr leicht
die Ableitungen von 7' nach « und B, die natiirlich wieder Vektoren in Richtung der
Tangenten zu den Koordinatenlinien auf der verformten Mittelfliche darstellen. So
erhilt man z.B.

Fly=TFytuye, +vye,+wyes+tue o, +vey, +wes,
oder nach (6) und (7)
., A A A A :
F ch'= (A+ua+v§B—wE)el + (va—u—Bf)ez-}- (wa+uz)e3 . (12a)
und dhnlich

B B B B
el st

Durch abermalige Anwendung dieser Regeln lassen sich verhiltnismaéssig leicht auch
Ausdriicke fiir die zweiten Ableitungen von 7’ berechnen, auf deren Wiedergabe wir
aber verzichten, weil wir sie im folgenden nicht brauchen werden. Aus Gleichungen
fiir 7, und 7'g erhdlt man natiirlich auch sehr leicht entsprechende Ableitungen des
Verschiebungsvektors p, indem man von obigen Ausdriicken die, Ableitungen von 7
abzieht. :

Die Verzerrungen in der Schalenmittelfliche lassen sich nun mit Hilfe der ersten
Ableitungen von 7' sofort berechnen und zwar auch bis zu den Gliedern hdherer
Ordnung in den Verschiebungen. Da wir aber auf Stabilititsprobleme an dieser
Stelle nicht eingehen konnen, wollen wir uns im folgenden nur auf die Glieder erster
Ordnung beschrianken. Die Dehnung ¢; in Richtung der «-Linie ist z.B. bekanntlich
durch

_ds'—ds A'—A

qa=— —— mit A'=VF L Fe . . . (13a)
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gegeben, wobei ds’=A’.dx das Bogenelement dieser Linie nach der Verzerrung
bedeutet. Fiir die Scherung 'ylz des Flichenelementes mit den Léingen Ad«, BdS
erhélt man (vgl. Schrifttum 1, 4, 5, 9 und 10)

Feo. .l
_y12=°"’*.........(13b)

und durch Einsetzen entsprechender Ausdriicke aus (12a, b) erhilt man endgiiltig
fiir die Komponenten des Verzerrungstensors bis auf die Grossen von hoherer
Ordnung in den Verschiebungen

_Ua AB W h

AB R,
By w
E+“E_F2 > « e e e (14a—c)

Ausserdem werden wir bei folgenden Ausfiihrungen noch Ausdriicke fiir die
Einheitsvektoren e’;, e’, in Richtung der Tangenten zu den beiden Koordinatenlinien
nach der Verformung, sowie den Einheitsvektor e’y in Richtung der Flachennormale
brauchen. Es ist bis auf die Glieder héherer Ordnung

e (2o (P )
¢1=gr=ert|g—ugple A R,)¢
, F's (ug By v
e'r=p= (B AB)e1+e2+(B+R) m > (15a—c)
’ Cdd B4 ! / ’ w u- ‘ ?)
=X PIVEG—Fim— (24 £ )er— (o 1 Jertes
~

Mit diesen Gleichungen und unter Benutzung von (6) und (7) lassen sich leicht auch
- Ableitungen dieser Vektoren nach « und B berechnen. So erhilt man z.B.

. | Ba, (us B B, B2 B Y], )
o= |5+ (5), (73),Jort [, R
B v Wg
+ _+ E + B €3
B
|4 [u We Ag > (16a, b)
€ 3q="— R1+ R a Vi -}~'¢v—+wﬁB2

(z) +(w_s Ao, As [i+w_a
R).\B), 7 “Br, T "*aB|% " [“R2TR,|%

und ganz dhnliche Ausdriicke wiirde man auch fiir die {ibrigen Ableitungen erhalten.

VERFORMUNG EINES BELIEBIGEN SCHALENELEMENTES

Aehnlich wie bei der Plattentheorie beschrinkt man sich auch bei Untersuchung
der Schalen auf die Verzerrungen parallel zur Tangentialebene der Schalenmittel-
fliche. Wir nehmen daher auf dem Normalenvektor e; durch den Punkt P der
Schalenmittelfiiche (Abb. 1) einen Punkt P, an und legen durch diesen im konstanten
Abstand z von der Schalenmittelfliche eine neue Fliche. Alle Grossen in bezug
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Abb. 1. "Verschiebungen der Schale

auf diese Fliche wollen wir mit demselben Zeichen wie entsprechende Gréssen der
Mittelfliche bezeichnen, versehen sie aber noch mit dem Index ,.
Aus der Gleichung dieser Fliche

r:=r+ze; P N )

liesse sich nun nach allgemeinen Regeln der Differentialgeometrie leicht beweisen,
dass auch hier die Koordinatenlinien e=const. und B=const. Krummungshmen
sind und dass die Fliachengrossen folgende Werte haben

Rl— z Z
i —A(I—E), BZ—B(I—R—Z) . . (I8a, b)
z z
R1z=R1—Z=R1 (I-E), R23=R2(1—ﬁ"2) s w (19&, b)

was iibrigens anschaulich auch unmittelbar einleuchtet (Abb. 1). Weiter sind die
Einheitsvektoren dieser Flache zu Vektoren ey, e,, e; der Schalenmittelfliche parallel
und man kann deshalb die Formeln fiir die Verzerrungen in der Mittelfliche unver-
dndert auf unsere neue Fldche iibertragen, wenn wir nur die Verschiebungen u;, v,,
w, eines beliebigen Punktes P, unserer Flidche kennen.

Um nun diese Grossen zu bestimmen, gehen wir auch hier wie bei der Biegung
diinner Balken und Platten von der Bernoulli’schen Annahme aus, dass ebene Quer-
schnitte auch nach der Verformung eben bleiben und senkrecht zur verformten
Mittelfliche stehen. Fiir die Verschiebung p, erhilt man dann (vgl. Abb. 1) folgende
Gleichung

PP =z.e3+p,=p+z.e5
oder P:=p+z(e's—es) S ¢214)]
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oder in Komponentenform und unter Beachtung der Gleichungen (11) und (15c)

geschrieben
Wy  u\ )
u_-—u—z(? E)
Wg O - (21a—)
o3 )
We=w J

Zur Berechnung der Verzerrungskomponenten in der Tangentialebene wendet
man Gl. (14a—c) auf die neue Fldche an und erhilt z.B.

lﬁg_'_ Azﬂ W-
%0 B. Ry

Wenn man nun fiir Grossen rechts die Werte (18), (19) und (21) einsetzt und dazu
noch GI. (10a) beachtet, erhdlt man fiir €,

—ZK
=L L (@)

i

1——

R,

“wobei €; durch (14a) gegeben ist, wihrend man fiir die erste Kriimmungsdnderung «,

automatisch
1 (wy u Ag (wg )
KI_Z(I"-ITI)&_{'AB(B-'-RZ SRIRIE o

bekommt. Auf dieselbe Weise erhidlt man fiir die Dehnung e,. in Richtung der
zweiten Koordinatenlinie

S (22b)
=R,
. o ' 1(wsg B, ‘
mit Kz_.E( B“'"E)ﬁ' AB( +—) .. . . . (23b)

Achnlich verfihrt man auch bei der Berechnung der Scherung y;,.. Hier erweist es
sich am einfachsten, wenn man die mit dem Faktor z behafteten Glieder in zwei
Anteile zerlegt und man erhilt :

Z.Al Z.Az

VB eowowow e ow (220)
| -z 1-%
wobei die zweiten Krilmmungsédnderungen durch
1 (wg v Yo Ag
AI_Z(E-*-E)Q_A—Rl_Wd s m i e s s @ (230)
_l(wy  u U B,
und . AZ_B(Z“LRI) ~BR,” "¢ 4B (@3

gegeben sind. Gleichungen (22) und (23) stimmen vollkommen mit entsprechenden
Gleichungen von Love (Schrifttum 7, G1. 26 und 30, S. 524 bzw. 527) iiberein. Unsere
Kriimmungsénderung A, ist bei Love mit = bezeichnet, wihrend A, durch A; und y,,
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ausgedriickt wird, weil, wie sich leicht mit Hilfe der Mainardi-Codazzischen Glei-
chungen (10) direkt beweisen lasst,

1 1

i (i
ist. Trotz der neuerdings erhobenen Zweifel (vgl. Schrifttum 8, GIl. 6 und 7) ergeben
sich also obige Gleichungen zwangsldufig aus der Bernoulli’schen Annahme. Etwas
anders gebaute Ausdriicke erhidlt man, wenn man bei ihrer Ableitung von den Love-
schen Gleichungen fiir die Drehungen (Schrifttum 7, Gl. 24 und 25 auf S. 523)
ausgeht, wobei aber dort bei ¢’, und r’, augenscheinlich Versehen unterlaufen sind,
wie man sich leicht durch Vergleich von ¢, mit p’; und r’, mit r’; iiberzeugt. Aus
unseren Ausdriicken (16a, b) und dhnlich gebauten Gleichungen fiir andere Ablei-
tungen der Einheitsvektoren auf der verformten Mittelfliche konnte man iibrigens
auf Grund von bekannten Gleichungen fiir die Geschwindigkeitskomponenten bei
Drehung verhiltnisméssig leicht Ausdriicke fiir alle sechs Drehungskomponenten
erhalten, die vollkommen symmetrisch gebaut sind und von denen wir glauben, dass
sie bis auf die Glieder zweiter Ordnung in den Verschiebungen u, v, w korrekt sind.
Der Kiirze halber aber wollen wir darauf nicht ndher eingehen.

SCHNITTKRAFTE UND SCHNITTMOMENTE. GLEICHGEW ICHTSBEDINGUNGEN

Wir gehen nun zur Berechnung der den Verformungen ¢, €,:, ;- entsprechenden
Spannungen iiber. Wir vernachldssigen die Normalspannung o3. in Richtung von
e; und erhalten dann bekanntlich aus dem Hooke’schen Gesetze

E

E E
°'lz=1___v'2(€lz+"'522): Uzz=‘1_—vz(€zz+l’€1z), 712z=2(1—+v))’12z .. . (2420

wobei mit E der Elastizititsmodul und mit v=1/m die Poissonsche Konstante
bezeichnet ist. Bei der Aufstellung der Gleichgewichtsbedingungen erweist sich
weiter die Einfiihrung der resultierenden Kraft und des resultierenden Momentes der
Spannungen iiber die Schalendicke als vorteilhaft, wenn man sie auf die Lingenein-
heit der «- bzw. der B-Linie bezieht. Der Kiirze halber benennen wir diese Grossen
einfach als Schnittkréfte bzw. Schnittmomente und erhalten fiir diese Grossen in der
Schnittfliche a«=const. (Abb. 2) in der von Fliigge (Schrifttum 4) herriihrenden
Bezeichnung folgende Gleichungen (alle Integrale sind zwischen —#/2 und +4/2 zu
nehmen)

Abb. 2. Schnittkrifte und Momente
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In diesen und in dhnlich gebauten Gleichungen fiir den Schnitt S=const. miisste
man statt R; bzw. R, eigentlich die Werte der Kriimmungshalbmesser R’; und R’»
nach der Verformung einsetzen. Ebenso miisste man spdter auch die Gleich-
gewichtsbedingungen eigentlich fiir das verformte Schalenelement aufstellen und
deshalb statt der urspriinglichen Grossen 4, B die nach der Verformung enstandenen
Werte A, B’ usw. beniitzen. Wenn wir von Stabilititsuntersuchungen absehen,
konnen wir sowohl die auf die Lingeneinheit der unverformten Schalenmittelfiiche
bezogenen Schnittkridfte und Momente als auch die fiir das unverformte Schalenele-
ment angesetzten Gleichgewichtsbedingungen in erster Ndherung als richtig ansehen.
Durch Entwicklung von (1—z/R;)~! bzw. (1—z/R,)~1 in eine Potenzreihe und
Vernachlissigung aller hoherer Potenzen von der dritten ab erhidlt man fiir die
Krifte und Momente folgende Gleichungen

Ry—R,  Ry—Ry\)
_D(el—{—vez)—{—K(el " "R2R, +x; R.R,
R,—R, R,—R,
Nz—D(€2+V€1)+K(€2 “RRp? + RR,
1—v l—v_ R;—R,
le—“‘z““Dylz'i'TK R.R, Ay
1—v 1—v_R,—R
Nyy=—5—Dynt+—5— Kﬁ/\z _ ,
F (25a-h)
R,—R, ,
M,=—K|x4+vey+ R.R, €
RZ_RI
M _—K K2+VK1+ R R
1 —
M12=—“2‘3K( 1+,\2+'ﬂ%)
1—
M21=— 2V (1+A2+‘y’2)
J
Eh EhR3 K h2
i = e a——— 2 =
mit D=1—=0 K=pa—z *¥=p~1 (26)

Die verhiltnismissig kleinen Einheitskrifte O, und Q, berechnen wir dhnlich wie
bei Platten nicht aus den Forménderungen, sondern erst spiter aus den Gleich-
gewichtsbedingungen.

Auf die bei Fliigge (Schrifttum 4) auftretenden Sonderfille angewandt, stlmmen
obige Ausdriicke vollkommen mit den Fliiggeschen iiberein. Gegeniiber den
Loveschen Gleichungen (Schrifttum 7, Gl. 39, 42 und 44 auf S. 531, 532 bzw. 533)
bestehen Unterschiede, die aber zum Teil darauf hinzufiihren sind, dass bei Love
auch die fiir das Verschwinden von €;: notwendige Normalspannung o3, in Betracht
genommen wurde.

Mit den Schnittkridften und Momenten lassen sich die Gleichgewichtsbedingungen
am Schalenelement verhdltnismissig einfach ausdriicken. Wenn man—wie erwihnt
—einfachheitshalber die Gleichgewichtsbedingungen am unverzerrten Schalenelement
annimmt, die Aussenkraftkomponenten je Fldcheneinheit der Mittelfliche in
Richtung der Vektoren e;, e;, e; mit X;, X,, X; bezeichnet und die Momente der
Aussenkraft um die drei Achsen durch den Mittelpunkt des Schalenelementes ver-
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nachldssigt, dann lautet in vektorieller Form die Gleichgewichtsbedingung gegen
Verschiebung

[B(N\e;+ N2+ Q1e3)ly+[A(N21e1+ Naea+ 0e3)]g

+AB(X1€1+X2€2+X393)=0 . (273)
und die Gleichgewichtsbedingung gegen Drehung
ABle; X (Nzea+ Q1€3)+e; X (Naje+ Qqe3) ]+ [B(— M ze,+ M e))],

+[A(—Mye,+ M31e)][g=0 . (27b)
Unter Benutzung der Gl. (6a—) und (7a—c) erhélt man daraus sechs Gleichungen in
skalarer Form

~

AB
(BN )y +(AN21)g+AgN 2 — By N, — EQI +ABX,=0
AB
(BN12)y+(AN3)g—AgN |+ By N>, —‘RTZQ2+ABX2=O

i N, N
(BQI>a+(AQ2)B+AB(fi+ 172) +ABX,=0 L (28a-)

—(BM 5)q—(AM3)g+ AgM | — B, M+ ABQ,=0

(BM )+ (AM;)g+AgM 1 ;—B,M,— ABQ =0
M, My,

R TR

. Um nun die endgiiltigen Gleichungen fiir die Verschiebungen zu bekommen,
driickt man aus GI. (28d, e) die beiden Querkrifte Q; und Q, durch Momente aus
und setzt sie in Gl. (28a—c) ein. Unter Benutzung von Gl. (25a-h), (14a—c) und
(23a—d) erhilt man daraus ein System dreier partieller Differentialgleichungen fiir die
drei Verschiebungen u, », w, durch deren Integration bei Beriicksichtigung gegebener
Randbedingungen das Problem der Verschiebungen, und damit auch das der Span-
nungsbestimmung, prinzipiell gelost wird. Auf eine explizite Hinschreibung dieser
Gleichungen fiir den allgemeinsten Fall miissen wir allerdings verzichten, weil sie
ausserordentlich uniibersichtlich sind und ihre Aufstellung sich nicht lohnt. Die
letzte skalare Gleichgewichtsbedingung (28f) félit weg, weil sie schon in den Grdssen
€1, €2, Y12, K1, k2, A} und A, identisch befriedigt wird, wie man sich leicht durch
Einsetzen der Ausdriicke aus (25¢, d, g, h) iiberzeugt.

+Nj;—N;=0

J

NAHERUNGEN BEI DUNNEN SCHALEN

Aus der elementaren Elastizitdtstheorie ebener Spannungs- und Dehnungs-
zustinde ist bekannt, dass die Bernoulli’sche Hypothese nur bei einigermassen diinnen
Scheiben zutrifft und dass die Zusatzglieder bei Verschiebungen annidherend mit der
zweiten Potenz des Verhiltnisses Trdgerhoéhe : Trédgerldnge zunehmen. Daraus
kénnen wir schliessen, dass auch bei Schalen die Bernoulli’'sche Annahme nur dann
zutreffen wird, wenn das oben genannte Verhiltnis nicht zu gross sein wird. Wir
wollen weiter annehmen, dass das Verhéltnis der Schalendicke zu den beiden Haupt-
kriimmungshalbmessern klein gegeniiber eins sei und dass man es deshalb {iberall
vernachlissigen darf. Bei vielen praktischen Ausfithrungen betrigt dieses Verhiltnis
hochstens ein paar Prozent und ein solcher Fehler in der Spannungsberechnung ist
im Hinblick auf die Unsicherheiten bei der Bestimmung der Schalendicke, des
Elastizititsmoduls und anderer Grossen sicher zuldssig.
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Mit der Annahme, dass die Schalendicke klein gegeniiber den beiden Kriim-
mungshalbmessern sei, vereinfachen sich aber unsere Gleichungen ziemlich stark.
So sieht man z.B., dass schon in GIl. (21a-b) rechts die Verschiebungen » und v
einmal mit dem Faktor eins und das andere Mal aber mit z/R; bzw. z/R, auftreten.
Wir konnen also diese letzten Summanden streichen und erhalten fiir die Verschie-
bungen ausserhalb der Mittelfliche einfach dieselben Gleichungen

~

Wy
U=U—2. 7

Wy > (29a—c)
V:=V—2Z. B .
W;=w

J

wie bei Platten.. In Gleichungen (18a, b), (19a, b) und (22a—c) fiir die Gréssen A.,
B:, Rz, R,; und fiir die Verformungen ausserhalb der Mittelfliche streichen wir
ebenfalls iiberall die Verhiltnisse z/R; bzw. z/R, und erhalten so

€1z=€]—ZK)| )
€3:—€r—ZKy . e s . » . e . (3021—0)
Y12:=Y12—22A
mit etwas verdnderten Ausdriicken fiir die Kriimmungsdnderungen
1/wg) A )
“l—z(j)ﬁA—Bzwﬂ
1/w B
KZ:E(F;),B_*_Z%W“ > . . (3la—c)
1 WB AB 1 Wy BOL
AI_AZ"A"Z(E)"‘_AZBW““B(A ;T AB"?

Wenn man dann weiter noch in den Gleichungen fiir die Schnittkrifte und Schnitt-
momente dieselbe Vernachldssigung zuldsst, erhélt man statt (25a-h)

11—y
Ni=D(e;+vey) Ny=D(e3+ve,) N12=N21=—'2—D712 } .. (32a-0)
Mi=—K(k,+vry) My=—K(ka+ve;) Mpp=M, =—(1—v)KA

In den Gleichungen (25a-h) sind also jetzt alle sogenannte Zusatzglieder weggefallen.
Man konnte aber auch unmittelbar von Gl. (25) zu (32) gelangen unter der Voraus-
setzung, dass 4/R; und //R, klein sind gegen eins und dass es sich um einen Biegespan-
nungszustand handelt, bei welchem die grossten Biegungsverformungen 4, x»h und
Ah von derselben Grossenordnung sind wie €, €; und y,,. Jedes Glied in (25),"
welches in (32) nicht mehr auftritt, ist ndmlich mit dem Verhéltnis #/R; oder h/R,
multipliziert gegeniiber anderen, der Gréssenordnung nach gleichen Gliedern, und
kann deshalb vernachlissigt werden.

Auch die Gleichgewichtsbedingungen konnen bei kleinen 4/R; und A/R, etwas
vereinfacht werden. Wenn man nidmlich die durch Q; und Q, in Gl. (28a, b)
eingefiihrten Glieder néher betrachtet, findet man dass sie in diesen Gleichungen bei
Schnittkrédften N;, N, und N;, ausnahmslos vernachldssigt wurden. Man kann also
in beiden ersten Gleichungen (28) auch die Summanden (4BQ;)/R; bzw. (4BQ,)/R,
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streichen und erhilt so die fiir die Berechnung des Verschiebungs- und Spannungs-
zustandes massgebenden flinf Gleichungen aus (28a—e)

(BN )y + (AN )+ AgN 32— By N+ ABX, =0 )
(Ble)a-i-(ANz)B—AﬂNl +B,N, +4BX,=0

(BQ1)1+(AQ2)3+AB(%+%)+ABX3=0 f . . (33a-e)

ABQ\=(BM )y +(AM;\)g+AsM,— B, M,
ABQy=(BM3)q+(AM3)g— AM+ B, M5, |

Was nun die letzte Gleichgewichtsbedingung (28f) betrifft, so erweist sie sich nicht
mehr als Identitit. Aber wir konnen doch annehmen, dass sie durch unsere Aus-
driicke geniigend genau befriedigt wird, weil beim Biegespannungszustand die
Grossen M ,/R; und M,,;/R, klein sind gegeniiber N,,=N,, und deshalb gestrichen
werden konnen. Indem man ndmlich fiir die in (28f) auftretenden Krifte und
Momente die Ausdriicke aus (32) einfiihrt, erkennt man, dass in den beiden ersten
Summanden grossenordnungsmadssig gleiche Glieder wie bei den letzten zwei
auftreten, die aber dort noch mit 4/R; bzw. A/R, multipliziert sind.

Gleichungen (33a—e) bilden den Ausgangspunkt fiir die Aufstellung der Differen-
tialgleichungen fiir Verschiebungen. Dazu braucht man wieder nur die Grossen Q,
und Q, aus den letzten zwei Gleichungen in (33c) einzusetzen und dann alle in
(33a—) auftretenden Schnittkridfte und Schnittmomente durch Verschiebungen
mitiels der Gleichungen (14), (30), (31) und (32) auszudriicken. Im allgemeinen
erhdlt man zwar auch mit allen diesen Vereinfachungen noch immer sehr uniiber-
sichtliche Gleichungen; aber durch entsprechende Wahl der Koordinaten ¢ und B
erhélt man in vielen, praktisch sehr wichtigen Sonderféllen verhéltnismissig einfache
Ausdriicke, die sich fiir numerische Berechnungen viel besser eignen als die in voriger
Nummer erwihnten allgemeineren Beziehungen. Wir wollen dies ganz kurz am
Beispiel der Zylinderschalen zeigen, wo die Verhiltnisse besonders einfach sind. '

BIEGESPANNUNGSTHEORIE DUNNER ZYLINDERSCHALEN

Bei zylindrischen Schalen nehmen wir als Gauss’sche Koordinate « die Linge der
Erzeugenden auf der Schalenmittelfliche von einem gewissen Querschnitt und fiir 8
die Lange der Leitlinien von einem bestimmten Axialschnitt ab. Dann hat man

1 1 .
A=B=1, =0, =f®) . .. ... (9

Gleichungen (14) und (31) fiir die Verzerrungen und Kriimmungsinderungen
nehmen dann eine sehr einfache Form an und ergeben fiir die Schnittkrifte und
Momente folgende Ausdriicke

w =
=it (o)
1 Uy +v|vg R,
=(o o
=D|\vg— 5 +wvu
2 TR, iy
1—

14
Ni;=N; = TD(”.a‘l'?)a)

M= _K(Waa'l_vwﬁﬂ)
M2=_"‘K(Wﬂ3+ywaa)
M12=M21=—(1—1’)K. waﬂj

(35a-f)

—

C.R.—14
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wihrend die Gleichgewichtsbedingungen (33) nun folgendermassen lauten
Nig+Nopt+X;=0
Niz2y+Nypg+ X>=0

N
Q1a+ng+ff+X3=0 S . . . . . . (36ae)

O1=M,+Myg
Or=M >, + Mg J
Aus den letzten zwei Gleichungen erhilt man mittels (35d—e) Ausdriicke fiir Q,

und @, in der Verwolbung w und Gl. (36a—c), in Verschiebungen u, z, w ausgedriickt,
lauten daher

1—v I+v Wy X1 )
Yaat 3 Ut Vus VR, D=
14v 1—v ’ W X,
Tua5+7vaa+vﬁﬁ_(E)B 32=0 & . (373.—C)
1 w X3
— —_— | —k2 s 8
Rz(vlla""vﬁ Rz) k2 . AA”+D

-

mit Adw=“;aaaa+23vaaﬁﬁ+H’ﬁﬁﬁs . . . . . . (38)

Gleichungen (37) stellen die auf Schalen beliebiger Querschnittsform ausge-
dehnten, etwas vereinfachten Fliiggeschen Gleichungen (71) (Schrifttum 4, S. 118) dar.

Statt die Spannungsverteilung auf dem Umwege iiber Verschiebungen zu berech-
nen, ist es manchmal vorteilhafter, unmittelbar die Schnittkrifte zu bestimmen.
Indem wir in der Gleichgewichtsbedingung (36c) Q; und Q, durch w ausdriicken,
bekommen wir ndmlich aus (36a—) und aus der Vertraglichkeitsbedingung zwischen
N,, N,, N1, und w folgende Gleichungen

Njg+Nyp+ X,=0 1
Nizg+Nypg+ X5=0
N _
EZ—K. Adw+ X;=0 > (39a-d)
Z .
, Eh
NlﬂB_VNICXC(_i_Nde_VNzﬁﬁ_z(l +V) F NlZaB+ szad=0

Bei der Integration solcher Gleichungssysteme baut man aber gerbhnlich die
Losung aus Summen von Gliedern auf, in denen alle unbekannte Grdssen als
Produkte gewisser Funktionen einer unabhingigen Veridnderlichen mit unbekannten
Funktionen der anderen Verdnderlichen auftreten, wobei natiirlich die willkiirlich
gewihlten Funktionen gewissen Randbedingungen geniigen miissen. In solchen
Fillen tritt in den iibrigen Randbedingungen eine Schnittkraft nicht auf und es ist
daher ratsam, sie aus (39a-d) zu eliminieren. Wenn wir z.B. die Schnittkrifte und
die Verwolbung w als bekannte Funktionen von o« annehmen, tritt in den Schnitt-
ebenen B=const. die Schnittkraft N, nicht mehr auf; wir driicken sie also aus (39a)
durch andere Grossen aus und eliminieren sie dann aus (39d). Aus (39b-d) erhilt
man so drei Differentialgleicnangen fiir N5, N, und w

Njog+Nopg+ Xo=0

NZ—K' Rz i AAW+R2X3=O (403_0)

Eh
Nzaaa—VNzaﬁa“‘szﬁp‘—(2+V)N21aaa+§‘7waaa +rX g —X1g=0
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Mit unseren Annahmen kénnen wir aber unser Problem auch auf eine einzige
Differentialgleichung fiir die Verwolbung w zuriickfithren. Aus (40a—c) eliminiert
man N, und N,, und bekommt

Eh
K a AA(.RZ . AA}V)'}‘EZ'}Vaiaq'*‘VXIaau—leBB
+(2+V)Xzomﬁ+ XZBBB—AA(R2X3)=0

Auf Einzelheiten bei der numerischen Durchfiihrung der Rechnungen konnen

wir an dieser Stelle nicht eingehen, sondern verweisen auf das Schrifttum 6.

(41)
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Zusammenfassung

Aus Gauss’schen und Weingartenschen Ableitungsgleichungen der Flichen-
theorie und unter Benutzung der Bernoulli’schen Annahme iiber das Ebenbleiben der
Querschnitte lassen sich sehr leicht Ausdriicke fiir die Verzerrungen eines beliebigen
Schalenelementes ableiten. Lovesche Gleichungen fiir diese Grdssen werden
bestdtigt. Zur angenédherten Behandlung diinner Schalen wird die Vernachldssigung
der Schalendicke gegeniiber den beiden Hauptkriimmungshalbmessern der Mittel-
fliche vorgeschlagen. Daraus ergeben sich vereinfachte Ausdriicke fiir die Kriim-
mungsdnderungen und auch der Einfluss der Querkréfte auf das Gleichgewicht in
der Tangentialebene kann vernachlidssigt werden. Mit dieser Annahme lassen sich
bei zylindrischen Schalen verhiltnismissig einfache Gleichungen sowohl fiir die
Verschiebungen als auch fiir die Schnittkrifte angeben.

Summary

From the formule of Gauss and Weingarten for the theory of surfaces and under
Bernoulli’s assumption that plane sections remain plane, the expressions for the
strain in the shell are derived. On the above assumption, Love’s equations for the
components of strain are correct. To simplify the analytical treatment of thin shells,
it is proposed to neglect their thickness, when compared with the main radii of
curvature of the middle surface. This assumption gives simplified expressions for
the changes of curvature, and the influence of the stress-resultants normal to the
. middle surface in the equations of equilibrium in the tangential plane can be neglected.
In the case of a cylindrical shell, comparatively simple equations are derived both
for the components of displacement and for the stress-resultants.
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Résumé

A partir des équations établies par Gauss et par Weingarten pour la théorie des
surfaces et en utilisant ’hypothése de Bernoulli concernant la conservation de Ila
planéité des sections, on peut établir trés aisément des expressions donnant les
déformations d’un élément de volite mince arbitraire. Les équations de Love con-
cernant ces grandeurs sont ici confirmées. Pour traiter le probléme des vofltes
minces, il est proposé de négliger leur épaisseur par rapport aux deux rayons de cour-
bure principaux. Il en résulte des expressions simplifiées pour les variations de
courbure; I'influence des efforts de cisaillement sur les conditions de I’équilibre dans
le plan tangentiel peut également &tre négligée. Dans ces conditions, on obtient des
équations relativement simples pour les volites cylindriques, tant en ce qui concerne
les déformations que les efforts dans les sections.
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An approximate method for treatment of some plate bending problems

Méthode approchée pour I’etude de quelques problemes concernant la
flexion des dalles

Eine Niherungsmethode zur Behandlung einiger Probleme der
Plattenbiegung

AKE HOLMBERG, D.S.C.S.E.

Consulting Engineer, Lund, Sweden

Consider a rectangular plate, fig. 1, simply supported along the edges x=0 and
x=a, whereas the other edges are either simply supported or rigidly clamped. Sup-
pose, furthermore, that this plate is submitted to a load
which can be expanded into a Fourier series in x. Then
any quantities relating to the plate can be calculated using
the well-known method involving simple corrections of
the corresponding quantities for a simply supported x
beam. When, however, the boundary conditions at x=0 T | ’ ’
and x=a are changed, the calculation is considerably
complicated by time-wasting numerical computations,
which can seldom be managed when a design problem
calls for a rapid solution. Some cases have been treated 1
in publications. Reference is made to S. Timoshenko,* 4 2
and D. Young.f Special mention is also made to v
S. Levy,f the immediate source of inspiration for the Fig. 1.
present paper.

In the following paragraphs a very simple but somewhat rough-and-ready method,
which is applicable under any arbitrary boundary conditions, is given. The easiest
way to demonstrate this method is to adduce two examples which permit comparison
with previously known “exact’ solutions.

—

N e

oo

* “Bending of Rectangular Plates with Clamped Edges,” Proc. Fifth Int. Congr. Appl. Mech.,
1939, _

t “Deflection and Moments for Rectangular Plates with Hydrostatic Loading,” J. Appl. Mech.,
1943.

1 “‘Square Plate with Clamped Edges under Normal Pressure producing Large Deflections,”
N.A.C.A. Report, No. 740.
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ExaMPLE No. 1 /P
A triangular load, two opposite edges clamped IDIDID]ID};E., X
the third edge clamped, and the fourth edge free. ! |
Consider the corresponding beam, fig. 2. g -
w_pf X\_p x Fig. 2.
e 5(1 5)—5[A(1—r) “‘”] ?
(24p N 1. mmx 44=1)p 1 nmx
) —SDA a 7D nSIHB.a
. n=1.2.3. n=1.3.5...
x=0 x=a
@w _ pa 5 and &Pw —0 yields
ox3 2D ox3
—2424+3(4—1)B=—3
2426 N 1 nm 4A—DBpa N 1 mm_
T @D Z n2 S 4 w2 D n2 €057g =0
=2t 23 winen n=I.3.5.
and hence A=3; B=I.

2mr\

1
The summation of Z e

n=].2.3...

is carried out

and by inserting x=0, x=3a/2, and x=3a.

02 W
axz

27/?02
" 4m3D

n=1.2.3...

1

]?—3' Sin

2nmx  2pa
3a " =3D

x=0
02w pa2
ox2 6D

xX=a
and 92w
6x2—-0

2
yields C=2%

x=0
ow

T 0

11
gives F= — whence,

10

n=

_2pa2
6D 3aD

by substituting Sy+ S;x+S>x2

For these values, the sum is known.

1

n_3 sin ——+C

>

123235,

n=1.

finally,

243pat

~1675D
n=J.2.3...

1
n’

2nmx  2pat
3¢ =D
121pat

~ 15073D Z

n=J].3.5...

[~ -]
sin E
n=1.3.5...

1
n

10nmx
1la

sin

This is the equation of the elastic curve, which is
generally assumed to be known. The third term
represents the influence of the restraining moment.

For the plate shown in fig. 3 with the loading
as indicated in fig. 2, the elastic surface is chosen:




PLATE BENDING PROBLEMS 215

243pat N 2nmx  2pat = .
WD Z 15(1+ Yy )sin —— 32 5D z 5(1+ Y,,) sin —

n=1.2.3... n=1.3.5.

lOnm\

+M z 3(1+Y3")sm T

n=1.3.5..

where Y, are functions of y.
Y, is determined by:

2
44Y, sin 77X —0 and
n 3a
b
y=z35
l+ Y]n_ y —0
From
b
44Y, sin G——O when HZL—oc,,
is thus generally obtained:
Ga, cosh Go,+sinh Go,, nwy
I+ Y"_l—sinh G, . cosh Go, 4 Goy, " © sl G_
sinh G, nmy . nmy
+sinh Ga, . cosh Go,+ Go,, G a ’ sinh GT o &)
On the other hand, if the boundary conditions are:
b
y= :Ei
52 Y
=0
" then
Guay, . sinh Go,+2 cosh G, nwy
I+ ¥,=1- 2 cosh? Ga, -€oRh 6 = =
) 1 nmy

] nwy
| il
T2COShGOCnG p sinh G P 4)

In this example, M i$ determined by the condition:

x=0) ow
yzo}ax—mo..........(S)

The approximation consists in assuming that the function in y represented by the
first two terms in &w/éx is affined to the function represented by the third term. This
is not the case, and the angular deviation at the boundary becomes zero at one point
only. In the remaining region, the angular deviation becomes negative.

M being determined, all requisite quantities can be calculated from eqn. (2).
Suffice it to say that, for x=0, y=0, ¥,=0can be put in the calculation of 92w/0x2.
When x is small, contributions to Y, are furnished by the terms where 7 is large only,
and for these terms Y,=0. The calculation can be made rapidly by using the func-
tions shown in figs. 4 and 5, and the summations given below:
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r 4o 19
£ £
a9 ro9
08 a8
p-cosh g rsmh g
47 simnhg-coshp+p a7
a6 @-coshg —smh g Los
2 simhg-cosgey £=
. z
. R : L
£ snhy-coshg -y _ gesimhg
7 smhy-coshgrp 7 2cosh?y

p-sinh @p=2cosh ¢
/= >
2eoshty

For b/a=1, 2, and 3, some quantities have been computed on the assumption

that Poisson’s ratio is equal to zero. In fig. 6, they are compared with previously

known “exact’’ values.

ExaMpPLE No. 2

A uniformly distributed load; all edges clamped. For the corresponding beam

Fig. 4.
11,1 ]
1—3+5—7...

1 1 1 1

1 1 1 1
1—2+3_2+§E+
1 1 1 1
TRt TE

ﬁ...

Fig. 5.

T 1 1 1 1
=2 ittt - - - g
_m 1,1, 1.1
6 Wratata - =
72 1 1 1 1
~% TTFETETE

w3

=3

shown in fig. 7, the equation is:

4pat

W=——
mD

n=1.3.5...

o0
1 . nox  pat 1 . nax
— sin — —: ; —sin —
n3 a 33D L, n a

n=1.3.5...

For the plate shown in fig. 8, the following is chosen:

1 . hmx e 1 . NTX
E(I-{—Y,,)sm—a——l-M Z ’?(I-PY")SIHT- .

n=].3.5...

14 Y, is determined from eqn. (3) and M from eqn. (5).

" 71536
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Just as in Example No. 1, some quantities have been calculated for Poisson’s
ratio=0, and are compared in fig. 9 with previously known “exact” values.

_Or% Y4
X
-—
a
,‘,z Fig. 7.
- 009
- — _
o0
Pt oy
y=0
=S x=g72
/ T —— e _Y=08/2
=
——

accurate

o Spproximale

302

Summary

If arectangular plate (fig. 1) is simply supported or clamped along theedges y=454/2
and simply supported along the edges x=0 and x=a, and if this plate is submitted
to a load which can be expanded into a Fourier series in x, then all quantities relating
to the plate can be calculated in a simple manner by means of generally known
methods. When, however, the boundary conditions at x=0 and x=a« are changed,
the numerical computations are time-wasting. In this paper, the author demonstrates
an approximate method which is characterised by the fact that the latter boundary
conditions are satisfied on one point only. The calculations are very simple, and
the results are sufficiently accurate for most design problems.
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Résumé

L’auteur considére le cas d’une dalle rectangulaire suivant figure I, portant libre-
ment ou totalement encastrée sur les bords y=45/2, portant librement sur les bords
x=0 et x=a et soumise a une charge se prétant 4 un développement en série de
Fourier par rapport a x. Il montre que toutes les grandeurs qui caractérisent la dalle
peuvent étre calculées d’une mani¢re simple, & 'aide de méthodes généralement
connues. Les calculs numériques sont toutefois fastidieux lorsque 1’on fait varier
_ les conditions marginales sur les bords x=0 et x=a. L’auteur expose une méthode
approchée caractérisée par ce fait que les conditions marginales latérales ne sont
remplies qu’en un point. Les calculs sont trés simples et la précision obtenue est
généralement suffisante pour les besoins de la pratique.

Zusammenfassung

Fiir den Fall einer Rechteckplatte nach Abb. 1, die an den Réndern y=4-5/2 frei
aufliegt oder total eingespannt ist, an den Ridndern x=0 und x=a frei aufliegt und
einer Belastung unterworfen ist, die nach einer Fourier-Reihe in x entwickelt werden
kann, konnen alle die Platte betreffenden Grossen auf einfache Weise mittels aligemein
bekannten Methoden berechnet werden. Die numerischen Berechnungen werden
jedoch zeitraubend, wenn die Randbedingungen an den Rindern x=0 und x=a
gedndert werden. Im vorliegenden Aufsatz wird eine Ndherungsmethode beschrieben,
die durch die Tatsache charakterisiert ist, dass die seitlichen Randbedingungen nur
in einem Punkt erfiillt sind. Die Berechnungen werden sehr einfach und es wird eine
fiir praktische Probleme meist geniigende Genauigkeit erzielt.
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