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AIIl

L'emploi de fonctions orthogonales speciales pour la Solution du

probleme de la torsion

The use of special orthogonal functions for solving the torsion
problem

Anwendung von besonderen orthogonalen Funktionen für die Lösung
von Torsionsproblemen

Prof. TELEMACO VAN LANGENDONCK
Ecole Polytechnique, Universite de Sao Paulo, Bresil

Generalites

Le probleme de la torsion d'une piece prismatique de section pleine, S, consiste
ä resoudre l'equation aux derivees partielles:

82w 82w

8x-2+W ~2 d*mS 0)

avec w=0 sur le contour. Les composantes de la contrainte de cisaillement paralleles
aux axes des x et des y sont donnees par

dw T dw T
Txz=~oyJ; Ty2=z~d~xlt (2)

oü Test le moment de torsion et /, est le "moment d'inertie ä la torsion":

"-ily,=2 wdxdy (3)

avec lequel on peut calculer Fangle 6 de torsion, par unite de longueur de la piece
(G est le coefficient d'elasticite transversale):

T
e=GJ, ¦ ' ¦

'
<4>

x2+y2
Si l'on pose z=w-\ -z— (5)
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la condition (1) devient:
82z 82z

W2+W=° ®
x2+y2

qui est l'equation de Laplace, avec z=—-— (7)

sur le contour.*
La Solution generale de l'equation (6) est

z=f1(x+iy)+f2(x-iy) (8)

qu'on peut ecrire, en developpant en serie de puissances:
oo oo

:=y^a"m(x+iyr+^b"m(x-iy)z= } a"m(x+iy)m+2_b"m(x-iyy (9)

m=0 m 0

oü les coefficients a"m et b"m sont determines par la condition au contour (7).
On obtient la Solution reelle du probleme en combinant les termes des series (9)

de facon ä avoir:

^© (x+iyy+(x-iy)m yL, (x+iy)m-(x-iyr
z=Za m 2 +Zb m 3

m 0 m r>

qu'on peut ecrire:
OO 00

^ji'mUm+Sb'mV,z=>a'mUm+>b'mVm (10)

m=0 m=0
oü Um=$[(x+iy)m+(x-iy)m] et Vm=hl(x+iy)m-(x-iy)m] sont les expressions tres
connues:

u0=\ v0=o
Ux=x Vx=y
U2=x2-y2 V2=2xy
U3=x*-3xy2 V3 3yx2-y*
U4=x*-6x2y2+y* Vi,=4xiy-4xyi

lesquelles sont des polynömes homogenes de degre m. Par suite, Fegalite (10) ne
perdra pas sa generalite si on groupe les Um et les Vm de fa?on ä avoir, en posant
"2m—Um> ff 2m + l== *m, C 2m a m et C 2m+i b m\

z= yc'mWm= yam(c'0, mW0+c'UmWl+z-

m=Ü m 0

+c'm_1>mWm_1+Wm)=2,amPm (11)

m 0

les coefficients c'„_ m pouvant etre des nombres reels finis quelconques. On peut les
n — m

choisir de facon que les polynömes > c'„imW„ (avec c'm<m=l) soient—quand on

* Dans quelques cas, il serait plus convenable de poser
z=w+x2 ou z=w+y2

l'equation (6) restant valable, avec z=x2 ou z=y2 sur le contour.
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change, dans Wn, y enf(x)—des fonctions orthogonales pour le contour C caracterise

par l'equation y=f(x). On aura:

PJds^O et, si m©«, PmPnds=0
Je Je

Pour que z satisfasse ä la condition (7) au contour, il faut que

m<y=Rx)

(12)

(13)

c'est-ä-dire, qu'il faut developper l'expression du premier membre en fonction des P„,
ce qui est possible, car les Pm sont des fonctions orthogonales. En consequence, les
coefficients am resteront determines et la valeur de z sera connue (11); on pourra,
alors, calculer w (5) et J, (3). En fait, d'apres la theorie des series de Fourier, on
aura:

am=
fr+r Pmds

l (14)
P2mds

La Solution obtenue convergira peut-etre quelquefois plus lentement que la
Solution qu'on pourrait obtenir avec le procede Ritz-Rayleigh; mais eile presente
Favantage de dispenser de la resolution d'equations simultanees pour le calcul des
coefficients et de donner la Solution avec une precision croissante avec le nombre des

termes qu'on prend, et qui converge en moyenne vers la Solution exaete, en vertu de

la propriete des series de fonctions orthogonales.
La Solution decrite s'applique, evidemment, ä tous les problemes de la physique

mathematique qui consistent ä resoudre l'equation de Laplace ä deux dimensions, avec
certaines conditions sur des contours prefixes (probleme de Dirichlet).

Comme exemple d'autre cas d'application, nous terminerons en donnant la Solution

d'un probleme de calcul de la distribution des contraintes de cisaillement dans des

pieces flechies. Le probleme de la plaque librement appuyee sur le contour peut etre
ramene ä la Solution de deux equations de Laplace et alors etre resolu par le procede
indique. L'auteur etudie maintenant I'application d'une methode semblable au calcul
des plaques avec conditions quelconques d'appui et ä la resolution de l'equation
d'Airy y4n'=f(x, y), en utilisant la Solution generale de l'equation sans second membre:

w=ft(x+ iy) +yf2(x+iy) +f2(x- iy) +yf4(x-iy)

Application aux sections en losange
Pour resoudre le probleme de la torsion d'une piece prismatique avec section en

forme de losange, on prend pour axe des coordonees, dans le plan de la section, les

diagonales du losange (fig. 1). On peut ainsi prendre
seulement, pour le developpement (10) de z, les fonctions paires de x
et de y, c'est-ä-dire seulement les fonctions Um avec m pair.
L'egalite (11) sera valable si on pose Wm=U2m:

W0=l
Wx=x2-y2
Wz=x*-6x2y2+y*
W^=x6- I5x*y2+ ISxty-y6

Fig. 1

©

-b-
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Les integrales (12) peuvent s'etendre, ä cause de la symetrie, ä un seul cote du
losange. Si on prend le cote x=b(l—y/h), il vient ds=dyjcos a et l'integrale sur le
contour du terme general xpy" est:

f f* / y\" dy W1 f1 p\q\
xpy"ds= WH /—= (l—nYv''dv=sb>H>, \_\„.Je oJ \ h) cosa cosa0J (p+q+l)\

Avec cette formule, on calcule toutes les integrales lp< q=\cWpWads et
r2+y2

¦ Wpds, pour les valeurs entieres de p et q entre 0 et le plus grand m que
f ©Hc-2

l'on desire employer dans le developpement (11) de z. On calcule aussi, pour trouver

¦¦--iL'J, (3), les integrales I"p= Wpdx dy, en notant que

/j©Vi*-4„M "; "¦""b'-"'-'(Pipw
Soit le cas du losange avec b=0,4h; on dispose le calcul comme on a fait sur le

tableau I, qui finit par une colonne oü se trouvent dejä les valeurs successives des
termes qui somment J,, et l'on s'arrete des que la precision voulue est atteinte.

Dans la premiere colonne, se trouvent les valeurs des m qui correspondent ä chaque
terme du developpement (11) de z, dont le calcul est fait sur la ligne respective. Sur

la premiere ligne (m=0)on trouve les valeurs de P02ds=\ W02dsetde\ P0—^—ds
C x2+y2

W0—j—ds, dejä calculees (70i 0 et I0', parce que P0= W0); le quotient de ces deux

quantites donne a0 (14), qui figure dans le tableau. Dans la colonne suivante, on

trouve P0dxdy=\ W0dxdy=I"0 et, dans la derniere, le deuxieme terme du

developpement de /,, c'est-ä-dire, le double du produit des nombres qui se trouvent
dans les deux colonnes precedentes 2x2x0,193333=0,773333; le premier terme de
ce developpement est donne au-dessus du nombre 0,773333 et correspond ä la difference
entre z (5) et w, qui est (3):

-2Jj X—Y~dxdy= -0,386667

En general, sur la meme ligne, on trouve successivement m, 0Am, xAm,

m-\Am, m-\Bm, m_2Bm, 0Bm, Cm (precede dans la meme colonne par Cm_u Cm _2,

etc.), Dm, Em, Fm, Gm. Ces valeurs sont obtenues de la facon ^uivante, en fonction
des quantites dejä calculees:

t}A'm==Im, 0

\Am Im, i+o^m-O^l
2^m ^m, 2 + 0^m • 0^2+ 1-^m ¦ 1^2

„ _
m~\Am

m-l"m—
<̂-m-l

D __
ni-lAm

m - 7."m — -pr
<-m-2
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ff - °A"

C =1 +
D —I' +

Dm

F =1" 4-x m * m> r.

m— \-™-m * in

,B„,. D„
¦ lBm+m-2-Am -

-l+m-2^m • Af
,~2ßm +
-2+ • • +0B„, ¦ D0

nB„

\B„ l+m-2-Rf« • ^m-2+ • +(A ¦ Ff)

Pour le calcul de J,, dans Fexemple du tableau I, il suffit de s'arreter ä la ligne

Gm — 2fcmb m

m=3, ce qui donne, en faisant la somme
des nombres de la derniere colonne (dans
la ligne m=4, on trouverait —0,000572):

7,=0,166M3=0,415Ä2/i2
La repetition de ce calcul pour d'autres

valeurs de la relation b/h permet de tracer
le graphique de la fig. 2, oü est etablie la
comparaison des valeurs de /, avec les
valeurs obtenues par les formules usuelles
(formule de St. Venant: J,=S4I40JP, et
formule des sections allongees:

/,=4/S72/(S72-|-16/).
On y trouve aussi les resultats de

I'application de la formule proposee, ä la suite
des calculs faits, pour Fusage pratique :

•M»' YZbA
S--2 6/i

,t-e/iIT

/© formale (I5J

41SI' 4b3h3
51 '+16/ 2b'+3h*

SP_ 6. b3h3
I

40Jp~ 5 b*+h*

o.2 OA o.s o.s '%

Fig. 2

bW
5 2b2+bh+2h2

(15)

Application aux sections composees de deux ou trois rectangles
Pour la determination des Jt des sections en croix, en T, en L, en U, etc. (fig. 3),

il y a des formules pratiques, qui toutefois s'appliquent ä des cas oü la largeur des

rectangles est d'un ordre de grandeur plus petit que la longueur. Malgre la presence
des angles rentrants la methode generale decrite permet de trouver la Solution cherchee

pour des rectangles quelconques.* Par exemple, pour le cas de L symetrique (fig. 3),

¦y
ß=a/6T

Cc

*-JC

\y
—*~x

'OC

Fig. 3

* Pour le cas de deux rectangles, l'auteur a propose ailleurs une methode dont la Solution converge
plus rapidement, mais dans laquelle on ne peut pas eviter la resolution d'equations simultanees pour
trouver les coefficients des termes de la serie. Cette Solution est obtenue par deux series trigono-
metriques, une pour chaque rectangle, dont les termes satisfont ä l'equation (1). Les coefficients de
ces termes sont determines par la condition de continuite sur la limite des deux rectangles.

CR.—13



Tableau I

m iWmPods
=s h2'"

jrVmPlds
=s /,2m+2

WmPlds
=S hp" + 4

Pm=Wm+ [PuMs
=s Il4'" Pmds

-S 1,2m+ 2

am
1,2-2,,,

IfPmdxdv
b/,2i„+)

Ji
=M-1

Pm-lh2 Pm-zlr* Pm—lhfi

0
1

2
3

in

-0,2800000
+0,1731200
-0,1230720

oAm

-0,0848384
+0,0675240

\Am

-0,0144580

lAm >Am

+0,2800000
+0,7310294
+ 1,1186871

m—\B„,

-0,1731200
-0,5818361

m—iBm

—

+0,1230720

m—3ö/» m—40//1

1,0000000
0,1160533
0,0129241
0,0016040

Cm

+ 0,1933333
-0,0433067
+ 0,0021738
+ 0,0002346

Dm

+0,193333
-0,373162
+0,168196
+0,146259

Eni

+ 2,000000
+0,280000
-0,026138
-0,007547

Fm

-0,386667
+0,773333
-0,208971
-0,008793
-0,002208

Gm

m colonnes m colonnes

X

<
>
7.

r>
lm

Tableau II

ffVmPods
=S II2"!

\W,„P\ds
S I\2m 1 2

\WmPlds
S 1,2m I 4

Pm=tVm +

Pm-\lt2 I Pm—lhfl Pm-ih6

iP„Ms-
=s Ii4'"

jap.
Pmds

-s h2"< 1 :

Clin
-.h2-2m

mm 1,2m I 2

U=li4

-0,3333333
+0,2000000
-0,1428571

-0,0761905
+0,1269841 -0,0351268

+0,3333333
+0,2142857
+0,1695590

-0,2000000
-0,3571429 0,1428571

1,0000000
0,3555556
0,2071655
0,1024435

+0,2666667
+0,2088889
-0,0123810
+0,0026626

+0,266667
+0,587500
-0,059764
+0,025991

+0,500000
+0,166667
-0,030952
+0,006657

-0,066667
+0,133333
+0,097917
+0,001850
+0,000173
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on prendra les fonctions W, en combinant les fonction U et V de facon ä obtenir des

polynömes symetriques en x et y:
W0=l, Wx=x+y, W2=2xy, Wi=x3-3xy2-3yx2+y\ fK4=x4-6x2>'2+/t,

A cause de la symetrie les integrales sur le contour s'etendent sur le parcours OAfi-C,
ce qui donne, pour le terme generale xpyq-\-xqyp:

I (xpyq+xqyp)ds=bm+r-1(—
i 0"'-l Om+n+l ßmj_0"H-l_fi»i+'i+l\

m+l n+l

m 2^ v i\Q
Vr-=\o-y-Xl+1 +7)21

Application a la Determination des contraintes de cisaillement dans les pieces
flechies
La theorie de l'elasticite donne, pour les composantes des contraintes de cisaillement

(le plan de la flexion contient l'axe des x):

JA9l
Tyz~ 8x2J'

oü v est le coefficient de Poisson, Q l'effort tranchant, / le moment d'inertie de la
section par rapport ä l'axe des y et <f> une fonction qui satisfait ä v2t£=0 et qui, au
contour, permet d'ecrire

dy dx

Pour le cas du losange (fig. 4), la fonction <j> est impaire
en y et paire en x. On peut, en consequence, la developper
en serie suivant les fonctions V avec indice impair:

*
oo

m=0

rZm+l
'2m+1

La condition au contour s'ecrit I en posant kI en posant k=-rr~):

-ßT

y W L

b~
X

Fig. 4

avec Wm=-
1

i(
m 0

9*Wj 8V2m+ l) U2m-ßV2m, c'est-ä-dire:2m+l\ dy r dx

W0=l, W1 (x2-y2)-ß(2xy), W2=(x*-6x2y2+y*)-ß(4x3y-4xyi),
A partir de ces W, on calcule, comme auparavant, les fonctions Pm orthogonales

pour le contour et on developpe le binöme x2—ky2:

(x2-ky2)yplxy

oo

/ amPm avec a„,=
J>-kyWJe

JePm2dS

Toutes les Operations sont faites, sans difficulte, comme pour le tableau I et le
probleme est resolu. Dans le tableau II, est donnee la Solution pour le cas du carre
(losange avec ß=l). La derniere colonne; qui contient les termes dont la somme
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doit etre egale ä 1/6 pour que l'effort tranchant soit egal ä l'integrale des contraintes
txz, permet de determiner la precision obtenue. Sur la fig. 5 sont indiquees les valeurs
des txz pour les diagonales x=0 et y=0, pour le contour y=l—x et pour >'=0,5,
valeurs obtenues avec les termes de la serie jusqu'ä w 3 (auquel correspond, dans la

va/eurs ca/cc/Ues

— formu/e c/ass/que
Q"st*** ej

-o

^e-

Sf,

fo"

Z¦ pocrx^O
xx

Fig. 5

derniere colonne, la somme 0,166.606 au lieu de 1/6). Le calcul de txz a ete fait, en
employant les divers coefficients, de la meme facon que le calcul des deux dernieres
colonnes des tableaux I et II, suivant Fexemple du tableau III, pour x=y=0 et pour
x=0, .y=0,6.

Tableau III

m WmPy-fm
formule generale

*=0
y=0

*=0
^=0,6

0
1

2
3

1

(*2->>2)+0,333.333/o
(^»-6^2>,2+yt)+o)214.286/i -0,2/0
(at2 —15jc*>'2+15x2>"t_y6)+o,169.559/"2—0,357.143/,

+0,142.857/"0

1,00000
0,33333

-0,12857

0,00201

1,00000
-0,02667
-0,07614

0,09282

^r«=(0,266.667/o+0,587.500/i-0,059.764/"2+0,025.991/3)
y -x2+0,2^2 0,4702 0,3300
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Resume

Une nouvelle methode est proposee pour la Solution du probleme de la torsion;
eile consiste ä utiliser certaines fonctions orthogonales specialement choisies. La
methode peut etre adoptee ä la Solution des problemes de la physique mathematique
consistant ä resoudre l'equation de Laplace, ä deux dimensions, avec des conditions
donnees au contour. Un exemple d'application est indique pour le cas de la torsion
d'une piece de section en losange et un autre au cas des contraintes de cisaillement
dans les pieces flechies.

Summary

A new method for the Solution of the problem of torsion is proposed. It consists
of the use of special orthogonal sets of functions. This method is extensible to the
problems of mathematical physics which involve the Solution of Laplace's equation
with given boundary conditions. Two examples are shown: one, the torsion of
a bar with rhombus-shaped section and the other, the distribution of the shearing
stresses in beams under bending.

Zusammenfassung

Eine neue Methode für die Lösung der Torsionsaufgabe wird vorgeschlagen. Sie

besteht in der Anwendung von besonderen orthogonalen Funktionssystemen. Diese
Methode ist anwendbar auf die Lösung der Fragen, die in der mathematischen Physik
auftreten, wenn man eine Laplace'sche 2-dimensionale Gleichung mit gegebenen
Randbedingungen lösen will. Zwei Beispiele werden angeführt: eines für die Torsion
eines Stabes mit rhombusförmigem Querschnitt und das andere für die Verteilung der
Schubspannungen in Stäben, die durch Biegung beansprucht sind.
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AIIl
Beitrag zur Elastizitätstheorie der Schalen

Contribution to the theory of elasticity of shells

Contribution ä la theorie de l'elasticite des voütes minces

A. KUHELJ
Ljubljana, Jugoslawien

Einleitung
Die Ausgangsgleichungen der Biegetheorie dünner Schalen sind auch bei Benutzung

der Bernoulli'schen Annahme über das Ebenbleiben der Querschnitte noch
immer ziemlich undurchsichtig (vgl. z.B. Schrifttum 7). Auch haben sich bei erneuter
anschaulicher Ableitung dieser Gleichungen einige Unstimmigkeiten ergeben
(Schrifttum 8), so dass das Auftreten einiger Glieder daselbst nicht vollkommen
begründet erscheint. In diesem Beitrage wird versucht, einen neuen Rechnungsgang
bei der Aufstellung der Grundgleichungen anzudeuten, welcher von bekannten
Formeln der elementaren Differentialgeometrie der Flächen ausgeht und
verhältnismässig schnell und sicher zu eindeutigen Resultaten, ähnlich wie sie in neuerer
Zeit für spezielle Schalenformen aufgestellt wurden, führt. Weiter werden auch
einige Vereinfachungen vorgeschlagen, welche bei allgemeinen Schalenformen und
Parametern zwar noch immer zu ziemlich verwickelten Formeln führen, welche aber
z.B. bei Anwendung auf zylindrische Schalen beliebigen Querschnittes verhältnismässig

einfache Resultate ergeben.

Zusammenstellung einiger Resultate der elementaren Flächentheorie
Die für die Verzerrung der ganzen Schale massgebende Mittelfläche soll durch

zwei krummlinige Gauss'sche Koordinaten gegeben sein, die wir hier in Anlehnung
an A. E. H. Love (Schrifttum 7) mit a und ß bezeichnen, und zwar sollen die beiden
Scharen der Koordinatenlinien (a-Linie bei konstantem ß, /?-Linie bei konstantem <x)

der Einfachheit halber Krümmungslinien der Mittelfläche sein. Wir verwenden als
Hilfsmittel durchwegs die Vektorrechnung und benutzen dabei die im Lehrbuche
von R. S. Burington und C. C. Torrance (Schrifttum 3) angewandten Bezeichnungen
mit dem Unterschied, dass wir die Vektoren einfachheitshalber nur mit einem
Querstriche bzw. Querpfeile andeuten. Die Hauptsätze der elementaren Differentialgeometrie

entnehmen wir dem Lehrbuche von W. Blaschke (Schrifttum 2, vgl. auch
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das entsprechende Kapitel in Schrifttum 3), dessen Bezeichnungen sich übrigens von
unsrigen nur wenig unterscheiden.

Der Ortsvektor zu einem beliebigen Punkte P der Schalenmittelfläche sei als
Funktion von <x und ß durch

r=x(x, ß)i+y(x, ß)j+z(a, ß)k (1)

gegeben, wobei x, y, z Kartesische Koordinaten von P bedeuten, während i,j, k die
Einheitsvektoren in Richtung der Koordinatenachsen sind. Alle im folgenden
gebrauchte Ableitungen von r bzw. x, y, z nach a, bzw. ß seien überall endlich und
stetig. Um die~Uebersichtlichkeit auch in verwickelten Ausdrücken möglichst zu
wahren, wollen wir weiter verabreden, dass unten angesetzte Zeichen a bzw. ß
ausschliesslich Ableitungen nach diesen Parametern bedeuten sollen, so dass z.B.

^ dt dr d2t

^-te ^8^ r^=dr72USW (2)

sein soll.
Die in (2) angegebenen Ableitungen ra und tß bedeuten bekanntlich Vektoren in

Richtung der Tangenten zu beiden Koordinatenlinien. Um zu Einheitsvektoren et
bzw. e2 in diesen Richtungen zu kommen, führen wir nach A. E. H. Love (Schrifttum 7)
die positiv genommenen Wurzeln der beiden Koeffizienten E und G der ersten
Fundamentalform ein

>i=+V/£=+V/ra©:(, B=+VG=+Vrß.rß (3)

und erhalten

r„ r,

e>=i> °>=i C4)

während der Einheitsvektor in Richtung der Flächennormale durch

ei=ely.e2 (5)
gegeben ist.

Die Ableitungen dieser Einheitsvektoren nach a und ß sind im wesentlichen
durch die Ableitungsgleichungen nach Gauss und Weingarten (Schrifttum 2, S. 108
und 114) gegeben; es ist z.B.

ra.a. ^ Aa,
lot_ A r*A2

Alle Ausdrücke vereinfachen sich wegen der Benutzung der Krümmungslinien als
Koordinatenlinien sehr, weil dann bekanntlich

F=ta ^=0 und M=raß ei=0
ist. Unter Benutzung der Ableitungsgleichungen erhält man dann

Aß A Ag A
ei<x=-^e2+^-ei, e2rt=^ex, eia -—e1 (6a-c)

Ba Bx B B
eiß=-je2, e2ß=-—ei+—e3, eiß=-^e2 (7a-c)

wobei statt der Koeffizienten L, M, N der zweiten Fundamentalform die beiden
Hauptkrümmungshalbmesser Rx und R2 mit

1 L L 1 N N
TrE~A~2

Und
R~2-G-J2 (8)

eingeführt worden sind. Dabei ist zu beachten, dass Rx und R2 als positiv zu nehmen
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sind, wenn die Krümmungsmittelpunkte der Krümmungslinien auf der positiven
Seite des Einheitsvektors e3 liegen.

Mit diesen Formeln lassen sich, wie im folgenden gezeigt wird, verhältnismässig
einfach alle Resultate der Biegetheorie der Schalen ableiten. Zur Vereinfachung der
Gleichungen brauchen wir nur noch folgende Beziehungen zwischen obigen Grössen,
die sich durch Vergleich der auf verschiedenen Wegen erhaltenen gemischten
Ableitungen von ra bzw. rß ergeben. Aus Gaussens Theorema egregium (Schrifttum 2,
S. 117) erhält man

(*).+(*).--£ »
während die beiden Mainardi-Codazzischen (Schrifttum 2, I.e.) Gleichungen in unserem
Falle folgende einfache Form annehmen

GM (£).-£ —>
Verformung der Schalenmittelfläche

Die bei der Belastung der Schale entstehenden Verschiebungskomponenten eines
beliebigen Punktes P der Schalenmittelfläche in Richtung der Einheitsvektoren elt
e2, e3 seien mit u, v, w bezeichnet; der Ortsvektor f" zum Punkte P', wohin der Punkt
P nach der Belastung verschoben wird, ist also durch

7'=r+p=t+ue1+ve2+we3 (11)

gegeben. Unter Benutzung der Gleichungen (4), (6) und (7) erhält man sehr leicht
die Ableitungen von 7' nach « und ß, die natürlich wieder Vektoren in Richtung der
Tangenten zu den Koordinatenlinien auf der verformten Mittelfläche darstellen. So
erhält man z.B.

r'oi^a+u^+Vae^Waei+ ue^+ve^+we^
oder nach (6) und (7)

und ähnlich

'\=\A+Ua+v^-w^yi + \va-u-^y2+\wa +uj-\ei ¦ (12a)

?'ß=(^-^)«i+ (-S+^+"3f-M,^je2+(M'ß+^)<?3 • (12b)

Durch abermalige Anwendung dieser Regeln lassen sich verhältnismässig leicht auch
Ausdrücke für die zweiten Ableitungen von 7' berechnen, auf deren Wiedergabe wir
aber verzichten, weil wir sie im folgenden nicht brauchen werden. Aus Gleichungen
für t'a und 7'ß erhält man natürlich auch sehr leicht entsprechende Ableitungen des

Verschiebungsvektors p, indem man von obigen Ausdrücken die, Ableitungen von r
abzieht.

Die Verzerrungen in der Schalenmittelfläche lassen sich nun mit Hilfe der ersten
Ableitungen von 7' sofort berechnen und zwar auch bis zu den Gliedern höherer
Ordnung in den Verschiebungen. Da wir aber auf Stabilitätsprobleme an dieser
Stelle nicht eingehen können, wollen wir uns im folgenden nur auf die Glieder erster
Ordnung beschränken. Die Dehnung *x in Richtung der a-Linie ist z.B. bekanntlich
durch

ds'—ds A'—A ,-——
£l —-j- — mit A'^Vr'^.r'r, (13a)
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gegeben, wobei ds'=A'.da. das Bogenelement dieser Linie nach der Verzerrung
bedeutet. Für die Scherung y12 des Flächenelementes mit den Längen Ada., Bdß
erhält man (vgl. Schrifttum 1, 4, 5, 9 und 10)

yi2=- AB (13b)

und durch Einsetzen entsprechender Ausdrücke aus (12a, b) erhält man endgültig
für die Komponenten des Verzerrungstensors bis auf die Grössen von höherer
Ordnung in den Verschiebungen

ABe2=ß+ulT5

w

w
T2

Vr,uß „Aß "a
^2=B-UÄB+Ä

Bcl

"Tb

(14a-c)

Ausserdem werden wir bei folgenden Ausführungen noch Ausdrücke für die
Einheitsvektoren e\, e'2 in Richtung der Tangenten zu den beiden Koordinatenlinien
nach der Verformung, sowie den Einheitsvektor e'3 in Richtung der Flächennormale
brauchen. Es ist bis auf die Glieder höherer Ordnung

r'a /»of. Aß\ (wa u\

rß iuß Ba\ ,(wß.v\'¦^J'=[B-VÄBn+e2+[-B+R2h
(W* U \

K15a-c)

e'i=(raxrß)lVE'G'-F'2-- B ¦-)+ Ö- e2+e3

Mit diesen Gleichungen und unter Benutzung von (6) und (7) lassen sich leicht auch
Ableitungen dieser Vektoren nach a. und ß berechnen. So erhält man z.B.

e 2<3=

e 3a=-

+

B«
u*Tb-va2b

B«2 B
-VR\

lR2+\R2)ß+\B)ß_

A
j_ / " \ i (w«\ Aß Aß

rArJA-ä).+vbr2+w^

Ry

«?3

Aß_

AB e2-
wn

%2+R <?3

(16a, b)

und ganz ähnliche Ausdrücke würde man auch für die übrigen Ableitungen erhalten.

Verformung eines beliebigen Schalenelementes

Aehnlich wie bei der Plattentheorie beschränkt man sich auch bei Untersuchung
der Schalen auf die Verzerrungen parallel zur Tangentialebene der Schalenmittelfläche.

Wir nehmen daher auf dem Normalenvektor e3 durch den Punkt P der
Schalenmittelfläche (Abb. 1) einen Punkt Pz an und legen durch diesen im konstanten
Abstand z von der Schalenmittelfläche eine neue Fläche. Alle Grössen in bezug
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,A\\ ~~-?/ /11 // / I \eJ Je?

i

Abb. 1. Verschiebungen der Schale

auf diese Fläche wollen wir mit demselben Zeichen wie entsprechende Grössen der
Mittelfläche bezeichnen, versehen sie aber noch mit dem Index z.

Aus der Gleichung dieser Fläche

rz=t+ze3 (17)

Hesse sich nun nach allgemeinen Regeln der Differentialgeometrie leicht beweisen,
dass auch hier die Koordinatenlinien a=const. und /J=const. Krümmungslinien
sind und dass die Flächengrössen folgende Werte haben

Az=A.^£=A^_l.y Bz=ß(l-£ (18a, b)

R1z=R1-z=R1(a--^J, R^RiU--] (19a, b)

was übrigens anschaulich auch unmittelbar einleuchtet (Abb. 1). Weiter sind die
Einheitsvektoren dieser Fläche zu Vektoren ex, e2, e3 der Schalenmittelfläche parallel
und man kann deshalb die Formeln für die Verzerrungen in der Mittelfläche
unverändert auf unsere neue Fläche übertragen, wenn wir nur die Verschiebungen uz, vz,
wz eines beliebigen Punktes Pz unserer Fläche kennen.

Um nun diese Grössen zu bestimmen, gehen wir auch hier wie bei der Biegung
dünner Balken und Platten von der Bernoulli'schen Annahme aus, dass ebene
Querschnitte auch nach der Verformung eben bleiben und senkrecht zur verformten
Mittelfläche stehen. Für die Verschiebung pz erhält man dann (vgl. Abb. 1) folgende
Gleichung

PP'z=z e3+~pz=-p+z e'3

oder ~Pz=t+z(e'3—e3) (20)
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oder in Komponentenform und unter Beachtung der Gleichungen (11) und (15c)
geschrieben

(w$ V \

wz=w

(21a-c)

Zur Berechnung der Verzerrungskomponenten in der Tangentialebene wendet
man Gl. (14a-c) auf die neue Fläche an und erhält z.B.

w*a Azß wz

ei*=Ä-z+v*ZBrRZ
Wenn man nun für Grössen rechts die Werte (18), (19) und (21) einsetzt und dazu
noch Gl. (10a) beachtet, erhält man für elz

€U= — (22a)

'©
' wobei ex durch (14a) gegeben ist, während man für die erste Krümmungsänderung ky
automatisch

'K«\ Aß (Wß v \
Ki=A[-Ä+Rja+TB[B+R2) (23a)

bekommt. Auf dieselbe Weise erhält man für die Dehnung e2z in Richtung der
zweiten Koordinatenlinie

,„=2=2S (22b)

'-r2
1 Ma v\ B„/w„ u\ „„ xmt K2=B-{1+R2)ß+TB[-I+Rj (23b)

Aehnlich verfährt man auch bei der Berechnung der Scherung yl2z. Hier erweist es

sich am einfachsten, wenn man die mit dem Faktor z behafteten Glieder in zwei
Anteile zerlegt und man erhält

Ynz=yii- — \—-—z (22c)z.\ z.X2

H -i
wobei die zweiten Krümmungsänderungen durch

^.Tb'Ä (23c)

^+r),-m-'»^ <2M»

gegeben sind. Gleichungen (22) und (23) stimmen vollkommen mit entsprechenden
Gleichungen von Love (Schrifttum 7, Gl. 26 und 30, S. 524 bzw. 527) überein. Unsere
Krümmungsänderung Xx ist bei Love mit r bezeichnet, während A2 durch Ai und y12
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ausgedrückt wird, weil, wie sich leicht mit Hilfe der Mainardi-Codazzischen
Gleichungen (10) direkt beweisen lässt,

Ai-Az=G?ri?i)ri
ist. Trotz der neuerdings erhobenen Zweifel (vgl. Schrifttum 8, Gl. 6 und 7) ergeben
sich also obige Gleichungen zwangsläufig aus der Bernoulli'schen Annahme. Etwas
anders gebaute Ausdrücke erhält man, wenn man bei ihrer Ableitung von den Love-
schen Gleichungen für die Drehungen (Schrifttum 7, Gl. 24 und 25 auf S. 523)
ausgeht, wobei aber dort bei q'2 und r'2 augenscheinlich Versehen unterlaufen sind,
wie man sich leicht durch Vergleich von q'2 mit p\ und r'2 mit r\ überzeugt. Aus
unseren Ausdrücken (16a, b) und ähnlich gebauten Gleichungen für andere
Ableitungen der Einheitsvektoren auf der verformten Mittelfläche könnte man übrigens
auf Grund von bekannten Gleichungen für die Geschwindigkeitskomponenten bei
Drehung verhältnismässig leicht Ausdrücke für alle sechs Drehungskomponenten
erhalten, die vollkommen symmetrisch gebaut sind und von denen wir glauben, dass
sie bis auf die Glieder zweiter Ordnung in den Verschiebungen u, v, w korrekt sind.
Der Kürze halber aber wollen wir darauf nicht näher eingehen.

Schnittkräfte und Schnittmomente. Gleichgewichtsbedingungen

Wir gehen nun zur Berechnung der den Verformungen elz, e2z, yl2z entsprechenden
Spannungen über. Wir vernachlässigen die Normalspannung a3z in Richtung von
e3 und erhalten dann bekanntlich aus dem Hooke'schen Gesetze

E E E
Clz=j—^2(eiz+ve2z), a2z=j—-^e2z-\-velz)) t12z= y12z (24a-c)

wobei mit E der Elastizitätsmodul und mit v=ljm die Poissonsche Konstante
bezeichnet ist. Bei der Aufstellung der Gleichgewichtsbedingungen erweist sich
weiter die Einführung der resultierenden Kraft und des resultierenden Momentes der
Spannungen über die Schalendicke als vorteilhaft, wenn man sie auf die Längeneinheit

der a- bzw. der /J-Linie bezieht Der Kürze halber benennen wir diese Grössen
einfach als Schnittkräfte bzw. Schnittmomente und erhalten für diese Grössen in der
Schnittfläche oc=const. (Abb. 2) in der von Flügge (Schrifttum 4) herrührenden
Bezeichnung folgende Gleichungen (alle Integrale sind zwischen — h/2 und +h/2 zu
nehmen)

Nn=jr1Zz(l-^dz

Q^\rl3z{l-^dz

Ml=jz.<7lz[l--Qdz

M12=jz.r12z\l-^Jdz

<*>> s*,v
&9.

'<<& m
4P *<v

f© Set,4AfdP
8*

BApdd-

BQ,dß AQyda

Abb. 2. Schnittkräfte und Momente
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In diesen und in ähnlich gebauten Gleichungen für den Schnitt ß=const. müsste
man statt Rx bzw. R2 eigentlich die Werte der Krümmungshalbmesser R\ und R'2
nach der Verformung einsetzen. Ebenso müsste man später auch die
Gleichgewichtsbedingungen eigentüch für das verformte Schalenelement aufstellen und
deshalb statt der ursprünglichen Grössen A, B die nach der Verformung enstandenen
Werte A', B' usw. benützen. Wenn wir von Stabilitätsuntersuchungen absehen,
können wir sowohl die auf die Längeneinheit der unverformten Schalenmittelfläche
bezogenen Schnittkräfte und Momente als auch die für das unverformte Schalenele-
ment angesetzten Gleichgewichtsbedingungen in erster Näherung als richtig ansehen.
Durch Entwicklung von (1—z/R,)'1 bzw. (1—z/R^'1 in eine Potenzreihe und
Vernachlässigung aller höherer Potenzen von der dritten ab erhält man für die
Kräfte und Momente folgende Gleichungen

(R->—R,
R,—R?\

{ -*vi—R-y Ro — -fvi\
N2=D(e2+ve,)+K[<2.^+K2-j^)

#12 -
1-v

-Dy, l-v R,-R2s
RiR2

N21=-
¦v l-v R2—Ru

Mi=—K\Kl+VK2-[
Ry

R\R2

-Ri
R,R1-^2

M- ;= —K\ K2pVK, +
^2 — ^1

R\R2

M12- -4^Pf)
M-21 .J^i+h+m)

mit D=
Eh

l-v2 K--

Rt
£A3

(25a-h)

12(1-©)'
k2-*-h-K ~D~12 (26)

Die verhältnismässig kleinen Einheitskräfte Qx und Q2 berechnen wir ähnlich wie
bei Platten nicht aus den Formänderungen, sondern erst später aus den
Gleichgewichtsbedingungen.

Auf die bei Flügge (Schrifttum 4) auftretenden Sonderfälle angewandt, stimmen
obige Ausdrücke vollkommen mit den Flüggeschen überein. Gegenüber den
Loveschen Gleichungen (Schrifttum 7, Gl. 39, 42 und 44 auf S. 531, 532 bzw. 533)
bestehen Unterschiede, die aber zum Teil darauf hinzuführen sind, dass bei Love
auch die für das Verschwinden von e3z notwendige Normalspannung a3z in Betracht
genommen wurde.

Mit den Schnittkräften und Momenten lassen sich die Gleichgewichtsbedingungen
am Schalenelement verhältnismässig einfach ausdrücken. Wenn man—wie erwähnt
—einfachheitshalber die Gleichgewichtsbedingungen am unverzerrten Schalenelement
annimmt, die Aussenkraftkomponenten je Flächeneinheit der Mittelfläche in
Richtung der Vektoren eu e2, e3 mit Xu X2, X3 bezeichnet und die Momente der
Aussenkraft um die drei Achsen durch den Mittelpunkt des Schalenelementes ver-
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nachlässigt, dann lautet in vektorieller Form die Gleichgewichtsbedingung gegen
Verschiebung

[B(N.ei +N12e2+ ßi<?3)]a+ [A(N2lel+N2e2+Q2e3)]ß
+AB(Xiei + X2e2+X3e3)=0 (27a)

und die Gleichgewichtsbedingung gegen Drehung
AB[e{ x (Nl2e2+Qxe3)+e2 x (N2lex + Q2e3)] + [^(-M^-r-Af>2)]a

+ [A(-M2ei + M21e2)]ß=0 (27b)

Unter Benutzung der Gl. (6a-c) und (7a-c) erhält man daraus sechs Gleichungen in
skalarer Form

(BNX + (AN21)ß+AßN12-BaN2- ^Qx+ABX, =0

AB
(BNl2)oi+(AN2)ß-AßNl+BxN2l-—Q2+ABX2=0

(BQ1)0L+(ÄQ2)ß+AB^+^j +ABX3=0

-(BMl2\-(AM2)ßPAßMx-B^M2XPABQ2=Z)
(BM1)a + (AM2[)ß+AßMn-B0LM2-ABQ1=0

Ml2 M2[
R] Ri¦S^+-^+Nl2-N2l=0

(28a-f)

Um nun die endgültigen Gleichungen für die Verschiebungen zu bekommen,
drückt man aus Gl. (28d, e) die beiden Querkräfte Qx und Q2 durch Momente aus
und setzt sie in Gl. (28a-c) ein. Unter Benutzung von Gl. (25a-h), (14a-c) und
(23a-d) erhält man daraus ein System dreier partieller Differentialgleichungen für die
drei Verschiebungen u, v, w, durch deren Integration bei Berücksichtigung gegebener
Randbedingungen das Problem der Verschiebungen, und damit auch das der
Spannungsbestimmung, prinzipiell gelöst wird. Auf eine explizite Hinschreibung dieser
Gleichungen für den allgemeinsten Fall müssen wir allerdings verzichten, weil sie
ausserordentlich unübersichtlich sind und ihre Aufstellung sich nicht lohnt. Die
letzte skalare Gleichgewichtsbedingung (28f) fällt weg, weil sie schon in den Grössen
€i> e2> 7i2. ^l» K2> ^i un£l A2 identisch befriedigt wird, wie man sich leicht durch
Einsetzen der Ausdrücke aus (25c, d, g, h) überzeugt.

NÄHERUNGEN BEI DÜNNEN SCHALEN

Aus der elementaren Elastizitätstheorie ebener Spannungs- und Dehnungs-
zustände ist bekannt, dass die Bernoulli'sche Hypothese nur bei einigermassen dünnen
Scheiben zutrifft und dass die Zusatzglieder bei Verschiebungen annäherend mit der
zweiten Potenz des Verhältnisses Trägerhöhe : Trägerlänge zunehmen. Daraus
können wir schliessen, dass auch bei Schalen die Bernoulli'sche Annahme nur dann
zutreffen wird, wenn das oben genannte Verhältnis nicht zu gross sein wird. Wir
wollen weiter annehmen, dass das Verhältnis der Schalendicke zu den beiden
Hauptkrümmungshalbmessern klein gegenüber eins sei und dass man es deshalb überall
vernachlässigen darf. Bei vielen praktischen Ausführungen beträgt dieses Verhältnis
höchstens ein paar Prozent und ein solcher Fehler in der Spannungsberechnung ist
im Hinblick auf die Unsicherheiten bei der Bestimmung der Schalendicke, des

Elastizitätsmoduls und anderer Grössen sicher zulässig.
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Mit der Annahme, dass die Schalendicke klein gegenüber den beiden
Krümmungshalbmessern sei, vereinfachen sich aber unsere Gleichungen ziemlich stark.
So sieht man z.B., dass schon in Gl. (21a-b) rechts die Verschiebungen u und v
einmal mit dem Faktor eins und das andere Mal aber mit z/R, bzw. z/R2 auftreten.
Wir können also diese letzten Summanden streichen und erhalten für die Verschiebungen

ausserhalb der Mittelfläche einfach dieselben Gleichungen

uz=u—z

vz=v—z

wz=w

A

B

(29a-c)

wie bei Platten. In Gleichungen (18a, b), (19a, b) und (22a-c) für die Grössen Az,
Bz, Ru, R2z und für die Verformungen ausserhalb der Mittelfläche streichen wir
ebenfalls überall die Verhältnisse z/R, bzw. z/R2 und erhalten so

elz=el—ZK1
E2z £2 ZK2

y\2z=Y\2—2-zA
(30a-c)

mit etwas veränderten Ausdrücken für die Krümmungsänderungen

i/M Aß

"^aXa-J+a-b^
1 (wß\ Ba

-b[b)ß+Iww«

x j l(wß\ Aß '/Vi Ba
K^X2=X=Ä\Bh-TBW^B{-j)ß-ÄF2^

«2 (31a-c)

Wenn man dann weiter noch in den Gleichungen für die Schnittkräfte und
Schnittmomente dieselbe Vernachlässigung zulässt, erhält man statt (25a-h)

N1 D(€1 + vC2) N2=D(e2+ ve,) N12=N21 l-v.¦Dy,
(32a-f)2i——2~^Yi2 y

M, -K(k,+vk2) M2=-K(k2+vk1) M,2=M2, -(l-v)K\)
In den Gleichungen (25a-h) sind also jetzt alle sogenannte Zusatzglieder weggefallen.
Man könnte aber auch unmittelbar von Gl. (25) zu (32) gelangen unter der
Voraussetzung, dass h/R, und h/R2 klein sind gegen eins und dass es sich um einen
Biegespannungszustand handelt, bei welchem die grössten Biegungsverformungen K,h, x2h und
AA von derselben Grössenordnung sind wie els e2 und y,2. Jedes Glied in (25),
welches in (32) nicht mehr auftritt, ist nämlich mit dem Verhältnis h/R, oder h/R2
multipliziert gegenüber anderen, der Grössenordnung nach gleichen Gliedern, und
kann deshalb vernachlässigt werden.

Auch die Gleichgewichtsbedingungen können bei kleinen h/R, und h/R2 etwas
vereinfacht werden. Wenn man nämlich die durch Q, und Q2 in Gl. (28a, b)
eingeführten Glieder näher betrachtet, findet man dass sie in diesen Gleichungen bei
Schnittkräften Nu N2 und A^^ ausnahmslos vernachlässigt wurden. Man kann also
in beiden ersten Gleichungen (28) auch die Summanden (ABQ,)/R, bzw. (ABQ2)/R2
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(33a-e)

streichen und erhält so die für die Berechnung des Versehiebungs- und Spannungszustandes

massgebenden fünf Gleichungen aus (28a-e)

(BN,)x+ (AN2,)ß+AßN,2-BOiN2+ABXl=0'
(BN,2)OL+(AN2)ß-AßN,+BclN2, + ABX2=0

(BQ,\+(AQ2)ß+AB{^+^j+ABX3=Q

ABQ,=(BM,)a+(AM2,)ß+AßM,2-BaM2
ABQ2=(BM,2)ai + (AM2)ß-AßM,+BaiM2l

Was nun die letzte Gleichgewichtsbedingung (28f) betrifft, so erweist sie sich nicht
mehr als Identität. Aber wir können doch annehmen, dass sie durch unsere
Ausdrücke genügend genau befriedigt wird, weil beim Biegespannungszustand die
Grössen M,2/R, und M2,/R2 klein sind gegenüber N,2=N2, und deshalb gestrichen
werden können. Indem man nämlich für die in (28f) auftretenden Kräfte und
Momente die Ausdrücke aus (32) einführt, erkennt man, dass in den beiden ersten
Summanden grössenordnungsmässig gleiche Glieder wie bei den letzten zwei
auftreten, die aber dort noch mit h/R, bzw. h/R2 multipliziert sind.

Gleichungen (33a-e) bilden den Ausgangspunkt für die Aufstellung der
Differentialgleichungen für Verschiebungen. Dazu braucht man wieder nur die Grössen Q,
und Q2 aus den letzten zwei Gleichungen in (33c) einzusetzen und dann alle in
(33a-c) auftretenden Schnittkräfte und Schnittmomente durch Verschiebungen
mittels der Gleichungen (14), (30), (31) und (32) auszudrücken. Im allgemeinen
erhält man zwar auch mit allen diesen Vereinfachungen noch immer sehr
unübersichtliche Gleichungen; aber durch entsprechende Wahl der Koordinaten a und ß
erhält man in vielen, praktisch sehr wichtigen Sonderfällen verhältnismässig einfache
Ausdrücke, die sich für numerische Berechnungen viel besser eignen als die in voriger
Nummer erwähnten allgemeineren Beziehungen. Wir wollen dies ganz kurz
Beispiel der Zylinderschalen zeigen, wo die Verhältnisse besonders einfach sind.

am

Biegespannungstheorie dünner Zylinderschalen
Bei zylindrischen Schalen nehmen wir als Gauss'sche Koordinate <x die Länge der

Erzeugenden auf der Schalenmittelfläche von einem gewissen Querschnitt und für ß
die Länge der Leitlinien von einem bestimmten Axialschnitt ab. Dann hat man

A=B=l, j-=0, 1=/G8) (34)

Gleichungen (14) und (31) für die Verzerrungen und Krümmungsänderungen
nehmen dann eine sehr einfache Form an und ergeben für die Schnittkräfte und
Momente folgende Ausdrücke

T / *©
N, D

I H
"a +^K-^

N2 D\vß-^+vu^

N,2=

M,=

l-vN2\= —D(uß+Vz)
(35a-f)

-K(wa(X + vWßß)

M2=-K(wßß+vwlxlx)

M,2=M2, -(l-v)K.w0iß
-14
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während die Gleichgewichtsbedingungen (33) nun folgendermassen lauten

Nla+N21ß+X,=0 1

N12a+N2ß+X2=0

Qlcc + Q2ß+~-rX3 0 (36a-e)

Q,=Ml0L+M2,ß
Q2=M,2o,+M2ß

Aus den letzten zwei Gleichungen erhält man mittels (35d-e) Ausdrücke für Q,
und Q2 in der Verwölbung w und Gl. (36a-c), in Verschiebungen u, v, w ausgedrückt,
lauten daher

"aa+
1 1+v

1+v l-v
f+^a

±{vua+vß-^y

-vT2+d=°
(w\ *2 „

mit

k2

+2wa0Lßß+w

AAw+^=0

(37a-c)

(38)AAw=waz<XOr

Gleichungen (37) stellen die auf Schalen beliebiger Querschnittsform
ausgedehnten, etwas vereinfachten Flüggeschen Gleichungen (71) (Schrifttum 4, S. 118) dar.

Statt die Spannungsverteilung auf dem Umwege über Verschiebungen zu berechnen,

ist es manchmal vorteilhafter, unmittelbar die Schnittkräfte zu bestimmen.
Indem wir in der Gleichgewichtsbedingung (36c) Q, und Q2 durch w ausdrücken,
bekommen wir nämlich aus (36a-c) und aus der Verträglichkeitsbedingung zwischen
N,, N2, N12 und w folgende Gleichungen

Nla+N21ß+X,=0
N12a+N2ß+X2=0
N2
-^-K.AAw+X3=Q
R2

Nlßß-vN,c
Eh

i+N2aia-vN2ßß-2(l+v) N^ßP—w^O
H-2

(39a-d)

Bei der Integration solcher Gleichungssysteme baut man aber gewöhnlich die
Lösung aus Summen von Gliedern auf, in denen alle unbekannte Grössen als
Produkte gewisser Funktionen einer unabhängigen Veränderlichen mit unbekannten
Funktionen der anderen Veränderlichen auftreten, wobei natürlich die willkürlich
gewählten Funktionen gewissen Randbedingungen genügen müssen. In solchen
Fällen tritt in den übrigen Randbedingungen eine Schnittkraft nicht auf und es ist
daher ratsam, sie aus (39a-d) zu eliminieren. Wenn wir z.B. die Schnittkräfte und
die Verwölbung w als bekannte Funktionen von a annehmen, tritt in den Schnittebenen

j8=const. die Schnittkraft N, nicht mehr auf; wir drücken sie also aus (39a)
durch andere Grössen aus und eliminieren sie dann aus (39d). Aus (39b-d) erhält
man so drei Differentialgleicnungen für N2, N2, und iv

N2W+N2ß+X2=0
N2-K. R2.AAw+R2X3=0

Eh
N2actrl-vN2aßß-N21ßßß-(2+v)N2,^ß+—w^a + vX,ao,-X,ßß=0

(40a-c)
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Mit unseren Annahmen können wir aber unser Problem auch auf eine einzige
Differentialgleichung für die Verwölbung w zurückführen. Aus (40a-c) eliminiert
man N2 und N2l und bekommt

Eh 1K. AA(R2. AAw)+—vvaaaa+vArlaaa-Xla/}/, I

„^
+(2+v)X2outß+X2ßßß-AA(R2X3)=0)

Auf Einzelheiten bei der numerischen Durchführung der Rechnungen können
wir an dieser Stelle nicht eingehen, sondern verweisen auf das Schrifttum 6.

Schrifttum
(1) Biezeno, C. B. und Grammel, R. Technische Dynamik. Berlin, 1939.

(2) Blaschke, W. Vorlesungen über Differentialgeometrie I. 3. Auflage. Berlin, 1930.
(3) Borington, R. S. and Torrance, C. C. Higher Mathematics. New York, 1939.
(4) Flügge, W. Statik und Dynamik der Schalen. Berlin, 1934.
(5) Girkmann, K. Flächentragwerke. Wien, 1946.
(6) Kuhelj, A. "Priblizny vypocet välcovych skorapek (Angenäherte Berechnung der

Zylinderschalen)," Sbornik vys. sk. technicke Dra Eduarda Benese v Brite, 17, 67,
1948, S. 123-156.

(7) Love, A. E. H. A Treatise on the Mathemalical Theory of Elasticity, 4th edition.
Cambridge, 1934.

(8) Osgood, W. R., and Joseph, J. A. "On the General Theory of Thin Shells," /. Appl.
Mechanics, 17, 4. December 1950, pp. 396-399.

(9) Reissner, H. "Energiekriterium der Knicksicherheit," Z.a.M.M.5, 6, 1925, S. 475-
478.

(10) Trefftz, E. "Mathematische Elastizitätstheorie," Handbuch der Physik, herausge¬
geben von H. Geiger und K. Scheel, Band VI, Berlin, 1928.

Zusammenfassung

Aus Gauss'schen und Weingartenschen Ableitungsgleichungen der Flächentheorie

und unter Benutzung der Bernoulli'sehen Annahme über das Ebenbleiben der
Querschnitte lassen sich sehr leicht Ausdrücke für die Verzerrungen eines beliebigen
Schalenelementes ableiten. Lovesche Gleichungen für diese Grössen werden
bestätigt. Zur angenäherten Behandlung dünner Schalen wird die Vernachlässigung
der Schalendicke gegenüber den beiden Hauptkrümmungshalbmessern der Mittelfläche

vorgeschlagen. Daraus ergeben sich vereinfachte Ausdrücke für die
Krümmungsänderungen und auch der Einfluss der Querkräfte auf das Gleichgewicht in
der Tangentialebene kann vernachlässigt werden. Mit dieser Annahme lassen sich
bei zylindrischen Schalen verhältnismässig einfache Gleichungen sowohl für die
Verschiebungen als auch für die Schnittkräfte angeben.

Summary

From the formula; of Gauss and Weingarten for the theory of surfaces and under
Bernoulli's assumption that plane sections remain plane, the expressions for the
strain in the shell are derived. On the above assumption, Love's equations for the
components of strain are correct. To simplify the analytical treatment of thin shells,
it is proposed to neglect their thickness, when compared with the main radii of
curvature of the middle surface. This assumption gives simplified expressions for
the changes of curvature, and the influence of the stress-resultants normal to the
middle surface in the equations of equilibrium in the tangential plane can be neglected.
In the case of a cylindrical shell, comparatively simple equations are derived both
for the components of displacement and for the stress-resultants.
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Resume

A partir des equations etablies par Gauss et par Weingarten pour la theorie des
surfaces et en utilisant l'hypothese de Bernoulli concernant la conservation de la
planeite des sections, on peut etablir tres aisement des expressions donnant les
deformations d'un element de voüte mince arbitraire. Les equations de Love
concernant ces grandeurs sont ici confirmees. Pour traiter le probleme des voütes
minces, il est propose de negliger leur epaisseur par rapport aux deux rayons de courbure

principaux. II en resulte des expressions simplifiees pour les variations de

courbure; l'influence des efforts de cisaillement sur les conditions de l'equilibre dans
le plan tangentiel peut egalement etre negligee. Dans ces conditions, on obtient des

equations relativement simples pour les voütes cylindriques, tant en ce qui concerne
les deformations que les efforts dans les sections.
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An approximate method for treatment of some plate bending problems

Methode approchee pour l'etude de quelques problemes concernant la
flexion des dalles

Eine Näherungsmethode zur Behandlung einiger Probleme der
Plattenbiegung

ÄKE HOLMBERG, d.s.c.s.e.
Consulting Engineer, Lund, Sweden

Consider a rectangular plate, fig. 1, simply supported along the edges x=0 and

x=a, whereas the other edges are either simply supported or rigidly clamped.
Suppose, furthermore, that this plate is submitted to a load
which can be expanded into a Fourier series in x. Then
any quantities relating to the plate can be calculated using
the well-known method involving simple corrections of
the corresponding quantities for a simply supported
beam. When, however, the boundary conditions at x=0
and x=a are changed, the calculation is considerably
complicated by time-wasting numerical computations,
which can seldom be managed when a design problem
calls for a rapid Solution. Some cases have been treated
in publications. Reference is made to S. Timoshenko,*
and D. Young.f Special mention is also made to
S. Levy,}; the immediate source of Inspiration for the
present paper.

In the following paragraphs a very simple but somewhat rough-and-ready method,
which is applicable under any arbitrary boundary conditions, is given. The easiest

way to demonstrate this method is to adduce two examples which permit comparison
with previously known "exaet" solutions.

* "Bending of Rectangular Plates with Clamped Edges," Proc. Fifth Int. Congr. Appl. Mech.,
1939.

t "Deflection and Moments for Rectangular Plates with Hydrostatic Loading," J. Appl. Mech.,
1943.

t "Square Plate with Clamped Edges under Normal Pressure producing Large Deflections,"
N.A.C.A. Report, No. 740.

ft
Fig. 1.
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Example No. 1

A triangulär load, two opposite edges clamped,
the third edge clamped, and the fourth edge free.

Consider the corresponding beam, fig. 2.

c4w p t x\ p\ l x \

[U 3 1

TZ
Fig. 2.
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and by inserting x=0, x=3a/2, and .v=3a. For these values, the sum is known.
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This is the equation of the elastic curve, which is

generally assumed to be known. The third term
represents the influence of the restraining moment.

For the plate shown in fig. 3 with the loading
as indicated in fig. 2, the elastic surface is chosen:

VHDiiiMimimmmiiiiiiiiiiiHm

ä

Fig. 3.
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W
243pa
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Z 1 I1TX
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n ;.J.5.
where y„ are functions of y.

y]n is determined by:

From

2«77X
AA Y, sin —— =0 and" 3a

y=±-2

l + Y,n=0,and^=0

nnx rnrb
AA Y„ sin G =0 when -=—=<x„

a 2a
is thus generally obtained:

GX cosh Ga„+sinh Ga„ wry
1 + F„= 1 —^-r-p. r-p——- cosh G—

sinn. Gol„ cosh Gct.„+GoLn a
sinh Ga„ mry imy

sinh Gol„ cosh Gan+Gct„ ' a
' a

On the other hand, if the boundary conditions are:
b

(3)

t92y
l+F„=0and-^-vn=0

then

i+rn=i-

<9y2

Gol„ sinh Ga.„+2 cosh Gct.n

2 cosh2 C7a„
cosh G

nny

1

+-z - G -— sinh G—
2 cosh Gol„ a a

(4)

In this example, M is determined by the condition:

The approximation consists in assuming that the function in v represented by the
first two terms in dw/dx is affined to the function represented by the third term. This
is not the case, and the angular deviation at the boundary becomes zero at one point
only. In the remaining region, the angular deviation becomes negative.

M being determined, all requisite quantities can be calculated from eqn. (2).
Suffice it to say that, for x=0, y=0, Y„=0 can be put in the calculation of d2w/dx2.
When x is small, contributions to Y„ are furnished by the terms where n is large only,
and for these terms Y„=0. The calculation can be made rapidly by using the functions

shown in figs. 4 and 5, and the summations given below:
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For b/a=l, 2, and 3, some quantities have been computed on the assumption
that Poisson's ratio is equal to zero. In fig. 6, they are compared with previously
known " exaet'' values.

Example No. 2

A uniformly distributed load; all edges clamped. For the corresponding beam
shown in fig. 7, the equation is:

4pa4 V 1

w=—rf. / -%sin-n5D / f n5

nirx pa« 1 rnrx
— sin

a 3tt3£> _n=1.3.5... n l .3.5...
For the plate shown in fig. 8, the following is chosen:

n=1.3.S... n 1.3.S...
1 -f F„ is determined from eqn. (3) and Af from eqn. (5).

(6)

(7)
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Just as in Example No. 1, some quantities have been calculated for Poisson's
ratio=0, and are compared in fig. 9 with previously known "exaet" values.
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Fig. 8. Fig. 9.

Summary

Ifa rectangular plate (fig. 1) is simply supported or clamped along the edgesy= ±b/2
and simply supported along the edges x=0 and x=a, and if this plate is submitted
to a load which can be expanded into a Fourier series in x, then all quantities relating
to the plate can be calculated in a simple manner by means of generally known
methods. When, however, the boundary conditions at x=0 and x=a are changed,
the numerical computations are time-wasting. In this paper, the author demonstrates
an approximate method which is characterised by the fact that the latter boundary
conditions are satisfied on one point only. The calculations are very simple, and
the results are sufficiently accurate for most design problems.
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Resume

L'auteur considere le cas d'une dalle rectangulaire suivant figure 1, portant librement

ou totalement encastree sur les bords y=-hb/2, portant librement sur les bords
x=0 et x=a et soumise ä une charge se pretant ä un developpement en serie de
Fourier par rapport ä x. II montre que toutes les grandeurs qui caracterisent la dalle
peuvent etre calculees d'une maniere simple, ä l'aide de methodes generalement
connues. Les calculs numeriques sont toutefois fastidieux lorsque l'on fait varier
les conditions marginales sur les bords x=0 et x=a. L'auteur expose une methode
approchee caracterisee par ce fait que les conditions marginales laterales ne sont
remplies qu'en un point. Les calculs sont tres simples et la precision obtenue- est
generalement süffisante pour les besoins de la pratique.

Zusammenfassung

Für den Fall einer Rechteckplatte nach Abb. 1, die an den Rändern y=±b/2 frei
aufliegt oder total eingespannt ist, an den Rändern x=0 und x=a frei aufliegt und
einer Belastung unterworfen ist, die nach einer Fourier-Reihe in x entwickelt werden
kann, können alle die Platte betreffenden Grössen auf einfache Weise mittels allgemein
bekannten Methoden berechnet werden. Die numerischen Berechnungen werden
jedoch zeitraubend, wenn die Randbedingungen an den Rändern x=0 und x—a
geändert werden. Im vorliegenden Aufsatz wird eine Näherungsmethode beschrieben,
die durch die Tatsache charakterisiert ist, dass die seitlichen Randbedingungen nur
in einem Punkt erfüllt sind. Die Berechnungen werden sehr einfach und es wird eine
für praktische Probleme meist genügende Genauigkeit erzielt.
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