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Introduction
Plastic design methods have been developed with a view to providing a more

rational and economical approach to the design of framed structures whose members
possess a high degree of ductility.1 The methods are applicable to cases in which the
members of a frame possess a relation between bending moment and curvature of the
form illustrated in fig. 1. The important features of this type of relation are:

(i) If the curvature increases indefinitely,
the bending moment tends to a limiting value
±MP, termed the fully plastic moment, re-
gardless of the previous history of loading.

(ii) An increase of curvature is always
accompanied by an increase of bending
moment of the same sign, unless the bending
moment has attained its fully plastic value.

The behaviour of mild steel beams con-
forms quite closely to these assumptions, and
experimental investigations have confirmed
the validity of applying plastic methods of
design to framed structures of mild steel.2
As yet, little consideration has been given to
the possibility of applying the plastic methods Fig. l

i For references see end of paper.

Curvjfure
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to framed structures of other ductile materials, such as certain of the light alloys.
When the fully plastic moment is attained at a particular cross-section of a member,

the curvature at this cross-section is indefinitely large, so that a finite change of slope
can occur over an indefinitely short length of the member at this cross-section. The
member therefore behaves as though a hinge existed at this cross-section, rotation of
the hinge being possible only when resisted by the fully plastic moment. This concept

of a plastic hinge was first introduced by Maier-Leibnitz,3 and it is of great value
in considering the behaviour of framed structures under load.

For the sake of simplicity, consider first a framed structure subjected to several
loads, each load maintaining the same proportion to each of the other loads. If the
loads are steadily increased, the structure will first support the loads by wholly elastic
action. Eventually a plastic hinge will form at the most highly stressed cross-section.

If the loads are increased still further, this plastic hinge will rotate under a constant
bending moment, its fully plastic moment, and further plastic hinges will form and
rotate in other parts of the structure. Finally, a condition will be reached in which a
sufficient number of plastic hinges have formed to transform the structure into a
mechanism. The structure will then continue to deform to an indefinite extent while
the loads remain constant, until the geometry of the structure is changed appreciably.
Such changes may either check the growth of the deflections, or cause a catastrophic
collapse by accentuating the effects of the loads. In practice, strain-hardening also
checks the growth of deflections. The theoretical condition of indefinite growth of
deflection under constant loads is termed plastic collapse.

The methods of plastic design are used in conjunction with a load factor. The
structure is designed so that the most unfavourable combination of the working loads,
when multiplied by the chosen load factor, would just cause a failure by plastic
collapse. This procedure is justifiable even when the loads do not necessarily maintain
the same proportions to one another, for it has been shown that plastic collapse of a
structure will occur at the same set of loads regardless of the sequence in which the
individual loads were brought up to their collapse values. It is clear that the load
factor has a very precise meaning in plastic design, for it represents the margin of
safety which is provided against an actual physical failure of the structure.

Several methods for Computing plastic collapse loads have been suggested© 5

These methods have been capable, in principle, of determining plastic collapse loads
for framed structures of any degree of complexity. In practice, however, their
application has been limited by the amount of time required for the necessary computations.
In the present paper a method is presented which enables plastic collapse loads and
their corresponding mechanisms to be determined very simply. The method con-
sists essentially of building up the actual collapse mechanism from a certain number
of independent components, which are termed the independent partial collapse
mechanisms. Corresponding to any mechanism which is being investigated, a value
can be found for the applied load by applying the Principle of Virtual Work.6 It
has been shown that the correct collapse mechanism is the one to which there
corresponds the smallest possible value of the applied load. The method consists
therefore of combining the independent partial collapse mechanisms in a systematic
manner in order to reduce the corresponding value of the applied load to its least
possible value. In order to explain and justify the method, a sfmple example will
first be discussed. Detailed calculations will then be given for a single-bay pitched-
roof portal frame, and the calculations for a three-bay pitched-roof portal frame will
also be outlined. Calculations for a two-bay three-storey rectangular frame have
been given elsewhere.7
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Simple illustrative example
The rectangular portal frame shown in fig. 2 will be used as a basis for the

discussion of the method. All the joints of this frame are assumed to be rigid, and the
feet of the stanchions are rigidly built in. The dimensions

of the frame are as shown, and horizontal and
vertical loads W are applied at the positions indicated
in the figure. The fully plastic moment of each member

is Mp, and the problem is to find the value of W
which causes failure by plastic collapse.

For this particular type of structure it is known
that there are only three possible collapse mechanisms,
and these mechanisms are shown in figs. 3(a), 3 (b)
and 3(c). In these figures the magnitudes of the plastic
hinge rotations are all shown in terms of a single parameter 8. For reference,
the signs of the plastic hinge rotations are also given, although in the technique to
be described there is no need to take aecount of these signs. The sign Convention
adopted is that a hinge rotation is positive if the hinge is opening when viewed from
inside the frame.
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For each mechanism it is possible to
calculate a corresponding value of W by
applying the principle of Virtual work in the
special form that the virtual work done by
the applied loads during a small displacement
of the mechanism is equal to the Virtual work
absorbed in the plastic hinges. Considering

Fig. 3(c) the mechanism of fig. 3(o), for example, it is
seen that during the small mechanism

displacement shown, the horizontal load W does no work and the vertical load W,
displaced through a distance 18, does virtual work Wld. To calculate the Virtual
work absorbed in the plastic hinges, it is noted that the work absorbed in any
individual hinge is always positive. Since the fully plastic moment is Mp everywhere
in the frame, the virtual work absorbed in the plastic hinges is at once seen to be
48MP, since the total rotation of all the plastic hinges is 46. Applying the principle
of Virtual work:

M
W16=48MP, or W-A-^ (1)
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Similar calculations for the mechanisms of figs. 3(b) and 3(c) are readily made.
The results of these calculations are:

M
fig. i(b): W18=48MP, or W=4-j (2)

M
fig. 3(c): 2W18=68MP, or W=3-j- (3)

The correct collapse mechanism can now be distinguished by applying what has been
termed the kinematic principle of plastic collapse.6,8 This principle states that: " For
a given frame and loading, the correct collapse mechanism is the mechanism to which
there corresponds the smallest possible value of the applied loads." For the particular

problem of fig. 2, it follows that the actual collapse mechanism is the mechanism
shown in fig. 3(c), which yields the lowest value of W, namely 3Mp\l.

Examination of figs. 3(a), 3(b) and 3(c) reveals the fact that the mechanism of
fig. 3(c) is a direct combination of the mechanisms of figs. 3(a) and 3(b), in the sense
that the displacements and plastic hinge rotations of this mechanism are obtained by
summing the corresponding quantities for the mechanisms of figs. 3(a) and 3(b).
In fact, as will be seen later, these latter two mechanisms are the independent partial
collapse mechanisms for this structure and loading. In general, all possible collapse
mechanisms can be formed by combining the independent partial collapse mechanisms.
In the simple problem under consideration there is, of course, only one possible
combination to be investigated.

The particular feature of the combination of the independent mechanisms of
figs. 3(a) and 3(b) which is of interest is that for both these mechanisms the corresponding

value of W was 4Mpjl, whereas for the mechanism of fig. 3(c) which resulted from
their combination the value of f^was only 3Mp/l. This reduction of Wis due to the
cancellation of the plastic hinge at the cross-section 2 which occurs when the
mechanisms are combined. When the two mechanisms are superposed, the virtual
work done by the loads in each case may be added to obtain the Virtual work done in
the resulting mechanism. However, to obtain the virtual work absorbed in the
plastic hinges in the resulting mechanism, work 28MP must be subtracted from the

sum of the virtual work absorbed in the two independent mechanisms. This is to
aecount for the term 8MP which was included in the virtual work absorbed in each of
these mechanisms for the plastic hinge at the cross-section 2, which disappears as a

result of the superposition. The virtual work equation for the resulting mechanism
is thus obtained by adding equations (1) and (2), and subtracting 28MP from the
resulting work absorbed in the plastic hinges, giving:

W18+ Wl8=46Mp+48Mp-28Mp
or 2Wie=6eMp,
which was previously obtained as equation (3).

In general, the technique for combining the independent mechanisms thus con-
sists in selecting pairs of independent mechanisms which themselves yield low values
of W, and which can be combined so as to cancel a plastic hinge. Such a combination
may, as has been seen, result in a value for W which is lower than the value corresponding

to either of the mechanisms which were combined. Even in complicated problems,
the combinations to be tried are usually small in number, so that a Solution can be

obtained with great rapidity.
It is, of course, essential to Start an analysis with the correct number of independent

mechanisms. In fact, the number of independent mechanisms is always equal to the
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number of independent equations of equilibrium for the frame. To justify this
Statement, it is necessary to consider the statics of the illustrative example of fig. 2,

although it should be stressed that in actual applications of the technique there is no
need to write down the equations of equilibrium. However, it is recommended that
Solutions should always be checked by statics, making use of ihe principle ofuniqueness
of Solution,6'8 which states that: " If a sufficient number of plastic hinges occur in a
frame to transform the frame into a mechanism, and if a bending moment diagram
can be constructed for the frame in which the fully plastic moment occurs at each
plastic hinge position, then the corresponding load is the correct collapse load if the
fully plastic moment is not exceeded anywhere in the frame."

Examples of this form of check are given later in the paper.

The equations of equilibrium
The equations of equilibrium for the frame illustrated in fig. 2 are written down

most conveniently in terms of the bending moments at the five cross-sections numbered
from 1 to 5 in fig. 2. It will be seen from this figure that when these five bending
moments are known, the bending moment distribution for the entire frame is
determined, for between any adjacent pair of these cross-sections the shear force is constant,
so that the bending moment must vary linearly along the length of the member.
These five bending moments are denoted by Mx, M2, M5, the suffix indicating the
relevant cross-section. The sign Convention adopted for these bending moments is
that a positive bending moment causes tension in the fibres of a member adjacent to
the dotted line in fig. 2.

This frame has three redundancies, for if a eut is imagined to be made at section 1,

for example, and the values of the shear force, thrust and bending moment at this
section are known, the entire frame becomes statically determinate. These three
quantities can therefore be regarded as the redundancies of the frame. Since there
are five unknown bending moments, it follows that there must be two independent
equations of equilibrium.

The first of these equations of equilibrium expresses the fact that the vertical load
W is carried by the shear forces in the horizontal member 234. Fig. 4 shows the

M, M3 || f M3 M,
V V w-v w-v

Fig. 4

relevant forces and bending moments, the load W being carried by a shear force V in
the member 23 and a shear force W— V in the member 34. Taking moments for the
equilibrium of the members 23 and 34, it is found that

M3-M2= VI

M3-M4=(W-V)l
On adding these equations to eliminate V, it is found that

2M3-M2-M4=Wl (4)

In a similar way, an equation expressing the fact that the horizontal load W is carried
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by the shear forces in the vertical members 12 and 45 may be found. This equation
is

M2-M1+M5-M4=Wl (5)

Equations (4) and (5) constitute the two independent equations of equilibrium.
In the mechanism of fig. 3(d) plastic hinges have formed at the cross-sections 2, 3

and 4, so that the magnitude of the bending moment at each of these cross-sections is

Mp. Having regard to the sign Convention, these bending moments are

M2=-Mp, M3 MP, M4=-Mp
When these values are substituted in equation (4), a value for Wis immediately found,
this value being W=4Mp/l.

It will be seen that the mechanism of fig. 3(a) corresponds to equation (4) in the
special sense that in this mechanism each of the bending moments appearing in
equation (4) takes on its fully plastic value, and that the sign of each bending moment
is such as to give rise to the largest possible value of W. In a similar way, the
mechanism of fig. 3(b) may be said to correspond to equation (5). If each of the
bending moments appearing in equation (5) is given its fully plastic value, and the
sign of each bending moment is such that the largest value of W is obtained, the
following values are found:

M\ —Mp, M2=MP, M4=—Mp, M5 MP.

These are the fully plastic moments appearing in the mechanism of fig. 3(6).
To generalise, it may be said that any mechanism corresponds in this special sense

to a particular equation of equilibrium. It follows that for any particular frame and
loading the number of independent mechanisms will be equal to the number of
independent equations of equilibrium. In the particular example under consideration

there are only two independent equations of equilibrium, namely equations (4)
and (5) and any other equation of equilibrium must be obtainable by combining
these two equations. Correspondingly, it follows that any possible mechanism will
be found to be a combination of the mechanisms of figs. 3(a) and 3(b). In this
particular example, there is only one possible combination of these mechanisms,
which is illustrated in fig. 3(c). The equation of equilibrium which corresponds to
this mechanism is obtained by adding equations (4) and (5) so as to eliminate M2,
giving

2M3-M,-2M4 + M5 2Wl (6)

This addition corresponds to the superposition of the mechanisms of figs. 3(a) and
3(b). The bending moments at the plastic hinges may be seen from this equation,
or from the mechanism of fig. 3(c), to be

Mi —Mp, M3 — Mp, M4=—Mp, M5 MP,

and the corresponding value of Wis 3Mp\l.
For convenience of discussion, the loads have previously been referred to as the

yariables, whereas in an actual design the loads will be given quantities and the
problem is to find the required fully plastic moments of the members. When viewed
in this light, the problem just discussed amounts to determining the greatest value of
Mp, rather than the least value of W, corresponding to any possible mechanism, for
it is the quantity Wl/Mp which is determined for any particular mechanism by a
virtual work analysis, and minimising W for given values of Mp and / amounts to
maximising Mp for given values of W and /.
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To summarise, then, the proposed method is as follows:
(1) Determine the correct number of independent mechanisms by calculating

the number of independent equations of equilibrium.
(2) Calculate the required values of the fully plastic moments of the members

by virtual work for these independent mechanisms.
(3) Investigate combinations of these mechanisms so as to maximise the

required fully plastic moments.
(4) Check the Solution by constructing a bending moment diagram.

An application of the method to a single-bay pitched-roof portal frame will now
be given in detail, followed by a brief indication of the application of the method to a
three-bay pitched-roof portal frame.

PlTCHED-ROOF PORTAL DESIGN

As an illustration of the practical application of the proposed method of design,
typical calculations for a pitched-roof portal frame will now be given. The dimensions

ofthe frame are as indicated in fig. 5,
the roof slope being 22^°. The working o-rei- ts2i
loads on the frame are also shown in fig.
5. These working loads, which are given
in tons, are assumed to be spread uniformly
over the purlins and sheeting rails shown
in the figure. Of these loads, the vertical
loads of 2-61 tons, acting on each rafter,
are due to dead and superimposed (snow)
loads, and the remaining loads are wind
pressures and suctions. The frame is to Fig. 5
be designed to a load factor of 1 -75 for the
case in which only the dead and superimposed loads are acting, and to a load factor
of 1-4 for the case in which the wind loads are also acting. Each member of the
frame will be taken tö have the same cross-section, with a fully plastic moment Mp.

Design for dead, superimposed and wind loads

The first design case which will be considered is the design to a load factor of 1-4

for the case in which the wind loads are acting in conjunction with the dead and
superimposed loads. The first step is to decide how many independent partial
collapse mechanisms must be considered. The number of such mechanisms for any'
given frame and loading has been shown to be equal to the number of independent
equations of equilibrium. It is therefore necessary to calculate the number of
independent equations of equilibrium, and this is done most conveniently by counting
the number of bending moments which are needed to specify the bending moment
distribution for the entire frame and subtracting the number of redundancies.

For each of the four members of the frame, the loads will be assumed to be

uniformly distributed, so that the distribution of bending moment is parabolic. Each
parabola will be completely specified if the values of the bending moment at three
sections are known. These three sections are chosen most conveniently for the

present purpose as the two end sections and the central section in each member. It
follows that the bending moment distribution for the entire frame will be specified
completely by the values of the bending moments at the nine cross-sections numbered
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from 1 to 9 in fig. 5. This frame has three redundancies, and so there must be six
independent equations of equilibrium.

It follows that there must be six independent partial collapse mechanisms. These
mechanisms are illustrated in figs. 6-11, inclusive. It will be seen that the mechanisms
of figs. 6, 7, 8 and 9-are merely simple beam failure mechanisms, and fig. 10 shows a

simple sidesway mechanism. If it were not known that there must be six independent
mechanisms, it might be concluded that these five mechanisms constituted the
independent partial collapse mechanisms, and thus a calculation of the correct number of
independent mechanisms is a vital preliminary Operation in the analysis. However,
a sixth independent mechanism must be selected, and the most convenient choiee is
the mechanism shown in fig. 11. In each figure the rotation of each plastic hinge is

given in terms of a single variable 8. There is no need to consider the signs of the
plastic hinge rotations, since the virtual work absorbed in a plastic hinge is always
positive. However, for convenience in the later stages of the calculations when the
Solution is checked by statics, the signs of the plastic hinge rotations are also given,
the sign Convention being that a hinge rotation is positive if the Joint is opening when
viewed from within the portal.

In the simple beam failure mechanisms of figs. 6, 7, 8 and 9, the plastic hinges
within the spans are all shown as oecurring at mid-span. However, the loads on
these spans are all assumed to be uniformly distributed in the first instance, so that
these plastic hinges might occur anywhere within the spans. This is because a

plastic hinge within a span must occur at a position of maximum bending moment,
and the positions at which the maximum bending moments occur are not known until
a later stage in the analysis. However, in the preliminary calculations it is
convenient to take these plastic hinges as oecurring in mid-span.

Now consider the mechanism of fig. 6. For the hinge rotations shown, the
plastic hinge at mid-span moves through a distance 68 ft. The average displacement
of the uniformly distributed load of 0-94 tons is therefore 38 ft., so that the virtual
work done by this load, taking into aecount the load factor of 1 -4, is 0-94 1-4. 38 tons-
ft. The total plastic hinge rotation involved in the mechanism is 46, so that the
virtual work absorbed in the plastic hinges is 48MP. Applying the principle of
virtual work, it is found that

46MD=Q-94. 1-4.38=3-958
(7)

The virtual work equation for the mechanism of fig. 7 is precisely the same as
M„=0-99 tons-ft.

Of*f
28

en
-8 777

-28k
sr/ I o-9ki

Fig. 6 Fig. 7

equation (7). Corresponding virtual work equations may be written down at once
for the mechanisms of figs. 8 and 9. These equations are:
fig. 8:

fig. 9:

40M„=l-4[2-61 4-50-0-76 4-876»]= 11 -38

Mp
48MB

2-83 tons-ft.
l-4[2-61 .4-50- l-52.4-870] 6-O86>

Af„=l-52 tons-ft.

(8)

(9)
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The geometry of the sidesway mechanism of fig. 10 is also simple. Each side load of
0-94 tons moves through an average distance of 60 ft., and the entire roof moves
laterally through a distance 120 ft. The virtual work equation is

40Mp=l-4[2 0-94 60+0-76 sin 22|°. 120] 2O-70

M„=5-18 tons-ft (10)

The geometry of the mechanism of fig. 11 is a little more complicated. If the hinge
at Joint 3 rotated through an angle —0 while the Joint 5 remained rigid, Joint 7 would

0761
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Fig. 8 Fig. 9
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Fig. 10 Fig. 11

move downwards through a distance 360 ft. Since there can be no downwards motion
of Joint 7 for a small displacement of the mechanism, it follows that the hinge at
Joint 5 must rotate through an angle 360/18 20 so as to reduce the vertical displacement

of Joint 7 to zero. This hinge rotation causes a horizontal displacement of
Joint 7 through a distance 20. 7-45 14-90 ft., so that the rotation of the hinge at
Joint 9 is 14-90/12=1-240. The hinge rotation at Joint 7 is then seen to be-2-240,
and it is found that the centre of the member 57 moves 11-20 ft. to the right and 90 ft.
downwards. The virtual work equation for this mechanism may now be written
down as follows:

6-480M/,= l-4[2 2-61 90-0-76 9-740+1-52 sin22i°.
-1 -52 cos 22i°. 90+0-94 7-450]

56-60

11-20

Af„=8-73 tons-ft (11)

Among the six independent partial collapse mechanisms,

the highest values of Mp are thus 5-18 tons-ft.
and 8-73 tons-ft. for the mechanisms of figs. 10 and 11,

respectively. The next step is thus to investigate the
combination of these two mechanisms. It is seen
that if the mechanism of fig. 10 is superposed on the
mechanism offig. 11, the rotation ofthe hinge at Joint
3 is cancelled, so that the resulting mechanism is as
shown in fig. 12. The virtual work equation for this mechanism is obtained by adding
equations (10) and (11), and subtracting 26MP from the resulting Virtual work

28
2i S

2t,S

Fig. 12
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absorbed in the plastic hinges, since a term 6MP was included in each of these equations

for the plastic hinge at Joint 3. The virtual work equation is thus:

(4+6-48-2)0Mp=2O-70+56-60
8-480Mp=77-30

M„=9-12 tons-ft. (12)

The highest value of Mp obtained from the other four independent mechanisms of
figs. 6, 7, 8 and 9 was 2-83 tons-ft. for the mechanism of fig. 8, and it is readily seen
that there is no possible combination of these mechanisms with the mechanism of
fig. 12 which will result in a further increase in the value of Mp. It is therefore con-
cluded that the mechanism of fig. 12 is the actual collapse mechanism, subject to the
proviso that no consideration has yet been given to the possibility of the occurrence
of plastic hinges at positions other than those numbered from 1 to 9 in fig. 5. When
this Solution is checked by statics it will, in fact, be found that the plastic hinge shown
at the apex of the roof in fig. 12 should be located somewhat to the left of the apex.

Check by statics

The Solution can be checked by constructing a bending moment diagram for the
frame. If the fully plastic moment is not exceeded at any cross-section, the Solution
is correct. The actual bending moment at a cross-section may be regarded as the
sum ofthe "free bending moment," produced in the frame by ihe applied loads when
a eut has been made at some cross-section so as to render the frame statically
determinate, and the "redundant bending moment" produced in the frame by the three
redundancies. For convenience, the form of the redundant bending moment diagram
will be considered first.

The three redundancies may be taken as the
bending moments, M\ and M9, at the feet of the

7-it5fi vertical members, and the horizontal thrust H,
as in fig. 13. With no external loads acting on
the structure, the vertical reactions at the feet of
the vertical members would be equal and oppo-
site, and of magnitude (M1—Mg)/36 as shown in
the figure. In drawing the bending moment
diagrams, the sign Convention will be that a
positive bending moment will cause a member
to sag inwards, and thus to produce tension in
the flange of the member which is adjacent to
the redundancies as shown in this figure, the

12ft
M,

7-,^\
7777

r 36Fi

M,-Mg

Fig. 13

the dotted line in fig. 13. With
redundant bending moment diagram is thus of the form indicated in fig. 14, in which
the members of the frame have been redrawn to a horizontal base, and positive
bending moments are plotted as ordinates below this base. In fig. 14 the dotted line

12H

Iff-iSrl
12 H

Fig. 14
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indicates the form ofthe redundant bending moment diagram for the case in which H
is zero, and the füll line indicates the effect of superposing the bending moment
diagram for the case in which H acts alone.

The free bending moment diagram refers to the bending moments produced in
the frame by the applied loads when a eut is made at any arbitrary cross-section. The
most convenient choiee of cross-section for this purpose is the roof apex. Fig. 15

shows the free bending moment diagram, consisting of three parabolas, which is
obtained in this way, the loads having been multiplied by the load factor of 1-4.

rIO
Scale

(tonsfl)

ei rt

2 8Fl

Fig. 15

The collapse mechanism of fig. 12 has four plastic hinges at the cross-sections 1, 5,
7 and 9, so that at these cross-sections the bending moment has its fully plastic value,
which was found to be 9-1 tons-ft. To check the Solution, it must be verified that a
diagram of actual bending moments can be constructed in which the bending moment
has the value 9-1 tons-ft. at these four cross-sections, and does not exceed this value
at any other cross-section in the frame. Now the actual bending moment is equal to
the sum of the free and redundant bending moments, so that if a redundant bending
moment diagram is drawn in fig. 15 with the signs of the bending moments changed,
the actual bending moment will be represented by the difference in ordinate between
this diagram and the free bending moment diagram. The appropriate diagram is
shown in fig. 15 as ABCDE.

The construction for this diagram is to lay off from the free bending moment
diagram the calculated fully plastic moment of 91 tons-ft., with appropriate sign, at
the four cross-sections 1, 5, 7 and 9. This gives the four points A, C, D and E on the
redundant bending moment diagram. Referring to fig. 14, it is seen that the point B

may then be plotted by making the slope of AB equal in magnitude to the slope of
DE, but of opposite sign. A check can then be made by observing that the vertical
intereept between C and the dotted line in fig. 15 is 19-45 H, whereas the corresponding
intereept at D is 12 H. These ihtereepts both correspond to a value of H of 005 tons,
thus checking the Solution. However, it will be seen that although the bending
moment at the cross-section 3 is less than the calculated fully plastic moment of
9-1 tons ft., a higher value ofthe bending moment occurs at a distance of 2-8 ft. along
the left-hand rafter member from the apex Joint, this value being 9-6 tons-ft. This
does not imply an error in the virtual work calculations, for in those calculations the
choiee of plastic hinge positions was restricted to the ends and centres ofthe members.
The calculation of the required fully plastic moment could be refined by carrying out
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a fresh virtual work calculation in which the plastic hinge at the apex Joint 5 was
moved to the new position 2-8 ft. along the left-hand rafter member. However, it is

unnecessary to perform this calculation, for it will be seen that the design is, in fact,
not governed by this loading case but by the dead and superimposed loading case.

It is therefore noted that a value of Mp between 9-1 and 9-6 tons-ft. would be adequate
for dead, superimposed and wind loads in conjunction.

Design for dead and superimposed loads

The design for dead and superimposed loads to a load factor of 1-75 will now be
considered. The relevant working loads are merely loads of 2-61 tons uniformly

distributed over the two rafters, as shown in fig. 16.

Since this loading is symmetrical, the bending moment
distribution for the frame is also symmetrical, and so

only four bending moments are needed to specify the
bending moment distribution. These may be taken
as the bending moments at the cross-sections 1, 3, 4
and 5 in fig. 16. Due to symmetry, the frame has

only two redundancies, for the bending moments at
the cross-sections 1 and 9 are equal. The bending
moment at cross-section 1 and the horizontal thrust

can thus be regarded as the two redundancies. It follows that there are only two
equations of equilibrium, and therefore two independent mechanisms. Both of these
mechanisms must be symmetrical.

The two independent mechanisms are illustrated in figs. 17 and 18. Fig. 17 merely
represents failure of the two rafters as beams, and the equation of virtual work is

80MP=2 2-61 1-75 4-50=41-10

Mp=5-\4 tons-ft (13)

In the mechanism of fig. 18, the hinge rotation 0 at cross-section 1 would produce a
horizontal movement of 19-450 at the roof apex if there were no hinge rotation
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at cross-section 3. The hinge rotation at cross-section 3 must therefore be

— 19-450/7-45=—2-610 in order that there should be-no horizontal movement at the

apex. The downwards vertical displacement at the apex is thus 18 1-610=29-00 ft.
The virtual work equation is:

\0-446Mp 2.2-61 1-75

12-7 tons-ft.

14-50=132-50

(14)

It will be noted that this value of Mp exceeds the value found for the case in which
the wind loads act in conjunction with the dead and superimposed loads. It follows
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2611 2611

-1,226
-4,228

that the design must be governed by the present case in which only the dead and
superimposed loads are acting.

Considering now the combination of the independent mechanisms, it will be seen
that cancellation of the plastic hinge rotation at the roof apex can be achieved by
superposing the mechanism of fig. 17, with
all the hinge rotations and displacements
increased by a factor of 3-22/2=1-61, on
the mechanism of fig. 18. The mechanism
thus obtained is illustrated in fig. 19. The
virtual work equation for this mechanism
is obtained by adding equation (13), multiplied

by 1-61, to equation (14), and sub-
tracting 6-446Mp from the resulting Virtual work absorbed in the plastic hinges, since
a plastic hinge rotation of 3-220 in each of the mechanisms at the roof apex has been
cancelled. The resulting equation is:

(8 1-61 + 10-44-6-44) 8Mp=4\-\ 1-610+132-50

228 228

Fig. 19

16-880MD

M,= ll-
198-70

tons-ft (15)

The highest value of Mp obtained from these mechanisms is thus 12-7 tons-ft. for
the mechanism of fig. 18. This is therefore the actual collapse mechanism, subject to
possible alterations due to the occurrence of plastic hinges within the spans of the
members rather than at the joints. A statical check will reveal, in fact, that the plastic
hinge at the roof apex should be replaced by one plastic hinge in each rafter member.

Check by statics

The free bending moment diagram for the frame, eut at the roof apex, when
subjected to the factored loads, is shown in fig. 20, together with the redundant bending
moment diagram. This latter diagram is constructed by setting off the calculated
fully plastic moment of 12-7 tons-ft. from the free bending moment diagram at the
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cross-sections 1, 3, 5, 7 and 9. The value of the horizontal thrust can be calculated
from the intercepts between the redundant bending moment line and the dotted line
in fig. 20 at both the cross-sections 3 and 5. The value obtained in each case is
2-1 tons, thus checking the virtual work calculation. It will be seen that the greatest
bending moment which occurs with this bending moment distribution is 14-2 tons-ft.
at a distance of 3-7 ft. from the roof apex. Thus in the correct collapse mechanism
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there should be plastic hinges in each rafter at a distance of about 3-7 ft. from the
roof apex in place of the single plastic hinge shown at the apex in fig. 18. A fresh
calculation for these new plastic hinge positions is readily made, either by virtual work
or by adjusting the redundant bending moment line on the bending moment diagram,
and the resulting value of Mp is found to be 13-2 tons-ft. A final refinement is to take
aecount of the fact that the loads are not, in fact, uniformly distributed over the
rafters, but are carried by five uniformly spaced purlins, as shown in fig. 5. The
plastic hinges in the rafters will be located beneath the purlins which are adjacent to
the roof apex, and the corresponding value of Mp is found to be 13-0 tons-ft. or
156 tons-in.

A choiee of section can now be made. The fully plastic moment for a rolled steel

joist is known to exceed the moment at which the yield stress is just reached in the
outermost fibres by a factor termed the shape factor, which is about 1-15 for most
sections.4 Taking a yield stress of 15-25 tons/in.2, the fully plastic moment Mp is thus:

Mp=hl5. 15-25. Z= 17-5 Z tons-in.

where Z in.3 is the section modulus. The required value of Z in the present case is:

Z=156/17-5 8-91in.3

The nearest available British Standard beam section is a 7x4x 16 Ib., with a section
modulus of 11-29 in.3 This is therefore the required section. From the point of
view of stability, the purlins and sheeting rails, together with some cross-bracing,
would provide adequate stiffening for this section over the given spans.

THREE-BAY PITCHED-ROOF PORTAL FRAME

To illustrate the scope of the technique which has been described in detail,
calculations for the three-bay frame whose dimensions and loads are as shown in fig. 21

will now be outlined briefly. As before, all the loads are assumed to be uniformly
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distributed, and the vertical loads of 3-60 tons on each rafter member are due to dead
and superimposed loads, the remaining loads being wind loads. In the first instance,
it will be assumed that all the members of the frame are of the same cross-section,
with a fully plastic moment Mp.

Design for dead, superimposed and wind loads

For this loading case, a load factor of 1-4 will be used. Examination of fig. 21

shows that twenty-three bending moments are needed to speeify the bending moment
distribution for the entire frame, which has nine redundancies. There must therefore
be fourteen independent mechanisms. Eight of these mechanisms are aecounted for
by the simple beam type of failure mechanism (as in figs. 6, 7, 8 and 9, for example)
oecurring in the members AB, BC, CD, DF, FG, Gl, IJ and JK. For these mechanisms,

the highest value of Mp is obtained for the member Gl, this value of Mr being
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7-28 tons-ft. Two mechanisms must be counted for rotations of the joints D and G
in fig. 21, for it will be realised that for each of these joints there will be an equation of
rotational equilibrium between the three bending moments acting on the Joint. There
will also be one sidesway mechanism, with plastic hinges in the vertical members at
A, B, D, E, G, H, J and K, for which the corresponding value of Mp is 1 -69 tons-ft.
The remaining three independent mechanisms may be chosen in a variety of ways, but
the three mechanisms illustrated in figs. 22, 23 and 24 are probably the most con-
venient for the present purpose. It will be seen that each of these mechanisms is

basically *>f the same type, with the rafters collapsing in one bay and thus causing
sidesway of those parts of the frame lying to the right of the collapsing bay. For
reference, the plastic hinge rotations are shown in these figures in magnitude only.
It will be noted that the joints D and G remain unrotated in each of these mechanisms,
since in each case any rotation of these joints would increase the work absorbed in the
plastic hinges and so reduce the value of Mp.
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The virtual work equations for these three mechanisms are found to be:

fig. 22

fig. 23

fig. 24

1-328MP

lO-640AfD

123-50,

: 120-40,

Mp= 16-9 tons-ft.

Mp=U-
(16)

3 tons-ft (17)

13-960M„= 115-10, ^=8-25 tons-ft (18)

The highest value of Mp obtained from the independent mechanisms is thus
16-9 tons-ft. for the mechanism of fig. 22. It is easily seen that this value of Mp will
not be increased by combination with any of the simple beam mechanisms, for which
the highest value of Mp was found to be 7-28 tons-ft. It is also clear that the sidesway
mechanism, for which Mp was found to be only 1-69 tons-ft., cannot be combined
with advantage. It remains to investigate possible combinations of the three
mechanisms of figs. 22, 23 and 24.

The mechanisms of figs. 22 and 23 can be combined if the hinge rotations and
displacements in the mechanism of fig. 22 are all multiplied by a factor of 1-66, and



90 AI 3—B. G. NEAL AND P. S. SYMONDS

then superposed on the mechanism of fig. 23. This enables a clockwise rotation, of
magnitude 1-660, to be given to Joint G, which cancels plastic hinge rotations of
1-660 in the members Gl and GH at this Joint, while increasing the plastic hinge
rotation in the member GF by 1-660. This produces a net reduction in the Virtual
work absorbed of 1 -666MP. The resulting virtual work equation for this combination
is then seen from equations (16) and (17) to be:

1-66 7-32 8Mp+l0-648Mp-l-668Mp=l-66 123-50+120-40

21-107^=3250
Mp= 15-4 tons-ft. *. (19)

This value of Mp is smaller than the value of 16-9 tons-ft. obtained for the mechanism
of fig. 22, and it is clear that no other possible combination of the three mechanisms
of figs. 22, 23 and 24 will yield a larger value of MP. It is therefore concluded that
the mechanism of fig. 22 is the actual collapse mechanism. This Solution will not be
adjusted to allow for the possible occurrence of plastic hinges at cross-sections other
than the ends and centres of the members, for when the dead plus superimposed
loading case is considered, it will be found that the wind loading case does not govern
the design.

An interesting feature brought out by this analysis is that there are only four plastic
hinges in the collapse mechanism, whereas the frame has nine redundancies. At
collapse, therefore, only the right-hand bay of the frame is statically determinate, and
in carrying out a statical check the bending moment diagram for the other two bays
could not be constructed directly. Instead, it would be necessary to carry out a trial
and error investigation to show that the six redundancies of these two bays could be
chosen in at least one way so as to produce a resultant bending moment diagram in
which the fully plastic moment was not exceeded anywhere in the frame. This
would be a tedious process, and in view of the fact that this is not the loading case
which governs the design, the check is probably not worth performing.

Design for dead and superimposed loads

A load factor of 1-75 will be used for this loading case. The loading, consisting
merely of the vertical loads of 3-60 tons on each rafter, is symmetrical, so that the
collapse mechanism and the bending moment distribution at collapse must also be
symmetrical. It will be seen that the values of eleven bending moments will specify
the bending moment distribution for the entire frame, and that owing to symmetry
there are only five redundancies. There are thus six independent mechanisms, which
must all be symmetrical. Three of these mechanisms are the simple beam type of
failure mechanism in the pairs of rafters BC and IJ, CD and Gl, and DF and FG.
For each of these mechanisms, the corresponding value of Mp is 9-45 tons-ft. One
mechanism must be counted for rotation of the joints D and G. The remaining two
mechanisms are most conveniently chosen as the mechanisms shown in figs. 25 and 26.

The virtual work equations for these two mechanisms are:

fig. 25: 14-640M„=3O2-40, M„=20-6 tons-ft (20)

fig. 26: 1O-640MP= 151-20, Mp= 14-2 tons-ft (21)
The only possible combination of these mechanisms is obtained if the hinge

rotations and displacements in the mechanism of fig. 25 are all multiplied by a factor of
0-83, and then superposed on the mechanism of fig. 26. This enables a cöunter-
clockwise rotation of the Joint D, of magnitude 0-830, to be made, thus cancelling
plastic rotations of 0-830 in the members DC and DE at this Joint, while increasing
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the plastic hinge rotation in the member DF by 0-830. This produces a net reduction
in the virtual work absorbed of O-830MP, and a similar reduction can be achieved by a
clockwise rotation of the Joint G. The resulting virtual work equation is then seen
from equations (20) and (21) to be:

0-83 l4-648Mp+10-646Mp-l-668Mp=0-83 302-40+151-20

2l-l8Mp=4028
Mp=\9-l tons-ft. (22)

This value of Mp is less than the value of 20-6 tons ft. which was found to correspond
to the mechanism of fig. 25. It may also be checked that the beam collapse mechanisms
for the rafters cannot be combined with any of these mechanisms to produce a value
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of Mp greater than 20-6 tons-ft. The mechanism of fig. 25 is thus the actual collapse
mechanism, subject to alterations due to the occurrence of plastic hinges at positions
other than at the ends and centres of the members. A statical check will now be
made which will also serve to indicate such alterations in the position of the plastic
hinges.

Check by statics

Because of symmetry, the statical check need only be made for one half of the
frame, say the left-hand half. For this portion of the frame, the free bending moment
diagram is constructed by imagining cuts to be made at the apices C and F. The
resulting diagram is given in fig. 27, for the case in which the loads have been multiplied

by the load factor of 1-75. It will be seen that there is no free bending moment
in the vertical member DE, and the diagram for this member has not been drawn.

For the members AB, BC and CD the redundant bending moment diagram may
be constructed directly, since the bending moment has its fully plastic value at A, B,
C and D. The horizontal thrust H in this bay can be calculated from the vertical
intereept between the redundant bending moment diagram and the dotted line in
fig. 27. In each case a value of 3-44 tons is obtained, thus checking the Solution.
Since the centre bay ofthe frame is not statically determinate at collapse, the redundant
bending moment diagram for the member DF cannot be constructed directly. However,

it is clear from the symmetry ofthe diagram about D that one possible redundant
bending moment line for DF is the dotted line df shown in fig. 27, where fF represents
the calculated fully plastic moment of 20-6 tons-ft. This line has a slope equal in
magnitude to the line cd in fig. 27, and this corresponds to the same value of the
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horizontal thrust of 3-44 tons which was found for the left-hand bay of the frame.
If this were the actual redundant moment line for the member DF at collapse, it
follows that there would be no resultant horizontal thrust on the vertical member DE,
which would thus have zero bending moment throughout its length. It is therefore
possible to construct a bending moment diagram for the entire frame in which the
fully plastic moment is not exceeded at any cross-section, except within the spans of
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the rafter members. This confirms that the correct Solution was found by the Virtual
work analysis.

It will be seen from fig. 27 that plastic hinges will actually occur in the rafter
members at distances of 5-9 ft. from the apices C and G, rather than at these apices.
When this is taken into aecount, the value of Mp is found to be 21-9 tons-ft.

The statical check reveals the fact that the internal stanchions DE and GH need

not be called upon to partieipate in the collapse mechanism, for it is possible to
construct a resultant bending moment diagram in which these members are free from
bending moment. These members, which were assumed in the first instance to
possess a fully plastic moment Mp, thus function merely as props which hold up the
rafter members. They could therefore be designed simply as compression members,
and made of hollow tubing.

Conclusions
The merits of the method of design described in this paper can really be appre-

ciated only by applying the method to practical examples. However, the foregoing
examples serve to illustrate some of its advantages. The outstanding feature of the
method is, of course, its rapidity. This is mainly due to the ease with which
corresponding values of Mp can be obtained by the principle of virtual work, and this
in turn is due largely to the fact that there is no need to establish sign Conventions
when applying this principle, since the virtual work absorbed in a plastic hinge must
always be positive. A further important advantage of the method is that it enables
Solutions to be found without difficulty for those cases in which the entire frame is

not statically determinate at collapse. Such cases have hitherto been somewhat
intractable.
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Summary

In suitable instances the application of plastic design methods to plane frames of
ductile material, such as mild steel, leads to more rational and economical designs.
These design methods are based on the calculation of the loads at which a structure
collapses owing to excessive plastic deformation. Such collapses occur when a
sufficient number of plastic hinges have formed to transform the structure into a mechanism,

so that deflections can continue to grow, due to rotations of the plastic hinges,
while the loads remain constant.

It is known that among all possible collapse mechanisms for a given frame and
loading, the actual collapse mechanism is the one to which there corresponds the
smallest possible value of the load. Recently, it has been pointed out that all the
possible collapse mechanisms for a frame can be regarded as built up from a certain
number of simple mechanisms. This has led to the development of a new technique
for determining plastic collapse loads, in which these simple mechanisms are combined
in a systematic manner so as to reduce the corresponding value of the load to its least
possible value. For each mechanism which is investigated, the corresponding value
of the load is determined very quickly by applying the Principle of Virtual Work.

In the present paper, the theoretical basis of this new technique is discussed, and
typical calculations for a pitched-roof portal frame are given.

Rlsume'

Dans differents cas, I'application de la theorie de la plasticite au calcul des cadres
plans en materiaux forgeables, comme l'acier fondu, conduit ä des Solutions ration-
nelles economiques. Cette methode de calcul repose sur la determination des charges
sous lesquelles un ouvrage cede ä la suite de deformations plastiques infiniment
grandes. La rupture se produit ä la suite de la formation d'articulations plastiques
en nombre süffisant pour transformer l'eiement porteur en un "mecanisme"; ä la
suite du processus de rotation des articulations plastiques, les deformations prennent
des amplitudes de plus en plus grandes, tandis que la charge reste constante.

On sait que parmi tous les processus possibles de rupture d'un cadre donne sous
l'action de conditions de mise en charge donnees, le processus decisif est celui qui
correspond ä la plus petite valeur possible de la charge. On a montre recemment
que tous les processus possibles de rupture d'un cadre peuvent etre consideres comme
composes d'un certain nombre de processus habituels. Ceci a conduit ä la mise au
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point d'un nouveau procede pour la determination de la charge plastique de rupture,
procede dans lequel les processus simples sont combines d'une maniere systematique
en vue de reduire la charge correspondante ä sa plus petite valeur possible. Les
valeurs de la charge peuvent Stre determinees tres rapidement pour chaque processus
ainsi introduit, par I'application du principe des travaux virtuels.

Les auteurs discutent dans le present rapport les bases theoriques du nouveau
procede et exposent les modes de calcul caracteristiques pour un cadre-portique avec
toit incline.

Zusammenfassung

In verschiedenen Fällen führt die Anwendung der Plastizitätstheorie bei der
Berechnung ebener Rahmen aus schmiedbarem Material, wie z.B. Flusstahl, zu
rationellen und wirtschaftlichen Lösungen. Diese Berechnungsmethode beruht auf
der Bestimmung derjenigen Lasten, unter welchen ein Bauwerk infolge unendlich
grossen plastischen Verformungen versagt. Das Versagen tritt ein, wenn sich
plastische Gelenke in genügender Zahl ausgebildet haben, um das Tragwerk in einen
Mechanismus umzuwandeln; als Folge der Drehungen der plastischen Gelenke ver-
grössern sich dann die Formänderungen weiter, während die Belastung konstant
bleibt.

Es ist bekannt, dass unter allen möglichen Bruchmechanismen eines gegebenen
Rahmens mit gegebener Belastungsanordnung derjenige massgebend ist, dem der
kleinstmögliche Wert der Belastung entspricht. Unlängst wurde gezeigt, dass alle
möglichen Bruchmechanismen eines Rahmens als aus einer gewissen Zahl von
gewöhnlichen Mechanismen zusammengesetzt betrachtet werden können. Dies hat
zur Entwicklung eines neuen Verfahrens zur Bestimmung der plastischen Bruchlast
geführt, bei welchem die einfachen Mechanismen systematisch kombiniert werden,
um so den entsprechenden Wert der Last zu seiner kleinstmöglichen Grösse zu
reduzieren. Die Werte der Last können für jeden eingeführten Mechanismus sehr
schnell durch Anwendung des Prinzips der virtuellen Arbeit bestimmt werden.

Im vorliegenden Aufsatz wird die theoretische Grundlage des neuen Verfahrens
diskutiert, und es werden die typischen Berechnungen für einen Portalrahmen mit
geneigtem Dach gegeben.
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Introduction
The methods presented in this paper for the analysis and design of rigid structures

are purely mathematical in character; that is, techniques are formulated on the basis
of certain fundamental assumptions. These assumptions may or may not be true for
any particular structure; for example, the instability of axially loaded stanchions is

ignored, as is the lateral instability of beams subjected to terminal bending moments.
While for some simple structures under particular conditions of loading these effects

may be relatively unimportant, recent work by Neal (1950a) and Hörne (1950) has
shown that the problem may in fact be critical. In addition, it will be seen below
that an "ideal" plastic material is assumed. Structural mild steel approximates to
such an ideal material, but a highly redundant frame will experience strain-hardening
which may invalidate the calculations. The
techniques presented here, in short, in no sense form a

practical design method; however, it is feit that they n

are of sufficient interest to Warrant a description of
some of the more important results.

The characteristic ideally plastic behaviour of
a beam in pure bending is shown in fig. 1. From
O to A increase of bending moment is accompanied
by purely elastic (linear) increase of curvatuie.
Between A and B, increase of bending moment is

accompanied by a greater increase of curvature,
until at the point B the füll plastic moment M0 is attained. At this moment the
curvature can increase indefinitely, and "collapse" occurs.

^—f

Curvature

Fig.
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In a general plane structural frame, a section at which the bending moment has
the value M0 is called a plastic hinge, and has the property that rotation at the hinge
can occur freely under constant bending moment. From the definition of the füll
plastic moment, the moments in the frame can nowhere exceed M0; if the component
members of a frame have different sizes, it must be understood of course that M0
refers to the particular member under consideration.

Collapse of a frame is said to occur when a sufficient number of plastic hinges are
formed to turn whole or part ofthe frame into a mechanism of one degree of freedom;
in general, the number of hinges exceeds by one the number of redundancies of that
part of the frame concerned in the collapse. For example, the simple rectangular
portal frame, of constant section throughout, subjected to loads V and H as shown
in fig. 2(o), may fail in any one of the three basic modes shown in figs. 2(b), (c) and (d).
The actual mode is determined by the values of the two loads.

(3) (i)

c

¦ -
(dl

Fig. 2

The first part of this paper deals With methods for the exaet determination of the
quantities required (location ofthe hinges, values of collapse loads, etc.); the second

part presents methods for determining upper and lower bounds on the loads, it being
possible to make these bounds as close as is considered necessary. The third part
applies the ideas to space frames, where hinges are formed under the combined action
of bending and torsion.

EXACT METHODS

The use of inequalities in the Solution of structural problems was first introduced
by Neal and Symonds (1950), who used a method due to Dines (1918). The very
'simple example shown in fig. 3 will be used to illustrate the Solution of linear sets of
inequalities.

(a) Collapse analysis under fixed loads

Suppose in fig. 3 that the two spans of the continuous beam are of length /, and
that the fixed loads P, and P2 act at the centres of the spans. The füll plastic moment
of the beam will be taken as M0, and it is required to find the minimum value of M0
in order that collapse shall just occur. (P{ and P2 may be taken to incorporate a
suitable load factor.)

The general equilibrium state of a frame of n redundancies can be expressed as

the sum of one arbitrary equilibrium State and n arbitrary independent residual states.
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By a "state" is meant some bending moment distribution, so that a State in equilibrium

with the applied loads is any bending moment distribution such that equilibrium

is attained. A residual state is a bending moment distribution that satisfies
equilibrium conditions when no external loads are applied to the frame. Thus,
confining attention to any one cross-section in the frame, the bending moment there
may be expressed as

M* + M1' +M2'+ +Mn' (1)
where M* is the equilibrium bending moment at the section and M\, M2, M„'
are the bending moments, at the section considered, corresponding to n arbitrary
residual states. Suppose that the füll plastic moment at the section (as yet un-
determined) is M0. Then

-M0<M*+M1' + M2'+ +M„'<M0 (2)

"

Fig. 3

<».-f *
' *

(31

tb)

Fig. 4

Since the continuous beam system under consideration has one redundancy, the
plastic behaviour can be represented as the sum of an equilibrium State and one
residual State, which may be taken as the two bending moment distributions in fig. 4.
The continued inequality (2) may be written for the three critical sections:

Under the load Pu — M0<pl + c<M<fs\
At the central support, —M0< 2c<M0 > (3)

Under the load P2, —M0<p2+c<:M0J
The set (3) may be rewritten as simple inequalities:

c+Pi+ M0>0~
c +±M0>0
c+p2+ M0>0

-c-Pl+ M0>0
-c +iA/0>0
-c-p2+ M0>0^

If now every inequality in set (4) which has a coefficient of +1 for c is added to
every inequality which has a coefficient — 1 for c, c will be eliminated, and Dines has
shown that the resultant set of inequalities (nine in number in this example) gives
necessary and sufficient conditions for the existence of a value of c in order that the
original set should be satisfied. This is exactly what is required for the present
purposes; the actual value of c is of no interest so long as it is known that a c exists
such that at each critical section of the frame the bending moment is less than the füll
plastic value.

CR.—7

(4)
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In eliminating c from the set (4), it is found that a large number of the resulting
inequalities are redundant, and if it is assumed that P, >P2, the single inequality

-/>i+fA/0>0 (5)

is found to be critical. As long as this inequality is satisfied, all the moments in the
beam will be less than M0. For collapse just to occur, the equality sign should be
taken in (5), giving M0=fp1. Now inequality (5) was derived by adding the second
and fourth of set (4); substituting this value of M0 into these two inequalities gives

(6)
C+ iPi >0]

-c-iPl>0)
i.e. -hPt>c>-\px (7)

that is, a unique value of c has been derived. Using this value of c, the bending
moment distribution shown in fig. 5 has been derived from the analysis; it will be

seen that hinges (M0=^pi) are formed under the load Pu and at the central support,
forming a mechanism of one degree of freedom for small (really, infinitesimal)
displacements.

Füll plastic moment

^P.

3 >

Fig. 5

Weighl per unil length

Fig. 6

The type of result obtained in this problem will in general be derived for any more
complicated example. For more residual states defined by cu c2, c„, each
parameter c is eliminated successively from the inequalities, and the final inequality,
if just satisfied, will generate a unique set of residual states completely defining the
collapse configuration.

The method given above may be applied to the analysis of frames collapsing under
variable loads; however, this problem will be treated with reference to the slightly
more complex condition of minimum weight design.

(b) Minimum weight design under fixed loads

The parameters used in order to determine the minimum weight of a structure
will be the values of the füll plastic moments. If a plot is made for typical structural
sections of füll plastic moment against weight per unit length, and the points joined
by a smooth curve, a non-linear relationship of the type shown in fig. 6 will be
obtained. (Owing to the methods used in this paper, the actual relationship is im-
material, but it is of interest to note that a curve given in a British Welding Research
Association report (1947) for British structural sections can be approximated by
w=2-7M0'6, where w is the weight in lb./ft. of a beam of füll plastic moment M tons
ft.) In order to develop suitable methods for design, it will be assumed that a
continuous ränge of sections is available so that a section can be used with any
specified füll plastic moment.
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The assumption is made that the moment-weight curve can be replaced in the
region which is significant for any particular problem by a straight line. For a frame
built up of N members, each of constant section, the total material consumption will
be given by the proportionality

W*t SMih (8)
i=l

where M, is the füll plastic moment of the i'th member of the frame, and /,• is its length.
Considering again the two-span beam shown in fig. 3, suppose that the left-hand

span has a füll plastic moment Mlt that of the right-hand span being M2. Since the
two spans are of equal length, proportionality (8) may be replaced by the weight
parameter

X=Ml+M2
'

(9)

The problem of minimum weight design for this problem is then reduced to choosing
values of Mx and M2 such that X is made a minimum. The work Starts in the same
manner as for the collapse analysis given above; set (3) is replaced by

-M1<pl+c<M1'
-Mi< 2c <M,
-M2< 2c<M2
—M2 <p2+c <M2

The two continued inequalities are necessary for the central support since it is not
known a priori whether Mi ^ M2.

Of the sixteen possible inequalities obtained by the elimination of c from set (3),
only five are found to be non-redundant if it be assumed that Px >P2. These are

-Pi +\M* >0~

-Pi + Af,+iM2>0
-P1+P2+ Mx + M2>0

-P2+W1+ M2>0
-p2 +iM2>0J

The material consumption parameter X will now be introduced into set (10) by the
replacement of Ml by (X— M2) from equation (9). Upon slight rearrangemenf,

-M2+X -§/>,>0"
-M2+2X-2p1 >0

M2+X -2p2>0
M2 -ip2>0_

together with X>{P\—Pt) O3)

Now for the problem of determining the minimum value of X, the value of M2 is

not required, and Dines' method may be employed again on set (12) to eliminate M2.
On performing this Operation, inequality (13) becomes redundant, and the only
significant inequality resulting is

*>Pi+iPi (W)

It should be repeated that this single inequality is a necessary and completely sufficient
condition that values of Mu M2 and c can be found to satisfy the original set (10).
Since it is required that X should be as small as possible, the equality sign will be

taken in (14), so that

X=Pi+iPz. (J5>

(11)

(12)
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Substitution of this value of X back into the previous sets gives the unique values

Ml=p1—ip2 "1

M2=ip2 \ (16)

2c=-$p2=-M2)
The bending moment distribution resulting from the analysis is shown in fig. 7, plastic

hinges being formed at all three of the critical points.
The method given above for minimum weight design

against collapse under fixed loads has been applied by
the Author (1950a, 1950b) to the Solution ofa rectangular
portal frame (cf. fig. 2), and also to derive a design
method for continuous beams of any number of spans

Fig. 7 under either concentrated or distributed loads.

^p3 ¦ '
3''*

T".

(17)

(18)

(c) Minimum weight design against collapse under variable loads

Consider the same beam in fig. 3, but with the loads varying arbitrarily between
the limits

-Qi<Pi<Qi~
-Q2<P2<Q2

ßl>ß2J
The work proceeds as before up to the derivation of set (11). Now, in this set, the
worst values of px and p2 (i.e. -Lqi, ±<72) must be inserted in each inequality, giving

-qi +iMi ><n
-qx + M,+iA/2>0
-?i-?2+ A*i+ M2>0

-q2+Wi+ M2>0
-q2 +|M2>0J

Operating on set (18) as before to find the minimum value of X, it is found that

Mi + M2= X=qi +q2 "

(0i + i02)>^i>f0i
2q2>M2>iq2

(\qt+q2)>M2
As a specific example, suppose q\=q2=q. Then

-Mt + M2=2q
fq>Ml>iq
%q>M2>iq}

and any values of Mx and M2 satisfying (20) will give a constant material consumption.
(It is perhaps of interest to note that for X=E(M)"1, where «<© the minimum
material consumption is given by Mv 2M2=%q (or vice versa), the worst case oecurring
for M{ M2=q. An asymmetrical Solution is obtained for what appears to be a
completely symmetrical problem. For «=0-6, the symmetrical Solution gives an
increase of less than 2 % in material consumption compared with the asymmetrical
Solution.)

(19)

(20)

INEXACT METHODS

The theorems concerning the existence of upper and lower bounds on the collapse
load of a structure were first proved rigorously by Greenberg and Prager (1950). It
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is assumed that the loads on a structure are all specified in terms of one load, so that
when the collapse load is mentioned, this implies the whole system of loads.

An upper bound on the collapse load

Suppose that enough hinges are inserted into a redundant structure in order to
turn it into a mechanism of one degree of freedom. Hill (1948) has shown that the
stress system is constant during collapse of an ideally plastic body, so that for the
frame with one degree of freedom, the equation of Virtual work may be written,
equating the work done in the hinges to the work done by the external load during a
small displacement in the equilibrium State. The work done in a hinge is equal to
the füll plastic moment multiplied by the absolute value of the change in angle at that
hinge (i.e. plastic rotation) and the work done by the load simply the load multiplied
by its displacement. There will, of course, be elastic displacements obtaining in the
frame, but these do not appear in the equations provided it is assumed that they are
small so that the Overall geometry of the frame is not disturbed.

For any arrangement of hinges in the frame producing a mechanism of one
degree offreedom, the load given by the Virtual work equation is either greater
than or equal to the true collapse load.

A lower bound on the collapse load

If a State can be found for the structure which nowhere violates the yield
condition, and which is an equilibrium State for a given value of the load, then
that value is either less than or equal to the value of the true collapse load.

In practice, Greenberg and Prager found it useful to derive a lower bound from
the mechanism giving the upper bound. The example will make the ideas clear.

Suppose the values of the loads in fig. 3 are

P1=2P2=2P (21)

and that as a first trial the mechanism in fig. 8 is assumed for failure. The rotation at
the central hinge is 8, and at the hinge under the load P, 28. Hence, by virtual work,

i.e. P=l\M0 (23)

P.-28=MQ(26)+M0(8) (22)

l2/> i P

6
©r

~M2 "ff

Fig. 8 Fig. 9

(It is taken that the beam has the same füll plastic moment M0 in both spans.) By
the upper bound theorem, the true value of the collapse load (pc) is less than fM0.
The bending moment distribution corresponding to the assumed mechanism and this
value ofp given in equation (23) is shown in fig. 9, from which it will be seen that the

yield condition is exceeded under the load 2P in the ratio 5/2. Suppose now that the
loads are reduced in the ratio 2/5. Then if the values in fig. 9 are multiplied by 2/5,
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an equilibrium bending moment distribution is obtained which nowhere violates the
yield condition. Hence the load of fM0 is a lower bound on the collapse load, i.e.

Wo<Pc<Wo (24)

It can be shown that removing one of the assumed hinges to the point of maximum
moment will improve the bounds on the collapse load; in this example, shifting the
hinge from under the load P to under the load 2P, while retaining the central hinge,
immediately gives the correct Solution pc=iM0. There is, however, no means at
present of choosing which hinge to remove, and in any case the bounds cannot be
narrowed indefinitely; either they are separated by a finite amount, which may be

quite large for even a relatively redundant frame, or the exaet Solution will be obtained.
Accordingly, Nachbar and the Author (1950) have developed more general methods
for obtaining both upper and lower bounds which may be made as close to the true
collapse value as is considered necessary.

A general methodfor the upper bound

Suppose yield hinges are inserted into the frame at any suspected critical sections.
In general a frame of N degrees of freedom will result, specified in terms of N deflection
Parameters. If the equation of Virtual work is written, then the corresponding value
of the load is an upper bound on the true collapse load. In fact, the virtual work
equation is inapplicable, since the system is not an equilibrium system, but it may be
shown that the value of the load resulting from this equation is in fact a true upper
bound, providing that the mechanism is such that the work done by the loads is

positive.
For the general mechanism in fig. 10,

i.e.

/. /.
2P.-6l+P.-82=M0(

¦=M0\-

201| + |01+02| + |202|)

20l\ + \0l + 02\ + \2e2

46x + 282
(25)

2P V

Fig. 10

-2-10 1 23 1,56
Values oF 8^/8,

Fig. 11

In equation (25), values of 6{ and 82 must be chosen to give the minimum value of p;
since p is always an upper bound on pc, the minimum value will be equal to pc. A
plot of equation (25) is given in fig. 11, from which it will be seen that pc=%M0
corresponds to ö2=0. The minimum is not a stationary value, since equation (25)
is a ratio of two linear expressions. Nachbar has shown that equations of this type
containing absolute values can be reduced by rational successive steps, and the
method has been applied to mechanisms with a large number of parameters necessary
for their specification.
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A general method for the lower bound

Suppose the members of a redundant structure are eut in such a way that a
number of separate redundant or statically determinate structures are formed. If the
collapse loads are calculated for each of these resulting structures, then the lowest
value of these loads is less than the collapse load of the structure as a whole. The
proof of this theorem follows immediately from the special lower bound theorem
above. An immediate corollary is that if a eut portion of the structure carries no
load, then that portion can be ignored in the derivation of the lower bound. In order
to make the theorem of practical use, an additional lemma is needed. The collapse
load of a structure is unaffected by any initial system of residual stresses (moments,
shear forces). That is, at a eut, equal and opposite longitudinal forces, shear forces,
and moments may be introduced in an attempt to raise the lower bound.

1

& - 5. ' A Ä
-CT A-+7A ET

Fig. 12 Fig. 13

Suppose the beam in the previous example is eut at the central support; then the
two separate beams shown in fig. 12 will be obtained. The collapse loads of the
right- and left-hand halves are respectively p—M0 and p=^M0, i.e.

pc>Wo ¦ (26)

Now if a central moment is introduced (fig. 13), it is easy to show that the collapse
loads are respectively

M+2M0 M+2M0
P= 2

and p= 4
(27)

The maximum value which M can take is, of course, M0, and hence from (27)

Pc>lM0 (28)

and the problem has been completed. For other more complicated examples (a two-
storey, two-bay portal frame has been solved under both concentrated and distributed
loads), it is found that shear and longitudinal forces as well as bending moments must
be introduced at the cuts.

Space frames
The type of space frame considered has members which lie all in the same plane,

all loads acting perpendicularly to this plane. Thus bending moments whose axes
lie perpendicular to the plane and shear forces -in the plane are zero. Any member
of the frame is then acted upon by shear forces parallel to the applied loads and by
two moments whose axes lie in the plane, that is, a bending moment (M) and a torque
(T). For ideal plasticity, hinges will be formed in exactly the same way as for plane
frames; the breakdown criterion will be some such expression as

g(M, T)=g(M0, 0)=const (29)

where M0 is the füll plastic moment in pure bending, as before. At any one hinge,
the maximum work principle of Hill (1948) shows that the moment and torque will be
constant during collapse, and that the rate at which work is done at a hinge will be a
maximum. If ß and 8 are the incremental changes in angle in bending and twisting
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respectively during a displacement in the equilibrium collapse configuration, then the

rate at which work is done is

Mß+T8 (30)
For a maximum,

ß 8M+0 ST=0 (31)

Now the breakdown criterion, equation (29), gives

^.SM+||.ST=0 (32)
dM oi

that is,

{ '-¥- (33)
8

og_

8T

This flow relationship may be solved simultaneously with the breakdown criterion to
give the moment and torque acting at a hinge during any collapse displacement.

The author (1951) has shown that for a box section, equation (29) becomes

M2+%T2 M02 (34)

For the present purposes, the circular breakdown criterion

M2+T2=M02 (35)

will be used for the sake of simplicity. The restriction in no way affects the generality
of the methods proposed for the Solution of space frames.

Equation (33) becomes
ß M

T
(36)

which, taken with equation (35), gives

M=VF+T2Mo

r- m0

(37)
8

WW+82"

together with the expression for the work done at the hinge (expression (30))

Plastic work=M0\/ß2+T2 (38)

Owing to the non-linearity of the breakdown criterion, it is not possible to set up
exaet Systems of linear inequalities to be solved by the Dines' method. However,
approximations may be made to the breakdown criterion itself; for example, equation
(35) could be replaced by the circumscribed oetagon

M=±M0 -]

T=±Mo } (39)
M±T=±V2M0]

and the moment M and torque T at any section constrained to lie within this yield
domain.

As will be shown, simple problems are best solved by a direct method; and the
Systems of linear inequalities corresponding to equations (39) become too complicated
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for practical use in the Solution of highly redundant structures. For the latter, the
determination of bounds on the collapse load seems to give the quiekest results.

Direct Solution
As an example of the direct method, consider the symmetrical two-leg right-angle

bent shown in fig. 14. The ends A and D are encastre against both torque and
moment, and the load P acts at the midpoint B of the leg AC. Suppose failure occurs
by the formation of symmetrical hinges at A and D, so that the point C moves
vertically downward for a small displacement. It is easy to see that ßA=ßD=8A=8D

6, say, so that, from equation (38), the work done in the two hinges is

2M0V262 (40)

Fig. 14

while the work done by the load P is
Pa6 (41)

Equating these two expressions, and using the upper bound theorem given above,

Pc<P=2V^Mo (42)
a

The frame is, of course, statically determinate in this collapse configuration, and, by
using equations (37) to determine the conditions at the hinges, the forces and moments
shown in fig. 15 are obtained. The yield criterion is exceeded by the greatest amount

at B, where the moment and torque are V2MQ and 7/|Mo respectively, i.e.

MB2+TB2=iM02 (43)

Hence if the load is reduced by a factor ©2/5, a lower bound will be obtained,
4 M0 4 Mn

©5 a
s c V2 a

(44)

L^ 'jo_insI 2±-M

Y V"M0 „>©fl

12 "0

272Fig. 15
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In order to improve these bounds, a hinge must be inserted at B; but collapse actually
occurs with hinges at all three points A, B and D. At first sight this would appear
to be a mechanism of three independent degrees of freedom. In fact, owing to the
simultaneity of the breakdown and flow criterions (equations (35) and (36)), each
hinge as a whole has only one degree of freedom; since a continuity condition is
required at each hinge, a space frame of the type considered here may collapse with any
number of hinges formed in its members, and an extra hinge may be inserted without
actually increasing the number of degrees of freedom.

The general method for the exaet Solution of a structure with R redundancies may
be tabulated as follows:

(1) Construct a mechanism with N hinges.
(2) Specify the mechanism in terms of an arbitrary displacement (one degree of

freedom) and [2N— (R+l)] deflection parameters ocy.

(3) (2N—R) equilibrium equations may be formulated in terms of the moments
(Mi) and torques (7» at the hinges and the applied load.

(4) Mi and Tt at each hinge may be calculated in terms of the oc, from the
breakdown and flow criteria.

(5) The load may be eliminated from the (27V—R) equilibrium equations,
leaving a set of (2N—{R+1}) simultaneous equations for the determination
of the a.j.

(6) Having determined the etj, the moments and torques at each hinge may be
calculated, and hence the value of the load. This value is an upper bound
on the collapse load.

(7) If the yield criterion is violated at any point in the structure, a lower bound
may be determined.

(8) If hinges are moved or added to the points where the yield criterion is

violated, the whole process can be repeated.

Following these rules, and inserting hinges at A, B and D, the final exaet Solution
is found to be

8 M0 M0
Pc=—r= —9=2-53— (45)

VlO a a
K '

which as a check lies between the previous limits (44).

Bounds on the collapse load

In the method outlined above, it has been tacitly assumed that the theorems on
upper and lower bounds may be extended from plane to space frames; this is in fact
the case, and indeed Drucker, Greenberg and Prager (1950) have shown that the
special theorems may be applied to the problem of the continuum. The general
theorem of an upper bound determined from a non-equilibrium mechanism is also
valid for space frames, and this gives the quiekest method for the Solution of such
problems.

The advantage of the kinematic method of determining an upper bound on the
collapse load is that no reference is made to equilibrium conditions. Suppose, for
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example, the mechanism in fig. 16 (horizontal projection of frame in fig. 14) is specified
by assigning arbitrary deflections to the joints B and C, with hinges oecurring at A,
B and D. Then an upper bound may be determined simply by equating the work
done in the hinges to the work done by the load. By trial of various mechanisms,
this bound may be lowered. Alternatively, if, after a trial, the frame is examined
statically, it will be found that it is impossible to satisfy equilibrium conditions, the
total load at B being either lower or in excess of the value of P determined from the
work equation. This implies that an extra (positive or negative) force is required at
B in order to produce the originally assumed collapse configuration. The significance
of this force is best appreciated by an example.

In fig. 16, take 8B=Sc=2a, say, since the mechanism may be specified in terms of
one unknown degree of freedom. The following table gives the conditions at the
hinges.

Table I

ß 6 Moment
(xM0)

Hinge V02+ß2 Torque
(xAf0)

A
B
D

2
2
1

0-5*
0-5*
0

2062
2062
1000

0-97
0-97
100

0-24
0-24
0

The asterisked values were chosen to make the torques equal at A and B, as they
should be; this is an unnecessary restriction, and improves only slightly the value of
the upper bound, and any values of the twist totalling 1-0 could have been used.
The work equation gives

P.2a=5-124M0
M0

i.e. Pc<P=2-56- (46)

The statical analysis of the frame is shown in fig. 17. The number in a circle at the
Joint B gives the actual load required to maintain equilibrium, and it appears that a
load of 2-9\Mnja is required as against the calculated value 2-56M0/a. Since the
equilibrium load is greater than it should be, it is indicated that the assumed deflection
ofthe point B was too large; if this deflection is reduced slightly, a better bound should
result. Similarly, a negative load is required at C; the deflection should be increased.

100 Mg

(PP)
0-6ZP-

:.f.

LÜL0-97

figj)' IP
0-97N0

tmM,
I ° 0ZiiMo

&.0-62

fy
1 0-211 Mg

t'Y
0-97Mg

iv OWg KOri'Mg

Fig. 17
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In working more complicated examples, it is found that the process of adjusting
deflections at neighbouring joints bears a marked resemblance to a relaxation process,
and that a reduction in the out-of-balance forces at one Joint induces increased errors
at the ones adjacent. However, the technique is soon mastered, and the Author
(1950c) solved, with very little labour, a rectangular grid formed by a set of parallel
beams intersecting at right angles another set of 9 beams, loaded transversely at each
of the 81 joints, and requiring 108 hinges in the collapse mechanism.

When it is suspected that the upper bound is fairly good, small adjustments in the
statical analysis will produce an equilibrium system. For example, in fig. 17, if the
torque in CD is increased from 0 to 0-35M0, the other values remaining unchanged, an
equilibrium system results which, however, violates the yield condition at the hinge D
in the ratio 1 06. Hence, using the value in equation (46)

2-41-°<Pc<2-56-° (47)
a a \ j ¦

The general procedure for the Solution of space frames may be tabulated as
follows:

(1) Insert yield hinges at a large number of points in the frame, producing a
mechanism of many degrees of freedom. The hinges should be placed at
all the sections at which it is suspected actual hinges might occur in the
collapse.

(2) Assign arbitrary (reasonable) deflections to the joints of the grid, and
determine the corresponding changes in angle at each hinge. Equating the
work dissipated in the hinges to the work done by the external loads gives
a value of the load which is in excess of the true collapse load.

(3) Calculate the out-of-balance forces at each Joint that are necessary to
produce the assumed deflections. If the out-of-balance force acts in the
same direction as the actual load at a Joint, the deflection of that Joint was
estimated as too large, and vice versa.

(4) Adjust the deflections, and repeat the whole process.
(5) At any stage, if the out-of-balance forces are small, and it is suspected that

the upper bound is a good estimate of the collapse load, a statical analysis
may be made. Small adjustments are made in the values of the various
shear forces and moments in order to produce an equilibrium system, from
which a lower bound may be determined.

The Author wishes to thank Professors Prager and Drucker of Brown University
for their criticism and encouragement of the work reported in this paper.
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Summary

The preparation of this paper forms part of a general investigation into the
behaviour of rigid frame structures being carried out at the Cambridge Engineering
Laboratory under the direction of Professor J. F. Baker. The paper deals with the
mathematical analysis and design of both plane and space frames, and the ideas are
presented with reference to very simple examples in order to illustrate the techniques
developed. The first part considers methods for the exaet determination of conditions
at collapse of rigid ideally plastic plane structures. In the second part it is shown
that inexaet methods lead to upper and lower bounds on the collapse loads, and
that these bounds may be made as close as is considered necessary. The various
theorems are applied in the third part to the Solution of space frames.

Resume

Le present memoire rentre dans le cadre d'une investigation generale portant sur
le comportement d'ouvrages en cadres rigides, investigation actuellement en cours
au Cambridge Engineering Laboratory, sous la direction du Professeur J. F. Baker.
L'auteur traite de l'analyse mathematique et du calcul des cadres, tant en plan que
dans l'espace, et son expose est aecompagne d'exemples tres simples, qui illustrent
les procedes adoptes.

La premiere partie se rapporte aux methodes de determination exaete des
conditions qui se manifestent au rupture des ouvrages plans rigides idealement plastiques.
Dans la deuxieme partie, l'auteur montre que des methodes non rigoureuses permettent

de fixer des limites superieures et inferieures aux charges sous lesquelles les

ouvrages cedent; ces limites peuvent d'ailleurs recevoir des valeurs aussi etroites qu'il
est juge necessaire. Les differents theoremes sont appliques, dans la troisieme partie,
au calcul de cadres ä trois dimensions.

Zusammenfassung

Die Arbeiten zum vorliegenden Aufsatz stellen einen Teil der umfassenden
Untersuchungen über das Verhalten steifer Rahmenkonstruktionen dar, die am
Cambridge Engineering Laboratory unter der Leitung von Professor J. F. Baker
durchgeführt werden. Der Verfasser behandelt die mathematische Untersuchung
und Bemessung ebener und auch räumlicher Rahmen und entwickelt seine Ueber-
legungen an Hand sehr einfacher Beispiele, an denen er die gewählten Verfahren
darlegt. Der erste Teil behandelt Methoden zur genauen Bestimmung der Bruch-
Verhältnisse steifer, ideal-plastischer ebener Tragwerke. Im zweiten Teil wird gezeigt,
dass durch Näherungsmethoden eine obere und untere Grenze der Bruchlast ermittelt
werden kann und dass diese Grenzwerte so nahe zusammengebracht werden können,
wie es für notwendig erachtet wird. Die verschiedenen Theorien werden im dritten
Teil zur Berechnung räumlicher Rahmenwerke angewandt.
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Determination of the shape of fixed-ended beams for maximum
economy according to the plastic theory

Determination de la forme ä donner aux poutres encastrees d'apres
la theorie de la plasticite en vue du maximum d'economie

Bestimmung der wirtschaftlichsten Querschnittsform eingespannter
Balken nach der Plastizitätstheorie

M. R. HÖRNE, M.A., Ph.D., A.M.I.CE.
Cambridge University

1. Introduction
In the design of structures according to the plastic theory, the members are so

proportioned that collapse would not occur at a load less than the working load
multiplied by a "load factor." The plastic theory provides a means of estimating the
collapse loads of ductile structures by considering their behaviour beyond the elastic
limit. It has been shown1 that, in the absence of instability, these collapse loads

may be calculated simply by reference to the conditions of equilibrium, without
considering the equations of flexure. Hence the design process is essentially reduced to
the selection of members with plastic moments of resistance sufficient to withstand
the bending moments imposed by the "factored loads"—that is, by the working loads
multiplied by the load factor.

The direct nature of the design of structures by the plastic theory facilitates the
relative proportioning of the members such that the total weight is an absolute
minimum. A method of proportioning simple structures composed of prismatic
members for minimum weight has already been presented.2 Further economy of
material can, however, be achieved by using members of varying cross-section, and

may be sufficient to compensate for the increased cost of fabrication. It is thus worth
while investigating the maximum, saving in material theoretically attainable by this
means. No consideration will be given to the increased cost of manufacture of such
members compared with those of uniform section, since this must depend primarily
on the quantities required; for this reason, it is impossible to arrive at any conclusions
regarding possible overall economies.

1 For references see end of paper.
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The relationship to be assumed between weight per unit length and füll plastic
moment of resistance is discussed in 2 below; 3 contains a discussion of a member of
continuously varying section fixed at the ends and supporting a uniformly distributed
load; while the case of a similarly loaded member in which the cross-section is only to
be varied by one or two discrete intervals is discussed in 4.

The term "fixed at the ends" is not here intended to imply complete flexural
rigidity at the supports, but rather that the members to which the beam under
consideration is attached are together capable of resisting the füll plastic moment of the
end sections of that beam.

2. The relationship between füll plastic moment and weight per unit length
The füll plastic moment of a member (denoted by Mp) is the moment of resistance

when the whole section is undergoing plastic deformation. If fy is the yield stress,
at which pure plastic deformation can occur, then for a beam of rectangular cross-
section, of width b and depth 2d (see fig. 1),

T
d

©

r-ip
Tension

Compression

Cross-seclion

N

h-*-
(3)

Slress distribution
when fully plastic

(b)

Fig. 1. Fully plastic stress distribution for a rectangular beam

Mp=bd2fy (1)

Let the weight per unit length of the beam be w, and let the density of the material
be p. Then

w=2bdP (2)

If b is constant and d varies, then
wccMpi (3)

If d is constant and b varies,
wccMp (4)

while if b and d both vary such that bjd remains constant
wozMp* (5)

Hence, however the section is varied,
w=kMpn (6)

where k is a constant and |<;«<1.
Arguments similar to the above may be applied to sections other than rectangular,

and thus equation (6) gives a general relationship between Mp and w. This formula
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pisfactory in that it takes no aecount of the effect of shear forces.
lear forces have little effect on the value of the füll plastic moment,3

lesisting shear forces will prevent the section of a beam being allowed
Ithe applied bending moment at collapse is zero. Hence it will in
red that

w=w0+kMp" (7)

.orstant.

*ENDED BEAM OF CONTINUOUSLY VARYING SECTION

Load q/unit length

Ta
(a)

*W1"<"ÄW

(b

Fig. 2. Bending moment distribution for a beam of continuously varying section
(uniformly distributed load)

The beam AB (see fig. 2(t3)), of length 21, is fixed at the ends and carries a uniformly
distributed load at collapse oft? per unit length. Let the hogging bending moments
at the ends (MA and MB) be assumed equal at collapse, and let Mc denote the sagging
bending moment at the centre. Let M, be the central bending moment which would
be induced in a similar simply supported beam. The bending moment distribution
at collapse in the fixed-ended beam may be obtained by superimposing on a parabolic
bending moment diagram acb of height M, (fig. 2(b)) the bending moment distribution
aa'b'a due to the terminal moments MA and M giving the resultant shaded area.
Let s denote the distance of the points of contraflexure from the centre of length of
the beam.

ql2
' 7

Then Air-

l2-s2
MA=MB=—n-Ml >

P

Mc=j2Ml

(8)

CR.—8
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Ifx denotes the distance of any section from the centre of length of
then the minimum füll plastic moment at that section becomes

when OOO,

when s<2.x<.l,

-M,Mp=—ß

x*—sz
Mp= -ß M,

Hence if W denotes the weight of the beam,

Mi
W=2w0/+2k-}2,l \(s2-x2)"dx+\(x2-s2)"dx

The most economical design will be obtained with that value of j for which
minimum, i.e. putting dW/ds=0, when

j(s2-x2)"''dx=j(x2-s2)"^dx (11,'

If Mp' and W' denote the füll plastic moment and weight respectively of the least
prismatic beam sufficient to carry the load, then

M,

W' 2wQl+2k ("')"<

(12)

(13)

When 71=0-5, the most economical value of s is given by

-.= sech ^=0-3986

The corresponding minimum weight is

W=2wcll+<J-9\12kM,^l

while F*"=2w0/+1-4142A:M,*/

The percentage saving of material depends on the ratio of w0 to kM,*. If the requirements

of resistance to shear are ignored (w0=0), an economy of up to 35T % of the
weight of the uniform beam can be achieved. When the effect of shear is allowed for,
the percentage economy will become less.

When n=l-0, the economical value of s is s/l=0-5,

whence W=2w0l+0-5kM,l
while W'=2w0l+kM,l
In this case therefore a maximum economy (ignoring shear) of 50 % is possible.

When ^0<1, it may be shown from equation (11) that the most economical
value of .s is given approximately by the formula

-=2+1-2467L m (14)

Values of s/1 for various values of n are given in Table I.
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Table I

115

n Sil

10 0-5000
0-9 0-4835
0-8 0-4651
0-7 0-4447
0-6 0-4226
0-5 0-3986

Points of contraflexure for beam of continuously varying
section carrying a uniform load (see fig. 2)

Although for any given value of n the maximum economy is only achieved for
some definite value of s, the loss in economy is negligible if j//=0-45. This is demonstrated

in fig. 3, which shows the percentage economies achieved (assuming w0=0)
with various values of s/l for «=0-5 and «=1-0.

s
l 'C «5

50

\ n=10
W \
30

1 ^"""¦N.

r
3 \
§20

17'OS _/*
1

ff

10

0 i i 1 ¦ \ \ i

0-2 o-u

falue oF 4-
0-6 0-8 W

$ Dislance oF poinls oF contraflexure From centre
(see Fig. 2)

Fig. 3. Econ< mies achieved by continuously varying the section of a fixed-ended beam
(uniformly distributed load)

4. FlXED-ENDÜD BEAM WITH DISCRETE VARIATIONS IN SECTION

Due to the practical difficulties of varying the section of a beam continuously as
envisaged above, it is worth while investigating the economies which can be achieved
when the füll plastic moment is increased by discrete amounts (a) at the centre only,
(b) at the ends only and (c) at both centre and ends.

Since the füll plastic moment of resistance is nowhere reduced to zero, there will
in general be no need to allow for the effects of shear on the relationship between w
and Mp (equation (7)). In the following analysis it is therefore assumed that iv0=0.
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(a) Section increased over a central length only
Let the beam previously considered have a uniform value of Mp denoted by Mu

except over a central length 2a, where it is reinforced so that MP=M2 where M-£>MX
(see fig. 4(a)). The bending moments at collapse are shown by the shaded area in

m

/,,Äa c B

(3)

Bending moments

ff.
Füll plastic moments

^

(b)

Fig. 4. Bending moment distribution for a beam reinforced at centre only
(uniformly distributed load)

fig. 4(1}), while the moments of resistance Ml and M2 are indicated by dotted lines,
which must completely enclose the bending moment diagram. Hence

Ml MA MB=^-M, (15)

M2=Mc=-ßMt (16)

The value of a is obtained by noting that where the beam changes section, the sagging
moment is equal to Mlt and hence

c2 —«2

Mi—jT ¦Af,

It follows from equations (15) and (16) that

M1 + M2=M,
while from equations (15) and (17), putting Mi/M,=r,

a
I Vl-2r

The total weight W of the beam is given by
W=2kMl"(l-a)+2kM2"a

(17)

(18)

(19)

(20)
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It may be shown from equations (18), (19) and (20) that

W= 2kM,"l[rn( 1 -Vl-2r)+(1-rfVT^Tr]
When W has its minimum value,

(£)-" nVl-2r+(2nr-n+r)
l—(2nr—n+r)

Table II

(21)

• • (22)

n r=MJM, alt

10 0-4444 0-3333
0-9 0-4432 0-3371
0-8 0-4418 0-3412
0-7 0-4403 0-3456
0-6 0-4388 0-3500
0-5 0-4370 0-3550

Plastic moment ratio and proportion of beam to be reinforced
for beam reinforced at centre only (see fig. 4)

The most economical values of r and ajl are given in Table II for values of n
between 0-5 and 1-0. It may be noted that r represents the ratio of Mu the füll
plastic moment of the unreinforced part of the beam, to M,, the füll plastic moment
of the uniform simply supported beam which would just carry the same load. Hence
r will be termed the " plastic moment ratio." It will be seen that r and aß (the proportion

of the beam to be reinforced) are almost constant, r varying from 0-4444 to
0-4370 and ajl from 0-3333 to 0-3550. As a working rule therefore the beam should
be reinforced for about one-third of its length, the reinforced section having a füll
plastic moment some 25 % or 30 % greater than the unreinforced section.

ll-0

n -1-0
30

2-0

0-5

0-2 0-3 OH 0-5

Value oF 4-

2a • Length oF beam reinForced at centre

(see Fig. 1)

Fig. 5. Economies achieved by reinforcing the centre of a fixed-ended beam
(uniformly distributed load)
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The Variation ofthe percentage saving (as compared with a beam ofuniform section
throughout) with ajl for «=0-5 and «=1-0 is shown in fig. 5. It will be observed that
if more than about half of the beam is reinforced, there is no saving in material.
When «=0-5, the maximum saving possible is 2-03% as compared with a saving of
35-1 % when the section is varied continuously in an ideal manner. When //=10,
the corresponding figures are 3-70 % and 500 % respectively. It is therefore apparent
that no great advantage accrues by increasing the section only at the centre.

CtZZ

777

\-aA U-4
w

Füll plastic moments

i-.L-ZIL,
jsrföending moments

s—-
i

I— ©-(b)

Fig. 6. Bendihg moment distribution for a beam reinforced at ends only
(uniformly distributed load)

(b) Section increased at ends only

A beam of uniform plastic moment of resistance M: is reinforced for a distance a
from either end so that its plastic moment of resistance becomes M2 (see fig. 6(a)).
The bending moment distribution at collapse is shown by the shaded area in fig. 6(b),
while the moments of resistance are superimposed as dotted lines. If füll plastic
moments are just sufficient to withstand the applied moments, then

M^Mc^M, (23)

M2=MA MB=^-M, (24)

Since where the beam changes section the hogging moment has the value Mx,

(l-a)2-s2
Afy=- f2 M, (25)

From equations (23) and (24),

MX+M2=M, (26)

while from equations (23) and (25), if Ml/M,=r,

?=1-V27 (27)
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(28)

• • (29)

The total weight W of the beam is given by

W=2kM1"(l-a)+2kM2"a
which, by virtue of equations (26) and (27) becomes

W=2kMl"l[r"V2r+(l-r)n(l-V2i-)]
At minimum W,

/ r V-= 0+l)r
\\-rj (l-2nr-r+nV2r)

Table III

n r=MJM; all

10 0-2946 0-2324
0-9 0-2866 0-2429
0-8 0-2777 0-2548
0-7 0-2680 0-2679
0-6 0-2571 0-2829
0-5 0-2449 0-3001

Plastic moment ratio and proportion of beam to be reinforced for beam reinforced
at ends only (see fig. 6)

The most economical values of r and ajl are given in Table III for values of n
from 0-5 to 1-0. The value of r(=M1/(M1 +M2)) varies from 0-2946 to 0-2449, and
hence the reinforced section has a füll plastic moment from 140 % to 208 % greater
than the unreinforced section. The value of ajl varies from 0-2324 to 0-3001. A
satisfactory working rule would therefore be to reinforce an eighth of the length of
the beam at either end.

n i-o

ä 5

OU 0-5 0-6 0-70-1 0-2 0-3

Value oF -f-
a Lenglh oF beam reinforced al eilher end

(see Fig. 6)

Fig. 7. Economies achieved by reinforcing the ends of a fixed-ended beam
(uniformly distributed load)
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The Variation of the percentage saving (compared with a uniform beam) as all
is altered is shown in fig. 7 for «=0-5 and n=l-0. It will be seen that by taking
a/l=0-25 there is very little loss in economy in either case. When «=0-5 the maximum

saving possible is 14-1 % and for «= 1-0 it is 22-0%. These figures compare with
the ideally attainable economies of 35-1 % and 500% respectively.

The economy practically attainable by reinforcing the ends alone is therefore quite
appreciable. It should be noted, however, that the surrounding members must
provide a total moment of resistance equal to the füll plastic moment ofthe reinforced
part of the beam, and this may sometimes be a serious disadvantage.

4fe

h- H
- b V

fa)

Füll plastic moments

I
M,

i

Bending
U

moments \

©i—min
P-%

y \*-©
Ir^T

(b)

Fig. 8. Bending moment distribution for a beam reinforced at both centre and ends
(uniformly distributed load)

(c) Section increased at both centre and ends

The advantage obtained by reinforcing both centre and ends may be estimated
by considering the beam shown in fig. S(a). This is reinforced for a distance a either
side of the centre and at each end for a distance (l—b). The bending moment
diagram, shown shaded in fig. 8(Z>), is completely enclosed by the graph of the füll
plastic moments (shown dotted). The unreinforced section has a moment of resistance
Mj, the ends a moment of resistance M2 and the centre a moment of resistance M3.

Hence (31)M3-M, ^Mf
b2

Mi +M^-ßM,
M2+Mi=M, (33)

(32)
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Solving for Mu M2 and M3,

b2-a2
Mi—fg-M, (34)

2l2-a2-b2
M2= 2P

M< (35)

a2+b2
M3 2P~M' (36)

The total mass of the beam thus becomes

W=2l-"k^r[a(a2+b2)n+(b-a)(b2-a2)"+(l-b)(2l2-a2-b2)"] (37)

When Wha.s its minimum value, 3W/da=0 and 8W/8b=0.
When «=1-0 the above conditions give 3a2—al=0 and 3b2—bl—l2=0,

whence -^=1=0-3333

* I±^Lo-7676
/ o

The moment of resistance is 171-8 % greater than that of the unreinforced beam at the
ends, and 46-5% greater at the centre. The saving is 25-7%, compared with 22-0%
with end reinforcement only and 3-7% with central reinforcement only.

When «=0-5, it is found that
ab (b-a)(a+2b) 2l2+lb-a2-2b2

Va2~+b2 Vb2-a2 V2l2-a2-b2
2a2+b2 (b-a)(2a+b) a(l-b) =0
Va2+b2 Vb2-a2 V2l2-a2-b2

These equations give a//=0-3185 and b\7=0-7074. The moments of resistance at the
ends and centre are respectively 250-5% and 50-9% greater than that of the unreinforced

beam. The saving is 16-1%, compared with 14-1 % with end reinforcement
only and 2-0 % with central reinforcement only.

Hence the percentage saving with both central and end reinforcement is very little
greater than the saving with end reinforcement only.

5. Conclusions
It has been shown that the adoption of beams of varying cross-section can lead to

considerable economies in total material consumption when the basis of design is the
ultimate load which the beam will carry as calculated by the simple plastic theory. The
best shape for the beams has been calculated for the case of a fixed-ended beam carrying

a uniformly distributed load, the minimum cross-sections oecurring at about one-
fifth the length of the beam from the centre. The maximum theoretical economies
areof the order 35-50%.

Since the construction of a beam of continuously varying cross-section may have
considerable practical disadvantages, an investigation has been made into the effect
of reinforcing either the centre or the ends of the beam, or both centre and ends
simultaneously. It has been shown that there is only a negligible advantage in
reinforcing the centre, but that reinforcing the ends does lead to appreciable



122 AI 3—M. R. HÖRNE

economies. The economy achieved by reinforcing both centre and ends is virtually
no greater than that achieved by reinforcing the ends alone.
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Summary

The simple plastic theory gives a direct means of determining the form of a fixed-
ended beam of varying cross-section such that the total weight of material shall be an
absolute minimum. The paper shows how this form may be deduced for a uniformly
distributed load, both when the cross-section of the beam can be varied continuously,
and when the size of the beam can only be adjusted in discrete intervals. The maximum

theoretically attainable economies of material are discussed.

Resume

La theorie simple de la plasticite fournit un moyen direct pour determiner la forme
ä donner ä une poutre encastree ä ses extremites et presentant une section non
uniforme, pour que le poids total de metal employe constitue un minimum absolu.
L'auteur montre comment l'on peut determiner une teile forme dans le cas d'une
charge uniformement repartie, aussi bien lorsque la section de la poutre peut varier
d'une maniere continue que lorsque ses dimensions effectives ne peuvent etre choisies

que dans des intervalles determines. II discute l'economie maximum de metal que
l'on peut realiser du point de vue theorique.

Zusammenfassung

Die einfache Plastizitätstheorie erlaubt uns die direkte Bestimmung derjenigen
Form eines eingespannten Balkens mit veränderlichem Querschnitt, bei der das

Gesamtgewicht des Materials ein absolutes Minimum sein soll. Der Aufsatz zeigt
die Ermittlung dieser Form bei gleichmässig verteilter Belastung, einerseits, wenn der
Querschnitt des Balkens stetig veränderlich ausgeführt werden kann und andererseits,
wenn seine Abmessungen nur in bestimmten Abstufungen verändert werden können.
Die höchste theoretisch mögliche Ausnützung des Materials wird untersucht.
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Sur la plastification de flexion des poutres ä äme pleine en acier doux
(Recents essais francais—Examen critique des essais anterieurs—Questions

restant ä resoudre)

Plastification of bending plate-web girders in mild steel
(Recent French tests—Critical study of previous tests—Problems still to be solved)

Plastifizierung der Vollwand-Biegeträger aus Flusstahl
(Neue französische Versuche—Kritische Betrachtung der früheren Versuche-

Noch zu lösende Aufgaben)

A. LAZARD
Ingenieur en Chef des Ponts et Chaussees

Chef des Divisions Centrales des Ouvrages d'Art et desEtudes d'Amenagements de la S.N.C.F.

Introduction
Les recherches sur la plastification de flexion des poutres ä äme pleine en acier

doux de construction doivent conduire ä une economie de metal et ä une economie
d'argent. Cela s'obtiendra par relevement des contraintes maxima autorisees par les

reglements officiels, bases presque tous sur l'ancienne coneeption de l'elasticite, en
sollicitant soit certaines derogations, soit des modifications permanentes ä ces
reglements. II n'y a espoir d'aboutir que si le dossier presente aux Organismes responsables
des Grandes Administrations est base sur des faits indiscutables, resultats d'experiences
nombreuses et probantes, et si les limites d'utilisation des derogations sollicitees ou
des nouvelles prescriptions proposees sont bien precisees.

Or ä la suite d'importantes experiences de flexion effectuees sur poutrelles Grey de
1 metre de hauteur (c'est-ä-dire sur les plus grands lamines du monde) qui nous a
permis d'entrevoir quantite de phenomenes de plastification peu ou mal connus, il
nous est apparu, en procedant ä un examen critique general des theories et des

experiences existantes, que les generalisations etaient souvent hätives, qu'il existait un
nombre considerable de questions non posees ou restees sans reponse, que, malgre
des tentatives isoiees dans ce sens, les limites d'utilisation des nouvelles methodes
n'etaient pas suffisamment precisees, et, qu'en definitive, il fallait proceder ä un
nouvel examen du probleme en operant avec beaucoup d'ordre.
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Pour notre part nous avons mis en train, avec la collaboration de la Chambre
Syndicale des Constructeurs Metalliques Francais, des series d'experiences dans le
domaine fort vaste, quoique tres restrictif, des

lamines I ou H
bruts *
de longueur depassant 6 fois la hauteur
sollicites ä la flexion
statiquement
et isostatiquement
jusqu'ä ruine.

Le chapitre I de la presente communication est consacre ä une description rapide
des experiences dejä realisees et au developpement des conclusions auxquelles on est
conduit, en insistant sur les points qui appellent des experiences de contröle par
d'autres chercheurs.

Compte tenu de ces conclusions, les autres essais connus de nous| sont examines
et discutes au chapitre II, en suivant la Classification qui a paru la plus adequate.
Chaque fois nous nous sommes bases sur la description detaillee des circonstances
experimentales: malheureusement les details fönt souvent defaut.

Les conclusions d'ensemble sont developpees au chapitre III. On insiste sur les
lacunes des recherches actuelles. On propose d'etablir un programme general des

experiences ä reprendre ou restant ä faire, dont on souhaite un partage entre les
membres de l'Association.

Chapitre I—Les recents essais francais sur la plastification en flexion
STATIQUE ET ISOSTATIQUE DE LAMINES I OU H BRUTS

On decrira quatre series d'essais qui tous ont ete pousses jusqu'ä la ruine.

lere Serie: Poutrelles H de 1 metre de hauteur

Ces essais, executes pour le compte de la S.N.C.F. en 1948-49, ont ete decrits en
detail par nous, dans le Xeme Volume des Memoires de l'A.I.P.C., et ont fait l'objet
d'un leger complement theorique dans Travaux, numero de mai 1950. Ils sont
schematises figs. 1 et 2.

Ils ont clairement mis en evidence les faits suivants:
(a) Les premiers signes de plastification sont apparus bien avant que les contraintes

ä la Navier (quotient du Moment M par le module de resistance de la section I/v
ou W), aient atteint la limite elastique conventionnelle du metal (ä 2 %0) determinee sur
une eprouvette prelevee dans une semelle d'un about. L'apparition de la plastification
depend essentiel lement des appareils de mesure utilises pour la deceler et du critere
choisi pour la definir. Elle semble debuter dans la semelle tendue.

II apparait que la notion de "Moment Elastique" (ou produit de la limite elastique
par le module de resistance), souvent utilisee par les theoriciens, ne correspond ä

* C'est-ä-dire sans trous. Nous mettons en route, ä l'epoque ä laquelle nous redigeons la presente
communication—juin 1951—une nouvelle serie, avec trous cette fois. Nous esperons pouvoir en
rendre compte ä l'epoque du Congres.

t II ne nous a pas toujours ete possible de nous procurer tous les articles originaux. Compte tenu
du nombre limite de pages dont nous pouvions disposer dans la presente communication, nous ne
donnons qu'un apercu des experiences. Un texte detaille paraitra dans Travaux, numeros de
novembre et decembre 1951.
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aucun phenomene physique reel.* Pour cette valeur la poutrelle est dejä partiellement
plastifiee. Cela parait etre sous la dependance des contraintes prealables, enfermees
dans la poutre par les traitements: chimique, physique, mecanique, subis anterieu-
rement (et que le preievement de l'eprouvette libere partiellement).

(b) La plastification est un phenomene essentiellement discontinu. Elle se produit
en des points tres variables et diversement localises. Ces points se mettent brusque-
ment ä fluer, la limite d'ecoulement ayant ete localement atteinte; les points voisins

* En realite c'est la limite du domaine de proportionnalite de la poutrelle qu'on a determine. II
faudrait donc la comparer ä la limite de proportionnalite du metal. A supposer que cette limite
ait un sens pour le metal in situ (etat contraint) et soit une constante en tous les points.
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modifient leur progression de deformation, dans des proportions fort variables, allant
d'un simple ralentissement ä une regression. *

Les charges augmentant, la plastification se propage graduellement, par ä coups,
en interessant des zones de plus en plus considerables. II ne se passe rien de special
dans les zones tendues; au contraire dans les zones comprimees on finit par parvenir
ä des flambements locaux äme ou semelle qui entrainent la ruine de la poutrelle.

(c) L'hypothese de Bernoulli sur la conservation des sections planes (ou sur la
proportionnalite des deformations aux distances de la fibre neutre) devient de plus
en plus inexacte, au für et ä mesure que la plastification progresse.

(d) Dans les zones tendues apparaissent des lignes de glissement, dans les zones
comprimees des rides de glissement, selon la terminologie du professeur Baes (voir
fig. 2).f Lignes et rides n'apparaissent que dans des zones fortement plastifiees.
Leur progression permet d'evaluer grossierement, et probablement avec un certain
retard, la progression de la plastification.

(e) On est amene ä en deduire l'existence de contraintes de compression agissant
sur les facettes longitudinales.

Dans l'äme c'est une consequence de Feffet de courbure de la poutre. Dans les
semelles on voit mal ä quoi cela correspond.

(/) Les dispositions ayant ete prises pour empecher l'apparition de tous les phenomenes

d'instabilite elastiques (deversement, flambements elastiques locaux) et dans
une certaine mesure les flambements plastiques locaux la ruine des poutrelles est
intervenue par plastification quasi totale. La "contrainte ä la Navier" lors de la
ruine plastique a certainement depasse 30 kg./mm.2

2eme Serie: IPN de 200 et 300 et HPN de 550

Ces essais, executes pour le compte de la Chambre Syndicale des Constructeurs
Metalliques en septembre-octobre 1949, ont ete decrits, en details par M. Dawancef
lors d'une Conference faite ä Paris le 13 decembre 1949, suivie d'une interessante
discussion (voir fig. 3).

Les prelevements d'eprouvettes ont montre que les limites elastiques dans les ämes
sont plus elevees que celles des semelles. C'est lä d'ailleurs un phenomene tout ä fait
general.

Les essais ont sensiblement confirme les conclusions de nos propres essais.

3eme Serie: Mäts encastres en poutrelles HN de 180 et 260
Ces essais ont ete executes en 1950, sur des chantiers de la S.N.C.F., ä l'occasion

de recherches sur les poteaux supports de catenaires des futures electrifications.
Les essais de Marolles (5 septembre 1950) oü des poutrelles HN de 180 etaient

profondement encastrees dans un important massif de beton sont representes ä la
fig. 4.

3 poutrelles ont ete essayees avec efforts dans le plan de l'äme seule (fig. 4(b)).
Toutes trois ont ete ruinees pour une contrainte ä la Navier de 35,2 kg./mm.2 calculee
ä la base de l'encastrement.

* Cette regression (ä laquelle nous avons donne le nom de "bec d'oiseau" quand eile apparait
similairement dans le beton tendu au moment de la fissuration) a ete egalement observe par M. Soete,
professeur ä Gand, dans des essais de traction sur eprouvettes soudees. Elle semble correspondre
aux phenomenes observes, en rayons X, par les Allemands. Toutefois Schleicher (par exemple
Bauingenieur, juillet 1950) pretend qu'on mesure par ce procede les contraintes vraies.

t Ces phenomenes ont dejä ete notes, mais avec beaucoup de prudence, par le prof. Kayser.
Congres de Berlin, Rapport final, 1938, p. 557, et Stahlbau, 26.2.1937.

% Annales de l'Institut du Bätiment et Travaux Publics, mai 1950. Construction Metallique No. 6:
"Nouvelles recherches experimentales sur la plasticite des elements de construction metallique."
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Nous avons pu suivre avec precision le phenomene de ruine plastique sur l'une
d'elles. Malgre les precautions prises Feffort n'etait pas rigoureusement exerce dans
le plan de l'äme et la poutrelle avait un aspect legerement vrille. Brusquement, au
moment oü Feffort de traction dans le cäble atteignait 1 300 kg. (mesure au dynamo-
metre), correspondant ä un moment ä Fencastrement de 14 940 kgm. et une contrainte
ä la Navier de 35,15 kg./mm.2, nous avons vu sur une des ailes de la semelle tendue se

propager vers le bas, et ä partir d'une hauteur d'environ 60 cm. au-dessus du sol,
comme une sorte de Vibration de plastification; le vrillage a disparu et la poutrelle est
alors venue, sans resistance, ä la demande du cäble. Compte tenu de la rapide de-
croissance du moment en fonction de la hauteur, la contrainte ä la Navier, dans la
zone d'oü est parti Febranlement plastique de ruine, atteignait environ 32 kg./mm.2
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Des qu'on arretait Fenroulement du cäble sur le treuil, les poutrelles cessaient de
se deformer. Nous avons alors decharge completement (les poutrelles gardant une
deformation importante) puis recharge. A partir de cette deformation residuelle, les

poutrelles se sont comportees sensiblement comme des poutrelles neuves et elastiques
tant que la charge n'a pas atteint une valeur tres peu inferieure ä celle ayant provoque
la ruine plastique; la poutrelle s'est remise alors ä se deformer exagerement au simple
appel du cäble.

Ces essais complementaires ont donc montre clairement (contrairement ä une
opinion repandue) qu'une poutrelle peut avoir ete amenee ä la plastification totale
et etre reutilisee dans certaines limites ä partir de la deformation permanente acquise.
II n'y a ruine definitive que si la sollicitation est maintenue en permanence: si la
sollicitation cesse la poutrelle peut etre recuperee dans une certaine mesure.*

Une autre poutrelle a ete essayee ä la flexion deviee (fig. 4(c)). La ruine plastique
est intervenue pour une valeur des efforts correspondant ä une contrainte ä la Navier
ä Fencastrement de Faile de la membrure la plus comprimee egale ä 33,3 kg./mm.2

D'autres essais ont eu lieu ä Vigneux avec des HN de 260 enfoncees de 3 m. dans
un massif de beton de 55 cm. de diametre et de 3 m. de profondeur.

Ils ont manifeste des phenomenes d'instabilite elastique qui sont susceptibles de
se produire chaque fois qu'on ne prend pas les precautions necessaires pour les rendre
impossibles.

4eme Serie: IPN de 200: Sollicitations cycliques
Ces essais ont ete executes, conjointement par la S.N.C.F. et la Chambre Syndicale

des Constructeurs Metalliques en 1950 et 1951, par M. Dawance et son equipe de
collaborateurs habituels.

Les troncons de 2,20 m. des poutrelles IPN 200 ont ete extraits dans des barres
de 7 m. provenant des parcs de la S.N.C.F. Les eprouvettes ont ete prelevees dans
des sections d'essai reperees en bout de chaque troncon: deux dans les ämes, une dans
chaque semelle (voir fig. 5). Le tableau suivant donne les limites elastiques con-
ventionnelles (en kg./mm.2) des sections d'essai.

Poutrelles des: lere sous-serie 2eme sous-serie 3eme sous-serie

Sections d'essais: A C B 1 2 3 4 5 6

Ä- {Ss3 : :

24,7
27

29,2
30

29
28,3

33,8
34,8

28,3
28,3

29,6
32,0

26,9
26,6

26,8
27,8

26,1
25,4

27,9
28,4

26,7
24,9

27,8
29,9

26,6
26

28
30,2

26,9
25,9

28,2
29,4

27,7
24,2

29
28,8

On notera une tres notable dispersion des resultats le long d'une memefibre du metal
ainsi que des valeurs plus elevees dans les ämes que dans les semelles.

Ces essais ont eu pour but de rechercher l'influence de la repetition de cycles de
sollicitations sur les phenomenes de plastification et notamment de determiner la
valeur des cycles ä partir desquels les deformations permanentes ne se stabiliseraient
plus.

On craignait, en particulier, que la ruine plastique intervint, dans ces conditions,
* Dix ans plus tot nous avions recu l'ordre de mettre ä la ferraille la charpente d'un pont detruit

par faits de guerre, dont nous avions propose la reutilisation partielle. C'est la raison qui nous a
pousse ä proceder ä cette contre epreuve.
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bien avant celle qui aurait ete observee en suivant le processus des trois premieres
series d'essais.

Premiere sous-serie: Sollicitations ondulees*—Cycles 4 ä +n kg./mm.2(fig. 6) (Poutres I
et II, III)—essais des 11 et 23 mai, du 21 juin et du 1 juillet 1950

Les contraintes ä la Navier variaient, dans chaque cycle, entre 4 et +/? kg./mm.2
La valeur superieure n du cycle n'etait augment.ee que lorsque la stabilisation des
fleches etait obtenue. Deux poutrelles (I et II de la fig. 5) ont ete essayees dans ces
conditions.

On a pu tirer les conclusions suivantes:
1° La repetition de cycles de sollicitations ondulees ne modifie pas la valeur du

moment enlrainant la ruine plastique. La ruine plastique correspond pour une
poutrelle sollicitee statiquement, dans des conditions de flexion determinees, ä un
phenomene bien caracterise qui est independant du processus d'application des charges.

2° On peut "accommoder elastiquement" une poutrelle, une fois la deformation
permanente acquise. On peut, ce faisant, depasser, en contrainte ä la Navier, la
limite elastique conventionnelle.

Nous en avons concu la possibilite d'utiliser en flexion des poutrelles brutes bien
au delä des limites actuellement tolerees par les reglements, en procedant ä une
predeformation volontaire des poutrelles, sous une contrainte legerement superieure
aux contraintes maxima d'utilisation.

Mais avant de mettre en application un tel procede qui peut, naturellement, etre
conjugue avec un enrobement par du beton de la semelle tendue et deformee, en vue
de precontraindre ce beton lorsqu'on retire les charges (les deformations sont, en
particulier, tres reduites et ne limitent plus l'utilisation des hautes contraintes), ilfaut
s'assurer que l'accommodation elastique, ainsi acquise, se conserve dans le temps.

Des essais sont necessaires pour le verifier.

Deuxieme sous-serie: Sollicitations alternees—Cycles 10 kg.jmm.2 ä +n kg.jmm.2
(fig. l(a)), 20 kg.jmm.2 ä +n kg./mm.2 (fig. l(b))

Les resultats confirment sensiblement les conclusions de la premiere sous-serie;
la ruine n'a pas ete avaneee par les sollicitations alternees et eile est intervenue
pratiquement pour les memes valeurs de la contrainte ä la Navier que dans les essais

sans repetitions cycliques.

Troisieme sous-serie: Sollicitations oscillantes—Cycles entre plus et moins n kg.jmm.2
{fig- 8)

L'essai a montre:
(a) que la stabilisation etait assez rapidement acquise ;f

* Nous adoptons ici la Terminologie que met au point actuellement une sous-commission de
l'A.F.N.O.R., presidee par M. Prot:

Une sollicitation periodique est ondulee lorsque les forces varient entre deux limites de meme
signe.

Une sollicitation periodique est alternee lorsque les forces varient entre deux limites ayant
des signes opposes.

Une sollicitation periodique est oscillante lorsque les forces varient entre deux limites ayant
des signes opposes et une meme valeur absolue.

Une sollicitation periodique est repetee lorsque les forces varient entre zero et une limite.
t Toutefois le nombre de repetitions (20) n'a peut-etre pas toujours ete süffisant. La fleche

pouvait paraitre stabilisee puis brusquement, par exemple ä la quinzieme repetition, s'aecroitre ä

nouveau.
CR.—9
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(b) que les cycles d'hysteresis devenaient de plus en plus marques, la diagonale
s'inclinant de plus en plus sur Fhorizontale;

(c) que l'effet Bauschinger jouait ä plein, c'est-ä-dire que les dechargements
etaient ä peu pres lineaires, mais que les rechargements (dans un sens ou
dans Fautre) montraient au contraire une courbure prononcee;

(d) qu'enfin la ruine est intervenue sensiblement pour la meme contrainte ä la
Navier que dans les essais precedents.

Quatrieme sous-serie: Poutrelles A et D—Essais des 9 et 11 mai 1951 (fig. 9)

Nous nous sommes pose la question suivante: reste-t-il quelques traces, decelables,
d'une plastification plus ou moins totale d'une poutrelle? II est bien certain, en effet,
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que lorsqu'une poutrelle est livree par les forges eile a subi, au cours de son elaboration
tant chimique que thermique que mecanique, d'innombrables plastifications. Or le
contröle consiste ä mesurer les caracteristiques mecaniques d'une eprouvette prelevee
dans Ie metal; si elles sont satisfaisantes on utilise la poutrelle dans les limites
reglementaires. Comment distinguera-t-on une poutrelle "vierge" d'une poutrelle plus
ou moins " outrageusement plastifiee" qui, apres redressement, aura ete remise sur
parc.
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A cet effet nous avons demande qu'on soumette ä nouveau ä des essais de flexion,
jusqu'ä des contraintes de 15 kg./mm.2, la poutrelle A de la 2eme sous-serie et la
poutrelle D de la 3eme sous-serie qui toutes deux avaient ete plastifiees jusqu'ä la ruine
dans des cycles Bauschinger (contraintes positives et negatives).

Selon le sens dans lequel Feffort serait applique on pouvait penser que ces poutrelles
se comporteraient elastiquement ou manifesteraient la courbure caracterisque de

l'effet Bauschinger, sous reserve que le temps n'ait pas modifie les proprietees acquises.
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Les essais ont eu lieu le 9 mai 1951. Les poutrelles etaient au repos depuis 2 mois

i pour A et 1 mois 2 jours pour D. Ils sont schematises par les fig. 9(a) pour des
essais sous + ou —15 kg./mm.2 et fig. 9(b) pour des essais sous + ou —24 kg./mm.2

II semble qu'on puisse conclure de ces deux essais (qui meritent d'etre renouveles):

1° qu'apres un repos de plusieurs semaines* des poutrelles meme severement
plastifiees (et tordues) ont recupere leurs qualites elastiques (fig. 9(a)): les
phenomenes de plastification ne se manifestent ä nouveau que sous des
sollicitations importantes voisines de la limite elastique (fig. 9(b)).

2° il n'existe pas de moyen de determiner les plastifications anterieures© au
vrai cela devient sans interet ä cause du 1° ci-dessus.

Tous ces essais nous conduisent ä conclure comme suit:

Conclusions du chapitre I
(1) A la precision des essais et compte tenu de Fextreme dispersion des

caracteristiques mecaniques du metal on peut dire que le moment produisant la ruine
plastique d'une poutrelle brüte sollicitee statiquement et isostatiquement est une
donnee physique independante du processus de chargement (chargement continu,
chargement par paliers avec dechargements, sollicitations cycliques: ondulees,
repetees, alternees ou oscillantes).

(2) Si l'on supprime I'application des charges des que se produit la ruine, la
poutrelle est encore reutilisable elastiquement dans un domaine fort etendu qui parait
depasser largement le domaine des contraintes reglementaires generalement admises.
Le temps semble jouer, ä ce sujet, un röle tres important, et encore mal defini.

(3) Le moment de ruine plastique est plus eleve, de plusieurs pour cent, que celui
qui est determine par l'hypothese du materiau idealement plastique, la limite elastique
etant determinee sur une eprouvette de traction prelevee dans une semelle.

(4) Les contraintes prealables ne jouent aucun röle dans la valeur du moment de
ruine, car leur moment est nul (systeme en equilibre). Par contre elles interviennent
certainement dans le declanchement local des premieres deformations plastiques. A
ce sujet la consideration du "moment elastique" est pratiquement denuee de sens.

(5) II semble qu'on puisse utiliser les poutrelles brutes ä des contraintes tres
elevees, si l'on prend bien soin d'eviter les phenomenes de deversement et de flambe-
ment locaux des zones comprimees (äme et semelle). Les dispositions ä prendre
doivent varier d'ailleurs avec le profil des lamines; ces phenomenes perturbateurs sont
d'autant plus ä craindre que le lamine est plus haut ou plus grele.

(6) La predeformation volontaire en vue d'obtenir Faccommodation elastique,
permet le relevement des contraintes.

La question n'est, toutefois, pas encore completement resolue.

Chapitre II—Autres essais sur la plastification en flexion des poutres
Ä äme pleine

Nous distinguerons les essais statiques et de fatigue; dans chaque sous-chapitre
les essais isostatiques et hyperstatiques: d'oü quatre paragraphes.

On traitera d'abord des lamines bruts, puis perces, ensuite des poutres composees
et enfin des poutres dissymetriques. On decrira d'abord les essais oü le moment
flechissant joue le röle prineipal, ensuite ceux oü intervient Feffort tranchant, enfin

* 11 pourrait etre interessant de preciser ce delai.
t II serait interessant de verifier si l'approvisionnement des lamines sur parcs ameliore leurs

qualites elastiques.
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on s'attachera aux phenomenes d'instabilite. On insistera sur le processus de chargement.

Ces considerations ont amene ä prevoir systematiquement dix sections dans chacun
des quatre paragraphes envisages, avec pour les systemes hyperstatiques une
subdivision supplementaire des sections en quatre sous-sections, afin de bien mettre en
evidence les conditions d'appui. De nombreuses reponses "Neant" fönt mieux
ressortir les lacunes des recherches actuelles, ainsi qu'il ressort du tableau schematique
ci-joint.

Essais statiques Essais de Faligue

0 £ isoslahques hyperstah-
ques

h Lammes Oruls

Lammes perces
de trous

%Poutres composee
de plats soudes

o
Poulres composees

ie plats rives

0
Pieces rapportees sur

' /essemellesde lamines

influence de feffort
tranchanl &
Phenomenes de
Hambemenl

Seclions
dissymetriques

Sollicitahms tipeUes
ou ondulees

Sollicilanons oscillanles

ou alternees

A Isostaliques 8 Poutres confinues sur 4 appuis • C Poulres continues sur 3 appuis

D Pootres encastrees ¦ E Portiques

Tableau Schematique

Suivant Dutheil* nous distinguerons Vadaptation dans la section en comparant
le moment de plastification vrai au moment calcule d'apres la theorie elementaire du
materiau idealement plastique que nous designerons comme moment plastique
theorique, de Vadaptation entre sections dans les systemes hyperstatiques, en comparant
les resultats ä la theorie de Fegalisation des moments.

La quasi totalite des essais ont porte sur des lamines ou des poutres de petites
dimensions. La prudence s'imposera quand on voudra generaliser aux poutres de

grandes dimensions.

* Annales de l'Institut Technique du Bätiment et des Travaux Publics—Theories et Methodes de
Calcul No. 2, janvier 1948: "L'exploitation du phenomene d'adaptation dans les ossatures en acier
doux"; et Ossature Metallique, 3, 1949, p. 143.
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sous-chapitre i—essais statiques

Paragraphe 1: Essais isostatiques
lere Section: Lamines bruts

On a etudie divers essais de Maier-Leibnitz; d'autres de Stüssi et Kollbrunner,
Kazinczy, Hendry, Wilson, et Graf (aciers mi-durs) qui n'ont pas ete tous pousses
jusqu'ä la ruine, chargements croissants ou par paliers et dechargements. A Fexcep-
tion de l'essai de Wilson oü la contrainte ä la Navier a ä peine depasse la limite
elastique, les autres montrent, comme nous Favons trouve au chapitre 1er, que le

moment de ruine depasse nettement le moment plastique theorique: un essai de
Kollbrunner donne un depassement de 32 %.

lerne'Section: Lamines perces de trous

On che deux essais de la Chambre Syndicale des, Constructeurs Metalliques
Francais oü la section mediane etait affaiblie par deux trous dans chaque semelle.
Dans Fun les trous etaient fores; il y eut ruine plastique et peu de difference avec un
lamine sans trou. Dans Fautre les trous etaient poinconnes sans alesage. II y eut
cette fois rupture, brutale, dans la semelle tendue ä partir d'un trou, avec cassure
brillante; l'essai est donc plus defavorable.

Les contraintes ä la Navier, calculees en section brüte et en section nette sont
donnees dans le tableau ci-apres en kg./mm.2 oü elles sont comparees aux limites
de rupture R de l'acier des semelles tendues.

Trous Section 1er I (tres doux) 2eme 1 (assez dur) Ruine

fores brüte
nette

28,8 ou 0,90i?
41,2 ou 1,29-R

35,8 ou 0,90/?
51,2 ou 1,28/? Plastique

poinconnes sans alesage brüte
nette

28,0 ou 0,84Ä
40,0 ou 1,20Ä

31,5 ou 0,79Ä
45 ou 1.12Ä

Rupture
brutale

3eme Section: Poutres composees de plats soudes

On a etudie: un essai de Kayser oü la poutre a peri par voilement de l'äme et
pour une contrainte ä la Navier superieure ä la limite de rupture de l'acier des semelles
(mais l'acier de l'äme etait beaucoup plus dur); des essais de Hendry et des essais

remarquables de Patton et Gorbunow sous chargements repetes cycliquement, avec
ou non introduction de contraintes prealables.

Ces essais montrent que ces poutres se comportent aussi bien, sinon mieux, que
des lamines bruts de meme section et de meme acier. Les contraintes prealables
sont sans influence sur la valeur de ruine.

4eme Seclion: Poutres composees de plats rives

On a note un essai peu concluant de Kazinczy et un essai de la Chambre Syndicale
des Constructeurs Metalliques Francais sur deux poutres oü les trous etaient
poinconnes sans alesage et oü il y a eu rupture, brutale, de la semelle tendue ä partir d'un
trou de rivet.

Les contraintes ä la Navier, en kg./mm.2, calculees en section brüte et en section
nette, sont donnees dans le tableau ci-apres et comparees aux limites de rupture R de
l'acier des semelles tendues.
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1

Section lere poutre 2eme poutre Ruine

brüte 28,8 ou 0,61 R
nette 39,2 ou 0,83Ä

30,8 ou 0.67.R
42,0 ou 0.91Ä Rupture brutale

Ces resultats paraissent inferieurs ä ceux de poutres soudees ou d'I bruts.

5eme Section: Pieces rapportees sur des semelles de lamines

On cite quelques essais comparatifs de Bryla et Chmieloviec et un ensemble tres
remarquable d'essais de Wilson qui semblent marquer l'influence defavorable de
semelles additionnelles partielles soudees et au contraire la superiorite des semelles
additionnelles soudees de toute la longueur du profile, les semelles rivees s'inscrivant
entre les deux.

6eme Section: Influence de Veffort tranchant ou d'une petite portee (L<ßh)
On cite deux essais de Kayser oü la ruine est intervenue par voilement de l'äme

sans que puisse intervenir une semelle additionnelle soudee, deux essais d'Albers sur
poutre de 1,86 m. de haut oü la ruine est egalement intervenue par voilement de l'äme
malgre un delardage tres important des semelles tendues, qui ont ainsi supporte des
contraintes ä la Navier considerables, un essai de Wilson et une serie d'essais tres
interessants d'Hendry ä la suite desquels cet auteur a essaye de fixer des regles pratiques
pour savoir quand faire intervenir Feffort tranchant; malheureusement il s'agissait
de tres petits lamines. Son etude pourrait servir utilement de base ä des essais

systematiques.

lerne Section: Phenomenes de flambemenl
On cite des essais systematiques, un peu speciaux, d'Hendry, sur des cadres en

forme de L ä deux branches egales. L'auteur donne, dans la limite de ses essais,
des regles pratiques interessantes.

8eme Section: Sections dissymetriques

Patton et Gorbunow ont montre que la theorie habituelle de Fadaptation dans la
section s'appliquait parfaitement aux sections dissymetriques en essayant des profiles
en 17 composes de plats soudes ou des profus en caissons avec appendices longitudinaux
soudes. Sollicitations ondulees.

La ruine, plastique, intervient pour des contraintes ä la Navier depassant largement
la limite elastique (1,81 et 1,54 fois).

Cependant Patton et Gorbunow, en vue d'eviter Fapparition de deformations
elastiques trop importantes ou de deformations permanentes, prescrivent de verifier
que la contrainte ä la Navier ne depasse pas la limite elastique.

On pourrait sans doute aller plus loin, gräce ä Faccommodation en utilisant
la predeformation.

II semble qu'il y ait le plus grand interet, contrairement aux idees heritees des
lecons de Navier, ä utiliser en flexion des pieces dissymetriques. En theorie, ä
quantite de matiere donnee, il serait preferable d'utiliser des pieces rectangulaires car
les centres de gravite des sections comprimees et tendues sont alors les plus eloignees
possible (bras de levier maximum); mais, pratiquement, compte tenu des phenomenes
d'instabilite en compression, il faut s'orienter vers des sections dissymetriques en
forme de T ou FT.
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D'autant plus qu'ä Favenir la Construction Metallique va devoir utiliser largement
les töles minces et abandonner de nombreux lamines symetriques.

En particulier on pourrait renforcer commodement des ouvrages par des appendices
soudes s'ecartant le plus rapidement possible de la fibre neutre.

II est regrettable que ces experiences n'aient pas connu le retentissement qu'elles
meritaient et qu'elles n'aient pas ete systematiquement poursuivies.

9eme Section: Sollicitation ondulees ou repetees

On a dejä mentionne, ä diverses reprises, les essais de Patton et Gorbunow.

lOeme Section: Sollicitations alternees ou oscillantes. Neant.

Paragraphe 2: Essais hyperstatiques
C'est ici qu'il a paru necessaire de subdiviser chaque section en quatre sous-

sections pour tenir compte des conditions speciales d'hyperstaticite et etudier si la
plastification debutait sous les points d'application des charges ou sur les appuis et
comment se faisait Fegalisation des moments que postule la theorie elementaire.

Herne Section: Lamines bruts

lere sous-section—Poutres continues sur quatre appuis

L'analyse d'un essai bien connu de Maier-Leibnitz nous a conduit aux conclusions
suivantes (voir fig. 10):

Dans une lere phase les phenomenes sont purement elastiques (jusqu'ä 107";
contrainte ä la Navier en travee, 26,2 kg./mm.2).

Une 2eme phase—de transition—de 10T ä 11,2T correspond au debut de la
plastification de la section mediane (contrainte croissant de 26,2 ä 29 kg./mm.2).
Elle est caracterisee par la formation d'un jarret permanent sous la charge.

Une 3eme phase—de 11,27 a 177, qui correspond ä Faccroissement lineaire du
moment sur appuis, est marquee par la tendance, conforme ä l'hypothese classique,
vers Fegalisation des moments en travee et sur appui. Cette egalisation se produirait
pour la valeur du moment plastique vrai.

Mais cette egalisation ne peut se produire. Elle est entravee par Fapparition (ä
partir de 177) des phenomenes de plastification dans la section sur appui: contrainte
ä la Navier sur appui 23,3 kg./mm.2 pour une limite elastique des semelles voisine
de 24-25 kg./mm.2 Cette plastification de la section sur appui, avec jarret, se poursuit
difficilement; la section mediane est alors obligee de se plastifier ä nouveau avec
entree dans le domaine de raffermissement de l'acier.* C'est la 4eme phase, qui
s'acheve par la ruine de la poutre ä 20,77, caracterisee par Fapparition de nouveaux
jarrets dans la travee mediane et meme dans les travees extremes.

On note par rapport aux essais isostatiques les trois differences essentielles
suivantes:

(a) il se forme un jarret sous la charge des le debut de la plastification de la section
mediane;

(b) les sections sur appuis eprouvent de la difficulte ä se plastifier completement f
il se forme egalement un jarret;

* C'est le seul cas, ä notre connaissance, oü le raffermissement ait ete indubitablement observe.
t II est probable que la surplastification de la section mediane, avec raffermissement, est plus

facile que la plastification des sections sur appui. II n'est pas exclu que le contraire se produise dans
d'autres conditions d'essai.
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(c) la section mediane est contrainte d'entrer dans Je domaine de raffermisse¬
ment*

L'essai, bien connu lui-aussi, de Stüssi et Kollbrunner, confirme cette analyse.
Nous pensons toutefois que la charge de ruine est superieure ä celle que propose
Stüssi ä cause du depassement de fait du moment plastique theorique dans la section.

Fig. 10

Fig. 12

Fig. 13
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* II est probable que la surplastification de la section mediane, avec raffermissement, est plus
facile que la plastification des sections sur appui. II n'est pas exclu que le contraire se produise dans
d'autres conditions d'essai.
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2eme sous-section—Poutres continues sur trois appuis
On cite des essais de Maier-Leibnitz, Hartmann et Patton et Gorbunow qui

systematiquement montrent un depassement de la charge calculee (ä cause, semble-t-
il, d'une mauvaise estimation du moment plastique vrai dans la section) et la non
influence sur la ruine d'une quelconque denivellation d'appui. Par contre la succession

des plastifications a rarement suivi la theorie elementaire.

3eme sous-section—Poutres encastrees

On ne cite qu'un essai de Maier-Leibnitz pour lequel on peut repeter sensiblement
ce qui a ete dit ä la lere sous-section quoique Fegalisation ait failli ici etre parfaite.

4eme sous-section—Portiques
La question semble avoir particulierement attire les Britanniques. On cite

plusieurs series d'essais d'Hendry. Dans Fun—voir fig. 11—on trouve une egalisation
des moments avant la ruine pour laquelle le moment du genou depassait notablement
le moment sous la charge.

Conclusions pour la 11 eme section

II semble qu'on peut conclure comme suit:
A condition de compter avec les moments de plastification vrais, la theorie de

Fegalisation des moments est verifiee dans les portiques (hyperstaticite interne); eile
ne Fest pas entierement dans les poutres continues (hyperstaticite exterieure): dans
ce cas il se forme des jarrets des le debut de la plastification d'une section.

I2eme Section: Lamines perces de trous. Neant.

\3eme Section: Poutres composees de plats soudes

On cite une serie d'essais de portiques dus ä Hendry pour lesquels la ruine est
intervenue au moment de Fegalisation des moments pour la valeur du moment
plastique vrai.

\4eme Section: Poutres composees de plats rives

On ne peut citer qu'un essai de Kazinczy avec poutre continue sur trois appuis
mais pour lequel on manque par trop d'eiements de details.

ISeme Section: Pieces rapportees sur les semelles des lamines. Neant.

I6eme Section: Influence de l'effort tranchant
On cite plusieurs series d'essais de portiques, dus ä Hendry, dont quelques resultats

sont representes aux figs. 12, 13 et 14. Elles montrent:
fig. 12, des variations lineaires des diagrammes: charges-moments;
fig. 13, un huit ferme, c'est-ä-dire ruine par egalisation des moments apres une

egalisation prealable;
fig. 14, un cas oü la charge etant tres pres du genou, le moment sous la charge

n'a pas pu se developper completement et oü la ruine est intervenue quand
le moment du genou a atteint la valeur du moment plastique vrai dans la
section.

Herne et ISeme Sections: Phenomenes de flambemenl et sections dissymetriques.
Neant.
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\9eme et 20eme Sections: Sollicitations cycliques

On aborde un point capital concernant Fadaptation de plasticite dans les poutres
hyperstatiques quand les charges sont variables ou mobiles: II s'agit du probleme du
"cumul des deformations plastiques" analogue ä celui que nous avons traite dans le

chapitre 1er avec les essais de la 4eme serie.
Un examen serre de la proposition theorique bien connue de Hans Bleich nous a

conduit aux conclusions suivantes:
La methode de H. Bleich tend ä ameliorer le procede de Fegalisation des moments

elastiques; en fait cela ne doit etre possible que dans certaines conditions qu'il reste
ä preciser. II faut distinguer au moins deux cas:

1° La disposition des travees et des charges est teile que Fintervention des
contraintes residuelles les plus favorables modifie peu Fegalisation des moments selon la
methode habituelle: autrement dit les moments aux points les plus charges, calcules
en elasticite, sont tres voisins.

Dans ces conditions il est probable qu'on atteindra assez aisement un etat voisin de
Fegalisation des moments plastiques vrais, cela dependra d'une part, comme on Fa

vu dans les essais des 1 lerne et 13eme sections, des repartitions de travees et d'autre
part de Fetendue du domaine dans lequel les moments ondulent.

2° Au contraire les moments aux points les plus charges sont assez differents pour
que les contraintes residuelles de H. Bleich modifient assez sensiblement Fegalisation
habituelle. Dans ce cas, on peut concevoir que le point le plus charge se plastifiera
entierement avant que n'intervienne la plastification de soulagement d'un point moins
charge, sauf pour les sections ä grand coefficient de forme (marge de plastification
elevee). Autrement dit Fegalisation envisagee ne se produira probablement pas pour
des sections telles que I ou H et il y aura sans doute ruine par divergence des deformations

pour des valeurs des charges plus faibles que celles calculees. Au contraire
pour des sections ä grand coefficient de forme on tendra vraisemblablement vers
Fegalisation des moments plastiques vrais et les valeurs calculees seront sans doute
depassees. De nombreux parametres sont susceptibles d'intervenir et, a priori, la
question n'est pas simple ä resoudre.

Le 1° est sensiblement confirme par un essai de Klöppel oü la valeur de Bleich a
ete depassee d'au moins 35 %; le 2° par des essais de la Chambre Syndicale des
Constructeurs Metalliques Francais destines ä verifier une theorie corrective due ä Dutheil.

Le tableau, ci-apres, donne en fonction des valeurs des limites elastiques de l'acier
des profiles:

colonne 2: les valeurs du moment elastique, en cm. 7;
colonnes 3, 4, 5: les valeurs theoriques, en 7, des charges pour lesquelles le

moment sur appui egalerait: le moment elastique, le moment critique de
Dutheil,* le moment plastique theorique;

colonnes 6, 7, 8: les valeurs theoriques, en 7, des charges donnant Fegalisation,
dans le cas de charge le plus defavorable, des moments sur appuis et sous la
charge fixe avec: le moment elastique, le moment de Dutheil, le moment
plastique theorique;

colonnes 9, 10: les valeurs theoriques, en 7, des charges donnant Fegalisation des
valeurs extremes des moments sur appui et sous la charge fixe avec: le
moment elastique (methode de H. Bleich), le moment critique de Dutheil
(methode Bleich corrigee par Dutheil);

* Le moment critique de Dutheil est Ie moment elastique majore d'un coefficient de forme egal
ä 1,20; 1,425; 1,10 et 1,10 respectivement.
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colonne 11: les valeurs experimentales, en 7, de la charge marquant la fin du
domaine de proportionnalite.

colonnes 12, 13: les valeurs experimentales, en 7, des charges pour lesquelles la
divergence semble s'etre produite; d'apres l'estimation du Laboratoire et
d'apres la notre.

1 2 3 4 5 6 7 8 9 10 11 12 13

¦ recuit 249,1 10,7 12,9 16,1 15,5 18,6 23,3 12,2 14,6 11 18 17
recuit 173,7 7,5 10,7 15,0 10,8 15,4 21,6 8,6 12,1 12,5 17 15

i 238,0 10,2 11,3 11,9 14,8 16,3 17,2 11,7 21,8 9 11,5 10

i recuit 227,7 9,8 10,8 11,4 14,2 15,6 16,5 .1,2 12,3 9,5 11,0 10

On voit qu'au point de vue des premieres plastifications les previsions de la
colonne 3 ne sont pas (sauf pour le losange) trop eloignees de la realite, par exces

pour les H comme souvent dejä vu.
Au point de vue de la ruine par divergence on voit nettement apparaitre les deux

groupes que la discussion laissait prevoir:
(a) Pour les H, les charges sont tres voisines de celles pour lesquelles le moment

sur appuis egale le moment elastique ou le moment critique de Dutheil (cols. 3 ou 4)
et legerement inferieures au calcul de Bleich (col. 9).

(b) Pour le carre et le losange, au contraire, les charges sont voisines de celles

pour lesquelles le moment sur appui est egal au moment plastique theorique (col. 5) et
tres superieures aux calculs de Bleich ou de Dutheil (cols. 9 ou 10): cela tient evidemment

ä Fenorme reserve de plastification.
En conclusion, pour les cas de la pratique, tels que I et H, on voit qu'ici le calcul

de Bleich est probablement trop optimiste, alors que dans Fexemple de Klöppel il
etait excessivement pessimiste.

La question est donc bien aussi compliquee que notre raisonnement permettait
de Fenvisager: ilfaut tenir compte de la forme des sections, de la repartition des travees,
de la position des charges et des rapports entre les valeurs des differentes charges.

II est souhaitable que de nombreuses experiences soient systematiquement
entreprises.

Sous-chapitre II—Essais de fatigue
On ne trouve que des essais de Graf et de Wilson plus un essai de la Chambre

Syndicale des Constructeurs Metalliques Francais sur un assemblage par soudure bout
ä bout.

A part les essais isostatiques sur lamines bruts oü Fauteur allemand n'a obtenu
qu'une ruine plastique tandis que Fauteur americain obtenait des ruptures, les autres
essais sont complementaires et laissent beaucoup de lacunes. Les experiences les

plus completes sont celles de Wilson sur des semelles additionnelles soudees sur des
lamines: il nous semble que l'on peut en tirer confirmation de la superiorite de
semelles additionnelles de toute la longueur du lamine soudees par cordons Continus
d'une part, et de Finferiorite de plaquettes ou de semelles partielles soudees ainsi que
de soudures sur des zones tendues, d'autre part.

Pour le reste les limites d'endurance, par exemple ä 2 millions de repetitions,
presentent une teile dispersion des valeurs qu'il est difficile, en l'etat actuel, de tirer
de conclusions nettes. Tout ce qu'on peut affirmer c'est que, des qu'il y a une entaille
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quelconque, la ruine survient par rupture et pour des valeurs des contraintes ä la
Navier nettement inferieures ä la limite elastique de l'acier utilise. On ne peut plus
des lors envisager, ä proprement parier, de theorie de Fadaptation en flexion basee

sur la plastification.

Chapitre III—Conclusions

On traitera d'abord des points qui paraissent acquis, ensuite de ceux qui pretent
encore ä discussion ou n'ont pas ete suffisamment traites.

1 ere Partie—Points acquis
Si l'on met ä part les essais de fatigue sur poutres presentant des entailles (le mot

etant pris ici au sens le plus large) pour lesquelles Fadaptation de plastification ne
semble pas jouer au sens oü l'on entend generalement ces termes, les essais francais
et etrangers analyses aux chapitres II et III permettent de tirer les conclusions
suivantes, en distinguant par nature de poutres:

1° Lamines bruts

(a) La plastification commence pour des valeurs des contraintes ä la Navier
inferieures ä la limite elastique. Ceci n'empeche pas le lamine de se comporter
elastiquement une fois la deformation permanente acquise et stabilisee; dans les

poutres continues cette deformation se manifeste par des jarrets sous les charges ou
sur les appuis.

(b) Si les precautions sont prises pour eviter les flambements locaux des semelles
et des ämes comprimees et s'il n'existe pas de fortes charges concentrees ä proximite
d'appuis, la ruine intervient par plastification totale. Le moment atteint dans la
section la plus exposee, ou moment plastique vrai, depasse de plusieurs pour cent
(10 ä 20 en moyenne) le moment calcule d'apres la theorie elementaire du materiau
idealement plastique.

(c) Dans les systemes hyperstatiques les moments sous les points les plus charges
et sur les appuis ou les genoux ont bien tendance ä s'egaliser, la valeur commune
etant celle du moment plastique vrai. Cette egalisation peut etre atteinte dans les

portiques; eile Fest rarement d'une maniere parfaite dans les poutres continues: il y
a lä des circonstances defavorables dues probablement aux appuis. Enfin dans les

cas de solücitations conduisant au cumul des rotations plastiques, il n'est pas exclu

que, dans certaines circonstances encore mal connues, la ruine survienne, par divergence

des deformations, pour des valeurs relativement faibles.
(d) En definitive il semble qu'au regard des questions de securite les contraintes

maxima reglementaires pourraient etre fixees ä des valeurs elevees dependant:
de la dispersion des valeurs des limites elastiques conventionnelles (et non des

limites de rupture) en differents points des lamines,
de la forme des sections,
eventuellement de la taille des lamines,
de Fisostaticite ou de Fhyperstaticite du Systeme (poutres continues ou portiques),
dans certains cas de la nature des sollicitations (par exemple possibilite du cumul

des rotations plastiques dans les systemes hyperstatiques).
Des dispositions constructives appropriees, variables avec la taille des lamines,

telles que raidisseurs dans les zones comprimees, devraient alors etre prises pour
eviter des flambements locaux des semelles et des ämes comprimees.
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2° Poutres composees de troncons de lamines bruts assembles par soudure bout ä bout
Si les soudures sont convenables et le mode de soudage approprie, il semble que

de telles poutres peuvent etre utilisees exactement comme des lamines bruts.
Celä est bien net dans les systemes isostatiques. Les essais manquent dans les

systemes hyperstatiques; il semble toutefois que les conclusions peuvent etre etendues
dans ce cas ä condition de ne pas disposer les soudures sur les appuis. Teile est, du
moins, la tendance francaise: eile ne semble pas etre generale ä Fetranger.

3° Poutres, ä profil constant, composees de plats assembles par soudures longitudinales
continues

Compte tenu du nombre limite d'essais probants il semble que les conclusions
du 1° (lamines bruts) peuvent etre egalement adoptees, tout au moins dans les systemes
isostatiques.

Toutefois ici le moment plastique vrai dans la section est sensiblement egal au
moment calcule d'apres la theorie du materiau idealement plastique.

4° Lamines perces de trous, poutres chaudronnees (rivees), lamines completes par des
semelles additionnelles rivees

II n'existe pas d'essais hyperstatiques. En isostatique la question n'est pas encore
suffisamment eclaircie pour permettre des conclusions nettes. Sauf les cas bien
precises oü les trous etaient poinconnes sans alesage et oü la ruine a ete provoquee par
une rupture brutale, il semble que Fadaptation de plastification joue; mais les

domaines d'utilisation restent ä preciser.

5° Poutres composees de plats soudes et lamines completes par des semelles additionnelles

soudees

La question est loin d'etre eclaircie.
II semble bien que le seul cas net soit celui oü, en isostatique, ces semelles ont la

longueur totale du lamine: la plastification est alors integrale. Au contraire les
semelles de longueur partielle semblent etre nettement defavorables: celä depend de
plusieurs facteurs qui sont mal precises.

2eme Partie—Questions Restant ä resoudre
En plus des points de la lere partie encore mal precises on aura remarque que de

nombreux points restent ä etudier, tels que:
l'influence de Feffort tranchant,
les phenomenes de flambement,*
l'influence du temps sur certaines accommodations elastiques,
le cumul des deformations plastiques dans les poutres continues.

De nombreux essais n'ont meme pas ete tentes. La plastification des sections
dissymetriques n'a ete realisee qu'une seule fois. II n'y a pas d'essais avec semelle
partielle soudee sur un seul cöte, soit tendu, soit comprime. II n'y a jamais eu
d'essais de fatigue commences par une plastification lente: ces essais seraient pourtant
de premiere utilite pour essayer de resoudre le conflit qui oppose les ecoles opposees
affirmant ou niant l'existence des phenomenes de fatigue dans les ponts et dans les
charpentes metalliques, sans que les arguments avances de part et d'autre soient
reellement convaincants.

* A cet egard les nouvelles recherches theoriques et experimentales de Stüssi sur le flambement des
plaques seront sans doute du plus grand secours.
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Enfin l'essai le plus interessant ä realiser, malgre son evidente difficulte, celui de

poutres continues sous charges roulantes: ici intervient au minimum les phenomenes
hyperstatiques, le cumul des deformations plastiques, l'influence de Feffort tranchant.

En conclusion il apparait qu'il reste de nombreux essais systematiques ä entre-
prendre. La täche depasse les possibilites d'un seul organisme ou d'un seul pays.
C'est pourquoi nous souhaiterions qu'ä Fissue de la discussion du Theme AI3 de ce
Congres, une sous-commission etablisse un vaste programme de recherches (base ou
non sur la Classification adoptee dans le cours du present memoire) et le repartisse
entre les Membres de notre Association. Rendez-vous serait pris dans quatre ans,
au prochain Congres, pour tirer les conclusions.

Nous insistons sur la necessite de detailler minutieusement les circonstances de
chaque experience.
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Resume

Se basant sur les derniers essais francais sur des lamines bruts I et H de differentes
tailles sollicites isostatiquement jusqu'ä la ruine dans des conditions tres diverses, et
etudiant la dispersion des aciers, les contraintes prealables, la non-conservation des
sections planes, l'importance des volumes plastifies, l'existence de compressions
transversales, le flambement des zones comprimees, Farticle conclut que, pour des lamines
bruts sollicites isostatiquement:
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la ruine plastique survient, si les precautions necessaires sont prises contre le
flambement, pour une valeur superieure ä celle qu'on peut calculer en
admettant la plastification totale d'un acier idealement plastique;

le lamine s'accommode elastiquement apres un nombre tres faible de repetitions
des sollicitations. II est possible d'en deduire un procede systematique de

predeformation en vue de travailler sous contraintes elevees. A ce sujet le
temps semble jouer un röle important mais encore mal defini.

Elevant le debat ä toutes les poutres ä äme pleine en acier doux et passant en
revue les essais anterieurs generalement executes sur petits echantillons, Farticle
cherche ä distinguer les points definitivement acquis de ceux qui pretent ä discussion
ou n'ont pas encore ete suffisamment traites. Parmi ces derniers on releve plus
particulierement:

Feffet de Feffort tranchant,
l'effet des surcharges roulantes sur poutres continues,
les etudes sur profus dissymetriques.

En conclusion Farticle propose qu'une sous-commission du Congres dresse un
programme des essais restant ä realiser et les repartisse entre les divers membres de
l'Association Internationale.

Summary

Based on the latest French tests with piain rolled I and H joists of various sizes,
isostatically loaded up to failure under very different conditions, and by studying the
dispersion of the steel, the residual stresses, the non-conservation of plane sections,
the size of the plastified volumes, the existence of transverse compressions and the
buckling of the compressed zones, the author of the paper comes to the conclusion
that, for piain rolled joists isostatically loaded:

if the required precautions against buckling are taken, plastic failure' happens
for a load which is higher than that which can be calculated by supposing the
total plastification of an ideally plastic steel;

the rolled joist adapts itself flexibly after very few repetitions of the loads. It
is possible from this fact to deduce a method of systematic prestraining in
order to work under high stresses. Time seems here to play a part which is

important but has not yet been clearly defined.

By extending the discussion to all plate-web girders in mild steel and by surveying
previous tests which generally were made on joists of small cross-section, this paper
tries to distinguish the points which are definitively established from those which are
still disputable or have not yet been sufficiently treated.

Among the latter, particular emphasis is put on:
the effect of shearing-stress,
the effect of rolling loads on continuous girders,
the studies on unsymmetrical sections.

It is finally proposed that a sub-committee of the Congress should assume the
task of establishing a programme for the tests which are still to be made and allotting
these to different members of the International Association.

Zusammenfassung

Der Aufsatz stützt sich auf die neuesten französischen Versuche an unbearbeiteten
normalen und Breitflansch-I-Walzträgern unterschiedlicher Grösse, die bei statisch
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bestimmter Anordnung unter sehr verschiedenen Bedingungen bis zum Versagen
beansprucht wurden und untersucht die Streuungen in der Stahl-Qualität, die inneren
Spannungen, das Nicht-Ebenbleiben der Querschnitte, das Ausmass der plastifizierten
Querschnittsteile, das Auftreten von Quer-Kontraktionen und das Ausknicken der
Druckzonen. Für statisch beanspruchte und statisch bestimmt gelagerte unbearbeitete

Walzträger kommt der Verfasser zu den nachstehenden Schlussfolgerungen:
Wenn die notwendigen Vorkehrungen gegen Ausknicken getroffen sind, tritt das

plastische Versagen für einen Wert ein, der höher ist als derjenige, den man
unter der Voraussetzung totaler Plastifizierung eines ideal-plastischen Stahles
errechnen kann.

Der Träger erfährt nach einer sehr geringen Zahl wiederholter Beanspruchungen
eine elastische Anpassung. Daraus kann ein systematisches Vorverfor-
mungs-Verfahren zwecks Zulassung höherer Nutzspannungen abgeleitet
werden. In diesem Zusammenhang scheint der Faktor Zeit eine wichtige,
aber noch ungenau definierte Rolle zu spielen.

Durch Erweiterung der Diskussion auf sämtliche Vollwand träger aus Flusstahl
und an Hand eines Überblicks über die früheren, hauptsächlich an kleinen
Probeträgern durchgeführten Versuche wird versucht, die endgültig gelösten Fragen von
denjenigen zu trennen, die noch umstritten oder ungenügend untersucht sind. Unter
den letzteren werden insbesondere erwähnt:

der Einfluss der Querkraft,
der Einfluss der beweglichen Lasten auf durchlaufende Träger,
die Untersuchung unsymmetrischer Profile.

Als Schlussfolgerung schlägt der Verfasser vor, dass ein Unter-Ausschuss des

Kongresses ein Programm der noch durchzuführenden Versuche aufstellen und diese
unter verschiedene Mitglieder der Internationalen Vereinigung verteilen soll.

CR.—10
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Experimental investigations into the behaviour of continuous and
fixed-ended beams

Recherches experimentales sur le comportement des poutres
continues ou encastrees ä leur extremites

Experimentelle Untersuchungen über das Verhalten durchlaufender
und eingespannter Balken

M. R. HÖRNE, M.A., Ph.D., A.M.I.C.E.

Cambridge University

1. Introduction
The behaviour beyond the elastic limit of mild-steel beams subjected to pure

bending moments or bending moments combined with shear forces has been studied
by Ewing (1903), Robertson and Cook (1913) and many others. The various theories
suggested and the experimental evidence relating to them have been reviewed by
Roderick and Phillipps (1949). It appears that, when considering annealed beams,
the most satisfactory theory is that in which it is assumed that initially plane sections
remain plane during bending, the longitudinal stress being related to the longitudinal
strain as in a tension or compression test (see Roderick, 1948). Good correlation
between bending and tension tests may be obtained if due regard is paid to the upper
yield stress and to the rate of straining in the plastic ränge. The influence of shear
forces has been investigated experimentally by Baker and Roderick (1940) and
Hendry (1950) and theoretically by Hörne (1951). It has been shown that, for
practical purposes, shear forces have negligible effect on the behaviour of a beam.
The stress distributions are also modified in the vicinity of concentrated loads, and
this has been investigated experimentally by Roderick and Phillipps (1949) and
theoretically by Heyman (unpublished). The simple plastic theory has also been
found to apply approximately to rolled steel sections (Maier-Leibnitz, 1936), although
correlation between bending and tension tests is here more difficult due to the
Variation in properties of the steel over any cross-section.

The simple plastic theory leads to important deductions regarding the behaviour
of continuous and fixed-ended beams and rigid-jointed unbraced structures such as
building frames. Due to the considerable pure plastic deformation which mild steel
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can undergo (of the order of 1 % strain, or ten times the strain at the commencement
of yield), the curvature of the longitudinal centre line of an initially straight beam
increases rapidly with practically no increase of bending moment as the section
becomes fully plastic. The bending moment then approaches the " füll plastic" value
(see Roderick, 1948), and although at extremely high curvatures the beam may
develop a higher moment of resistance due to strain hardening, the füll plastic
moment may be regarded as the highest moment to which the beam may be subjected
and still retain its usefulness. When beams are continuous over a number pf
supports or encastre (i.e. fixed in position and direction at their ends), the high curvature
which occurs in the vicinity of fully plastic sections enables the applied loads to be
increased until the füll plastic moment is reached at a sufficient number of sections
for a "mechanism" to be formed, these sections being regarded as "hinges" with
constant moments of resistance. Similar considerations apply to rigid-jointed
unbraced frames as long as axial forces are small enough to have negligible effect on
the bending moments in the members in which they occur. The application of such
results to the calculation of collapse loads has been considered extensively by Bleich
(1932), Baker (1949), Neal and Symonds (1950), Hörne (1950) and others.

The above theoretical developments have been achieved by making certain extensions

of the simple plastic theory as established by tests on simply supported members.
The "plastic hinge" concept is only an approximation to the truth, corresponding
as it does to infinite curvature at the assumed fully plastic sections. It is thus essential

that these theoretical deductions should be tested experimentally. In the case
of continuous beams, the simple plastic theory indicates that the order in which the
spans are loaded, or the sinking of one support relative to the others, should have
no effect on the value ofthe collapse load. In beams partially fixed against rotation
at the ends, the degree of end restraint should similarly have no effect on the collapse
loads as long as the moment of resistance of the end supports is at least equal to the
füll plastic moment of resistance of the beam. Moreover, the fact that füll plasticity
has been produced at some section or sections of a beam for one set of loads should
not reduce the carrying capacity of that beam for any subsequent set.
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Fig. 1. Division of bars for continuous beam tests
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While certain investigations on continuous beams have already been made by
Maier-Leibnitz (1936) and Volterra (1943), no attempt to check these deductions
systematically has yet been reported. It was for this reason that the investigations
here described were undertaken.

2. Tests on continuous beams

(a) Preparation of beams

The beams were taken from 1-in. square bars of rolled mild steel in the "as
received" condition, the bars being eut according to the scheme shown in fig. 1. All
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the beams were roughly planed to the required dimensions (i in. square) and finished
by surface grinding, thus imparting a polished surface which, as described below,
enabled Lüders' wedges to be observed during the tests.

(b) Description of tests
The tests are summarised in fig. 2, which shows for each beam the positions of

the supports, loads and dial gauges used to measure deflections. Some lengths were
tested from each bar as continuous beams, while other lengths were tested as simply
supported in order to obtain direct measurements of the füll plastic moments. In
some ofthe tests on the continuous beams, the central support was set a certain depth
below the outer supports, and this is also indicated. Increasing loads were applied
simultaneously to both spans of all the continuous beams except beam C5, in which
span AD (see fig. 2) was loaded to collapse with only a small load on span DG. For
all beams, when collapse had oecurred in one span, the load on the other span was
further increased until it also collapsed.

The tests were performed in a dead-load testing frame, a füll description of which
has been given by Baker and Roderick (1942). The arrangement for testing the
continuous beam Cl is shown in fig. 3, in which A is the beam supported on knife-
edges and B is a block by means of which it is possible to adjust the height of the
central knife-edge. The load is applied by the levers C and D whose fulcra react
against the member E, while the dial gauges for measuring deflections are supported
on an independent frame of which F is a member. The simply supported beam CC7
was tested as shown in fig. 4, which also shows the linkage used to distribute the load
from the lever equally to four knife-edges acting on the upper surface of the beam.

During the tests, as long as the beams remained elastic, finite increments of load
were added at intervals of approximately two minutes, the dial gauges being read
between each increment. After the first signs of creep had been observed, the addition

of each load increment was delayed until no dial gauge showed a rate of increase
greater than 10~4 in. per minute. Loading was continued until collapse oecurred,
this being characterised by a large increase of deflection for a small increase of load.

(c) Test results
The test results for all the beams are summarised in Table I, and are grouped

according to the bar from which the beams were eut. The mean dimensions are
given in columns 3 and 4. In the case of the simply supported beams, the values of
the modulus of elasticity E calculated from the linear portions of the load deflection
curves are given in column 5. The values of E quoted for the continuous beams are
the mean of the values obtained for the simply supported beams eut from the same
bar. Column 6 gives the collapse loads. In the case of the continuous beams, the
mean of the values for the two spans is given; in no case did the difference between
these values exceed 3-3 %. Values of the füll plastic moments may be deduced from
the collapse loads by means ofthe simple plastic theory, giving the lower yield stresses
quoted in column 7 of Table I. Assuming that each bar is of uniform material, the
agreement between these stresses for beams eut from the same bar is a check on the
accuracy of the simple plastic theory. The percentage variations of these yield
stresses as compared with the average for the bar are given in column 9.

It has been shown by Heyman (to be published) that the assumption made in the
simple plastic theory that there is no restraint in directions perpendicular to the
longitudinal axis of a beam is invalidated in the vicinity of heavy load concentrations.
This tends to increase the füll plastic moment except where the maximum moment
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occurs uniformly over some length of the beam. This explains the lower than
average yield stresses obtained for beams CC3, CC6 and CC7 (Table I, column 7).
Roderick and Phillipps (1949) found that in their tests a satisfactory empirical allowance

could be made for this effect by assuming that collapse was delayed until the füll
plastic moment had been reached at a section a distance away from the concentrated
load equal to half the depth of the beam. The yield stresses fer all the beams
corresponding to this assumption are shown in column 10 of Table I, and the percentage
variations from the mean values for separate bars are given in column 12.

There does not appear, from the figures given in columns 9 and 12 of Table I, to
be any distinet advantage in aeeepting the complications introduced by Roderick
and Phillipps. In either case the agreement is as good as could reasonably be
expected, taking into aecount probable variations in yield stress in the bars. Ignoring
signs, the mean values of the percentage variations given in columns 9 and 12 are
1-87 and 1-18 respectively. The application ofthe "t" test for the difference between
means gives /= 1-646, corresponding to a probability of 0-12 that the difference
between the means is due entirely to random causes. The improvement achieved
with the second method of analysis, although discernible, is not therefore outstand-
ingly significant. In their tests on simply supported beams, Roderick and Phillipps
(1949) obtained much improved agreement by using this method, but it is to be
noted that while these investigators tested carefully heat-treated beams, the tests
here described were performed with the steel in the "as reeeived" condition.

In a further attempt to decide between the two methods of analysis, tension tests
were carried out on three specimens. Since the mean yield stresses given by the
second method (column 11, Table I) are lower than those given by the first (column 8),
it should thus be possible to reach some significant conclusion. The first two specimens

(CTl and CT2) were taken one from each end of beam C8, while the third
(CT3) was taken from one end of beam C9. The specimens had a gauge length of
2-00 in. and a diameter of 0-282 in., and were tested in the Quinney Autographic
Machine (see Quinney, 1938). The upper and lower yield stresses and the rates of
strain in the plastic ränge are given in Table II. Calculations show that, during the

Table II

Tension
Specimen

Upper Yield
Stress,

tons/in.2

Lower Yield
Stress,

tons/in.2

Rate of Strain
in Plastic

Range/sec.
IO"« X

CTl
CT2
CT3

22-48
19-53
22-31

17-99
17-32
1816

18-20
0-767

18-20

beam tests, the mean rate of strain in the extreme fibres of the most highly stressed
sections varied between 0-7 xlO-6 and 2-OxlO-6 per see. Hence the appropriate
lower yield stress for bar 4 (see fig. 1) would be about 17-40 tons/in.2 Since the
values obtained by the two methods of analysis were 17-84 and 16-60 tons/in.2
(columns 8 and 11 of Table I), the result is again inconclusive.

As an example of the load-defiection curves obtained, those for beams Cl and
C2 are presented in figs. 5 and 6 respectively. In the case of beam C2, a theoretical
load-deflection curve for dial gauges 3 and 5 has been calculated by means of the
simple plastic theory, and is seen to be in good agreement with the observed values.
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Fig. 6. Load-deflection curves for beam C2

In testing beams Cl, C4, C8 and CIO, the central support was set at such a distance
below the outer supports that yield stress under a sagging bending moment was
reached in the extreme fibres of the central section of the beam before contact
oecurred. As the loads on these beams were further increased, the central bending
moment first decreased to zero and then increased until at collapse füll plasticity
under a hogging bending moment oecurred over the central support. Simultaneously
the position of the maximum sagging moment moved along the beam, as can be seen
most clearly in the cases of beams C4 and C8. Thus in beam C4 (see fig. 2), a
certain amount of yield under sagging moment oecurred first at C and E, and finally
at B and F, where füll plastic moments developed at collapse. This may be traced
in the appearance of Lüders' wedges on the side face of part of beam C4 after testing
(fig. 7), in contrast to the absence of such wedges except at B and D on the face of
beam C3, for which the supports were initially level. It will be observed from
Table I that the sinking of the support and the oecurrence of Lüders' wedges along
the beam did not lead to any significant decrease in the carrying capacity of beam
C4 as compared with beam C3. Similar remarks apply to beam C8, in which the
maximum sagging moment moved first to sections E and G (see fig. 2), then to
sections D and H, until finally füll plastic moments were reached at collapse at
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sections C and I. The side faces of parts of beams C7 and C8 after testing are
compared in fig. 8. The theoretically deduced values of the moments at various sections
of beam C8 at all stages of loading up to the collapse load are shown in fig. 9, and
the progressive movement of the positions of the maximum sagging moments is

apparent.
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Fig. 9. Theoretical bending moment curves for beam C8

In test C5, the supports were at the same level, and equal loads of 0-50 tons were
applied to each span. The load on span DG (fig. 2) was then kept constant while
that on span AD was increased until collapse oecurred at 1-20 tons. Finally the
load on span DG was increased until this part of the beam also failed at a load of
1-25 tons.

3. Tests on fixed-ended beams

(a) Preparation of beams

The beams were all prepared from the same black mild-steel plate (dimensions
17 in. X 2 in-. X \ in.) by cutting longitudinally (in the direction of rolling) into
strips. The small size of the beams (\ in. x \ in. section) made it desirable to anneal
at 900° C. and cool in air in order to reduce some of the effects of rolling and work-
hardening. The beams were bent about axes perpendicular to the plane of the
original plate.

(b) Description of tests
The tests are summarised in fig. 10. The beams El-6 were tested over a span

of 6-0 in. between end fittings which provided moments of resistance proportional
to the rotations of the end sections of the beam. If a moment M lb. in. at the end
of a beam corresponded to a rotation of 6 radians, then 9=KM where K had the
values for each beam given in the second column of fig. 10. The simply supported
beams EC1 and EC2 had a span of 4-0 in. Fig. 10 shows the positions of the dial
gauge used to measure deflections and ofthe mirror gauges used to measure rotations.

Tests El, E2 and E3 were condueted to investigate the effect of various degrees
of end fixity. Beams E4, E5 and E6 were subjected to loads at several sections (1,
2, 3 in fig. 10) in turn, each load being just sufficient according to the simple theory,
to bring about collapse.

The arrangement for testing those beams which had the highest degree of end
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Fig. 10. Summary of tests on fixed-ended beams

fixity (beams El, E4, E5 and E6) is shown in fig. 11, the load being applied by a
chain acting through a yoke. The arrangement for testing beams E2 and E3 is
shown in fig. 12, the clamping blocks on the end fittings having been removed for
the sake of clarity.

During all the tests, load increments were made at approximately two-minute
intervals until creep was first observed. Before each subsequent increment, the rate
of creep on the dial gauge was allowed to drop to IO-4 in. during any two-minute
interval.

(c) Test results
Beams El, E2, E3, EC1 and EC2

The results are summarised in Table III, and columns 1 to 4 require no explanation.

The end-fixity constants for the partially fixed-ended beams are given in
column 5, from which it is possible to calculate the theoretical ratio of end to central
moments for a central point load in the elastic ränge (column 6). The collapse loads
are given in column 7, from which the lower yield stresses may be calculated by
means of the simple plastic theory (see Table III, column 7). The percentage
differences from the mean are given in column 10.

On the basis of the method suggested by Roderick and Phillipps for allowing for
load concentration, these same collapse loads give the yield stresses shown in
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Table III

1 2 3 4 5 6 7 8 9 10 11 12 13

Analysis by simple plastic Iheory Analysis in which allowance is

End Ratio ignoring the effect of load made for Ihe effect of load

Mean Mean
Estimated

Modulus of
Fixity

Constant
of End

Moment Collapse
concentration concentration

Beam
No. Width, Depth, Elasticity K, to Central Load, Lower

Mean
Lower
Yield

Stress,
tons/in.2

Mean
in. in. E, radians/ Moment lb. Lower Per cent Lower Per cent

tons/in.2 lb. in. in Elastic Yield
Stress,

tons/in.2

Yield DifferYield DifferIO"«

x Range Stress,
tons/in.2

ence Stress,
tons/in.2

ence

1 El 0-254 0-253 13,440 14-3 0-912 258 21-3 -3-4 20-4 -2-6
E2 0.-249 0-255 13,440 49-4 0-746 263 21-8 -1-2 20-9 -0-3

3 E3 0-250 0-256 13,440 148-6 0-490 269 220 22-1 -0-3 21-1 210 0-7
4 ECI 0-246 0-252 13,140 — — 199 22-8 3-4 21-4 2-2
5 EC2 0-247 0-250 13,730 — 194 22-4 1-5 210 0

300

Collapse load • 258 ib

Fig. 13. Load rota¬
tion curves for
beam El
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250

Mean rolalwn ofmirrors 1 ti*
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Fig. 14. Load rotation curves for beam E3
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column 11, and the percentage differences from the mean are given in column 13.
There is a certain improvement in the agreement between the yield stress values as

compared with those given in column 8.

Load rotation curves are given for beams El and E3 in figs. 13 and 14 respectively.
These curves do not indicate such definite collapse loads as obtained for the 1-in.
square beams described above. This may be due to strain hardening, and in order
to obtain a consistent interpretation of test results, the collapse loads have been
determined as follows.

Taking the value for the modulus of elasticity given in column 4 of Table III, and
assuming some value for the collapse load, it is possible to calculate by means of the
simple plastic theory of bending the rotation at any section of the beam when it is
just about to collapse. Then the relationship between the assumed collapse load and
the rotation is obtained as a straight line Ol (figs. 13 and 14), and the collapse load
is taken as the intersection of this line with the experimental load rotation curve.
The figure quoted for any beam in column 7 of Table III is the mean of the three
values obtained from the central deflection and the two pairs of mirrors (Mu Ms, and
M2, M3).

In the case of beam El, the end moments were in the elastic ränge almost equal
to the central moments (see column 6 of Table III), and the füll plastic moment was
reached at all three sections at practically the same load. With beam E3, however,
the end moments were in the elastic ränge less than half the central moment, and
the load rotation curves (fig. 14) indicate that füll plastic moment was reached at
the centre at a load of about 200 lb. Thereafter the rotations increased almost
linearly with load up to 255 Ib., soon after which füll plastic moments developed at
the ends and collapse oecurred.

Beams E4, E5 and E6

The results for beams E4, E5 and E6 are summarised in Tables IV and V. Sufficient

load was applied successively to the three loading positions (see fig. 10) to
produce füll plastic moments at the ends and under the load. Values of the lower yield
stress calculated on the basis of the simple plastic theory are given in column 8 of
Table IV.

Table IV

1 j 2 3 4 5 6 7 8

Beam
No.

Estimated
Modulus
of
Elasticity, E,
tons/in.2

End Fixity
Constant K,

radians/lb. in.
IO"' x

Order of
Loading

Positions

Maximum Load Actually
Applied

Width,
in.

Depth,
in. Load,

Ib.

Corresponding
Lower Yield

Stress,
tons/in.2

1

2
3

E4 0-249 0-255 13,440 14-3 C
D

1 E

2600
292-5
292-5

21-5
21 5

21-5

4
5

6

E5 0-248 0-253 13,440 14-3 ' D
E
C

287-5
287-5
255-6

21-6
21-6
21-6

7
8

9

E6

•

0-247 0-254
i

|

13,440 14-3 D
C
E

285-0
253-3
2850

21-3
21-3
21-3
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Table V

1 2 3 4 5 6 7 8 9

Beam
No. Quantity Unit

Ist Load Position 2nd Load Position 3rd Load Position

Observed
Calculated

Value at Observed
Calculated
Value at Observed

Calculated
Value at

Maximum Collapse Maximum Collapse Maximum Collapse

1 E4 Central
deflection

in. x 10-3 600 45-5 661 87-2 89-7 1000

2 Rotation B, radiansx IO-3 181 13-6 30-9 46-4 28-7 31-6
3 h 18-8 13 6 22-7 39-4 101 150
4 03 17-5 13 6 40 150 29-7 39-4
5 „ *4 »» 18-4 13-6 220 22-9 46-5 53-5

6 E5 Central
deflection

in. x 10-3 50 1 631 71-3 83-7 83-5 86-3

7 Rotation 6\ radiansx I0~3 29-2 39-6 26-8 29-7 32-8 32-5
8 h 31-4 39-6 7-5 151 11-3 13-7

9 03 9-3 151 27-1 39-6 12-5 13-7
10 04 " 12-2 151 35-6 441 33-9 35-2

11 E6 Central
defleclion

in. X IO"3 50-3 62-1 66-2 65-8 77-9 94-2

12 Rotation 0\ radiansx 10 •> 28-1 390 27-4 27-6 27-2 31-5
13 02 31-4 390 14-3 13-5 7-8 149
14 03 100 14-9 110 13-5 25-4 390
15 04 » 11-7 14-9 20-5 17-8 36-5 491

w
m

<
O
c
O

oo
z
ä

o
c
t/n

>
Z
D

m
Z
D
m
D
03
m
>
2

Ov



162 AI 3—M. R. HÖRNE

It is possible by means of the simple plastic theory to calculate the theoretical
deflections and rotations at collapse for the various positions of the load. These
calculated values are compared with those observed in Table V. The rotations 0lt
02, 03 and 04 refer respectively to mirrors Mu M2, M3 and M4. Except for the first
loading position practically all the observed deflections and rotations are less than
the calculated values. Hence the ability of a beam to sustain a given ultimate load
is not adversely affected by the attainment of the füll plastic moment at various
sections due to other critical load distributions. This is true whatever the order in
which the loads are applied.

Tension tests

Tension tests were performed on four specimens, of diameter 0-178 in. and gauge
length 0-70 in., in a Hounsfield Tensometer. Specimens ETI and ET2 were eut from
the ends of beam E2 after testing, and specimens ET3 and ET4 were eut from the ends

of beam E6. The upper and lower yield stresses obtained are given in Table VI.

Table VI

Tension
Specimen

Upper Yield
Stress,

tons/in.2

Lower Yield
Stress,

tons/in.2

ETI 21-68 20-88

ET2 21-57 20-57

ET3 22-70 20-56

ET4 21-08 20-17
1

The lower yield stresses are in good agreement with each other, and have a mean
value of 20-54 tons/in.2 Considering beams El, E2, E3, EC1 and EC2 (see Table III),
the method of analysis suggested by Roderick and Phillipps gives a mean yield stress
in closer agreement with the yield stress from the tension tests than is obtained when
the simple plastic theory is applied.

4. Conclusions
The general agreement between the values of the lower yield stress calculated from

the collapse loads for both the continuous and the fixed-ended beams is satisfactory
and shows that the simple plastic theory gives predictions of the collapse loads of
such beams with sufficient accuracy for practical purposes. The method of allowing
for stress concentration suggested by Roderick and Phillipps (1949) does not lead to
any distinet improvement for the continuous beams, but does lead to slightly better
agreement for the fixed-ended beams. The tension tests carried out in connexion
with the continuous beams did not establish any conclusive results, but with the
fixed-ended beams tension tests favoured the method of Roderick and Phillipps.

The tests on the continuous beams confirm that the predictions of the plastic
theory are not upset by sinking of supports, even if sinking is sufficient to cause yield
in the beam. The plastic theory is equally successful for all the load distributions
investigated, and the failure of one span does not decrease the ultimate carrying
capacity of an adjacent span.
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The tests on the fixed-ended beams show that ultimate carrying capacity is
independent of the degree of rigidity of the end connections as long as these are capable
of resisting the füll plastic moment. The carrying capacity is not adversely affected
when füll plastic moments are produced at a number of sections by different successive
load distributions, and this is true whatever the order in which the loads are applied.

The work described in this paper was carried out at the Engineering Laboratory,
Cambridge University, and forms part of a general investigation into the behaviour
of rigid-frame structures under the direction of Professor J. F. Baker, Head of the
Department of Engineering.
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Summary

According to the simple plastic theory, the collapse loads of mild-steel continuous
and fixed-ended beams may be calculated by considering merely the requirements of
equilibrium in relation to the external loads and the füll plastic moments of resistance
of the beams. It follows that sinking of supports, order of loading and degree of
end fixity should have no influence on such collapse loads. In order to check these
deductions, tests were performed on i-m..square beams continuous over two spans
and on £-in. square single-span beams provided with varying degrees of end fixity.
The influence of various types of loading and of varying Orders of application of the
loads were investigated. Control tests were performed on similar simply supported
members, and tension tests carried out at controlled rates of strain on material taken
from unyielded sections of the beams.

The results give consistent conürmation of the simple plastic theory, and show
conclusively that the collapse loads may be calculated with sufficient accuracy for
practical purposes by this means. During the loading of a continuous beam in which
one support is initially lower than the others, there is, according to the simple plastic
theory, a progressive movement of the sections of maximum sagging moments along
the beam. This is demonstrated in the tests by the appearance of Lüders' wedges

on the polished surfaces of the f-in. square beams.
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Resume

Suivant la theorie simple de la plasticite, les charges de rupture des poutres en
acier doux, continues ou encastrees ä leurs extremites, peuvent etre calculees par
simple consideration des exigences d'equilibre correlativement aux charges exterieures
et aux pleins moments plastiques de resistance des poutres. II en resulte que l'af-
faissement des appuis, l'ordre de mise en charge et le degre de rigidite aux extremites
ne doivent exercer aucune influence sur ces charges de rupture. Pour verifier ces
deductions, des essais ont ete effectues sur des poutres carrees de i in. (22,2 mm.),
continues sur deux portees, ainsi que sur des poutres carrees de i in. (6,35 mm.) sur
portee simple, avec differents degres de rigidite aux extremites. On a etudie
l'influence de divers types de charges et de divers ordres de mise en charge. Des essais
ont ete effectues, ä titre de contröle, sur des elements simplement poses sur leur
appuis; on a egalement procede ä des essais de traction, sous des taux de tension
contröles, sur des eprouvettes prelevees sur des sections n'ayant subi aucune deformation.

Les resultats obtenus fournissent une bonne confirmation de la theorie simple de
la plasticite et montrent d'une maniere concluante que les charges de rupture peuvent
etre calculees avec une precision süffisante pour les besoins de la pratique, d'apres la
methode ci-dessus. Au cours de la mise en charge d'une poutre continue dont un
appui est initialement plus bas que les autres, il se produit, suivant la theorie simple
de la plasticite, un deplacement progressif des sections presentant les moments
maxima d'affaissement, le long de la poutre. Ceci est mis en evidence, au cours des
essais, par l'apparition de figures de Luders sur les surfaces polies des poutres carrees
de ¦§¦ in.

Zusammenfassung

Nach der einfachen Plastizitätstheorie können die Bruchlasten von durchlaufenden
und eingespannten Balken aus Flusstahl allein aus der Betrachtung der
Gleichgewichtsbedingungen bezüglich der äusseren Lasten und der vollen plastischen
Widerstandsmomente der Balken berechnet werden. Es folgt daraus, dass
Auflagersenkungen, Lastanordnung und Einspannungsgrad keinen Einfluss auf solche Bruchlasten

haben sollten. Zur Ueberprüfung dieser Feststellungen wurden Versuche an
über zwei Felder durchlaufenden, i in. (22,2 mm.) starken und an einfeldrigen,
verschieden stark eingespannten, i in. (6,35 mm.) starken Rechteck-Balken durchgeführt.
Die Einflüsse verschiedener Arten von Lasten und verschiedener Formen der Last-
Aufbringung wurden untersucht. Zur Kontrolle wurden Untersuchungen an
entsprechenden einfach gelagerten Balken gemacht und unter kontrollierten Spannungen
Zugversuche an Material aus unverformten Trägerteilen ausgeführt.

Die ermittelten Resultate bedeuten eine gute Bestätigung der einfachen
Plastizitätstheorie und zeigen überzeugend, dass die Bruchlasten mit für praktische Bedürfnisse

genügender Genauigkeit nach dieser Methode berechnet werden können.
Während der Belastung eines durchlaufenden Balkens, bei dem ein Auflager von
Anfang an tiefer liegt als die anderen, ergibt sich, in Uebereinstimmung mit der
einfachen Plastizitätstheorie, entlang dem Balken ein fortlaufendes Fliessen der Zonen
grösster Momentenbeanspruchung infolge Einsenkung. Dies zeigt sich im Versuch
durch das Auftreten von Fliessfiguren von Lüders auf den polierten Oberflächen der
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