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Al3

The calculation of plastic collapse loads for plane frames
Le calcul des charges plasﬁques de rupture des cadres plans

Die Berechnung der plastischen Brucklasten ebener Rahmentragwerke

B. G. NEAL and P. S. SYMONDS
Engineering Department, Cambridge University Brown University, Providence, R.1., U.S.A.
INTRODUCTION

Plastic design methods have been developed with a view to providing a more
rational and economical approach to the design of framed structures whose members
possess a high degree of ductility.! The methods are applicable to cases in which the
members of a frame possess a relation between bending moment and curvature of the
form illustrated in fig. 1. The important features of this type of relation are:

(1) If the curvature increases indefinitely, Bending
the bending moment tends to a limiting value HMoment
4+ M), termed the fully plastic moment, re-
gardless of the previous history of loading.

(i) An increase of curvature is always
accompanied by an increase of bending mo-
ment of the same sign, unless the bending
moment has attained its fully plastic value.

./

The behaviour of mild steel beams con- Curvalure
forms quite closely to these assumptions, and
experimental investigations have confirmed
the validity of applying plastic methods of Ly
design to framed structures of mild steel.z — =——=_ - -M,
As yet, little consideration has been given to
the possibility of applying the plastic methods Fig. 1

1 For references see end of paper,
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to framed structures of other ductile materials, such as certain of the light alloys.

When the fully plastic moment is attained at a particular cross-section of a member,
the curvature at this cross-section is indefinitely large, so that a finite change of slope
can occur over an indefinitely short length of the member at this cross-section. The
member therefore behaves as though a hinge existed at this cross-section, rotation of
the hinge being possible only when resisted by the fully plastic moment. This con-
cept of a plastic hinge was first introduced by Maier-Leibnitz,3 and it is of great value
in considering the behaviour of framed structures under load.

For the sake of simplicity, consider first a framed structure subjected to several
loads, each load maintaining the same proportion to each of the other loads. If the
loads are steadily increased, the structure will first support the loads by wholly elastic
action. Eventually a plastic hinge will form at the most highly stressed cross-section.
If the loads are increased still further, this plastic hinge will rotate under a constant
bending moment, its fully plastic moment, and further plastic hinges will form and
rotate in other parts of the structure. Finally, a condition will be reached in which a
sufficient number of plastic hinges have formed to transform the structure into a
mechanism. The structure will then continue to deform to an indefinite extent while
the loads remain constant, until the geometry of the structure is changed appreciably.
Such changes may either check the growth of the deflections, or cause a catastrophic
collapse by accentuating the effects of the loads. In practice, strain-hardening also
checks the growth of deflections. The theoretical condition of indefinite growth of
deflection under constant loads is termed plastic collapse.

The methods of plastic design are used in conjunction with a load factor. The
structure is designed so that the most unfavourable combination of the working loads,
when multiplied by the chosen load factor, would just cause a failure by plastic col-
lapse. This procedure is justifiable even when the loads do not necessarily maintain
the same proportions to one another, for it has been shown that plastic collapse of a
structure will occur at the same set of loads regardless of the sequence in which the
individual loads were brought up to their collapse values. It is clear that the load
factor has a very precise meaning in plastic design, for it represents the margin of
safety which is provided against an actual physical failure of the structure.

Several methods for computing plastic collapse loads have been suggested.4 S
- These methods have been capable, in principle, of determining plastic collapse loads
for framed structures of any degree of complexity. In practice, however, their appli-
cation has been limited by the amount of time required for the necessary computations.
In the present paper a method is presented which enables plastic collapse loads and
their corresponding mechanisms to be determined very simply. The method con-
sists essentially of building up the actual collapse mechanism from a certain number
of independent components, which are termed the independent partial collapse
mechanisms. Corresponding to any mechanism which is being investigated, a value
can be found for the applied load by applying the Principle of Virtual Work.6 It
has been shown that the correct collapse mechanism is the one to which there cor-
responds the smallest possible value.of the applied load. The method consists
therefore of combining the independent partial collapse mechanisms in a systematic
manner in order to reduce the corresponding value of the applied load to its least
possible value. In order to explain and justify the method, a simple example will
first be discussed. Detailed calculations will then be given for a single-bay pitched-
roof portal frame, and the calculations for a three-bay pitched-roof portal frame will
also be outlined. Calculations for a two-bay three-storey rectangular frame have
been given elsewhere.?
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SIMPLE ILLUSTRATIVE EXAMPLE

The rectangular portal frame shown in fig. 2 will be used as a basis for the dis-
cussion of the method. All the joints of this frame are assumed to be rigid, and the
feet of the stanchions are rigidly built in. The dimen-

sions of the frame are as shown, and horizontal and W
vertical loads W are applied at the positions indicated DR DU S
in the figure. The fully plastic moment of each mem- 2 21 s
ber is M,, and the problem is to find the value of W 4 _f_’ e ——— == 3
which causes failure by plastic collapse. . ! : :
For this particular type of structure it is known _L | !
that there are only three possible collapse mechanisms, | ) 7»;
and these mechanisms are shown in figs. 3(a), 3 (b) Fig. 2

and 3(c). In these figures the magnitudes of the plastic

hinge rotations are all shown in terms of a single parameter §. For reference,
the signs of the plastic hinge rotations are also given, although in the technique to
be described there is no need to take account of these signs. The sign convention
adopted is that a hinge rotation is positive if the hinge is opening when viewed from
inside the frame.

==

Fig. 3(b)

For each mechanism it is possible to cal-
culate a corresponding value of W by ap-
plying the principle of virtual work in the
special form that the virtual work done by
the applied loads during a small displacement
of the mechanism is equal to the virtual work
absorbed in the plastic hinges. Considering

Fig. 3(c) the mechanism of fig. 3(a), for example, it is

seen that during the small mechanism dis-

placement shown, the horizontal load W does no work and the vertical load W,

displaced through a distance /6, does virtual work WI/0. To calculate the virtual

work absorbed in the plastic hinges, it is noted that the work absorbed in any in-

dividual hinge is always positive. Since the fully plastic moment is M, everywhere

in the frame, the virtual work absorbed in the plastic hinges is at once seen to be

40M,, since the total rotation of all the plastic hinges is 46. Applying the principle
of virtual work: ’

WId=46M,, or W=4£I”. A ¢)



78 Al3—B. G. NEAL AND P. S. SYMONDS

Similar calculations for the mechanisms of figs. 3(b) and 3(c¢) are readily made.
The results of these calculations are:

M,

fig. 3(b): Wi6=40M,, or W=4—l” s ¢ 8 » m 3 = &)
| M,

fig. 3(c): 2WI=60Mp, or W=3—" . . . . . . . (3

The correct collapse mechanism can now be distinguished by applying what has been
termed the kinematic principle of plastic collapse.6: 8 This principle states that: ** For
a given frame and loading, the correct collapse mechanism is the mechanism to which
there corresponds the smallest possible value of the applied loads.” For the parti-
cular problem of fig. 2, it follows that the actual collapse mechanism is the mechanism
shown in fig. 3(c), which yields the lowest value of W, namely 3Mf,/I.

Examination of figs. 3(a), 3(b) and 3(c) reveals the fact that the mechanism of
fig. 3(c) is a direct combination of the mechanisms of figs. 3(a) and 3(b), in the sense
that the displacements and plastic hinge rotations of this mechanism are obtained by
summing the corresponding quantities for the mechanisms of figs. 3(a) and 3(5).
In fact, as will be seen later, these latter two mechanisms are the independent partial
collapse mechanisms for this structure and loading. In general, all possible collapse
mechanisms can be formed by combining the independent partial collapse mechanisms.
In the simple problem under consideration there is, of course, only one possible com-
bination to be investigated.

The particular feature of the combination of the independent mechanisms of
figs. 3(a) and 3() which is of interest is that for both these mechanisms the correspond-
ing value of W was 4M,/l, whereas for the mechanism of fig. 3(¢) which resulted from
their combination the value of W was only 3M,/l. This reduction of W is due to the
cancellation of the plastic hinge at the cross-section 2 which occurs when the
mechanisms are combined. When the two mechanisms are superposed, the virtual
work done by the loads in each case may be added to obtain the virtual work done in
the resulting mechanism. However, to obtain the virtual work absorbed in the
plastic hinges in the resulting mechanism, work 26/, must be subtracted from the
sum of the virtual work absorbed in the two independent mechanisms. This is to
account for the term 8M, which was included in the virtual work absorbed in each of
these mechanisms for the plastic hinge at the cross-section 2, which disappears as a
result of the superposition. The virtual work equation for the resulting mechanism
is thus obtained by adding equations (1) and (2), and subtracting 20M, from the
resulting work absorbed in the plastic hinges, giving:

WIe+ Wi0=40M,+40M,—20M,
or 2WIG=60M),

which was previously obtained as equation (3).

In general, the technique for combining the independent mechanisms thus con-
sists in selecting pairs of independent mechanisms which themselves yield low values
of W, and which can be combined so as to cancel a plastic hinge. Such a combination
may, as has been seen, result in a value for W which is lower than the value correspond-
ing to either of the mechanisms which were combined. Even in complicated problems,
the combinations to be tried are usually small in number, so that a solution can be
obtained with great rapidity.

It is, of course, essential to start an analysis with the correct number of independent
mechanisms. In fact, the number of independent mechanisms is always equal to the
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number of independent equations of equilibrium for the frame. To justify this
statement, it is necessary to consider the statics of the illustrative example of fig. 2,
although it should be stressed that in actual applications of the technique there is no
need to write down the equations of equilibrium. However, it is recommended that
solutions should always be checked by statics, making use of the principle of uniqueness
of solution,® 8 which states that: *“ If a sufficient number of plastic hinges occur in a
frame to transform the frame into a mechanism, and if a bending moment diagram
can be constructed for the frame in which the fully plastic moment occurs at each
plastic hinge position, then the corresponding load is the correct collapse load if the
fully plastic moment is not exceeded anywhere in the frame.”
Examples of this form of check are given later in the paper.

The equations of equilibrium

The equations of equilibrium for the frame illustrated in fig. 2 are written down
most conveniently in terms of the bending moments at the five cross-sections numbered
from 1 to 5 in fig. 2. It will be seen from this figure that when these five bending
moments are known, the bending moment distribution for the entire frame is deter-
mined, for between any adjacent pair of these cross-sections the shear force is constant,
so that the bending moment must vary linearly along the length of the member.
These five bending moments are denoted by M, M,, . . . M5, the suffix indicating the
relevant cross-section. The sign convention adopted for these bending moments is
that a positive bending moment causes tension in the fibres of a member adjacent to
the dotted line in fig. 2.

This frame has three redundancies, for if a cut is imagined to be made at section 1,
for example, and the values of the shear force, thrust and bending moment at this
section are known, the entire frame becomes statically determinate. These three
quantities can therefore be regarded as the redundancies of the frame. Since there
are five unknown bending moments, it follows that there must be two independent
equations of equilibrium.

The first of these equations of equilibrium expresses the fact that the vertical load
W is carried by the shear forces in the horizontal member 234. Fig. 4 shows the

Fig. 4

relevant forces and bending moments, the load W being carried by a shear force V in
the member 23 and a shear force W —V in the member 34. Taking moments for the
equilibrium of the members 23 and 34, it is found that

M3;—M,=VI

My;—M,=(W-V)l
On adding these equations to eliminate ¥, it is found that

IMy—Mo,—My=WI1 . . . . . . . . @
In a similar way, an equation expressing the fact that the horizontal load W is carried



80 Al 3—B. G. NEAL AND P. S. SYMONDS

By the shear forces in the vertical members 12 and 45 may be found. This equation
is
Mz—M1+M5'—M4= Wl . . . - . . . . (5)
Equations (4) and (5) constitute the two independent equations of equilibrium.
In the mechanism of fig. 3(a) plastic hinges have formed at the cross-sections 2, 3
and 4, so that the magnitude of the bending moment at each of these cross-sections is
M,. Having regard to the sign convention, these bending moments are

M2=—Mp, M3=Mp, M4=—Mp

When these values are substituted in equation (4), a value for W is immediately found,
this value being W=4M,/l.

It will be seen that the mechanism of fig. 3(a) corresponds to equation (4) in the
special sense that in this mechanism each of the bending moments appearing in
equation (4) takes on its fully plastic value, and that the sign of each bending moment
is such as to give rise to the largest possible value of W. In a similar way, the
mechanism of fig. 3(b) may be said to correspond to equation (5). If each of the
bending moments appearing in equation (5) is given its fully plastic value, and the
sign of each bending moment is such that the largest value of W is obtained, the
following values are found:

M1=—Mp, M2=Mp, M4=—Mp, M5=Mp_

These are the fully plastic moments appearing in the mechanism of fig. 3(b).

To generalise, it may be said that any mechanism corresponds in this special sense
to a particular equation of equilibrium. It follows that for any particular frame and
loading the number of independent mechanisms will be equal to the number of
independent equations of equilibrium. In the particular example under considera-
tion there are only two independent equations of equilibrium, namely equations (4)
and (5) and any other equation of equilibrium must be obtainable by combining
these two equations. Correspondingly, it follows that any possible mechanism will
be found to be a combination of the mechanisms of figs. 3(¢) and 3(b). In this
particular example, there is only one possible combination of these mechanisms,
which is illustrated in fig. 3(c). The equation of equilibrium which corresponds to
this mechanism is obtained by adding equations (4) and (5) so as to eliminate Mz,
giving

2M3—M1"2M4+M5=2Wl . . . . . . . (6)

This addition corresponds to the superposition of the mechanisms of figs. 3(a) and
3(b). The bending moments at the plastic hinges may be seen from this equation,
or from the mechanism of fig. 3(c), to be

My=—-M, M=M, M,=—M, Ms=M,

and the corresponding value of W is 3M,/l.

For convenience of discussion, the loads have previously been referred to as the
yariables, whereas in an actual design the loads will be given quantities and the
problem is to find the required fully plastic moments of the members. When viewed
in this light, the problem just discussed amounts to determining the greatest value of
M, rather than the least value of W, corresponding to any possible mechanism, for
it is the quantity WI/M, which is determined for any particular mechanism by a
virtual work analysm, and minimising W for given values of M, and / amounts to
maximising M, for given values of W and /.
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To summarise, then, the proposed method is as follows:

(1) Determine the correct number of independent mechanisms by calculating
the number of independent equations of equilibrium.

(2) Calculate the required values of the fully plastic moments of the members
by virtual work for these independent mechanisms.

(3) Investigate combinations of these mechanisms so as to maximise the
required fully plastic moments.

(4) Check the solution by constructing a bending moment diagram.

An application of the method to a single-bay pitched-roof portal frame will now
be given in detail, followed by a brief indication of the application of the method to a
three-bay pitched-roof portal frame.

PITCHED-ROOF PORTAL DESIGN

As an illustration of the practical application of the proposed method of design,
typical calculations for a pitched-roof portal frame will now be given. The dimen-
sions of the frame are as indicated in fig. 5,
the roof slope being 221°. The working 076+ r5zt
loads on the frame are also shown in fig.
5. These working loads, which are given
in tons, are assumed to be spread uniformly
over the purlins and sheeting rails shown
in the figure. Of these loads, the vertical
loads of 2-61 tons, acting on each rafter,
are due to dead and superimposed (snow)
lIoads, and the remaining loads are wind
pressures and suctions. The frame is to Fig. 5
be designed to a load factor of 1-75 for the
case in which only the dead and superimposed loads are acting, and to a load factor
of 1-4 for the case in which the wind loads are also acting. Each member of the
frame will be taken to have the same cross-section, with a fully plastic moment M,

besign for dead, superimposed and wind loads

The first design case which will be considered is the design to a load factor of 1-4
for the case in which the wind loads are acting in conjunction with the dead and
superimposed loads. The first step is to decide how many independent partial col-
lapse mechanisms must be considered. The number of such mechanisms for any’
given frame and loading has been shown to be equal to the number of independent
equations of equilibrium. It is therefore necessary to calculate the number of
independent equations of equilibrium, and this is done most conveniently by counting
the number of bending moments which are needed to specify the bending moment
distribution for the entire frame and subtracting the number of redundancies.

For each of the four members of the frame, the loads will be assumed to be
uniformly distributed, so that the distribution of bending moment is parabolic. Each
parabola will be completely specified if the values of the bending moment at three
sections are known. These three sections are chosen most conveniently for the
present purpose as the two end sections and the central section in each member. It
follows that the bending moment distribution for the entire frame will be specified

completely by the values of the bending moments at the nine cross-sections numbered
C.R.—6
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from 1 to 9 in fig. 5. This frame has three redundancies, and so there must be six
independent equations of equilibrium.

It follows that there must be six independent partial collapse mechanisms. These
mechanisms are illustrated in figs. 6-11, inclusive. It will be seen that the mechanisms
of figs. 6, 7, 8 and 9.are merely simple beam failure mechanisms, and fig. 10 shows a
simple sidesway mechanism. If it were not known that there must be six independent
mechanisms, it might be concluded that these five mechanisms constituted the inde-
pendent partial collapse mechanisms, and thus a calculation of the correct number of
independent mechanisms is a vital preliminary operation in the analysis. However,
a sixth independent mechanism must be selected, and the most convenient choice is
the mechanism shown in fig. 11. 1In each figure the rotation of each plastic hinge is
given in terms of a single variable §. There is no need to consider the signs of the
plastic hinge rotations, since the virtual work absorbed in a plastic hinge is always
positive. However, for convenience in the later stages of the calculations when the
solution is checked by statics, the signs of the plastic hinge rotations are also given,
the sign convention being that a hinge rotation is positive if the joint is opening when
viewed from within the portal.

In the simple beam failure mechanisms of figs. 6, 7, 8 and 9, the plastic hinges
within the spans are all shown as occurring at mid-span. However, the loads on
these spans are all assumed to be uniformly distributed in the first instance, so that
these plastic hinges might occur anywhere within the spans. This is because a
plastic hinge within a span must occur at a position of maximum bending moment,
and the positions at which the maximum bending moments occur are not known until
a later stage in the analysis. However, in the preliminary calculations it is con-
venient to take these plastic hinges as occurring in mid-span.

Now consider the mechanism of fig. 6. For the hinge rotations shown, the
plastic hinge at mid-span moves through a distance 66 ft. The average displacement
of the uniformly distributed load of 0-94 tons is therefore 36 ft., so that the virtual
work done by this load, taking into account the load factor of 1-4,1s 0-94 . 1-4 . 360 tons-
ft. The total plastic hinge rotation involved in the mechanism is 46, so that the
virtual work absorbed in the plastic hinges is 46M,. Applying the principle of
virtual work, it is found that

40M,=0-94 . 1-4 . 36=3-950
M,=0-99 tons-ft. 5 KB . « {D
The virtual work equation for the mechanism of fig. 7 is precnsely the same as

) &
— - p29-1- , "
T K
Fig. 6 Fig. 7

equation (7). Corresponding virtual work equations may be written down at once -
for the mechanisms of figs. 8 and 9. These equations are:

fig. 8: 40M ,=1-4[2:61 . 4-50—0-76 . 4-870]=11-30
M—283tonsft 3 & I €]
fig. 9: 40M,=1-4[2-61 . 4:50—1-52 . 4 870] =6-084

M—-152tonsft i e e m e m e e e e e {9)
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The geometry of the sidesway mechanism of fig. 10 is also simple. Each side load of
0-94 tons moves through an average distance of 68 ft., and the entire roof moves
laterally through a distance 126 ft. The virtual work equation is

46M,=1-4[2 . 0-94 . 6640-76 sin 224° . 120]=20-76
M,=518%onsft: .« « « » s » » » » » # » wu (10

The geometry of the mechanism of fig. 11 is a little more complicated. If the hinge
at joint 3 rotated through an angle —6 while the joint 5 remained rigid, joint 7 would

07+ 152+

ﬂﬂ 74F7

§74fF
v

Fig. 8 Fig. 9
a7t 152+
s
J l—z'zw
2671 -0—927

1248 g

Fig. 10 - Fig. 11

move downwards through a distance 364 ft. Since there can be no downwards motion
of joint 7 for a small displacement of the mechanism, it follows that the hinge at
joint 5 must rotate through an angle 366/18=20 so as to reduce the vertical displace-
ment of joint 7 to zero. This hinge rotation causes a horizontal displacement of
joint 7 through a distance 26 . 7-45=14-99 ft., so that the rotation of the hinge at
joint 9 is 14-96/12=1-248. The hinge rotation at joint 7 is then seen to be—2-246,
and it is found that the centre of the member 57 moves 11-28 ft. to the right and 96 ft.
downwards. The virtual work equation for this mechanism may now be written
down as follows:
6-480M,=1-4[2.2:61 . 96—0-76 . 9-7404-1-52 sin 224° . 11-26
—1-52 cos 224° . 90+40-94 . 7-450]
=56-60
M,=873tons-ft. . . . . . . . . . . . o . . . (1D

Among the six independent partial collapse mecha-
nisms, the highest values of M, are thus 5-18 tons-ft.
and 873 tons-ft. for the mechanisms of figs. 10 and 11,
respectively. The next step is thus to investigate the
combination of these two mechanisms. It is seen
that if the mechanism of fig. 10 is superposed on the
mechanism of fig. 11, the rotation of the hinge at joint Fig. 12
3 is cancelled, so that the resulting mechanism is as
shownin fig. 12. The virtual work equation for this mechanism is obtained by adding
equations (10) and (11), and subtracting 26M, from the resulting virtual work
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absorbed in the plastic hinges, since a term #M,, was included in each of these equa-
tions for the plastic hinge at joint 3. The virtual work equation is thus:

(4+6-48—2)6M,=20-70456-60
8-480M,=77-30
M,=9-12 tons-ft. s & s o8 s (l2)

The highest value of M), obtained from the other four independent mechanisms of
figs. 6, 7, 8 and 9 was 2-83 tons-ft. for the mechanism of fig. 8, and it is readily seen
that- there is no possible combination of these mechanisms with the mechanism of
fig. 12 which will result in a further increase in the value of M,. It is therefore con-
cluded that the mechanism of fig. 12 is the actual collapse mechanism, subject to the
proviso that no consideration has yet been given to the possibility of the occurrence
of plastic hinges at positions other than those numbered from 1 to 9 in fig. 5. When
this solution is checked by statics it will, in fact, be found that the plastic hinge shown
at the apex of the roof in fig. 12 should be located somewhat to the left of the apex.

Check by statics

The solution can be checked by constructing a bending moment diagram for the
frame. If the fully plastic moment is not exceeded at any cross-section, the solution
is correct. The actual bending moment at a cross-section may be regarded as the
sum of the ““free bending moment,” produced in the frame by the applied loads when
a cut has been made at some cross-section so as to render the frame statically deter-
minate, and the “redundant bending moment” produced in the frame by the three
redundancies. For convenience, the form of the redundant bending moment diagram
will be considered first. '

The three redundancies may be taken as the
bending moments, M, and M,, at the feet of the
vertical members, and the horizontal thrust #,
as in fig. 13. With no external loads acting on
the structure, the vertical reactions at the feet of
the vertical members would be equal and oppo-
site, and of magnitude (M| — M,)/36 as shown in
the figure. In drawing the bending moment
diagrams, the sign convention will be that a
positive bending moment will cause a member
to sag inwards, and thus to produce tension in
the flange of the member which is adjacent to
the dotted line in fig. 13. With the redundancies as shown in this figure, the
redundant bending moment diagram is thus of the form indicated in fig. 14, in which
the members of the frame have been redrawn to a horizontal base, and positive
bending moments are plotted as ordinates below this base. In fig. 14 the dotted line

Fig. 13
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indicates the form of the redundant bending moment diagram for the case in which H
is zero, and the full line indicates the effect of superposing the bending moment dia-
gram for the case in which H acts alone.

The free bending moment diagram refers to the bendmg moments produced in
the frame by the applied loads when a cut is made at any arbitrary cross-section. The
most convenient choice of cross-section for this purpose is the roof apex. Fig. 15
shows the free bending moment diagram, consisting of three parabolas, which is
obtained in this way, the loads having been multiplied by the load factor of 1-4.

10
Seale

\/ (fonsft) | 5

2-8f/
Fig. 15

The collapse mechanism of fig. 12 has four plastic hinges at the cross-sections 1, 5,
7 and 9, so that at these cross-sections the bending moment has its fully plastic value,
which was found to be 91 tons-ft. To check the solution, it must be verified that a
diagram of actual bending moments can be constructed in which the bending moment
has the value 9-1 tons-ft. at these four cross-sections, and does not exceed this value
at any other cross-section in the frame. Now the actual bending moment is equal to
the sum of the free and redundant bending moments, so that if a redundant bending
moment diagram is drawn in fig. 15 with the signs of the bending moments changed,
the actual bending moment will be represented by the difference in ordinate between
this diagram and the free bending moment diagram. The appropriate diagram is
shown in fig. 15 as ABCDE.

The construction for this diagram is to lay off from the free bending moment
diagram the calculated fully plastic moment of 9-1 tons-ft., with appropriate sign, at
the four cross-sections 1, 5, 7and 9. This gives the four points A, C, D and E on the
redundant bending moment diagram. Referring to fig. 14, it is seen that the point B
may then be plotted by making the slope of AB equal in magnitude to the slope of
DE, but of opposite sign. A check can then be made by observing that the vertical
intercept between C and the dotted line in fig. 15is 19-45 H, whereas the corresponding
intercept at D is 12 H. These intercepts both correspond to a value of H of 0-05 tons,
thus checking the solution. However, it will be seen that although the bending
moment at the cross-section 3 is less than the calculated fully plastic moment of
9-1 tons ft., a higher value of the bending moment occurs at a distance of 2-8 ft. along
the left-hand rafter member from the apex joint, this value being 9:6 tons-ft. This
does not imply an error in the virtual work calculations, for in those calculations the
choice of plastic hinge positions was restricted to the ends and centres of the members.
The calculation of the required fully plastic moment could be refined by carrying out
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a fresh virtual work calculation in which the plastic hinge at the apex joint 5 was
moved to the new position 2-8 ft. along the left-hand rafter member. However, it is
unnecessary to perform this calculation, for it will be seen that the design is, in fact,
not governed by this loading case but by the dead and superimposed loading case.
It is therefore noted that a value of M, between 9-1 and 9-6 tons-ft. would be adequate
for dead, superimposed and wind loads in conjunction.

Design for dead and superimposed loads

The design for dead and superimposed loads to a load factor of 175 will now be
considered. The relevant working loads are merely loads of 2:61 tons uniformly
distributed over the two rafters, as shown in fig. 16.
261t 261+ Since this loading is symmetrical, the bending moment
distribution for the frame is also symmetrical, and so
only four bending moments are needed to specify the
bending moment distribution. These may be taken
as the bending moments at the cross-sections 1, 3, 4
and 5 in fig. 16. Due to symmetry, the frame has
only two redundancies, for the bending moments at
Fig. 16 the cross-sections 1 and 9 are equal. The bending
moment at cross-section 1 and the horizontal thrust
can thus be regarded as the two redundancies. It follows that there are only two
equations of equilibrium, and therefore two independent mechanisms. Both of these
mechanisms must be symmetrical.
The two independent mechanisms are illustrated in figs. 17 and 18. Fig. 17 merely
represents failure of the two rafters as beams, and the equation of virtual work is

80M,=2.261.175.4-56=41-10
My=5l14dtotissft. « . « + » « s =« « « » (13)

In the mechanism of fig. 18, the hinge rotation ¢ at cross-section 1 would produce a
horizontal movement of 19-456 at the roof apex if there were no hinge rotation

261 261+
2:67¢ 2614

Fig. 17 Fig. 18

at cross-section 3. The hinge rotation at cross-section 3 must therefore be
—19-456/7-45=—2-610 in order that there should be no horizontal movement at the
apex. The downwards vertical displacement at the apex is thus 18 . 1:616=29-06 ft.
The virtual work equation is:

10-440M,=2 .2-61 . 1-75 . 14-50=132-50

My=12"7Tto05ft: « « » &« v « s « = « » (14)

It will be noted that this value of M, exceeds the value found for the case in which
the wind loads act in conjunction with the dead and superimposed loads. It follows
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‘that the design must be governed by the present case in which only the dead and
superimposed loads are acting.

Considering now the combination of the independent mechanisms, it will be seen
that cancellation of the plastic hinge rotation at the roof apex can be achieved by
superposing the mechanism of fig. 17, with g
all the hinge rotations and displacements
increased by a factor of 3-22/2=1-61, on -+4226
the mechanism of fig. 18. The mechanism
thus obtained is illustrated in fig. 19. The
virtual work equation for this mechanism
is obtained by adding equation (13), multi-
plied by 1-61, to equation (14), and sub-
tracting 6-446M, from the resulting virtual work absorbed in the plastic hinges, since
a plastic hinge rotation of 3-226 in each of the mechanisms at the roof apex has been
cancelled. The resulting equation is:

(8.1:61+10-44—6-44) 6M,=41-1 . 1-616+4132-560
16-880M,=198-78
M,=11-8tons-ft. . . . . . . (15)
The highest value of M, obtained from these mechanisms is thus 12-7 tons-ft. for
the mechanism of fig. 18. This is therefore the actual collapse mechanism, subject to
possible alterations due to the occurrence of plastic hinges within the spans of the

members rather than at the joints. A statical check will reveal, in fact, that the plastic
hinge at the roof apex should be replaced by one plastic hinge in each rafter member.

261t

-4-228

Fig. 19

Check by statics

The free bending moment diagram for the frame, cut at the roof apex, when sub-
jected to the factored loads, is shown in fig. 20, together with the redundant bending
moment diagram. This latter diagram is constructed by setting off the calculated
fully plastic moment of 12-7 tons-ft. from the free bending moment diagram at the
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Fig. 20

cross-sections 1, 3, 5, 7 and 9. The value of the horizontal thrust can be calculated
from the intercepts between the redundant bending moment line and the dotted line
in fig. 20 at both the cross-sections 3 and 5. The value obtained in each case is
2-1 tons, thus checking the virtual work calculation. It will be seen that the greatest
bending moment which occurs with this bending moment distribution is 14-2 tons-ft.
at a distance of 3-7 ft. from the roof apex. Thus in the correct collapse mechanism
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there should be plastic hinges in each rafter at a distance of about 3-7 ft. from the
roof apex in place of the single plastic hinge shown at the apex in fig. 18. A fresh
calculation for these new plastic hinge positions is readily made, either by virtual work
or by adjusting the redundant bending moment line on the bending moment diagram,
and the resulting value of M, is found to be 13-2 tons-ft. A final refinement is to take
account of the fact that the loads are not, in fact, uniformly distributed over the
rafters, but are carried by five uniformly spaced purlins, as shown in fig. 5. The
plastic hinges in the rafters will be located beneath the purlins which are adjacent to
the roof apex, and the corresponding value of M, is found to be 13-0 tons-ft. or
156 tons-in. :

A choice of section can now be made. The fully plastic moment for a rolled steel
joist is known to exceed the moment at which the yield stress is just reached in the
outermost fibres by a factor termed the shape factor, which is about 1-15 for most
sections.* Taking a yield stress of 15-25 tons/in.2, the fully plastic moment A, is thus:

M,=1'15.1525.Z=17-5 Z tons-in.
where Z in.? is the section modulus. The required value of Z in the present case is:
Z=156/17-5=891 in.3
The nearest available British Standard beam section is a 7x4 X 16 lb., with a section
modulus of 11:29 in.3 This is therefore the required section. From the point of

view of stability, the purlins and sheeting rails, together with some cross-bracing,
would provide adequate stiffening for this section over the given spans.

THREE-BAY PITCHED-ROOF PORTAL FRAME

To illustrate the scope of the technique which has been described in detail, cal-
culations for the three-bay frame whose dimensions and loads are as shown in fig. 21
will now be outlined briefly. As before, all the loads are assumed to be uniformly
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distributed, and the vertical loads of 3-60 tons on each rafter member are due to dead
and superimposed loads, the remaining loads being wind loads. In the first instance,
it will be assumed that all the members of the frame are of the same cross-section,
with a fully plastic moment M.

Design for dead, superimposed and wind loads

For this loading case, a load factor of 1-4 will be used. Examination of fig. 21
shows that twenty-three bending moments are needed to specify the bending moment
distribution for the entire frame, which has nine redundancies. There must therefore
be fourteen independent mechanisms. Eight of these mechanisms are accounted for
by the simple beam type of failure mechanism (as in figs. 6, 7, 8 and 9, for example)
occurring in the members AB, BC, CD, DF, FG, GI, IJ and JK. For these mechan-
isms, the highest value of M, is obtained for the member GI, this value of M, being
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7-28 tons-ft. Two mechanisms must be counted for rotations of the joints D and G
in fig. 21, for it will be realised that for each of these joints there will be an equation of
rotational equilibrium between the three bending moments acting on the joint. There
will also be one sidesway mechanism, with plastic hinges in the vertical members at
A, B, D, E, G, H, J and K, for which the corresponding value of M, is 1-69 tons-ft.
The remaining three independent mechanisms may be chosen in a variety of ways, but
the three mechanisms illustrated in figs. 22, 23 and 24 are probably the most con-
venient for the present purpose. It will be seen that each of these mechanisms is
basically #f the same type, with the rafters collapsing in one bay and thus causing
sidesway of those parts of the frame lying to the right of the collapsing bay. For
reference, the plastic hinge rotations are shown in these figures in magnitude only.
It will be noted that the joints D and G remain unrotated in each of these mechanisms,
since in each case any rotation of these joints would increase the work absorbed in the
plastic hinges and so reduce the value of M.

1660 -

1660

Fig. 23

16668
1666

Fig. 24

The virtual work equations for these three mechanisms are found to be:

fig. 22: 7-320M,=123-56, M,=169 tons-ft. . . . . . (l6)
fig. 23: 10-640M,=120-48, M,=11-3tons-ft. . . . . . (17)
fig. 24: 13-966M,=115-16, M,=8-25tons-ft. . . . . . (18)

The highest value of M, obtained from the independent mechanisms is thus
169 tons-ft. for the mechanism of fig. 22. It is easily seen that this value of M, will
not be increased by combination with any of the simple beam mechanisms, for which
the highest value of M, was found to be 7-28 tons-ft. It is also clear that the sidesway
mechanism, for which M, was found to be only 1-69 tons-ft., cannot be combined
with advantage. It remains to investigate possible combinations of the three
mechanisms of figs. 22, 23 and 24.

The mechanisms of figs. 22 and 23 can be combined if the hinge rotations and
displacements in the mechanism of fig. 22 are all multiplied by a factor of 1:66, and
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then superposed on the mechanism of fig. 23. This enables a clockwise rotation, of
magnitude 1-666, to be given to joint G, which cancels plastic hinge rotations of
1-666 in the members GI and GH at this joint, while increasing the plastic hinge
rotation in the member GF by 1-666. This produces a net reduction in the virtual
work absorbed of 1-660M,. The resulting virtual work equation for this combination
is then seen from equations (16) and (17) to be:
1-66 . 7-32 . OM,+ 10-640M,— 1-660M,=1-66 . 123-56+120-46
21-10M,=3250
M,=154 tons-ft. . . . . (19)

This value of M, is smaller than the value of 169 tons-ft. obtained for the mechanism
of fig. 22, and it is clear that no other possible combination of the three mechanisms
of figs. 22, 23 and 24 will yield a larger value of M,. It is therefore concluded that
the mechanism of fig. 22 is the actual collapse mechanism. This solution will not be
adjusted to allow for the possible occurrence of plastic hinges at cross-sections other
than the ends and centres of the members, for when the dead plus superimposed
loading case 1s considered, it will be found that the wind loading case does not govern
the design.

An interesting feature brought out by this analysis is that there are only four plastic
hinges in the collapse mechanism, whereas the frame has nine redundancies. At
collapse, therefore, only the right-hand bay of the frame is statically determinate, and
in carrying out a statical check the bending moment diagram for the other two bays
could not be constructed directly. Instead, it would be necessary to carry out a trial
and error investigation to show that the six redundancies of these two bays could be
chosen In at least one way so as to produce a resultant bending moment diagram in
which the fully plastic moment was not exceeded anywhere in the frame. This
would be a tedious process, and in view of the fact that this is not the loading case
which governs the design, the check is probably not worth performing.

Design for dead and superimposed loads

A load factor of 1-75 will be used for this loading case. The loading, consisting
merely of the vertical loads of 3:60 tons on each rafter, is symmetrical, so that the
collapse mechanism and the bending moment distribution at collapse must also be
symmetrical. It will be seen that the values of eleven bending moments will specify
the bending moment distribution for the entire frame, and that owing to symmetry
there are only five redundancies. There are thus six independent mechanisms, which
must all be symmetrical. Three of these mechanisms are the simple beam type of
failure mechanism in the pairs of rafters BC and 1J, CD and GI, and DF and FG.
For each of these mechanisms, the corresponding value of M, is 9-45 tons-ft. One
mechanism must be counted for rotation of the joints D and G. The remaining two
mechanisms are most conveniently chosen as the mechanisms shown in figs. 25 and 26.

The virtual work equations for these two mechanisms are:

fig. 25: 14-640M,=302-40, M,=20-6 tons-ft. . . . . . (20)
fig. 26: 10-640M,=151-20, M,=142tons-ft. . . . . . (21
The only possible combination of these mechanisms is obtained if the hinge rota-
tions and displacements in the mechanism of fig. 25 are all multiplied by a factor of
0-83, and then superposed on the mechanism of fig. 26. This enables a counter-

clockwise rotation of the joint D, of magnitude 0-836, to be made, thus cancelling
plastic rotations of 0-836 in the memters DC and DE at this joint, while increasing
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the plastic hinge rotation in the member DF by 0-836. This produces a net reduction
in the virtual work absorbed of 0-836Mf,, and a similar reduction can be achieved by a
clockwise rotation of the joint G. The resulting virtual work equation is then seen
from equations (20) and (21) to be:

0-83.14:640M,+10-646M,—1-666M,=0-83 . 302-46+4151-26
21-16M,=4020
M,=191tons-ft. . . . . (22)

This value of M, is less than the value of 20-6 tons ft. which was found to correspond
to the mechanism of fig. 25. It may also be checked that the beam collapse mechanisms
for the rafters cannot be combined with any of these mechanisms to produce a value

28 28
2668 26668
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Fig. 26

of M, greater than 20-6 tons-ft. The mechanism of fig. 25 is thus the actual collapse
mechanism, subject to alterations due to the occurrence of plastic hinges at positions
other than at the ends and centres of the members. A statical check will now be
made which will also serve to indicate such alterations in the position of the plastic
hinges.

Check by statics

Because of symmetry, the statical check need only be made for one half of the
frame, say the left-hand half. For this portion of the frame, the free bending moment
diagram is constructed by imagining cuts to be made at the apices C and F. The
resulting diagram is given in fig. 27, for the case in which the loads have been multi-
plied by the load factor of 1-75. It will be seen that there is no free bending moment
in the vertical member DE, and the diagram for this member has not been drawn.

For the members AB, BC and CD the redundant bending moment diagram may
be constructed directly, since the bending moment has its fully plastic value at A, B,
C and D. The horizontal thrust H in this bay can be calculated from the vertical
intercept between the redundant bending moment diagram and the dotted line in
fig. 27. In each case a value of 3-44 tons is obtained, thus checking the solution.
Since the centre bay of the frame is not statically determinate at collapse, the redundant
bending moment diagram for the member DF cannot be constructed directly. How-
ever, it is clear from the symmetry of the diagram about D that one possible redundant
bending moment line for DF is the dotted line df shown in fig. 27, where fF represents
the calculated fully plastic moment of 20-6 tons-ft. This line has a slope equal in
magnitude to the line cd in fig. 27, and this corresponds to the same value of the
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horizontal thrust of 3:44 tons which was found for the left-hand bay of the frame.
If this were the actual redundant moment line for the member DF at collapse, it
follows that there would be no resultant horizontal thrust on the vertical member DE,
which would thus have zero bending moment throughout its length. It is therefore
possible to construct a bending moment diagram for the entire frame in which the
fully plastic moment is not exceeded at any cross-section, except within the spans of
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Fig. 27

the rafter members. This confirms that the correct solution was found by the virtual
work analysis.

It will be seen from fig. 27 that plastic hinges will actually occur in the rafter
members at distances of 5-9 ft. from the apices C and G, rather than at these apices.
When this is taken into account, the value of M, is found to be 21-9 tons-ft.

The statical check reveals the fact that the internal stanchions DE and GH need
not be called upon to participate in the collapse mechanism, for it is possible to con-
struct a resultant bending moment diagram in which these members are free from
bending moment. These members, which were assumed in the first instance to
possess a fully plastic moment M, thus function merely as props which hold up the
rafter members. They could therefore be designed simply as compression members,
and made of hollow tubing.

CONCLUSIONS

The merits of the method of design described in this paper can really be appre-
ciated only by applying the method to practical examples. However, the foregoing
examples serve to illustrate some of its advantages. The outstanding feature of the
method is, of course, its rapidity. This is mainly due to the ease with which cor-
responding values of M), can be obtained by the principle of virtual work, and this
in turn is due largely to the fact that there is no need to establish sign conventions
when applying this principle, since the virtual work absorbed in a plastic hinge must
always be positive. A further important advantage of the method is that it enables
solutions to be found without difficulty for those cases in which the entire frame is
not statically determinate at collapse. Such cases have hitherto been somewhat
intractable.
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Summary

In suitable instances the application of plastic design methods to plane frames of
ductile material, such as mild steel, leads to more rational and economical designs.
These design methods are based on the calculation of the loads at which a structure
collapses owing to excessive plastic deformation. Such collapses occur when a suffi-
cient number of plastic hinges have formed to transform the structure into a mechan-
1sm, so that deflections can continue to grow, due to rotations of the plastic hinges,
wh11e the loads remain constant.

It is known that among all possible collapse mechanisms for a given frame and
loading, the actual collapse mechanism is the one to which there corresponds the
smallest possible value of the load. Recently, it has been pointed out that all the
possible collapse mechanisms for a frame can be regarded as built up from a certain
number of simple mechanisms. This has led to the development of a new technique
for determining plastic collapse loads, in which these simple mechanisms are combined
in a systematic manner so as to reduce the corresponding value of the load to its least
possible value. For each mechanism which is investigated, the corresponding value
of the load is determined very quickly by applying the Principle of Virtual Work.

In the present paper, the theoretical basis of this new technique is discussed, and
typical calculations for a pitched-roof portal frame are given.

Résumé

Dans différents cas, I’application de la théorie de la plasticité au calcul des cadres
plans en matériaux forgeables, comme I’acier fondu, conduit a des solutions ration-
nelles économiques. Cette méthode de calcul repose sur la détermination des charges
sous lesquelles un ouvrage céde a la suite de déformations plastiques infiniment
grandes. La rupture se produit 4 la suite de la formation d’articulations plastiques
en nombre suffisant pour transformer I’élément porteur en un ‘““mécanisme”; a la
suite du processus de rotation des articulations plastiques, les déformations prennent
des amplitudes de plus en plus grandes, tandis que la charge reste constante.

On sait que parmi tous les processus possibles de rupture d’un cadre donné sous
I’action de conditions de mise en charge données, le processus décisif est celui qui
correspond a la plus petite valeur possible de la charge. On a montré récemment
que tous les processus possibles de rupture d’un cadre peuvent étre considérés comme
composés d’un certain nombre de processus habituels. Ceci a conduit a la mise au
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point d’un nouveau procédé pour la détermination de la charge plastique de rupture,
procédé dans lequel les processus simples sont combinés d’une maniére systématique
en vue de réduire la charge correspondante i sa plus petite valeur possible. Les
valeurs de la charge peuvent étre déterminées trés rapidement pour chaque processus
ainsi introduit, par I'application du principe des travaux virtuels.

Les auteurs discutent dans le présent rapport les bases théoriques du nouveau
procédé et exposent les modes de calcul caractéristiques pour un cadre-portique avec
toit incliné.

Zusammenfassung

In verschiedenen Fillen fiihrt die Anwendung der Plastizitdtstheorie bei der
Berechnung ebener Rahmen aus schmiedbarem Material, wie z.B. Flusstahl, zu
rationellen und wirtschaftlichen Losungen. Diese Berechnungsmethode beruht auf
der Bestimmung derjenigen Lasten, unter welchen ein Bauwerk infolge unendlich
grossen plastischen Verformungen versagt. Das Versagen tritt ein, wenn sich
plastische Gelenke in geniigender Zahl ausgebildet haben, um das Tragwerk in einen
Mechanismus umzuwandeln; als Folge der Drehungen der plastischen Gelenke ver-
grossern sich dann die Forménderungen weiter, wihrend die Belastung konstant
bleibt.

Es ist bekannt, dass unter allen moglichen Bruchmechanismen eines gegebenen
Rahmens mit gegebener Belastungsanordnung derjenige massgebend ist, dem der
kleinstmogliche Wert der Belastung entspricht. Unldngst wurde gezeigt, dass alle
moglichen Bruchmechanismen eines Rahmens als aus einer gewissen Zahl von
gewoOhnlichen Mechanismen zusammengesetzt betrachtet werden konnen. Dies hat
zur Entwicklung eines neuen Verfahrens zur Bestimmung der plastischen Bruchlast
gefiihrt, bei welchem die einfachen Mechanismen systematisch kombiniert werden,
um so den entsprechenden Wert der Last zu seiner kleinstmdglichen Grosse zu
reduzieren. Die Werte der Last konnen fiir jeden eingefiihrten Mechanismus sehr
schnell durch Anwendung des Prinzips der virtuellen Arbeit bestimmt werden.

Im vorliegenden Aufsatz wird die theoretische Grundlage des neuen Verfahrens
diskutiert, und es werden die typischen Berechnungen fiir einen Portalrahmen mit

geneigtem Dach gegeben.
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INTRODUCTION

The methods presented in this paper for the analysis and design of rigid structures
are purely mathematical in character; that is, techniques are formulated on the basis
of certain fundamental assumptions. These assumptions may or may not be true for
any particular structure; for example, the instability of axially loaded stanchions is
ignored, as is the lateral instability of beams subjected to terminal bending moments.
While for some simple structures under particular conditions of loading these effects
may be relatively unimportant, recent work by Neal (1950a) and Horne (1950) has
shown that the problem may in fact be critical. In addition, it will be seen below
that an *““‘ideal” plastic material is assumed. Structural mild steel approximates to
such an ideal material, but a highly redundant frame will experience strain-hardening
which may invalidate the calculations. The tech-
niques presented here, in short, in no sense form a |
practical design method; however, it is felt that they — m, [----—__
are of sufficient interest to warrant a description of
some of the more important results.

The characteristic ideally plastic behaviour of
a beam in pure bending is shown in fig. 1. From
O to A increase of bending moment is accompanied 0
by purely elastic (linear) increase of curvature. Be- Curvature
tween A and B, increase of bending moment is Fig. 1
accompanied by a greater increase of curvature,
until at the point B the full plastic moment M, is attained. At this moment the
curvature can increase indefinitely, and ‘““collapse” occurs.
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In a general plane structural frame, a section at which the bending moment has
the value M, is called a plastic hinge, and has the property that rotation at the hinge
can occur freely under constant bending moment. From the definition of the full
plastic moment, the moments in the frame can nowhere exceed Mj; if the component
members of a frame have different sizes, it must be understood of course that M,
refers to the particular member under consideration.

Collapse of a frame is said to occur when a sufficient number of plastic hinges are
formed to turn whole or part of the frame into a mechanism of one degree of freedom;
in general, the number of hinges exceeds by one the number of redundancies of that
part of the frame concerned in the collapse. For example, the simple rectangular
portal frame, of constant section throughout, subjected to loads ¥ and H as shown
in fig. 2(a), may fail in any one of the three basic modes shown in figs. 2(b), (¢) and (d).
The actual mode is determined by the values of the two loads.

o #

*>—

Lo 1T

(3) (&)
l —_— * —_—

(c) (a)
Fig. 2

The first part of this paper deals with methods for the exact determination of the
quantities required (location of the hinges, values of collapse loads, etc.); the second
part presents methods for determining upper and iower bounds on the loads, it being
possible to make these bounds as close as is considered necessary. The third part
applies the ideas to space frames, where hinges are formed under the combined action
of bending and torsion.

EXACT METHODS

The use of inequalities in the solution of structural problems was first introduced
by Neal and Symonds (1950), who used a method due to Dines (1918). The very
simple example shown in fig. 3 will be used to illustrate the solution of linear sets of
inequalities.

(a) Collapse analysis under fixed loads

Suppose in fig. 3 that the two spans of the continuous beam are of length /, and
that the fixed loads P; and P, act at the centres of the spans. The full plastic moment
of the beam will be taken as M, and it is required to find the minimum value of M,
in order that collapse shall just occur. (P; and P, may be taken to incorporate a
suitable load factor.)

The general equilibrium state of a frame of » redundancies can be expressed as
the sum of one arbitrary equilibrium state and » arbitrary independent residual states.
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By a “state” is meant some bending moment distribution, so that a state in equili-
brium with the applied loads is any bending moment distribution such that equili-
brium is attained. A residual state is a bending moment distribution that satisfies
equilibrium conditions when no external loads are applied to the frame. Thus,
confining attention to any one cross-section in the frame, the bending moment there
may be expressed as

MM/ +My’+ ... +M, . . . . . . (1)

where M* is the equilibrium bending moment at the section and M,’, M,’, . . . M,
are the bending moments, at the section considered, corresponding to » arbitrary
residual states. Suppose that the full plastic moment at the section (as yet un-
determined) is M,. Then

—My<M*+M, +M,'+ . . . + M,/ <My . . . . (2

— F, 3
" i l
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Fig. 4

Since the continuous beam system under consideration has one redundancy, the
plastic behaviour can be represented as the sum of an equilibrium state and one
residual state, which may be taken as the two bending moment distributions in fig. 4.
The continued inequality (2) may be written for the three critical sections:

Under the load P, —My<p;+c<M,
At the central support, —My< 2c <M, N €))
Under the load P,, —My<p,+c<M,
The set (3) may be rewritten as simple inequalities:
c+p+ My=>0)
C —}—%M() >0
c+pa+ My=>0
—c—p1+ My=0
—C +'&Mo =0
=g—Ps-p MO }OJ
If now every inequality in set (4) which has a coefficient of 41 for ¢ is added to
every inequality which has a coefficient —1 for ¢, ¢ will be eliminated, and Dines has
shown that the resultant set of inequalities (nine in number in this example) gives
necessary and sufficient conditions for the existence of a value of ¢ in order that the
original set should be satisfied. This is exactly what is required for the present
purposes; the actual value of ¢ is of no interest so long as it is known that a ¢ exists
such that at each critical section of the frame the bending moment is less than the full
plastic value.
C.R—7

(4)

h's
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In eliminating ¢ from the set (4), it is found that a large number of the resulting
inequalities are redundant, and if it is assumed that P; >P,, the single inequality

—p1+3My >0 N )

is found to be critical. As long as this inequality is satisfied, all the moments in the
beam will be less than M,. For collapse just to occur, the equality sign should be
taken in (5), giving My=%p,. Now inequality (5) was derived by adding the second
and fourth of set (4); substituting this value of M into these two inequalities gives

c+4p; >0
—e—1p; >0 O )
ie. —ip1=c=>—1p, Co. (7)

that is, a unique value of ¢ has been derived. Using this value of ¢, the bending
moment distribution shown in fig. 5 has been derived from the analysis; it will be
seen that hinges (My=%p,) are formed under the load P;, and at the central support,
forming a mechanism of one degree of freedom for small (really, infinitesimal) dis-
placements.

] Full plastic moment

.Tﬂ’><l/ (B~ 34 Weight per unit fength

Fig. 5 Fig. 6

The type of result obtained in this problem will in general be derived for any more
complicated example. For more residual states defined by ¢;, ¢3, . . . ¢, €ach
parameter c is eliminated successively from the inequalities, and the final inequality,
if just satisfied, will generate a unique set of residual states completely defining the
collapse configuration.

The method given above may be applied to the analysis of frames collapsing under
variable loads; however, this problem will be treated with reference to the slightly
more complex condition of minimum weight design.

(b) Minimum weight design under fixed loads

The parameters used in order to determine the minimum weight of a structure
will be the values of the full plastic moments. If a plot is made for typical structural
sections of full plastic moment against weight per unit length, and the points joined
by a smooth curve, a non-linear relationship of the type shown in fig. 6 will be
obtained. (Owing to the methods used in this paper, the actual relationship is im-
material, but it is of interest to note that a curve given in a British Welding Research
Association report (1947) for British structural sections can be approximated by
w=2-TM %6, where w is the weight in 1b./ft. of a beam of full plastic moment M tons
ft.) In order to develop suitable methods for design, it will be assumed that a
continuous range of sections is available so that a section can be used with any
specified full plastic moment.
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The assumption is made that the moment-weight curve can be replaced in the
region which is significant for any particular problem by a straight line. For a frame
built up of N members, each of constant section, the total material consumption will
be given by the proportionality

N

i=1
where M; is the full plastic moment of the ith member of the frame, and /; is its length.,
Considering again the two-span beam shown in fig. 3, suppose that the left-hand
span has a full plastic moment M, that of the right-hand span being M,. Since the

two spans are of equal length, proportionality (8) may be replaced by the weight
parameter :

X=M+M, . . . . . . .. .0

The problem of minimum weight design for this problem is then reduced to choosing
values of M, and M, such that X is made a minimum. The work starts in the same
manner as for the collapse analysis given above; set (3) is replaced by

— M <p;+c<M,
_Ml < 2¢ <M1 (10)
—Mye JoM, S ¢ C ot e
—M;_ <p2+c <M2
The two continued inequalities are necessary for the central support since it i1s not
known a priori whether M, 2 M,.
Of the sixteen possible inequalities obtained by the elimination of ¢ from set (3),
only five are found to be non-redundant if it be assumed that P; >>P,. These are

-p1 3IM >0}
—-p1 + M;+iM, >0
—p1+p2+ M+ M,>0 N ¢ 0}
—p2+3IM+ M,>0 .
—P2 +3M,>0
The material consumption parameter X will now be introduced into set (10) by the
replacement of M, by (X— M,) from equation (9). Upon slight rearrangement;

—M,+ X —§p1>0

—Mpt2X=2pm20 L |, 1)
bt . 5 M2+X —2p2>O
M, —4p,=>0
together with X>(py—p) - - . . o . .. (13

Now for the problem of determining the minimum value of X, the value of M, is
not required, and Dines’ method may be employed again on set (12) to eliminate M.
On performing this operation, inequality (13) becomes redundant, and the only
significant inequality resulting is

X=py+dps . . o o o ... (19

It should be repeated that this single inequality is a necessary and completely sufficient
condition that values of M, M, and ¢ can be found to satisfy the original set (10).
Since it is required that X should be as small as possible, the equality sign will be
taken in (14), so that

X=p,+ip>. T ¢ Y
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Substitution of this value of X back into the previous sets gives the unique values

M,=p,—1p,
M,=3%p, T ¢ )

2e=—3p,=—M,

The bending moment distribution resulting from the analysis is shown in fig. 7, plastic
hinges being formed at all three of the critical points.

/Raz_ s, The method given above for minimum weight design
,%ﬂz against collapse under fixed loads has been applied by
the Author (1950a, 1950b) to the solution of a rectangular
\l>[(p-§-pz)\V portal frame (cf. fig. 2), and also to derive a design
method for continuous beams of any number of spans

Fig. 7 under either concentrated or distributed loads.

(c) Minimum weight design against collapse under variable loads

Consider the same beam in fig. 3, but with the loads varying arbitrarily between
the limits :
— 0, <P,<0, (17)
0,>0;
The work proceeds as before up to the derivation of set (11). Now, in this set, the
worst values of p; and p, (i.e. ¢, £¢;) must be inserted in each inequality, giving
—q  +3M, =0
—q, + M +iM,>0
—q—q+ M+ M,>0 »~ . . . . . . . (I18)
—q+3iM+ M>>0
—q> +3M,>0 |
Operating on set (18) as before to find the minimum value of X, it is found that

M+M,=X=q,+q>

(@1+392) =M, >3q, N 0 1)
29, >M,>3%q;

(39:+92) =M,

As a specific example, suppose q,=¢,=q. Then
3q>M,>3q
q>M,>3q |

and any values of M| and M, satisfying (20) will give a constant material consumption.

(It is perhaps of interest to note that for X=2X(M)"l, where n<l, the minimum

material consumption is given by M, =2M,=%q (or vice versa), the worst case occurring

for M;=M,=q. An asymmetrical solution is obtained for what appears to be a

completely symmetrical problem. For n=06, the symmetrical solution gives an

increase of less than 2% in material consumption compared with the asymmetrical
solution.)

.—Q1<P1<Q1}

(20)

INEXACT METHODS

The theorems concerning the existence of upper and lower bounds on the collapse
load of a structure were first proved rigorously by Greenberg and Prager (1950). It
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is assumed that the loads on a structure are all specified in terms of one load, so that
when the collapse load is mentioned, this implies the whole system of loads.

An upper bound on the collapse load

Suppose that enough hinges are inserted into a redundant structure in order to
turn it into a mechanism of one degree of freedom. Hill (1948) has shown that the
stress system is constant during collapse of an ideally plastic body, so that for the
frame with one degree of freedom, the equation of virtual work may be written,
equating the work done in the hinges to the work done by the external load during a
small displacement in the equilibrium state. The work done in a hinge is equal to
the full plastic moment multiplied by the absolute value of the change in angle at that
hinge (i.e. plastic rotation) and the work done by the load simply the load multiplied
by its displacement. There will, of course, be elastic displacements obtaining in the
frame, but these do not appear in the equations provided it is assumed that they are
small so that the overall geometry of the frame is not disturbed.

For any arrangement of hinges in the frame producing a mechanism of one
degree of freedom, the load given by the virtual work equation is either greater
than or equal to the true collapse load.

A lower bound on the collapse load

If a state can be found for the structure which nowhere violates the yield
condition, and which is an equilibrium state for a given value of the load, then
that value is either less than or equal to the value of the true collapse load.

In practice, Greenberg and Prager found it useful to derive a lower bound from
the mechanism giving the upper bound. The example will make the ideas clear.
Suppose the values of the loads in fig. 3 are

P1=2P2=2P . . . . . . . . . (21)

and that as a first trial the mechanism in fig. 8 is assumed for failure. The rotation at
the central hinge is 6, and at the hinge under the load P, 26. Hence, by virtual work,

I
P.O=M26)+ M) . . . . . . . . (2D
ie. p=3My, . . . . . . .. ... @

i

vy N
SN S My
5
6 _ 3 M,

Fig. 8 Fig. 9

(It is taken that the beam has the same full plastic moment M, in both spans.) By
. the upper bound theorem, the true value of the collapse load (p.) is less than M.
The bending moment distribution corresponding to the assumed mechanism and this
value of p given in equation (23) is shown in fig. 9, from which it will be seen that the
yield condition is exceeded under the load 2P in the ratio 5/2. Suppose now that the
loads are reduced in the ratio 2/5. Then if the values in fig. 9 are multiplied by 2/5,
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an equilibrium bending moment distribution is obtained which nowhere violates the
yield condition. Hence the load of $M, is a Iower bound on the collapse load, i.e.

IMo<pe<3M, . . . . . . . . (29

It can be shown that removing one of the assumed hinges to the point of maximum
moment will improve the bounds on the collapse load; in this example, shifting the
hinge from under the load P to under the load 2P, while retaining the central hinge,
immediately gives the correct solution p.=3M,. There is, however, no means at
present of choosing which hinge to remove, and in any case the bounds cannot be
narrowed indefinitely; either they are separated by a finite amount, which may be
quite large for even a relatively redundant frame, or the exact solution will be obtained.
Accordingly, Nachbar and the Author (1950) have developed more general methods
for obtaining both upper and lower bounds which may be made as close to the true
collapse value as is considered necessary.

A general method for the upper bound

Suppose yield hinges are inserted into the frame at any suspected critical sections.
In general a frame of N degrees of freedom will result, specified in terms of N deflection
parameters. If the equation of virtual work is written, then the corresponding value
of the load is an upper bound on the true collapse load. In fact, the virtual work
equation is inapplicable, since the system is not an equilibrium system, but it may be
shown that the value of the load resulting from this equation is in fact a true upper
bound, providing that the mechanism is such that the work done by the loads is
positive. ‘

For the general mechanism in fig. 10,

/ {
2P . 501+ P . 58=Mo(|261 +6,+6,]+26,])

2
o _ g (1261] 41601 +65] 426,
1.e. p—MO( 46,420, ) .

(25)

5 T
A
Py —
R
2P P S :
B G ¥
QZ 1
g N L I O N N
Fig. 10 S ; \ —
g € L N
]
|
a 1
-2 -7 g 7 2 J 4 5 6

Values of 6,/8,
Fig. 11

In equation (25), values of 8, and 6, must be chosen to give the minimum value of p;
since p is always an upper bound on p., the minimum value will be equal to p.. A
plot of equation (25) is given in fig. 11, from which it will be seen that p.=3M,
corresponds to 6,=0. The minimum is not a stationary value, since equation (25)
is a ratio of two linear expressions. Nachbar has shown that equations of this type
containing absolute values can be reduced by rational successive steps, and the
method has been applied to mechanisms with a large number of parameters necessary
for their specification.
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A general method for the lower bound

Suppose the members of a redundant structure are cut in such a way that a
number of separate redundant or statically determinate structures are formed. If the
collapse loads are calculated for each of these resulting structures, then the lowest
value of these loads is less than the collapse load of the structure as a whole. The
proof of this theorem follows immediately from the special lower bound theorem
above. An immediate corollary is that if a cut portion of the structure carries no
load, then that portion can be ignored in the derivation of the lower bound. In order
to make the theorem of practical use, an additional lemma is needed. The collapse
load of a structure is unaffected by any initial system of residual stresses (moments,
shear forces). That is, at a cut, equal and opposite longitudinal forces, shear forces,
and moments may be introduced in an attempt to raise the lower bound.

i {? 18 BN i
£ A B 2 & A AT A
Fig. 12 Fig. 13

Suppose the beam in the previous example is cut at the central support; then the
two separate beams shown in fig. 12 will be obtained. The collapse loads of the
right- and left-hand halves are respectively p= M, and p=1M,, i.e.

» pe=iMy, . . . . . . . . . . (20
Now if a central moment is introduced (fig. 13), it is easy to show that the collapse
loads are respectively

M+2M, M+2M
p=——+5—-0 and p=——+z—-0 N )|

The maximum value which M can take is, of course, M,, and hence from (27)
| pe=iMy . . . . . . . . . . (28)

and the problem has been completed. For other more complicated examples (a two-
storey, two-bay portal frame has been solved under both concentrated and distributed
loads), it is found that shear and longitudinal forces as well as bending moments must
be introduced at the cuts.

SPACE FRAMES

The type of space frame considered has members which lie all in the same plane,
all loads acting perpendicularly to this plane. Thus bending moments whose axes
lie perpendicular to the plane and shear forcesin the plane are zero. Any member
of the frame is then acted upon by shear forces parallel to the applied loads and by
two moments whose axes lie in the plane, that is, a bending moment (M) and a torque
(T). For ideal plasticity, hinges will be formed in exactly the same way as for plane
frames; the breakdown criterion will be some such expression as

gM, T)=g(My, 0)=const. . . . . . . . (29
where M, is the full plastic moment in pure bending, as before. At any one hinge,
the maximum work principle of Hill (1948) shows that the moment and torque will be

constant during collapse, and that the rate at which work is done at a hinge will be a
maximum. If B8 and 6 are the incremental changes in angle in bending and twisting
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respectively during a displacement in the equilibrium collapse configuration, then the
rate at which work is done is
MB+TO . . . . . . . . . . (30)

For a maximum,
B.8M+6.8T=0 . . . . . . . . (@D

Now the breakdown criterion, equation (29), gives

og og
— —= = R - A
8M.8M+8T.8T 0 (32)

that is,
og
oM (33

og
oT
This flow relationship may be solved simultaneously with the breakdown criterion to
give the moment and torque acting at a hinge during any collapse displacement.
The author (1951) has shown that for a box section, equation (29) becomes

M24-3T2=M;y? P 1))
For the present purposes, the circular breakdown criterion
M24T2=Mz2 . . . . . . . . . (39

will be used for the sake of simplicity. The restriction in no way affects the generality
of the methods proposed for the solution of space frames.
Equation (33) becomes

B M
6T e
which, taken with equation (35), gives
B N
M= VRTE gzM"
R ¥}

T=_\/Bﬁ_2+92MO ]
together with the expression for the work done at the hinge (expression (30))
Plastic work=Myv/B2462 ., . . . . . . (38)

Owing to the non-linearity of the breakdown criterion, it is not possible to set up
exact systems of linear inequalities to be solved by the Dines’ method. However,
approximations may be made to the breakdown criterion itself; for example, equation
(35) could be replaced by the circumscribed octagon

M=:tM0
T=:EMO}........(39)

M+T=4+/2M,

and the moment M and torque T at any section constrained to lie within this yield

domain. ]
As will be shown, simple problems are best solved by a direct method; and the
systems of linear inequalities corresponding to equations (39) become too complicated
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for practical use in the solution of highly redundant structures. For the latter, the
determination of bounds on the collapse load seems to give the quickest results.

- Direct solution

As an example of the direct method, consider the symmetrical two-leg right-angle
bent shown in fig. 14. The ends A and D are encastré against both torque and
moment, and the load P acts at the midpoint B of the leg AC. Suppose failure occurs
by the formation of symmetrical hinges at A and D, so that the point C moves
vertically downward for a small displacement. It is easy to see that By =PBp=~0,=0p
=0, say, so that, from equation (38), the work done in the two hinges is

IMV202 . ... ... .. (40)

Fig. 14
while the work done by the load P is
Pab . . . . . . . . . . . @4
Equating these two expressions, and using the upper bound theorem given above,
po<p=2¥YMo @
a

The frame is, of course, statically determinate in this collapse configuration, and, by
using equations (37) to determine the conditions at the hinges, the forces and moments
shown in fig. 15 are obtained. The yield criterion is exceeded by the greatest amount

1 ; :
at B, where the moment and torque are v2M, and %‘MO respectively, Le.

Mg24Tg2=5M2 . . . . . . . . 43
Hence if the load is reduced by a factor v/2/5, a lower bound will be obtained,
4 M, 4 M,
— <P —
7 g \PC\\/Z - (44)
M,
L A ERT nd
= b 4
Ly, ::’ A ,}' 70
’2’ ar”\‘ 0 :\
... 8 1 /(\\
c l zM

Fig. 15 207
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In order to improve these bounds, a hinge must be inserted at B; but collapse actually
occurs with hinges at all three points A, B and D. At first sight this would appear
to be a mechanism of three independent degrees of freedom. In fact, owing to the
simultaneity of the breakdown and flow criterions (equations (35) and (36)), each
hinge as a whole has only one degree of freedom; since a continuity condition is
required at each hinge, a space frame of the type considered here may collapse with any
number of hinges formed in its members, and an extra hinge may be inserted without
actually increasing the number of degrees of freedom.

The general method for the exact solution of a structure with R redundancies may
be tabulated as follows:

(1) Construct a mechanism with N hinges.

(2) Specify the mechanism in terms of an arbitrary displacement (one degree of
freedom) and [2N—(R+1)] deflection parameters «;.

(3) 2N—R) equilibrium equations may be formulated in terms of the moments

(M) and torques (7;) at the hinges and the applied load.

(4) M; and T; at each hinge may be calculated in terms of the «; from the
breakdown and flow criteria.

(5) The load may be eliminated from the (2N—R) equilibrium equations,
leaving a set of 2N—{R+1}) simultaneous equations for the determination
of the o;.

(6) Having determined the «;, the moments and torques at each hinge may be
calculated, and hence the value of the load. This value is an upper bound
on the collapse load.

(7) If the yield criterion is violated at any point in the structure, a lower bound
may be determined.

(8) If hinges are moved or added to the points where the yield criterion is
violated, the whole process can be repeated.

Following these rules, and inserting hinges at A, B and D, the final exact solution
is found to be

8 M,
_— =2 53—— Y (- %)
=V10 a a “43)

which as a check lies between the previous limits (44).

Bounds on the collapse load

In the method outlined above, it has been tacitly assumed that the theorems on
upper and lower bounds may be extended from plane to space frames; this is in fact
the case, and indeed Drucker, Greenberg and Prager (1950) have shown that the
special theorems may be applied to the problem of the continuum. The general
theorem of an upper bound determined from a non-equilibrium mechanism is also
valid for space frames, and this gives the quickest method for the solution of such
problems.

The advantage of the kinematic method of determining an upper bound on the
collapse load is that no reference is made to equilibrium conditions. Suppose, for

0
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example, the mechanism in fig. 16 (horizontal projection of frame in fig. 14) is specified
by assigning arbitrary deflections to the joints B and C, with hinges occurring at A,
B and D. Then an upper bound may be determined simply by equating the work
done in the hinges to the work done by the load. By trial of various mechanisms,
this bound may be lowered. Alternatively, if, after a trial, the frame is examined
statically, it will be found that it is impossible to satisfy equilibrium conditions, the
total load at B being either lower or in excess of the value of P determined from the
work equation. This implies that an extra (positive or negative) force is required at
B in order to produce the originally assumed collapse configuration. The significance
of this force is best appreciated by an example.

In fig. 16, take 83=205,-=2a, say, since the mechanism may be specified in terms of
one unknown degree of freedom. The following table gives the conditions at the
hinges.

TABLE 1
Hinge B 6 VBRLE Moment Torque
+F (X Mo) (x Mo)
A 2 0-5* l 2062 0-97 0-24
B 2 0-5* 2-062 097 0-24
D 1 0 i 1-:000 1-00 0

The asterisked values were chosen to make the torques equal at A and B, as they
should be; this is an unnecessary restriction, and improves only slightly the value of
the upper bound, and any values of the twist totalling 1-0 could have been used.

The work equation gives
_ P .2a=5124M,

. M,
ie. P. <P=2~567 (46)

The statical analysis of the frame is shown in fig. 17. The number in a circle at the
joint B gives the actual load required to maintain equilibrium, and it appears that a
load of 2:91M,/a is required as against the calculated value 2-56M;/a. Since the
equilibrium load is greater than it should be, it is indicated that the assumed deflection
of the point B was too large; if this deflection is reduced slightly, a better bound should

result. Similarly, a negative load is required at C; the deflection should be increased.

N,

062 , 194 3
0 ? T 0-24 M,
3) {(— 0-97M,
160 M, l 4
097 % lﬂ 24My >
— ,’, 0;@ 1y 1< 097 My
-aJs Ho T
0 97~,
024M, 3 (— ), ?’0

0-24M,
062%

Fig. 17
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In working more complicated examples, it is found that the process of adjusting
deflections at neighbouring joints bears a marked resemblance to a relaxation process,
and that a reduction in the out-of-balance forces at one joint induces increased errors
at the ones adjacent. However, the technique is soon mastered, and the Author
(1950c) solved, with very little labour, a rectangular grid formed by a set of parallel
beams intersecting at right angles another set of 9 beams, loaded transversely at each
of the 81 joints, and requiring 108 hinges in the collapse mechanism.

When it is suspected that the upper bound is fairly good, small adjustments in the
statical analysis will produce an equilibrium system. For example, in fig. 17, if the
torque in CD is increased from O to 0-35M, the other values remaining unchanged, an
equilibrium system results which, however, violates the yield condition at the hinge D
in the ratio 1-06. Hence, using the value in equation (46)

M, M
2-4170<Pc<2-567° R V).

The general procedure for the solution of space frames may be tabulated as
follows:

(1) Insert yield hinges at a large number of points in the frame, producing a
mechanism of many degrees of freedom. The hinges should be placed at
all the sections at which it is suspected actual hinges might occur in the
collapse.

(2) Assign arbitrary (reasonable) deflections to the joints of the grid, and
determine the corresponding changes in angle at each hinge. Equating the
work dissipated in the hinges to the work done by the external loads gives
a value of the load which is in excess of the true collapse load.

(3) Calculate the out-of-balance forces at each joint that are necessary to
produce the assumed deflections. If the out-of-balance force acts in the
same direction as the actual load at a joint, the deflection of that joint was
estimated as too large, and vice versa.

(4) Adjust the deflections, and repeat the whole process.

(5) At any stage, if the out-of-balance forces are small, and it is suspected that
the upper bound is a good estimate of the collapse load, a statical analysis
may be made. Small adjustments are made in the values of the various
shear forces and moments in order to produce an equilibrium system, from
which a lower bound may be determined.

The Author wishes to thank Professors Prager and Drucker of Brown University
for their criticism and encouragement of the work reported in this paper.
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Summary

The preparation of this paper forms part of a general investigation into the
behaviour of rigid frame structures being carried out at the Cambridge Engineering
Laboratory under the direction of Professor J. F. Baker. The paper deals with the
mathematical analysis and design of both plane and space frames, and the ideas are
presented with reference to very simple examples in order to illustrate the techniques
developed. The first part considers methods for the exact determination of conditions
at collapse of rigid ideally plastic plane structures. In the second part it is shown
that inexact methods lead to upper and lower bounds on the collapse loads, and
that these bounds may be made as close as is considered necessary. The various
theorems are applied in the third part to the solution of space frames. -

Résumé

Le présent mémoire rentre dans le cadre d’une investigation générale portant sur
le comportement d’ouvrages en cadres rigides, investigation actuellement en cours
au Cambridge Engineering Laboratory, sous la direction du Professeur J. F. Baker.
L’auteur traite de ’analyse mathématique et du calcul des cadres, tant en plan que
dans I’espace, et son exposé est accompagné d’exemples trés simples, qui illustrent
les procédés adoptés.

La premiére partie se rapporte aux méthodes de détermination exacte des con-
ditions qui se manifestent au rupture des ouvrages plans rigides idéalement plastiques.
Dans la deuxiéme partie, I’auteur montre que des méthodes non rigoureuses permet-
tent de fixer des limites supérieures et inférieures aux charges sous lesquelles les
ouvrages ceédent; ces limites peuvent d’ailleurs recevoir des valeurs aussi étroites qu’il
est jugé nécessaire. Les différents théorémes sont appliqués, dans la troisieme partie,
au calcul de cadres a trois dimensions.

Zusammenfassung

Die Arbeiten zum vorliegenden Aufsatz stellen einen Teil der umfassenden
Untersuchungen iiber das Verhalten steifer Rahmenkonstruktionen dar, die am
Cambridge Engineering Laboratory unter der Leitung von Professor J. F. Baker
durchgefiihrt werden. Der Verfasser behandelt die mathematische Untersuchung
und Bemessung ebener und auch rdumlicher Rahmen und entwickelt seine Ueber-
legungen an Hand sehr einfacher Beispiele, an denen er die gewihlten Verfahren
darlegt. Der erste Teil behandelt Methoden zur genauen Bestimmung der Bruch-
Verhiltnisse steifer, ideal-plastischer ebener Tragwerke. Im zweiten Teil wird gezeigt,
dass durch Naherungsmethoden eine obere und untere Grenze der Bruchlast ermittelt
werden kann und dass diese Grenzwerte so nahe zusammengebracht werden k6nnen,
wie es fiir notwendig erachtet wird. Die verschiedenen Theorien werden im dritten
Teil zur Berechnung rdumlicher Rahmenwerke angewandt.
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Determination of the shape of fixed-ended beams for maximum
economy according to the plastic theory

Détermination de la forme a donner aux poutres encastrées d’aprés
la théorie de la plasticité en vue du maximum d’économie

Bestimmung der wirtSchaftlichsten Querschnittsform eingespannter
Balken nach der Plastizititstheorie

M. R. HORNE, M.A., Ph.D., AM.L.C.E.
Cambridge University

1. INTRODUCTION

In the design of structures according to the plastic theory, the members are so
proportioned that collapse would not occur at a load less than the working load
multiplied by a ‘““load factor.” The plastic theory provides a means of estimating the
collapse loads of ductile structures by considering their behaviour beyond the elastic
limit, It has been shown! that, in the absence of instability, these collapse loads
may be calculated simply by reference to the conditions of equilibrium, without con-
sidering the equations of flexure. Hence the design process is essentially reduced to
the selection of members with plastic moments of resistance sufficient to withstand
the bending moments imposed by the *“factored loads’—that is, by the working loads
multiplied by the load factor.

The direct nature of the design of structures by the plastic theory facilitates the
relative proportioning of the members such that the total weight is an absolute
minimum. A method of proportioning simple structures composed of prismatic
members for minimum weight has already been presented.2 Further economy of
material can, however, be achieved by using members of varying cross-section, and
may be sufficient to compensate for the increased cost of fabrication. It is thus worth
while investigating the maximum saving in material theoretically attainable by this
means. No consideration will be given to the increased cost of manufacture of such
members compared with those of uniform section, since this must depend primarily
on the quantities required; for this reason, it is impossible to arrive at any conclusions
regarding possible overall economies.

1 For references see end of paper.
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The relationship to be assumed between weight per unit length and full plastic
moment of resistance is discussed in 2 below; 3 contains a discussion of a member of
continuously varying section fixed at the ends and supporting a uniformly distributed
load; while the case of a similarly loaded member in which the cross-section is only to
be varied by one or two discrete intervals is discussed in 4.

The term ‘“fixed at the ends” is not here intended to imply complete flexural
rigidity at the supports, but rather that the members to which the beam under con-
sideration is attached are together capable of resisting the full plastic moment of the
end sections of that beam.

2. THE RELATIONSHIP BETWEEN FULL PLASTIC MOMENT AND WEIGHT PER UNIT LENGTH

The full plastic moment of a member (denoted by M) is the moment of resistance
when the whole section is undergoing plastic deformation. If f} is the yield stress,
at which pure plastic deformation can occur, then for a beam of rectangular cross-
section, of width b and depth 24 (see fig. 1),

J
+
L
)

P 7
d Tension /
I R BN 7777 _
1 N
Jd Compressron
| . N
Cross-section |__ 6’ —
Stress distribution
when fully plastic
(a) (6)

Fig. 1. Fully plastic stress distribution for a rectangular beam

M,=bd?, R ¢}

Let the weight per unit length of the beam be w, and let the density of the material
be p. Then

' w=2bdp . . . . . . . . . . @
If b is constant and d varies, then
woeMA . . . . . . . ... ()
If d is constant and 4 varies,
woc M, L | ]
“while if b and d both vary such that b/d remains constant
woeME L. L .. oo (5
Hence, however the section is varied,
w=kM,” . . . . . . . . . . (6)

where k is a constant and $+<<n<<l.
Arguments similar to the above may be applied to sections other than rectangular,
and thus equation (6) gives a general relationship between M, and w. This formula
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isfactory in that it takes no account of the effect of shear forces.
ear forces have little effect on the value of the full plastic moment,?
esisting shear forces will prevent the section of a beam being allowed
the applied bending moment at collapse is zero. Hence it will in
ed that

w=wo+kM," N ¢))

ENDED BEAM OF CONTINUOUSLY VARYING SECTION

7
y ! e l -t
4 Load g/unit |length 4
> 7%,
g ! ,1';
j A \c 8 E
(a)

"

M,TE}V

(6)

Fig. 2. Bending moment distribution for a beam of continuously varying section
(uniformly distributed load)

The beam AB (see fig. 2(a)), of length 2/, is fixed at the ends and carries a uniformly
distributed load at collapse of ¢ per unit length. Let the hogging bending moments
at the ends (M, and M) be assumed equal at collapse, and let M denote the sagging
bending moment at the centre. Let M, be the central bending moment which would
be induced in a similar simply supported beam. The bending moment distribution
at collapse in the fixed-ended beam may be obtained by superimposing on a parabolic
bending moment diagram acb of height M, (fig. 2(b)) the bending moment distribution
aa’b’a due to the terminal moments M4 and M , giving the resultant shaded area.

Let s denote the distance of the points of contraflexure from the centre of length of
the beam.

12 A
Then M’:-“],)—
j2—g2
Ma=My=—7"M, { ®)
SZ
MC—I_ZM,

C.R.—8
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If x denotes the distance of any section from the centre of length of
then the minimum full plastic moment at that section becomes

§2—x2
when 0<<x<Js, M,=——M,

/2

x2—gs2

M J

Hence if W denotes the weight of the beam,

when s<<x<l/, M,=

s !
Mn S
W=2wyl+ 2kIT:’[J (52_A‘z)"dx+_{(.\‘2—Sz)”dx}
The most economical design will be obtained with that value of s for which
minimum, i.e. putting dW/ds=0, when
s !
J.(sz—xz)"" 'd.\‘:J (x2—s2)"-1dx

If M,” and W’ denote the full plastic moment and weight respectively of the least
prismatic beam sufficient to carry the load, then

M! d
Y ¢ 1) I
2
' ’ Mn
W"=2w01+2k(—2—')1 N ¢ k)|

When #=0-5, the most economical value of s is given by
S T
7= sech §=0-3986
The corresponding minimum weight is |
W=2wol+0-9172kM 3]
while W'=2wyl+ 14142k M1

The percentage saving of material depends on the ratio of wy to kM,:.  If the require-
ments of resistance to shear are ignored (wy=0), an economy of up to 3519 of the
weight of the uniform beam can be achieved. When the effect of shear is allowed for,
the percentage economy will become less.

When n=1-0, the economical value of s is 5//=0-5,

whence W=2wyl+0-5kM,
while W' =2wyl+kM,l

In this case therefore a maximum economy (ignoring shear) of 509, is possible.
When $<<n<<l, it may be shown from equation (11) that the most economical -
value of s is given approximately by the formula

/ 3\1-"{1—n
§=2+1'2467(§) (1-{-)1)' « = 5 % 5 o« (14)

Values of s// for various values of n are given in Table I.
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TABLEI

n s/l

0-5000
0-4835
0-4651
0-4447
04226
0-3986

eeeee
AUV S

Points of contraflexure for beam of continuously varying
section carrying a uniform load (see fig. 2)

Although for any given value of » the maximum economy is only achieved for
some definite value of s, the loss in economy is negligible if 5//=0-45. This is demon-
strated in fig. 3, which shows the percentage economies achieved (assuming wy=0)
with various values of s/ for n=0-5 and n=1-0.

=045

S0

'\

Percenlage saving
'e
T

3
T

7} 1 1 L 1 J
a a2 04 a6 g-8 70

Value of 75—

§ = Distance of points of contraflexure from centre
(see fig.2)

Fig. 3. Econcmies achieved by continuously varying the section of a fixed-ended beam
(uniformly distributed load)

4. FIXED-END{D BEAM WITH DISCRETE VARIATIONS IN SECTION

Due to the practical difficulties of varying the section of a beam continuously as
envisaged above, it is worth while investigating the economies which can be achieved
when the full plastic moment is increased by discrete amounts (a) at the centre only,
(b) at the ends only and (c) at both centre and ends.

Since the full plastic moment of resistance is nowhere reduced to zero, there will
in general be no need to allow for the effects of shear on the relationship between w
and M, (equation (7)). In the following analysis it is therefore assumed that wy=0.
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(a) Section increased over a central length only

Let the beam previously considered have a uniform value of M, denoted by M,
except over a central length 2a, where it is reinforced so that M,=M, where M,>M,
(see fig. 4(a)). The bending moments at collapse are shown by the shaded area in

SN
AN
R AN

o cl i

(6)

Fig. 4. Bending moment distribution for a beam reinforced at centre only
(uniformly distributed load)

fig. 4(b), while the moments of resistance M, and M, are indicated by dotted lines,
which must completely enclose the bending moment diagram. Hence

12_S2
M1=MA=MB= 12 M, W ] # ¥ . . . (15)
Sz
My=Mc=pM, . . . . . . . . . . . (16

The value of a is obtained by noting that where the beam changes section, the sagging
moment is equal to M, and hence

M’=TM’ « @ s 3 s m s m LL7)
It follows from equations (15) and (16) that
| M +M,=M, . R ¢ £
while from equations (15) and (17), putting M,/M,=r,
a

The total weight W of the beam is given by
W=2kM,"(I—a)+2kM;"a . . . . . . . (20)
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It may be shown from equations (18), (19) and (20) that

When W has its

W=2kM/ "I[r'"1—V1=2r)+1—=r)"v1—2r]
minimum value,
( r )‘—"_n\/m‘—{-(%r—n—i—r)

1—r 1—Q2nr—n+r)
TaABLE II

n r=M,/M, afl
1-0 0-4444 0-3333
09 0-4432 0-3371
0-8 0-4418 0-3412
0-7 0-4403 . 0-3456
0-6 0-4388 0-3500
05 0-4370 0-:3550

Plastic moment ratio and proportion of beam to be reinforced

for beam reinforced at centre only (see fig. 4)
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@1

(22)

The most economical values of r and a// are given in Table II for values of n

between 0:5 and 1:0.

It may be noted that r represents the ratio of M,, the full

plastic moment of the unreinforced part of the beam, to M,, the full plastic moment
of the uniform simply supported beam which would just carry the same load. Hence

r will be termed the *‘ plastic moment ratio.”

It will be seen that r and a/! (the propor-

tion of the beam to be reinforced) are almost constant, r varying from 0-4444 to
0-4370 and a/! from 0-3333 to 0-3550. As a working rule therefore the beam should
be reinforced for about one-third of its length, the reinforced section having a full

plastic moment

Percentage saving

Fig. 5.

some 259, or 309, greater than the unreinforced section.

40
30
20
roL
a 1 1 1
0 a7 02 03 o4 a5 g6
Valve of -ﬁl?-
23 = Length of 6elam reinforced at cenfre
‘ (see fig. 4)
Economies achieved by reinforcing the centre of a fixed-ended beam

(uniformly distributed load)
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The variation of the percentage saving (as compared with a beam of uniform section
throughout) with a// for n=0-5 and n=1:0is shown in fig. 5. It will be observed that
if more than about half of the beam is reinforced, there is no saving in material.
When n=0-5, the maximum saving possible is 2-03 % as compared with a saving of
35-1% when the section is varied continuously in an ideal manner. When n=1-0,
the corresponding figures are 3-70 9 and 50-0 % respectively. It is therefore apparent
that no great advantage accrues by increasing the section only at the centre.

4 g
' 777 7
l‘— g —at
(a)
T
Full plastic moments | :
1

(3) -

Fig. 6. Bendinhg moment distribution for a beam reinforced at ends only
(uniformly distributed load)

(b) Section increased at ends only

A beam of uniform plastic moment of resistance M is reinforced for a distance a
from either end so that its plastic moment of resistance becomes M, (see fig. 6(a)).
The bending moment distribution at collapse is shown by the shaded area in fig. 6(b),
while the moments of resistance are superimposed as dotted lines. If full plastic
moments are just sufficient to withstand the applied moments, then

52
Ml:MC:I_zM! . . . . . . . . . . . . (23)
[2—g2
M2=MA=MB=TMI 5 . N . = . . N (24)
Since where the beam changes section the hogging moment has the value M,
(l—a)2—s2
M1="'T' M( e e e e e e e (25)

From eqﬁations (23) and (24),
M +M,=M,. . . . . . . . . . . . . (20
while from equations (23) and (25), if M,/M,=r, .

‘.l‘=1_\/27 N )|
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The total weight W of the beam is given by
W=2kM,"(I—a)+

2kM2"a

which, by virtue of equations (26) and (27) becomes

W=2kMI[r"V2r+
At minimum W,
@n+1)r

r

(1—=r)"(1—=420)]

1—n
(ﬁ) =(1 —2nr—r+nV2r)

TaBLE 111
l
n r=M,|M; | all

1-0 0-2946 0-2324
09 0-2866 0-2429
0-8 0-2777 0-2548
0-7 0-2680 0-2679
0-6 0-2571 0-2829
05 0-2449 0-3001

Plastic moment ratio and proportion of beam to be reinforced for beam reinforced

at ends only (see fig. 6)
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(28)

(29)

(30)

The most economical values of » and a/! are given in Table III for values of n
from 0'5 to 1-0. The value of r(=M;/(M+ M,)) varies from 0-2946 to 0-2449, and
hence the reinforced section has a full plastic moment from 1409, to 208 9%, greater

than the unreinforced section. The value of a/l varies from 0-2324 to 0-3001.

A

satisfactory working rule would therefore be to reinforce an eighth of the length of

the beam at either end.

25 _
0 |- n=rg
%5
n=g
? i
8 b/
W
®
N 5k
g ] 1 \ ) .
g ol g2 23 a4 05
Valve of lii

d = length of beam reinforced al either end

(see fig. &)

Fig. 7. Economies achieved by reinforcing the ends of a fixed-ended beam

(uniformly distributed load)
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The variation of the percentage saving (compared with a uniform beam) as a/l
is altered is shown in fig. 7 for n=0-5 and n=1-0. It will be seen that by taking
af/l=0-25 there is very little loss in economy in either case. When »=0-5 the maxi-
mum saving possible is 14-1 % and for n=1-0itis 22-0%,. These figures compare with
the ideally attainable economies of 35-1% and 50-0 9, respectively.

The economy practically attainable by reinforcing the ends alone is therefore quite
appreciable. It should be noted, however, that the surrounding members must
provide a total moment of resistance equal to the full plastic moment of the reinforced
part of the beam, and this may sometimes be a serious disadvantage.

NN NNNS

L Ly

Full plastic moments

b—2 S

|
A
Lot T A I
: ! Bending |moments || ] P M
: Aol ! !
I I !
! L | [ ' M
' .
|

e nek i BERNNERN|
l«—b —-—--—b—-{
(%)

Fig. 8. Bending moment distribution for a beam reinforced at both centre and ends
(uniformly distributed load)

(c) Section increased at both centre and ends

The advantage obtained by reinforcing both centre and ends may be estimated
by considering the beam shown in fig. 8(a). This is reinforced for a distance a either
side of the centre and at each end for a distance (/—b). The bending moment
diagram, shown shaded in fig. 8(b), is completely enclosed by the graph of the full
plastic moments (shown dotted). The unreinforced section has a moment of resistance
M, the ends a moment of resistance M, and the centre a moment of resistance Mj.

a2

Hence M3—M1=l—2M, g 1 o % % & w ¢ = % (31)
b2
M3+M1=ﬁM, wom omom 8B ® o4 # 4 L)

M2+M3=M; . . . . . . - - - - - (33)
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Solving for M, M, and M;,

b2___a2
Ml:TM‘ O 1Y)
212—qg2—p2
M2=—2[2—M, (35)
a’+5b2
M3=TM‘ O 1))
The total mass of the beam thus becomes
Mﬂ
W=2"-"nj— [a(a2+b2)"+ (b—a)(b2—a?)"+(I—-b)(212—a2—b2)"] . (37)

lzn
When W has its minimum value, ¢ W/da=0 and ¢W/cb=0.
When n=1-0 the above conditions give 3a>—al=0 and 3b2—b/—12=0,

whence - (—;=%=0-3333
b_1+VIE_ e

The moment of resistance is 171-8 %, greater than that of the unreinforced beam at the
ends, and 46-5 9%, greater at the centre. The saving is 25-7 %, compared with 22-0%,
with end reinforcement only and 3-7 9] with central reinforcement only.

When n=0:-5, it is found that

ab (b—a)(a+2b) 2P2+Ib—a?—2b2
Vath ' Vb—az  Vil—a-b2
2a2+b2  (b—a)(2a+b) a(l-b)
Vartb:  Vbh—a2  V2l—ai—b? .
These equations give a/l=0-3185 and b//=0-7074. The moments of resistance at the
ends and centre are respectively 250-59, and 50-9 %, greater than that of the unrein-

forced beam. The saving is 161 9%, compared with 14-1 9%, with end reinforcement

only and 2-0 % with central reinforcement only.
Hence the percentage saving with both central and end reinforcement is very little

greater than the saving with end reinforcement only.

5. CONCLUSIONS

It has been shown that the adoption of beams of varying cross-section can lead to
considerable economies in total material consumption when the basis of design is the
ultimate load which the beam will carry as calculated by the simple plastic theory, The
best shape for the beams has been calculated for the case of a fixed-ended beam carry-
ing a uniformly distributed load, the minimum cross-sections occurring at about one-
fifth the length of the beam from the centre. The maximum theoretical economies
are of the order 35-50%.

Since the construction of a beam of continuously varying cross-section may have
considerable practical disadvantages, an investigation has been made into the effect
of reinforcing either the centre or the ends of the beam, or both centre and ends
simultaneously. It has been shown that there is only a negligible advantage in
reinforcing the centre, but that reinforcing the ends does lead to appreciable
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economies. The economy achieved by reinforcing both centre and ends is virtually
no greater than that achieved by reinforcing the ends alone.
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Summary
The simple plastic theory gives a direct means of determining the form of a fixed-
ended beam of varying cross-section such that the total weight of material shall be an
absolute minimum. The paper shows how this form may be deduced for a uniformly
distributed load, both when the cross-section of the beam can be varied comntinuously,
and when the size of the beam can only be adjusted in discrete intervals. The maxi-
mum theoretically attainable economies of material are discussed.

Résumé

La théorie simple de la plasticité fournit un moyen direct pour déterminer la forme
a donner 4 une poutre encastrée a ses extrémités et présentant une section non
uniforme, pour que le poids total de métal employé constitue un minimum absolu.
L’auteur montre comment I’on peut déterminer une telle forme dans le cas d’une
charge uniformément répartie, aussi bien lorsque la section de la poutre peut varier
d’une maniere continue que lorsque ses dimensions effectives ne peuvent étre choisies
que dans des intervalles déterminés. Il discute I’économie maximum de métal que
I’on peut régliser du point de vue théorique.

Zusammenfassung

Die einfache Plastizitdtstheorie erlaubt uns die direkte Bestlmmung derjenigen
Form eines eingespannten Balkens mit verdnderlichem Querschnitt, bei der das
Gesamtgewicht des Materials ein absolutes Minimum sein soll. Der Aufsatz zeigt
die Ermittlung dieser Form bei gleichmaéssig verteilter Belastung, einerseits, wenn der
Querschnitt des Balkens stetig verdnderlich ausgefiihrt werden kann und andererseits,
wenn seine Abmessungen nur in bestimmten Abstufungen verindert werden konnen.
Die hochste theoretisch mogliche Ausniitzung des Materials wird untersucht.
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Sur la plastification de flexion des poutres a ame pleine en acier doux

(Récents essais francais—Examen critique des essais antérieurs—Questions
restant a résoudre)

Plastification of bending plate-web girders in mild steel

(Recent French tests—Ceritical study of previous tests— Problems still to be solved)

Plastifizierung der Vollwand-Biegetriger aus Flusstahl
(Neue franzosische Versuche—KTritische Betrachtung der fritheren Versuche—
Noch zu l6sende Aufgaben)

A. LAZARD

Ingénieur en Chef des Ponts et Chaussées
Chef des Divisions Centrales des Ouvrages d’Art et des Ftudes d’Aménagements de la S.N.C.F.

INTRODUCTION

Les recherches sur la plastification de flexion des poutres a 4me pleine en acier
doux de construction doivent conduire a une économie de métal et a une économie
d’argent. Cela s’obtiendra par relevement des contraintes maxima autorisées par les
réglements officiels, basés presque tous sur ’ancienne conception de 1’élasticité, en
sollicitant soit certaines dérogations, soit des modifications permanentes a ces régle-
ments. Iln’yaespoir d’aboutir que si le dossier présenté aux Organismes responsables
des Grandes Administrations est basé sur des faits indiscutables, résultats d’expériences
nombreuses et probantes, et si les limites d’utilisation des dérogations solhc1tees ou
des nouvelles prescriptions proposees sont bien précisées.

Or a la suite d’importantes expériences de flexion effectuées sur poutrelles Grey de
1 meétre de hauteur (c’est-a-dire sur les plus grands laminés du monde) qui nous a
permis d’entrevoir quantité de phénomenes de plastification peu ou mal connus, il
nous est apparu, en procédant & un examen critique général des théories et des
expériences existantes, que les généralisations étaient souvent hatives, qu’il existait un
nombre considérable de questions non posées ou restées sans réponse, que, malgré
des tentatives isolées dans ce sens, les limites d’utilisation des nouvelles méthodes
n’étaient pas suffisamment précisées, et, qu'en définitive, il fallait procéder a un
nouvel examen du probléme en opérant avec beaucoup d’ordre.
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Pour notre part nous avons mis en train, avec la collaboration de la Chambre
Syndicale des Constructeurs Métalliques Frangais, des séries d’expériences dans le
domaine fort vaste, quoique trés restrictif, des

laminés I ou H

bruts *

de longueur dépassant 6 fois la hauteur
sollicités a la flexion

statiquement

et isostatiquement

jusqu’a ruine.

Le chapitre I de la présente communication est consacré a une description rapide
des expériences déja réalisées et au développement des conclusions auxquelles on est
conduit, en insistant sur les points qui appellent des expériences de contrdle par
‘d’autres chercheurs.

Compte tenu de ces conclusions, les autres essais connus de nous} sont examinés
et discutés au chapitre II, en suivant la classification qui a paru la plus adéquate.
Chaque fois nous nous sommes basés sur la description détaillée des circonstances
expérimentales: malheureusement les détails font souvent défaut.

Les conclusions d’ensemble sont développées au chapitre III. On insiste sur les
lacunes des recherches actuelles. On propose d’établir un programme général des
expériences a reprendre ou restant a faire, dont on souhaite un partage entre les
. membres de I’Association.

CHAPITRE I—LES RECENTS ESSAIS FRANCAIS SUR LA PLASTIFICATION EN FLEXION
STATIQUE ET ISOSTATIQUE DE LAMINES I ou H BRUTS

On décrira quatre séries d’essais qui tous ont été poussés jusqu’a la ruine.

lére Série: Poutrelles H de 1 métre de hauteur

Ces essais, exécutés pour le compte de la S.N.C.F. en 194849, ont été décrits en
détail par nous, dans le Xéme Volume des Mémoires de ’A.I.P.C., et ont fait I’objet
d’un léger complément théorique dans Travaux, numéro de mai 1950. Ils sont
schématisés figs. 1 et 2.

Ils ont clairement mis en évidence les faits suivants:

(a) Les premiers signes de plastification sont apparus bien avant que les contraintes
a la Navier (quotient du Moment M par le module de résistance de la section I/v
ou W), aient atteint la limite élastique conventionnelle du métal (a 2 9, ) déterminée sur
une éprouvette prélevée dans une semelle d’'un about. L’apparition de la plastification
dépend essentiellement des appareils de mesure utilisés pour la déceler et du critére
choisi pour la définir. Elle semble débuter dans la semelle tendue.

Il apparait que la notion de *“ Moment Elastique” (ou produit de la limite élastique
par le module de résistance), souvent utilisée par les théoriciens, ne correspond a

* (Cest-a-dire sans trous. Nous mettons en route, a I’époque a laquelle nous rédigeons la présente
communication—juin 1951—une nouvelle série, avec trous cette fois. Nous espérons pouvoir en
rendre compte a 1’époque du Congres.

1 Il ne nous a pas toujours été possible de nous procurer tous les articles originaux. Compte tenu
du nombre limité de pages dont nous pouvions disposer dans la présente communication, nous ne
donnons qu'un apergu des expériences. Un texte détaillé paraitra dans Travaux, numéros de
novembre et décembre 1951.
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aucun phénomeéne physique réel.* Pour cette valeur la poutrelle est déja partiellement
plastifiée. Cela parait étre sous la dépendance des contraintes préalables, enfermées
dans la poutre par les traitements: chimique, physique, mécanique, subis antérieu-
rement (et que le prélevement de I’éprouvette libere partiellement).

(b) La plastification est un phénoméne essentiellement discontinu. Elle se produit
en des points trés variables et diversement localisés. Ces points se mettent brusque-
ment a fluer, la limite d’écoulement ayant été localement atteinte; les points voisins

* En réalité c’est la limite du domaine de proportionnalité de la poutrelle qu’on a déterminé. 1l

faudrait donc la comparer a la limite de proportionnalité¢ du métal. A supposer que cette:limite
ait un sens pour le métal in situ (état contraint) et soit une constante en tous les points.
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modifient leur progression de déformation, dans des proportions fort variables, allant
d’un simple ralentissement 4 une régression. * '

Les charges augmentant, la plastification se propage graduellement, par a coups,
en intéressant des zones de plus en plus considérables. Il ne se passe rien de spécial
dans les zones tendues; au contraire dans les zones comprimées on finit par parvenir
a des flambements locaux dme ou semelle qui entrainent la ruine de la poutrelle.

(¢) L’hypothése de Bernoulli sur la conservation des sections planes (ou sur la
proportionnalité des déformations aux distances de la fibre neutre) devient de plus
en plus inexacte, au fur et & mesure que la plastification progresse.

(d) Dans les zones tendues apparaissent des lignes de glissement, dans les zones -
comprimées des rides de glissement, selon la terminologie du professeur Baes (voir
fig. 2).7 Lignes et rides n’apparaissent que dans des zones fortement plastifiées.
Leur progression permet d’évaluer grossi¢rement, et probablement avec un certain
retard, la progression de la plastification.

(e) On est amené a en déduire I’existence de contraintes de compression agissant
sur les facettes longitudinales.

Dans I’dme c’est une consequence de l'effet de courbure de la poutre. Dans les
semelles on voit mal & quoi cela correspond.

(f) Les dispositions ayant été prises pour empécher I’apparition de tous les phéno-
menes d’instabilité élastiques (déversement, flambements élastiques locaux) et dans
une certaine mesure les flambements plastiques locaux la ruine des poutrelles est
intervenue par plastification quasi totale. La “contrainte a la Navier’ lors de la
ruine plastique a certainement dépassé 30 kg./mm.2

2éme Série: IPN de 200 et 300 et HPN de 550

Ces essais, exécutés pour le compte de la Chambre Syndicale des Constructeurs
M¢étalliques en septembre-octobre 1949, ont été décrits, en détails par M. Dawance
lors d’une conférence faite a Paris le 13 décembre 1949, suivie d’une intéressante
discussion (voir fig. 3).

Les prélevements d’éprouvettes ont montré que les limites élastiques dans les Ames
sont plus €levées que celles des semelles. C’est 1a d’ailleurs un phénomeéne tout a fait
général.

Les essais ont sensiblement confirmé les conclusions de nos propres essais.

3éme Série: Mdts encastrés en poutrelles HN de 180 et 260

Ces essais ont été exécutés en 1950, sur des chantiers de la S.N.C.F., a ’occasion
de recherches sur les poteaux supports de caténaires des futures électrifications.

Les essais de Marolles (5 septembre 1950) ol des poutrelles HN de 180 étaient
profondément encastrées dans un important massif de béton sont représentés a la
fig. 4.

3 poutrelles ont été essayées avec efforts dans le plan de I’ame seule (fig. 4(b)).
Toutes trois ont été ruinées pour une contrainte a la Navier de 35,2 kg./mm.2 calculée
a la base de ’encastrement.

* Cette régression (a laquelle nous avons donné le nom de “bec d’oiseau’ quand elle apparait
similairement dans le béton tendu au moment de la fissuration) a été également observé par M. Soete,
professeur & Gand, dans des essais de traction sur éprouvettes soudées. Elle semble correspondre
aux phénomeénes obscrvcs en rayons X, par les Allemands. Toutefois Schleicher (par exemple
Bauingenieur, juillet 1950) pretend qu’on mesure par ce procédé les contraintes vraies.

1 Ces phénomenes ont déja été notés, mais avec beaucoup de prudence, par le prof. Kayser.
Congrés de Berlin, Rapport final, 1938, p. 557, et Stahlbau, 26.2.1937.

t Annales de I Institut du Bdtiment et Travaux Publics, mai 1950. Construction Métallique No. 6:
**Nouvelles recherches expérimentales sur la plasticité des éléments de construction métallique.”
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Nous avons pu suivre avec précision le phénomeéne de ruine plastique sur 'une
d’elles. Malgré les précautions prises I’effort n’était pas rigoureusement exercé dans
le plan de I’ame et la poutrelle avait un aspect 1égérement vrillé. Brusquement, au
moment ou I’effort de traction dans le cdble atteignait 1 300 kg. (mesuré au dynamo-
métre), correspondant & un moment a ’encastrement de 14 940 kgm. et une contrainte
a la Navier de 35,15 kg./mm.2, nous avons vu sur une des ailes de la semelle tendue se
propager vers le bas, et & partir d’une hauteur d’environ 60 cm. au-dessus du sol,

"comme une sorte de vibration de plastification; le vrillage a disparu et la poutrelle est
alors venue, sans résistance, a la demande du cible. Compte tenu de la rapide dé-
croissance du moment en fonction de la hauteur, la contrainte a4 la Navier, dans la
zone d’ou est parti I’ébranlement plastique de ruine, atteignait environ 32 kg./mm.2
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Dés qu’on arrétait I’enroulement du cable sur le treuil, les poutrelles cessaient de
se déformer. Nous avons alors déchargé complétement (les poutrelles gardant une
déformation importante) puis rechargé. A partir de cette déformation résiduelle, les
poutrelles se sont comportées sensiblement comme des poutrelles neuves et élastiques
tant que la charge n’a pas atteint une valeur trés peu inférieure a celle ayant provoqué
la ruine plastique; la poutrelle s’est remise alors a se déformer exagérément au simple
appel du céble.

Ces essais complémentaires ont donc montré clairement (contrairement a une’
opinion répandue) qu’une poutrelle peut avoir été amenée a la plastification totale
et étre réutilisée dans certaines limites a partir de la déformation permanente acquise.
Il n’y a ruine définitive que si la sollicitation est maintenue en permanence: si la
sollicitation cesse la poutrelle peut étre récupérée dans une certaine mesure.*

Une autre poutrelle a été essayée a la flexion déviée (fig. 4(c)). La ruine plastique
est intervenue pour une valeur des efforts correspondant a une contrainte a la Navier
a I’encastrement de l’aile de la membrure la plus comprimée égale a 33,3 kg./mm.2

D’autres essais ont eu lieu a Vigneux avec des HN de 260 enfoncées de 3 m. dans
un massif de béton de 55 cm. de diamétre et de 3 m. de profondeur.

Ils ont manifesté des phénoménes d’instabilité élastique qui sont susceptibles de
se produire chaque fois qu’on ne prend pas les précautions nécessaires pour les rendre
impossibles.

4¢éme Série: IPN de 200: Sollicitations cycliques

Ces essais ont été exécutés, conjointement par la S.N.C.F. et la Chambre Syndicale
des Constructeurs Métalliques en 1950 et 1951, par M. Dawance et son équipe de
collaborateurs habituels.

Les trongons de 2,20 m. des poutrelles IPN 200 ont été extraits dans des barres
de 7 m. provenant des parcs de la SN.C.F. Les éprouvettes ont été prélevées dans
des sections d’essai repérées en bout de chaque trongon: deux dans les 4mes, une dans
chaque semelle (voir fig. 5). Le tableau suivant donne les limites élastiques con-
ventionnelles (en kg./mm.2) des sections d’essai.

Poutrelles des: lére sous-série | 2éme sous-série 3éme sous-série
Sections d’essais: A ! C B 1 2 3 4 5 6
Semelles {hautes . ! 24,7 29 28,3 26,9 26,1 26,7 26,6 26,9 27,7
basses 27 28,3 28,3 26,6 25,4 249 26 25,9 24,2
Ames {hautcs . . 29,2 33,8 29,6 26,8 27,9 27,8 28 28,2 29
basses . .| 30 34,8 32,0 27,8 28,4 29,9 30,2 29,4 28,8

On notera une trés notable dispersion des résultats le long d’une méme fibre du méral
ainsi que des valeurs plus €levées dans les 4mes que dans les semelles.

Ces essais ont eu pour but de rechercher I'influence de la répétition de cycles de
sollicitations sur les phénomenes de plastification et notamment de déterminer la
valeur des cycles a partir desquels les déformations permanentes ne se stabiliseraient
plus.

On craignait, en particulier, que la ruine plastique intervint, dans ces conditions,

* Dix ans plus tot nous avions regu I'ordre de mettre 2 la ferraille la charpente d’un pont détruit

par faits de guerre, dont nous avions proposé la réutilisation partielle. C’est la raison qui nous a
poussé & procéder a cette contre épreuve.
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bien avant celle qui aurait été observee en suivant le processus des trois premieres
séries d’essais.

Premiére sous-série: Sollicitations ondulées*—Cycles 4 & +n kg.[mm.2(fig. 6) (Poutres I
et 11, 1lI)—essais des 17 et 23 mai, du 21 juin et du 7 juillet 1950

Les contraintes a la Navier variaient, dans chaque cycle, entre 4 et +» kg./mm.2
La valeur supérieure n du cycle n’était augmentée que lorsque la stabilisation des
fieches était obtenue. Deux poutrelles (I et II de la fig. 5) ont été essayées dans ces
conditions.

On a pu tirer les conclusions suivantes:

1° La répétition de cycles de sollicitations ondulées ne modifie pas la valeur du
moment entrainant la ruine plastigue. La ruine plastique correspond pour une
poutrelle sollicitée statiquement, dans des conditions de flexion déterminées, a un
phénomene bien caractérisé qui est indépendant du processus d’application des charges.

2° On peut ‘“accommoder élastiquement’ une poutrelle, une fois la déformation
permanente acquise. On peut, ce faisant, dépasser, en contrainte & la Navier, la
limite élastique conventionnelle.

Nous en avons congu la possibilité d’utiliser en flexion des poutrelles brutes bien
au dela des limites actuellement tolérées par les réglements, en procédant a une
prédéformation volontaire des poutrelles, sous une contrainte légérement supérieure
aux contraintes maxima d’utilisation.

Mais avant de mettre en application un tel procédé qui peut, naturellement, étre
conjugué avec un enrobement par du béton de la semelle tendue et déformée, en vue
de précontraindre ce béton lorsqu’on retire les charges (les déformations sont, en
particulier, trés réduites et ne limitent plus ’utilisation des hautes contraintes), i/ faut
s’assurer que I’accommodation élastique, ainsi acquise, se conserve dans le temps.

Des essais sont nécessaires pour le vérifier.

Deuxiéme sous-série: Sollicitations alternées—Cycles 10 kg.[mm.2 a +n kg./[mm.2
(fig. 1(a)), 20 kg.[mm.2 a +n kg.[mm.2 (fig. 71(b))

Les résultats confirment sensiblement les conclusions de la premiére sous-série;
la ruine n’a pas été avancée par les sollicitations alternées et elle est intervenue
pratiquement pour les mémes valeurs de la contrainte a la Navier que dans les essais
sans répétitions cycliques.

Troisiéme sous-série: Sollicitations oscillantes—Cycles entre plus et moins n kg.[mm.2

(fig. 8)

L’essai a montré:
(@) que la stabilisation était assez rapidement acquise;T

* Nous adoptons ici la Terminologie que met au point actuellement une sous-commission de

I’A.F.N.O.R., présidée par M. Prot:
Une sollicitation périodique est ondulée lorsque les forces varient entre deux limites de méme

signe.
Une sollicitation périodique est alternée lorsque les forces varient entre deux limites ayant

des signes opposés.
Une sollicitation DCFIOquuC est oscillante lorsque les forces varient entre deux limites ayant

des signes opposés et une méme valeur absolue.
Une sollicitation périodique est répétée lorsque les forces varient entre zéro et une limite.
1 Toutefois le nombre de répétitions (20) n’a peut-étre pas toujours été suffisant. La fleche
pouvait paraitre stabilisée puis brusquement, par exemple & la quinziéme répétition, s’accroitre a
nouveau. .

C.R.—9
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(b) que les cycles d’hystérésis devenaient de plus en plus marqués, la diagonale
s’inclinant de plus en plus sur I’horizontale;

(¢) que l'effet Bauschinger jouait a plein, c’est-a-dire que les déchargements
étaient & peu prés linéaires, mais que les rechargements (dans un seas ou
dans I’autre) montraient au contraire une courbure prononcée;

(d) qu’enfin la ruine est intervenue sensiblement pour la méme contrainte a la
Navier que dans les essais précédents.

Quatriéme sous-série: Poutrelles A et D—Essais des 9 et 11 mai 1951 (fig. 9)

Nous nous sommes posé la question suivante: reste-t-il quelques traces, décelables,
d’une plastification plus ou moins totale d’une poutrelle? 1l est bien certain, en effet,
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que lorsqu’une poutrelle est livrée par les forges elle a subi, au cours de son élaboration
tant chimique que thermique que mécanique, d’innombrables plastifications. Or le
controle consiste & mesurer les caractéristiques mécaniques d’une éprouvette prélevée
dans le métal; si elles sont satisfaisantes on utilise la poutrelle dans les limites régle-
“mentaires. Comment distinguera-t-on une poutrelle ““vierge” d’une poutrelle plus
ou moins “‘outrageusement plastifiée” qui, aprés redressement, aura été remise sur
parc. :
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apres ruine 3 +31 (voir £g. 78)

A cet effet nous avons demandé qu’on soumette a nouveau a des essais de flexion,
jusqu’a des contraintes de 15 kg./mm.2, la poutrelle A de la 2éme sous-série et la
poutrelle D de la 3¢me sous-série qui toutes deux avaient €té plastifiées jusqu’a la ruine
dans des cycles Bauschinger (contraintes positives et négatives).

Selon le sens dans lequel I’effort serait appliqué on pouvait penser que ces poutrelles
se comporteraient élastiquement ou manifesteraient la courbure caractérisque de
’effet Bauschinger, sous réserve que le temps n’ait pas modifié les propriétées acquises.
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Les essais ont eu lieu le 9 mai 1951. Les poutrelles étaient au repos depuis 2 mois
4 pour A et 1 mois 2 jours pour D. Ils sont schématisés par les fig. 9(a) pour des
essais sous + ou —15 kg./mm.2 et fig. 9(b) pour des essais sous + ou —24 kg./mm.2
Il semble qu’on puisse conclure de ces deux essais (qui méritent d’étre renouvelés):

1° qu’aprés un repos de plusieurs semaines* des poutrelles méme séveérement
plastifiées (et tordues) ont récupéré leurs qualités élastiques (fig. 9(a)): les
phénomeénes de plastification ne se manifestent 3 nouveau que sous des
sollicitations importantes voisines de la limite élastique (fig. 9(b)).

2° il n’existe pas de moyen de déterminer les plastifications antérieures}: au
vrai cela devient sans intérét a cause du 1° ci-dessus.

Tous ces essais nous conduisent a conclure comme suit;

CONCLUSIONS DU CHAPITRE I

(1) A la précision des essais et compte tenu de I’extréme dispersion des carac-
téristiques mécaniques du métal on peut dire que le moment produisant la ruine
plastique d’une poutrelle brute sollicitée statiquement et isostatiquement est une
donnée physique indépendante du processus de chargement (chargement continu,
chargement par paliers avec déchargements, sollicitations cycliques: ondulées,
répétées, alternées ou oscillantes).

(2) Si 'on supprime I’application des charges dés que se produit la ruine, la
poutrelle est encore réutilisable élastiquement dans un domaine fort étendu qui parait
dépasser largement le domaine des contraintes réglementaires généralement admises.
Le temps semble jouer, a ce sujet, un réle trés important, et encore mal défini.

(3) Le moment de ruine plastique est plus ¢levé, de plusieurs pour cent, que celui
qui est déterminé par ’hypothése du matériau idéalement plastique, la limite élastique
étant déterminée sur une éprouvette de traction prélevée dans une semelle.

(4) Les contraintes préalables ne jouent aucun role dans la valeur du moment de
ruine, car leur moment est nul (systéme en équilibre). Par contre elles interviennent
certainement dans le déclanchement local des premiéres déformations plastiques. A
ce sujet la considération du “moment élastique” est pratiquement dénuée de sens.

(5) Il semble qu’on puisse utiliser les poutrelles brutes a des contraintes trés
élevées, si I’on prend bien soin d’éviter les phénomenes de déversement et de flambe-
ment locaux des zones comprimées (dme et semelle). Les dispositions a prendre
doivent varier d’ailleurs avec le profil des laminés; ces phénoménes perturbateurs sont
d’autant plus a craindre que le laminé est plus haut ou plus gréle.

(6) La prédéformation volontaire en vue d’obtenir 'accommodation élastique,
-permet le relévement des contraintes.

La question n’est, toutefois, pas encore complétement résolue.

CHAPITRE II—AUTRES ESSAIS SUR LA PLASTIFICATION EN FLEXION DES POUTRES
A AME PLEINE

Nous distinguerons les essais statiques et de fatigue; dans chaque sous-chapitre
les essais isostatiques et hyperstatiques: d’ou quatre paragraphes.

On traitera d’abord des laminés bruts, puis percés, ensuite des poutres composées
et enfin des poutres dissymétriques. On décrira d’abord les essais ou le moment
fléchissant joue le rdle principal, ensuite ceux ou intervient I’effort tranchant, enfin

* 11 pourrait étre intéressant de préciser ce délai.

t 11 serait intéressant de vérifier si ’'approvisionnement des laminés sur parcs améliore leurs
qualités €lastiques.
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on s’attachera aux phénomenes d’instabilité. On insistera sur le processus de charge-
ment.

Ces considérations ont amené a prévoir systématiquement dix sections dans chacun
des quatre paragraphes envisagés, avec pour les systémes hyperstatiques une sub-
division supplémentaire des sections en quatre sous-sections, afin de bien mettre en
évidence les conditions d’appui. De nombreuses réponses ‘“Néant” font mieux
ressortir les lacunes des recherches actuelles, ainsi qu’il ressort du tableau schématique
ci-joint.

Essais staligues Essars de fatigue
A B c /] £ \isostatigues \iypersiah-
ques

*
12 Larmines brufs

2 Laminés percés %
de frous /
, Poutres composees / [
= de plats souvdés : A é

42 Povlres composées
> de plals rivés /

50 Peces rapportées sur
7 les semelles de laminés

o Inflvence de fefYor/
* tranchan!

. Phénomeénes de
° Flambement

P Sections
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Suivant Dutheil* nous distinguerons [’adaptation dans la section en comparant
le moment de plastification vrai au moment calculé d’aprés la théorie élémentaire du
matériau idéalement plastique que nous désignerons comme moment plastique
théorique, de ’adaptation entre sections dans les systémes hyperstatiques, en comparant
les résultats a la théorie de 1’égalisation des moments.

La quasi totalité des essais ont porté sur des laminés ou des poutres de petites
dimensions. La prudence s’imposera quand on voudra généraliser aux poutres de
grandes dimensions.

* Annales de IInstitut Technique du Bdtiment et des Travaux Publics—Théories et Méthodes de

Calcul No. 2, janvier 1948: “L’exploitation du phénoméne d’adaptation dans les ossatures en acier
doux’’; et Ossature Métallique, 3, 1949, p. 143.



134 " AI3—A. LAZARD

Sous-CHAPITRE I—ESSAIS STATIQUES

PARAGRAPHE 1: ESSAIS ISOSTATIQUES
1ére Section: Laminés bruts

On a étudié divers essais de Maier-Leibnitz; d’autres de Stiissi et Kollbrunner,
Kazinczy, Hendry, Wilson, et Graf (aciers mi-durs) qui n’ont pas été tous poussés
jusqu’a la ruine, chargements croissants ou par paliers et déchargements. A T'excep-
tion de I’essai de Wilson ol la contrainte & la Navier a a peine dépassé la limite
élastique, les autres montrent, comme nous l’avons trouvé au chapitre ler, que le
moment de ruine dépasse nettement le moment plastique théorique: un essai de Koll-
brunner donne un dépassement de 32 9%.

2éme Section: Laminés percés de trous

On cite deux essais de la Chambre Syndicale des Constructeurs Métalliques
Francgais ou la section médiane était affaiblie par deux trous dans chaque semelle.
Dans ['un les trous étaient forés; il y eut ruine plastique et peu de différence avec un
laminé sans trou. Dans 'autre les trous étaient poingonnés sans alésage. 11 y eut
cette fois rupture, brutale, dans la semelle tendue a partlr d’un trou, avec cassure
brillante; ’essai est donc plus défavorable.

Les contramtes a la Navier, calculées en section brute et en section nette sont
données dans le tableau ci-aprés en kg./mm.? ou elles sont comparées aux limites
de rupture R de ’acier des semelles tendues.

Trous Section ler I (trés doux) 2¢me I (assez dur) Ruine
forés . ; ’ : brute 28,8 ou 0,90R 35,8 ou 0,90R .
nette 412 0u1.29R | 51.2 0u 1.28R Flastique
poingonnés sans alésage brute 28,0 ou 0,84R 31,5 ou 0,79R Rupture
nette 40,0 ou 1,20R 45 oul,I2R brutale

3éme Section: Poutres composées de plats soudés

On a étudié: un essai de Kayser ol la poutre a péri par voilement de I’dme et
pour une contrainte a la Navier supérieure a la limite de rupture de I’acier des semelles
(mais I’acier de I’ame était beaucoup plus dur); des essais de Hendry et des essais
remarquables de Patton et Gorbunow sous chargements répétés cycliquement, avec
ou non introduction de contraintes préalables.

Ces essais montrent que ces poutres se comportent aussi bien, sinon mieux, que
des laminés bruts de méme section et de méme acier. Les contraintes préalables
sont sans influence sur la valeur de ruine. '

4éme Section: Poutres composées de plats rivés

On a noté un essai peu concluant de Kazinczy et un essai de la Chambre Syndicale
des Constructeurs Métalliques Frangais sur deux poutres ou les trous étaient poin-
- gonnés sans alésage et ol il y a eu rupture, brm‘ale de la semelle tendue & partir d’un
trou de rivet.

Les contraintes a la Navier, en kg./mm.2, calculées en section brute et en section
nette, sont données dans le tableau ci-aprés et comparées aux limites de rupture R de
’acier des semelles tendues.
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Section | 1ére poutre ’ 2éme poutre ‘ Ruine

brute | 2880u06IR | 30,8 ou0,67R

nette V20u08R | 4200u09IR J Rupture brutale

Ces résultats paraissent inférieurs a ceux de poutres soudées ou d’I bruts.

Séme Section: Piéces rapportées sur des semelles de laminés

On cite quelques essais comparatifs de Bryla et Chmieloviec et un ensemble trés
remarquable d’essais de Wilson qui semblent marquer [’influence défavorable de
semelles additionnelles partielles soudées et au. contraire la supériorité des semelles
additionnelles soudées de toute la longueur du profilé, les semelles rivées s’inscrivant
entre les deux.

6éme Section: Influence de I’effort tranchant ou d’une petite portée (L<<6h)

On cite deux essais de Kayser ou la ruine est intervenue par voilement de I’édme
sans que puisse intervenir une semelle additionnelle soudée, deux essais d’Albers sur
poutre de 1,86 m. de haut ol la ruine est également intervenue par voilement de I’dme
malgré un délardage trés important des semelles tendues, qui ont ainsi supporté des
contraintes a la Navier considérables, un essai de Wilson et une série d’essais trés
intéressants d’Hendry a la suite desquels cet auteur a essayé de fixer des reégles pratiques
pour savoir quand faire intervenir I’effort tranchant; malheureusement il s’agissait
de trés petits laminés.. Son étude pourrait servir utilement de base a des essais
systématiques.

7éme Section: Phénomeénes de flambement

On cite des essais systématiques, un peu spéciaux, d’Hendry, sur des cadres en
forme de L a deux branches égales. L’auteur donne, dans la limite de ses essais,
des régles pratiques intéressantes.

8éme Section: Sections dissymétriques

Patton et Gorbunow ont montré que la théorie habituelle de I’adaptation dans la
section s’appliquait parfaitement aux sections dissymétriques en essayant des profilés
en [Tcomposés de plats soudés ou des profils en caissons avec appendices longitudinaux
soudés. Sollicitations ondulées.

La ruine, plastique, intervient pour des contraintes 4 la Navier dépassant largement
la limite élastique (1,81 et 1,54 fois).

Cependant Patton et Gorbunow, en vue d’éviter I’apparition de déformations
élastiques trop importantes ou de déformations permanentes, prescrivent de vérifier
que la contrainte a la Navier ne dépasse pas la limite élastique.

On pourrait sans doute aller plus loin, grace a ’accommodation en utilisant
la prédéformation.

Il semble qu’il y ait le plus grand intérét, contrairement aux idées héritées des
legons de Navier, & utiliser en flexion des piéces dissymétriques. En théorie, a
quantité de maticre donnée, il serait préférable d’utiliser des piéces rectangulaires car
les centres de gravité des sections comprimées et tendues sont alors les plus éloignées
possible (bras de levier maximum); mais, pratiquement, compte tenu des phénomenes
d’instabilité en compression, il faut s’orienter vers des sections dissymétriques en
forme de T ou TT. :
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D’autant plus qu’a I’avenir la Construction Métallique va devoir utiliser largement
les toles minces et abandonner de nombreux laminés symétriques.

En particulier on pourrait renforcer commodément des ouvrages par des appendices
soudés s’écartant le plus rapidement possible de la fibre neutre.

Il est regrettable que ces expériences n’aient pas connu le retentissement qu’elles
meritaient et qu’elles n’aient pas été systématiquement poursuivies.

9¢me Section: Sollicitation ondulées ou répétées
On a déja mentionné, a diverses reprises, les essais de Patton et Gorbunow.

10éme Section: Sollicitations alternées ou oscillantes. WNéant.

PARAGRAPHE 2: ESSAIS HYPERSTATIQUES

C’est ici qu’il a paru nécessaire de subdiviser chaque section en quatre sous-
sections pour tenir compte des conditions spéciales d’hyperstaticité et étudier si la
plastification débutait sous les points d’application des charges ou sur les appuis et
comment se faisait I’égalisation des moments que postule la théorie élémentaire.

11éme Section: Laminés bruts
lére sous-section—Poutres continues sur quatre appuis

L’analyse d’un essai bien connu de Maier-Leibnitz nous a conduit aux conclusions
suivantes (voir fig. 10):

Dans une leére phase les phénoménes sont purement élastiques (jusqu’a 107T;
contrainte a la Navier en travée, 26,2 kg./mm.2).

Une 2¢me phase—de transition—de 107" a 11,27 correspond au début de la
plastification de la section médiane (contrainte croissant de 26,2 a 29 kg./mm.2).
Elle est caractérisée par la formation d’un jarret permanent sous la charge.

Une 3éme phase—de 11,27 a 17T, qui correspond a I’accroissement linéaire du
moment sur appuis, est marquée par la tendance, conforme & ’hypothése classique,
vers I’égalisation des moments en travée et sur appui. Cette égalisation se produirait
pour la valeur du moment plastique vrai.

Mais cette égalisation ne peut se produire. Elle est entravée par ’apparition (a
partir de 177 des phénomeénes de plastification dans la section sur appui: contrainte
a la Navier sur appui 23,3 kg./mm.2 pour une limite élastique des semelles voisine
de 24-25 kg./mm.2  Cette plastification de la section sur appui, avec jarret, se poursuit
difficilement; la section médiane est alors obligée de se plastifier 4 nouveau avec
entrée dans le domaine de raffermissement de I'acier.* C’est la 4éme phase, qui
s’acheve par la ruine de la poutre a 20,77, caractérisée par I’apparition de nouveaux
jarrets dans la travée médiane et méme dans les travées extrémes.

On note par rapport aux essais isostatiques les trois différences essentielles
suivantes:

(a) il se forme un jarret sous la charge dés le début de la plastification de la section
médiane; ,
(b) les sections sur appuis éprouvent de la difficulté a se plastifier complétement f
il se forme également un jarret;
* Cest le seul cas, & notre connaissance, ou le raffermissement ait été.indubitablement observé.
T Il est probable que la surplastification de la section médiane, avec raffermissement, est plus

facile que la plastification des sections sur appui. Il n’est pas exclu que le contraire se produise dans
d’autres conditions d’essai.
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(¢) la section médiane est contrainte d’entrer dans le domaine de raffermisse-
ment.*

L’essai, bien connu lui-aussi, de Stiissi et Kollbrunner, confirme cette analyse.
Nous pensons toutefois que la charge de ruine est supérieure a celle que propose
Stiissi a cause du dépassement de fait du moment plastique théorique dans la section.

Fig. 10

Fig. 12

Fig. 13
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* ]l est probable que la surplastification de la section médiane, avec raffermissement, est plus
Il n’est pas exclu que le contraire se produise dans

facile que la plastification des sections sur appui.

d’autres conditions d’essai.
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2éme sous-section—Poutres continues sur trois appuis

On cite des essais de Maier-Leibnitz, Hartmann et Patton et Gorbunow qui
systématiquement montrent un dépassement de la charge calculée (a cause, semble-t-
il, d’une mauvaise estimation du moment plastique vrai dans la section) et la non
influence sur la ruine d’une quelconque dénivellation d’appui. Par contre la succes-
sion des plastifications a rarement suivi la théorie élémentaire.

3éme sous-section—Poutres encastrées

On ne cite qu’un essai de Maier-Leibnitz pour lequel on peut répéter sensiblement
ce qui a été dit a la lere sous-section quoique 1’égalisation ait failli ici étre parfaite.

4éme sous-section—Portiques

La question semble avoir particulierement attiré les Britanniques. On cite
plusieurs séries d’essais d’Hendry. Dans I'un—voir fig. 11—on trouve une égalisation
des moments avant la ruine pour laquelle le moment du genou dépassait notablement
le moment sous la charge.

Conclusions pour la 11éme section

Il semble qu’on peut conclure comme suit:

A condition de compter avec les moments de plastification vrais, la théorie de
I’égalisation des moments est vérifiée dans les portiques (hyperstaticité interne); elle
ne ’est pas entiérement dans les poutres continues (hyperstaticité extérieure): dans
ce cas il se forme des jarrets deés le début de la plastification d’une section.

12éme Section: Laminés percés de trous. Néant.

13éme Section: Poutres composées de plats soudés

On cite une série d’essais de portiques dus a Hendry pour lesquels la ruine est
intervenue au moment de 1’égalisation des moments pour la valeur du moment
plastique vrai.

14éme Section: Poutres composées de plats rivés

On ne peut citer qu’un essai de Kazinczy avec poutre continue sur trois appuis
mais pour lequel on manque par trop d’éléments de détails.

15éme Section: Piéces rapportées sur les semelles des laminés. Néant.

16éme Section: Influence de I’effort tranchant

On cite plusieurs séries d’essais de portiques, dus 2 Hendry, dont quelques résultats
sont représentés aux figs. 12, 13 et 14. Elles montrent:

fig. 12, des variations linéaires des diagrammes: charges-moments;

fig. 13, un huit fermé, c’est-a-dire ruine par égalisation des moments aprés une
égalisation préalable;

fig. 14, un cas ou la charge étant trés prés du genou, le moment sous la charge
n’a pas pu se développer complétement et ol la ruine est intervenue quand
le moment du genou a atteint la valeur du moment plastique vrai dans la
section.

17éme et 18éme Sections: Phénoménes de flambement et sections dissymétriques.
Néant.
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19éme et 20éme Sections: Sollicitations cycliques

On aborde un point capital concernant ’adaptation de plasticité dans les poutres
hyperstatiques quand les charges sont variables ou mobiles: 11 s’agit du probléme du
“cumul des déformations plastiques™ analogue a celui que nous avons traité dans le
chapitre ler avec les essais de la 4éme série.

Un examen serré de la proposition théorique bien connue de Hans Bleich nous a
conduit aux conclusions suivantes:

La méthode de H. Bleich tend & améliorer le procédé de I’égalisation des moments
élastiques; en fait cela ne doit étre possible que dans certaines conditions qu’il reste
a préciser. Il faut distinguer au moins deux cas:

1° La disposition des travées et des charges est telle que I'intervention des con-
traintes résiduelles les plus favorables modifie peu 1’égalisation des moments selon la
méthode habituelle: autrement dit les moments aux points les plus chargés, calculés
en élasticité, sont trés voisins.

Dans ces conditions il est probable qu’on atteindra assez aisément un état voisin de
I’égalisation des moments plastiques vrais, cela dépendra d’une part, comme on I’a
vu dans les essais des 11éme et 13éme sections, des répartitions de travées et d’autre
part de I’étendue du domaine dans lequel les moments ondulent.

2° Au contraire les moments aux points les plus chargés sont assez différents pour
que les contraintes résiduelles de H. Bleich modifient assez sensiblement 1’égalisation
habituelle. Dans ce cas, on peut concevoir que le point le plus chargé se plastifiera
entierement avant que n'intervienne la plastification de soulagement d’un point moins
chargé, sauf pour les sections a grand coefficient de forme (marge de plastification
élevée). Autrement dit I’égalisation envisagée ne se produira probablement pas pour
des sections telles que I ou H et il y aura sans doute ruine par divergence des déforma-
tions pour des valeurs des charges plus faibles que celles calculées. Au contraire
pour des sections a grand coefficient de forme on tendra vraisemblablement vers
I’égalisation des moments plastiques vrais et les valeurs calculées seront sans doute

., dépassées. De nombreux paramétres sont susceptibles d’intervenir et, a priori, la
question n’est pas simple a résoudre.

Le 1° est sensiblement confirmé par un essai de Kloppel ou la valeur de Bleich a
été dépassée d’au moins 35 %;; le 2° par des essais de la Chambre Syndicale des Con-
structeurs Métalliques Frangais destinés a vérifier une théorie corrective due a Dutheil.

Le tableau, ci-apres, donne en fonction des valeurs des limites élastiques de I’acier
des profilés:

colonne 2: les valeurs du moment élastique, en cm. T;

colonnes 3, 4, 5: les valeurs théoriques, en 7, des charges pour lesquelles le
moment sur appui égalerait: le moment élastique, le moment critique de
Dutheil,* le moment plastique théorique;

colonnes 6, 7, 8: les valeurs théoriques, en T, des charges donnant 1’égalisation,
dans le cas de charge le plus défavorable, des moments sur appuis et sous la
charge fixe avec: le moment élastique, le moment de Dutheil, le moment
plastique théorique;

colonnes 9, 10: les valeurs théoriques, en 7, des charges donnant I’égalisation des
valeurs extrémes des moments sur appui et sous la charge fixe avec: le
moment élastique (methode de H. Bleich), le moment crlthue de Dutheil
(méthode Bleich corrigée par Dutheil);

* Le moment critique de Dutheil est le moment élastique majoré d’un coefficient de forme égal
a 1,20; 1,425; 1,10 et 1,10 respectivement.
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colonne 11: les valeurs expérimentales, en T, de la charge marquant la fin du
domaine de proportionnalité.

colonnes 12, 13: les valeurs expérimentales, en 7, des charges pour lesquelles la
divergence semble s’étre produite; d’aprés l'estimation du Laboratoire et
d’apres la notre.

1 2 3 4 5 6 7| 8 o |10 | 11 12 I 13
m recuit . [249,1| 10,7 | 129 | 161 | 155 [ 18,6 | 233 | 122 | 146 [ 11 18 17
e recuit . |1737| 75107 | 150 | 108 | 154 | 216 | 86 | 121 | 125 17 | 15
T . 2380|102 | 113 | 119 | 148 | 163 ] 172 | 107 (218 | 97 15| 10
= recult - | 227,7| 98 | 108 | 114 | 142|156 | 165 | 112 123 | 95 110 | 10

On voit qu'au point de vue des premiéres plastifications les prévisions de la
colonne 3 ne sont pas (sauf pour le losange) trop éloignées de la réalité, par excés
pour les H comme souvent déja vu.

Au point de vue de la ruine par divergence on voit nettement apparaitre les deux
groupes que la discussion laissait prévoir:

(a) Pour les H, les charges sont trés voisines de celles pour lesquelles le moment
sur appuis égale le moment élastique ou le moment critique de Dutheil (cols. 3 ou 4)

et 1égérement inférieures au calcul de Bleich (col. 9).
' (b) Pour le carré et le losange, au contraire, les charges sont voisines de celles
pour lesquelles le moment sur appui est égal au moment plastique théorique (col. 5) et
trés supérieures aux calculs de Bleich ou de Dutheil (cols. 9 ou 10): cela tient évidem-
ment a ’énorme réserve de plastification. '

En conclusion, pour les cas de la pratique, tels que I et H, on voit qu’ici le calcul
de Bleich est probablement trop optimiste, alors que dans I'exemple de Kldppel il
était excessivement pessimiste.

La question est donc bien aussi compliquée que notre raisonnement permettait
de I’envisager: il faut tenir compte de la forme des sections, de la répartition des travées,
de la position des charges et des rapports entre les valeurs des différentes charges.

I est souhaitable que de nombreuses expériences soient systématiquement entre-
prises.

SOUS-CHAPITRE I1I—ESSAIS DE FATIGUE

On ne trouve que des essais de Graf et de Wilson plus un essai de la Chambre
Syndicale des Constructeurs Métalliques Frangais sur un assemblage par soudure bout
a bout.

A part les essais isostatiques sur laminés bruts ou I'auteur allemand n’a obtenu
qu’une ruine plastique tandis que I’auteur américain obtenait des ruptures, les autres
essais sont complémentaires et laissent beaucoup de lacunes. Les expériences les
plus complétes sont celles de Wilson sur des semelles additionnelles soudées sur des
laminés: il nous semble que I’on peut en tirer confirmation de la supériorité de
semelles additionnelles de toute la longueur du laminé soudées par cordons continus
d’une part, et de I'infériorité de plaquettes ou de semelles partielles soudées ainsi que
de soudures sur des zones tendues, d’autre part.

Pour le reste les limites d’endurance, par exemple & 2 millions de répétitions,
présentent une telle dispersion des valeurs qu’il est difficile, en I’état actuel, de tirer
de conclusions nettes. Tout ce qu’on peut affirmer c’est que, dés qu’il y a une entaille
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quelconque, la ruine survient par rupture et pour des valeurs des contraintes a la
Navier nettement inférieures a la limite élastique de I’acier utilisé. On ne peut plus
des lors envisager, a proprement parler, de théorie de I’adaptation en flexion basée
sur la plastification.

CHAPITRE 1I1I—CONCLUSIONS

On traitera d’abord des points qui paraissent acquis, ensuite de ceux qui prétent
encore a discussion ou n’ont pas été suffisamment traités.

1ERE PARTIE—POINTS ACQUIS

Si ’on met & part les essais de fatigue sur poutres présentant des entailles (le mot
étant pris ici au sens le plus large) pour lesquelles I’adaptation de plastification ne
semble pas jouer au sens ou I’on entend généralement ces termes, les essais frangais
et etrangers analysés aux chapitres II et III permettent de tirer les conclusions
suivantes, en distinguant par nature de poutres:

1° Laminés bruts

(a) La plastification commence pour des valeurs des contraintes a la Navier
inférieures a la limite élastique. Ceci n’empéche pas le laminé de se comporter
¢lastiquement une fois la déformation permanente acquise et stabilisée; dans les
poutres continues cette déformation se manifeste par des jarrets sous les charges ou
sur les appuis. ' '

(b) Si les précautions sont prises pour éviter les flambements locaux des semelles
et des Ames comprimées et s’il n’existe pas de fortes charges concentrées a4 proximité
d’appuis, la ruine intervient par plastification totale. Le moment atteint dans la
section la plus exposée, ou moment plastique vrai, dépasse de plusieurs pour cent
(10 a 20 en moyenne) le moment calculé d’apres la théorie élémentaire du matériau
idéalement plastique.

(¢) Dans les systemes hyperstatiques les moments sous les points les plus chargés
et sur les appuis ou les genoux ont bien tendance a s’égaliser, la valeur commune
étant celle du moment plastique vrai. Cette égalisation peut étre atteinte dans les
portiques; elle I’est rarement d’'une maniere parfaite dans les poutres continues: il y
a la des circonstances défavorables dues probablement aux appuis. Enfin dans les
cas de solljcitations conduisant au cumul des rotations plastiques, il n’est pas exclu
que, dans certaines circonstances encore mal connues, la ruine survienne, par diver-
gence des déformations, pour des valeurs relativement faibles.

(d) En définitive il semble qu’au regard des questions de sécurité les contraintes
maxima réglementaires pourraient étre fixées a des valeurs élevées dépendant:

de la dispersion des valeurs des limites élastiques conventionnelles (et non des
limites de rupture) en différents points des laminés,

de la forme des sections,

éventuellement de la taille des laminés,

de I'isostaticité ou de ’hyperstaticité du systéme (poutres continues ou portiques),

dans certains cas de la nature des sollicitations (par exemple possibilité du cumul
des rotations plastiques dans les systémes hyperstatiques).

Des dispositions constructives appropriées, variables avec la taille des laminés,
telles que raidisseurs dans les zones comprimées, devraient alors €tre prises pour
éviter des flambements locaux des semelles et des Ames comprimées.
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2° Poutres composées de trongons de laminés bruts assemblés par soudure bout a bout

Si les soudures sont convenables et le mode de soudage approprié, il semble que
de telles poutres peuvent étre utilisées exactement comme des laminés bruts.

Cela est bien net dans les systémes isostatiques. Les essais manquent dans les
systémes hyperstatiques; il semble toutefois que les conclusions peuvent étre étendues
dans ce cas a condition de ne pas disposer les soudures sur les appuis. Telle est, du
moins, la tendance frangaise: elle ne semble pas étre générale a ’etranger.

3° Poutres, a profil constant, composées de plats assemblés par soudures longitudinales
continues
Compte tenu du nombre limité d’essais probants il semble que les conclusions
du 1° (laminés bruts) peuvent étre également adoptées, tout au moins dans les systémes
isostatiques.
Toutefois ici le moment plastique vrai dans la sectlon est sensiblement égal au
moment calculé d’aprés la théorie du matériau idéalement plastique.

4° Laminés percés de trous, poutres chaudronnées (rivées), laminés complétés par des
semelles additionnelles rivées
Il n’existe pas d’essais hyperstatiques. En isostatique la question n’est pas encore
suffisamment éclaircie pour permettre des conclusions nettes. Sauf les cas bien
précisés ol les trous étaient poingonnés sans alésage et ol 1a ruine a été provoquée par
une rupture brutale, il semble que I’adaptation de plastlﬁcatxon joue; mais les
domaines d'utilisation restent a préciser.

5° Poutres composées de plats soudés et laminés complétés par des semelles addition-
nelles soudées

La question est loin d’étre éclaircie.

Il semble bien que le seul cas net soit celui ou, en isostatique, ces semelles ont la
longueur totale du laminé: la plastification est alors intégrale. Au contraire les
semelles de longueur partielle semblent étre nettement défavorables: cela dépend de
plusieurs facteurs qui sont mal précisés.

2EME PARTIE—QUESTIONS RESTANT A RESOUDRE

En plus des points de la 1ére partie encore mal précisés on aura remarque que de
nombreux points restent a étudier, tels que:

I'influence de I’effort tranchant,

les phénomenes de flambement,*

I'influence du temps sur certaines accommodations élastiques,

le cumul des déformations plastiques dans les poutres continues.

De nombreux essais n’ont méme pas été tentés. La plastification des sections
dissymétriques n’a été réalisée qu’'une seule fois. Il n’y a pas d’essais avec semelle
partielle soudée sur un seul c6té, soit tendu, soit comprimé. Il n’y a jamais eu
d’essais de fatigue commencés par une plastification lente: ces essais seraient pourtant
de premiére utilité¢ pour essayer de résoudre le conflit qui oppose les écoles opposées
affirmant ou niant I’existence des phénomenes de fatigue dans les ponts et dans les
charpentes métalliques, sans que les arguments avancés de part et d’autre soient
réellement convaincants. :

* A cet égard les nouvelles recherches théoriques et expérimentales de Stiissi sur le flambement des
plaques seront sans doute du plus grand secours.
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Enfin I’essai le plus intéressant a réaliser, malgré son évidente difficulté, celui de
poutres continues sous charges roulantes: ici intervient au minimum les phénoménes
hyperstatiques, le cumul des déformations plastiques, 'influence de I’effort tranchant.

En conclusion il apparait qu’il reste de nombreux essais systématiques & entre-
prendre. La tdche dépasse les possibilités d’un seul organisme ou d’un seul pays.
C’est pourquoi nous souhaiterions qu’a I'issue de la discussion du Theme AI3 de ce
Congrés, une sous-commission établisse un vaste programme de recherches (basé ou
non sur la classification adoptée dans le cours du présent mémoire) et le répartisse
entre les Membres de notre Association. Rendez-vous serait pris dans quatre ans,
au prochain Congres, pour tirer les conclusions.

Nous insistons sur la nécessité de détailler minutieusement les circonstances de
chaque expérience.
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Résumé
Se basant sur les derniers essais frangais sur des laminés bruts I et H de différentes
tailles sollicités isostatiquement jusqu’a la ruine dans des conditions trés diverses, et
étudiant la dispersion des aciers, les contraintes préalables, la non-conservation des
sections planes, I'importance des volumes plastifiés, ’existence de compressions trans-
versales, le flambement des zones comprimées, I’article conclut que, pour des laminés
bruts sollicités isostatiquement:
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la ruine plastique survient, si les précautions nécessaires sont prises contre le
flambement, pour une valeur supérieure a celle qu’on peut calculer en
admettant la plastification totale d’un acier idéalement plastique;

le laminé s’accommode élastiquement aprés un nombre trés faible de répétitions
des sollicitations. Il est possible d’en déduire un procédé systématique de
prédéformation en vue de travailler sous contraintes élevées. A ce sujet le
temps semble jouer un réle important mais encore mal défini.

Elevant le débat a toutes les poutres & Ame pleine en acier doux et passant en
revue les essais antérieurs généralement exécutés sur petits échantillons, I’article
cherche a distinguer les points définitivement acquis de ceux qui prétent a discussion
ou n’ont pas encore €ét¢ suffisamment traités. Parmi ces derniers on releve plus
particuliérement :

I’effet de I’effort tranchant,
’effet des surcharges roulantes sur poutres continues,
les études sur profils dissymétriques.

En conclusion I'article propose qu’une sous-commission du Congrés dresse un
programme des essais restant a réaliser et les repartlsse entre les divers membres de
I’Association Internationale.

Summary
Based on the latest French tests with plain rolled I and H joists of various sizes,
isostatically loaded up to failure under very different conditions, and by studying the
dispersion of the steel, the residual stresses, the non-conservation of plane sections,
the size of the plastified volumes, the existence of transverse compressions and the
buckling of the compressed zones, the author of the paper comes to the conclusion
that, for plain rolled joists 1sostat1cally loaded:

if the required precautions against buckling are taken, plastic failure happens
for a load which is higher than that which can be calculated by supposing the
total plastification of an ideally plastic steel;

the rolled joist adapts itself flexibly after very few repetitions of the loads. It
is possible from this fact to deduce a method of systematic prestraining in
order to work under high stresses. Time seems here to play a part which is
important but has not yet been clearly defined.

By extending the discussion to all plate-web girders in mild steel and by surveying
previous tests which generally were made on joists of small cross-section, this paper
tries to distinguish the points which are definitively established from those which are
still disputable or have not yet been sufficiently treated.

Among the latter, particular emphasis is put on:

the effect of shearing-stress,
the effect of rolling loads on continuous girders,
the studies on unsymmetrical sections.

It is finally proposed that a sub-committee of the Congress should assume the
task of establishing a programme for the tests which are still to be made and allotting
these to different members of the International Association.

Zusammenfassung

Der Aufsatz stiitzt sich auf die neuesten franzésischen Versuche an unbearbeiteten
normalen und Breitflansch-I-Walztragern unterschiedlicher Grosse, die bei statisch
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bestimmter Anordnung unter sehr verschiedenen Bedingungen bis zum Versagen
beansprucht wurden und untersucht die Streuungen in der Stahl-Qualitit, die inneren
Spannungen, das Nicht-Ebenbleiben der Querschnitte, das Ausmass der plastifizierten
Querschnittsteile, das Auftreten von Quer-Kontraktionen und das Ausknicken der
Druckzonen. Fiir statisch beanspruchte und statisch bestimmt gelagerte unbear-
beitete Walztriger kommt der Verfasser zu den nachstehenden Schlussfolgerungen:

Wenn die notwendigen Vorkehrungen gegen Ausknicken getroffen sind, tritt das
plastische Versagen fiir einen Wert ein, der hoher ist als derjenige, den man
unter der Voraussetzung totaler Plastifizierung eines ideal-plastischen Stahles
errechnen kann. .

Der Triger erfihrt nach einer sehr geringen Zahl wiederholter Beanspruchungen
eine elastische Anpassung. Daraus kann ein systematisches Vorverfor-
mungs-Verfahren zwecks Zulassung hoherer Nutzspannungen abgeleitet
werden. In diesem Zusammenhang scheint der Faktor Zeit eine wichtige,
aber noch ungenau definierte Rolle zu spielen.

Durch Erweiterung der Diskussion auf sdmtliche Vollwandtriger aus Flusstahl
und an Hand eines Uberblicks iiber die friiheren, hauptsichlich an kleinen Probe-
trigern durchgefiihrten Versuche wird versucht, die endgiiltig gelosten Fragen von
denjenigen zu trennen, die noch umstritten oder ungeniigend untersucht sind. Unter
den letzteren werden insbesondere erwihnt:

der Einfluss der Querkraft,
der Einfluss der beweglichen Lasten auf durchlaufende Trager,
die Untersuchung unsymmetrischer Profile.

Als Schlussfolgerung schldgt der Verfasser vor, dass ein Unter-Ausschuss des
Kongresses ein Programm der noch durchzufiihrenden Versuche aufstellen und diese
unter verschiedene Mitglieder der Internationalen Vereinigung verteilen soll.

c.R—10
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Experimental investigations into the behaviour of continuous and
fixed-ended beams

Recherches expérimentales sur le comportement des poutres
continues ou encastrées a leur extrémités

Experimentelle Untersuchungen iiber das Verhalten durchlaufender
und eingespannter Balken

M. R. HORNE, M.A., Ph.D., AM.I.C.E.
Cambridge University

1. INTRODUCTION

The behaviour beyond the elastic limit of mild-steel beams subjected to pure
bending moments or bending moments combined with shear forces has been studied
by Ewing (1903), Robertson and Cook (1913) and many others. The various theories
suggested and the experimental evidence relating to them have been reviewed by
Roderick and Phillipps (1949). It appears that, when considering annealed beams,
the most satisfactory theory is that in which it is assumed that initially plane sections
remain plane during bending, the longitudinal stress being related to the longitudinal
strain as in a tension or compression test (see Roderick, 1948). Good correlation
between bending and tension tests may be obtained if due regard is paid to the upper
yield stress and to the rate of straining in the plastic range. The influence of shear
forces has been investigated experimentally by Baker and Roderick (1940) and
Hendry (1950) and theoretically by Horne (1951). It has been shown that, for
practical purposes, shear forces have negligible effect on the behaviour of a beam.
The stress distributions are also modified in the vicinity of concentrated loads, and
this has been investigated experimentally by Roderick and Phillipps (1949) and
theoretically by Heyman (unpublished). The simple plastic theory has also been
found to apply approximately to rolled steel sections (Maier-Leibnitz, 1936), although
correlation between bending and tension tests is here more difficult due to the
variation in properties of the steel over any cross-section.

The simple plastic theory leads to important deductions regarding the behaviour
of continuous and fixed-ended beams and rigid-jointed unbraced structures such as
building frames. Due to the considerable pure plastic deformation which mild steel
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can undergo (of the order of 1 9 strain, or ten times the strain at the commencement
of yield), the curvature of the longitudinal centre line of an initially straight beam
increases rapidly with practically no increase of bending moment as the section
becomes fully plastic. The bending moment then approaches the ““full plastic’ value
(see Roderick, 1948), and although at extremely high curvatures the beam may
develop a higher moment of resistance due to strain hardening, the full plastic
moment may be regarded as the highest moment to which the beam may be subjected
and still retain its usefulness. When beams are continuous over a number of sup-
ports or encastré (i.e. fixed in position and direction at their ends), the high curvature
which occurs in the vicinity of fully plastic sections enables the applied loads to be
increased until the full plastic moment is reached at a sufficient number of sections
for a “mechanism” to be formed, these sections being regarded as ‘““hinges” with
constant moments of resistance. Similar considerations apply to rigid-jointed un-
braced frames as long as axial forces are small enough to have negligible effect on
the bending moments in the members in which they occur. The application of such
results to the calculation of collapse loads has been considered extensively by Bleich
(1932), Baker (1949), Neal and Symonds (1950), Horne (1950) and others.

The above theoretical developments have been achieved by making certain exten-
sions of the simple plastic theory as established by tests on simply supported members.
The ““plastic hinge” concept is only an approximation to the truth, corresponding
as it does to infinite curvature at the assumed fully plastic sections. It is thus essen-
tial that these theoretical deductions should be tested experimentally. In the case
of continuous beams, the simple plastic theory indicates that the order in which the
spans are loaded, or the sinking of one support relative to the others, should have
no effect on the value of the collapse load. In beams partially fixed against rotation
at the ends, the degree of end restraint should similarly have no effect on the collapse
loads as long as the moment of resistance of the end supports is at least equal to the
full plastic moment of resistance of the beam. Moreover, the fact that full plasticity
has been produced at some section or sections of a beam for one set of loads should
not reduce the carrying capacity of that beam for any subsequent set.
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Fig. 1. Division of bars for continuous beam tests
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While certain investigations on continuous beams have already been made by
Maier-Leibnitz (1936) and Volterra (1943), no attempt to check these deductions

systematically has yet been reported. It was for this reason that the investigations

here described were undertaken.

2. TESTS ON CONTINUOUS BEAMS
(a) Preparation of beams

The beams were taken from 1-in. square bars of rolled mild steel in the
received” condition, the bars being cut according to the scheme shown in fig. 1.
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Fig. 2. Summary of continuous beam tests
(In beam CC8, for 2” read 24")




150 Al3—M. R. HORNE

Fig. 3. Arrangement for testing continuous beams

Fig. 4. Arrangement for testing simply supperted beams
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the beams were roughly planed to the required dimensions (% in. square) and finished
by surface grinding, thus imparting a polished surface which, as described below,
enabled Liiders’ wedges to be observed during the tests,

(b) Description of tests

The tests are summarised in fig. 2, which shows for each beam the positions of
the supports, loads and dial gauges used to measure deflections. Some lengths were
tested from each bar as continuous beams, while other lengths were tested as simply
supported in order to obtain direct measurements of the full plastic moments. In
some of the tests on the continuous beams, the central support was set a certain depth
below the outer supports, and this is also indicated. Increasing loads were applied
simultaneously to both spans of all the continuous beams except beam C5, in which
span AD (see fig. 2) was loaded to collapse with only a small load on span DG. For
all beams, when collapse had occurred in one span, the load on the other span was
further increased until it also collapsed.

The tests were performed in a dead-load testing frame, a full description of which
has been given by Baker and Roderick (1942). The arrangement for testing the
continuous beam CI is shown in fig. 3, in which A is the beam supported on knife-
edges and B is a block by means of which it is possible to adjust the height of the
central knife-edge. The load is applied by the levers C and D whose fulcra react
against the member E, while the dial gauges for measuring deflections are supported

.on an independent frame of which F is a member. The simply supported beam CC7
was tested as shown in fig. 4, which also shows the linkage used to distribute the load
from the lever equally to four knife-edges acting on the upper surface of the beam.

During the tests, as long as the beams remained elastic, finite increments of load
were added at intervals of approximately two minutes, the dial gauges being read
between each increment. After the first signs of creep had been observed, the addi-
tion of each load increment was delayed until no dial gauge showed a rate of increase
greater than 104 in. per minute. Loading was continued until collapse occurred,
this being characterised by a large increase of deflection for a small increase of load.

(c) Test results

The test results for all the beams are summarised in Table I, and are grouped
according to the bar from which the beams were cut. The mean dimensions are
given in columns 3 and 4. In the case of the simply supported beams, the values of
the modulus of elasticity E calculated from the linear portions of the load deflection
curves are given in column 5. The values of E quoted for the continuous beams are
the mean of the values obtained for the simply supported beams cut from the same
bar. Column 6 gives the collapse loads. In the case of the continuous beams, the
mean of the values for the two spans is given; in no case did the difference between
these values exceed 3:39%(. Values of the full plastic moments may be deduced from
the collapse loads by means of the simple plastic theory, giving the lower yield stresses
quoted in column 7 of Table I. Assuming that each bar is of uniform material, the
agreement between these stresses for beams cut from the same bar is a check on the
accuracy of the simple plastic theory. The percentage variations of these yield
stresses as compared with the average for the bar are given in column 9.

It has been shown by Heyman (to be published) that the assumption made in the
simple plastic theory that there is no restraint in directions perpendicular to the
longitudinal axis of a beam is invalidated in the vicinity of heavy load concentrations.
This tends to increase the full plastic moment except where the maximum moment



TABLE I
1 2 3 4 5 6 7 8 ! 9 10 11 12
Analysis by simple plastic theory Anal oy . -
: : ysis in which allowance is made for
Estimated ignoring the egzctE ocr)lf load concen- the effect of load concentration
Bar | Beam \mg%g [I;/éeat.g Modulus of | Load,
No. No. W ig > | Elasticity E,| tons Lower Mean Lower L Mean Lower
‘ : tons/in.2 Yield Yield Stress Per cent , ower Yield Stress Per cent
Stress, for bar, Difference | Yield S_trczss, for bar, Difference
tons/in.2 tons/in.2 tonsfin. tons/in.2

| 1 Cl 0-875 0-876 13,360 1-125 17-83 18-02 —1'1 16-53 16:71 —11
2 C2 0-875 0:876 13,360 1-138 18-04 01 16:72 01
3 CCl1 0-876 0-876 13,380 1-000 1790 —0-7 16-59 —07
4 CcC2 0-876 0-876 13,340 1-025 18-33 1-7 16-99 1-7
5 2 C3 0-875 0-875 13,120 1-560 19-03 18-34 3-8 1796 17-48 2:7
6 C4 0-875 0-875 13,120 1-525 18-60 1-4 17-55 04
7, CC3 0-875 0-875 13,010 1-680 17-43 —50 17-43 —03
8 CC4 0-875 0-875 13,220 1-020 18-32 —0-1 16-98 —29
9 3 Cs 0-875 0-875 12,930 1-225 14:93 1491 01 14-09 14-21 —-0-8
10 C6 0-875 0-874 12,930 1-230 15-01 07 14:16 —04
11 CCs 0-875 0-875 13,270 0-850 1526 2:3 14-14 —0'5
12 CCé6 0-875 0-875 12,590 1-380 14-44 —32 14:44 1-6
13 4 C7 0-875 0-876 12,945 1-:670 1813 17-84 1:6 16-46 16-60 —0-8
14 C8 0-876 0-875 12,945 1-670 1812 1-6 16-45 —09
15 C9 0-876 0-876 12,945 1-650 17-92 0-4 16:27 —20
16 Cl10 0-876 0-876 12,945 1-700 18-38 30 16-69 0-5
17 CcC7 0-875 0-875 13,060 1150 17-16 —3-8 17-16 34
18 CC8 0-875 0-875 12,830 0-580 17-30 -30 16-54 —04

(491

INYOH "4 'W—<¢ IV
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occurs uniformly over some length of the beam. This explains the lower than
average yield stresses obtained for beams CC3, CC6 and CC7 (Table I, column 7).
Roderick and Phillipps (1949) found that in their tests a satisfactory empirical allow-
ance could be made for this effect by assuming that collapse was delayed until the full
plastic moment had been reached at a section a distance away from the concentrated
load equal to half the depth of the beam. The yield stresses for all the beams corre-
sponding to this assumption are shown in column 10 of Table I, and the percentage
variations from the mean values for separate bars are given in column 12.

There does not appear, from the figures given in columns 9 and 12 of Table I, to
be any distinct advantage in accepting the complications introduced by Roderick
and Phillipps. In either case the agreement is as good as could reasonably be
expected, taking into account probable variations in yield stress in the bars. Ignoring
signs, the mean values of the percentage variations given in columns 9 and 12 are
1-87 and 1-18 respectively. The application of the ““¢” test for the difference between
means gives '=1-646, corresponding to a probability of 0-12 that the difference
between the means is due entirely to random causes. The improvement achieved
with the second method of analysis, although discernible, is not therefore outstand-
ingly significant. In their tests on simply supported beams, Roderick and Phillipps
(1949) obtained much improved agreement by using this method, but it is to be
noted that while these investigators tested carefully heat-treated beams, the tests
here described were performed with the steel in the ““as received” condition.

In a further attempt to decide between the two methods of analysis, tension tests
were carried out on three specimens. Since the mean yield stresses given by the
second method (column 11, Table 1) are lower than those given by the first (column 8),
it should thus be possible to reach some significant conclusion. The first two speci-
mens (CT1 and CT2) were taken one from each end of beam C8, while the third
(CT3) was taken from one end of beam C9. The specimens had a gauge length of
2-00 in. and a diameter of 0-282 in., and were tested in the Quinney Autographic
Machine (see Quinney, 1938). The upper and lower yield stresses and the rates of
strain in the plastic range are given in Table II. Calculations show that, during the

TaBLE II
Upper Yield Lower Yield Rate of Strain
Tension Stress, Stress, in Plastic
Specimen Range/sec.
tons/in.2 tons/in.2 10-6 X
CTl 22-48 17-99 18:20
CT2 19-53 17-32 0-767
CT3 22-31 18-16 18-20

beam tests, the mean rate of strain in the extreme fibres of the most highly stressed

sections varied between 0:7x 106 and 2:0x 10-6 per sec.

Hence the appropriate

lower yield stress for bar 4 (see fig. 1) would be about 17-40 tons/in.2 Since the
values obtained by the two methods of analysis were 17-84 and 16:60 tons/in.2
(columns 8 and 11 of Table I), the result is again inconclusive.

As an example of the load-deflection curves obtained, those for beams Cl and
In the case of beam C2, a theoretical
load-deflection curve for dial gauges 3 and 5 has been calculated by means of the
simple plastic theory, and is seen to be in good agreement with the observed values.

C2 are presented in figs. 5 and 6 respectively.
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In testing beams C1, C4, C8 and C10, the central support was set at such a distance
below the outer supports that yield stress under a sagging bending moment was
reached in the extreme fibres of the central section of the beam before contact
occurred. As the loads on these beams were further increased, the central bending
moment first decreased to zero and then increased until at collapse full plasticity
under a hogging bending moment occurred over the central support. Simultaneously
the position of the maximum sagging moment moved along the beam, as can be seen
most clearly in the cases of beams C4 and C8. Thus in beam C4 (see fig. 2), a
certain amount of yield under sagging moment occurred first at C and E, and finally
at B and F, where full plastic moments developed at collapse. This may be traced
in the appearance of Liiders’ wedges on the side face of part of beam C4 after testing
(fig. 7), in contrast to the absence of such wedges except at B and D on the face of
beam C3, for which the supports were initially level. It will be observed from
Table I that the sinking of the support and the occurrence of Liiders’ wedges along
the beam did not lead to any significant decrease in the carrying capacity of beam
C4 as compared with beam C3.  Similar remarks apply to beam C8, in which the
maximum sagging moment moved first to sections E and G (see fig. 2), then to
sections D and H, until finally full plastic moments were reached at collapse at
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sections C and 1. The side faces of parts of beams C7 and C8 after testing are com-
pared in fig. 8. The theoretically deduced values of the moments at various sections
of beam C8 at all stages of loading up to the collapse load are shown in fig. 9, and
the progressive movement of the positions of the maximum sagging moments is
apparent.

W oW W W W W W W Full plastic ,Mme”/_}_
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Upper yield stress reached Full plastic moment

in extreme fibres
Fig. 9. Theoretical bending moment curves for beam C8

In test C5, the supports were at the same level, and equal loads of 0-50 tons were
applied to each span. The load on span DG (fig. 2) was then kept constant while
that on span AD was increased until collapse occurred at 1-20 tons. Finally the
load on span DG was increased until this part of the beam also failed at a load of
1-25 tons.

3. TESTS ON FIXED-ENDED BEAMS
(a) Preparation of beams

The beams were all prepared from the same black mild-steel plate (dimensions
17 in. X 2 in. X % in.) by cutting longitudinally (in the direction of rolling) into
strips. The small size of the beams (} in. X % in. section) made it desirable to anneal
at 900° C. and cool in air in order to reduce some of the effects of rolling and work-
hardening. The beams were bent about axes perpendicular to the plane of the
original plate.

(b) Description of tests

The tests are summarised in fig. 10. The beams EI1-6 were tested over a span
of 6-0 in. between end fittings which provided moments of resistance proportional
to the rotations of the end sections of the beam. If a moment M Ib. in. at the end
of a beam corresponded to a rotation of 6 radians, then §=KM where K had the
values for each beam given in the second column of fig. 10. The simply supported
beams EC1 and EC2 had a span of 40 in. Fig. 10 shows the positions of the dial
gauge used to measure deflections and of the mirror gauges used to measure rotations.

Tests E1, E2 and E3 were conducted to investigate the effect of various degrees
of end fixity. Beams E4, ES5 and E6 were subjected to loads at several sections (1,
2, 3 in fig. 10) in turn, each load being just sufficient according to the simple theory,
to bring about collapse.

The arrangement for testing those beams which had the highest degree of end
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Fig. 10. Summary of tests on fixed-ended beams

fixity (beams E1, E4, E5 and E6) is shown in fig. 11, the load being applied by a
chain acting through a yoke. The arrangement for testing beams E2 and E3 is
shown in fig. 12, the clamping blocks on the end fittings having been removed for
the sake of clarity. ' _

During all the tests, load increments were made at approximately two-minute
intervals until creep was first observed. Before each subsequent increment, the rate
of creep on the dial gauge was allowed to drop to 10— in. during any two-minute
interval.

(c) Test results
Beams El, E2, E3, ECI and EC2

The results are summarised in Table III, and columns 1 to 4 require no explana-
tion. The end-fixity constants for the partially fixed-ended beams are given in
_column 5, from which it is possible to calculate the theoretical ratio of end to central
moments for a central point load in the elastic range (column 6). The collapse loads
are given in column 7, from which- the lower yield stresses may be calculated by
means of the simple plastic theory (see Table III, column 7). The percentage
differences from the mean are given in column 10.

On the basis of the method suggested by Roderick and Phillipps for allowing for
load concentration, these same collapse loads give the yield stresses shown in
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Fig. 11. Arrangement for testing fixed-ended beams
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Fig. 12. Method of obtaining reduced end fixity
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column 11, and the percentage differences from the mean are given in column 13.
There is a certain improvement in the agreement between the yield stress values as
compared with those given in column 8.

Load rotation curves are given for beams E1 and E3 in figs. 13 and 14 respectively.
These curves do not indicate such definite collapse loads as obtained for the g-in.
square beams described above. This may be due to strain hardening, and in order
to obtain a consistent interpretation of test results, the collapse loads have been
determined as follows.

Taking the value for the modulus of elasticity given in column 4 of Table I1I, and
assuming some value for the collapse load, it is possible to calculate by means of the
simple plastic theory of bending the rotation at any section of the beam when it is
just about to collapse. Then the relationship between the assumed collapse load and
the rotation is obtained as a straight line OI (figs. 13 and 14), and the collapse load
is taken as the intersection of this line with the experimental load rotation curve.
The figure quoted for any beam in column 7 of Table IIT is the mean of the three
values obtained from the central deflection and the two pairs of mirrors (M,, M4 and
MZs M3)-

In the case of beam EI, the end moments were in the elastic range almost equal
to the cen*ral moments (see column 6 of Table III), and the full plastic moment was
reached at all three sections at practically the same load. With beam E3, however,
the end moments were in the elastic range less than half the central moment, and
the load rotation curves (fig. 14) indicate that full plastic moment was reached at
the centre at a load of about 200 lb. Thereafter the rotations increased almost
linearly with load up to 255 Ib., soon after which full plastic moments developed at
the ends and collapse occurred.

Beams E4, ES and E6

The results for beams E4, ES and E6 are summarised in Tables IV and V. Suffi-
cient load was applied successively to the three loading positions (see fig. 10) to pro-
duce full plastic moments at the ends and under the load. Values of the lower yield
stress calculated on the basis of the simple plastic theory are given in column 8 of
Table IV.

TaABLE 1V
| 2 | 3. 4 5 6 | 1 | 8
l i i et 1 Maximum Load Actually
i stimate - Applied
Beaii Mean Mean | Modulus Cinnitl;rl:(tlt]% Order of ‘
No Width, | Depth, | of Elas- radians/Ib. in Loading rCorresponding
: in. in. ticity, E, 10-6 x Positions | Load, | Lower Yield
tons/in.2 Ib. | Stress,
[ | tons/in.2
1 E4 0-249 0-255 13,440 14:3 C 260-0 21-5
2 D 2925 215
3 ‘ | E 292-5 21-5
4 ES | 0248 0-253 13,440 ’ 14-3 ‘D 2875 | 216
5 | E 2875 | 216
6 | C 2556 ‘ 21-6
7 E6 0-247 i 0-254 13,440 143 D 2850 213
8 C 2533 213
9 [ E 285-0 21-3
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TABLE V
1 2 3 4 5 ‘ 6 T 8 9
Ist Load Position ‘ 2nd Load Position 3rd Load Position
Beam . .
Quantity Unit Calculated Calculated Calculated
No. Observed Value at } Observed Value at Observed Value at
Maximum Collapse Maximum Collapse Maximum Collapse
1 E4 Central in.x10-3 60-0 455 66-1 872 897 100-0
deflection
2 Rotation 8; radians x 103 181 13-6 309 464 287 316
3 v 0, v 18-8 13:6 22:7 394 10-1 150
4 v 05 " 17:5 13-6 4-0 15:0 29-7 394
5 v 04 v 18-4 13:6 22-0 229 465 535
6 E5S | Central in. x 103 501 ' 631 713 837 835 863
deflection !
7 Rotation 6, radians x 10~3 29-2 396 26:8 29-7 32-8 32-5
8 " 6, . 31-4 1 39:6 75 151 113 13-7
9 6 . 93 ‘ 15-1 27-1 39-6 125 137
10 55 04 s 122 \ 15-1 356 44-1 339 35-2
11 E6 Central in.x 1073 50-3 62-1 66-2 658 779 942
deflection
12 Rotation 8, radians X 10~3 28:1 , 39:0 274 27:6 272 315
13 . 0 . 314 | 390 14-3 13-5 7-8 14-9
14 i 0 . 10-0 i 14-9 | 10 135 254 390
15 ' 04 ' 11-7 l 14:9 20°5 17-8 36'5 49-]
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It is possible by means of the simple plastic theory to calculate the theoretical
deflections and rotations at collapse for the various positions of the load. These
calculated values are compared with those observed in Table V. The rotations 4,
6,, 6; and 0, refer respectively to mirrors M, M,, M5 and M,. Except for the first
loading position practically all the observed deflections and rotations are less than
the calculated values. Hence the ability of a beam to sustain a given ultimate load
is not adversely affected by the attainment of the full plastic moment at various
sections due to other critical load distributions. This is true whatever the order in
which the loads are applied.

Tension tests

Tension tests were performed on four specimens, of diameter 0-178 in. and gauge
length 0-70 in., in a Hounsfield Tensometer. Specimens ET1 and ET2 were cut from
the ends of beam E2 after testing, and specimens ET3 and ET4 were cut from the ends
of beam E6. The upper and lower yield stresses obtained are given in Table VI.

TaBLE VI
1

g, B TRt

tons/in.2 tons/in.2
ETI 21-68 20-88
ET2 | 21-57 20-57
ET3 ; 22-70 20-56
ET4 | 21-08 | 20-17

The lower yield stresses are in good agreement with each other, and have a mean
value of 20-54 tons/in.2 Considering beams El, E2, E3, EC1 and EC2 (see Table 11I),
the method of analysis suggested by Roderick and Phillipps gives a mean yield stress
in closer agreement with the yield stress from the tension tests than is obtained when
the simple plastic theory is applied.

4. CONCLUSIONS

The general agreement between the values of the lower yield stress calculated from
the collapse loads for both the continuous and the fixed-ended beams is satisfactory
and shows that the simple plastic theory gives predictions of the collapse loads of
such beams with sufficient accuracy for practical purposes. The method of allowing
for stress concentration suggested by Roderick and Phillipps (1949) does not lead to
any distinct improvement for the continuous beams, but does lead to slightly better
agreement for the fixed-ended beams. The tension tests carried out in connexion
with the continuous beams did not establish any conclusive results, but with the
fixed-ended beams tension tests favoured the method of Roderick and Phillipps.

The tests on the continuous beams confirm that the predictions of the plastic
theory are not upset by sinking of supports, even if sinking is sufficient to cause yield
in the beam. The plastic theory is equally successful for all the load distributions
investigated, and the failure of one span does not decrease the ultimate carrying
capacity of an adjacent span.
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The tests on the fixed-ended beams show that ultimate carrying capacity is inde-
pendent of the degree of rigidity of the end connections as long as these are capable
of resisting the full plastic moment. The carrying capacity is not adversely affected
when full plastic moments are produced at a number of sections by different successive
load distributions, and this is true whatever the order in which the loads are applied.

The work described in this paper was carried out at the Engineering Laboratory,
Cambridge University, and forms part of a general investigation into the behaviour
of rigid-frame structures under the direction of Professor J. F. Baker, Head of the
Department of Engineering.
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Summary

According to the simple plastic theory, the collapse loads of mild-steel continuous
and fixed-ended beams may be calculated by considering merely the requirements of
equilibrium in relation to the external loads and the full plastic moments of resistance
of the beams. It follows that sinking of supports, order of loading and degree of
end fixity should have no influence on such collapse loads. In order to check these
deductions, tests were performed on g-in..square beams continuous over two spans
and on }-in. square single-span beams provided with varying degrees of end fixity.
The influence of various types of loading and of varying orders of application of the
loads were investigated. Control tests were performed on similar simply supported
members, and tension tests carried out at controlled rates of strain on material taken
from unyielded sections of the beams.

The results give consistent confirmation of the simple plastic theory, and show
conclusively that the collapse loads may be calculated with sufficient accuracy for
practical purposes by this means. During the loading of a continuous beam in which
one support is initially lower than the others, there is, according to the simple plastic
theory, a progressive movement of the sections of maximum sagging moments along
the beam. This is demonstrated in the tests by the appearance of Liiders’ wedges
on the polished surfaces of the §-in. square beams.
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Résumé

Suivant la théorie simple de la plasticité, les charges de rupture des poutres en
acier doux, continues ou encastrées a leurs extrémités, peuvent étre calculées par
simple considération des exigences d’équilibre corrélativement aux charges extérieures
et aux pleins moments plastiques de résistance des poutres. Il en résulte que I’af-
faissement des appuis, I’ordre de mise en charge et le degré de rigidité aux extrémités
ne doivent exercer aucune influence sur ces charges de rupture. Pour vérifier ces
déductions, des essais ont été effectués sur des poutres carrées de 7 in. (22,2 mm.),
continues sur deux portées, ainsi que sur des poutres carrées de % in. (6,35 mm.) sur
portée simple, avec différents degrés de rigidité aux extrémités. On a étudié I'in-
fluence de divers types de charges et de divers ordres de mise en charge. Des essais
ont été effectués, a titre de contrdle, sur des éléments simplement posés sur leur
appuis; on a également procédé a des essais de traction, sous des taux de tension
controlés, sur des éprouvettes prélevées sur des sections n’ayant subi aucune déforma-
tion.

Les résultats obtenus fournissent une bonne confirmation de la théorie simple de
la plasticité et montrent d’une maniére concluante que les charges de rupture peuvent
étre calculées avec une précision suffisante pour les besoins de la pratique, d’aprés la
méthode ci-dessus. Au cours de la mise en charge d’une poutre continue dont un
appul est initialement plus bas que les autres, il se produit, suivant la théorie simple
de la plasticité, un déplacement progressif des sections présentant les moments
maxima d’affaissement, le long de la poutre. Ceci est mis en évidence, au cours des
essais, par |'apparition de figures de Luders sur les surfaces polies des poutres carrées
de % in.

Zusammenfassung

Nach der einfachen Plastizitdtstheorie konnen die Bruchlasten von durchlaufenden
und eingespannten Balken aus Flusstahl allein aus der Betrachtung der Gleich-
gewichtsbedingungen beziiglich der dusseren Lasten und der vollen plastischen
Widerstandsmomente der Balken berechnet werden. Es folgt daraus, dass Auflager-
senkungen, Lastanordnung und Einspannungsgrad keinen Einfluss auf solche Bruch-
lasten haben sollten. Zur Ueberpriifung dieser Feststellungen wurden Versuche an
iiber zwei Felder durchlaufenden, § in. (22,2 mm.) starken und an einfeldrigen, ver-
schieden stark eingespannten, § in. (6,35 mm.) starken Rechteck-Balken durchgefiihrt.
Die Einfliisse verschiedener Arten von Lasten und verschiedener Formen der Last-
Aufbringung wurden untersucht. Zur Kontrolle wurden Untersuchungen an ent-
sprechenden einfach gelagerten Balken gemacht und unter kontrollierten Spannungen
Zugversuche an Material aus unverformten Trégerteilen ausgefiihrt.

Die ermittelten Resultate bedeuten eine gute Bestdtigung der einfachen Plasti-
zitdtstheorie und zeigen iiberzeugend, dass die Bruchlasten mit fiir praktische Bediirf-
nisse geniigender Genauigkeit nach dieser Methode berechnet werden koénnen.
Wihrend der Belastung eines durchlaufenden Balkens, bei dem ein Auflager von
Anfang an tiefer liegt als die anderen, ergibt sich, in Uebereinstimmung mit der
einfachen Plastizitidtstheorie, entlang dem Balken ein fortlaufendes Fliessen der Zonen
grosster Momentenbeanspruchung infolge Einsenkung. Dies zeigt sich im Versuch
durch das Auftreten von Fliessfiguren von Liiders auf den polierten Oberflichen der
% in. Rechteckbalken.
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