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Al 2

Die Dimpfung von Briickenschwingungen
The damping of oscillations in bridges

L’amortissement des oscillations des ponts

Pror. DRr. TECcHN. DIrL. ING. ERICH FRIEDRICH

Vorstand der Lehrkanzel fiir Betonbau an der Universitit fiir Technische Wissenschaften
in Graz, Osterreich.

EINLEITUNG

Durch das Bestreben immer leichter und kiihner zu bauen, wird es auch im
Betonbau erforderlich, das Bauwerk unter den Verkehrsbelastungen nicht mehr als
statisch ruhend zu betrachten, sondern den Einfluss der bewegten Belastung zu
beriicksichtigen. Der alte Grundsatz, dass, je schwerer gebaut wird, um so sicherer
das Bauwerk ist, gilt nicht mehr. Wir kommen dazu, auch im Betonbau unliebsame
dynamische Einfliisse zu ergriinden und, wenn erforderlich, ihnen durch bauliche
Massnahmen entgegenzutreten. Die gesamte Frage der Sicherheit von Bauwerken,
die Frage der Einfiihrung eines n-freien Bemessungsverfahrens und die Frage, wie
man zweckmadssig bestehende Bauten auf ihre Tragfahigkeit untersucht, kann durch
die Betrachtung des Bauwerkes als dynamisches Gebilde in viel umfassenderer Weise
beantwortet werden. Der Bauingenieur wird hier vielfach die bereits im Maschinen-
bau gewonnenen Erfahrungen und Erkenntnisse fiir seine Bediirfnisse umformen und
anwenden konnen.* Im nachfolgenden wird auf eine dieser Fragen eingegangen,
wobel die bei dynamischen Untersuchungen bereits bekannten Verfahren auf das
Gebiet des Briickenbaues iibertragen und dem Bauingenieur erschlossen werden
sollen. Bei einem Maschinenfundament hat man es in der Regel mit einer gleich-
bleibenden Schwingungszahl zu tun. Im Briickenbau hingegen wird das Bauwerk
von Fahrzeugen mit verschiedener Belastung und verschiedenen Schwingungszahlen
befahren, so dass man darauf Riicksicht nehmen und die Untersuchungen auf
verianderliche Schwingungszahlen ausdehnen muss.

Bei einer bestehenden Briicke in Villach traten unter der Verkehrsbelastung
erhebliche Schwingungen auf. Man hatte daraufhin die Verkehrsbelastung
beschrankt und die Geschwindigkeit, mit der die Briicke befahren wird, herabgesetzt.
Beide Massnahmen storten empfindlich den gesamten Verkehr und wirkten sich

* . P. Den Hartog, Mechanische Schwinéungen. Deutsche Bearbeitung von Dr. Gustav Mesmer
Julius Springer, Berlin, 1936.



58 Al 2—E. FRIEDRICH

vielfach nachteilig aus. So hatte die Beschrinkung der Geschwindigkeit zur Folge,
dass die Briicke stindig mit der vollen Verkehrslast belastet war, weil sich die Kraft-
wagen auf der Briicke zusammendridngten. Auch die Beschrinkung der Hochst-
belastung wirkte sich nachteilig auf den gesamten Verkehr aus. Ausserdem ist es
praktisch unmoglich, bei dem stets zunehmenden Verkehr diese Beschrinkung
aufrechtzuerhalten.

Zunichst 1st die Frage interessant, welche Schwingungen von den Kraftwagen-
typen auf die Briicke ausgeiibt werden. Bei der Briicke in Villach handelt es sich um
ein Bauwerk, das wohl statisch einwandfrei ist, aber mit der Eigenschwingungszahl
gerade in dem Bereich der von den Fahrzeugen ausgeiibten Schwingungen liegt,
sodass die Briicke stets Resonanzschwingungen ausfiihrt.

Vom Institut fiir Kraftfahrzeugbau an der Technischen Hochschule in Graz
wurden fiir einige Fahrzeugtypen folgende Schwingungszahlen angegeben. Im
Mittel schwanken die Schwingungen von Fahrzeugfedern zwischen 0,9 und 2,30 Hertz.

TAFEL I
Ausgeiibte Schwingungen in Hertz

Fahrzeugtype Belastung [ Vorderfeder | Hinterfeder
Steyr 220 ' ohne Nutzlast 1,85 | 2,30
Steyr 220 | 100 kg. (1 Person) l — L 2,03
Steyr 220 | 400 kg. (4 Personen) | —_ 1,62
Fiat Topolino | ohne Nutzlast | 1,77 2,23
Fiat Topolino /'3 Personen | 2,70 ’ 1,67
Fiat 1100 | ohne Nutzlast 5 1,40 1,42

|

Fiat 1100 | 6 Personen 1,27 , 1,29

‘Durch den Marschtritt werden etwa 2,2 Hertz ausgeiibt. Der Einfluss der
Unebenheiten der Fahrbahn verursacht beim Befahren ebenfalls Schwingungen.
Um auch hier Anhaltspunkte zu gewinnen, sei folgendes mitgeteilt: Bei Fahrbahnen
mit Kopfsteinpflaster ist der mittlere Abstand der Hocker a=10-15 cm., bei Fahr-
bahnen mit Schlaglochern betrdgt der Abstand der Schlaglécher rd. 50<100 cm.
Bei Landstrassen ist der Abstand der Hocker rd. 20400 cm. Man kann auch hieraus
auf die Stosse schliessen, die ein Fahrzeug auf die Fahrbahn ausiibt.

V (km./h.)
f (Hertz)= 3.6 (m)

Bei einer Geschwindigkeit z.B. von V=16 km./h. ergibt sich hieraus bei einer
Hockerentfernung von rd. 1 m. eine Schwingungszahl von rund 5 Hertz. Die Frage,
die gestellt wird, ist die, ob es moglich ist, durch einen Einbau die Schwingungen fiir
die Briicke unschéddlich zu machen, und weiter, wie dieser Schwingungsddampfer
aussehen muss. '

DIE EIGENSCHWINGUNG VON BRUCKEN

Fiir einen frei aufliegenden Triger mit der Elastizititszahl E, dem Trigheits-
moment J und der Stiitzweite / ergibt sich bei kon-

PR stanter Masse u je Lédngeneinheit die Eigenschwin-
T—t\_ﬂ/} gungszahl (Abb. 1).
l

| n2  [EJ
w=m. [— . ... ()
Abb. 1 ] m
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Die Schwingungsdauer 7, das ist die Zeit, die der Trdger braucht um von einer Lage
ausgehend wieder in die gleiche Lage zuriickzukehren, ist mit « durch folgende
Gleichung gegeben.

T.w=27 . . . « . . « . .. @
Die Zahl der Schwingungen in einer Sekunde (Hertz genannt) betrigt:
l o '
f=f‘=2_1r' P T T &)

Um die Rechnung zu vereinfachen, geniigt es, an Stelle des wirklichen Systems
einen einfachen Schwinger zu betrachten (Abb. 2). Ein einfacher
Schwinger besteht aus einer Feder mit der Federkonstanten ¢ und Z
einer darunter angehidngten Masse m. Die Federkonstante ¢ ist jene
Kraft, die erforderlich ist, um die Feder um 1 em. zu verlingern. Wird c
die Masse aus der Ruhelage gebracht, indem an der Masse m nach
abwirts gezogen wird, und wird die Feder losgelassen, so schwingt das
System mit der Eigenschwingungszahl .

c
w=J—........(4) Abb. 2

m

Bei einem Trager ist die statische Durchbiegung 8 in Feldmitte bei gleichmaéssiger

Lastverteilung G=mg (g=981 cm./sec.2=Erdbeschleunigung) gegeben. Die Feder-
konstante ist daher

mg
—C‘\/g_lo.fr
oder w=’\/l7l=78= \/5 v e e e e e e (6)
w 3
fm=mm s s s s 5 s @i 1 oa ¢ 0D

Die statische Durchbiegung des Tridgers unter der gegebenen Massenverteilung ist
daher ein Mass fiir die Eigenschwingungszahl des Trigers.

Man sollte in Hinkunft in die Briickenbestimmungen eine Vorschrift aufnehmen,
die die Eigenschwingungszahl beschrinkt. Damit wiirde allerdings die Durchbiegung
unabhidngig von der Stiitzweite beschrinkt werden. Wenn nun eine Briicke mit der
Eigenschwingungszahl in der Ndhe der durch den Verkehr auftretenden Schwingungen
liegt, so kénnen die durch die Resonanz bedingten grossen Verformungen die Trag-
fahigkeit der Briicke wesentlich herabsetzen. Die statische Durchbiegung &, ist mit
einem Yergrosserungsfaktor

1
S )

0\ 2
—(2)
w
zu multiplizieren, um die unter der Verkehrslast auftretenden Verformungen zu
erhalten. In dieser Gleichung ist £ die durch den Verkehr hervorgerufene
Schwingungszahl und « die Eigenschwingungszahl. Wird 2/w=1 so wird 8= co.
Eine Abminderung dieses Faktors bekommt man durch die Ddmpfung D.

Setzt man die Dampfung proportional der Geschwindigkeit, so lautet fiir das
Ersatzsystem (Abb. 2) die Differentialgleichung

mi+kx+cex=0 . . . . . . . . .0
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Als Dampfung bezeichnet man

k
=T 10
D=3V am (19)
Bei einer Dampfung ist die Vergrosserungsfunktion fiir die Durchbiegung
' 1
(11)

TG

An Hand von ausgefiihrten Versuchen, iiber die Oberregierungsbaurat Arthur
Limmlein berichtet,* kann man sich ein Bild iiber den Dadmpfungsfaktor machen. In
der nachfolgenden Tafel II ist fiir den Resonanzfall die Vergrdsserungsfunktion
ermittelt.

TAreL II

| |

| Vergrosserungs-| _ , Eigen-
Nr. Name Bauweise ! Diampfung g faktor g sch\g'lingungs-

‘ zahl in Hz.
1 Bleibachbriicke Spannbeton l 0,014 35,7 . 4,25
2 | Briicke bei Emmendingen | Spannbeton | 0,008 125 3,14
3 | Briicke Oberhausen Verbund | 0,0065 154 6,88
4 | Hiigelsheim Stahlbeton- | 0,1213 8,2 10,60

platte |

Man erkennt aus diesen Zahlen, dass bei Resonanz Werte auftreten kénnen, die fiir
die Briicke ausserordentlich bedenklich sind. Auch bei der Briicke in Villach ist
die Ddmpfung der Briicke selbst gering. Der Wert D liegt bei 0,010, sodass der
Vergrosserungsfaktor rd. 100 ist. Um diese Briicke zu beruhigen, wird ein Ddm-
pfungstriger vorgeschlagen, der nun berechnet und beschrieben wird.

Die DAMPFUNG EINER BRUCKE

Beschreibung der Konstruktion
Zunichst soll an Hand der Systemskizze Abb. 3 der Gedanke der Ddmpfung
erldutert werden. Unter dem Briickentragwerk I befindet sich ein Trdger II, der

Briickentragewerk [

A 8 c
A %@Df %@DZ 0«?@% f%z
E KX - F

Ddéimpfungstréiger 11
Abb. 3

Diamptungstrager genannt wird. Dieser Ddmpfungstriger II ist an drei Federn A,
B, C mit dem Haupttrdger verbunden. Zwischen den beiden Trédgern sind ausserdem
Fliissigkeitsdimpfer D eingebaut. Natiirlich befindet sich der Ddmpfungstrager II
mit den Einbauten bei dem tatsédchlichen Bauwerk nicht unterhalb des Haupttrégers,
sondern zwischen den Haupttridgern und ist nicht sichtbar. Der Ddmpfungstriger
hat i%s der Masse des Haupttrigers.

* Arthur Limmlein, “Schwingungsmessungen an Strassenbriicken verschiedener Bauarten,”
Beton und Stahlbeton, Heft 5, 1951.
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Die Wirkungsweise des Einbaues des Dampfungstrigers zeigt Abb. 4. Als
Ordinate ist die Vergrosserungsfunktion 28 und als Abszisse das Verhiltnis der
aufgezwungenen Schwingung zur Eigenschwingung aufgetragen. Die Vergrosserungs-
funktion nimmt hochstens den Wert 4,6 an. Bis zu einer Vergrosserungsfunktion

LI

Vergrasserungsfunklion 1)

3 S ——

: i ;
4 0.8 17 1% 16 18
2 Sc/‘rwmgz/ﬂg a‘e/‘ [Ghrzeuge

N~ Lgenschwingurlg der Brocke

4

-

o0 4z

Abb. 4 -

von 5 kann man im allgemeinen damit rechnen, dass die dadurch hervorgerufenen
Spannungen innerhalb der zulédssigen Grenzen bleiben. Die Fliissigkeitsdimpfer Dy,
D,, D; und die Federn sind leicht konstruierbar. Die nun beschriebene Wirkungs-
weise und der Zusammenhang zwischen den einzelnen Grossen soll nun erortert

werden.

Al;leitung der Gleichung*

Die Ableitung der Differentialgleichung ist in mehreren Schritten mdglich. An
Stelle des wirklichen Systems wird das Ersatzschwingsystem untersucht.

Abb. 5

fca(v,#Vz)

Abb. 6

1. Schritt. Zwei Massen m; und m, sind mit zwei Federn ¢,
und ¢, mitder Decke und Fussboden verbunden (Abb. 5). Zwischen
den beiden Massen m; und m, befindet sich eine Feder ¢;. Die
Ruhelage sei durch die beiden Punkte O; und O, gekennzeichnet.
Die Bewegungsgleichung ist aufzustellen. Wenn die Masse m, sich
nach unten bewegt, zieht die Kraft ¢;v; die Masse zuriick. Die
Zusammendriickung der mittleren Feder ist »;—wv,. Die Kraft,
die dadurch ausgeiibt wird, ist c3(z;—2,). Die Bewegungsgleichung
lautet (Abb. 6)

md=—cv;—c3(vy—v2) . . . . . (12)
Ebenso kann man eine entsprechende Gleichung fiir die Masse
m, aufstellen. Die Bewegungsgleichungen lauten:
m1791+(C1+C3)'1’1—C3712=0} (13)
myPa+(c2+c3)v—c30,=0
Wir stellen uns nun folgende Frage: Gibt es eine harmonische
Bewegung dieses Systems und wie gross sind die Ausschldge a; und
a, der Massen m; bzw. m,? Welche Schwmgungszahl liefert eine
harmonische Bewegung?
Wir machen also fiir die Bewegung die Ansitze:
v;=a; sin wt
v,=aj, Sin wt
* Den Hartog, Seite 77.

(14)
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und bestimmen die Ableitungen nach der Zeit. Setzt man diese Werte in die
Bewegungsgleichung (13) ein, so ergibt sich:
al(—m1w2+cl+c3)—azc3=0} 15)
—a,c3+ay(—myw?+cy+c3)=0
Aus der ersten Gleichung von (15) kann man den Wert a,/a, und aus der zweiten
Gleichung kann man ebenfalls das Verhiltnis ausrechnen. Wenn es eine Losung
gibt, miissen beide Werte einander gleich sein. Man erhilt auf diese Weise eine
Gleichung fiir die Eigenschwingungszahl », die lautet:
0 z[cl+c3 c2+c3] C1Ca+crc3+c104
wr—w + =
m; m, mhy

0. . . . (16

Es gibt zwei Losungen w;2 und w,? fiir die eine harmonische Bewegung maoglich ist.

2. Schritt. Nun soll die Aufgabestellung etwas abgedndert
werden. Auf die Briicke mit der Masse M (Abb. 7) soll durch
die Verkehrsbelastung eine harmonische Kraft P=P, sin 2
aufgebracht werden. An der Briicke sei ein zweiter Trager mit
der Masse m und der Federkonstante ¢ befestigt. Die Frage
lautet: welche Schwingung fiihrt dieses System aus? Man
bekommt die Bewegungsgleichungen, indem man in den Glei-
chungen (13) den Wert ¢,=0 setzt und in der ersten Gleichung
die aufgezwungene Schwingung beriicksichtigt.

M@1+(C+C)7)1—C7)2=P0 sin ¢
. (17)
miy~+c(vy—2v,)=0 }
Setzen wir v;=a; sin £2f und v,=a, sin £t ein, so erhilt man fiir jene aufgezwungene
Schwingungszahl 2 eine harmonische Schwingung, fiir die folgende Gleichungen
erfiillt sind:

Abb. 7

a,(— M2+ C+c)—ca,=P, ‘
—aycta(—m8224-c)=0 } (18)
Man setzt in dieser Gleichungsgruppe die Eigenschwingungszahl der Briicke
N=+/CJM, die Eigenschwingungszahl des Dampfers v=+/c/m und das Verhiltnis der
Masse des Dampfers zu der der Briicke, p=m/M, ein. - Die Durchbiegung der Briicke

unter der Last P, sei 8;,=2P,/C.
Man erhilt aus der Gleichungsgruppe (18)

C N2 C
o2 e e e e e (19
a1=az(1—§)
Aus dieser Gleichung erhilt man
02 ™
a l—ﬁ
8y 2 c 22\ ¢
(1“72)(”6“1\72 el ... o
az_ 1
S 22 0 ¢
(1=52) (e ¢
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Aus der ersten Gleichung bekommt man a;=0, wenn Q2=v wird. Die Briicke
bleibt dann in Ruhe, wenn die Eigenschwingungszahl des Dampfungstragers gleich
der aufgezwungenen Schwingung £2 wird. Die Schwingung des Dimpfungstrigers
wird

i ¢
Setzt man noch v=N, d.h. die Eigenschwingungszahl der Briicke gleich der Eigen-
schwingungszahl des Dampfungstragers, so wird

8_C ep
m M T M

o 7
=7
¥ 14

v =20y . sin (£21) 7 /o7 |
(1= ()= | el

1

V=085 . sin (£21) fop 0
=

Fragen wir noch, ob es eine Resonanzschwingung gibt. Resonanz ist dann
vorhanden, wenn die beiden Werte »; und v, fiir eine bestimmte aufgezwungene
Schwingung unendlich werden. Dies ist der Fall, wenn der Nenner in den beiden
Gleichungen (21) null wird.

Q2 02
(1_;'2_)(1+'”'—V_2)—'U‘=0 B 2}
@ _ "
Setzt man ﬁ=¢’ so wird: @2—29@ 1+§ +1=0

(12

Woraus folgt: ¢I=I+E+J#+ﬁ
2 4

(23)

L

¢z—l+2 A/ kg

Wenn p=0,10 angenommen wird, so erhdlt man folgendes Ergebnis:
®,=1,38, @,=0,73

Durch den Dampfungstriager wurde also folgendes erreicht:

(a) Bei einer aufgezwungenen Schwingung, die der Eigenschwingung der
Briicke gleich ist, bleibt die Briicke in Ruhe. Fiir diesen Fall hat der
Déampfungstriger eine Bedeutung.

(b) Dafiir ist aber bei einer Schwingung, die 27 %, unter und 38 %, iiber der
Eigenschwingungszahl des Haupttrédgers liegt, eine Resonanz vorhanden.

Hitte man nur eine einzige Schwingungszahl, so kénnte man in einfacher Weise
durch den Dampfungstriger erreichen, dass der Briickentriger in Ruhe bleibt. Da
aber die Schwingungszahl der aufgebrachten Schwingung sehr verdnderlich ist, muss
noch eine Ddmpfung eingebaut werden, wodurch die in Abb. 4 dargestellte Wirkung
erreicht wird.
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3. Schritt. Wenn nun zwischen Briickentragwerk und Ddmpfungstriger ein
Flissigkeitsddmpfer eingeschaltet wird, lauten die Bewegungsgleichungen

w M. 'Z.)‘1+C‘Z-).1+C('Ul —7)2)+k('(/:’1—"??2)=P0 . Si[l Qt} (24)
mi,+c(v,—v)+k(9;—9,)=0
¢ . Versucht man nun die Lésung mit dem Ansatz:
‘ﬁ,’smﬂf ) )
. — 12t —_ 0L
Y — v)=a;.¢e Uy=da; .e
IV; so erhdlt man:
‘ " 131=a1 L i82 . eiQ' 61=—al .02, eiQt
” b Dy=a, . iR . e v=—a,.02. Y
Abb. 8 Diese Werte in die Gleichung (24) eingesetzt ergeben
—Ma192+Ca1+c(a1—a2)+ik'.9(al—a2)=P0 25)
—mS822a,+ c(ay—ay)+ik§A(a,—a)=0 (

In den Gleichungen (25) sind a; und a, unbekannt. Rechnet man sich den Wert a;
aus, so erhilt man:

(c—m82)+iQk

= =P°[(—M.Q?—+ C)(—mS2+ ¢)—mS2c] +i2k[— MR+ C—m27] (26)

Nun kann man hier die komplexen Grossen durch die reellen Werte ausrechnen:

(c—mQ2)2+ Q22

2_-p2
=Py Ot ) —mcp+ R — Mt C—maE © PT)

Setzt man noch die Eigenschwingungszahl der Briicke N2=(C/M, die Eigen-
schwingungszahl des Dimpfungstrigers »2=c¢/m, die Durchbiegung der Briicke unter
der Last P, gleich 8, sodass 8;,=P,/C wird, ferner das Verhiltnis der Eigenfrequenz
des Ddmpfungstrdgers zu dem der Briicke ¥y=v/N und die Ddmpfungszahl D=k/2mN,
das Verhiltnis der Masse des Dadmpfungstragers zu der der Briicke p=m/M und das
Verhiltnis der Schwingungszahl der aufgezwungenen Schwingung zur Eigen-
schwingungszahl der Briicke {=£/N, so wird:

s J D) H((— g2y
1=% N @DOAC—1+ 2P+ [ — (= D(C— DT

Dies ist die Gleichung, die die Vergrosserungsfunktion fiir die statische Auslenkung
angibt:

(28)

Bt J (D02 +(12—¢?)?
T TN (2DOH— 14 pl2)2 4 [ — (2= 12—
In der beifolgenden Tafel III sind die Zahlenwerte fiir verschiedene Dampfungen D

angegeben. Die Abb. 9 =zeigt das Ergebnis. Setzt man die Ddmpfung D=0,
so erhdlt man

(29)

§2_¢,2
pp2l2— (2= 1)(E2—42)

L= (30)
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Vergrosserungsfaktor 8B

TAFEL II1

65

L D=0 D=0,10 D=0,16 D=0,20 D=w
0,50 1,40 1,40 1,40 1,39 1,38
0,60 1,73 1,73 1,72 1,72 1,65
0,70 2,56 2,50 2,42 2,38 2,17
0,80 13,10 4,97 4,10 3,87 3,38
0,82 30,20 5,23 4,44 4,24 3.84
0.84 - 6,00 4,92 4,70 4,62 4.47
0,86 2,25 3,84 4,50 4,75 5,37
0.88 0,99 315 4,29 4,82 6,75
0,90 0,25 2,71 4,06 4,82 9,17
0,92 0,27 2,49 3,90 4,77 14,48
0,94 0,71 2,46 i 3,82 473 35.70
0,96 1,13 2,56 ! 3,84 472 72,75
0,98 1,58 2,78 3,97 4,73 17,70
1,00 2,10 3,18 4,10 4,75 10,00
1,02 2,76 3,57 4,32 4,75 6,92
1,04 3.72 4,16 4,50 4,66 5.27
1,06 5,29 4,85 4,62 4,51 4,23
1,08 8,55 5,52 4,60 4,27 3,53
1,10 19,72 5,87 4,40 3,97 3,02
1,16 7.61 4,35 3,34 2,99 2,08
1,20 4,06 3,20 2,68 2,45 1,63
1,30 1,89 1,77 1,65 1,58 1,15

2
N

C.R.—5
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Dieser Wert stimmt mit (20) inhaltlich iiberein. Fiir D=co erhidlt man volle
Verbindung der beiden Tréger, also praktisch nur einen Trager mit der Masse (M +m).
In diesem Fall ist die Vergrosserungsfunktion

1
T 1—=(1+p)2?
Der Wert stimmt mit der Gleichung (8) iiberein.
Man kann nun die Gleichung (29) noch weiter untersuchen und die Frage stellen,
ob es {-Werte gibt, die von der Ddmpfung D unabhingig sind. Von der Dampfung

unabhingig wird der Ausdruck ¥ dann, wenn die Dampfungszahl im Zéhler und
Nenner von (29) gekiirzt werden kann. Dies ist dann der Fall, wenn

B 3D

1 2 r2—y2 2 _ ,
(EZ—H-#CZ) =(#C2¢3—(€3—1)(§2_¢2)) R
Man erhilt eine quadratische Gleichung
4__ 9#¢2+1+'ﬁ2 21,[12 -
{4=2f 3 Taga=0 ¢ - ov - . (33)

Es gibt also zwei Werte £; und {5, fiir die die Lésung von der Dampfung unabhéngig
ist. Dies sind die Punkte A und B in Abb. 9. Die Werte fiir A und B kann man aus
der viel einfacheren Gleichung (31) berechnen. Man kann nun noch—und das ist
das Ziel der Untersuchung—fragen, wie man die Eigenschwingungszahlen v und N
aufeinander abstimmen muss, um die Vergrosserungsfunktion 2 in den beiden
Punkten A und B gleich gross zu erhalten. Ist dies der Fall, so muss

1 |
—La+p) 1-LXi+p)
Das Minuszeichen kommt daher, dass zu einem positiven Wert von A der Punkt B’
mit negativem Vorzeichen gehért. Aus der Gleichung (34) folgt

2
C1Z+C22=m e T T (35)

Andererseits muss die Gleichung (33) erfiillt sein. Da die Summe der Losungen
{12+ ,2 in jeder quadratischen Gleichung gleich dem negativen mittleren Glied ist,
wird :

(34)

2 2w +1442)

= 36
14p 24u (36)
Daraus ergibt sich
1
- 3
I+p )

Wenn man p=0,1 wihlt, d.h. also die Masse des Ddmpfungstrigers zu 1 der Masse
des Haupttrigers, wird

i |
p=77=0909091 . . . . . . . . (38

Dieser Wert ist in der Tafel III gewihlt worden. Der Ddmpfer muss eine Eigen-
schwingungszahl haben, die nur 0,91 der Eigenschwingungszahl des Haupttrigers ist.
Die Vergrosserungsfunktion 8 wird in diesem Fall

2 _
%=J1+;=V21=4,58
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Nun wurde fiir 0=0,10, D=0,20 und D=0,16 der Verlauf der Vergrosserungs-
funktion gerechnet. Als diejenige Linie, die iiber die Punkte A und B nicht
hinausgeht, wurde die Linie mit D=0,16 ermittelt. Das Ergebnis ist somit:

(1) Der Dampfungstrager muss eine Eigenschwingungszahl einschliesslich der
Federn, mit denen er mit dem Haupttriager verbunden ist, haben, die das
0,91-fache der Eigenschwingungszahl des Haupttrigers betrigt.

(2) Die Masse des Tragers ist v5 der Masse des Haupttrégers.

(3) Die Dampfung muss D= 0 16 sein.

Dadurch ist der Didmpfungstriger eindeutig festgelegt Ein Beispiel soll die
Konstruktion zeigen.

Beispiel
Der Dampfungstrager einer vorgespannten Betonbriicke ist zu entwerfen. Die
Abmessungen der Briicke sind in Abb. 10 angegeben.

Zahlenwerte:
Trédgheitsmoment der Briicke: J;=688,105 cm.4
Masse der Briicke: rr=0,0956 kg./cm.2 sec.2
Elastizitdtsmodul: E=210 000 kg./cm.2

Die Eigenschwingungszahl der Briicke ergibt sich aus (1) zu:
m JETOW 688 .10
2. 33002 0,0965
Die erforderliche Masse des Dampfungstrigers betragt:
m=0,1,0,0956 . 33=0,316 kg./cm.2 sec.2
Gewihlt werden zwei Dampfungstrager mit den Abmessungen:
I=25 m.,; b=38 cm., d="70 cm;

.3
,u,”—o ]6—0 0126 kg./cm.2 sec.?

N=

=1,76 Hertz

Die erforderliche Eigenschwingungszahl der Dampfungstriger betragt:
v=0,91.1,76=1,6 Hertz
Bezeichnet man mit »; die Eigenschwingungszahl der Dimpfungstriger mit starrer

Befestigung, mit v, die Eigenschwingungszahl der starr gedachten Didmpfungstriger
mit elastischer Befestigung, mit J;; das Trigheitsmoment der Dampfungstrdager und
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mit Cr das Gesamtfedermass aller Aufhidngefedern, so gilt nach Dunkerley*
angendhert:

1 1 1
172:1?—'_;2_5""""'(39)
. v=1,6 Hertz
™ EJy 1 J Cr 704
i _ - [ =—=20.105 cm.?4
Mit: vy 5 { 2/\/ pir 250 wir . I Ju 12 cm
5 ' [=2500 cm.

ergibt sich aus (39) das erforderliche Gesamtfedermass aller Aufhingefedern zu:
CF=3200 kg./cm.

Zusammenfassung

In Zukunft muss man den dynamischen Kréften auch im Stahlbetonbriickenbau
entgegnen. An einem Beispiel wird gezeigt, wie man durch den Einbau eines
Dimpfungstragers den unliebsamen Schwingungen einer Briicke bei Resonanz
begegnen kann.

. Summary
In future, means must be adopted to counteract the effects of dynamic forces in
reinforced-concrete bridges. From an example it is shown how, in a case of resonance,
the undesirable oscillations of a bridge can be obviated by adding a damping girder.

Résumé
1l sera, a I’avenir, nécessaire de faire face aux efforts dynamiques, méme dans la
construction des ponts en béton armé. L’auteur montre, en s’appuyant sur un
exemple, comment I’on peut s’opposer aux oscillations inopportunes qui peuvent se
manifester par résonance, a ’aide d’une poutre d’amortissement.

* Dunkerley, Philosophical Transactions, 1894.
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Dynamic increments in an elementary case
Les influences dynamiques considérées dans un cas élémentaire

Dynamische Zuschlige in einem einfachen Fall

Dr. ARNE HILLERBORG

Stockholm

In the Preliminary Publication to the Congress in Liége in 1948, the author pre-
sented the first results of an investigation of dynamic influences of moving loads on
girders. This work was carried out at the Institution of Structural Engineering and
Bridge Building at the Royal Institute of Technology, Stockholm, Sweden, under the
supervision of Professor G. Wistlund. The final results of the investigation were
published in 1951 in a treatise,* which also describes the theoretical and experimental
methods used. A summary of the practical results will be given here.

The case that has been studied is that of a single load moving smoothly at a con-
stant speed along a simply supported girder. The girder has been supposed to be of
uniform section and to be straight under dead load. The following factors have been
taken into account:

the mass of the girder,

the mass of the load,

the velocity of the load,

spring-mounting of the load,

viscous damping of the girder (internal and external),
dry friction in the load-carrying spring.

These factors have been given a dimensionless form by introducing the notations:
mass of load
v= 5
mass of girder
_ velocity of load
*=35 X length of girder x frequency of girder
_ frequency of load
#= frequency of girder

B_Spring friction force
~ weight of load

2nB
e vi-p=ratio of two consecutive amplitudes in the same direction of the free vibra-
tion of the girder.

* Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.
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In the above notations, the frequency of the girder is the fundamental frequency
of the undamped girder at no load.

Two different values are used for the constant 8. One of them, denoted only
by B, refers to an external damping force, while the other, denoted by B, refers to an
internal damping force.

In the investigation, a distinction was made between two cases, viz. spring-borne
and non-spring-borne loads, but, as the former is of much greater practical importance,
only the results relating to spring-borne loads will be given here.

A dynamic increment in a quantity is defined by: '

dynamical value
static value

To make the definition strict, it is also necessary to know what kind of quantity
is measured and what dynamical and static values are to be used. This is indicated
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by subscripts as follows: M for moments, Q for shearing forces, and R for reaction
forces. The following definitions show what values are to be taken:

__greatest dynamical value for the girder
Cabs™ greatest static value for the girder

. - greatest dynamical value at any point
€max=maximum of - — —
greatest static value at the same point
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The value €, (the absolute increment) expresses the greatest influence of a given
kind (for instance, the greatest moment) on the girder, and is therefore the most
interesting value in dealing with girders of uniform strength. The value €., gives
the greatest dynamic increment at any section of the girder. This value is of great
interest in studying girders of non-uniform strength (for instance, reinforced-concrete
girders).

o1
|

T 1
(g’ Qr6masiu®=

[
Jos
a2z
£ =01 i —
dz R‘O,Z \\ \-___ 04
b N
S
My,
-04 06
\ g
'y
g8 ar T 4
-06 v at, 5 70 % Z‘a
-07 e
0? gos a%e® I Negzegs 1
-0 & (veqs) 42 z -02 =07 =
) —~—
-g2 \::\"‘- e A”'sz
af nots TR @ or N\
g3 = as N %
N 10 « 20
-04 B S 4 0 —(v+025)a?=07r'
10 -o1 o " -qos
-gs i
0 005 (Veaja’? ar -0z
-0 —— v easiis e %2
—~ 2
-az §> g JHMEJ 2
~ ] 04 ' \ 10 A(z’ 20
-Q3 ‘ ] A\ =
-0 \\ -ar \Q egsn2-01] -qos ——
05 \\ N e 1 -
P RN s
& 3
N Fig. 4
-g7 NN g8
-08 10
-Q9

Fig. 3

The most interesting dynamic increments ar€ €as, max, €M, abss €Q, maxs €Q, abss
and eg. The latter has only one subscript, as the gauge point must be at the support,
and the definition of eg is:

greatest dynamical reaction force
ER= 3 .
R greatest static reaction force

It can be shown that:

€0, abs=€R
Further, it has been shown that €p, .. may with sufficient accuracy be put equal
t0 €p, max in this case. It is therefore sufficient to plot diagrams for the dynamic
increments €xs, max, €n, abs, and eg. Such diagrams are shown in figs. 1 to 4, from
which the dynamic increments for any arbitrary values of v, «, p, 8, B, and 6 (within
practical limits) can be calculated by means of the formula:

B B 0
— o —————————— A —————————— A o~ a & A
=t o T s s o
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In this formula e is the value taken from fig. 1, and the three de-values are taken
~ from figs. 2 to 4.

The values of € which are given by this formula are approximate, as it has been
constructed in the way that is described below, but it seems always to give sufficiently
accurate values.

For studying the dynamic increments, use can be made of the theoretical methods
described in the above-mentioned treatise. In the general case, however, the cal-
culations are so intricate that it takes about two days to carry them out for a single
case. If complete calculations including four values of each of the six variables were
to be made, the number of calculations would be 46=4096, and the time required
would be about twenty-five years. This is obviously impracticable, and some other
method must be found in order to limit the work, even if the results will be less
accurate. :

For plotting the diagrams in figs. 1 to 4 the following method has been used. To
begin with, the case v=co0 has been studied, that is, the case where the mass of the

% concentrated load
5 — — — distributed load
25 P e S
\_ Ep
f \
. P /@_ —bm__ ]
10 20 Lm 3o
Fig. 5

girder is neglected in comparison with that of the load. In this case the calculations
are so simple that they can be carried out almost completely. When studying the
results of these calculations, trials have been made to find simple approximate relations
between € and the variables. It was then found that the above formula gave
sufficiently accurate results in this case. This formula and the corresponding
diagrams have thus first been made for the case v=o0, in which the numbers
0-25 and 0-5 added to v are without significance. It is to be noted that, in this case,

the values of va2, yu2, and \—5— are finite.
14

After the case v=o00 had been studied theoretically, a very complete series of tests
comprising v-values between 0-75 and 5 was made. The test values were then com-
pared with the theoretical values for v= o0, and it was found that if v was increased by
the values given in the formula and the diagrams, the agreement was sufficiently close
for all test values.

In order to give an idea of the order of magnitude of the dynamic increments
caused by the influence studied in this investigation, the diagram in fig. 5 has been
plotted on the following assumptions:

(1) The deflection under live load is 1/1250 of the span length.

(2) The velocity is 30 m./sec (=108 km./hour).

(3) The mass of the girder is neglected (this gives too small values of ¢).
(4) The damping is neglected.

(5) The frequency of the load is 3 cycles per second.

For comparison, a curve for a distributed load is also shown in fig. 5. The
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assumptions on which this curve is based are such that it gives only a lower limit for
the increments.

The investigation has shown that dynamic influences of moving loads of nearly
any kind on simply supported girders can be calculated theoretically, but in com-
plicated cases the calculations are very laborious. This difficulty is still more pro-
nounced when the girder is supported in a more intricate manner, for instance when
it is continuous, although the calculations are possible in principle. On the other
hand, the investigation has also shown that a comparatively simple test set-up can
give reliable test values with a small amount of work. It therefore seems advisable
that future investigations of this subject should mostly be based on model tests,
especially in relatively complicated cases. Theoretical studies are of course of great
value for the right understanding of the dynamical problems, but the number of
numerical calculations should be limited.

In addition to such studies of elementary cases, it is of course also valuable to make
tests on real bridges under real loads. However, these tests must be carried out and
treated in a scientific and methodical way, and not at random. Thanks to the
development of measurement engineering, we are today much better equipped for
making such tests than we were only ten years ago. Resistant wire strain gauges and
oscillographic recorders have made it possible to get accurate records of strains in
any points of the load-carrying structures without much work and at small costs.

It seems to the author that the conditions are now favourable for acquiring a much
better knowledge of the dynamical problems in bridge building if they are attacked
methodically.

Summary

The practical results of an investigation of dynamic problems are summarised.
A complete report on the investigation was published in 1951 in a book entitled
Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.

It is pointed out that the conditions are now favourable for acquiring a better
knowledge of the dynamic problems if they are attacked methodically.

Résumé

L’auteur expose sommairement les résultats pratiques d’une étude relative aux
problémes dynamiques. Un rapport complet sur cette étude a été publié en 1951 dans
un livre intitulé Dynamic Influences of Smoothly Running Loads on Simply Supported
Girders (Influences dynamiques des charges roulantes a allure uniforme sur les poutres
a appuis simples).

L’auteur fait remarquer que les conditions actuelles sont favorables a I’appro-
fondissement de nos connaissances des probléemes dynamiques, si I’on aborde ces
problémes d’une maniére méthodique.

Zusammenfassung

Der vorliegende Bericht enthélt eine Zusammenfassung der praktischen Ergeb-
nisse einer Untersuchung dynamischer Probleme. Ein vollstindiger Bericht iiber
diese Untersuchung wurde 1951 in einem Buch unter dem Titel Dyrnamic Influences of
Smoothly Running Loads on Simply Supported Girders (Dynamische Einfliisse gleich-
massig beweglicher Lasten auf einfach unterstiizten Trdgern) veroffentlicht.

Der Verfasser weist darauf hin, dass die gegenwirtigen Verhiltnisse fiir eine
Vertiefung unserer Kenntnisse der dynamischen Probleme giinstig sind, wenn diese
Probleme methodisch in Angriff genommen werden. ’
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