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AI 2

Die Dämpfung von Brückenschwingungen

The damping of oscillations in bridges

L'amortissement des oscillations des ponts

Prof. Dr. techn. DrpL. Ing. ERICH FRIEDRICH
Vorstand der Lehrkanzel für Betonbau an der Universität für Technische Wissenschaften

in Graz, Österreich.

Einleitung
Durch das Bestreben immer leichter und kühner zu bauen, wird es auch im

Betonbau erforderlich, das Bauwerk unter den Verkehrsbelastungen nicht mehr als
statisch ruhend zu betrachten, sondern den Einfluss der bewegten Belastung zu
berücksichtigen. Der alte Grundsatz, dass, je schwerer gebaut wird, um so sicherer
das Bauwerk ist, gilt nicht mehr. Wir kommen dazu, auch im Betonbau unliebsame
dynamische Einflüsse zu ergründen und, wenn erforderlich, ihnen durch bauliche
Massnahmen entgegenzutreten. Die gesamte Frage der Sicherheit von Bauwerken,
die Frage der Einführung eines «-freien Bemessungsverfahrens und die Frage, wie
man zweckmässig bestehende Bauten auf ihre Tragfähigkeit untersucht, kann durch
die Betrachtung des Bauwerkes als dynamisches Gebilde in viel umfassenderer Weise
beantwortet werden. Der Bauingenieur wird hier vielfach die bereits im Maschinenbau

gewonnenen Erfahrungen und Erkenntnisse für seine Bedürfnisse umformen und
anwenden können.* Im nachfolgenden wird auf eine dieser Fragen eingegangen,
wobei die bei dynamischen Untersuchungen bereits bekannten Verfahren auf das
Gebiet des Brückenbaues übertragen und dem Bauingenieur erschlossen werden
sollen. Bei einem Maschinenfundament hat man es in der Regel mit einer
gleichbleibenden Schwingungszahl zu tun. Im Brückenbau hingegen wird das Bauwerk
von Fahrzeugen mit verschiedener Belastung und verschiedenen Schwingungszahlen
befahren, so dass man darauf Rücksicht nehmen und die Untersuchungen auf
veränderliche Schwingungszahlen ausdehnen muss.

Bei einer bestehenden Brücke in Villach traten unter der Verkehrsbelastung
erhebliche Schwingungen auf. Man hatte daraufhin die Verkehrsbelastung
beschränkt und die Geschwindigkeit, mit der die Brücke befahren wird, herabgesetzt.
Beide Massnahmen störten empfindlich den gesamten Verkehr und wirkten sich

* I. P. Den Hartog, Mechanische Schwingungen. Deutsche Bearbeitung von Dr. Gustav Mesmer
Julius Springer, Berlin, 1936.
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vielfach nachteilig aus. So hatte die Beschränkung der Geschwindigkeit zur Folge,
dass die Brücke ständig mit der vollen Verkehrslast belastet war, weil sich die
Kraftwagen auf der Brücke zusammendrängten. Auch die Beschränkung der
Höchstbelastung wirkte sich nachteilig auf den gesamten Verkehr aus. Ausserdem ist es
praktisch unmöglich, bei dem stets zunehmenden Verkehr diese Beschränkung
aufrechtzuerhal ten.

Zunächst ist die Frage interessant, welche Schwingungen von den Kraftwagentypen

auf die Brücke ausgeübt werden. Bei der Brücke in Villach handelt es sich um
ein Bauwerk, das wohl statisch einwandfrei ist, aber mit der Eigenschwingungszahl
gerade in dem Bereich der von den Fahrzeugen ausgeübten Schwingungen liegt,
sodass die Brücke stets Resonanzschwingungen ausführt.

Vom Institut für Kraftfahrzeugbau an der Technischen Hochschule in Graz
wurden für einige Fahrzeugtypen folgende Schwingungszahlen angegeben. Im
Mittel schwanken die Schwingungen von Fahrzeugfedern zwischen 0,9 und 2,30 Hertz.

Tafel I
Ausgeübte Schwingungen in Hertz

Fahrzeugtype Belastung Vorderfeder Hinterfeder

Steyr 220 ohne Nutzlast 1,85 2,30
Steyr 220 100 kg. (1 Person) — 2,03
Steyr 220 400 kg. (4 Personen) — 1,62
Fiat Topolino ohne Nutzlast 1,77 2,23
Fiat Topolino 3 Personen 2,70 1,67
Fiat 1100 ohne Nutzlast 1,40 1,42
Fiat 1100 6 Personen 1,27 1,29

Durch den Marschtritt werden etwa 2,2 Hertz ausgeübt. Der Einfluss der
Unebenheiten der Fahrbahn verursacht beim Befahren ebenfalls Schwingungen.
Um auch hier Anhaltspunkte zu gewinnen, sei folgendes mitgeteilt: Bei Fahrbahnen
mit Kopfsteinpflaster ist der mittlere Abstand der Höcker o=10-M5 cm., bei
Fahrbahnen mit Schlaglöchern beträgt der Abstand der Schlaglöcher rd. 50-M00 cm.
Bei Landstrassen ist der Abstand der Höcker rd. 20-M00 cm. Man kann auch hieraus
auf die Stösse schliessen, die ein Fahrzeug auf die Fahrbahn ausübt.

/ (Hertz) .—r-3,6a (m.)
Bei einer Geschwindigkeit z.B. von K=16 km./h. ergibt sich hieraus bei einer
Höckerentfernung von rd. 1 m. eine Schwingungszahl von rund 5 Hertz. Die Frage,
die gestellt wird, ist die, ob es möglich ist, durch einen Einbau die Schwingungen für
die Brücke unschädlich zu machen, und weiter, wie dieser Schwingungsdämpfer
aussehen muss.

Die Eigenschwingung von Brücken
Für einen frei aufliegenden Träger mit der Elastizitätszahl £, dem Trägheits¬

moment J und der Stützweite / ergibt sich bei
konstanter Masse /x je Längeneinheit die Eigenschwingungszahl

(Abb. 1).

n2 iE!
" -./— (1)

r&p

Abb. 1 l2
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Die Schwingungsdauer T, das ist die Zeit, die der Träger braucht um von einer Lage
ausgehend wieder in die gleiche Lage zurückzukehren, ist mit w durch folgende
Gleichung gegeben.

T.w=2ir (2)

Die Zahl der Schwingungen in einer Sekunde (Hertz genannt) beträgt:
1 cu

f-r-ii (3)

Um die Rechnung zu vereinfachen, genügt es, an Stelle des wirklichen Systems
einen einfachen Schwinger zu betrachten (Abb. 2). Ein einfacher
Schwinger besteht aus einer Feder mit der Federkonstanten c und
einer darunter angehängten Masse m. Die Federkonstante c ist jene
Kraft, die erforderlich ist, um die Feder um 1 em. zu verlängern. Wird
die Masse aus der Ruhelage gebracht, indem an der Masse m nach
abwärts gezogen wird, und wird die Feder losgelassen, so schwingt das
System mit der Eigenschwingungszahl

w=Jm <4) Abb-2

Bei einem Träger ist die statische Durchbiegung 8 in Feldmitte bei gleichmässiger
Lastverteilung G=mg (g=981 cm./sec.2=Erdbeschleunigung) gegeben. Die
Federkonstante ist daher

mg t*\

l~c Vg 10 *oder cu= / — —7= =—j=- (6)V m ©8 V8
a> 5

'=*TVl (7)

Die statische Durchbiegung des Trägers unter der gegebenen Massenverteilung ist
daher ein Mass für die Eigenschwingungszahl des Trägers.

Man sollte in Hinkunft in die Brückenbestimmungen eine Vorschrift aufnehmen,
die die Eigenschwingungszahl beschränkt. Damit würde allerdings die Durchbiegung
unabhängig von der Stützweite beschränkt werden. Wenn nun eine Brücke mit der
Eigenschwingungszahl in der Nähe der durch den Verkehr auftretenden Schwingungen
liegt, so können die durch die Resonanz bedingten grossen Verformungen die
Tragfähigkeit der Brücke wesentlich herabsetzen. Die statische Durchbiegung 8S, ist mit
einem Yergrösserungsfaktor

zu multiplizieren, um die unter der Verkehrslast auftretenden Verformungen zu
erhalten. In dieser Gleichung ist Q die durch den Verkehr hervorgerufene
Schwingungszahl und u> die Eigenschwingungszahl. Wird Q\to=\ so wird SS=oo.
Eine Abminderung dieses Faktors bekommt man durch die Dämpfung D.

Setzt man die Dämpfung proportional der Geschwindigkeit, so lautet für das

Ersatzsystem (Abb. 2) die Differentialgleichung

mx+kx+cx=0 (9)
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Als Dämpfung bezeichnet man

D=:2Vcm
Bei einer Dämpfung ist die Vergrösserungsfunktion für die Durchbiegung

1

S8=

vo-en
2 Q2
+4Z)2—

(10)

(11)

An Hand von ausgeführten Versuchen, über die Oberregierungsbaurat Arthur
Lämmlein berichtet,* kann man sich ein Bild über den Dämpfungsfaktor machen. In
der nachfolgenden Tafel II ist für den Resonanzfall die Vergrösserungsfunktion
ermittelt.

Tafel II

Nr. Name Bauweise Dämpfung Vergrösserungs-
faktor Eigenschwingungs-

zahl in Hz.

1

2
3

4

Bleibachbrücke
Brücke bei Emmendingen
Brücke Oberhausen
Hügelsheim

Spannbeton
Spannbeton
Verbund
Stahlbetonplatte

0,014
0,008
0,0065
0,1213

35,7
125
154

8,2

- 4,25
3,14
6,88

10,60

Man erkennt aus diesen Zahlen, dass bei Resonanz Werte auftreten können, die für
die Brücke ausserordentlich bedenklich sind. Auch bei der Brücke in Villach ist
die Dämpfung der Brücke selbst gering. Der Wert D liegt bei 0,010, sodass der
Vergrösserungsfaktor rd. 100 ist. Um diese Brücke zu beruhigen, wird ein
Dämpfungsträger vorgeschlagen, der nun berechnet und beschrieben wird.

Die Dämpfung einer Brücke
Beschreibung der Konstruktion

Zunächst soll an Hand der Systemskizze Abb. 3 der Gedanke der Dämpfung
erläutert werden. Unter dem Brückentragwerk I befindet sich ein Träger II, der

Bruckenlragewerk I
'

A B C

*A* %e**D, $&02
E 1 ' F

Dämpfungsträgec II
Abb. 3

Dämpfungsträger genannt wird. Dieser Dämpfungsträger II ist an drei Federn A,
B, C mit dem Hauptträger verbunden. Zwischen den beiden Trägern sind ausserdem
Flüssigkeitsdämpfer D eingebaut. Natürlich befindet sich der Dämpfungsträger II
mit den Einbauten bei dem tatsächlichen Bauwerk nicht unterhalb des Hauptträgers,
sondern zwischen den Hauptträgern und ist nicht sichtbar. Der Dämpfungsträger
hat tV der Masse des Hauptträgers.

* Arthur Lämmlein, "Schwingungsmessungen an Strassenbrücken verschiedener Bauarten,"
Beton und Stahlbeton, Heft 5, 1951.
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Die Wirkungsweise des Einbaues des Dämpfungsträgers zeigt Abb. 4. Als
Ordinate ist die Vergrösserungsfunktion Sß und als Abszisse das Verhältnis der
aufgezwungenen Schwingung zur Eigenschwingung aufgetragen. Die Vergrösserungsfunktion

nimmt höchstens den Wert 4,6 an. Bis zu einer Vergrösserungsfunktion

§5

C?
.3 2

op ~~fti fc ö,6 o'.a (o 1.2 ft ie ia
Si Schwingung der fyhrzeuge
N [igenschivlngung Her Bruche

Abb. 4

von 5 kann man im allgemeinen damit rechnen, dass die dadurch hervorgerufenen
Spannungen innerhalb der zulässigen Grenzen bleiben. Die Flüssigkeitsdämpfer Di,
D2, D3 und die Federn sind leicht konstruierbar. Die nun beschriebene Wirkungsweise

und der Zusammenhang zwischen den einzelnen Grössen soll nun erörtert
werden.

Abb. 5

Ableitung der Gleichung*

Die Ableitung der Differentialgleichung ist in mehreren Schritten möglich. An
Stelle des wirklichen Systems wird das Ersatzschwingsystem untersucht.

1. Schritt. Zwei Massen mt und m2 sind mit zwei Federn Cy

und c2 mit der Decke und Fussboden verbunden (Abb. 5). Zwischen
den beiden Massen mY und m2 befindet sich eine Feder c3. Die
Ruhelage sei durch die beiden Punkte Oj und 02 gekennzeichnet.
Die Bewegungsgleichung ist aufzustellen. Wenn die Masse mx sich
nach unten bewegt, zieht die Kraft CyVx die Masse zurück. Die
Zusammendrückung der mittleren Feder ist vx—v2. Die Kraft,
die dadurch ausgeübt wird, ist c3(z>, — v2). Die Bewegungsgleichung
lautet (Abb. 6)

mv1 -civl-c3(vl-v^ (12)

Ebenso kann man eine entsprechende Gleichung für die Masse
m2 aufstellen. Die Bewegungsgleichungen lauten:

/Mi«)-r-(ci + c3)»1—c3u2=0]
m2v2+(c2+c3)w2 -c3v1=OJ

Wir stellen uns nun folgende Frage: Gibt es eine harmonische
c, v1

' Bewegung dieses Systems und wie gross sind die Ausschläge «r und
a2 der Massen mx bzw. m21 Welche Schwingungszahl liefert eine
harmonische Bewegung

Wir machen also für die Bewegung die Ansätze:

^1=f21 sin <üf\

Abb. 6 v2=a2 sin wt\
* Den Hartog, Seite 77.

u

(13)

1*0*-*;
(14)
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(15)

und bestimmen die Ableitungen nach der Zeit. Setzt man diese Werte in die
Bewegungsgleichung (13) ein, so ergibt sich:

a1(—mloj2+c1 + c3) — a2c3=0\
—a1ci+a2(—m2oj2+c2+ci)=0j

Aus der ersten Gleichung von (15) kann man den Wert aja2 und aus der zweiten
Gleichung kann man ebenfalls das Verhältnis ausrechnen. Wenn es eine Lösung
gibt, müssen beide Werte einander gleich sein. Man erhält auf diese Weise eine
Gleichung für die Eigenschwingungszahl w, die lautet:

C1 + C3 c2+ c3

mx m2
Cl£2+£2f3+£i£3_0

m\m2
(16)

P„sh,SXl
¦x"

Es gibt zwei Lösungen oij2 und w22 für die eine harmonische Bewegung möglich ist.

2. Schritt. Nun soll die Aufgabestellung etwas abgeändert
werden. Auf die Brücke mit der Masse M (Abb. 7) soll durch
die Verkehrsbelastung eine harmonische Kraft. P=Pq sin Qt
aufgebracht werden. An der Brücke sei ein zweiter Träger mit
der Masse m und der Federkonstante c befestigt. Die Frage
lautet: welche Schwingung führt dieses System aus? Man
bekommt die Bewegungsgleichungen, indem man in den
Gleichungen (13) den Wert c2=0 setzt und in der ersten Gleichung
die aufgezwungene Schwingung berücksichtigt.

Mv1+(C+c)v1-cv2=P0 sin Qt)
Abb-7 mö24-c(»2-Wl)=0 J

* ' {l)
Setzen wir vi=cti sin Qt und v2—a2 sin Qt ein, so erhält man für jene aufgezwungene
Schwingungszahl Q eine harmonische Schwingung, für die folgende Gleichungen
erfüllt sind :

a1(-MQ2+C+c)-ca2=P0\
-a1c+a2(-mQ2+c)=0

Man setzt in dieser Gleichungsgruppe die Eigenschwingungszahl der Brücke
N=VC/M, die Eigenschwingungszahl des Dämpfers v=Vc/m und das Verhältnis der
Masse des Dämpfers zu der der Brücke, \i.=m\M, ein. ¦ Die Durchbiegung der Brücke
unter der Last PQ sei 8sl=P0/C.

(18)

Man erhält aus der Gleichungsgruppe (18)

Q2\

C 'N2)
c Q2\ c

a^l +C-N2)-Ca2=Ss'

Aus dieser Gleichung erhält man

(19)

«i

Q2

s""(-?)('©4:)©
8- KIH-ÄB

(20)
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Aus der ersten Gleichung bekommt man ^=0, wenn Q=v wird. Die Brücke
bleibt dann in Ruhe, wenn die Eigenschwingungszahl des Dämpfungsträgers gleich
der aufgezwungenen Schwingung Q wird. Die Schwingung des Dämpfungstfägers
wird

a2- s
C P° £=_Po

c c

Setzt man noch v=N, d.h. die Eigenschwingungszahl der Brücke gleich der
Eigenschwingungszahl des Dämpfungsträgers, so wird

mc C c
~=17 oder 7--m M C M—p

1 —
Q2

Vi 8st. sin (Qt)

{l-%){l+^)~»
v2 8st. sin (Qt)

(21)

Fragen wir noch, ob es eine Resonanzschwingung gibt. Resonanz ist dann
vorhanden, wenn die beiden Werte v^ und v2 für eine bestimmte aufgezwungene
Schwingung unendlich werden. Dies ist der Fall, wenn der Nenner in den beiden
Gleichungen (21) null wird.

Q2
Setzt man -r Q>, so wird: <P2

vl

Woraus folgt:

(l-f)(l +M-5) -H-0 (22)

>(l+^ + l=0

*,-l+f+
^2=1 + ;

M+-

/^+C

(23)

Wenn ^=0,10 angenommen wird, so erhält man folgendes Ergebnis:

#1=1,38, 02=O,73

Durch den Dämpfungsträger wurde also folgendes erreicht:

(d) Bei einer aufgezwungenen Schwingung, die der Eigenschwingung der
Brücke gleich ist, bleibt die Brücke in Ruhe. Für diesen Fall hat der
Dämpfungsträger eine Bedeutung.

(b) Dafür ist aber bei einer Schwingung, die 27 % unter und 38 % über der
Eigenschwingungszahl des Hauptträgers liegt, eine Resonanz vorhanden.

Hätte man nur eine einzige Schwingungszahl, so könnte man in einfacher Weise
durch den Dämpfungsträger erreichen, dass der Brückenträger in Ruhe bleibt. Da
aber die Schwingungszahl der aufgebrachten Schwingung sehr veränderlich ist, muss
noch eine Dämpfung eingebaut werden, wodurch die in Abb. 4 dargestellte Wirkung
erreicht wird.
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3. Schritt. Wenn nun zwischen Brückentragwerk und Dämpfungsträger ein
Flüssigkeitsdämpfer eingeschaltet wird, lauten die Bewegungsgleichungen

\PgsinSU

u
HA"

M. ¦v\+ Cv1 + c(vl—v2)+k(v1—v2)=P0 sin Qt

mv2+c(v2—vy)+k(v2—tfy)=0

Versucht man nun die Lösung mit dem Ansatz:

(24)

v,=a1.e'a' v2=a2.eiQt

so erhält man:

vx=ax. iQ e[Qt vt -ax.Q2. eiQ'

v2=a2. iQ eiQ' v2= -a2 Q2 eiQ'

Abb. 8 Diese Werte in die Gleichung (24) eingesetzt ergeben

-Ma1Q2+Ca1 + c(a1-a2) + ikQ(a1-a2)=P0
—mQ2a2+c(a2—al) + ikQ(a2—al)=0

(25)

In den Gleichungen (25) sind ax und a2 unbekannt. Rechnet man sich den Wert a:
aus, so erhält man:

_p (c-mQ2)+iQk
01 °[(-MQ2+C)(-mQ2+c)-mQ2c] + iQk[-MQ2+C-mQ2] ' ' K '

Nun kann man hier die komplexen Grössen durch die reellen Werte ausrechnen:

2_p2 {c-mQ2)2+Q2k2
01 ° [(-MQ2+C)(-mQ2+c)-mQ2c]2+Q2k2[-MQ2+C-mQ2]2

" K '
Setzt man noch die Eigenschwingungszahl der Brücke N2=C/M, die
Eigenschwingungszahl des Dämpfungsträgers v2 c/m, die Durchbiegung der Brücke unter
der Last P0 gleich 8SI, sodass 8S,=P0/C wird, ferner das Verhältnis der Eigenfrequenz
des Dämpfungsträgers zu dem der Brücke tfi=v/N und die Dämpfungszahl D=k/2mN,
das Verhältnis der Masse des Dämpfungsträgers zu der der Brücke p.=mjM und das
Verhältnis der Schwingungszahl der aufgezwungenen Schwingung zur
Eigenschwingungszahl der Brücke t,=QjN, so wird:

(2D02+(Z2->p2)2
ül-Ss'-J(2Dl)2(l2-1+K2)2+ [p.<PH2-a2-1)(£2-«]2 ' ' (28)

Dies ist die Gleichung, die die Vergrösserungsfunktion für die statische Auslenkung
angibt:

Sß=± /
(2DQ2 + a2->P2)2

±V(2£>ö^2_1+/xC2)2+[fil/r2^2_(^2_1)(^_02)]2 ¦ • • ^)
In der beifolgenden Tafel III sind die Zahlenwerte für verschiedene Dämpfungen D
angegeben. Die Abb. 9 zeigt das Ergebnis. Setzt man die Dämpfung D=0,
so erhält man

P-+2
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Dieser Wert stimmt mit (20) inhaltlich überein. Für Z>=oo erhält man volle
Verbindung der beiden Träger, also praktisch nur einen Träger mit der Masse (M+m).
In diesem Fall ist die Vergrösserungsfunktion

•-I=räp <3I>

Der Wert stimmt mit der Gleichung (8) überein.
Man kann nun die Gleichung (29) noch weiter untersuchen und die Frage stellen,

ob es £-Werte gibt, die von der Dämpfung D unabhängig sind. Von der Dämpfung
unabhängig wird der Ausdruck 33 dann, wenn die Dämpfungszahl im Zähler und
Nenner von (29) gekürzt werden kann. Dies ist dann der Fall, wenn

l—L )2=( £=£ V (32)

Man erhält eine quadratische Gleichung

V-TJpZ 7'^ +rr-=o (33)
2+p. 2+p.

Es gibt also zwei Werte £t und £2, für die die Lösung von der Dämpfung unabhängig
ist. Dies sind die Punkte A und B in Abb. 9. Die Werte für A und B kann man aus
der viel einfacheren Gleichung (31) berechnen. Man kann nun noch—und das ist
das Ziel der Untersuchung—fragen, wie man die Eigenschwingungszahlen v und N
aufeinander abstimmen muss, um die Vergrösserungsfunktion 23 in den beiden
Punkten A und B gleich gross zu erhalten. Ist dies der Fall, so muss

l l
(34)i-£i2(i+i*) 1-©22(1+/") v

Das Minuszeichen kommt daher, dass zu einem positiven Wert von A der Punkt B'
mit negativem Vorzeichen gehört. Aus der Gleichung (34) folgt

V+tf-lf, (35)

Andererseits muss die Gleichung (33) erfüllt sein. Da die Summe der Lösungen
£i2+^22 in jeder quadratischen Gleichung gleich dem negativen mittleren Glied ist,
wird

2 2d42+ 1+f*)

Daraus ergibt sich
1+M- 2+,

(36)

<-nb (37)

Wenn man /*=0,1 wählt, d.h. also die Masse des Dämpfung'strägers zu ts der Masse
des Hauptträgers, wird

i/f=-j-j-=0,909091 (38)

Dieser Wert ist in der Tafel III gewählt worden. Der Dämpfer muss eine
Eigenschwingungszahl haben, die nur 0,91 der Eigenschwingungszahl des Hauptträgers ist.

Die Vergrösserungsfunktion 23 wird in diesem Fall

33= /l + - V21=4,58
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Nun wurde für .0=0,10, D=0,20 und D=0,16 der Verlauf der Vergrösserungsfunktion

gerechnet. Als diejenige Linie, die über die Punkte A und B nicht
hinausgeht, wurde die Linie mit Z>=0,16 ermittelt. Das Ergebnis ist somit:

(1) Der Dämpfungsträger muss eine Eigenschwingungszahl einschliesslich der
Federn, mit denen er mit dem Hauptträger verbunden ist, haben, die das
0,91-fache der Eigenschwingungszahl des Hauptträgers beträgt.

(2) Die Masse des Trägers ist tV der Masse des Hauptträgers.
(3) Die Dämpfung muss £>=0,16 sein.

Dadurch ist der Dämpfungsträger eindeutig festgelegt.
Konstruktion zeigen.

Ein Beispiel soll die

Beispiel

Der Dämpfungsträger einer vorgespannten Betonbrücke ist zu entwerfen.
Abmessungen der Brücke sind in Abb. 10 angegeben.

Die

*M IC 3E i ^y i°y "py,
so I. s.n I, .in |~nr

fci-

T

L- 33,0m-
8,00m -

•ip-imi^^^^mmsm^mmm^
Si Federn

0,35~

mmnmmz%mmmz:
I/.20

Abb. 10

¦0.60

Zahlenwerte:

Trägheitsmoment der Brücke: //=688,105 cm.4
Masse der Brücke: /x/=0,0956 kg./cm.2 see.2

Elastizitätsmodul: E= 210 000 kg./cm.2
Die Eigenschwingungszahl der Brücke ergibt sich aus (1) zu:

vV=
210 000.688.105

:1,76 Hertz
2 3300W 0,0965

Die erforderliche Masse des Dämpfungsträgers beträgt:

m=0,l 0,0956 33=0,316 kg./cm.2 see.2

Gewählt werden zwei Dämpfungsträger mit den Abmessungen:

7=25 m., b 35 cm., d=lQ cm.

/*//=©r?- =0,0126 kg./cm.2 see.2

Die erforderliche Eigenschwingungszahl der Dämpfungsträger beträgt:

v=0,91 .1,76=1,6 Hertz

Bezeichnet man mit vt die Eigenschwingungszahl der Dämpfungsträger mit starrer
Befestigung, mit v2 die Eigenschwingungszahl der starr gedachten Dämpfungsträger
mit elastischer Befestigung, mit Ju das Trägheitsmoment der Dämpfungsträger und
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mit Cf das Gesamtfedermass aller Aufhängefedern, so gilt nach Dunkerley*
angenähert:

-2=—+— (39)
v*. II, ^ v^^V*- Vj' v2~

v=l,6 Hertz
Tr EJU 1 / CF _

704

5) 7=2500 cm.
2

ergibt sich aus (39) das erforderliche Gesamtfedermass aller Aufhängefedern zu:
CF=3200 kg./cm.

Zusammenfassung

In Zukunft muss man den dynamischen Kräften auch im Stahlbetonbrückenbau
entgegnen. An einem Beispiel wird gezeigt, wie man durch den Einbau eines

Dämpfungsträgers den unliebsamen Schwingungen einer Brücke bei Resonanz
begegnen kann.

Summary

In future, means must be adopted to counteract the effects of dynamic forces in
reinforced-concrete bridges. From an example it is shown how, in a case of resonance,
the undesirable oscillations of a bridge can be obviated by adding a damping girder.

Resume

II sera, ä l'avenir, necessaire de faire face aux efforts dynamiques, meme dans la
construction des ponts en beton arme. L'auteur montre, en s'appuyant sur un
exemple, comment l'on peut s'opposer aux oscillations inopportunes qui peuvent se
manifester par resonance, ä l'aide d'une poutre d'amortissement.

* Dunkerley, Philosophical Transaclions, 1894.
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Dynamic increments in an elementary case

Les influences dynamiques considerees dans un cas elementaire

Dynamische Zuschläge in einem einfachen Fall

Dr. ARNE HILLERBORG
Stockholm

In the Preliminary Publication to the Congress in Liege in 1948, the author pre-
sented the first results of an investigation of dynamic influences of moving loads on
girders. This work was carried out at the Institution of Structural Engineering and
Bridge Building at the Royal Institute of Technology, Stockholm, Sweden, under the
supervision of Professor G. Wästlund. The final results of the investigation were
published in 1951 in a treatise,* which also describes the theoretical and experimental
methods used. A summary of the practical results will be given here.

The case that has been studied is that of a single load moving smoothly at a
constant speed along a simply supported girder. The girder has been supposed to be of
uniform section and to be straight under dead load. The following factors have been
taken into aecount:

the mass of the girder,
the mass of the load,
the velocity of the load,
spring-mounting of the load,
viscous damping of the girder (internal and external),
dry friction in the load-carrying spring.

These factors have been given a dimensionless form by introducing the notations:

mass of load

mass of girder

velocity of load

p.=

9=

2 x length of girder x frequency of girder

frequency of load

frequency of girder

spring friction force

weight of load
2-nß

e v^-^=ratio of two consecutive amplitudes in the same direction ofthe free Vibra¬
tion of the girder.
* Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.
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In the above notations, the frequency of the girder is the fundamental frequency
of the undamped girder at no load.

Two different values are used for the constant ß. One of them, denoted only
by ß, refers to an external damping force, while the other, denoted by ßi, refers to an
internal damping force.

In the investigation, a distinetion was made between two cases, viz. spring-borne
and non-spring-borne loads, but, as the former is of much greater practical importance,
only the results relating to spring-borne loads will be given here.

A dynamic increment in a quantity is defined by:
dynamical value

static value
•1

To make the definition strict, it is also necessary to know what kind of quantity
is measured and what dynamical and static values are to be used. This is indicated
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by subscripts as follows: M for moments, Q for shearing forces, and R for reaction
forces. The following definitions show what values are to be taken:

£abs~
greatest dynamical value for the girder

greatest static value for the girder
1

*max=maximum of
greatest dynamical value at any point
greatest static value at the same point -1
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The value eabs (the absolute increment) expresses the greatest influence of a given
kind (for instance, the greatest moment) on the girder, and is therefore the most
interesting value in dealing with girders of uniform strength. The value emax gives
the greatest dynamic increment at any section of the girder. This value is of great
interest in studying girders of non-uniform strength (for instance, reinforced-concrete
girders).
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Fig. 3

The most interesting dynamic increments are eM, max, eM, abs, *q, max, *q, abs,

and €r. The latter has only one subscript, as the gauge point must be at the support,
and the definition of tR is:

greatest dynamical reaction force
cr=-

It can be shown that:
greatest static reaction force

-1

*Q, abs=CR

Further, it has been shown that eß, max may with sufficient accuracy be put equal
to €M, max in this case. It is therefore sufficient to plot diagrams for the dynamic
increments eM, max, eM, abs, and eR. Such diagrams are shown in figs. 1 to 4, from
which the dynamic increments for any arbitrary values of v, ex., p,, ß, ßu and 6 (within
practical limits) can be calculated by means ofthe formula:

ß

VH-0-5
Axz+

ßl

Vv+0 ¦ 5

e

A2e+ö~i •Ai*
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In this formula e is the value taken from fig. 1, and the three Je-values are taken
from figs. 2 to 4.

The values of e which are given by this formula are approximate, as it has been
constructed in the way that is described below, but it seems always to give sufficiently
accurate values.

For studying the dynamic increments, use can be made of the theoretical methods
described in the above-mentioned treatise. In the general case, however, the
calculations are so intricate that it takes about two days to carry them out for a single
case. If complete calculations including four values of each of the six variables were
to be made, the number of calculations would be 46=4096, and the time required
would be about twenty-five years. This is obviously impracticable, and some other
method must be found in order to limit the work, even if the results will be less

accurate.
For plotting the diagrams in figs. 1 to 4 the following method has been used. To

begin with, the case v= oo has been studied, that is, the case where the mass of the

£%
so
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concentrated had
distributed load

'
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Fig. 5

girder is neglected in comparison with that of the load. In this case the calculations
are so simple that they can be carried out almost completely. When studying the
results of these calculations, trials have been made to find simple approximate relations
between e and the variables. It was then found that the above formula gave
sufficiently accurate results in this case. This formula and the corresponding
diagrams have thus first been made for the case v=oo, in which the numbers
0-25 and 0-5 added to v are without significance. It is to be noted that, in this case,

o
the values of mx2, vjj.2, and —y are finite.

After the case v= co had been studied theoretically, a very complete series of tests
comprising v-values between 0-75 and 5 was made. The test values were then
compared with the theoretical values for v= oo, and it was found that if v was increased by
the values given in the formula and the diagrams, the agreement was sufficiently close
for all test values.

In order to give an idea of the order of magnitude of the dynamic increments
caused by the influence studied in this investigation, the diagram in fig. 5 has been
plotted on the following assumptions:

(1) The deflection under live load is 1/1250 of the span length.
(2) The velocity is 30 m./sec (=108 km./hour).
(3) The mass of the girder is neglected (this gives too small values of e).

(4) The damping is neglected.
(5) The frequency of the load is 3 cycles per second.

For comparison, a curve for a distributed load is also shown in fig. 5. The
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assumptions on which this curve is based are such that it gives only a lower limit for
the increments.

The investigation has shown that dynamic influences of moving loads of nearly
any kind on simply supported girders can be calculated theoretically, but in com-
plicated cases the calculations are very laborious. This difficulty is still more pro-
nounced when the girder is supported in a more intricate manner, for instance when
it is continuous, although the calculations are possible in principle. On the other
hand, the investigation has also shown that a comparatively simple test set-up can
give reliable test values with a small amount of work. It therefore seems advisable
that future investigations of this subject should mostly be based on model tests,
especially in relatively complicated cases. Theoretical studies are of course of great
value for the right understanding of the dynamical problems, but the number of
numerical calculations should be limited.

In addition to such studies of elementary cases, it is of course also valuable to make
tests on real bridges under real loads. However, these tests must be carried out and
treated in a scientific and methodical way, and not at random. Thanks to the
development of measurement engineering, we are today much better equipped for
making such tests than we were only ten years ago. Resistant wire strain gauges and
oscillographic recorders have made it possible to get accurate records of strains in
any points of the load-carrying structures without much work and at small costs.

It seems to the author that the conditions are now favourable for acquiring a much
better knowledge of the dynamical problems in bridge building if they are attacked
methodically.

Summary

The practical results of an investigation of dynamic problems are summarised.
A complete report on the investigation was published in 1951 in a book entitled
Dynamic Influences of Smoothly Running Loads on Simply Supported Girders.

It is pointed out that the conditions are now favourable for acquiring a better
knowledge of the dynamic problems if they are attacked methodically.

Resume

L'auteur expose sommairement les resultats pratiques d'une etude relative aux
problemes dynamiques. Un rapport complet sur cette etude a ete publie en 1951 dans
un livre intitule Dynamic Influences of Smoothly Running Loads on Simply Supported
Girders (Influences dynamiques des charges roulantes ä allure uniforme sur les poutres
ä appuis simples).

L'auteur fait remarquer que les conditions actuelles sont favorables ä l'appro-
fondissement de nos connaissances des problemes dynamiques, si l'on aborde ces
problemes d'une maniere methodique.

Zusammenfassung

Der vorliegende Bericht enthält eine Zusammenfassung der praktischen Ergebnisse

einer Untersuchung dynamischer Probleme. Ein vollständiger Bericht über
diese Untersuchung wurde 1951 in einem Buch unter dem Titel Dynamic Influences of
Smoothly Running Loads on Simply Supported- Girders (Dynamische Einflüsse
gleichmässig beweglicher Lasten auf einfach unterstüzten Trägern) veröffentlicht.

Der Verfasser weist darauf hin, dass die gegenwärtigen Verhältnisse für eine
Vertiefung unserer Kenntnisse der dynamischen Probleme günstig sind, wenn diese
Probleme methodisch in Angriff genommen werden.
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