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Vbl

L'auscultation dynamique des ponts a la S.N.C.F.
Dynamische Untersuchungen der Briicken der S.N.C.F.

Dynamic research of bridges of the S.N.C.F,

M. CASSE

Ingénieur a la Division des Ouvrages d'Art de la S. N. C. F., Paris

La question des effets dynamiques subis par les ponts se présente
4 I'ingénieur sous un double aspect : scientifique et pratique; le premier
comprend sans doute le second, mais son étude est actuellement trop peu
avancée pour que leurs objectifs ne se distinguent pas nettement par les
délais dans lesquels ils peuvent étre atteints.

Difficultés de 1l'étude scientifique des effets dynamiques

L’étude scientifique de la question vise a la connaissance précise des
conditions dans lesquelles se produisent les effets dynamiques, de leur
grandeur, de la fagon dont ils interviennent dans la sécurité des construc-
tions; elle nécessite beaucoup de recherches tant théoriques qu’expérimen-
tales. Jusqu'ici, les études théoriques poussées n’ont pas manqué, les
expérimentalions assez vastes non plus, la comparaison des résultats
obtenus par les deux voies a été tentée. Cependant, il est encore impossible
d’évaluer a priori avec quelque précision, pour un élément donné d’'une
poutre de pont, la différence entre les effets maxima provoqués par une
charge en  stationnement et les effets maxima résultant du pas-
sage de la méme surcharge animée d'une vilesse donnée. Sans doute,
quelques points ont été éclaircis; des recherches trés remarquables con-
duites avec soin et persévérance, simultanément sur les plans théorique
et expérimental, ont permis de reconnailre, par exemple, 'influence des
forces périodiques résultant de l'action des contrepoids d’équilibrage des
locomotives : les mesures de fleche oblenues concordent avec ce que la
théorie permet de prévoir. Mais il s’agit seulement de 1’effet d’'une cause
particuliére, que tous les ingénieurs ne considérent pas comme prépondé-
rante; les résultats solidement établis ne concernent que les fléches des
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ouvrages suffissmment longs pour que les mouvemenls résultant des
conditions d’entrée des charges aient le lemps de s'amertir avant que le
maximum des déformations soil atteint; moins sirs pour les contraintes
dans les membrures, ils restent sujels & caution pour les conlraintes dans
les treillis; ile supposent d’ailleurs une vitesse conslante, des chemins de
roulement, du malériel et des convois assez bien conslitués pour que des
mouvements parasiles né s’amorcent pas.

En fait, interviennent simultanément, dans les effels dynamiques el
pour des fractions non négligeables, diverses causes dont on sail mal tenir
comple; ainsi, le passage d'une surcharge donnée & unc méme vilesse ne
détermine pas exactement les mémes effels en raison des condilions tou-
Jours incompletement définies, dans lesquelles le convoi se présente
d l'entrée du pont. Ce ne sont pas la des objections théoriques : elles ont
¢té tres nettement vérifices el vivemenl commentées au cours des essais
effectués de 1929 a 1931 sous les auspices de 1'U. 1. C.

-'n négligeant méme, momenlanément, les difficultés résullant de
I'indétermination ou de la complexité des condilions initiales, 1'¢tude
scientifique des effels dynamiques s’est trouvée freinée par le défaut dap-
pareils enregistreurs absolument fidéles, nolamment pour la mesure des
conlraintes. Les progrés considérables effectués dans ce domaine pendant
la guerre, la mise au point des extensomelres & fil résistanl. permellent
d’escompler la solulion prochaine de celte difficulté; mais la formalion
des opérateurs el I'exécution des nombreuses mesures nécessaires enlrai-
neront, pour toute observation systématique en campagne, des délais et
des frais importants, La seule répétition des observalions faites jusqu'ici
avec des appareils plus rustiques demandera déjd un lemps trés long.

D’autre part, I'étude compleéle des effels dyvnamiques ne saurait se
borner & la détermination des déformations élastiques provoquées par le
passage des charges. Il faudra évidemment se rendre comple si les indica-
tions d'un extensomeire peuvent élre inlerprélées de méme pour des
charges staliques et pour des charges dvnamiques, si une méme exlension
instanlande correspond effectivement & une méme contrainte et dans quelle
mesure on peul assimiler, dans I'é¢lude de la sécurité, deux contraintes effec-
tives de méme grandeur, I'une fixe, I'autre instantanée. 11 semble bien que
les observalions sur la faligue des métaux ne s’appliquent pas directement
aux ¢léments de ponts, vu les condilions de varialions des efforts el les
fréquences auxquelles ils sonl soumis. Une étude pertinente de celle seule
(question exigera aussi de longs délais.

L’¢tude du probléme des effets dynamiques sur les ponls ne parait sus-
ceplible de progresser largemen! qu'en y emplovant les méthodes modernes
de la recherche scientifique : recours & des équipes spécialisées, chargées de
laches délerminées, et coordinalion de leurs efforls. Chaque groupe de
recherche devrait comprendre des ingénieurs de formations diverses : méca-
niciens capables de reconnailre dans I'infinil¢ des processus vibratoires
possibles ceux qui doivent effectivement se rencontrer dans un ¢lémeni
d’un lablier complexe et pour quelles condilions de présentalion des
charges, physiciens connaissanl suffisamment les propriétés des matériaux
pour se rendre compte de I'influence des variations d’efforts ou de défor-
mation sur les conlraintes admissibles dans les ponts, techniciens suscep-
libles de concevoir el réaliser des appareils donnanl sans alléralion les
quanlilés a mesurer, opéraleurs rompus au maniemen! des appareils el a
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leur inslallation dans les parlies les moins accessibles d'une charpente.
Les résultats n’apparaitront sans doule que peu a peu, & condition de ne
pas distraire les équipes constiluées de la tdche laborieuse (ui leur aura été
confiée el de les encourager dans leurs recherches sans les chicaner trop
s'il ne sorl pas trés vite de leurs travaux une formule définitive d'impacl
ne comportant que deux ou lrois parametres.

Nécessité de connaitre pratiquement certains aspects des effets dynamiques

En altendant que de telles études aient tir¢ au clair I'imporlance el
le role des effels dvnamiques dans les ponlis el que des lois chiffrées per-
mellent de les uliliser pratiquement, les ingénieurs qui recoivent la charge
de conserver de vieux ponls ou d'en élablir de nouveaux se demandent
loujours, comme leurs prédécesseurs d’il ¥ a cenl ans: si un convoi passe
sur l'ouvrage & une vilesse V, (uelle est, en chaque point, la majoration
de conlrainte par rapport a la conlrainte statique® Beaucoup jugent la
question un peu académicque : sous le régime général des coefficients de
majoralion réglemenlaires soit explicites (quand les conlraintes admises
sont élevées), soit impliciles (quand les contraintes admises sonl faibles).
il ne semble pas (ponls suspendus insuffisamment rigides mis a part) que
se soienl manifestés des incidenls graves résultant d’'évalualions trop opli-
mistes. De trés anciens ouvrages, bien conslruils, d aprés les conlrainles-
limiles en usage il y a qualre-vingls ans, onl supporié sans renforcementl
des accroissements considérables des charges et des vilesses des convois de
chemin de fer. L'on peut donc soutenir que, si la connaissance précise des
effels dynamicques contribue a la salisfaction de I'esprit de I'ingénieur, son
influence sur la sécurilé et sur I'économie demeure moddéré. Mais c'est la
une facon de voir trop simpliste.

Le fait que des ouvrages tiennent ne prouve pas (ue 'évaluation empi-
rique des cffets dynamiques ail élé assez correcte, mais seulement que les
erreurs qui en résultent ne portent pas la probabililé de ruine de ces ponls
a une valeur netlemenl supérieure a celle qui se renconire dans les cons-
truclions courantes. Cetle conclusion n’est d’ailleurs pas géndérale : il arrive,
par exemple, qu’au-dessus d’une cerlaine vitesse, des rivets s'¢branlent, des
fissures se propagent, des barres de lreillis se mellent & vibrer ou a flamber
d'une facon inquiétante. Il vaut mieux avoir reconnu celle circonstance
par une élude ou par des essais sur le ponl et avoir imposé une limitalion
de vitesse, plutot que d’en étre informé par des incidenls de service.

D’un autre cété, les formules empiriques de majoralion peuvent éire
amdliorées; si 'on peul élablir qu'un type d’ouvrage est parliculierement
favorable & l'atténualion des effets dynamiques, il est normal d appliquer,
a ce lype, un coefficienl particulier qui permetira, sans réduire la séeurité,
de réaliser des économies.

Aussi, la 8. N, C. F., sans négliger la queslion scientifique el générale
des effels dynamiques sur les ponls, s’esl-elle beaucoup préoccupée d’ob-
lenir des renseignements immédialement utilisables el des réponses rapides
& des queslions praliques louchant la sécurité de ses ouvrages ou I’'économie
des projets. L’ordre de grandeur des effels dynamiques correspond-il tou-
jours a celui qui résulte des formules réglementaires? Le malériau el le
type des ouvrages onl-ils une influence lelle qu’elle juslifie la préférence
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Fig. 1. Ditférences obtenues dans deux enregistrements de fléches
effectués chacun avec deux fleximétres de type classique.

accordée a certains types ou a certaines dispositions particulieres? Dans
quels ouvrages ou quels éléments d’ouvrages v a-t-il lieu de craindre des
mouvements anormaux ou des déformations importantes au passage des
convois? Les mouvements que 1'on constate sur tel pont sont-ils véritable-
ment excessifs? A quel taux la vitesse doit-elle étre réduite pour les rendre
acceptables?

Pour répondre objectivement a ces questions ou a d’aulres analogues,
il faut faire appel a 'expérience. Mais il n’est pas indispensable, pour le
but pratique poursuivi, de disposer de moyens aussi importants que ceux
envisagés plus haut. L utilisation d’ apparells moins parfaits se justifie
quand la sunphcxlc de leur mise en place et de leur manceuvre permet de
les confier & des spécialistes d’ouvrages d’art qui, seuls, seront capables de
les poser rapidement. Les mesures peuvent ainsi étre multipliées dans des
conditions diverses sans frais exagérés. De fait, la S. N. C. F. en effeclue
fréquemment sous des surcharges circulant systématiquement a des vitesses
diverses. En dehors des réponses qu’elles apportent, moyennant une inter-
prétation critique convenable, aux problémes particuliers, ces expériences
constituent une documentation permettant de reconnaitre certaines lois
empiriques. Nous donnerons, au cours du Congres, un apergu des résullats
obtenus dans cette voie.
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Appareils utilisés

Les appareils classiques, fleximétres et extensometres & enregistrement
mécanique, peuvent, pour des observations a objectif pratique et limité,
fournir déja des éléments de comparaison et de classement.

Quvrage 3 expérimaniar

Lantille solidaira de
12 poutre 3 dludier

R;zon lumincux
1 7
ilm enrcgistreur

sur sppui fixe
Fig. 2. Fleximétre optique.

Toutefois, pour obtenir des indicalions plus s@res ou pour procéder
& d’autres investigations, de nouveaux appareils ont é1é mis au point par
la 5. N. C. F. ou sont en cours de construction : fleximétre, rouligraphe,
accélérometre.

FLEXIMETRE

La justification de la création d'un nouvel appareil réside dans la
constatation que deux fleximetres amplificateurs de type classique, attachés
en des poinls trés voisins et posés dans des conditions paraissant correctes,
ne donnent pas exactement le méme enregistrement; dans certains_ cas,
rares il est vrai, les graphiques accusent des différences nettes, tant pour
I'amplitude que pour ’allure et I'amortissement des oscillations (fig. 1).

L’origine de ces différences réside évidemment dans les vibrations
parasites introduites par la transmission, d’ott le désir de supprimer
celle-ci.

Le fleximetre optique (fig. 2) comprend une lentille achromatique
rendue solidaire de la membrure inférieure de la poutre étudiée. Une
source lumineuse envoie sur la lentille au travers d’une mince fente hori-
zontale, un pinceau de rayons qui donne une image sur une fente verticale
placée devant un dérouleur de papier sensible. Le déplacement du point
lumineux et, par suite, celui de la lentille, s’enregistre en une courbe
conlinue.

On emploie assez souvent une lentille de 8 metres de distance focale,
la source lumineuse et l'enregistreur étant placés respectivement & 16
metres de part et d’autre de la poutre; I'amplification est alors trés voi-
sine de 2, mais elle peut étre augmentée, le cas échéant, ainsi que la
luminosité des images, en prenanl une lentille de distance focale diffé-
rente ou en faisant varier 1’¢loignement de la source et celui de 1’enre-
gistreur.

A défaut de circonslances locales favorables, la source et Tenre-
gistreur sont amenés au niveau de la lentille en les disposant sur des écha-
faudages robustes placés assez loin du pont pour ne pas é&tre influencés par
les trépidations du sol. En opérant & la tombée du jour, on peut se con-
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Fig. 3 et 4. Rouligraphe.

Axe longitudinal de I'ouvrage

tenter d’une source peu intense, ce qui facilile I'installation en pleine cam-
pagne.

La lentille étanl montée sur un support robuste, solidemenl fixé au
pont, il n'est pas & craindre qu’elle soit le sitge de vibralions propres sus-
ceplibles d’apporter des perturbalions dans [’enregisirement. Les causes
d’erreur possibles paraissent limilées au trouble que pourrait apporter, &
la propagation des ravons lumineux, une atmosphére hétérogene el va-
riable; celle cause ne semble pas a considérer pendant la courle durée d'un
passage.

L’amplificalion exacle esl déterminée, pour chaque essai, en mesurant
le déplacement de l'image qui correspond & un déplacement vertical
connu de la source.

RouLiGRAPHE

Cel appareil a pour objel principal de déceler el mesurer les vibra-
tions horizontales, peu étudiées jusqu’ici, mais dont 1effel esl parfois
trés sérieux; nous en donnerons des exemples au cours du Congres. Il
utilise le principe que 1’on trouve dans la conception de nombreux sis-
mographes, et suivant lequel une masse pendulaire 1'elnlivement lourde
demeure praliquement fixe quan({ on ne la soumet qu'a des impulsions
de cadence rapide par rapporl a sa fréquence d’oscillation; celte derniere
est rendue suffisammenlt lente en ulilisant un pendule d’axe quasi-vertical.

Les appareils anciens, basés sur le méme sysleme, comportaient des frol-
tements importants résullant, soil des ghSQIEIES soit du S\Gteme d’enregis-
trement attelé sur la masse; pour pouvoir vaincre ceux-ci, une force de
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rappel importante était nécessaire. Il en résulte alors une période d’oscilla-
tion trop courte pour que les déplacements du pont laissent la masse prati-
quement fixe. Celte imperfection ne permettait guére de les utiliser, et
avec beaucoup de réserves, que pour des comparaisons.

Dans le rouligraphe (fig. 3 et 4), on a, au contraire, réduit systé-
matiquement les frottements : la masse pendulaire est suspendue par
une tige et s’appuie par une bielle, toutes deux munies d’articulations &
billes; ’enregistirement est purement optique. A cet effet, un miroir cylin-
drique solidaire de 1’axe de rotation re¢oit d'une source solidaire du béti
de l'appareil un rayon lumineux qu’il renvoie sur la fente horizontale
d’un enregistreur dans lequel se déroule, d’'un mouvement continu et a
des vitesses réglables, un film photographique de 35 mm.

Dans ces conditions, on peut obtenir sans difficulté des périodes de
trois secondes avec des frottements insignifiants (en oscillation libre,
I’amplitude est réduite de moitié aprés une trentaine d’oscillations).

L’appareil enregistre, soit en vraie grandeur, soit avec amplification,
les déplacements (ransversaux de cadence inférieure & la seconde, mais,
par son principe méme, il enregisire également les mouvements angu-
laires autour d’un axe horizontal perpendiculaire & la direction des dépla-
cements, d’ou le nom de « rouligraphe ».

Pratiquement, il est facile, le cas échéant, de séparer les deux mou-
vements dont les périodes sont trés différentes.

ACCELEROMETRE

L’emploi d’un accélérometre conjugué avec un fleximetre ou mesu-
reur d’oscillations (horizontales ou verticales) permet de se faire une idée
de la confiance & accorder aux deux enregistrements et de mettre en évi-
dence les vibratlions rapides a faible amplitude qui sont peu visibles dans
les graphiques d’oscillation.

De nombreux accélérométres ont été imaginés ou essayés dans les
derniéres années. La S. N. C. F. dispose notamment d’un accélérographe
qui a été signalé au Congrés de 1936 (Rapport Final, p. 645), dans lequel
les varialions de pression résultant des accélérations agissent sur un quartz
piezo-électrique. Cet appareil nécessite toutefois, & proximité de I’ouvrage,
une installation électrique un peu encombrante; aussi, pour les essais fré-
quents utilise-t-on un détecteur de vibration & induction et, pour les
fréquences basses et d’amplitudes notables, a-l-on prévu un accélérométre
mécanique (a enregistrement optique). Ce dernier est constitué par une
barre de torsion encastrée aux extrémités, porlant en son milieu une tra-
verse a laquelle est fixée une masse qui peut étre éloignée ou rapprochée

Source - :

lumincuse

Massa

Fig. 5. Accélérometre.



658 Vbl. M. cassg

-

de la barre de torsion; 'appareil est muni d'un disposilif d’amorlissement
éleclro-magnétique.

Résumé

Malgré d’importants travaux théoriques et expérimentaux, on connait
encore trées mal l'importance des effets dynamiques auxquels sont soumis
les divers éléments des ponts et quelle est leur influence sur la sécurité.
Quand on envisage une étude scientifique de la question, on se heurte &
I'impossibilité de tenir compte simultanément des nombreux paraméetres
susceptibles d’intervenir dans le phénomeéne. La théorie reste hésitante tant
qu’on ne se borne pas & des cas schématiques et beaucoup d’expériences
demeurent confuses, méme lorsqu’on ne discule pas la fidélité des enregis-
trements. Pour élucider vraiment la question, il faudra sans doute beaucoup
de travail & des équipes spécialisées, les unes dans les calculs, les aulres
dans la construction d’appareils, les autres dans leur mise en place et leurs
observations, etc., el coordonner tous ces travaux.

Faut-il jusqu’a ce que des résultats indiscutables aienl élé oblenus
par les chercheurs, se contenter, pour la vérification des ouvrages anciens
et I'élude des ouvrages nouveaux, d’utiliser sans trop v croire, les coeffi-
cienls de majoration en usage dans les divers pays? On ne peut alors
répondre aux queslions ui se posent fréquemment aux ingénieurs respon-
sables des ponts. Faut-il limiler la vitesse sur tel ouvrage el & quel taux? Y a-
t-il intérét, pour réduire les effels dynamiques, a adopler tel type d’ouvrage
ou tel mode de pose ? Pour donner une solution pratique a des questions
analogues, la connaissance trés précise du phénoméne d’impact n’est pas
ndécessaire, puisqu’il s’agit principalement de comparaisons de quelques
effets mesurables. Il est loisible d'utiliser les équipes habituelles chargées
de I'auscultation des ponls et d’employer des appareils n’enregistrant que
les aspects les plus simples des manifestations dynamiques et la S. N. C. F.
procéde souvent & de lelles observations & fins limilées et pratiques. On
donnera, au cours du Congres, des indications sur les constatalions faites et
certains résultats généraux mis en évidence.

Pour ces observations, la 8. N. C. F. a svstémaliquement recours a des
appareils de conception, de mise en place et d'utilisalion lrés simples,
dont I'amplification et l'enregistrement sont normalement oblenus par
voie optique. Le rapport donne des indications sur des appareils nou-
veaux cong¢us dans cet esprit : fleximelre, enregistreur d’oscillations hori-
zonlales ou de rotations d’axe horizonlal (rouligraphe), accéléroméetre
verlical.

Zusammenfassung

Troiz zahlreichen theoretischen und experimentellen Untersuchungen
ist die Bedeutung der dynamischen Einfliisse auf Briickenbauten und die
dadurch beeinflussle Sicherheit noch wenig bekannt. Wenn man eine
wissenschaftliche Unlersuchung dieser Frage ins Auge fasst, so stésst man
auf die Unmoglichkeit, gleichzeitig die zahlreichen Parameter, welche die
verschiedenen lLrscheinungen charakierisieren, zu beriicksichtigen. Die:
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Theorie bleibt auf unsicherer Grundlage, wenn man sich nicht auf schema-
tisierte Fiille beschrinkt und zahlreiche Versuche bleiben unklar, auch
wenn iiber die Genauigkeit der Untersuchungen kein Zweitel besteht. Um
die Frage von Grund auf zu kliren, wird es zweifellos einer grossen Arbeit
von ausgewihlten Fachleuten bediirfen, welche einerseits in der Berech-
nung, andererseits im Bau von Versuchseinrichtungen, andere noch in der
Auswertung der Versuche und schliesslich in der Zusammenfassung
simtlicher Ergebnisse spezialisiert sind.

Es scheint sehr fragwiirdig zu sein, mangels fester Grundlagen den
einfachen Weg der Verwendung von Stosszuschlidgen zu beschreiten.
Letztere sind nicht in der Lage, auf immer wiederkehrende Fragen der
Briickenbeanspruchung eine klare Antwort zu erteilen. Eine fiir die Praxis
geeignete Losung verlangt nicht notwendigerweise eine genaue Kennltnis des
Stossvorganges; denn es handelt sich hauptsachhch um den Vergleich von
einigen messbaren Wirkungen. Dafiir geniigt es, die gewohnhchen Wege
mit den iiblichen Bestand von Fachleuten einzuschlagen, welche mit Hilfe
von Versuchseinrichtungen nur die einfachsten Erscheinungsformen der
dynamischen Beancpluchunven bestimmen. wie es meistens auch die
S. N. C. F. tut. Wiihrend des Kongresses werden dariiber Angaben gemacht
und gewisse allgemeine Eraebmsse hervorgehoben werden.

Fiir diese Beobachtunﬁen hat die S. N. C. F. systematisch Aufnahme-
geriite einfacher Art verwendet deren Uebersetzung sowie Registrierung
normalerweise auf oplischem A\ ege erfolgt. Der v01lleoende Bericht
enthilt Angaben iiber neue Vercuchselm1chinnoen die 7u diesem Zwecke
erstellt wurden : Durchbiegungsmesser, Rerrlqlrlelnppamte fiir horizontale
sowie fiir Drehschwingungen mit horizontaler Axe (rouligraphe) sowie
auch vertikale Beschleunigungsmesser.

Summary

In spite of much theorefical and experimental research, little is known
of the importance of dynamic influences on bridge-building and conse-
quential safety. If we go into scienlific research of this question we are
confronted with the impossibility of taking into consideration the numerous
parameters which characterise the various phenomena. Theory remains
on an unreliable basis unless we restrict ourselves to graphic instances,
and numerous tests remain unconvincing, even where there is no doubt
as to the accuracy of the research work. To elucidate the question from
start to finish will necessitate much work by chosen specialists who are
experts, on the one hand, in calculation and, on another hand, in the
construction of experimental apparatus, whilst yet others specialise in
summing up the tests and, finally, in making a synopsis of the whole
results.

Owing to lack of reliable rudiments, it appears very doubtful
whether we can adopt the simple method of using thrust increases. It is
not possible for the latter to provide a clear answer to the constantly
recurring questions of bridge stresses. A solution that is suitable in practice
does not necessarily require a precise knowledge of the processus of thrust :
for it is principally a matter of a comparison of a few effects that can be
measured. For that, it suffices to follow the general procedure with the
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usual aid of experts who, wilh the aid of testing apparatus, only ascerlain
the simplest outward forms of dynamic stresses, as is mostly done by the
French National Railways. Accounts of this will be made during the
Congress and certain general results emphasized.

FFor these observations the French Nalional Railways systemalically
used recording apparatus of a simple kind, the results being interpreted and
recorded optically. The present report contains particulars of new testing
apparatus created for this purpose: deflection indicator, recording apparatus
for horizontal and rotary vibrations with a horizontal axis (rouligraph),
and a vertical acceleration indicator.
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Sollicitations dynamicques de poutres sous charges mobiles

Ueber die dynamischen Beanspruchungen von Tragern
infolge beweglicher Lasten

A study of dynamic influences of moving loads on girders

ARNE HILLERBORG
Civil Engineer
Institution of Structural Engineering and Bridge Building, Royal Institute of Technology, Stockholm

An investigation into the dynamic influences of moving loads on
bridges is being made at the Institution of Structural Engineering and
Bridge Building at the Royal Institute of Technology, Stockhom, Sweden.
To begin with, the simplest cases are thoroughly studied, and then the
various effects are added one by one in order to determine their separate
and cumulative action. The investigation comprises both theoretical and
experimental studies.

In the years 1943 to 1946 the main part of the work was done by Rolf
Lerfors, C. E., and from the end of 1946 the investigation has been con-
tinued by the Author.

In the first place, I studied the case of a concentrated load moving at
a constant speed along a girder of uniform section. Methods of solution
for this case have been given by several authors, but these methods are
either very laborious or else so roughly approximative that the solution is
too inaccurate. Therefore, I have tried to simplify and to rationalize the
arithmetical computations in a method due to Prof. Inglis (), which I
consider to be one of the most reliable methods available for this pur-
pose. This method was simplified so that it was possible to calculate a great
number of cases and thus to form an estimate of the dynamic increment
in all practical cases.

It is very important that, if damping is left out of account, the dynamic

(Y) Incris, A Malhematical Treatise on Vibralions in Railway Bridges, Cambridge, 1934.
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increment can be shown to be completely determined by two dimension-
less quantities defined as follows :
velocity of load

a4 = . 3
2 X natural frequency of girder > length of girder

mass of load
mass of girder

Y =

For practical purposes, the approximate limits of these quantities are
0 <a<0,15
0<v <5
For v=0, Timoshenko (*) has shown that the dynamic increment in
centre deflection is approximately given by
5

.

1] —a

In the more difficult case where vz 0, a great many methods were
studied, and, as has been mentioned above, that due to Inglis was found
to be most suitable. He expresses the concentrated load per unit length of
span by the Fourier series

* -
2 L. I A1
— Z SIn 12-sin

' l
i=1

The notations are given in fig. 1.
In the compulations, Inglis uses only the first term of this series.
The deflection is assumed to be

~r

3’—(1()““1—[—

and we obtain, for the determination of ¢(v), the differential equation

d*q dq ( l Yoo )
SIn- ¢ ——sin22zs —_— [ -SIne
ot ( - si o)+ o in2s-++gq i sin® ') 5,7 Sin¢
as
where y. denotes the static deflection for ¢ = 5

Inglis solves the above equation by means of two series, viz., a series
for a forced oscillation and a series for a free oscillation. The coefficients

of these series are determined as usual.
The second series is by far the most difficult. Its determination involves

much work.
It can be shown thal the free oscillation is in very close agreement with

the expression
A / 1 "z dz
5 - S ] 5 v / e
|/1—}—2vsm2c; , « o ]/1—}—2vsin‘cpl

which is comparatively simple to calculate, especially after tabulating the
expressions

qfree ==

>

1 /’:p d:
=y - and
Y142 ,sino Jo Y142vsinto

(%) See, for example, Timosmesko, Vibralion Problems in Enginecering, New-York, 1937.
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v ]

Fig. 1.

The integral can be determined by means of tables of elliptic integrals.
By using this formula, the time required for computing one case is
reduced from about fifteen hours to a few hours.
By means of this simplified method, I have calculated and plotted a
diagram showing the dynamic increment in deflection as a function of «
and v. It has been convenient to define this dynamic increment by

(qd_\'n - qstat)mnx

qslal max

Ed —
where ¢4, has the same significance as q(¢) above, and @y., corresponds
to « =— 0 and has the value

(5™ Yoo - SIN © .
For small values of « and v (¢*v < 0.01), I got a direct expression for ¢, i.e.

l—|—2v 2y
11—z + '1—912]

m
-

]
||

o8

_|._

4—2‘! G v
o o (1—:7 o 'l«—-97.?)

For higher values, I have first calculated ¢g(z) and then =.
These Tesults were used for plotting the diagram shown in fig. 2.
When ¢ is known, the force exerted by the load on the r*udel and the
acceleration forces actmg on the girder itself can be calculated on the same
assumptions as before. Consequently, the moments and the shearing forces
acting on the girder can also be computed. With the notations given in
fig. 1, these values are

/ oA
Pt —ofy pl—2y

%*L- d*q 4 LB 7:Ia sino
M,=M,, ————— e__ = . sing
= Moo oysing | 177 Y T
ol
R, = R — |2 28 L4 21 ooy gt
" ay,sine 1 do? = 08 —I—Sl

M, denotes the moment at the distance a from the left end of the girder,
and M,, designates the static moment produced when the load is applied
at this section.

R, and R,, denote the corresponding shearing forces.
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Fig. 2. Dynamic increment in centre Fig 3. Maximum dynamic increment
deflection as a function of « and v. in bending moment as a iunct!.on of
aand v.

In the same way as before, we define

\
(Mudyn - 1\Ia'smt]mam

EMa—

iy
Statnax

(R

Cdyn é slut)max

ER,=—

a .
stat .«

The maximum value of ¢ for a given v and « is of greal interest. This

. . ) wl .
maximum value is obtained when ‘— = a and is
d?q 2 sin’c
EMmax — 3— _1_' 0 { (’1 - : — 1

Yoo SIN ’T"J < 5?( w-— ?) max

@’ q sin 2 @
Bl == q -+ o l—|———' % — 1
yOO Sln (D d"," (? Jmax

The values of ey, are shown in fig. 3. egn., differs very lillle from ey,
and is always less than the latter value.

To verify the theoretical results, model tests are being made. The test
set-up is shown in fig. 4.

The girder is made of steel and has the approximate dimensions
5 X 50 X 1100 mm. The load is a ball of the type used in ball-bearings,
which rolls along a track on the girder. The bending stresses are measured
by resistance strain gauges at several sections of the girder, and are recorded
by an oscillograph which also indicates the time and the inslants at which
the load passes through definite points.

So far, tests ha\e been made for v=23.5 only. Fig. 5 shows some of
the 0501110g1aph records obtained in the tests, compfued with the corres-
ponding dynamic influence lines computed theoretlcally. In fig. 6 the test
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Fig. 4. Set-up used for laboratory tests.

values of ¢ expressed as function of « for several sections are compared with
the computed values.

The agreement between the theoretical and experimental results shows
that the theory can be regarded as fairly accurate. Nevertheless, further
tests must be made before the first chapter of the invesligation can be
completed. After that, the questions relating to damping, spring-borne
masses, etc., will be studied.

I hope that we shall be able to publish a more detailed account of the
results later on. In the meantime, suggestions or questions are welcome.

The Author expresses his gratitude to Professor Georg Wiistlund having
stimulaled the research described in this article.
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Fig. 5. Theoretically computed dynamic influence lines for
bending stresses compared with test values v = 3.5, 2 = 02.
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24 } Fig. 6. Theoretical curves

showing :Muax and :Me« as
functions of 2 compared
with test values of :=wm? .
M= 3_5

a
° 70z
@ --=(50

s

lo

ads

Oos Oro Qrs Qzo

Résumeé

L’Institut de Construction des Batiments et des Ponts de I’Ecole Royale
Polytechnique a Stockholm poursuit actuellement une étude sur les
influences dynamiques exercées par les charges mobiles sur les ponts. La
premiere partie de cette étude traite le cas d’'une charge concentrée unique
qui roule & une vitesse constante le long d’une poutre & section uniforme.
En ce cas, on peut démontrer que l’augmentation dynamique ¢ esl com-
plétement déterminée par deux quantités définies comme suit :

vitesse de la charge
2 X fréquence nalurelle de la poutre X longueur de la poutre

a_:

__masse de la charge
masse de la poulre

Au moyen d’une méthode imaginée par M. le Professeur Inglis, qui
a été légérement modifiée et complétée par 'auteur du présent rapport,
on a exprimé ¢ par une fonction de « et v. La figure 3 montre 1’augmenta-
tion dynamique maximum des moments fléchlssants

On a constaté une bonne concordance entre les [esultats des calculs
théoriques et ceux des essais effectués sur modele, ainsi qu’il ressort des
figures 5 et 6.

Zusammenfassung

Im Institut fiir Hochbau und Briickenbau an der Kgl. Technischen
Hochschule in Stockholm wird gegenwiirtig eine Untersuchung iiber die
dynamischen Einfliisse der beweglichen Lasten auf Briicken durchgefiihrt.
Deren erster Teil behandelt den Fall einer Einzellast, die sich mit konstanter
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Geschwindigkeit lings eines Trigers von gleichbleibendem Querschnitt
bewegt. Es zeigt sich, dass der dynamische Zuschlag ¢ in diesem Falle
durch zwei Grossen vollstindig bestimmt ist, die wie folgt definiert wer-
den :

Geschwindigkeit der Last

2 X Eigenschwingungszahl des Trigers X Linge des Trigers

o —

Masse der Last
Masse des Trigers

Mit Hilfe eines von Prof. Inglis angegebenen Verfahrens, das vom
Verfasser etwas abgeindert und ergiinzt wurde, kann ¢ als Funktion von «
und v ausgedriickt werden. Abb. 3 zeigt die Hochstwerte des dynamischen
Zuschlags zu den Biegungsmomenten.

Bei Modellversuchen wurde weitgehende Uebereinstimmung zwischen
den theoretisch errechneten Werten und den Versuchsergebnissen fest-
gestellt, siehe Abb. 5 und 6.

Summary

An investigation into the dynamic influences of moving loads on
bridges is being made at the Institution of Structural Engineering and Bridge
Building, Royal Institute of Technology, Stockholm, Sweden. The first
part of this investigation deals with the case where a single concentrated
load moves at a constant speed along a girder of uniform section. In this
case, il can be shown that the dynamic increment = is completely deter-
mined by two quantities defined as follows :

velocity of load

o= . e
2 X natural frequency of girder X length of girder

mass of load
~ mass of girder

By means of a method due to Prof. Inglis, which has been slightly
modified and amplified by the Author, < has been expressed by a function
of « and v. Fig. 3 shows the maximum dynamic increment in bending
moment.

The results of model tests were found to be in good agreement wilh
the theoretical results (see figs. 5 and 6).
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Equation différentielle pour le calcul des vibrations
produites dans les constructions portantes par les charges mobiles

Differentialgleichung fiir die Schwingungsberechnung
von Tragkonstruktionen infolge beweglicher Lasten

Differential equation for calculation of vibrations
produced in load-bearing structures by moving loads

SVEN T. A. ODMAN, C. E.

Head, Technical Department
Swedish Cement and Concrete Research Institute at the Royal Institute of Technology
Stockholm, Sweden

This paper is a contribution to the theoretical study of the problem of
forced vibrations in load-bearing structures of finite extenl subjected to
any arbitrary boundary conditions. The vibrations are assumed lo be pro-
duced by one or several non-elastically applied loads, and possibly also
transverse forces devoid of mass, which move on the structure with a
constant velocity.

A usual treatment of similar problems consislts in deducing a diffe-
rential equation which represents the motion of the load-bearing structure
and the load, and in finding a formal solution to this equation by means
of a series expansion. This method has been applied by many authors to a
beam which is hinged and freely supported at both ends, and is acted
upon by a single moving load. Among these authors, the followmg deserve
to be mentioned in this CODDeCthH Kryloff (%) nerrlects the influence
exerted by the mass of the load on the natural vibration of the system,
and thus obtains a simple formula for the deformation at any arbitrary
subsequent instant. Inglis (*) expresses the deformation and the load by a
Fourier series, in which he disregards all terms except the first. In other
words, he imagines the concentrated load to be replaced by a load distri-

(V) Krvrorr, A. N., Mathematische Annalen, Vol, 61, 1905. See also Trmosnenko, S.; Vibration
Problems in Engineering, U. S. A., 1928.
(®) Inaus, G. E., 4 Mathematical Trealise on Vibrations in Railway Bridges, Cambridge. 1934.
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buted over the whole beam according to a sine function having a half wave
length which is equal to the length of the beam and an amplitude which
varies in accordance with the same sine function. Schallenkamp (*) deals
in a similar manner with the vibration of the load in a vertical direction
only. Looney (*) tackles the problem by means of the calculus of dif-
ferences on the assumption that the natural vibration can be represented
by a sine function, and disregards all harmonics except the fundamental.
Contrary to Inglis, Rinkert () takes into account a finite number of terms
in the series expressing the concentrated load.

A procedure that is commonly used by most of the investigators
referred to in the above is to obtain the solution of the differential equation
by means of sine series in which each term can be regarded as an analytical
expression of one of the types of vibrations performed by a beam which
is hinged and freely supported at both ends. If the beam is subjected to
an impact caused by a force which is devoid of mass, vibrations will be
produced, the frequencies of which are determined sole]\‘ by the properties
of material, dimensions, and boundary condilions of the beam, and each
of these frequenc1es corresponds to a definite type of vibralion. On the
other hand, if the force acts in conjunction with a mass which takes part
in the vibration, for instance, if the beam is submitted to a moving load,
then different conditions will arise. In this case, a continuous change in
the position of the mass on the beam gives rise to a continuous variation
in each frequency and in the conespondmc type of vibration. If we try to
find a formal solution to the differential equation of vibralion pIOdUCBd
by a moving load by using series of functions, which are not variable with
time, this 1mphes an attempt to calculate a resulting vibration at any
arbilrary gauge point by the aid of a limited number of terms. In reality,
this motion is composed of several entirely separate vibrations, and an
intricale analysis of frequencies will be required in order to segregale these
vibrations.

The use of formal solutions entails insufficient accuracy in the cal-
culation of stresses. Even if the series used for solving the differential equa-
tion is found to be convergent, it is not certain that the second derivative
will approach a correct value, or will be convergent at all. This is due to
the fact that a given initial substitulion used . in solving the differential
equation will prove successful depending on the extent to which the first
term of the series agrees with the actual, total deformation. Comequentlv
the fact that the bound.u\- conditions are satisfied by all terms of the series
alone is not sufficient. An analogous statement has been made by Cou-
rant (°) regarding variational and buckling problems. Therefore, as the
type of vibration varies continuously in the case of moving loads there
must always be an uncertainty in the calculation of stresses.

The purpose of this paper is to demonstrate a method for a more
general study of this problem under any arbitrary boundary conditions.

(®) Scmarreskame, A., Schwingungen von Trigern bei bewegten Lasten (Ingenieur-Archiv,
1937).

(Y Looxey, Ch. T. G., Impact on Railway Bridges (Universily of Illinois, Bulletin No. 19,
Vol. 42, 1944).

(%) RinkemT, A., Vibrations of a Beam with Ilinged Ends under Action of a Load Moving with
Constant Speed. Examinalion Work at the TInstitution of Structural Enginecering and Bridge-
building at the Roval Institule of Technology, Stockholm 1945 (in Swedish).

(8) Counant, R., Variational Methods for the Solution of Problems of Equilibrium and
Vibrations (Bulletin of the American Math. Soc., Vol. 49, No. 1, Jan. 1943).
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In contradistinction from the earlier invesligations, we shall take into
account the variation in the type of natural vibration due to the change
in the position of the load. Each term of the series used in solving the
differential equation corresponds to the type of natural vibration performed
at a given instant, and is therefore dependent on the position of the load,
and hence on time. Accordingly, the state of vibratory motion is known
at any instant, and the increments in moment and in stress due to each
natural vibration can therefore also be calculated. Just as most other inves-
tigators who have dealt with this problem, we neglect the influence of
damping, which has been discussed by Holzer (*) and Sezawa (*). among
others. The deformations are assumed to be so small that the effect of
rotatory inertia and of shear can be disregarded. These questions have been
studied by Timoshenko (°), Goens (**), Pickett (**) and others.

Consider free harmonic vibration of a system which is compound in
the range G and consists of a load-bearing structure in conjunction with
one or several stationary masses. In this case, we can deduce a harmonic
differential equation of the following well-known type, which is inde-
pendent of the time factor

L['{’n] -]l— F : )‘n - ’;‘u == 0 (l)

where <, is a characteristic function which represents the n-th tvpe of
deformation of the system within the range G, and &, is the correspondlng
characteristic value (**). L[z,| is a linear differential expression formed
with respect to the space coordinates x, y, z, and is defined within the
same range, and s is a given dimensionless funcltion which represents
the relative mass densily distribution of the system. Eq. (1) is often called
Euler’s differential equation.

If the section of the load-bearing structure is uniform, the caracteristic
functions and the corresponding natural frequencies can be computed
from the above differential equation by means of the methods given by
Den Hartog (**) or Kdrmdn and Biot (**), and others. For this purpose, a
general solution of the differential equation is found for the ranges between
the boundaries and the point of application of the load. By 'lpplvlnﬂ the
boundary conditions, we obtain a frequency equation, and by means of
this equation we can calculate a set of roots, each of which corresponds to
a definite form of the characteristic function. The lowest root value cor-
responds to the fundamental frequency. Berg (**) has carried out this
calculation for a hinged, freely supported beam, and has tabulated the
values of the characteristic function as a function of the position of the

(" Howzen, H., Zeitschrift fiir angew. Math. und Mech., V. 8, p. 272, 1928.

(3} Sezawa, K., Zeitschrift fiir angew. Math. und Mech., V. 12, p. 275, 1932.

(?) Tivosuenko, S., On the Correction for Shear of the Differential Equalion jor Transverse
Vibration of Prismatic '‘Bars (Philosophical Magazine, Ser. 6, Vol. 41, p. 744 and Vol. 43, p. 125).

(1) Gorns, E., Ueber die Bestimmunqg des Elastiz ititsmoduls von Stiben mit Hilfe von
Biegungsschwingungen (Annalen der Physik, 5. Ser., Vol. 11, p. 649, 1931).

(11) Piwckerr, G., Equations for Computing Elastic Constants from Flexural and Torsional
Resonant Fr('qnoncie: of Vibration of Prisms and Cylinders (American Society for Testing
Materials, Vol. 45, 1945).

(12) Covmnant, R. and Humerrt, D., Methoden der mathematischen Physik, Band 1, Berlin,
1924, Kap. V,

(13) Dex Hanroc. J. P., Mechanical Vibrations, New York and London, 1940.

(1) v. Kinman, T. and Bror, M. A., Mathematical Methods in Engineering, New York and
London, 1940.

(1%) Benc, Owe, Biegungsschwingungen eines in beiden Enden unterstiiizten punklférmig
belasteten Balkens (Zeitschr. angew. Math, Mech., Bd 24, Nr 1, 1944).
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load and definite given ratios between the masses of the load and the beam.

For the majority of practical purposes, some approximate method can
usually be applied. For instance, Lord Rayleigh (*°) assumes that the
characteristic function approximates to the static deformation curve pro-
duced by the weight of the load. provided that the inertia forces are
neglected, and calculates the frequency by means of the energy method.
Ritz (') puts the characteristic function equal to a series, and detelmme%
the coefficients of expansion and the frequencies by the aid of Hamilton’s
variational principle. Galerkin (**) applies a variational method by which,
however, one arrives at exactly the same expression as is obtained by the
method devised by Ritz. Gran Olsson (*°) has found that with the aid of
the principle of virtual displacements the same results may be obtained as
by the methods of Ritz and Galerkin. Finally, Grammel (*°) takes the inte-
gral equation of the system as a starting-point and determines the frequency
from the relation between an assumed deformation and the nucleus.

All these methods give a sufficiently accurate upper limit of the natural
frequency. The deviations of the approximate expression of the charac-
teristic function from its exact form have scarcely any influence on the
ultimate value, and the error is therefore usually inconsiderable. If greater
importance is attached to the form of the characteristic function, as is
often the case in the determination of stresses, or if the rigidily, section
area and the mass density of the load-bearing structure are variable, it is
convenient to use Vianello’s (**) approximate method for plotling the cha-
racteristic function graphically by means of a funicular polygon. Great
accuracy can be obtained by applying this procedure several times. This
problem has also been dealt with by Infrl]s (**).

The characteristic functions o,, ©,, @5, ..., etc., form a complete ortho-
gonal system which satisfies the conditions for orthogonality, viz.,

[p-%rade =

I % T

o-0,'dv = constant, r=n

-6

i

‘:::_5 (=21

where G denotes the limit range of the integral and < is used to designale
one or several coordinates in space. If the constant is put equal to unity,
the characteristic funclions are termed normalised.

Furthermore, the theorem of expansion of characteristic functions states
that any stepwise finite arbitrary function f which statisfies the same

(*®) Lord Ravrewcm, The Theory of Sound, Vol. 1, 2nd Ed., pp. 111 and 287. Phil. Mag.,
Vol., 47, p. 566, 1899 and Vol. 22, p. 255, 1911.

(2") Rrrz, W., Ueber eine neuc Methode zur Lisung gewissen Variationsprobleme der
mathemalischen Physik. (J. f. reine und angew. Math., Bd 135, pp. 1-61, 1909. — Gesammelle
Werke, p. 265, Paris, 1911).

(*8) Garerkin, B. G., Ezpansion in Series for Solving Some Equilibrium Problems for Plates
and Beams (Wjestnik Ingenerow Petrograd, 1915, Heft 19, in Russian).

(1®*) Gran Owsson, R., Die Anwendung des Prinzips der virtucllen Arbeit bei der Lidsung
Kon Knickproblemen (Det Kongelige Norske Videnskabers Selskal, Forhandlinger Bd XVII,

r 46).

Gran Ovusson, R., The Principle of Virtual Displacement Applied in Approxrimate Solulions
of Eigenvalue Problems (Diziéme Congrés des Mathématiciens Scandinaves, Copenhague, 1946).

(2°) GrammeL, R., Ein neues Verfahren zur Liésung Technischer Eigenwertprobleme (Ing.-
Arch., Bd 10/1939, pp. 35-46). Sce also : Liiscu, Fr., Berechnung der Eigenwerte linearer Integral-
gleichungen (Zeitschr. angew. Math. Mech., Bd 24, Nr 1. 1944).

(21) Vianerro, L., Grafische Untersuchung der Knickfestigkeit gerader Stibe (Z. V. D. I, 1898,
Juli-Dez., p. 1436).

(22) Incris, C. E., Natural Frequencies and Modes of Vibration in Beams of Non-uniform Mass
and Section (Trans. I. N. A., Vol. LXXI, p. 145, 1929).
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boundary conditions as the characteristic functions =, and has a self-
adjungated finite linear differential expression L[7,] can be expressed by
an absolutely and uniformly convergent series composed of these cha-
racteristic functions, viz.,
2]
f': Z Cn:
n=1\

Cn=f9'f'ﬁ?nd‘~~ (3)

G

7n

where

For simplification, we shall deduce, in the first place, the differential
equalion for a single moving load having a mass which cannot be neglected.

It is convenient to imagine the masses of the load-bearing structure
and of the load as a compound system whose natural vibration is unambi-
guously determined by the posilion of the load in a steady state of vibratory
motion and varies with the position of the load, whereas the weight of
the load is regarded as an external vertical force devoid of mass applied
at the centre of gravity of the moving mass. In the treatment of the pro-
blem it makes no difference whether a force devoid of mass, e.g. a pulsating
force, is added to the weight of the load, and the problem is thus reduced
to the determination of the vibration produced by the resultant external
force.

Since the syslem has an infinite number of degrees of freedom for
every position of the moving mass, the deformation from the position of
equilibrium at any arbitrary instant { = {; can be expressed by a series
comprising all those degrees of freedom which come into play at that
instant. Accordingly, we put

w= 2 qn (L) 0,(t;, s) (4)

n=1

where w denotes the deformation from the position of equilibrium, and
®,; corresponds to the n-th characteristic function determined in a steady
state of vibratory motion with the moving mass in the j-th position on the
structure. For instance, ©,; can be imagined to be composed of trigono-
metric and hyperbolic functions in which the arguments are also variable
with time. The quantity g, is an unknown factor which varies with time
only, and is termed a generalised coordinate.

The maximum kinetic and potential energies of the system, which
are denoted by T and V respectively, are determined at the instant when
the load is at the point s;.

For the load-bearing structure alone, we oblain

m ow \*

where m denotes the mass per unil length © of the structure.
The velocity of the moving mass at any arbitrary point is

ow < .
E Z (@0 @t Gn-2ny)

n=1
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where

Therefore, we get

o ?
m . .
To=—2—ﬁ [Z (q.,-’f’,,j—l—(].,'?.,j)] T

n=1

In calculating the corresponding increase in kinetic energy due to
the moving mass having the weight P, we must take into account its curvi-
linear motion whose component in the direction w is determined by

wp(s) = Y, qu ()50 (8, 8))
n=1
where s; is also a function of time. Then the velocity of the load in the
direction w can be written

dwp
00 S [y (5 G (5)]

7 n=4

and the amount contributed by this velocity to the kinetic energy of the
syslem is

Te= -Lg 2 [qn Tnj (SJ) + qn*¥nj (SJ)]

n=1

~

The potential energy of the system is equal to the sum of all inertia
forces times the respective displacement of these forces. Since the inertia
forces are proportional to the deformation, we consider their mean value,
and the amount V, contributed by the load-bearing structure to the polential
_energy of the system is determined by the expression

m o’ w /\d_
2 Ja atj‘ "W

m [+ ] \2/ (- 2]
._,___'/G‘("Ziqn.mn (sj)-c‘p”j).(x q”-c?,,j>d»

n=1

V, =

where w,(s;) is the frequency of the n-th natural vibration.
The corresponding increase in potential energy V, due to the load is

P o e /\ \/ P by 4 R
v, =2—g- (EQn (‘)n?(sj) " i (SJ)) (2 qn:Pn; (37)) T .
n=1 n=1 "

Using the notation

S et ) = Ha )
and observing that the terms of the form

P ..
f‘?’uw d‘+m_g' rj (33) Tnj (31) ’ r%.n
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are zero according to the conditions for orthogonality, see Eq. (2), we can
write the tolal maximum kinetic and potential energies of the system

T="1 f[E (@ ©ns + - ,,j)] d=

=1

P [ ?
=5 g {Zl (= Pns (8) + G- ©n; (s,)]}
V= n?l :;1 g - w," (5;)-Ha(s,) - (9)

Thesc values are inserted in Lagrange’s equation of motion

d (9T\ 0(T—V) —0
di (ai;,. dq, 7

when Q, denotes the force corresponding to ¢, and is termed the generalised
force. We then obtain

QB () f 20 Y, (240t gt 0

_ Qs

m

P
'Jl_ ",—n”" @y (SJ) Z [2 qn Fnj (31) + qn g (SJ)J _I_ q.-w 2 (SJ) H, (

n=1

(6)

The generalised force Q,; is determined so that the work done by the
external force in the case of variation in the generalised coordinate q,
divided by this variation should be equal to Q.

In this case, the work is equal to P(s;)-8q,-e,;(s;), where P(s;)
denoles Lhe weurlll of the load, possibly wilh the addition of an external
force devoid of mass, which is applied at the same point. We then obtain

Q. = P(s;) - w4(sy) .

Eq. (6) gives a system of linear inhomogeneous differential equations
of the second order having an infinite number of terms and variable coeffi-
cients. This equation can be regarded as the complete differential equation
of forced vibration produced in a load-bearing structure by a moving non-
elastic mass. It is very difficult to find an exact solution of this equation.
In order to avoid this difficulty, we must resort lo simplifications.

The influence of the curvilinear motion is so slight that it can be
regarded as a correction, at least in normal structures met with in practice
and subjected lo ordinary permissible loads. In such cases it is obvious
that the error will be nerrhrrlble if the correction consisls in disregarding
the influence of all vibrations except the r-th. If the characteristic functions
are normalised so Lhal [Lp,.ﬁ-dr — 1, the variation in the form of the

JG

characteristic function must be so small that it could be neglected, with

the result that both «,; and 'cjs,j would become equal to zero. If the velocity
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of the moving mass is assumed to be constant and equal to v, we gel

. 1 o 11

©,; (S;) =v-0,;(s,) and 0.; (8,) = v*:¢,, (s;)

. do,; (s d¥z, (s))
where ©,;(8;) = 'Eljs( ) and 0. (8;) = —:I:S 2

Consequently, the complete differential equation takes the simplified
form

P (S ) ] (Sj)

q.: Hr (SJ‘) + q-- H,.(S,-) + q.- [w,.2 (Sj),‘ H, (S ) —1— N. (SJ)] m (S)
where H. (s,) =1 —}—W -6, (8))
N 2 v
() = - Poy (5) 5, (5)
v o 1"
N, (s;) _—"—m‘; s P (s) 9, (s))
§;=v-l;

It makes no great difference whether one or several masses move with
the same velocily on the load-bearing structure. The variation in mass
distribution with time influences the form and the frequency of the cha-
racteristic function in a similar manner. It is convenienl to keep the
notations ¢, and w, unchanged, but they are used to denole the new cha-
racteristic function and the couespondm" natural frequency. Accordingly,
the j-th position of the load at any arbilrary instant ¢ = {; signifies the
location of & loads having the respective Wemhls P P Pl 5oy Bp, and
P, (s;;) denotes the wei,ght P, possibly with the addilion of an external
force devoid of mass, which is applied at the point s,;. The new differential
equation can be written in the form

q.-H,(s) +q.-H s)+q,[ 0,2 (s;)-H. (s,) + N. (s))]

=% Z P\ (51)- 3.5 (50) ©)
n= " Y
where Hos) =1+ 2 Py, (4)
; 20 %
H,.( ' — et Z Pk' l_; (ij) ":J (\h_;)
9 =
k
N ( i Z Ph * Q@ (Siu) ri (skJ)
g =
S;=v-{;

Eq. (9) is an ordinary linear inhomogeneous differential equation
of the second order with variable coefficients.

If the fact that the characteristic function varies wilth time is completely
disregarded, then Eq. (8) corresponds to a formal solution of the problem



CALCULATION OF VIBRATIONS BY MOVING LOADS 677

under consideration. In that case, the functions <, and H, are referred to
the non-loaded structure, and o,*(s;) - H,(s;) is constant and equal to the
square of the natural frequency of this structure. For instance if we put

.—l/__ sm—x

which is identical with the normalised characteristic function of the freely
supported beam (I=—length of beam, 0 s < {, and r=integers 1,
2, 3, ...), then we obtain for r=1, the same differential equalion as that
deduced by Inglis. Therefore, it follows that his results can be regarded as
a special case.

The tests made lately by A. Hillerborg (**) seem to indicate that the
variation in the form of the characteristic function with the position of the
load could be neglected in the case of the freely supported beam. It remains
to be demonsirated whether this variation may also be disregarded in
dealing with other structures or under different boundary conditions. This
question can be examined theoretically on the basis of the present investi-
gation.

An approximale solution of the differential equation (9) is briefly
deduced in what follows.

By putting the right-hand member of Eq. (9) equal to zero, we obtain
a homogeneous differential equation. After dividing by H,(s;), this equation
can be wrillen

. N, (s;
q.+ T (;i .+ |[w,F (s)) +H—(3‘ 4, =0 (10)

and can be interpreted as a differential equation of free amplitude-modulaled
and frequency-modulated vibration.
To solve this equation, we put

q,=e 3 (A sinjw.dt+ Bcos|w,.dl) (rn
where A and B are arbitrary constants, whereas s, and w, are arbitrary

functions of time which express the damping and the frequency of vibration
respectively. If this expression is inserted in eq. (10) the two relations

1 |w, , H,
ﬁ,.=—2— z—{—_H] (12 a)
—5»—.31"?:.4—@3 (12b)

must hold good in order that the above expression should satisfy the
differential equation (10).
If we assume that the vibration sets in at the intsant { = t;, the value

f op[— fB.dt] at any arbitrary subsequent instant {=1{; can be cal-
culu_ted by integration. By using eq. (12a), we then obtain
r. o (s) ; .
exp |— /-J:?’.-dt] zl/m,.(S,) L, (s,) . (13)
‘ T W, (S)') W, (sl')

(23) Hirersora, A. L., A Study of Dynamic Influences of Moving Loads on Girders (Inter-
national Association for Bridge and Struclural Engineering. Congress 1948 at Liége. Preliminary
Publication).
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If the natural frequency is determined by Rayleigh’'s melhod, it can
be demonstrated that

( ) W, (8;) ) (14)

H. (SJ) w, ($;)
Since the modulated frequency w, does not differ from the nalural
w, (si)
mr(sj)

frequency of the system to any notable extent, can be put ap-

proximately equal to— w, (5) Then

wr(sj)
exp — [V ~ l/"’ ) (15)

that is Lo say, the free v1b1dt10n is damped approximalely in proportion
to the square root of the natural frequency.

The difference between the right-hand and left-hand members of
eq. (14) is so small that derivation can be admitted without involving any
considerable error. We get

Noticing thal

W,

and inserting this expression in eq (12a) gives

()

Using this relation it can be deduced that the frequency of vibration is
approximalely determined by

1 N 1 (H,\* H, 41
?_ 2 - . r — ) . ) »
ve=el T g 16 (r{) H.—1° (16)

r

Consequently

w, (s;) . b [y 17
l/ - (s)) o) (A sm./f: m,(lt—cho:,‘fu m,.dl) (17)

can be regarded as a general solution of this equation (10). The arbitrary
conslants A and B are determined by the inilial conditions at the instant
t —={,.

The solution of eq. (9) can now also be found by means of generally
known methods. If we assume thal the first of several consecutive loads
travelling on the load-bearing structure passes over the first support at
the instant { = 0, the solutlion can be writien in the form

¢ k
" Z Py (sx) -2, (Sn)

e k=1 . /w (s)) . l S
=W | TH (s)w. (s) (s) I/ el smﬁ m,.dtr dt, .(18)
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This expression can also be simplified. If the static deformation of the
load-bearing structure due to the loads in the i-th position is calculated
with the help of series composed of the functions =, and ¢,;, it can readily
be demonstrated that

@ (Sx:) g vy (8x) (19)
H. (s) 05 (s)  H.(s) 07 (s:) ‘

By wusing this relation and putting m -H,,(js,—)-wﬁ(sj):)\,.(sj) the

solution of the differential equation (9) can finally be written

S S () [N Y
MEENCN Vw. (s;) (3,).[ ’Vw (s:) (Z kLB sh)) Smjr: m"dt]dt

(20)

and the problem under consideration can thus be regarded as theoretically
solved.

The present work will be continued in a manner to allow a comparison
between experimentally obtained results and theoretical values calculated

with the aid of the developed theory.

Résumé

Le calcul théorique des déformations et des efforts causés dans les
constructions portantes par les charges mobiles peut aussi étre effectué
dans le cas des constructions relativement compliquées. Dans la présente
étude, ce probleme est traité d’'une maniére plus générale que dans les
travaux précédents, en faisant usage des fonctions caractéristiques, de sorte
que l'équation différentielle établie dans le présent rapport est applicable
aux conditions aux limites quelconques et a plusieurs charges mobiles
inélastiques avec addition éventuelle d’autres forces dépourvues de masse.
L’étude tient comple de la variation de la forme de la vibration naturelle
avec la position de la charge. Une solution approximative de 1'équation
différentielle est présentée. L’auteur examine aussi d’autres méthodes appli-
cables a I’étude de ce probléme.

Zusammeniassung

Die Forminderungen und Spannungen, die in Tragkonstruktionen
infolge einer oder mehrerer beweglichen Lasten entstehen, kdnnen auch
bei verhéltnismissig verwickelten Konstruktionen theoretisch berechnet
werden. Zum Unterschled von fritheren Untersuchungen, wird diese Frage
in der vorliegenden Arbeit einer allgemeineren Behandlung unterzogen,
und zwar mit Hilfe von Emenfunktlonen so dass die aufgestellte Diffe-
rentialgleichung fiir beliebige Rundbedingungen sowie auch fiir mehrere
bewegliche, nichtfedernde Lasten gegebenenfalls in Verbindung mit anderen
massenlosen Kriiften giiltig ist. Die Anderung der Eigenschwingungsform
mit der Lage der Last wird ebenfalls beriicksichtigt. Eine angenéherte
Losung der Differentialgleichung ist gegeben. Auch andere Verfahren, die
auf diese Frage anwendbar sind, werden besprochen.
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Summary

The deformations and stresses produced in load-bearing structures by
one or several moving loads can be calculated theoretically, even in the
case of relatively complicated structures. In contradistinction from previous
investigations, the present paper deals with this problem in a more general
manner with the help of characteristic functions, so that the differential
equation deduced in the paper holds good for any arbitrary boundary con-
ditions and for several non-elastic moving loads, possibly acting in con-
junction with other forces devoid of mass. The variation in the form of
the natural vibration with the position of the load is also taken into aceount.
An approximate solution of the differential equation is presented. Other
methods for studying the problem are discussed.



Vbi

Vibrations amozrties des portiques
Gedampfte Schwingungen von Rahmentriagern

Damped oscillation of frame girders

; v
ING. D* VLADIMIR KOLOUSEK

Prague

Les lois de la vibration amortie des constructions hyperstaliques ne
sont pas élucidées du point de vue expérimental; le plus souvent on sup-
pose que I’amortissement de la vibration est proportionnel a la vitesse du
mouvement. Dans cet article, traitant du probléme de la vibration amortie
des portiques, nous admettons cette hypothése facilitant I'analyse malthé-
matique, sans disculer son exactitude. Nous simplifierons enecore le
probléme en ne considérant que la vibration transversale forcée des por-
tiques ayant des barres & section constante bien que la méme méthode
puisse étre appliquée pour des barres a section variable et aussi pour les
autres types de vibrations.

Résolution de la vibration amortie des systémes
en portique par la méthode de déformation

Dans ses travaux précédents l'auteur de ce mémoire a appliqué pour
le calcul de la vibration non amortie la méthode de déformation ('?).
On peut s’en servir pour le calcul de la vibration forcée amortie.

Pour le mouvement transversal amorti de 1’élément de longueur d’une
barre a section constante on a la relation

wdz ”a(t‘f D | bds a” LCAUANES LA e

ou v(x, t) signifie le déplacement de la section z dans le temps ¢ ;

”(‘” D gz —0 (1)

) Stahlbau, 1943, p. 5. )
) Mémoires de 'A. I. P. C., 8 volume : Solution des pylénes d’antenne haubanés.

(1
(2
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u la masse de I'unité de longueur de la barre, el

b I'amortissement par 1'unité de longueur pendant la vilesse unité.

Dans la suite on remplace b par w, (ayant la forme de la fréquence
angulaire) qui résulte de 1'équation

b=2uw,. 2)

En se limitant & la vibration forcée et harmonique, 1'équation (1) est
satisfaite par l'expression complexe

v (z,t) = [v(z) + iv (2)] sin wt 4 [E () — iv (r)] cos wt = [3 (x) — iv (z)]eiwt

(3)

Apres la substitution de (3) 4 (1) on obtient I'équation différentielle
ordinaire

d'[v(x) +iv@)] _

-—wﬂb—m%ﬂwuy%ﬁuﬂ+ml — (4)

dont la solution générale est

v (2) 4 iv(z) =C, cos h (A } i._\)il + C,sin h (A 4+ iA) —f—
+Cw%£h+ﬂﬂ%~%&ﬁnm+dxy% (5)

ou

. T ' [ aw? 3) W
A+iR=1 %ﬁb_giﬁzlll_zpﬁ
| DB w

avec .

A=ﬂ/éwyb+4%;+bﬁgva+4ﬁ:+%- (6)

/‘. —
14/ w,* 1 3 1
K=—i/<sl/14+4——]|/ > g Yo 4 -
) sl e =) Y 1

Si I'on ne considére que les membres réels on déduit de I'expres-
sion (3) que la composante de la vibration ayant I'amplitude v(z) préceéde

[

la composante avec 'amplitude v(x) de I'angle « 5

Si les extrémités de la barre subissent le mouvement harmonique
(d’apres la fig. 1) avec l'amplitude

T9+i?'.v’ vg+l:5a’ Th'!_i?h et vh_”i;h’
nous obtenons pour les constanies C quatre équations
C,+ Gy =v, +iv,

l =
C,+ Ci= AFix (o 1 iy,)

C,cos h (A + iX) 4 C;sin h (A 4 iX) 4 C; cos (A + iX) 4 C, sin (A 4 iR)
= Uh+ iv_h
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)‘?,h +t}§,b l Yh,_gff );7_9
”M“%/)C 72 ﬁj )%“%
7
T N e
g h
_f_— l—_—___"--_————"l -1
N I
l§ l =
by | IS
= | ) ] g
i B Ay N
- I_—
Fig. 1. Ky

C,sin h (A 4-iX) + G, cos h (A 4~ iX) — Cysin (A + iX) + C, cos (A 4 iX)
l —
—TF@ i)
d’ou

1

Q:Eaiﬁﬂﬂm+mﬁwH@+ﬂm+ﬂHW+@)

— LB (A4-1K) (v, + i'ﬁz) — LF(A 1K) - (14 +_1'}’n” T “;T (v + il—’g)
1 : ) - -
G = m [Fs (A 4+ iX)-(v, 4 iv,) + F; (A + iX) - (v, + iv,) (7)
; = ; g B l —
— LR+ R A+ B) + 1B (A 88) - (i + 3]+ gy (o)
Cs=—C, _’_Uy"i_ii;y
[ =
C4 = C2 + m‘ (Y!I + t'}’y)
avec

sin h (A 4 iX) — sin (A + iX)

cos h (A4 iX)cos (A iX)—1

cosh(A+iR)sin(A+4-iK)—sin (A +iX)cos(A+iX)

cos h (A 4+ iX)cos (A +iN) —1

, cos h (A iR) — cos (A 4 iX) 3
cos h (A 4+ iN)cos (A 4+ iK) — 1 ®)
sin h (A 4 iX) sin (A + iX)

cos h (A iK)cos (A +iN)—1

F, (A + i%) = — (A + iX)

F, (A +iX)= — (A 4 i&)

F, (A - iX) = — (\ 4 i%)

F, (A + i%) = (A 4 iK)?
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‘ — , sin b (A - iK) 4 sin (A - i%)

Fs A+ iR = 4 13) cos h (A + iR) cos (A+iX)—1

- — scosh(A4-iX)sin(A4iX)4sinh(A4iX)cos(A}iX)
Fh~jrib)—=—(A-aR] cos h (A 4+ iX)cos (A +iX) —1

Pour le moment fléchissant et 1'effort tranchant dans la section z et
pour le temps { on a

v (z, t o v (x,t
ED e, g=—p 22D )

et par conséquent pour les moments et les forces aux extrémilés de la barre
déformée on a les équations suivantes (écrites pour la barre horizontale)

M(z,t)=— EJ

M, , + iM, , =M (0) + iM (0) = — —o ” F, (A + iX) - (v, + iv,) — EJ
- EJ - EJ
Fy (A +i%)- (v, 4 ivy) + Fe (A + 1K) (t, + i) + ——
F, (A +iX)-(yi + i) (10)
= (o EJ
Y, +iY,n=— T (0)—iT (0) = ——F, (A iX)( erg)Jr
- EJ - EJ
F5 (A—]—iK)-(v,,-[——iv,,)—TF., (.\—'—iK)'(\"g—]—i‘l’g)—l-—T
Fy (A 4 iK) - (14 + i) (11)

En résolvant les systemes en portique par la méthode de déformation
on tire les déplacements el les rotations inconnus des équations qui res-
sortent des .condilions d'équilibre dans les nceuds singuliers. Pour le
nceud g quelconque il vient

S (M, - M, ) — (M, = M) — 0
S(Xu,h +ixg,h)"—(ch+ ixnc): O (12)
Y (‘Yg. h —1" iYa,h)'—(Yac _l_ l'Y;c) =1 .

S+, 2(Y, 4+ iY,,) étant les composantes horizontale et
verticale des forces aux extrémités de toutes les barres, qui aboutissent au
nceud g ;

(X, X, (Y, 4 iY,), (M= iM,*) étant les forces el le moment

extérieurs agissanl dans le nceud g.
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LBt
E le numérique 3 3’
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1
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b 4
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Fig. 2. 2555

Considérons le nortique étagé d'aprés la figure 2, chargé au milieu

de la poutre 3,3’ par la force verticale harmoniquement variable P sin wt.
Les moments d’inertie des poutres horizonlales sont
l]2 == Jl,]' — J?.i” — Jg.:;, — 2' iO_Jl‘Hl
et des piliers
JI — JO.] — JI,? — J'-'.-'l — 1 . 10"‘”1".
La masse par l'unité de longueur est dans le cas des pouires horizontales
Uo ==y 1+ = Moo = W33 = 0,5/9,81 =0,0510 tonne.m™.sec”
et des piliers
u; =0,2/9,81 =0,0204 tonne.m™.sec”.
On calcule avec le module d’élasticité E=21-10° tonne/m* et avec le coef-
ficient de l'amorlissement w,=2=.10=062,83 sec”™ (on adopte pour w,
une si grande valeur pour rendre I'exemple plus instructif).
Des conditions d’équilibre des moments [d’aprés (10) et (12)] dans

les nceuds 1, 2 et 3 on obtient pour les amplitudes de déformalions, en cas

de la vibration forcée, amorlie et symétrique, les trois équalions du
tableau I.

Le membre absolu de 1'équation
le momen! a l'extrémité de la barre
la fig. 3) de 1'équation

3 du lableau I est déterminé comme
parfaitement encasirée 3, p (d’apres

Mg’,p + i
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714 ve 4 ive T3+ it
2FE
IJI Fe (A1 +i%))
FJ. .
Hr B r ity Fi (AR =0
—F1 1\2—1—1752)]

2E], -

L Fe (4%
JOR EJ
2 -I—lFl (1\1—'—1.(1) +Ei[F2(\2+lT2) —)-Fl(\l_{_l-{l) =0
—I‘l(‘\e—i—l?\'?)] |
EI“]LF (A% Fi As+ iRy
EJ, _PL "\ 2
3 ’—Bl(h—}-ﬂ) _!_.E_JZ [Fa(Ae+iK2) T4 FG(J\Q—i;iX.z)
' —r1<\2+:1>1 -

TaBLEAU 1

My, iV, = — 2ty (A e )'<vp+i5,,> (13)

(5)
ols)

i =35 Fy - (Ag—*-ixg)'
2

ou

(14)
G
Si nous supposons que la fréquence angulaire de la force harmonique

Psin wl est w=103,7 sec™ (ce qui est dans le cas donné égal & la premiére
fréquence angulaire de la vibration symélrique propre non amortie), nous

obtenons ;
w? 0,0204-103,7*
b=l l/ EJ, _6l/°1 1o5.1-10— — 410
et d’aprés (6)
1! 4.62,83? 4.62,83° | 1
= 3,410 ]/0,6267 -+ 0,5669 = 3,726
X, = — 3,410 /0,6267 — 0,5669 = — 0,834,
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Il s’ensuit :

cos h(A, +iK,)=rcos hA, cos X, +-isin hA; sin X, = 13,96 — 15,37 i
sin h(A, +1iX,)=13,94 —15,39 i
cos (A, - iKy)=—1,141—0,516 i
sin (A, + iX,)=—0,755 0,779 i

et d’aprés (8)

EIJI F, (A, 4 iK,) = 858 — 664 i

1

EJ] . .
TLFy (A + iR =1 182+ 810 i
1

Par analogie on obtient pour i,= 3,005
A,+ iR, —3,283—0,735 i

et
Bl ; 0 & ” o o
L [Fy (A, +iX,) — F, (\, +iX,)] =748 41851 1.
Le membre absolu a la valeur
F ( 1\2 + ixg )
Pl & = P (0,718 — 0,1887 i)
4 F(Aﬁ—i?{g‘)— ’ ; '
& 2

Si nous substituons les valeurs déterminées dans les équations du
tableau I nous obtenons les équations du tableau II.

nin J tetive st ivs

1 301243471 | 858 — (64 i = ()

2 858 — 664 i ‘ 3012 434711 858 — 664 i =0

3 { 858 — 664 i 1 880 4+ 2661 i = P (0,718 — 0,1887 i)

TasLEaU 11
" 11 résulte:des équations de ce tableau B

1,=—0,050.10" P vv= 0,100.10"* P
Y= 0,435.10™" P v.= 0,188.10™* P

Ys= 0,742.10" P vs=—1,986.10™" P
ainsi que les rotations des nceuds sont
11 (8)=", sin wt + ?1 cos wt=(— 0,050 sin 103,7 { -+ 0,100 cos 103,7 ¢)-10™* P

Y2 (£) =7, sin wi —1—12 cos wt=(0,435 sin 103,7 ¢t 4 0,188 cos 103,7¢)-10™* P
s (£)==17s sin wl + v, cos wt=(0,742 sin 103,7 t — 1,986 cos 103,7 ¢)- 107* P
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Il vient des résultats précédents que le décalage de phase

M
v == arctg v

est différent dans chaque nceud envisagé.
L’auteur a contrdélé les résultats obtenus par une autre méthode de
calcul qui consiste & décomposer la vibration dans ses formes propres (*).
Nous ne reproduisons ici que les résultats, par suite de manque de
place. En ne considérant que les trois membres de la série des vibrations
propres, il vient
71=(0—0,3284-0,306)- 10 P=—0,022 . 10 P
71 =(—0,4354-0,825—0,298)- 107" P=0,092 . 10~* P
¥.=(0-+0,037+0,464).10* P=10,501. 10 P
¥.=(0,717 — 0,092 — 0,451)- 107 P=0,174 . 10~ P
Ys=(0--0,324+0,395)- 10 P=0,719. 10 P
Ys=(—0,745—0,814 —0,384)-10*P=—1,943 .10 P

ou les termes entre parenthéses expriment la participation des formes par-
ticuliéres des vibrations propres pour les résultats finaux.

Résumé

Pour le calcul de la vibration forcée amortie des portiques on peut
appliquer la méthode des déformations. La résolution est analogue & celle
des vibrations non amorties, grice 4 ’emploi dans le calcul de fonctions
complexes.

Zusammenfassung

Fir die gedimpfle erzwungene Schwingung von Rahmenirigern
kann die Deformationsmethode angewendet werden. Die Ldsung gleicht
derjenigen der ungeddmpften Schwingungen, wenn man in der Berech-
nung komplexe Funktionen einfiihrt.

Summary
The deformation method can be used for forced suppressed oscillation

of portal frames. The solution is similar to that of unsuppressed oscil-
lations if complex functions are used in the calculation.

(®) Voir dans la référence (2), chap. 11, 4.
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L'influence des sollicitations dynémiques sur les constructions
Einfluss dynamischer Beanspruchung auf die Bauwerke

Effect of dynamic forces on structures

ERIK FORSLIND

Swedish Cement and Concrete Research Institute at the Royal Institute of Technology
Stockholm

If a load is applied to an elaslic struclure very slowly so that the velocity
u, 1mparted to the mass elements of the loaded member may be neglected
in comparison to the velocity of sound v, in the material, the load is
usually said to be static, otherwise it is cqlled dynamic. The definition is
one of practical convenience to be understood in'the same sense as the
practical definition of the elastic limit. In this paper we shall be mainly

concerned with ratios —> 10-1, in general corresponding lo impulses
" _

generated by high explosives or impact of missiles.

Shock waves

The velocity of a wave in a compressible medium depends on the
density of the medium in the way that increased density corresponds to
increased velocity. It is accordingly possible to describe lhe generalion
of a shock wave as occurring in successive steps, where each subsequent
part of the wave moves in an increasingly dense medium at a grealer speed
than its forerunners which will be successively overlaken. The sleepness
of the wave front will consequently increase and would finally become
discontinuous, if such a physically instable slale were nol prevenled by
heavy energy losses. IFor the practical trealment of such a wave, however,
the wave front may be described as discontinuous.

The shock wave emerging from a delonaling explosive may for
practical purposes be considered to consist of two parls, exlending over
ditferent ranges from Lhe center of explosion. In the first range the
parlicle velocity is nearly equal to the phase velocity corresponding to the
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pseudo-discontlinuous wave front and the wave is associaled with a consi-
derable transporlation of mass. In the second range the particle velocity
lags behind the phase velocily and the shock wave is successively lrans-
formed into an ordinary sound wave, in which the particle movements
may be considered as infinitesimal. The zone of transition belween the
first and the second range is fairly well defined, as can be seen in fig. 1,
showing a photograph taken immediately after that the wave front has
left the expanding luminous detonation gases. The steep front of the
shock wave may be seen as an oblate halfsphere which after short progress
will take the form of a perfect halfsphere.

Fig. 1. Detonation of TNT in air. The
visible wave front has just left behind
the expanding luminous detonation
gases.

For the present purpose it may suffice lo stale that the form of the
waves and their impulses can be measured expelimentally as a function
of time, distance and the amount and lype of explosive, and that impulses
imparted to structures may be calculated from these data. For most
practical purposes it is sufficient to know the total wave-impulse imparted
to a plane rigid surface of unit area, while the wave form is unimportant.
The last statement is justified by the fact that the time, during which
energy is transferred from the wave 1o the structure, is usually very short
in comparison to the transverse vibration period of the most common
structures. We shall discuss this question in some detail later together with
the characterislics of various types of structures. It should be mentioned,
however, that the effect of the blast from an alomic bomb is expected to be
different as a consequence of the very large total impulse and its long

duration.

Impact

When a missile hits an object, the duralion of the impact is determined
by the elastic and plastic properties of the two bodies, their geomelrical
form and extension and the phenomena of rupture that may occur in and
around the zone of contact. The impact may under certain conditions
develop in a special way that is characterized by a secondary ejection of
material from the hit structure. The elastic contact between the two
bodies generates a sel of compression waves which may be reflected at a
free surface of the structure. Upon reflection it is turned into a dilala-
tional wave progressing in opposite direction to the primary wave. A
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Fig. 2. Schematic representation of the - .
reflection of a shock wave at a solid- 3
air interface.

—— Compression in the primary wave. — \

[l]Il Tension in the reflected wave.

simplified representation of the actually very complicated phenomenon
is given in fig. 2. We see that a maximum of tensile stress is to be
expected when the reflected wave has penetrated to a cerlain depth
of the material. If the tensile stress exceeds the critical value for
the material, rupture will occur and the part set free will leave the
structure as a missile, often with a considerable velocity. It is also seen
that a smooth wave with small variations in intensity cannot be expecled
to produce the ejection effect. The effect will generally lead to changes
of frequency and boundary conditions of the structural member involved.
Similar effects may also be obtained by detonalion of explosives in contact
with the material.

Behaviour of different building materials

For a heterogeneous and anisolropic material, the modulus of elaslicity
may be defined by means of the statistical mean value of the velocily of
sound waves in the material. For steel this averaging effect may take place
over volumes of malerial that are very small in comparison to the volumes of
material used in struclural engineering. Steel may consequently be
considered as quasi-isotropic and the dispersion of a wave progressing
through the material may be neglecled. Such materials as brickwork and
concrete, however, will require larger volumes for Lhe averaging effect
to lake place and the dispersion of a wave passing through the malerial
is considerable. This is parlicularly important to observe when dealing
wilh shock waves, because the wave front will soon loose ils steepness
and the length of the wave group will be increased after a relatively short
passage. By these materials, Lhe elastic constants derived from stalic or
slow loading tests differ considerably from those obtained by dynamic
methods, because the plaslic deformalion which takes place in the former
case is subslantially eliminated when the lest is dynamically conducled.
The rate of loading, however, also influences the magnitude of the elastic
limit and the rupture strength of the material. The same effect is also
observed for steel, although to a smaller extent.

The resistance against local damage from impact is increased both
for steel and concrete, if the modulus of elasticity is increased. It 1z well
known, however, that the brittleness of steel increases with the hardness,
as well as the risk of secondary ejection of malerial. A good armour-
plate, for instance, must consequenlly possess good ductility on the rear
side. As to concrete il has been empirically observed that the resistance
against local damage by impact increases with increasing modulus of
elasticity, i. e. with high contents of stone aggregates and increased density
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of the mortar. As lhe dimensions of the concrele slruclure increase, the
dispersion of the primary waves will substantially reduce the risk of
secondary ejection, which will be easily understood with reference to
fig. 1.

The dynamic behaviour of various structural elements

Our discussion may be limited to three types of structural elements,
viz. columns, beams and slabs, as the characteristic properties of most
structures can be referred to these elements. If such a structural element
is subjected to an impulse, a vibrational state is generated that may be
considered to be composed of superimposed characteristic vibrations, each
corresponding to a discrete energy level and a definile shape of deforma-
tion. The charactleristic vibralion frequencies and the deformation types
are delermined by the shape and density distribution of the structural
clement, the elaslic and plastic properlies of the material and the boundary
condilions. A decrease of mass densily, increase of the rigidity or reduced
degree of freedom will generally increase the frequency and vice versa.

The characteristic functions, or eigenfunctions, are solutions of the

general amplitude equation
AAe —he =0

and salisfy the relation of orthogonality

J eionde =0 (i = k)

The physical significance of the orthogonality relation is that the
vibrational states corresponding to the separate characteristic functions
may exisl simultaneously without mutually disturbing each other, i. e. they
are linearly independent.

The characteristic functions may be obtained as mathematically exact
solutions of the amplitude equation or as approximate solutions to the
variational problem. In the case of concrete, the modulus of elasticity
determined by dynamical means must be used and the material may be
treated as homogeneous and isotropic without consideration of reinforcement
and microscopic cracks, provided that the interaction between the concrete
and the reinforcement is intact.

A study of the characteristic functions of slabs subjected to various
boundary conditions is being made at this institute by Mr. Odman and it
is e\pectcd that his work will facilitate the practical treatment of the
problem.

Columns and beams

A column is usually designed for carrying an axial load, with due
consideration lo the question of stability against buckling. In practice, the
actual load is either excentric or combined with a bending moment that
will produce an initial lateral deformation of the column, whose carrying
capacity is consequenily determined by the stresses in the external fibres.
When a vibrational state is set up in such a column by a lateral impulse, the
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superimposed stresses may eventually reach the critical value for the material
and cause a collapse. Disregarding the practical impossibilily of applyving a
centric load, the excenlricily of the external load is always assured for a
column of concrele as a consequence of the heterogeneity of the material
and its capacity of plastic deformation. The amount of mass per unit length
in relation to the surface exposed to the impulse will be greater for columns
made of concrete compared (o columns made of steel and the response to
lateral impulses will be reduced. A design to reduce the risk of buckling
will as a rule keep the initial laleral deformations and (he secondary
additional moments small.

Generally, the impulses corresponding to the second range cf the
detonation wave have no dangerous influence on the ordinary column,
because it is designed for high buckling stability and exposes a small area
to the relatively weak impinging wave. The above mentioned effect may,
however, occur in the first wave range. For common explosives and
ordinary conditions, the duration of the impulse is shorl enough to make
the energy absorplion of the column practically independent of its lowest
characteristic frequency and we find from the impulse equation

mv:fpdt
s

that more favourable conditions will be produced by increasing the mass
of the column which will lead to a decrease of the initial velocity and the
maximum amplitude. If the mass increment, however, is associated with
decreased characteristic frequency, while the buckling risk at normal load
remains unchanged, the favourable effect is counteracted. The mass
increment should in other words be combined with increased rigidity. For

designing purposes it is usually not necessary to calculate the reaclions at
" the supports, unless the system is very rigid and exceptionally susceplible
to shearing forces. '

Partial destruction through impact will, as a rule, cause complete
collapse of loaded steel columns. In the case of reinforced concrete columns,
in which the plastic deformation has caused a transfer of load from the
concrete to the reinforcememnt, even a superficial damage to the concrete
surrounding the reinforcement may be sufficient to produce partial buckling
of the reinforcement bars, which under unfavourable conditions mavy lead
to a sudden collapse of the column. Usually, however, the central part of
the concrete column has to be damaged, before its carrying capacity is
appreciably reduced. The effect of a lateral impulse located at the base of a
column will be discussed later in connection with various structural
arrangements.

It is obvious that the behaviour of beams is in principle similar (o that
of columns, except that the absence of axial load and the presence of a
lateral dead .load will diminish the probability of damaging effects of
lateral shock waves to a considerable degree. It is generally to be observed
that damages 1o beams, due to blast, occur through secondary influence
from surrounding slructural elements.
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Slabs

When a slab is subjected to a shock wave, the excited vibrational state
is extremely sensitive to the loading and boundary conditions. It is
consequently practically impossible to predict which mode of vibration
will predominate, especially as the energy levels sometimes are very close
and a sort of degeneracy occurs. Empirically, however, it has been
observed that the real behaviour of slabs designed by use of one of the
fundamental states is reasonably in accord with theory, provided that the
impulse is close to the critical value for rupture.

As for beams it is usually not necessary to consider (he reactions at the
supports if these extend conlinuously along the edges. Discrete supporting
arrangements necessitate a detailed analysis with regard to shearing effects.

It the slab is subjected to the detonalion wave of an explosive in
contact with the slab or the impact of a missile, the longiludinal
compression wave will produce a local damage around the contacl zone,
eventually accompanied by a secondary ejection of material from the
opposite side of the slab. It has been empirically observed that such local
effects have very small influence on the characleristic frequency of the
slab and that the damage must be extensive in order lo produce an
appreciable change. This implies that the structure of which the slab is an
inlegrating part retains its normal function.

Types of structures

As representing the various possible combinalions of the aforemen-
tioned structural elements three types of siructures will be considered,
namely the framework, the mushroom structure and the cell struclure.
All these represent struclures which are highly slatically indeterminate.
Their main dynamical characteristics are fairly well known from the
study of earth-quake effects on buildings and we shall limil our discussion
lo some questions that may be of inlerest for the planning and designing
of factories or other constructions where explosions may take place.

For the framework and also for the mushroom structure a much
discussed question concerns the advantages gained by the use of walls
consisting of light-weight materials in order lo reduce and limit the
effects of blast on the carrying structure.

From theoretical considerations it might be expected that impulses
transmitted by a shock wave, emerging from the center of a closed room
where the dislances to all walls are equal, will be absorbed in the same
degree, independently of the resistance and the mass of the walls, provided
that the fundamental frequencies are low enough to permit the impulses
to be considered as momentary. In other words, if one of the walls should
be removed without change of the boundary condilions for the remaining
walls, the latter would be affected by the impulse in quite the same
manner. This has, as a matter of fact, been verified experimentally. Should
the intensity of the wave suffice to produce rupture, this could accordingly
not have been prevented by making one of the walls less resistant. If,
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however, the residual static pressure of the explosion gases within the
closed space is high enough to produce rupture, the effects will be abated,
if one of the walls is easily destroyed. This advantage is, however, only
apparent or fortuitous.

In a sufficiently limited space for the static pressure to produce
rupture, the lmpu]se by high’explosives will be amply sufficient for pro-
ducing it and the static pressure will be of less consequence as it will only
complete the destruction. The explanation of the favourable effect some-
times observed as arising from ihe premature destruction of one wall may
be sought in an inadequate design of the structure supporting the walls
horizontally, or the roof vertically. For instance, the tensile stresses set
up in a reentrant corner usually start the destruction at impulse intensities
far below the intensity producing rupture in the central part of the slab,
and a rapid decrease of the static pressure will consequently be favourable.
With properly designed walls of uniform and equal strength, no damage
at all would have occurred. The guiding principle for the design should
be to assure a satisfactory resistance to the shock wave.

In factories and similar buildings, where the amount of explosives
contained in a limiled space can be controlled, it is technically and
economically possible to give the room suilable volume with regard to
the permissible static gas pressure. The walls should be designed to resist
the shock wave so as to prevent damage to adjoining rooms.

With reference to the discussed questions it will thus be seen that the
advantages which are claimed to be gained by framework or mushroom
structures are much overrated by this type of load. In our opinion, the
most adequate construction is provided by the cellular system as composed
of elastically clamped slabs, limiting the damaging effects 1o the closed
cell. Constructional swtemq of this kind must be considered as the most
effective for avoiding total damage by locally occurring explosions and
they should be used more frequem]y for factories and olher constructions
where risks of explosion are involved at operation.

From a general point of view, and especially with regard to shock
waves transmilted through the subso;] all the structures discussed are
particularly well 'ldapted to withstand dynamic action. Even if one or
several of the carrying parts are deslroyed, the statically indeterminate
system will continue to function, causing a redistribution of loards and
stresses but preventing the structure from collapse.

Damage to foundations may be caused by shock waves generated in
well graded moraine soils. Such shock waves generally occur as longitudinal
waves and are easily dispersed by applying a filling of stone around the
structural element. If the detonation takes place below a certain depth in
layers of plastic clay, however, more dangerous effects may be produced.
Besides a primary lonﬂltudmal wave, a transverse wave of great amplitude
and low frequency is generated, the propagation of which is confined to
the surface of the layer. This latter wave, from which damage may arise,
resembles the Rayleigh wave, with accelerations comparable to those
occurring in earth-quakes. The range of propagation and the energy
content, however, are rather limited and depend on the properties of the
clay layers and their boundary conditions. The absorption of the wave
energy by an ordinary, heavy structure, founded on clay with the load
concentrated on pile groups or distributed over a continuous slab, is in
general so complete that the wave is exlinguished by the obstacle. On
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Fig. 3. Impact load on a 9.5 cm rein-
forced shell roof with a clear span
of 142 meters. A concrete block
weighing 1000 kgs is released from
a height of 3 meters. The picture
was taken immediately before the
impact.

account of the relatively small energy content of the wave, the effects will
only be local and the risks of damage will as a rule be restricted to the
pile groups. Rupture would, however, only occur in the immediate
neighbourhood of the center of explosion and the risk of damage to the
structure as a whole would thus be greatly reduced or enlirely eliminated, if
the possibilities of redisiribution of load from the damaged group of piles
to the surrounding ones were assured by an adequale design. Even in this
case the cellular structure is less sensitive to local damage of the foundation.
Although the framework or the mushroom structure may represent good
solutions of the structural problem, the cellular system should be preferred
if other circumstances allow it.

In such cases, where a structure is designed for the sole purpose of
protecting people or machinery from heavy falling objects, as for instance
linings in rock tunnels, the consiruction should permit a high deformation
in order to reduce the risks of damage by piercing.

Figures 3 and 4 show an experiment which was carried oul in order
to verify the theoretical treatment of local impact on a thin concrete shell
roof with a clear span of 14.2 melers and a height at its centre of 1.25 meters.
The shell was 9.5 cm thick and was reinforced with 5 mm bars, spaced at
a distance of 65 mm. A concrete block, weighing 1000 kilos, with an
effective impact area of 47.5 X 47.5 cm was released from a height
of 3 meters. The two pictures show the undeformed shell, respectively its
maximum deformation. The test was repeated with a sharp rock replacing
the concrete block and in both cases the missile was arrested by the shell,
although a certain amount of local penetration occurred, as is shown in
fig. 5. .

Fig. 4. Conditions as in fig. 3. The
deflection of the shell under impact
is clearly shown in the picture.




EFFECT OF DYNAMIC FORCES ON STRUGTURES 697

Fig. 5. Local penetration ot sharp
rock weighing 2000 kg and falling
from a height of 3 meters on the
shell root shown in figure 3.

In another test with a 2 000 kilos missile, the observed vertical
deformation, without serious damage to the shell, was 25 cm.

Résumé

La nature des sollicitations dynamiques produites par explosion ou
choc est discutée; les propriétés caractéristiques et le.comportement de
quelques matériaux de construction sous 1'effet de sollicitations dynamiques
sont étudiés; l'auteur étudie également les déformations subies par trois
éléments de construction (colonnes, poutres et dalles), ainsi que le com-
portement de ces éléments dans diverses constructions.

Zusammenfassung

Die Art der dynamischen Beanspruchung bei Explosion oder Stoss
wird besprochen; die charakteristischen Eigenschaften und das Verhalten
einiger Baustoffe des Hochbaues unter der Einwirkung von dynamischer
Beanspruchung werden in aller Kiirze behandelt, ebenso wie die charak-
teristischen Forminderungseigenschaften von drei typischen Konstruktions-
elementen, ndmlich Stiitzen, Balken wund Platten. Einige Erfahrungen
iiber die Wirkungsweise der besprochenen Konstruktionselemente in
verschiedenen Bauwerken werden erortert.

Summary

The nature of dynamic load as produced by explosives and impact is
discussed; the properties and behaviour of some building materials under
the action of dynamic load are briefly related and the characteristic
deformation properties of three typical structural elements, viz. columns,
beams and slabs are discussed, as well as some questions with regard to
their mode of function in various structural systems.



	Vb: Effects of dynamic forces on structures
	L'auscultation dynamique des ponts à la S.N.C.F.
	A study of dynamic influences of moving loads on girders
	Differential equation for calculation of vibrations produced in load-bearing structures by moving loads
	Vibrations amorties des portiques
	Effect of dynamic forces on structures


