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Vbl

L'auscultation dynamique des ponts ä la S. N. C. F.

Dynamische Untersuchungen der Brücken der S. N. C. F.

Dynamic research of bridges of the S. N. C. F,

M. CASSE

Ingenieur ä la Division des Ouvrages d'Art de la S. N. C. F., Paris

La question des effets dynamiques subis par les ponts se presente
ä l'ingenieur sous un double aspect : scientifique et pratique; le premier
comprend sans doute le second, mais son etude est actuellement trop peu
avancee pour que leurs objectifs ne se distinguent pas netlement par les
deiais dans lesquels ils peuvent etre atteints.

Difficultes de l'etude scientifique des effets dynamiques

L'etude scientifique de la question vise ä la connaissance precise des

conditions dans lesquelles se produisent les effets dynamiques, de leur
grandeur, de la facon dont ils interviennent dans la securite des constructions;

eile necessite beaucoup de recherches lant theoriques qu'experimen-
tales. Jusqu'ici, les etudes theoriques poussees n'ont pas manque, les

experimentalions assez vastes non plus, la comparaison des resultats
obtenus par les deux voies a ete tentee. Cependant, il est encore impossible
d'övaluer ä priori avec quelque precision, pour un element donne d'une
poutre de pont, la difference entre les effets maxima provoques par une
charge en stalionnement el les effets maxima resultant du
passage de la meme surcharge animee d'une vitesse donnee. Sans doute,
quelques points ont ete eclaircis; des recherches tres remarquables
conduites avec soin et perseverance, simultancment sur les plans theorique
et experimental, ont permis de reconnailre, par exemple, l'influence des
forces periodiques resultant de 1'action des contrepoids d'equilibrage des
locomotives : les mesures de fleche oblenues concordent avec ce que la
theorie permet de prevoir. Mais il s'agit seulement de l'effet d'une cause
particuliere, que tous les ingenieurs ne considerenl pas comme preponde-
rante; les resultats solidement elablis ne concernent que les fleches des
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ouvrages suffisamment longs pour <pie les mouvements resultant des
conditions d'entree des charges aienl le lemps de s'amorlir avant que le
maximum des deformations soil atteint; moins suis pour les contraintes
dans les membrures, ils restent sujets ä caution pour les contraintes dans
les treillis; ils supposent d'ailleurs une vitesse constante, des chemins de
roulement, du maleriel et des convois assez bien eonslitues pour que des
mouvements parasites ne s'amorcenl pas.

En fait, interviennenl simultanEmenl, dans les effets dynamiques et

pour des fractions non negligeables, diverses causes dont on sail mal tenir
comple; ainsi. le passage d'une surcharge donnee ä une meme vilesse ne
determine pas exaelement les memes effels en raison des conditions
toujours incomplelemenl definies. dans lesquelles le convoi se presente
ä Fentree du ponl. Ce ne sonl pas la des objections theoriques : elles onl
ete Ires nettement verifiees et vivemenl eommentees au cours des essais
effectues de 1929 a 1931 sous les auspices de FL". I. C.

En negligeanl meme. momenlancment. les difficultes resultant de
Findelcrmination ou de la complexite des conditions initiales, Feinde
scientifique des effels dynamiques s'esl trouver freince par le defaut d'ap-
pareils enregistreurs absolument fideles, nolamment pour la mesure des
contraintes. Les progres considerables effectues dans ce domaine pendant
la guerre, la mise au point des exlensomclres ä fil resistanl, permettent
d'eseompler la Solution prochaine de celte difficulte; mais la formalion
des Operateurs et l'execution des nombreuses mesures necessaires enlrai-
neront, pour toute Observation syslematique en campagne, des deiais et
des frais importants. La seule repelition des observations faites jusqu'ici
avec des appareils plus rusliques demandera dejä un lemps tres long.

D'aulre pari, Feinde complete des effels dynamiques ne saurait se
borner ä la determination des deformations plastiques provoquees par le
passage des charges. II faudra evidemment se rendre comple si les indications

d'un exlensomelre peuvent dire interpretees de meme pour des
charges statiques et pour des charges dynamiques, si une meme extension
instantanee correspond effectivement ä une meme contrainte el dans quelle
mesure on peul assimiler, dans Feinde de la securile, deux contraintes effec-
lives de meme grandeur, l'une fixe, Faulre instantanee. II semble bien quo
les observations sur la fatigue des metaux ne s'appliquenl pas directement
aux elemenls de ponts, vu les conditions de variations des efforts et les
frequences auxquclles ils sonl soumis. Lne etude pertinenle de celte seule
question exigera aussi de löngs deiais.

L'etude du probleme des effets dynamiques sur les ponts ne parait sus-
ceptible de progresser largemenl qu'en y employanl les methodes modernes
de la recherche scientifique : recours ä des equipes specialisees, cbargees de
läches delerminees, et coordination de leurs efforls. Chaque groupe de
recherche devrail comprendre des ingenieurs de formations diverses : meca-
niciens capables de reconnailre dans Einfinde des processus vibraloires
possibles ceux qui doivent effectivement se rencontrer dans un element
d'un lablier complexe el pour quelles conditions de presenlalion des
charges, physiciens connaissanl suffisamment les proprieles des materiaux
pour se rendre compte de l'influence des variations d'efforls ou de
deformation sur les contraintes admissibles dans les ponts, lechniciens susceptibles

de concevoir el realiser des appareils donnant sans alleralion les
quanlites ä mesurer, Operateurs rompus au maniemenl des appareils el ä
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leur inslallation dans les parties les moins accessibles d'une charpente.
Les resultats n'apparailront sans doule que peu a peu, ä condition de ne
pas distraire les equipes constiluees de la lache laborieuse «pii leur aura ete
confiee et de les encourager dans leurs recherches sans les chicaner trop
s'il ne sort pas tres vite de leurs travaux une formule definitive d'impact
ne comportant que deux ou trois parametres.

Necessite de connaitre pratiquement certains aspects des effets dynamiques

En altendant que de telles etudes aienl lire au clair Fimportance el
le röle des effels dynamiipies dans les ponts el que des lois chiffrees per-
mellent de les u.tiliser praliquemenl, les ingenieurs qui recoivenl la charge
de conserver de vieux ponls ou den elablir de nouveaux se demandenl
loujours, comme leurs predecesseurs d'il y a cent ans: si un convoi passe
sur l'ouvrage ä une vitesse V, quelle est, en chaque point, la majoration
de conlrainte par rapport ä la conlrainte statique? Beaucoup jugent la

question un peu academique : sous le regime general des coeffieients de

majoration reglemcnlaires soil explicites (quand les contraintes admises
sonl elevees), soit impliciles (quand les conlrainles admises sonl faibles).
il ne semble pas (ponls suspendus insuffisamment rigides mis a pari) que
se soienl manifestes des ineidents graves resultant d'evalualions trop opli-
mistes. De tres anciens ouvrages, bien construits, d'apres les contraintes-
limiles en usage il y a qualre-vingls ans, onl supporte sans renforcement
des aecroissements considerables des charges et des vilesses des convois de

chemin de fer. L'on peul donc soutenir que, si la connaissance precise des
effels dynamiques contribue ä la satisfaction de l'esprit de l'ingenieur. son
influence sur la securile et sur l'economie demeure modere. Mais c'est lä

une facon de voir trop simpliste.
Le fait que des ouvrages tiennent ne prouve pas que FEvaluation empirique

des effets dynamiques ait ele assez correcte, mais seulement que les
erreurs qui en resultenl ne portent pas la probabilile de ruine de ces ponls
ä une valeur netlemenl superieure ä celle qui se rencontre dans les
constructions courantes. Celle conclusion n'est d'ailleurs pas generale : il arrive.
par exemple, qu'au-dessus d'une certaine vitesse, des rivets s'ebranlent, des
fissures se propagent, des barres de treillis se metlent ä vibrer ou ä flamber
d'une facon inquietanle. 11 vaul mieux avoir reconnu celle circonstance
par une elude ou par des essais sur le ponl el avoir impose une limitation
de \dtesse, plutöt que den etre informe par des ineidents de service.

D'un autre cetc, les formules empiriques de majoration peuvent etre
nmcliorees; si l'on peul elablir qu'un type d'ouvrage est particulierement
favorable ä l'allenualion des effets dynamiques, il est normal d'appliquer,
a ce type, un coefficient particulier qui permettra, sans reduire la securile,
de realiser des economies.

Aussi, la S. N. C. F., sans negliger la question scientifique el generale
des effets dynamiques sur les ponts, s'esl-elle beaucoup preoecupee d'obtenir

des renseignemenls immcdiatemenl utilisables et des reponses rapides
ä des questions praliques louchant la securite de ses ouvrages ou l'economie
des projets. L'ordre de grandeur des effets dynamiipies correspond-il
toujours k celui qui resulle des formules reglemenlaires? Le maleriau et le
lype des ouvrages onl-ils une influence teile qu'elle jiislifie la preference
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Fig. 1. Differences obtenues dans deux enregistrements de fleches
effectues chacun avec deux fleximetres de type classique.

accordce a certains types ou k certaines dispositions particulieres? Dans
quels ouvrages ou quels elements d'ouvrages y a-t-il lieu de craindre des
mouvements anormaux ou des deformations importanles au passage des
convois? Les mouvements que l'on constate sur tel pont sont-ils veritable-
ment excessifs? A quel taux la vitesse doit-elle etre reduile pour les rendre
acceptables?

Pour repondre objeclivement ä ces questions ou a d'autres analogues,
il faut faire appel ä Fexperience. Mais il n'est pas indispensable, pour le
but pratique poursuivi, de disposer de moyens aussi importants que ceux
envisages plus haut. L'ulilisation d'appareils moins parfaits se justifie
quand la simplicile de leur mise en place et de leur manceuvre permet de
les confier a des specialistes d'ouvrages d'art qui, seuls, seront capables de
les poser rapidement. Les mesures peuvent ainsi elre multipliees dans des
conditions diverses sans frais exageres. De fait, la S. N. C. F. en effectue
frequemment sous des surcharges circulant syslematiquement k des vitesses
diverses. En dehors des reponses qu'elles apportent, moyennant une
Interpretation critique convenable, aux problemes particuliers, ces experiences
constituent une documentation permettant de reconnaitre certaines lois
empiriques. Nous donnerons, au cours du Congres, un apercu des resultats
obtenus dans cette voie.
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Appareils utilises

Les appareils classiques, fleximelres et extensometres ä enregistrement
mecanique, peuvent, pour des observations a objectif pratique et limite,
fournir dejä des elements de comparaison et de classement.

pou

Fig Fleximetre optique.

Toutefois, pour obtenir des indicalions plus süres ou pour proceder
ä d'autres investigations, de nouveaux appareils ont ete mis au point par
la S. N. C. F. ou sont en cours de construction : fleximetre, rouligraphe,
accelerometre.

Fleximetre
La juslification de la creation d'un nouvel appareil reside dans la

constatation que deux fleximelres amplificateurs de type classique, attaches
en des poinls tres voisins et poses dans des condilions paraissant correctes,
ne donnent pas exactement le meme enregistrement; dans certains, cas,
rares il est vrai, les graphiques accusent des differences nettes, tant pour
Famplitude que pour Failure et Famortissement des oscillations (fig. 1).

L'origine de ces differences reside evidemment dans les vibrations
parasites introduites par la transmission. d'oü le desir de supprimer
celle-ci.

Le fleximetre optique (fig. 2) comprend une lentille achromatique
rendue solidaire de la membrure inferieure de la poutre etudiee. Une
source lumineuse envoie sur la lentille au travers d'une mince fente
horizontale, un pinceau de rayons qui donne une image sur une fente verlicale
placee devant un derouleur de papier sensible. Le deplacement du point
lumineux el, par suite, celui de la lentille, s'enregistre en une courbe
conlinue.

On emploie assez souvent une lentille de 8 melres de distance focale,
la source lumineuse et Fenregistreur etant places respectivement ä 16
metres de part et d'autre de la poutre; Famplification est alors tres
voisine de 2, mais eile peut etre augmentee, le cas exheant, ainsi que la
luminosit6 des images, en prenant une lentille de distance focale diffe-
rente ou en faisant varier Feloignement de la source et celui de
Fenregistreur.

A defaut de circonstances locales favorables, la source et
Fenregistreur sont amenes au niveau de la lentille en les disposant sur des ccha-
faudages robustes places assez loin du pont pour ne pas etre influences par
les Irepidations du sol. En operant a la lombee du jour, on peul se con-



656 Vbl. M. CASSE

^
3

Soo.-ca Itirniwutfi

Fig. 3 et 4. Rouligraphe.
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tenter d'une source peu intense, ce qui facilite Finstallalion en pleine cam-
pagne.

La lentille etanl montee sur un support robuste, solidemenl fixe au
pont, il n'est pas k craindre qu'elle soit le siege de vibrations propres
susceptibles d'apporter des perturbations dans Fenregistrement. Les causes
d'erreur possibles paraissent limitees au Irouble que pourrait apporter, ä
la propagation des rayons lumineux, une atmosphere heterogene el
variable; celle cause ne semble pas ä considerer pendant la courte duree d'un
passage.

L'amplificalion exacle esl determince, pour chaque essai, en mesuranl
le deplacement de Fimage qui correspond ä un deplacement vertical
eonnu de la source.

Rouligraphe
Cet appareil a pour objel prineipal de deceler el mesurer les vibrations

horizontales, peu eludiees jusqu'ici, mais dont l'effet esl parfois
Ires serieux; nous en donnerons des exemples au cours du Congres. II
utilise Ie principe que l'on trouve dans la coneeption de nombreux sis-
mographes, et suivanl lequel une masse pendulaire relativement lourde
demeure pratiquement fixe quand on ne la soumel qua. des impulsions
de cadence rapide par rapporl a sa frequence d'oscillation; celle derniere
esl rendue suffisamment lente en ulilisant un pendule d'axe quasi-vertical.

Les appareils anciens, bases sur le meme sysleme, comportaienl des frot-
lemenls imporlants resultant, soil des glissieres, soit du sysleme d'enregis-
trement attele sur la masse; pour pouvoir vaincre ceux-ci, une force de
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rappel importante etait necessaire. II en resulte alors une periode d'oscilla-
tion trop courte pour que les deplacements du pont laissent la masse
pratiquement fixe. Celte imperfection ne permeltait guere de les utiliser, et

avec beaucoup de reserves, que pour des comparaisons.
Dans le rouligraphe (fig. 3 et 4), on a, au contraire, reduit syste-

matiquement les frottements : la masse pendulaire est suspendue par
une tige et s'appuie par une bielle, toutes deux munies d'articulalions ä

billes; Fenregislrement est purement optique. A cet effet, un miroir
cylindrique solidaire de l'axe de rotation recoit d'une source solidaire du bäti
de l'appareil un rayon lumineux qu'il renvoie sur la fente horizontale
d'un enregistreur dans lequel se deroule, d'un mouvement continu et ä

des vitesses reglables, un film photographique de 35 mm.
Dans ces conditions, on peut obtenir sans difficulte des periodes de

trois secondes avec des frottements insignifiants (en oscillation libre,
Famplitude est reduite de moitie apres une trentaine d'oscillations).

L'appareil enregistre, soit en vraie grandeur, soit avec amplification,
les deplacements transversaux de cadence inferieure ä la seconde, mais,
par son principe meme, il enregistre egalement les mouvements angu-
laires autour d'un axe horizontal perpendiculaire a la direction des
deplacements, d'oü le nom de ff rouligraphe ».

Pratiquement, il est facile, le cas echeant, de separer les deux
mouvements dont les periodes sonl tres differentes.

ACCELEROMETRE

L'emploi d'un accelerometre conjugue avec un fleximetre ou mesu-
reur d'oscillations (horizontales ou verticales) permet de se faire une idee
de la confiance k accorder aux deux enregistremenls et de mettre en
evidence les vibrations rapides ä faible amplitude qui sont peu visibles dans
les graphiques d'oscillation.

De nombreux accelerometres ont ete imagines ou essayes dans les
dernieres annees. La S. N. C. F. dispose notamment d'un accelerographe
qui a ete" Signale au Congrfes de 1936 (Rapport Final, p. 645), dans lequel
les variations de pression resultant des accelerations agissent sur un quartz
piezo-eleclrique. Cet appareil necessite toutefois, ä proximite de l'ouvrage,
une inslallation eiectrique un peu encombrante; aussi, pour les essais fre-
quents utilise-t-on un detecteur de vibralion a induclion et, pour les
frequences basses el d'amplitudes notables, a-t-on prevu un accelerometre
m6canique (ä enregistrement optique). Ce dernier est constitue par une
barre de torsion encastree aux extrömites, porlant en son milieu une
traverse ä laquelle est fixee une masse qui peut etre eloignee ou rapprochee

C

Miroir

c

Fig. 5. Accelerometre.
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de la barre de torsion; l'appareil esl muni d'un disposilif d'amorlissement
electro-magnetique.

Resume

Malgre d'importanls travaux theoriques el experimentaux, on connail
encore tres mal Fimportance des effets dynamiques auxquels sont soumis
les divers elements des ponts et quelle est leur influence sur la securile.
Quand on envisage une etude scientifique de la question, on se heurte ä

l'impossibilite de tenir compte simultanement des nombreux parametres
susceptibles d'intervenir dans le phenomene. La theorie reste hesitante tant
qu'on ne se borne pas ä des cas schematiques et beaucoup d'experiences
demeurent confuses, meme lorsqu'on ne discute pas la fidelile des enregis-
Ircments. Pour elueider vraiment la question, il faudra sans doute beaucoup
de Iravail ä des equipes specialisees, les unes dans les calculs, les autres
dans la construction d'appareils. les autres dans leur mise en place et leurs
observations, etc., el coordonner tous ces travaux.

Faut-il jusqu'ä ce epie des resullats indisculables aienl ele obtenus
par les chercheurs, se conlenter, pour la verificalion des ouvrages anciens
et Felude des ouxTages nouveaux, d'utiliser sans trop y croire, les coefficienls

de majoration en usage dans les divers pays? On ne peut alors
repondre aux questions epii se posent frequemment aux ingenieurs respon-
sables des ponls. Faut-il limiter la vitesse sur lel ouvrage el ä quel taux? Y a-
t-il interet, pour reduire les effets dynamiques, ä adopter tel type d'ouvrage
ou tel mode de pose Pour donner une solltlion pratique ä des questions
analogues, la connaissance tres precise du phenomene d'impact n'esl pas
necessaire, puisqu'il s'agit principalement de comparaisons de quelques
effets mesurables. II est loisible d'utiliser les equipes habituelles chargees
de Fauscultation des ponts et d'employer des appareils n'enregistrant que
les aspects les plus simples des manifestations dynamiques et la S. N. C. F.
procede souvent ä de telles observations ä fins limitees et pratiques. On
donnera, au cours du Congres, des indications sur les constatalions faites et
certains resultats generaux mis en evidence.

Pour ces observations, la S. N. C. F. a systematiquement recours ä des
appareils de coneeption, de mise en place et d'ulilisation tres simples,
dont l'amplification et Fenregistrement sont normalement oblenus par
voie optique. Le rapport donne des indications sur des appareils
nouveaux coneus dans cet esprit : fleximetre, enregislreur d'oscillations
horizontales ou de rotations d'axe horizontal (rouligraphe), accelerometre
vertical.

Zusammenfassung

Trotz zahlreichen theoretischen und experimentellen Untersuchungen
isl die Bedeutung der dynamischen Einflüsse auf Brückenbauten und die
dadurch beeinflussle Sicherheit noch wenig bekannt. Wenn man eine
wissenschaftliche Untersuchung dieser Frage ins Auge fasst, so stösst man
auf die Unmöglichkeit, gleichzeitig die zahlreichen Parameter, welche die
verschiedenen Erscheinungen charakterisieren, zu berücksichtigen. Die
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Theorie bleibt auf unsicherer Grundlage, wenn man sich nicht auf schematisierte

Fälle beschränkt und zahlreiche Versuche bleiben unklar, auch
wenn über die Genauigkeit der Untersuchungen kein Zweifel besteht. Um
die Frage von Grund auf zu klären, wird es zweifellos einer grossen Arbeit
von ausgewählten Fachleuten bedürfen, welche einerseits in der Berechnung,

andererseits im Bau von Versuchseinrichlungen. andere noch in der
Auswertung der Versuche und schliesslich in der Zusammenfassung
sämtlicher Ergebnisse spezialisiert sind.

Es scheint sehr fragwürdig zu sein, mangels fester Grundlagen den
einfachen Weg der Verwendung von Stosszuschlägen zu beschreiten.
Letztere sind nicht in der Lage, auf immer wiederkehrende Fragen der
Brückenbeanspruchung eine klare Antwort zu erteilen. Eine für die Praxis
geeignete Lösung verlangt nicht notwendigerweise eine genaue Kenntnis des
Slossvorganges; denn es handelt sich hauptsächlich um den Vergleich von
einigen messbaren Wirkungen. Dafür genügt es, die gewöhnlichen Wege
mit den üblichen Bestand von Fachleuten einzuschlagen, welche mit Hilfe
von Versuchseinrichlungen nur die einfachsten Erscheinungsformen der
dynamischen Beanspruchungen bestimmen, wie es meistens auch die
S. N. C. F. tut. Während des Kongresses werden darüber Angaben gemacht
und gewisse allgemeine Ergebnisse hervorgehoben werden.

Für diese Beobachtungen hat die S. N. C. F. systematisch Aufnahmegeräte

einfacher Art verwendet, deren Uebersetzung sowie Begistrierung
normalerweise auf optischem Wege erfolgt. Der vorliegende Bericht
enthält Angaben über neue Versuchseinrichlungen. die zu diesem Zwecke
erstellt wurden : Durchbiegungsmesser, Registrierapparate für horizontale
sowie für Drehschwingungen mit horizontaler Axe (rouligraphe) sowie
auch vertikale Beschleunigungsmesser.

Summary

In spile of much theoretical and experimenlal research, littie is known
of the importance of dynamic influences on bridge-building and conse-
quential safely. If we go into scientific research of this question we are
confronted wilh the impossibility of taking into consideration Ihe numerous
Parameters which characterise the various phenomena. Theory remains
on an unreliable basis unless we restrict ourselves to graphic instances,
and numerous tests remain unconvincing, even where there is no doubt
as to the accuracy of the research work. To elucidale the question from
Start to finish will necessilate much work by chosen specialists who are
experts, on the one hand, in calculation and, on another hand, in the
construction of experimental apparatus, whilst yet olhers specialise in
summing up Ihe tests and, finally, in making a Synopsis of the whole
results.

Owing to lack of reliable rudiments, it appears very doubtful
whether we can adopt the simple melhod of using thrust increases. It is
not possible for the latter to provide a clear answer to the constanlly
recurring questions of bridge stresses. A Solution that is suitable in praclice
does not necessarily require a precise knowledge of the processus of thrust :

for it is principally a matter of a comparison of a few effects that can be
measured. For that, it suffices to follow the general procedure with the
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usual aid of experts who, wilh Ihe aid of testing apparatus, only ascerlain
the simplest outward forms of dynamic stresses, as is mostly done by Ihe
French National Railways. Accounts of this will be made during the
Congress and certain general resulls emphasized.

For these observations the French National Railways systemalically
used recording apparatus of a simple kind, the results being interpreted and
recorded optically. The present report contains particulars of new testing
apparatus created for this purpose; deflection indicator, recording apparatus
for horizontal and rotary vibrations with a horizontal axis (rouligraph),
and a vertical acceleration indicator.
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Sollicitations dynamiques de poutres sous charges mobiles

Ueber die dynamischen Beanspruchungen von Trägern
infolge beweglicher Lasten

A study of dynamic influences of moving loads on girders

ARNE HILLERBORG
Civil Engineer

Institution oi Structural Engineering and Bridge Building, Royal Institute oi Technology, Stockholm

An investigation inlo the dynamic influences of moving loads on
bridges is being made at the Institution of Structural Engineering and
Bridge Building at the Royal Institute of Technology, Stockhom, Sweden.
To begin wilh, the simplest cases are thoroughly studied, and then the
various effects are added one by one in order to determine their separate
and cumulative action. The investigalion comprises bolh theoretical and
experimental sludies.

In the years 1943 to 1946 the main part of the work was done by Rolf
Lerfors, C. E., and from the end of 1946 the investigation has been con-
tinued by the Author.

In the first place, I studied the case of a concentrated load moxdng at
a constant speed along a girder of uniform section. Methods of Solution
for this case have been given by several authors, but these methods are
either very laborious or eise so roughly approximative that the Solution is
too inaccurate. Therefore, I have tried to simplify and lo rationalize the
arithmetical computations in a method due to Prof. Inglis ('), which I
consider lo be one of the most reliable methods available for this
purpose. This method was simplified so that it was possible to calculate a great
number of cases and thus to form an estimate of the dynamic increment
in all practical cases.

It is very important that, if damping is left out of aecount, the dynamic

(') Inglis, A Mathematical Treatise on Vibrations in Baihvay Bridges, Cambridge, 1934.



662 Vb2. A. IIILLERBORG
'1 '-*!

increment can be shown to be completely determined by two dimension-
less quantities defined as follows :

velocity of load
2 X natural frequency of girder X length of girder
mass of load

mass of girder
For practical purposes, the approximate limits of these quantities are

0 <a <0,15
Ü < v < 5

For v=0, Timoshenko (2) has shown that the dynamic increment in
centre deflection is approximately given by

a
1 — a

In the more difficult case where v z-t£ 0, a great many methods were
studied, and, as has been mentioned above, that due to Inglis was found
to be most suitable. lie expresses Ihe concentrated load per unit length of
span by the Fourier series

2 P ^ i-x
p —,— > sin is-sin—-—1 l Li li=i

The notations are given in fig. 1.
In the computalions, Inglis uses only the first term of this series.
The deflection is assumed to be

-x
y ?('•?)-s|n —

and we obtain, for the determination of q(<o), the differential equation
di(l i i .4„t„\ i d(J „:„o„ \ „( { ,.:.,2„\_ yoo* +8in«? +^-Sin2?+g _^-_ sin* <p =-^L-.8m?do \ 2 v ' / d<D \ 2 va- '/ 2 va! '

where y00 denotes the static deflection for a =—
Inglis solves the above equation by means of two series, viz., a series

for a forced oscillation and a series for a free oscillation. The coefficienls
of these series are determined as usual.

The second series is by far Ihe most difficult. Ils determination involves
much work.

It can be shown lhat the free oscillation is in very dose agreement with
the expression

- A Ii / T" ~ p d? ]
q'™- i/l+2vsim> "n II7 ** "" Vu |/l + 2v.sim>!

which is comparatively simple to calculate, especially after tabulating the
expressions

1 rt do
-.-, a»d / ; •/l + 2^sin?o Ja |/l -f 2 v sin* <o

(2) See, for example, Timoshenko, Vibration Problems in Engineering, Now-York, 1937.
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Fig. 1.

The integral can be determined by means of tables of elliptic integrals.
Ry using this formula, the time required for Computing one case is

reduced from about fifteen hours to a few hours.
By means of this simplified method, I have calculated and plotted a

diagram showing the dynamic increment in deflection as a function of a
and v. It has been convenient lo define this dynamic increment by

\'/dvn Vstat/tnax
Bu — —

I/^atmai

where qiy„ has Ihe same significance as q(a>) above, and qstal corresponds
to a 0 and has the value

gSc.->t= yoo • sin cp

For small values of a and v (a2v<^0.01), I got a direct expression for e, i.e.

1 -4- 2 v 2 v

1 — 1

+

9

l+or<
(iv

1 — ** 1 — 9 7.' |,'l _a*v J | __2

For higher values, I have first calculated q(<o) and then e.

These results were used for plotting the diagram shown in fig. 2.
When q is known, the force exerted by the load on the girder and the

acceleration forces acting on the girder itself can be calculated on the same
assumptions as before. Consequently, the moments and the shearing forces
acting on the girder can also be computed. With Ihe notations given in
fig. 1, these values are

»l

M„ M„

R„ R„

ayao sin <p

ay00sino

,d'ci
de*"

2 d'q

2 l sin ~a
sine

tz (l-a)

2 1 ~at4-\ 1 H cos -rr— sinedo' \ a- l

M„ denotes the moment at the distance a from the left end of the girder,
and M0<1 designates the static moment produced when the load is applied
at this section.

R„ and R0a denote the corresponding shearing forces.
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Fig. 2. Dynamic increment in centre Fig. 3. Maximum dynamic increment
deflection as a function of a and v. in bending moment as a function of

«and».

In the same way as before, we define

(M„dyr - M0stJ„
£M„ M,

£H«
_(R^,f R„

R„

The maximum value of e for a given v and a is of great interest. This

maximum value is oblained when -*— — a and is

*Mmax

1

*K max

yuo«1»

l
Joo sin e

q + a<

>I +

d?q
~d~P-~

d*q

2 sin2«

o( Tt— es)

sin 2 co

— 1

The values of cMmax are shown in fig. 3. £Rniax differs very IIIlie from £Umax

and is always less than the latter value.
To verify the theoretical results, model tesls are being made. The test

set-up is shown in fig. 4.
The girder is made of steel and bas the approximate dimensions

5 X 50 X 1 100 mm. The load is a ball of the type used in ball-bearings,
which rolls along a track on the girder. The bending stresses are measured
by resistance strain gauges at several sections of the girder, and are recorded
by an oscillograph which also indicates the time and the inslanls at which
the load passes through definite points.

So far, tests have been made for v 3.5 only. Fig. 5 shows some of
Ihe oscillograph records obtained in the tests, compared with the
corresponding dynamic influence lines computed theoretically. In fig. 6 the test
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Confae/j /or poj,/jojy rttordiaf

fCcH'
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?l**y5»

ac; \4&xp2ZfA

Fig. 4. Set-up used for laboratory tests.

values of e expressed as function of a for several sections are compared with
the computed values.

The agreement between the theoretical and experimental results shows
that the theory can be regarded as fairly accurate. Nevertheless, further
tests must be made before the first chapter of the investigation can be
completed. After that, the questions relating lo damping, spring-borne
masses, etc., will be studied.

I hope lhat we shall be able to publish a more detailed aecount of the
results later on. In the meantime, suggestions or questions are welcome.

The Author expresses his gratitude to Professor Georg Wästlund having
stimulaled the research described in this arlicle.

3*Xu.

il* Bill

u

; 0.25 ^=0.50 f-Q« f'0.15
Fig. 5. Theoretically computed dynamic influence lines for
bending stresses compared with test values v 3.5( a o.2.
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Fig. 6. Theoretical curves
showing £M,„ax and iMa as
functions of * compared
with test values of jm° •

' 3.5.

Resume

L'Institut de Construction des Bätiments et des Ponts de l'Ecole Royale
Polytechnique a Stockholm poursuit actuellement une etude sur les
influences dynamiques exercees par les charges mobiles sur les ponls. La
premiere partie de cette etude traite le cas d'une charge concentree unique
qui roule ä une vitesse constante le long d'une poutre ä section uniforme.
En ce cas, on peut demontier que l'augmentation dynamique e esl
completement determinee par deux quantites definies comme suit :

vitesse de la charge
2 X frequence naturelle de la poutre X longueur de la poutre
masse de la charge
masse de la poutre

Au moyen d'une methode imaginee par M. le Professeur Inglis, qui
a etö legerement modifiee et completee par Fauteur du present rapport,
on a exprime s par une fonction de a et v. La figure 3 montre l'augmentation

dynamique maximum des moments flechissants.
On a conslate une bonne concordance entre les resultats des calculs

theoriques et ceux des essais effectues sur modöle, ainsi qu'il ressort des
figures 5 et 6.

Zusammenfassung

Im Institut für Hochbau und Brückenbau an der Kgl. Technischen
Hochschule in Stockholm wird gegenwärtig eine Untersuchung über die
dynamischen Einflüsse der beweglichen Lasten auf Brücken durchgeführt.
Deren erster Teil behandelt den Fall einer Einzellast, die sich mit konstanter
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Geschwindigkeit längs eines Trägers von gleichbleibendem Querschnitt
bewegt. Es zeigt sich, dass der dynamische Zuschlag e in diesem Falle
durch zwei Grössen vollständig bestimmt ist, die wie folgt definiert werden

:

Geschwindigkeit der Lasl
2 X Eigenschwingungszahl des Trägers X Länge des Trägers

Masse der Last
Masse des Trägers

Mit Hilfe eines von Prof. Inglis angegebenen Verfahrens, das vom
Verfasser etwas abgeändert und ergänzt wurde, kann s als Funktion von a
und v ausgedrückt werden. Abb. 3 zeigt die Höchstwerte des dynamischen
Zuschlags zu den Biegungsmomenten.

Bei Modellversuchen wurde weitgehende Uebereinstimmung zwischen
den theoretisch errechneten Werten und den Versuchsergebnissen
festgestellt, siehe Abb. 5 und 6.

Summary

An investigation inlo the dynamic influences of moving loads on
bridges is being made at the Institution of Structural Engineering and Bridge
Building, Royal Institute of Technology, Stockholm, Sweden. The first
part of this investigation deals with the case where a single concentrated
load moves at a constant speed along a girder of uniform section. In this
case, il can be shown that the dynamic increment e is completely
determined by two quantities defined as follows :

velocity of load
2 X natural frequency of girder X length of girder
mass of load

mass of girder

Ry means of a method due to Prof. Inglis, which has been slightly
modified and amplified by the Author, e has been expressed by a function
of a. and v. Fig. 3 shows the maximum dynamic increment in bending
moment.

The results of model tests were found to be in good agreement wilh
the theoretical results (see figs. 5 and 6").
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Equation differentielle pour Ie calcul des vibrations
produites dans les constructions portantes par les charges mobiles

Differentialgleichung für die Schwingungsberechnung
von Tragkonstruktionen infolge beweglicher Lasten

Differential equation for calculation of vibrations
produced in load-bearing structures by moving loads

SVEN T. A. ÖDMAN, C. E.

Head, Technical Department
Swedish Cement and Concrete Research Institute at the Royal Institute oi Technology

Stockholm, Sweden

This paper is a contribution to the theoretical study of the problem of
forced vibrations in load-bearing structures of finde extenl subjected to
any arbilrary boundary conditions. The vibrations are assumed lo be
produced by one or several non-elastically applied loads, and possibly also
transverse forces devoid of mass, which move on the structure with a
constant velocity.

A usual treatment of similar problems consisls in deducing a
differential equation which represents the motion of the load-bearing structure
and the load, and in finding a formal Solution to Ihis equation by means
of a series expansion. This method has been applied by many authors to a
beam which is hinged and freely supported at both ends, and is acted
upon by a single moving load. Among these aulhors, the following deserve
to be mentioned in this connection. Kryloff (x) neglects the influence
exerted by the mass of the load on the natural vibralion of the system,
and thus obtains a simple formula for Ihe deformation at any arbitrary
subsequent instant. Inglis (2) expresses the deformation and the load by a
Fourier series, in which he disregards all terms except the first. In other
words, he imagines the concentrated load to be replaced by a load distri-

(') Ktfvt.oFf-, A. N., Mathematische Annahm, Vol. 61, 1905. See also TiMosrtE.NKO, S.; Vibralion
Problems in Engineering, U. S. A., 1928.

(2) Inglis, C. E., A Mathematical Trealise on Vibrations in Railway Bridges, Cambridge. 1934.
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buted over the whole beam according to a sine function having a half wave
length which is equal to the length of the beam and an amplitude which
varies in accordance with the same sine function. Schallenkamp (3) deals
in a similar manner with the Vibration of the load in a vertical direction
only. Looney (4) tackles the problem by means of the calculus of
differences on the assumption that Ihe natural vibralion can be represented
by a sine function, and disregards all harmonics except the fundamental.
Contrary to Inglis, Rinkert (5J takes into aecount a finite number of terms
in the series expressing the concentrated load.

A procedure that is commonly used by most of the investigators
referred to in the above is to obtain the Solution of the differential equation
by means of sine series in which each term can be regarded as an analytical
expression of one of the types of vibrations performed by a beam which
is hinged and freely supported at both ends. If Ihe beam is subjected to
an impact caused by a force which is devoid of mass, vibrations will be
produced, the frequencies of which are determined solely by the properties
of material, dimensions, and boundary conditions of the beam, and each
of these frequencies corresponds to a definite type of Vibration. On the
other hand, if Ihe force acts in conjunclion with a mass which takes part
in the Vibration, for instance. if the beam is submitted to a moving load,
then different conditions will arise. In this case, a continuous change in
the position of the mass on the beam gives rise to a continuous Variation
in each frequency and in the corresponding type of Vibration. If we try to
find a formal Solution to the differential equation of vibralion produced
by a moving load by using series of functions. which are not variable with
time, this implies an attempt lo calculate a resulling Vibration at any
arbilrary gauge point by the aid of a limited number of terms. In reality,
this motion is composed of several entirely separate vibrations, and an
intricale analysis of frequencies will be required in order to segregale these
vibrations.

The use of formal Solutions entails insufficient accuracy in the
calculation of stresses. Even if the series used for solving the differential equation

is found to be convergenl, it is not certain that the second derivative
will approach a correct value, or will be convergent at all. This is due to
Ihe fact that a given initial Substitution used in solving the differential
equation will prove successful depending on Ihe extent to which the first
term of the series agrees with the actual, total deformation. Consequently,
the fact that the boundary conditions are satisfied by all terms of the series
alone is not sufficient. An analogous Statement has been made by Courant

(G) regarding variational and buckling problems. Therefore, as the
lype of vibralion varies continuously in Ihe case of moving loads, there
must always be an uncerlainty in the calculation of stresses.

The purpose of this paper is to demonstrate a method for a more
2reneral study of this problem under any arbilrary boundary conditions.

(3) ScmLi.ENKAMP, A., Schwini/unoen von Trägern bei bewegten Lasten (Ingenieur-Archiv.
19371.

(4) I.ooney, Ch. T. G., Impact on Railwav Bridges (University o) Illinois, Bulletin No. 19,
Vol. 42, 1944).

(5) RiNKFnT, A., Vibrations of a Beam with Hinged Ends under Action of a Load Moving with
Constant Speed. Examinalion Work at Ihe Institution of Structural Engineering and
Bridgebuilding at Ihe Royal Institute of Technology, Slorkholm 1945 (in Swedish).

(6) Couhavt, R.. Variational Methods for Ihe Solution of Problems of Equilibrium and
Vibrations (Bulletin of the American Math. Soc. Vol. 49. No. 1. Jan. 1943V
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In contradistinction from the earlier investigations, we shall take into
aecount the Variation in the type of natural vibralion due to the change
in the position of the load. Each term of the series used in solving the
differential equation corresponds to the type of natural Vibration performed
at a given instant, and is therefore dependent on the position of the load,
and hence on time. Accordingly, the state of vibratory motion is known
at any instant, and the increments in moment and in stress due to each
natural Vibration can therefore also be calculated. Just as most other inves-
tigators who have dealt with this problem, we neglect the influence of
damping, which has been discussed by Holzer (7) and Sezawa (s">. among
others. The deformations are assumed to be so small that the effect of
rotatory inertia and of shear can be disregarded. These queslions have been
studied by Timoshenko (*), Goens (10), Pickett (ll) and others.

Consider free harmonic Vibration of a system which is Compound in
the ränge G and consists of a load-bearing structure in conjunetion with
one or several stationary masses. In this case, we can deduce a harmonic
differential ecpiation of the following well-known type, which is inde-
pendent of the time factor

L[?.] +P-a„.?„ 0 (1)

where 9,, is a characteristic function which represents the n-th type of
deformation of the system within the ränge G, and Ä„ is the corresponding
characteristic value (12). L[o„] is a linear differential expression formed
with respect to the Space coordinates x. y, z, and is defined within the
same ränge, and 0 is a given dimensionless function which represents
the relative mass density distribution of the system. Eq. (1) is often called
Euler's differential equation.

If the section of the load-bearing structure is uniform, the caracteristic
functions and the corresponding natural frequencies can be computed
from the above differential equation by means of the methods given by
Den Hartog (") or Kärmän and Biot ("), and others. For this purpose, a

general Solution of the differential equation is found for the langes between
the boundaries and the point of application of the load. By applying the
boundary conditions, we obtain a frequency equation, and by means of
this equation we can calculate a set of roots, each of which corresponds to
a definite form of the characteristic function. The lowest root value
corresponds to Ihe fundamental frequency. Berg (15) has carried out Ibis
calculation for a hinged, freely supported beam, and bas labulated the
values of Ihe characteristic function as a function of the position of the

C) Ilotzpif, II.. Zeitschrift für angeu: Math, und Meeh., V. 8. p. 272. 1928.
(*) Sezawa, K., Zeitschrift für angew. Math, und Mech.. V. 12, p. 275. 1932.
(8) TnfosnENKO, S., On the Correction for Shear of the Differential Equation for Transverse

Vibration of Prismatic Bars (Plulosophieal Magazine, Ser. 6, Vol. 41, p. 744 and Vol. 43. p. 125).
(10) Goens, E.. Ueber die Bestimmung des Elastizitätsmoduls von Ställen mil Hilfe von

Biegungsschwingungen (Annalen der Physik, 5. Ser., Vol. 11. p. 649, 1931).
(n) Pif:Ki:TT. 0., Equations for Computing Elastic Constants from Flexural and Torsional

Resonant Frequencies of Vibration of Prisms and Cylinders (American Society for Testing
Materials, Vol. 45, 1945).

(ia) CofftwT, R. and Hildert, D., Methoden der mathematischen Physik, Band 1, Berlin,
1924, Kap. V.

(,s) De:* Haixtoc, J. P., Mechanical Vibrations. New York and London. 1940.
C14) v. KirtMÄN, T. and Biot, M. A., Mathematical Methods in Engineering, New York and

London, 1940.
f15) Berg, Owe, Biegungsschwingungen eines in beiden Enden unterstützten punktförmig

belasteten Balkens (Zeitschr. angew. Math. Mech., Bd 24, Nr 1, 1944).
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load and definite given ratios between the masses of the load and the beam.
For the majority of practical purposes, some approximate method can

usually be applied. For instance, Lord Rayleigh (16) assumes that the
characteristic function approximates to the static deformalion curve
produced by the weight of the load. provided that the inertia forces are
neglected, and calculates the frequency by means of the energy method.
Ritz (I7) puts the characteristic function equal to a series, and determines
the coefficients of expansion and the frequencies by the aid of Hamilton's
variational principle. Galerkin (1S) applies a variational melhod by which,
however, one arrives at exactly the same expression as is obtained by the
method dexised by Ritz. Gran Olsson (19) has found that with the aid of
the principle of Virtual displacements the same results may be obtained as

by the methods of Ritz and Galerkin. Finally, Grammel (=0) takes the integral

equation of the system as a starting-point and determines the frequency
from the relation between an assumed deformation and the nucleus.

All these methods give a sufficiently accurate upper limit of the natural
frequency. The deviations of the approximate expression of the characteristic

function from its exaet form have scarcely any influence on the
ultimate value, and the error is therefore usually inconsiderable. If greater
importance is attached to the form of the characteristic function, as is
often the case in the determination of stresses, or if the rigidily, section
area and the mass density of Ihe load-bearing structure are variable, it is
convenient to use Vianello's (=I) approximate method for plotling the
characteristic function graphically by means of a funicular polygon. Great
accuracy can be obtained by applying this procedure several times. This
problem has also been dealt with by Inglis (**).

The characteristic functions tpj, <p2, <p3, etc., form a complete orthogonal

system which satisfies the conditions for orthogonality, viz.,
f?-?r-<?nd-z 0 r =f= n

° (2)

f a-o„-d'z — constant r=n \
e,

' 1

where G denotes the limit ränge of the integral and x is used to designale
one or several coordinates in space. If the constant is put equal to unity,
the characteristic funclions are lermed normalised.

Furthermore, the theorem of expansion of characteristic funclions states
that any stepwise finde arbilrary function / which stalisfies the same

(") Lord Rayleigh, The Theory of Sound, Vol. 1, 2nd Ed., pp. 111 and 287. Phil. Mag.,
Vol., 47, p. 566, 1899 and Vol. 22, p. 255, 1911.

(17) Ritz, W., Ueber eine neue Methode zur Lösung gewissen Variationsprobleme der
mathematischen Physik. (J. f. reine und angcie. Math., Bd 135, pp. 1-61, 1909. — Gesammelte
Werke, p. 265, Paris, 1911).

(18) Galerkin, B. G., Expansion in Series for Solving Some Equilibrium Problems for Plates
and Beams (Ujcslnik Ingenerow Petrograd, 1915, Hell 19, in Russian).

(19) Gran Oi.sson, R.. Die Anwendung des Prinzips der virtuellen Arbeit bei der Lösung
von Knickproblemen (Del Kongelige Norske Videnskabers Selskali, Forhandlinger Bd XVII,
Nr 46).

Gran Oi.sson, R., The Principle of Virtual Displacement Applied in Approximate Solutions
of Eigenvalue Problems (Dixieme Congrds des Mathematiciens Scandinaves, Copenhague, 1946).

(20) Grammel, R., Ein neues Verfahren zur Lösung Technischer Eigenwertprobleme (Ing.-
Arch., Bd 10/1939. pp. 35-46). See also : Lösen, Fr.. Berechnung der Eigenwerte linearer
Integralgleichungen (Zeitschr. angew. Math. Mech., Bd 24, Nr 1. 1944).

(21) ViAMii.i.o, L., Grafische Untersuchung der Knickfestigkeit gerader Stäbe (Z. 1'. I). I, 1898,
Juli-Dez., p. 1436).

(22) Ingi.is, C. E., Natural Frequencies and Modes of Vibration in Beams of Non-uniform Mass
and Seclion (Trans. I. N. A„ Vol. I.XXI, p. 145, 1929).
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boundary conditions as the characteristic functions s„ and has a self-
adjungated finite linear differential expression L[<pn] can be expressed by
an absolutely and uniformly convergent series composed of these
characteristic functions, viz.,

'=Z c„ ¦ <?„

n
wdiere

C.= /p./-<p„dT. (3)
u

For simplification, we shall deduce, in the first place, the differential
equalion for a single moving load having a mass which cannot be neglected.

It is convenient to imagine the masses of the load-bearing structure
and of the load as a Compound system whose natural Vibration is unambi-
guously determined by the position of the load in a steady state of vibratory
motion and varies with the position of the load, whereas the weight of
the load is regarded as an external vertical force devoid of mass applied
at the centre of gravity of the moving mass. In Ihe treatment of the
problem it makes no difference whether a force devoid of mass, e.g. a pulsating
force, is added lo the weigbl of the load, and the problem is thus reduced
to the determination of the Vibration produced by the resultant external
force.

Since the syslem has an infinite number of degrees of freedom for
every position of the moving mass, the deformation from the position of
equilibrium at any arbitrary instant t tt can be expressed by a series
comprising all those degrees of freedom which corne into play at that
instant. Accordingly, we put

W= Yj 1«(tJ> ' ?»;(<» S) (4)
;f l

where w denotes the deformation from the position of equilibrium, and
<?nj corresponds to the n-th characteristic function determined in a steady
State of vibratory motion with the moving mass in the j'-th position on the
structure. For instance, <pnj can be imagined to be composed of trigono-
metric and hyperbolic functions in which the arguments are also variable
with time. The quantity qn is an unknown factor which varies with time
only, and is termed a generalised coordinate.

The maximum kinetic and potential energies of the system, which
are denoted by T and V respectively, are determined at the instant when
the load is at the point s,.

For the load-bearing structure alone, we oblain

T-^X(t),("
where m denotes the mass per unit length t of the structure.

The velocity of the moving mass at any arbitrary point is

dw r.

Yi (?»-T».H-?»-<rv)
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9n
dqn and d?»j

dtj r"J ~ dtj

Therefore, we get

T.--fjr[y(i..*rr-,..**> d-

In calculating the corresponding increase in kinetic energy due to
the moving mass having the weight P, we must take into aecount its curvi-
linear motion whose component in the direction io is determined by

u'r0;)= X ^Vj)m?-j(*jf*j)

where s, is also a function of time. Then the velocily of the load in the
direction w can be written

dwv

dt, 2 [?«'^W+ ?.'?-;W]

and the amount contributed by this velocity to the kinetic energy of the
svslem is

TP
2ff X [<I»-<?„j(Sj) + qn-i„j(Sj)]

The potenlial energy of the system is equal to the sum of all inerlia
forces times the respective displacement of these forces. Since the inertia
forces are proportional to the deformation, we consider their mean value,
and the amount Vb contributed by the load-bearing structure to the potential
energy of the system is determined by the expression

m
~2~

d'w /\wdxr d'w

where w„(s,) is the frequency of the n-th natural Vibration.
The corresponding increase in potential energy V„ due to the load is

\n l

Using the notation

Ja mg
f„s(Sj) H„ (sj)

and observing that the terms of the form
P

/ frjfvjdx ¦

JGJ ' mg
<?rj(Sj)-<?»j(Sj) ; rV>
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are zero according to the conditions for orthogonality, see Eq. (2), we can
write Ihe total maximum kinetic and potential energies of the system

T m
00

di?..•?»,•)

?-•»»> (*/)]

v=ir 2^,"u-,(*')'H-(*') (5)

These values are inserled in Lagrange's equation of motion
d (dT\ _ 3(T — V)
dl '

dq, hr Q,

when Q,. denotes Ihe force corresponding to q,. and is termed the generalised
force. We Ihen obtain

OD

<•/",. • H,. (s,) + fß ?rJ ^ (2 qn • i.j + q. ¦ ?„;) d-.

p
+ -— -frj (Sj)- Y [2 ?„•?„; (s,) + <?„•»,,• (s,)J -f- g,-u,.2 (s,)-H„ (»,)

Qn

mg »i

(6)

The generalised force QrJ is determined so that the work done by Ihe
external force in the case of Variation in Ihe generalised coordinate qr
divided by Ihis Variation should be equal to Qr,.

In Ihis case, the work is equal to P(sJ).oq,.-o,.j(sj), where P(s,-)
denoles Ihe weight of the load, possibly wilh Ihe addition of an external
force devoid of mass, which is applied at the same point. We then obtain

Q„ P(.V) .»„(«,)

Eq. (6) gives a system of linear inhomogeneous differential equations
of the second order having an infinite number of terms and variable coeffi-
cients. This equation can be regarded as the complete differential equation
of forced vibralion produced in a load-bearing structure by a moving non-
elastic mass. It is very difficult to find an exaet Solution of this equation.
In order to avoid this difficulty, we must resort to simplifications.

The influence of the curvilinear motion is so slight lhat it can be
regarded as a correction, at least in normal structures met with in practice
and subjected to ordinary permissible loads. In such cases it is obvious
lhat the error will be negligible if the correction consisls in disregarding
the influence of all vibrations except the r-th. If the characteristic functions

are normalised so lhal / o,./-dx l the Variation in the form of the

characteristic function must be so small that it could be neglecled, with
the result that both <prj and <srj would become equal to zero. If the velocity
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of the moving mass is assumed to be constant and equal lo v, we gel
i n

frj (s,) v ¦ oyJ (.«?,) and orJ (Sj) o* ¦ <srJ (ss)
1 do ¦ (s) n d'o ts,\

where **&)= "'^ and ?,-,(*¦-) % i*j)

Consequently, Ihe complete differential equation takes Ihe simplified
form

g,. ¦ Hr («,) + qr ¦ H„ («,) -f r/,. ¦ [«„¦ H^) + N.. (*,)] p(*>?*W («)

where H,. («,) 1 -\ ?,./ («,)'
mg ' J J

¦^ 2 v l
Hr(*>) =— -P-?ri (*,)•»„(*,)

It makes no great difference whether one or several masses move with
the same velocity on the load-bearing structure. The Variation in mass
distribution with lime influences the form and the frequency of the
characteristic function in a similar manner. It is convenienl to keep the
notalions on and to„ unchanged, but they are used to denole the new
characteristic function and Ihe corresponding natural frequency. Accordingly,
the y'-lh position of the load at any arbitrary instant t /, signifies the
localion of k loads having the respective weights P,, Po, P3, Pk, and
PA.(s,,v) denotes the weight 1\, possibly with the addition of an external
force devoid of mass, which is applied at the point skj. The new differential
equation can be written in the form

'qr-U,. (Sj) + qr-Kr («,) + 7,-K2 («,)-Hr (ss) + N„ (Sj)}

1
k

— 2j p*(«v)-?^(««) (9)
fi i

where H,. 1 -f J_. £ PA. ?/(skJ)
lt n \

^•(^)=lu7 ¦Sp»,M'«)-?r/(g
mg- *.=

fc
2 II

N"(Sj)=w ¦ 2p* • ?••> (5*>> • ?* (s^
m^ E=i

Sj v tj

Eq. (9) is an ordinary linear inhomogeneous differential equation
of the second order with variable coefficienls.

If the fact that the characteristic function varies wilh time is complelely
disregarded, then Eq. (8) corresponds to a formal Solution of the problem
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under consideration. In that case, the functions or and H,. are referred to
the non-loaded structure, and wr*(sj) • Hr(s,l is constant and equal lo the
Square of the natural frequency of this structure. For instance if we put

sin
l

which is identical with the normalised characleristic function of the freelv
supported beam (1 length of beam, 0 -^ x -^ l, and r integers 1,
2, 3, then we obtain for r l, the same differential equation as that
deduced by Inglis. Therefore, it follows that his results can be regarded as
a special case.

The tests made lately by A. Hillerborg (23) seem to indicate that the
Variation in the form of the characteristic function with the position of the
load could be neglected in the case of the freely supported beam. lt remains
to be demonstrated whether this Variation may also be disregarded in
dealing wilh other structures or under different boundary conditions. This
question can be examined theoretically on the basis of the present investigation.

An approximate Solution of the differential equation (9) is briefly
deduced in what follows.

By pulting the righl-hand member of Ecj. (9) equal to zero, we obtain
a homogeneous differential equation. After dividing bx Hr(s,-), this equation
can be written

• H,.(S,) ¦

(*/)
N„ («,)

H, (sj
•<7, 0 (10)

and can be interpreted as a differential equation of free amplitude-modulaled
and frequency-modulated Vibration.

To solve this equation, we put
q,. er-®-'" (A sin j tu,.dt -f B cos J m,.dt) (II)

where A and B are arbitrary conslanls, whereas sr and ro,. are arbilrary
functions of time which express the damping and the frequency of Vibration
respectively. If this expression is inserled in eq. (10) the two relations

1

Pß-
rjj,. H,.

nr, + H,.
(12«)

N H
w''2 + it-ß<'-ß<--H:+ßr (125)

must hold good in order thal the above expression should satisfy the
differential equation (10).

If we assume lhat the Vibration sels in at the intsant t„ the value
of cxp[—ffirdt] at any arbitrary subsequent instant £ /,¦ can be
calculated by inlegration. By using eq. (12a), we then obtain

exp Pp..*]-./ OT,. (Si) Wr (Sj)

ror (Sf) wr (s,)
(13)

(23) HiLLERuonn, A. L., A Study of Dynamic Influences of Moving Loads on Girders
(International Association for Bridge and Structural Engineering. Congress 1948 at Liege. Preliminary
Publication).
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If the natural frequency is determined by Rayleigh's melhod, it can
be demonstrated that

V
fKr(S{) _ 0», (Sj)

Ur(Sj)
~~

wP («,.)
(14)

Since the modulated frequency njr does not differ from the natural

frequency of Ihe system to any notable extent,

proximately equal to wr (*.)

™r (Sj)

Vr(Sj)
Then

wr (Sj)

»¦V (ff)
"r (Si)

can be put ap-

(15)

that is to say, the free Vibration is damped approximately in proportion
to the square root of the natural frequency.

The difference between the right-hand and left-hand members of
eq. (14) is so small that derivation can be admitted without rnvolving any
considerable error. We get

ta),. 1 /H,
2 l.Hr.

Noticing thal

w,. ur
and inserting this expression in eq (12a) gives

1 /Ür
ß,.~ 4 xHr

Using this relation il can be deduced that the frequency of Vibration is
approximately determined by

ro,/
1 N„ 1

J" +T Ü7~lAJ
Consequently

PT, (s.) UP (Sj)
A **fu

H,
-)' H, + i

H, H, — i

mr di + n cos fp,J Ii
dl

(16)

(17)
OJ,. (s,) w, (s,)

can be regarded as a general Solution of this equation (10). The arbitrary
conslants A and B are determined bv Ihe initial conditions at the instant
t t,.

The Solution of eq. (9) can now also be found by means of generally
known methods. If we assume thal Ihe first of several conseculive loads
travelling on the load-bearing structure passes over the first support at
the instant l 0, the Solution can be written in the form

k

y p» («*,). ?*(**,)
fc-I <>>' (Sj) 1 / OTr (S{) f'i

H,.(5,)-üt,.(S,)
'

Ur(a,) '|/ m,.(Sj)
'&l A9r m.yo

uT,.d< rif, .(18)
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This expression can also be simplified. If the static deformation of the
load-bearing structure due lo the loads in the i-th position is calculated
with the help of series composed of the functions ori and orj, it can readilv
be demonstrated that

<?ri (Ski) T>rj (Sy)

HP(*,)-«„*(*,) H,. (*,).«,*{>,)
(19)

By using this relation and putting m • Hr(»•;)• tor2(s,)= X(Sj) the
Solution of the differential equation (9) can finally be wTitten

k
1 "r (Sj)

M*;) '
\fmr (sj) \'mr (s{) Vjftl / Jt.

dt

(20)

and the problem under consideration can thus be regarded as theoretically
solved.

The present work will be continued in a manner to allow a comparison
between experimentally obtained results and theoretical values calculated
with the aid of the developed theory.

Resume

Le calcul theorique des deformations et des efforts causes dans les
constructions portantes par les charges mobiles peut aussi etre effectue
dans le cas des constructions relativement compliquees. Dans la presente
etude, ce probleme est traite d'une maniere plus generale que dans les

travaux precedents, en faisant usage des fonctions caracteristiques, de sorte
que l'equation differentielle etablie dans le present rapport est applicable
aux conditions aux limites quelconques et a plusieurs charges mobiles
inelastiques avec addition eventuelle d'autres forces depourvues de masse.
L'ötude tient compte de la Variation de la forme de la Vibration naturelle
avec la position de la charge. Une Solution approximative de l'equation
differentielle est presentee. L'auteur examine aussi d'autres methodes
applicables a l'etude de ce probleme.

Zusammenfassung

Die Formänderungen und Spannungen, die in Tragkonstruktionen
infolge einer oder mehrerer beweglichen Lasten entstehen, können auch
bei verhältnismässig verwickelten Konstruktionen theoretisch berechnet
werden. Zum Unterschied von früheren Untersuchungen, wird diese Frage
in der vorliegenden Arbeit einer allgemeineren Behandlung unterzogen,
und zwar mit Hilfe von Eigenfunktionen, so dass die aufgestellte
Differentialgleichung für beliebige Randbedingungen sowie auch für mehrere
bewegliche, nichtfedernde Lasten gegebenenfalls in Verbindung mit anderen
massenlosen Kräften gültig ist. Die Änderung der Eigenschwingungsform
mit der Lage der Last wird ebenfalls berücksichtigt. Eine angenäherte
Lösung der Differentialgleichung ist gegeben. Auch andere Verfahren, die
auf diese Frage anwendbar sind, werden besprochen.
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Summary

The deformations and slresses produced in load-bearing structures by
one or several moving loads can be calculated theoretically, even in the
case of relatively complicated structures. In contradislinclion from previous
investigations, the present paper deals with this problem in a more general
manner with the help of characteristic functions, so that Ihe differential
equation deduced in the paper holds good for any arbitrary boundary
conditions and for several non-elastic moving loads, possibly acting in con-
junction with other forces devoid of mass. The Variation in the form of
the natural Vibration with the position of the load is also taken into aecount.
An approximate Solution of the differential equation is presented. Other
methods for studying the problem are discussed.
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Vibiations amorties des poitiques

Gedämpfte Schwingungen von Rahmenträgern

Damped oscillation of fiame girders

ING. Dr VLADIMIR KOLOUSEK
Prague

Les lois de la Vibration amortie des constructions hyperstatiques ne
sont pas elucidees du point de vue experimental; le plus souvent on sup-
pose que Famortissement de la Vibration est proportionnel a la vitesse du
mouvement. Dans cet article, traitant du probleme de la xibration amortie
des portiques, nous admettons cette hypothese facilitant l'analyse malhe-
matique, sans discuter son exactitude. Nous simplifierons encore le
probleme en ne considerant que la Vibration transversale forcee des
portiques ayant des barres ä section constante bien que la meme methode
puisse etre appliquee pour des barres ä section variable et aussi pour les
autres types de vibrations.

Resolution de la Vibration amortie des systemes
en portique par la methode de deformation

Dans ses travaux precedents l'auteur de ce memoire a applique pour
le calcul de la Vibration non amortie la methode de deformalion C'2)-
On peut s'en servir pour le calcul de la Vibration forcee amortie.

Pour le mouvement transversal amorti de F element de longueur d'une
barre ä section constante on a la relation

d2v(x,t) do(x,t) d*v(x,t)
V-dx ^ \-bdx—gj \-E3—^—dx 0 (1)

oü v(x, l) signifie le deplacement de la section x dans le temps / ;

(') Stahlbau, 1943, p. 5.
(2) Memoiies de VA. I. P. C, 8e volume : Solution des pylönes d'antenne haubanis.
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jx la masse de Funite de longueur de la harre, el
b Famortissement par Funite de longueur pendant la vitesse unite.
Dans la suite on remplace b par w» (ayant la forme de la frequence

angulaire) qui resulte de l'equation
b 2L.Wb. (2)

En se limitant a la Vibration forcee et harmonique, l'equation (1) est
satisfaite par Fexpression complexe

v (x,t) [v (x) -j- iv (x)] sin wt -L- [u (x) — iv (x)] cos w< [u (x) — iv (x)]e,cu'
(3)

Apres la Substitution de (3) ä (1) on oblient l'equation differentielle
ordinaire

_ K (l - 2 i ±)[v (x) + iv(x)) + EJ *M*>+ *<'>]
Q (4)

dont la Solution generale est

v (x) -f- i v(x) C, cos h (A -f- /Ä) ^ -f C4 sin h (A -f i A) —

+ C3 cos (A + il) 4- + C, sin (A -f i Ä) 4 (5)

ou

avec

I |4/.uc°äA + ,I_l|/Jg.(l_.I,Ä)-Xl/l_,l5

(<!)

x -x-1'Y|/i|A+^-|Al/7+7
Si Fon ne considere que les membres reels on döduit de Fexpression

(3) que la composante de la Vibration ayant 1 amplitude v(x) procede

la composante avec Famplitude v(x) de Fangle <»= -^-

Si les extremites de la barre subissent le mouvement harmonique
(d'apr&s la fig. 1) avec Famplitude

y? + iy„ > vg + iv»> r* + h(i> et v» + ">*'

nous obtenons pour les constantes C quatre equations

C, + C3 v„ -f /u,

ct + c<= A_^,x (Yg + Q
C, cos /i (A -4- iX) -4- C2 sin /t (A -4- /X) + C, cos (A 4- iX) -4- C, sin (A -4- iX)

u„ -4- iu„
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I Yg,h+l ?g,h

*U">U'

683

I Yh,9tiYh,g

1 )%»\

Fig. 1.

%«&

r„>1?

C, sin h (A -f iX) -4- C2 cos /i (A -f iX) — C3 sin (A -4- iX) -f C4 cos (A + /X)

d'oü

Ci YiT^TtXf [F< (A + m)'{V,J + ^ + Fi (A + iK>'(v* + ^
- I. F8 (A -f iX) • (v, 4- l£) - l • F, (A + iX) (y, -4-Tv-)j 4.1 („, + iv9)

c' atA + iX)3 lF°(A +iÄ)' K + ^ + Fr'(A + iX)'{Vh + f"*> (7)

- I-P* (A + iX)(Y. + iy.) + i-F3 (A + iX).(T» + fo] + 2(A_|_fÄ)(Tp+^)

C3 — C, 4- vg 4- iu,

l
O4 Ljj '

A+iX (t» + £y9)

avec

sin /i (A -4- iX) — sin (A -4- iX)F, (A 4 «) - (A + ff) _ h (A + ¦X)co&(A+.Ä)_1
_ T cosft(A + /X)sin(\ + /X)-sin/i(A-FiX)cos(A+iX)

F2 (A 4- iX) - (A 4 ff) cosÄ(A4-iX)cos(A + /A)-l
F |AJ.m 114 T ä cos L(\ 4 iX) — cos (A + iX)
F3 (A 4- iu) (A + lA)

COSÄ(A + I.A)cos(A + iX)_., (8)

p4 (a 4- ff)=(a 4- «>¦ svi/;(it^)sM(itf) 1v ' vi/ cos/i (A4-iX) cos (A4-I.V) — 1
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F5 (A 4- ff) (A 4 i X >' si";^+ff) + sin(.v + iX)
v ' ' v ' ' cos h(Xp- iX)cos(A4-iX) — 1

i7 ik i ;Ti_ /a i jT,3cos/t(A4-^)sin(A + ^)+sin/t(A+iX)cos(A4-iX)
1-,'A-t-IA)— (A+ IA) Cos/i(A4-iX)cos(A4-iX)-l

Pour le moment flechissant et Feffort tranchant dans la section x et

pour le temps t on a

MCO-Ejl^i, T(.,!) -Eji^ (9)

et par consequent pour les moments et les forces aux extremites de la barre
deformee on a les equations suivantes (ecrites pour la barre horizontale)

_ FI _ rjM,., + IM,.» M (0) + /M (0) =- -±J- F4 (A + iX) • (v, + lv.) - -^-

F3 (A + iX) • («» + ie,) + ^- F2 (A + iX) • (T, 4- iy9) -\- -^L

F,(A4-iX)-(YÄ + i7») (10)

_ FI _ FT
Y,,„ + IY#.» - T (0)- if (0) -p- Fc (A + iX) • (u, + iu,) 4- -£-

— FI — FT
F5 (A + iX) • (t>„ + ivh) r F4 (A + iX) • (r, + iy9) 4-~^-

F,(A4-fI).(T»4-iYi) (11)

En resolvanl les syslemes en porlique par la methode de deformation
on tire les deplacements el les rotations inconnus des equations qui res-
sortent des conditions d'equilibre dans les nceuds singuliers. Pour le
nceud g quelconque il vient

s (Mv.„ 4- m9,„) - (M/ 4- m/) o

s(X„,;i4-ixfl,„)-(x/4-iX/)=o (12)

S(Y,.»4-»Y,.0—(Y/+ iY/)=0
£(X„,,, 4" ä»,i), S( Y„,, -f-'Y„,») etant les composantes horizontale et

verticale des forces aux extremites de toutes les barres, qui aboutissent au
noeud g ;

(X/4-fT;), (Y/4-iY/), (M/4-iM/) etant les forces el le moment

exlerieurs agissant dans le nceud g.
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Exemple numerique

Fig. 2.
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P.pn (dt

3'
p P cA

-2 s'
p aA

—/
5
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Vr3t
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_0_ 01

h-5

Considerons le porlique etage d'apres la figure 2, charge au milieu
de la poutre 3,3' par la force verticale harmoniquement variable Psinwi.

Les moments d'inertie des poulres horizontales sont

Ji Ji. it.t. 2-10-in1
et des piliers

J, J0 J, 2 J., 1. 10 W.
La masse par Funite de longueur est dans le cas des poutres horizontales

fJL2==!Jli.r u-2.2':= "¦3,3' 0,5/9,81 0,0510 tonne.ni~2.see2

et des piliers
^ 0,2/9,81 0,0204 tonne.m"2.see2.

On calcule avec Ie module d'elasticite E 21 • 106 lonne/m2 et avec le
coefficient de Famorlissement to,, 2 -• 10 62,83 see-1 (on adopte pour w„
une si grande valeur pour rendre Fexemple plus instruetif).

Des conditions d'equilibre des moments [d'apres (10) et (12)] dans
les nceuds 1, 2 et 3 on obtient pour les amplitudes ile deformations, en cas
de la Vibration forcee, amortie el symetrique, les trois equations du
tableau I.

Le membre absolu de l'equation 3 du lableau I est determine comme
le momenl ä Fexlremite de la barre parfaitemenl encastree 3, p (d'apres
la fig. 3) de l'equation

c
M, + f I W

3.V

VpHvf

Fig. 3.
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Ti 4" 'Ti T2 4" »7« Ts + »7t

1

-^Ft<A,+flf,)
<i

+J^L[F2(A2+i7v2)
'2

- Fi (A2 + iÄ2)]

-^-F,(A,4-ij?,) ^0

2 ^LF,(A,4-iÄi)

° KI.' Ft(A, + ffl.)

4^L[F«(Ai+«l)
- F, (Ai + fX,)]

^F,(A, + iX,) 0

3 -^-F,(A, + fÄi)'i

-^F,(.v, + iT,)
u

12

-Fi(A, + fÄ,)]

„.»&?)
' *.(*•+«')

Tableau I

M l vTr EJ2 i-f / A2-f-iX2 \ .-,
,p + iM,.p =- ^--2 F3 L j. (Wf 4. ioJ (13)

ou

Vp + iWp
PI 2

i2

" ; " 2 EJ2 /A2+iX, (14)

Si nous supposons que la frequence angulaire de la force harmonique
Psinwi est w 103,7 see-1 (ce qui est dans le cas donne egal ä la premiere
frequence angulaire de la Vibration symetrique propre non amortie), nous
obtenons

/

et d'apres (6)

-l iVri,*-»',]/0,0204.103,7' _M~'' V EJ, -b|/ 21.10«.i.l0- -d'41U

A, 3,410]/ 4 1/ + 4.62,832
103,1' l/li/. |

4.62,83r 1

(/ 8 V + 103,72 "i" 8

3,410 1/0,6267 4- 0,5669 3,726

X, — 3,410 1/0,6267 — 0,5669 — 0,834.
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II s'ensuit

cos h(A1 + iX1) cos hAj cosXi + i sin hAx sin Xj 13,96 —15,37 i
sin h(A1 + iX1)=13,94 —15,39 i
cos(A1 + iX1) —1,141 —0,516 i
sin (Ai -j- 1X0 — 0,755 + 0,779 i

et d'apres (8)
EJ,

~V
EJ,

F, (A, + iX,) 858 — 664 i

F2(A,+ iX,) l 132 4- 810 i

Par analogie on oblient pour A, 3,005

A2 + iX2 3,283 — 0,735 i
et

EJ2
[Fs (As + iX2) — F, (A2 4- iX 2)] 748 4- 1 851 i

Le membre absolu a la valeur
A.4- iX2

PL "

4 /A,-t- iX, f P (0,718 — 0,1887 i)

Si nous substituons les valeurs determinees dans les equations du
tableau I nous obtenons les equations du tableau II.

7i + i 7i 7s + ' 72 73 + i 73

1 3 012 + 3 471 1 858 — 064 i 0

2 858 — 664 i 3 012 4-3 471 i 858 — 664 i O

3 858 — 664 i 1 880 4- 2 661 i P (0,718-- 0,1887 0

Tableau II

II resulte des equations de ce tableau

Tl — 0,050 -10-4 P

T2= 0,435-10-" P

T3= 0,742-10-1 P

ainsi que les rotations des noeuds sont

Yl(f) Yl sin wi +^ cos w' (— 0,050 sin 103,7 l +0,100 cos 103,7 t)-10"" P

y2(i) y2 sin tot + Yj cos 10/ (0,435 sin 103,7 t + 0,188 cos 103,7 t) ¦ IO"4 P

Ys(0= fs sin at + y3 cos wi (0,742 sin 103,7 t — 1,986 cos 103,7 l) ¦ 10_* P

v_1= 0,100-10- P

j1= 0,188-10-' P

Ys=—1,986- IO"4 P
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II vient des resultats precedents que le decalage de phase

est different dans chaque nceud envisage.
L'auteur a contröle les resultats obtenus par une autre methode de

calcul qui consiste a decomposer la Vibration dans ses formes propres (z).
Nous ne reproduisons ici que les resultats, par suite de manque de

place. En ne considerant que les trois membres de la serie des vibrations
propres, il vient

Yi (0 — 0,328 + 0,306) • IO'4 P — 0,022 ¦ KT4 P

Tl (— 0,435 + 0,825 — 0,298) • 10"4 P 0,092 ¦ 10"4 P

y, (0 + 0,037 + 0+64) ¦ IO"4 P 0,501 • 10"' P

y2 (0,717 — 0,092 — 0,451) ¦ 10"4 P 0,174 ¦ 10"4 P

y3 (0 + 0,324 + 0^395) • 10"4 P 0,719 - 10'4 P

y3 (_ 0,745 — 0,814 — 0,384) -10"' P — 1,943 • 10"4 P

oü les lermes entre parenthfeses expriment la participation des formes par-
ticulieres des vibrations propres pour les resultats finaux.

Resume

Pour le calcul de la Vibration forcee amortie des portiques on peut
appliquer la methode des deformations. La resolution est analogue a. celle
des vibrations non amorties, gräce ä l'emploi dans le calcul de fonctions
complexes.

Zusammenfassung

Für die gedämpfte erzwungene Schwingung von Rahmenlrägern
kann die Deformationsmethode angewendet werden. Die Lösung gleicht
derjenigen der ungedämpften Schwingungen, wenn man in der Berechnung

komplexe Funktionen einführt.

Summary

The deformation method can be used for forced suppressed oscillation
of portal frames. The Solution is similar to that of unsuppressed
oscillations if complex functions are used in the calculation.

(3) Voir dans la rtjference (2), chap. II, 4.
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L'influence des sollicitations dynamiques sur les constructions

Einfluss dynamischer Beanspruchung auf die Bauwerke

Effect of dynamic forces on structures
\

ERIK FORSLIND
Swedish Cement and Concrete Research Institute at the Royal Institute of Technology

Stockholm

If a load is applied lo an elaslic structure very slowly so lhat the velocity
u, imparted to the mass elements of the loaded member may be neglected
in comparison to the velocity of sound v, in the material, the load is
usually said to be static, otherwise it is called dynamic. The definition is
one of practical convenience lo be underslood in'Ihe same sense as the
practical definition of the elaslic limit. In this paper we shall be mainly

concerned with ratios—>10~',in general corresponding lo impulses
v

generaled by high explosives or impact of missiles.

Shock waves

The velocity of a wave in a compressible medium depends on the
density of the medium in the way that increased density corresponds to
increased velocity. It is accordingly possible to describe the generation
of a shock wave as occurring in successive steps, where each subsequent
part of the wave moves in an increasingly dense medium at a grealer speed
lhan its forerunners which will be successively overlaken. The sleepness
of the wave front will consequently increase and would finally become
disconlinuous, if such a physically inslable slale were nol prevented by
heavy energy losses. For the practical trealmcnl of such a wave, however,
the wave front may be described as discontinuous.

The shock wave emerging from a detonating explosive may for
practical purposes be considered to consist of two parts, exlending over
different ranges from Ihe center of explosion. In the first ränge Ihe
parlicle velocity is nearly equal lo the phase velocitv corresponding to Ihe
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pseudo-disconlinuous wave front and the wave is associated wilh a
considerable transportalion of mass. In the second ränge the parlicle velocity
lags bebind Ihe phase velocity and Ihe shock wave is successively
transformed into an ordinary sound wave, in which the parlicle movements
may be considered as infinitesimal. The zone of Iransilion between the
first and the second ränge is fairly well defined, as can be seen in fig. 1,

showing a photograph taken immediately after thal the wave front has
left the expanding luminous detonation gases. The steep front of the
shock wave may be seen as an oblate halfsphere which after short progress
will take the form of a perfect halfsphere.

Fig. 1. Detonation of TNT in air. Th«
visible wave front has just left behind
the expanding luminous detonation
gases.

For the present purpose it may suffice lo slate that Ihe form of the
waves and their impulses can be measured expeHmentally as a function
of time, distance and the amounf and type of explosive, and lhat impulses
imparted to structures may be calculated from these data. For most
practical purposes it is sufficient to know the total wave-impulse imparted
to a plane rigid surface of unit area, while the wave form is unimporlanl.
The last statement is justified by the fact lhat the time, during which
energy is transferred from the wave to Ihe structure, is usually very short
in comparison to the transverse vibralion period of the most common
structures. We shall discuss this question in some detail later together with
the characteristics of various types of structures. It should be mentioned,
however, that the effect of the blast from an alomic bomb is expected to be
different as a consequence of the very large total impulse and its long
duration.

Impact

When a missile hits an object, the duration of the impact is determined
by the elaslic and plastic properties of the two bodies, Iheir geomelrical
form and extension and the phenomena of ruplure that may occur in and
around the zone of contact. The impact may under certain conditions
develop in a special way that is characterized by a secondary ejection of
material from the hit structure. The elaslic contact between the two
bodies generales a set of compression waves which may be reflccled at a
free surface of the structure. Lipon reflection it is lurned into a dilala-
tional wave progressing in opposite direction to the primary wave. A
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Fig. 2. Schematic representation of the
reflection of a shock wave at a solid-
air interface.

rEzE Compression in the primary wave.
HIHI Tension in the reflected wave.

simplified representation of the aclually very complicated phenomenon
is given in fig. 2. We see that a maximum of tensile stress is lo be
expected when the reflected wave has penetrated to a certain depth
of the material. If the tensile stress exceeds the critical value for
the material, rupture will occur and the part set free will leave the
structure as a missile, often with a considerable velocity. Il is also seen
that a smooth wave with small variations in intensity cannot be expected
to produce the ejection effect. The effect will generally lead to changes
of frequency and boundary conditions of Ihe structural member involved.
Similar effects may also be obtained by detonalion of explosives in contact
wilh the material.

Behaviour of different building materials

For a belerogeneous and anisolropic material, Ihe modulus of elasticitv
may be defined by means of the Statistical mean value of the velocily of
sound waves in the material. For steel Ihis averaging effect may take place
over volumes of malerial that are very small in comparison to the volumes of
material used in structural engineering. Steel may consequenlly be
considered as quasi-isotropic and the dispersion of a wave progressing
through the material may be neglected. Such materials as brickwork and
concrete, however, will require larger volumes for Ihe averaging effect
to take place and the dispersion of a wave passing through the malerial
is considerable. This is parlicularly important to observe when dealing
wilh shock waves, because the wave front will soon loose its steepness
and the length of the wave group will be increased after a relatively short
passage. By these materials, Ihe elastic constanls derived from static or
slow loading tesls differ considerably from Ihose obtained by dynamic
methods, because the plastic deformation which takes place in the former
case is subslanlially eliminated when the lest is dynamically conducled.
The rate of loading, however, also influences the magnitude of the elastic
limit and the ruplure strength of the material. The same effect is also
observed for steel, although to a smaller extent.

The resistance againsl local damage from impact is increased bolh
for steel and concrete, if the modulus of elasticity is increased. It is well
known, however, lhat Ihe brittleness of sleel increases with the hardness,
as well as the risk of secondary ejection of malerial. A good armour-
plate, for instance, must consequenlly possess good duclilily on the rear
side. As to concrete il has been empirically observed that Ihe resistance
against local damage by impact increases with increasing modulus of
elasticity, i. e. with high contenls of stone aggregates and increased density
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of the mortar. As the dimensions of the concrele structure increase, the
dispersion of the primary waves will substantially reduce Ihe risk of
secondarv ejection, which will be easilv underslood wilh reference to
fig. 1.

The dynamic behaviour of various structural elements

Our discussion may be limited to three lypes of structural elements,
viz. columns, beams and slabs, as the characteristic properties of most
structures can be referred lo these elemenls. If such a structural element
is subjected lo an impulse, a vibrational state is generated that may be
considered to be composed of superimposed characteristic vibrations, each
corresponding to a discrete energy level and a definite shape of deformation.

The characteristic vibralion frequencies and the deformation types
are delermined by the shape and density distribution of the structural
element, Ihe elaslic and plastic properties of the material and the boundary
conditions. A decrease of mass density, increase of the rigidity or reduced
degree of freedom will generally increase the frequency and vice versa.

The characleristic funclions, or eigenfunctions, are Solutions of the
general amplitude equation

AAcp — lo 0

and satisfy the relation of orthogonality

/ tp, ok dx 0 (i -Z2LZL k)

The physical significance of the orthogonality relation is that the
vibrational states corresponding to the separate characteristic functions
may exisl simultaneously without mulually disturbing each other, i. e. they
are linearly independent.

The characteristic functions may be obtained as mathematically exaet
Solutions of the amplitude equation or as approximate Solutions lo the
variational problem. In the case of concrete, the modulus of elasticity
determined by dynamical means must be used and the material may be
treated as homogeneous and isotropic wilhout consideration of reinforcement
and microscopic cracks, provided that the interaction between the concrete
and the reinforcement is intact.

A study of the characteristic functions of slabs subjected to various
boundary conditions is being made at this institute by Mr. Ödman and it
is expected that his work will facilitate the practical treatment of the
problem.

Columns and beams

A column is usually designed for carrying an axial load, wilh due
consideration lo the question of stability against buckling. In practice, the
actual load is either excentric or combined with a bending moment that
will produce an initial lateral deformation of the column, whose carrying
capacity is consequently determined by the stresses in the external fibres.
When a vibrational state is set up in such a column by a lateral impulse, the
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superimposed stresses may evenlually reach Ihe critical value for the malerial
and cause a collapse. Disregarding the practical impossibility of applying a

centric load, the excenlricity of the external load is always assured for a
column of concrele as a consequence of the helerogeneity of the material
and its capacity of plaslic deformalion. The amount of mass per unit length
in relation to the surface exposed to the impulse will be greater for columns
made of concrete compared lo columns made of steel and the response to
lateral impulses will be reduced. A design to reduce the risk of buckling
will as a rule keep Ihe initial laleral deformations and Ihe secondary
addilional moments small.

Generally, the impulses corresponding to the second ränge of the
detonation wave have no dangerous influence on the ordinary column,
because it is designed for high buckling stability and exposes a small area
to the relatively weak impinging wave. The above mentioned effect may,
however, occur in the first wave ränge. For common explosives and
ordinary conditions, the duration of the impulse is short enough to make
the energy absorplion of the column practically independent of its lowest
characteristic frequency and we find from the impulse equation

w I pdlmv
T

that more favourable conditions will be produced by increasing the mass
of the column which will lead to a decrease of the initial velocity and the
maximum amplitude. If the mass increment, however, is associaled with
decreased characteristic frequency, while the buckling risk at normal load
remains unchanged, the favourable effect is counteracted. The mass
increment should in other words be combined with increased rigidily. For
designing purposes it is usually not necessary to calculate the reactions at
the supports, unless the System is very rigid and exceptionally susceplible
to shearing forces.

Partial destruction through impact will, as a rule, cause complete
collapse of loaded sleel columns. In the case of reinforced concrete columns,
in which the plastic deformation has caused a transfer of load from the
concrete to the reinforcememnl, even a superficial damage to the concrete
surrounding the reinforcement may be sufficient to produce partial buckling
of the reinforcemenl bars, which under unfavourable conditions may lead
to a sudden collapse of the column. Usually, however, Ihe central part of
the concrete column has lo be damaged, before its carrying capacity is
appreciably reduced. The effect of a laleral impulse located at the base of a
column will be discussed later in connection with various structural
arrangemenls.

It is obvious that the behaviour of beams is in principle similar lo thal
of columns, except that the absence of axial load and the presence of a

lateral dead ,load will diminish the probability of damaging effects of
lateral shock waves to a considerable degree. It is generally to be observed
that damages to beams, due lo blast, occur Ihrough secondary influence
jjrom surrounding structural elements.
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Slabs

When a slab is subjecled to a shock wave, the excited vibrational state
is extremely sensitive to the loading and boundary conditions. It is
consequently practically impossible to predict which mode of Vibration
will predominate, especially as the energy levels sometimes are very close
and a sort of degeneracy occurs. Empirically, however, it has been
observed that the real behaviour of slabs designed by use of one of the
fundamental states is reasonably in accord with theory, provided that the
impulse is close to the critical value for rupture.

As for beams it is usually not necessary to consider Ihe reactions at the
supports if these extend conlinuously along the edges. Discrete supporting
arrangements necessitate a detailed analysis with regard to shearing effects.

If the slab is subjecled lo Ihe detonation wave of an explosive in
contact with the slab or the impact of a missile, the longitudinal
compression wave will produce a local damage around the contact zone,
eventually accompanied by a secondary ejection of material from the
opposite side of Ihe slab. It has been empirically observed that such local
effects have very small influence on the characteristic frequency of the
slab and that Ihe damage must be extensive in order lo produce an
appreciable change. This implies that Ihe structure of which the slab is an
inlegrating part retains ils normal function.

Types of structures

As represenling the various possible combinations of the aforemen-
tioned structural elemenls three types of slructures will be considered,
namely the framework, Ihe mushroom structure and Ihe cell structure.
All these represent structures which are highly slalieally indeierminate.
Their main dynamical characleristics are fairly well known from the
study of earlh-quake effects on buildings and we shall limit our discussion
to some questions that may be of interest for the planning and designing
of factories or other constructions where explosions may take place.

For the framework and also for the mushroom structure a much
discussed question concerns the advantages gained by the use of walls
consisting of light-weight materials in order lo reduce and limit the
effects of blast on Ihe carrying structure.

From theoretical considerations it might be expected that impulses
transmitted by a shock wave, emerging from the center of a closed room
where the distances to all walls are equal, will be absorbed in Ihe same
degree, independently of the resistance and the mass of the walls, provided
that the fundamental frequencies are low enough to permit the impulses
to be considered as momentary. In other words, if one of the walls should
be removed without change of the boundary conditions for the remaining
walls, the latter would be affected by the impulse in quite the same
manner. This has, as a matter of fact, been verified experimenlally. Should
the intensity of Ihe wave suffice to produce ruplure. this could accordingly
not have been prevented by making one of the walls less resistant. If,
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however, the residual static pressure of the explosion gases within the
closed space is high enough to produce rupture, the effects will be abated,
if one of the walls is easily destroyed. This advantage is, however, only
apparent or fortuitous.

In a sufficiently limited space for the static pressure to produce
rupture, the impulse by high' explosives will be amply sufficient for
producing it and the static pressure will be of less consequence as it will only
complete the destruction. The explanation of the favourable effect some-
times observed as arising from the premature destruction of one wall may
be sought in an inadequate design of the structure supporting the walls
horizontally, or the roof verlically. For instance, the tensile stresses set

up in a reentrant corner usually start the destruction at impulse intensities
far below the intensity producing rupture in the central part of the slab,
and a rapid decrease of the static pressure will consequently be favourable.
With properly designed walls of uniform and equal strength, no damage
at all would have oecurred. The guiding principle for the design should
be to assure a satisfactory resistance to the shock wave.

In factories and similar buildings, where the amount of explosives
contained in a limited space can be controlled, it is technically and
economically possible to give the room suilable volume wilh regard to
the permissible stalic gas pressure. The wralls should be designed to resist
the shock wave so as to prevent damage to adjoining rooms.

With reference to the discussed questions it will thus be seen lhat the
advantages which are claimed to be gained by framework or mushroom
structures are much overrated by this type of load. In our opinion, the
mosl adequate construction is provided by the cellular system as composed
of elastically clamped slabs, limiting the damaging effects to the closed
cell. Constructional Systems of this kind must be considered as Ihe most
effective for avoiding total damage by locally oecurring explosions and
they should be used more frequenlly for factories and other constructions
where risks of explosion are involved al Operation.

From a general point of view, and especially with regard to shock
waves transmitted through the subsoil, alt the structures discussed are
parlicularly well adapted to withstand dynamic action. Even if one or
several of the carrying parts are deslroyed, Ihe statically indeterminate
system will continue to function, causing a redistribution of loads and
stresses but preventing the structure from collapse.

Damage to foundations may be caused by shock waves generated in
well graded moraine soils. Such shock waves generally occur as longitudinal
waves and are easily dispetsed by applying a filling of stone around the
structural elemenl. If the detonation takes place below a cerlain depth in
layers of plastic clay, however, more dangerous effects may be produced.
Besides a primary longitudinal wave, a transverse wave of great amplitude
and low frequency is generated, the propagation of wiiich is confined to
the surface of the layer. This latter wave, from which damage may arise.
resembles the Rayleigh wave, with accelerations comparable to those
oecurring in earlh-quakes. The ränge of propagation and the energy
content, however, are rather limited and depend on the properties of the
clay layers and their boundary conditions. The absorption of the wave
energy by an ordinary, heavy structure, founded on clay wilh the load
concentraled on pile groups or distributed over a continuous slab, is in
general so complete thal the wave is extinguished by the obstacle. On
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Fig. 3. Impact load on a 9.5 cm
reinforced shell roof with a clear span
of 14.2 meters. A concrete block
weighing 1 000 kgs is released from
a height of 3 meters. The picture
was taken immediately before the
impact.

aecount of the relatively small energy content of Ihe wave, the effects will
only be local and the risks of damage will as a rule be restricled to the
pile groups. Rupture would, however, only occur in the immediate
neighbourhood of the center of explosion and the risk of damage to the
structure as a whole would thus be greatly reduced or entirely eliminaled, if
the possibilities of redistribution of load from the damaged group of piles
to the surrounding ones were assured by an adequate design. Even in this
case the cellular structure is less sensitive to local damage of the foundation.
Although the framework or the mushroom structure may represenl good
Solutions of the slructural problem, the cellular system should be preferred
if other circumstances allow it.

In such cases, where a structure is designed for the sole purpose of
protecting people or machinery from heavy falling objecls, as for instance
linings in rock tunnels, the construction should permit a high deformation
in order to reduce the risks of damage by piercing.

Figures 3 and 4 show an experiment which was carried out in order
to verify Ihe theoretical treatment of local impact on a thin concrete shell
roof with a clear span of 14.2 meters and a height at its centre of 1.25 meters.
The shell was 9.5 cm thick and was reinforced wilh 5 mm bars, spaced at

a dislance of 65 mm. A concrete block, weighing 1000 kilos, with an
effective impact area of 47.5 X 47.5 cm was released from a height
of 3 meters. The two pictures show the undeformed shell, respectively its
maximum deformation. The lest was repeated wilh a sharp rock replacing
the concrete block and in both cases the missile was arrested by the shell,
although a certain amount of local penetration oecurred, as is shown in
fig. 5.

¥>zs
4

U
Fig. 1. Conditions as in fig. 3. The
deflection of the shell under impact
is clearly shown in the picture.
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Fig. 5. Local penetration of sharp
rock weighing 2 000 kg and falling
from a height of 3 meters on the
shell roof shown in figure 3.

In another tesl with a 2 000 kilos missile, the observed vertical
deformation, without serious damage to the shell, was 25 cm.

Resume

La nature des sollicitations dynamiques produites par explosion ou
choc est discutee; les proprietes caracteristiques et le- comportement de
quelques materiaux de construction sous l'effet de sollicitations dynamiques
sont etudies; Fauteur etudie egalement les deformations subies par trois
elements de construction (colonnes, poutres et dalles), ainsi que le
comporlement de ces elements dans diverses constructions.

Zusammenfassung

Die Art der dynamischen Beanspruchung bei Explosion oder Stoss
wird besprochen; die charakteristischen Eigenschaften und das Verhalten
einiger Baustoffe des Hochbaues unter der Einwirkung von dynamischer
Beanspruchung werden in aller Kürze behandelt, ebenso wie die
charakteristischen Formänderungseigenschaften von drei typischen Konstruktionselementen,

nämlich Stützen, Balken und Platten. Einige Erfahrungen
über die Wirkungsweise der besprochenen Konstruktionselemente in
verschiedenen Bauwerken werden erörtert.

Summary

The nature of dynamic load as produced by explosives and impact is
discussed; the properties and behaviour of some building materials under
the action of dynamic load are briefly related and the characteristic
deformation properties of three typical structural elements, viz. columns,
beams and slabs are discussed, as well as some questions with regard to
their mode of function in various structural Systems.
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