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Vb4

Vibiations amorties des poitiques

Gedämpfte Schwingungen von Rahmenträgern

Damped oscillation of fiame girders

ING. Dr VLADIMIR KOLOUSEK
Prague

Les lois de la Vibration amortie des constructions hyperstatiques ne
sont pas elucidees du point de vue experimental; le plus souvent on sup-
pose que Famortissement de la Vibration est proportionnel a la vitesse du
mouvement. Dans cet article, traitant du probleme de la xibration amortie
des portiques, nous admettons cette hypothese facilitant l'analyse malhe-
matique, sans discuter son exactitude. Nous simplifierons encore le
probleme en ne considerant que la Vibration transversale forcee des
portiques ayant des barres ä section constante bien que la meme methode
puisse etre appliquee pour des barres ä section variable et aussi pour les
autres types de vibrations.

Resolution de la Vibration amortie des systemes
en portique par la methode de deformation

Dans ses travaux precedents l'auteur de ce memoire a applique pour
le calcul de la Vibration non amortie la methode de deformalion C'2)-
On peut s'en servir pour le calcul de la Vibration forcee amortie.

Pour le mouvement transversal amorti de F element de longueur d'une
barre ä section constante on a la relation

d2v(x,t) do(x,t) d*v(x,t)
V-dx ^ \-bdx—gj \-E3—^—dx 0 (1)

oü v(x, l) signifie le deplacement de la section x dans le temps / ;

(') Stahlbau, 1943, p. 5.
(2) Memoiies de VA. I. P. C, 8e volume : Solution des pylönes d'antenne haubanis.
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jx la masse de Funite de longueur de la harre, el
b Famortissement par Funite de longueur pendant la vitesse unite.
Dans la suite on remplace b par w» (ayant la forme de la frequence

angulaire) qui resulte de l'equation
b 2L.Wb. (2)

En se limitant a la Vibration forcee et harmonique, l'equation (1) est
satisfaite par Fexpression complexe

v (x,t) [v (x) -j- iv (x)] sin wt -L- [u (x) — iv (x)] cos w< [u (x) — iv (x)]e,cu'
(3)

Apres la Substitution de (3) ä (1) on oblient l'equation differentielle
ordinaire

_ K (l - 2 i ±)[v (x) + iv(x)) + EJ *M*>+ *<'>]
Q (4)

dont la Solution generale est

v (x) -f- i v(x) C, cos h (A -f- /Ä) ^ -f C4 sin h (A -f i A) —

+ C3 cos (A + il) 4- + C, sin (A -f i Ä) 4 (5)

ou

avec

I |4/.uc°äA + ,I_l|/Jg.(l_.I,Ä)-Xl/l_,l5

(<!)

x -x-1'Y|/i|A+^-|Al/7+7
Si Fon ne considere que les membres reels on döduit de Fexpression

(3) que la composante de la Vibration ayant 1 amplitude v(x) procede

la composante avec Famplitude v(x) de Fangle <»= -^-

Si les extremites de la barre subissent le mouvement harmonique
(d'apr&s la fig. 1) avec Famplitude

y? + iy„ > vg + iv»> r* + h(i> et v» + ">*'

nous obtenons pour les constantes C quatre equations

C, + C3 v„ -f /u,

ct + c<= A_^,x (Yg + Q
C, cos /i (A -4- iX) -4- C2 sin /t (A -4- /X) + C, cos (A 4- iX) -4- C, sin (A -4- iX)

u„ -4- iu„
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Fig. 1.
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r„>1?

C, sin h (A -f iX) -4- C2 cos /i (A -f iX) — C3 sin (A -4- iX) -f C4 cos (A + /X)

d'oü

Ci YiT^TtXf [F< (A + m)'{V,J + ^ + Fi (A + iK>'(v* + ^
- I. F8 (A -f iX) • (v, 4- l£) - l • F, (A + iX) (y, -4-Tv-)j 4.1 („, + iv9)

c' atA + iX)3 lF°(A +iÄ)' K + ^ + Fr'(A + iX)'{Vh + f"*> (7)

- I-P* (A + iX)(Y. + iy.) + i-F3 (A + iX).(T» + fo] + 2(A_|_fÄ)(Tp+^)

C3 — C, 4- vg 4- iu,

l
O4 Ljj '

A+iX (t» + £y9)

avec

sin /i (A -4- iX) — sin (A -4- iX)F, (A 4 «) - (A + ff) _ h (A + ¦X)co&(A+.Ä)_1
_ T cosft(A + /X)sin(\ + /X)-sin/i(A-FiX)cos(A+iX)

F2 (A 4- iX) - (A 4 ff) cosÄ(A4-iX)cos(A + /A)-l
F |AJ.m 114 T ä cos L(\ 4 iX) — cos (A + iX)
F3 (A 4- iu) (A + lA)

COSÄ(A + I.A)cos(A + iX)_., (8)

p4 (a 4- ff)=(a 4- «>¦ svi/;(it^)sM(itf) 1v ' vi/ cos/i (A4-iX) cos (A4-I.V) — 1
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F5 (A 4- ff) (A 4 i X >' si";^+ff) + sin(.v + iX)
v ' ' v ' ' cos h(Xp- iX)cos(A4-iX) — 1

i7 ik i ;Ti_ /a i jT,3cos/t(A4-^)sin(A + ^)+sin/t(A+iX)cos(A4-iX)
1-,'A-t-IA)— (A+ IA) Cos/i(A4-iX)cos(A4-iX)-l

Pour le moment flechissant et Feffort tranchant dans la section x et

pour le temps t on a

MCO-Ejl^i, T(.,!) -Eji^ (9)

et par consequent pour les moments et les forces aux extremites de la barre
deformee on a les equations suivantes (ecrites pour la barre horizontale)

_ FI _ rjM,., + IM,.» M (0) + /M (0) =- -±J- F4 (A + iX) • (v, + lv.) - -^-

F3 (A + iX) • («» + ie,) + ^- F2 (A + iX) • (T, 4- iy9) -\- -^L

F,(A4-iX)-(YÄ + i7») (10)

_ FI _ FT
Y,,„ + IY#.» - T (0)- if (0) -p- Fc (A + iX) • (u, + iu,) 4- -£-

— FI — FT
F5 (A + iX) • (t>„ + ivh) r F4 (A + iX) • (r, + iy9) 4-~^-

F,(A4-fI).(T»4-iYi) (11)

En resolvanl les syslemes en porlique par la methode de deformation
on tire les deplacements el les rotations inconnus des equations qui res-
sortent des conditions d'equilibre dans les nceuds singuliers. Pour le
nceud g quelconque il vient

s (Mv.„ 4- m9,„) - (M/ 4- m/) o

s(X„,;i4-ixfl,„)-(x/4-iX/)=o (12)

S(Y,.»4-»Y,.0—(Y/+ iY/)=0
£(X„,,, 4" ä»,i), S( Y„,, -f-'Y„,») etant les composantes horizontale et

verticale des forces aux extremites de toutes les barres, qui aboutissent au
noeud g ;

(X/4-fT;), (Y/4-iY/), (M/4-iM/) etant les forces el le moment

exlerieurs agissant dans le nceud g.
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Exemple numerique

Fig. 2.
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Considerons le porlique etage d'apres la figure 2, charge au milieu
de la poutre 3,3' par la force verticale harmoniquement variable Psinwi.

Les moments d'inertie des poulres horizontales sont

Ji Ji. it.t. 2-10-in1
et des piliers

J, J0 J, 2 J., 1. 10 W.
La masse par Funite de longueur est dans le cas des poutres horizontales

fJL2==!Jli.r u-2.2':= "¦3,3' 0,5/9,81 0,0510 tonne.ni~2.see2

et des piliers
^ 0,2/9,81 0,0204 tonne.m"2.see2.

On calcule avec Ie module d'elasticite E 21 • 106 lonne/m2 et avec le
coefficient de Famorlissement to,, 2 -• 10 62,83 see-1 (on adopte pour w„
une si grande valeur pour rendre Fexemple plus instruetif).

Des conditions d'equilibre des moments [d'apres (10) et (12)] dans
les nceuds 1, 2 et 3 on obtient pour les amplitudes ile deformations, en cas
de la Vibration forcee, amortie el symetrique, les trois equations du
tableau I.

Le membre absolu de l'equation 3 du lableau I est determine comme
le momenl ä Fexlremite de la barre parfaitemenl encastree 3, p (d'apres
la fig. 3) de l'equation

c
M, + f I W

3.V

VpHvf

Fig. 3.
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Ti 4" 'Ti T2 4" »7« Ts + »7t

1

-^Ft<A,+flf,)
<i

+J^L[F2(A2+i7v2)
'2

- Fi (A2 + iÄ2)]

-^-F,(A,4-ij?,) ^0

2 ^LF,(A,4-iÄi)

° KI.' Ft(A, + ffl.)

4^L[F«(Ai+«l)
- F, (Ai + fX,)]

^F,(A, + iX,) 0

3 -^-F,(A, + fÄi)'i

-^F,(.v, + iT,)
u

12

-Fi(A, + fÄ,)]

„.»&?)
' *.(*•+«')

Tableau I

M l vTr EJ2 i-f / A2-f-iX2 \ .-,
,p + iM,.p =- ^--2 F3 L j. (Wf 4. ioJ (13)

ou

Vp + iWp
PI 2

i2

" ; " 2 EJ2 /A2+iX, (14)

Si nous supposons que la frequence angulaire de la force harmonique
Psinwi est w 103,7 see-1 (ce qui est dans le cas donne egal ä la premiere
frequence angulaire de la Vibration symetrique propre non amortie), nous
obtenons

/

et d'apres (6)

-l iVri,*-»',]/0,0204.103,7' _M~'' V EJ, -b|/ 21.10«.i.l0- -d'41U

A, 3,410]/ 4 1/ + 4.62,832
103,1' l/li/. |

4.62,83r 1

(/ 8 V + 103,72 "i" 8

3,410 1/0,6267 4- 0,5669 3,726

X, — 3,410 1/0,6267 — 0,5669 — 0,834.
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II s'ensuit

cos h(A1 + iX1) cos hAj cosXi + i sin hAx sin Xj 13,96 —15,37 i
sin h(A1 + iX1)=13,94 —15,39 i
cos(A1 + iX1) —1,141 —0,516 i
sin (Ai -j- 1X0 — 0,755 + 0,779 i

et d'apres (8)
EJ,

~V
EJ,

F, (A, + iX,) 858 — 664 i

F2(A,+ iX,) l 132 4- 810 i

Par analogie on oblient pour A, 3,005

A2 + iX2 3,283 — 0,735 i
et

EJ2
[Fs (As + iX2) — F, (A2 4- iX 2)] 748 4- 1 851 i

Le membre absolu a la valeur
A.4- iX2

PL "

4 /A,-t- iX, f P (0,718 — 0,1887 i)

Si nous substituons les valeurs determinees dans les equations du
tableau I nous obtenons les equations du tableau II.

7i + i 7i 7s + ' 72 73 + i 73

1 3 012 + 3 471 1 858 — 064 i 0

2 858 — 664 i 3 012 4-3 471 i 858 — 664 i O

3 858 — 664 i 1 880 4- 2 661 i P (0,718-- 0,1887 0

Tableau II

II resulte des equations de ce tableau

Tl — 0,050 -10-4 P

T2= 0,435-10-" P

T3= 0,742-10-1 P

ainsi que les rotations des noeuds sont

Yl(f) Yl sin wi +^ cos w' (— 0,050 sin 103,7 l +0,100 cos 103,7 t)-10"" P

y2(i) y2 sin tot + Yj cos 10/ (0,435 sin 103,7 t + 0,188 cos 103,7 t) ¦ IO"4 P

Ys(0= fs sin at + y3 cos wi (0,742 sin 103,7 t — 1,986 cos 103,7 l) ¦ 10_* P

v_1= 0,100-10- P

j1= 0,188-10-' P

Ys=—1,986- IO"4 P
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II vient des resultats precedents que le decalage de phase

est different dans chaque nceud envisage.
L'auteur a contröle les resultats obtenus par une autre methode de

calcul qui consiste a decomposer la Vibration dans ses formes propres (z).
Nous ne reproduisons ici que les resultats, par suite de manque de

place. En ne considerant que les trois membres de la serie des vibrations
propres, il vient

Yi (0 — 0,328 + 0,306) • IO'4 P — 0,022 ¦ KT4 P

Tl (— 0,435 + 0,825 — 0,298) • 10"4 P 0,092 ¦ 10"4 P

y, (0 + 0,037 + 0+64) ¦ IO"4 P 0,501 • 10"' P

y2 (0,717 — 0,092 — 0,451) ¦ 10"4 P 0,174 ¦ 10"4 P

y3 (0 + 0,324 + 0^395) • 10"4 P 0,719 - 10'4 P

y3 (_ 0,745 — 0,814 — 0,384) -10"' P — 1,943 • 10"4 P

oü les lermes entre parenthfeses expriment la participation des formes par-
ticulieres des vibrations propres pour les resultats finaux.

Resume

Pour le calcul de la Vibration forcee amortie des portiques on peut
appliquer la methode des deformations. La resolution est analogue a. celle
des vibrations non amorties, gräce ä l'emploi dans le calcul de fonctions
complexes.

Zusammenfassung

Für die gedämpfte erzwungene Schwingung von Rahmenlrägern
kann die Deformationsmethode angewendet werden. Die Lösung gleicht
derjenigen der ungedämpften Schwingungen, wenn man in der Berechnung

komplexe Funktionen einführt.

Summary

The deformation method can be used for forced suppressed oscillation
of portal frames. The Solution is similar to that of unsuppressed
oscillations if complex functions are used in the calculation.

(3) Voir dans la rtjference (2), chap. II, 4.
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