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Vbi

Vibrations amozrties des portiques
Gedampfte Schwingungen von Rahmentriagern

Damped oscillation of frame girders

; v
ING. D* VLADIMIR KOLOUSEK

Prague

Les lois de la vibration amortie des constructions hyperstaliques ne
sont pas élucidées du point de vue expérimental; le plus souvent on sup-
pose que I’amortissement de la vibration est proportionnel a la vitesse du
mouvement. Dans cet article, traitant du probléme de la vibration amortie
des portiques, nous admettons cette hypothése facilitant I'analyse malthé-
matique, sans disculer son exactitude. Nous simplifierons enecore le
probléme en ne considérant que la vibration transversale forcée des por-
tiques ayant des barres & section constante bien que la méme méthode
puisse étre appliquée pour des barres a section variable et aussi pour les
autres types de vibrations.

Résolution de la vibration amortie des systémes
en portique par la méthode de déformation

Dans ses travaux précédents l'auteur de ce mémoire a appliqué pour
le calcul de la vibration non amortie la méthode de déformation ('?).
On peut s’en servir pour le calcul de la vibration forcée amortie.

Pour le mouvement transversal amorti de 1’élément de longueur d’une
barre a section constante on a la relation

wdz ”a(t‘f D | bds a” LCAUANES LA e

ou v(x, t) signifie le déplacement de la section z dans le temps ¢ ;

”(‘” D gz —0 (1)

) Stahlbau, 1943, p. 5. )
) Mémoires de 'A. I. P. C., 8 volume : Solution des pylénes d’antenne haubanés.

(1
(2
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u la masse de I'unité de longueur de la barre, el

b I'amortissement par 1'unité de longueur pendant la vilesse unité.

Dans la suite on remplace b par w, (ayant la forme de la fréquence
angulaire) qui résulte de 1'équation

b=2uw,. 2)

En se limitant & la vibration forcée et harmonique, 1'équation (1) est
satisfaite par l'expression complexe

v (z,t) = [v(z) + iv (2)] sin wt 4 [E () — iv (r)] cos wt = [3 (x) — iv (z)]eiwt

(3)

Apres la substitution de (3) 4 (1) on obtient I'équation différentielle
ordinaire

d'[v(x) +iv@)] _

-—wﬂb—m%ﬂwuy%ﬁuﬂ+ml — (4)

dont la solution générale est

v (2) 4 iv(z) =C, cos h (A } i._\)il + C,sin h (A 4+ iA) —f—
+Cw%£h+ﬂﬂ%~%&ﬁnm+dxy% (5)

ou

. T ' [ aw? 3) W
A+iR=1 %ﬁb_giﬁzlll_zpﬁ
| DB w

avec .

A=ﬂ/éwyb+4%;+bﬁgva+4ﬁ:+%- (6)

/‘. —
14/ w,* 1 3 1
K=—i/<sl/14+4——]|/ > g Yo 4 -
) sl e =) Y 1

Si I'on ne considére que les membres réels on déduit de I'expres-
sion (3) que la composante de la vibration ayant I'amplitude v(z) préceéde

[

la composante avec 'amplitude v(x) de I'angle « 5

Si les extrémités de la barre subissent le mouvement harmonique
(d’apres la fig. 1) avec l'amplitude

T9+i?'.v’ vg+l:5a’ Th'!_i?h et vh_”i;h’
nous obtenons pour les constanies C quatre équations
C,+ Gy =v, +iv,

l =
C,+ Ci= AFix (o 1 iy,)

C,cos h (A + iX) 4 C;sin h (A 4 iX) 4 C; cos (A + iX) 4 C, sin (A 4 iR)
= Uh+ iv_h
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C,sin h (A 4-iX) + G, cos h (A 4~ iX) — Cysin (A + iX) + C, cos (A 4 iX)
l —
—TF@ i)
d’ou

1

Q:Eaiﬁﬂﬂm+mﬁwH@+ﬂm+ﬂHW+@)

— LB (A4-1K) (v, + i'ﬁz) — LF(A 1K) - (14 +_1'}’n” T “;T (v + il—’g)
1 : ) - -
G = m [Fs (A 4+ iX)-(v, 4 iv,) + F; (A + iX) - (v, + iv,) (7)
; = ; g B l —
— LR+ R A+ B) + 1B (A 88) - (i + 3]+ gy (o)
Cs=—C, _’_Uy"i_ii;y
[ =
C4 = C2 + m‘ (Y!I + t'}’y)
avec

sin h (A 4 iX) — sin (A + iX)

cos h (A4 iX)cos (A iX)—1

cosh(A+iR)sin(A+4-iK)—sin (A +iX)cos(A+iX)

cos h (A 4+ iX)cos (A +iN) —1

, cos h (A iR) — cos (A 4 iX) 3
cos h (A 4+ iN)cos (A 4+ iK) — 1 ®)
sin h (A 4 iX) sin (A + iX)

cos h (A iK)cos (A +iN)—1

F, (A + i%) = — (A + iX)

F, (A +iX)= — (A 4 i&)

F, (A - iX) = — (\ 4 i%)

F, (A + i%) = (A 4 iK)?
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‘ — , sin b (A - iK) 4 sin (A - i%)

Fs A+ iR = 4 13) cos h (A + iR) cos (A+iX)—1

- — scosh(A4-iX)sin(A4iX)4sinh(A4iX)cos(A}iX)
Fh~jrib)—=—(A-aR] cos h (A 4+ iX)cos (A +iX) —1

Pour le moment fléchissant et 1'effort tranchant dans la section z et
pour le temps { on a

v (z, t o v (x,t
ED e, g=—p 22D )

et par conséquent pour les moments et les forces aux extrémilés de la barre
déformée on a les équations suivantes (écrites pour la barre horizontale)

M(z,t)=— EJ

M, , + iM, , =M (0) + iM (0) = — —o ” F, (A + iX) - (v, + iv,) — EJ
- EJ - EJ
Fy (A +i%)- (v, 4 ivy) + Fe (A + 1K) (t, + i) + ——
F, (A +iX)-(yi + i) (10)
= (o EJ
Y, +iY,n=— T (0)—iT (0) = ——F, (A iX)( erg)Jr
- EJ - EJ
F5 (A—]—iK)-(v,,-[——iv,,)—TF., (.\—'—iK)'(\"g—]—i‘l’g)—l-—T
Fy (A 4 iK) - (14 + i) (11)

En résolvant les systemes en portique par la méthode de déformation
on tire les déplacements el les rotations inconnus des équations qui res-
sortent des .condilions d'équilibre dans les nceuds singuliers. Pour le
nceud g quelconque il vient

S (M, - M, ) — (M, = M) — 0
S(Xu,h +ixg,h)"—(ch+ ixnc): O (12)
Y (‘Yg. h —1" iYa,h)'—(Yac _l_ l'Y;c) =1 .

S+, 2(Y, 4+ iY,,) étant les composantes horizontale et
verticale des forces aux extrémités de toutes les barres, qui aboutissent au
nceud g ;

(X, X, (Y, 4 iY,), (M= iM,*) étant les forces el le moment

extérieurs agissanl dans le nceud g.
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Considérons le nortique étagé d'aprés la figure 2, chargé au milieu

de la poutre 3,3’ par la force verticale harmoniquement variable P sin wt.
Les moments d’inertie des poutres horizonlales sont
l]2 == Jl,]' — J?.i” — Jg.:;, — 2' iO_Jl‘Hl
et des piliers
JI — JO.] — JI,? — J'-'.-'l — 1 . 10"‘”1".
La masse par l'unité de longueur est dans le cas des pouires horizontales
Uo ==y 1+ = Moo = W33 = 0,5/9,81 =0,0510 tonne.m™.sec”
et des piliers
u; =0,2/9,81 =0,0204 tonne.m™.sec”.
On calcule avec le module d’élasticité E=21-10° tonne/m* et avec le coef-
ficient de l'amorlissement w,=2=.10=062,83 sec”™ (on adopte pour w,
une si grande valeur pour rendre I'exemple plus instructif).
Des conditions d’équilibre des moments [d’aprés (10) et (12)] dans

les nceuds 1, 2 et 3 on obtient pour les amplitudes de déformalions, en cas

de la vibration forcée, amorlie et symétrique, les trois équalions du
tableau I.

Le membre absolu de 1'équation
le momen! a l'extrémité de la barre
la fig. 3) de 1'équation

3 du lableau I est déterminé comme
parfaitement encasirée 3, p (d’apres

Mg’,p + i
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714 ve 4 ive T3+ it
2FE
IJI Fe (A1 +i%))
FJ. .
Hr B r ity Fi (AR =0
—F1 1\2—1—1752)]

2E], -

L Fe (4%
JOR EJ
2 -I—lFl (1\1—'—1.(1) +Ei[F2(\2+lT2) —)-Fl(\l_{_l-{l) =0
—I‘l(‘\e—i—l?\'?)] |
EI“]LF (A% Fi As+ iRy
EJ, _PL "\ 2
3 ’—Bl(h—}-ﬂ) _!_.E_JZ [Fa(Ae+iK2) T4 FG(J\Q—i;iX.z)
' —r1<\2+:1>1 -

TaBLEAU 1

My, iV, = — 2ty (A e )'<vp+i5,,> (13)

(5)
ols)

i =35 Fy - (Ag—*-ixg)'
2

ou

(14)
G
Si nous supposons que la fréquence angulaire de la force harmonique

Psin wl est w=103,7 sec™ (ce qui est dans le cas donné égal & la premiére
fréquence angulaire de la vibration symélrique propre non amortie), nous

obtenons ;
w? 0,0204-103,7*
b=l l/ EJ, _6l/°1 1o5.1-10— — 410
et d’aprés (6)
1! 4.62,83? 4.62,83° | 1
= 3,410 ]/0,6267 -+ 0,5669 = 3,726
X, = — 3,410 /0,6267 — 0,5669 = — 0,834,
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Il s’ensuit :

cos h(A, +iK,)=rcos hA, cos X, +-isin hA; sin X, = 13,96 — 15,37 i
sin h(A, +1iX,)=13,94 —15,39 i
cos (A, - iKy)=—1,141—0,516 i
sin (A, + iX,)=—0,755 0,779 i

et d’aprés (8)

EIJI F, (A, 4 iK,) = 858 — 664 i

1

EJ] . .
TLFy (A + iR =1 182+ 810 i
1

Par analogie on obtient pour i,= 3,005
A,+ iR, —3,283—0,735 i

et
Bl ; 0 & ” o o
L [Fy (A, +iX,) — F, (\, +iX,)] =748 41851 1.
Le membre absolu a la valeur
F ( 1\2 + ixg )
Pl & = P (0,718 — 0,1887 i)
4 F(Aﬁ—i?{g‘)— ’ ; '
& 2

Si nous substituons les valeurs déterminées dans les équations du
tableau I nous obtenons les équations du tableau II.

nin J tetive st ivs

1 301243471 | 858 — (64 i = ()

2 858 — 664 i ‘ 3012 434711 858 — 664 i =0

3 { 858 — 664 i 1 880 4+ 2661 i = P (0,718 — 0,1887 i)

TasLEaU 11
" 11 résulte:des équations de ce tableau B

1,=—0,050.10" P vv= 0,100.10"* P
Y= 0,435.10™" P v.= 0,188.10™* P

Ys= 0,742.10" P vs=—1,986.10™" P
ainsi que les rotations des nceuds sont
11 (8)=", sin wt + ?1 cos wt=(— 0,050 sin 103,7 { -+ 0,100 cos 103,7 ¢)-10™* P

Y2 (£) =7, sin wi —1—12 cos wt=(0,435 sin 103,7 ¢t 4 0,188 cos 103,7¢)-10™* P
s (£)==17s sin wl + v, cos wt=(0,742 sin 103,7 t — 1,986 cos 103,7 ¢)- 107* P
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Il vient des résultats précédents que le décalage de phase

M
v == arctg v

est différent dans chaque nceud envisagé.
L’auteur a contrdélé les résultats obtenus par une autre méthode de
calcul qui consiste & décomposer la vibration dans ses formes propres (*).
Nous ne reproduisons ici que les résultats, par suite de manque de
place. En ne considérant que les trois membres de la série des vibrations
propres, il vient
71=(0—0,3284-0,306)- 10 P=—0,022 . 10 P
71 =(—0,4354-0,825—0,298)- 107" P=0,092 . 10~* P
¥.=(0-+0,037+0,464).10* P=10,501. 10 P
¥.=(0,717 — 0,092 — 0,451)- 107 P=0,174 . 10~ P
Ys=(0--0,324+0,395)- 10 P=0,719. 10 P
Ys=(—0,745—0,814 —0,384)-10*P=—1,943 .10 P

ou les termes entre parenthéses expriment la participation des formes par-
ticuliéres des vibrations propres pour les résultats finaux.

Résumé

Pour le calcul de la vibration forcée amortie des portiques on peut
appliquer la méthode des déformations. La résolution est analogue & celle
des vibrations non amorties, grice 4 ’emploi dans le calcul de fonctions
complexes.

Zusammenfassung

Fir die gedimpfle erzwungene Schwingung von Rahmenirigern
kann die Deformationsmethode angewendet werden. Die Ldsung gleicht
derjenigen der ungeddmpften Schwingungen, wenn man in der Berech-
nung komplexe Funktionen einfiihrt.

Summary
The deformation method can be used for forced suppressed oscillation

of portal frames. The solution is similar to that of unsuppressed oscil-
lations if complex functions are used in the calculation.

(®) Voir dans la référence (2), chap. 11, 4.
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