
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 3 (1948)

Artikel: Differential equation for calculation of vibrations produced in load-
bearing structures by moving loads

Autor: Ödman, S.T.A.

DOI: https://doi.org/10.5169/seals-4051

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 23.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-4051
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


Vb3

Equation differentielle pour Ie calcul des vibrations
produites dans les constructions portantes par les charges mobiles

Differentialgleichung für die Schwingungsberechnung
von Tragkonstruktionen infolge beweglicher Lasten

Differential equation for calculation of vibrations
produced in load-bearing structures by moving loads

SVEN T. A. ÖDMAN, C. E.

Head, Technical Department
Swedish Cement and Concrete Research Institute at the Royal Institute oi Technology

Stockholm, Sweden

This paper is a contribution to the theoretical study of the problem of
forced vibrations in load-bearing structures of finde extenl subjected to
any arbilrary boundary conditions. The vibrations are assumed lo be
produced by one or several non-elastically applied loads, and possibly also
transverse forces devoid of mass, which move on the structure with a
constant velocity.

A usual treatment of similar problems consisls in deducing a
differential equation which represents the motion of the load-bearing structure
and the load, and in finding a formal Solution to Ihis equation by means
of a series expansion. This method has been applied by many authors to a
beam which is hinged and freely supported at both ends, and is acted
upon by a single moving load. Among these aulhors, the following deserve
to be mentioned in this connection. Kryloff (x) neglects the influence
exerted by the mass of the load on the natural vibralion of the system,
and thus obtains a simple formula for Ihe deformation at any arbitrary
subsequent instant. Inglis (2) expresses the deformation and the load by a
Fourier series, in which he disregards all terms except the first. In other
words, he imagines the concentrated load to be replaced by a load distri-

(') Ktfvt.oFf-, A. N., Mathematische Annahm, Vol. 61, 1905. See also TiMosrtE.NKO, S.; Vibralion
Problems in Engineering, U. S. A., 1928.

(2) Inglis, C. E., A Mathematical Trealise on Vibrations in Railway Bridges, Cambridge. 1934.
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buted over the whole beam according to a sine function having a half wave
length which is equal to the length of the beam and an amplitude which
varies in accordance with the same sine function. Schallenkamp (3) deals
in a similar manner with the Vibration of the load in a vertical direction
only. Looney (4) tackles the problem by means of the calculus of
differences on the assumption that Ihe natural vibralion can be represented
by a sine function, and disregards all harmonics except the fundamental.
Contrary to Inglis, Rinkert (5J takes into aecount a finite number of terms
in the series expressing the concentrated load.

A procedure that is commonly used by most of the investigators
referred to in the above is to obtain the Solution of the differential equation
by means of sine series in which each term can be regarded as an analytical
expression of one of the types of vibrations performed by a beam which
is hinged and freely supported at both ends. If Ihe beam is subjected to
an impact caused by a force which is devoid of mass, vibrations will be
produced, the frequencies of which are determined solely by the properties
of material, dimensions, and boundary conditions of the beam, and each
of these frequencies corresponds to a definite type of Vibration. On the
other hand, if Ihe force acts in conjunclion with a mass which takes part
in the Vibration, for instance. if the beam is submitted to a moving load,
then different conditions will arise. In this case, a continuous change in
the position of the mass on the beam gives rise to a continuous Variation
in each frequency and in the corresponding type of Vibration. If we try to
find a formal Solution to the differential equation of vibralion produced
by a moving load by using series of functions. which are not variable with
time, this implies an attempt lo calculate a resulling Vibration at any
arbilrary gauge point by the aid of a limited number of terms. In reality,
this motion is composed of several entirely separate vibrations, and an
intricale analysis of frequencies will be required in order to segregale these
vibrations.

The use of formal Solutions entails insufficient accuracy in the
calculation of stresses. Even if the series used for solving the differential equation

is found to be convergenl, it is not certain that the second derivative
will approach a correct value, or will be convergent at all. This is due to
Ihe fact that a given initial Substitution used in solving the differential
equation will prove successful depending on Ihe extent to which the first
term of the series agrees with the actual, total deformation. Consequently,
the fact that the boundary conditions are satisfied by all terms of the series
alone is not sufficient. An analogous Statement has been made by Courant

(G) regarding variational and buckling problems. Therefore, as the
lype of vibralion varies continuously in Ihe case of moving loads, there
must always be an uncerlainty in the calculation of stresses.

The purpose of this paper is to demonstrate a method for a more
2reneral study of this problem under any arbilrary boundary conditions.

(3) ScmLi.ENKAMP, A., Schwini/unoen von Trägern bei bewegten Lasten (Ingenieur-Archiv.
19371.

(4) I.ooney, Ch. T. G., Impact on Railwav Bridges (University o) Illinois, Bulletin No. 19,
Vol. 42, 1944).

(5) RiNKFnT, A., Vibrations of a Beam with Hinged Ends under Action of a Load Moving with
Constant Speed. Examinalion Work at Ihe Institution of Structural Engineering and
Bridgebuilding at Ihe Royal Institute of Technology, Slorkholm 1945 (in Swedish).

(6) Couhavt, R.. Variational Methods for Ihe Solution of Problems of Equilibrium and
Vibrations (Bulletin of the American Math. Soc. Vol. 49. No. 1. Jan. 1943V
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In contradistinction from the earlier investigations, we shall take into
aecount the Variation in the type of natural vibralion due to the change
in the position of the load. Each term of the series used in solving the
differential equation corresponds to the type of natural Vibration performed
at a given instant, and is therefore dependent on the position of the load,
and hence on time. Accordingly, the state of vibratory motion is known
at any instant, and the increments in moment and in stress due to each
natural Vibration can therefore also be calculated. Just as most other inves-
tigators who have dealt with this problem, we neglect the influence of
damping, which has been discussed by Holzer (7) and Sezawa (s">. among
others. The deformations are assumed to be so small that the effect of
rotatory inertia and of shear can be disregarded. These queslions have been
studied by Timoshenko (*), Goens (10), Pickett (ll) and others.

Consider free harmonic Vibration of a system which is Compound in
the ränge G and consists of a load-bearing structure in conjunetion with
one or several stationary masses. In this case, we can deduce a harmonic
differential ecpiation of the following well-known type, which is inde-
pendent of the time factor

L[?.] +P-a„.?„ 0 (1)

where 9,, is a characteristic function which represents the n-th type of
deformation of the system within the ränge G, and Ä„ is the corresponding
characteristic value (12). L[o„] is a linear differential expression formed
with respect to the Space coordinates x. y, z, and is defined within the
same ränge, and 0 is a given dimensionless function which represents
the relative mass density distribution of the system. Eq. (1) is often called
Euler's differential equation.

If the section of the load-bearing structure is uniform, the caracteristic
functions and the corresponding natural frequencies can be computed
from the above differential equation by means of the methods given by
Den Hartog (") or Kärmän and Biot ("), and others. For this purpose, a

general Solution of the differential equation is found for the langes between
the boundaries and the point of application of the load. By applying the
boundary conditions, we obtain a frequency equation, and by means of
this equation we can calculate a set of roots, each of which corresponds to
a definite form of the characteristic function. The lowest root value
corresponds to Ihe fundamental frequency. Berg (15) has carried out Ibis
calculation for a hinged, freely supported beam, and bas labulated the
values of Ihe characteristic function as a function of the position of the

C) Ilotzpif, II.. Zeitschrift für angeu: Math, und Meeh., V. 8. p. 272. 1928.
(*) Sezawa, K., Zeitschrift für angew. Math, und Mech.. V. 12, p. 275. 1932.
(8) TnfosnENKO, S., On the Correction for Shear of the Differential Equation for Transverse

Vibration of Prismatic Bars (Plulosophieal Magazine, Ser. 6, Vol. 41, p. 744 and Vol. 43. p. 125).
(10) Goens, E.. Ueber die Bestimmung des Elastizitätsmoduls von Ställen mil Hilfe von

Biegungsschwingungen (Annalen der Physik, 5. Ser., Vol. 11. p. 649, 1931).
(n) Pif:Ki:TT. 0., Equations for Computing Elastic Constants from Flexural and Torsional

Resonant Frequencies of Vibration of Prisms and Cylinders (American Society for Testing
Materials, Vol. 45, 1945).

(ia) CofftwT, R. and Hildert, D., Methoden der mathematischen Physik, Band 1, Berlin,
1924, Kap. V.

(,s) De:* Haixtoc, J. P., Mechanical Vibrations. New York and London. 1940.
C14) v. KirtMÄN, T. and Biot, M. A., Mathematical Methods in Engineering, New York and

London, 1940.
f15) Berg, Owe, Biegungsschwingungen eines in beiden Enden unterstützten punktförmig

belasteten Balkens (Zeitschr. angew. Math. Mech., Bd 24, Nr 1, 1944).
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load and definite given ratios between the masses of the load and the beam.
For the majority of practical purposes, some approximate method can

usually be applied. For instance, Lord Rayleigh (16) assumes that the
characteristic function approximates to the static deformalion curve
produced by the weight of the load. provided that the inertia forces are
neglected, and calculates the frequency by means of the energy method.
Ritz (I7) puts the characteristic function equal to a series, and determines
the coefficients of expansion and the frequencies by the aid of Hamilton's
variational principle. Galerkin (1S) applies a variational melhod by which,
however, one arrives at exactly the same expression as is obtained by the
method dexised by Ritz. Gran Olsson (19) has found that with the aid of
the principle of Virtual displacements the same results may be obtained as

by the methods of Ritz and Galerkin. Finally, Grammel (=0) takes the integral

equation of the system as a starting-point and determines the frequency
from the relation between an assumed deformation and the nucleus.

All these methods give a sufficiently accurate upper limit of the natural
frequency. The deviations of the approximate expression of the characteristic

function from its exaet form have scarcely any influence on the
ultimate value, and the error is therefore usually inconsiderable. If greater
importance is attached to the form of the characteristic function, as is
often the case in the determination of stresses, or if the rigidily, section
area and the mass density of Ihe load-bearing structure are variable, it is
convenient to use Vianello's (=I) approximate method for plotling the
characteristic function graphically by means of a funicular polygon. Great
accuracy can be obtained by applying this procedure several times. This
problem has also been dealt with by Inglis (**).

The characteristic functions tpj, <p2, <p3, etc., form a complete orthogonal

system which satisfies the conditions for orthogonality, viz.,
f?-?r-<?nd-z 0 r =f= n

° (2)

f a-o„-d'z — constant r=n \
e,

' 1

where G denotes the limit ränge of the integral and x is used to designale
one or several coordinates in space. If the constant is put equal to unity,
the characteristic funclions are lermed normalised.

Furthermore, the theorem of expansion of characteristic funclions states
that any stepwise finde arbilrary function / which stalisfies the same

(") Lord Rayleigh, The Theory of Sound, Vol. 1, 2nd Ed., pp. 111 and 287. Phil. Mag.,
Vol., 47, p. 566, 1899 and Vol. 22, p. 255, 1911.

(17) Ritz, W., Ueber eine neue Methode zur Lösung gewissen Variationsprobleme der
mathematischen Physik. (J. f. reine und angcie. Math., Bd 135, pp. 1-61, 1909. — Gesammelte
Werke, p. 265, Paris, 1911).

(18) Galerkin, B. G., Expansion in Series for Solving Some Equilibrium Problems for Plates
and Beams (Ujcslnik Ingenerow Petrograd, 1915, Hell 19, in Russian).

(19) Gran Oi.sson, R.. Die Anwendung des Prinzips der virtuellen Arbeit bei der Lösung
von Knickproblemen (Del Kongelige Norske Videnskabers Selskali, Forhandlinger Bd XVII,
Nr 46).

Gran Oi.sson, R., The Principle of Virtual Displacement Applied in Approximate Solutions
of Eigenvalue Problems (Dixieme Congrds des Mathematiciens Scandinaves, Copenhague, 1946).

(20) Grammel, R., Ein neues Verfahren zur Lösung Technischer Eigenwertprobleme (Ing.-
Arch., Bd 10/1939. pp. 35-46). See also : Lösen, Fr.. Berechnung der Eigenwerte linearer
Integralgleichungen (Zeitschr. angew. Math. Mech., Bd 24, Nr 1. 1944).

(21) ViAMii.i.o, L., Grafische Untersuchung der Knickfestigkeit gerader Stäbe (Z. 1'. I). I, 1898,
Juli-Dez., p. 1436).

(22) Ingi.is, C. E., Natural Frequencies and Modes of Vibration in Beams of Non-uniform Mass
and Seclion (Trans. I. N. A„ Vol. I.XXI, p. 145, 1929).
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boundary conditions as the characteristic functions s„ and has a self-
adjungated finite linear differential expression L[<pn] can be expressed by
an absolutely and uniformly convergent series composed of these
characteristic functions, viz.,

'=Z c„ ¦ <?„

n
wdiere

C.= /p./-<p„dT. (3)
u

For simplification, we shall deduce, in the first place, the differential
equalion for a single moving load having a mass which cannot be neglected.

It is convenient to imagine the masses of the load-bearing structure
and of the load as a Compound system whose natural Vibration is unambi-
guously determined by the position of the load in a steady state of vibratory
motion and varies with the position of the load, whereas the weight of
the load is regarded as an external vertical force devoid of mass applied
at the centre of gravity of the moving mass. In Ihe treatment of the
problem it makes no difference whether a force devoid of mass, e.g. a pulsating
force, is added lo the weigbl of the load, and the problem is thus reduced
to the determination of the Vibration produced by the resultant external
force.

Since the syslem has an infinite number of degrees of freedom for
every position of the moving mass, the deformation from the position of
equilibrium at any arbitrary instant t tt can be expressed by a series
comprising all those degrees of freedom which corne into play at that
instant. Accordingly, we put

W= Yj 1«(tJ> ' ?»;(<» S) (4)
;f l

where w denotes the deformation from the position of equilibrium, and
<?nj corresponds to the n-th characteristic function determined in a steady
State of vibratory motion with the moving mass in the j'-th position on the
structure. For instance, <pnj can be imagined to be composed of trigono-
metric and hyperbolic functions in which the arguments are also variable
with time. The quantity qn is an unknown factor which varies with time
only, and is termed a generalised coordinate.

The maximum kinetic and potential energies of the system, which
are denoted by T and V respectively, are determined at the instant when
the load is at the point s,.

For the load-bearing structure alone, we oblain

T-^X(t),("
where m denotes the mass per unit length t of the structure.

The velocity of the moving mass at any arbitrary point is

dw r.

Yi (?»-T».H-?»-<rv)
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9n
dqn and d?»j

dtj r"J ~ dtj

Therefore, we get

T.--fjr[y(i..*rr-,..**> d-

In calculating the corresponding increase in kinetic energy due to
the moving mass having the weight P, we must take into aecount its curvi-
linear motion whose component in the direction io is determined by

u'r0;)= X ^Vj)m?-j(*jf*j)

where s, is also a function of time. Then the velocily of the load in the
direction w can be written

dwv

dt, 2 [?«'^W+ ?.'?-;W]

and the amount contributed by this velocity to the kinetic energy of the
svslem is

TP
2ff X [<I»-<?„j(Sj) + qn-i„j(Sj)]

The potenlial energy of the system is equal to the sum of all inerlia
forces times the respective displacement of these forces. Since the inertia
forces are proportional to the deformation, we consider their mean value,
and the amount Vb contributed by the load-bearing structure to the potential
energy of the system is determined by the expression

m
~2~

d'w /\wdxr d'w

where w„(s,) is the frequency of the n-th natural Vibration.
The corresponding increase in potential energy V„ due to the load is

\n l

Using the notation

Ja mg
f„s(Sj) H„ (sj)

and observing that the terms of the form
P

/ frjfvjdx ¦

JGJ ' mg
<?rj(Sj)-<?»j(Sj) ; rV>
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are zero according to the conditions for orthogonality, see Eq. (2), we can
write Ihe total maximum kinetic and potential energies of the system

T m
00

di?..•?»,•)

?-•»»> (*/)]

v=ir 2^,"u-,(*')'H-(*') (5)

These values are inserled in Lagrange's equation of motion
d (dT\ _ 3(T — V)
dl '

dq, hr Q,

when Q,. denotes Ihe force corresponding to q,. and is termed the generalised
force. We Ihen obtain

OD

<•/",. • H,. (s,) + fß ?rJ ^ (2 qn • i.j + q. ¦ ?„;) d-.

p
+ -— -frj (Sj)- Y [2 ?„•?„; (s,) + <?„•»,,• (s,)J -f- g,-u,.2 (s,)-H„ (»,)

Qn

mg »i

(6)

The generalised force QrJ is determined so that the work done by Ihe
external force in the case of Variation in Ihe generalised coordinate qr
divided by Ihis Variation should be equal to Qr,.

In Ihis case, the work is equal to P(sJ).oq,.-o,.j(sj), where P(s,-)
denoles Ihe weight of the load, possibly wilh Ihe addition of an external
force devoid of mass, which is applied at the same point. We then obtain

Q„ P(.V) .»„(«,)

Eq. (6) gives a system of linear inhomogeneous differential equations
of the second order having an infinite number of terms and variable coeffi-
cients. This equation can be regarded as the complete differential equation
of forced vibralion produced in a load-bearing structure by a moving non-
elastic mass. It is very difficult to find an exaet Solution of this equation.
In order to avoid this difficulty, we must resort to simplifications.

The influence of the curvilinear motion is so slight lhat it can be
regarded as a correction, at least in normal structures met with in practice
and subjected to ordinary permissible loads. In such cases it is obvious
lhat the error will be negligible if the correction consisls in disregarding
the influence of all vibrations except the r-th. If the characteristic functions

are normalised so lhal / o,./-dx l the Variation in the form of the

characteristic function must be so small that it could be neglecled, with
the result that both <prj and <srj would become equal to zero. If the velocity
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of the moving mass is assumed to be constant and equal lo v, we gel
i n

frj (s,) v ¦ oyJ (.«?,) and orJ (Sj) o* ¦ <srJ (ss)
1 do ¦ (s) n d'o ts,\

where **&)= "'^ and ?,-,(*¦-) % i*j)

Consequently, Ihe complete differential equation takes Ihe simplified
form

g,. ¦ Hr («,) + qr ¦ H„ («,) -f r/,. ¦ [«„¦ H^) + N.. (*,)] p(*>?*W («)

where H,. («,) 1 -\ ?,./ («,)'
mg ' J J

¦^ 2 v l
Hr(*>) =— -P-?ri (*,)•»„(*,)

It makes no great difference whether one or several masses move with
the same velocity on the load-bearing structure. The Variation in mass
distribution with lime influences the form and the frequency of the
characteristic function in a similar manner. It is convenienl to keep the
notalions on and to„ unchanged, but they are used to denole the new
characteristic function and Ihe corresponding natural frequency. Accordingly,
the y'-lh position of the load at any arbitrary instant t /, signifies the
localion of k loads having the respective weights P,, Po, P3, Pk, and
PA.(s,,v) denotes the weight 1\, possibly with the addition of an external
force devoid of mass, which is applied at the point skj. The new differential
equation can be written in the form

'qr-U,. (Sj) + qr-Kr («,) + 7,-K2 («,)-Hr (ss) + N„ (Sj)}

1
k

— 2j p*(«v)-?^(««) (9)
fi i

where H,. 1 -f J_. £ PA. ?/(skJ)
lt n \

^•(^)=lu7 ¦Sp»,M'«)-?r/(g
mg- *.=

fc
2 II

N"(Sj)=w ¦ 2p* • ?••> (5*>> • ?* (s^
m^ E=i

Sj v tj

Eq. (9) is an ordinary linear inhomogeneous differential equation
of the second order with variable coefficienls.

If the fact that the characteristic function varies wilh time is complelely
disregarded, then Eq. (8) corresponds to a formal Solution of the problem
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under consideration. In that case, the functions or and H,. are referred to
the non-loaded structure, and wr*(sj) • Hr(s,l is constant and equal lo the
Square of the natural frequency of this structure. For instance if we put

sin
l

which is identical with the normalised characleristic function of the freelv
supported beam (1 length of beam, 0 -^ x -^ l, and r integers 1,
2, 3, then we obtain for r l, the same differential equation as that
deduced by Inglis. Therefore, it follows that his results can be regarded as
a special case.

The tests made lately by A. Hillerborg (23) seem to indicate that the
Variation in the form of the characteristic function with the position of the
load could be neglected in the case of the freely supported beam. lt remains
to be demonstrated whether this Variation may also be disregarded in
dealing wilh other structures or under different boundary conditions. This
question can be examined theoretically on the basis of the present investigation.

An approximate Solution of the differential equation (9) is briefly
deduced in what follows.

By pulting the righl-hand member of Ecj. (9) equal to zero, we obtain
a homogeneous differential equation. After dividing bx Hr(s,-), this equation
can be written

• H,.(S,) ¦

(*/)
N„ («,)

H, (sj
•<7, 0 (10)

and can be interpreted as a differential equation of free amplitude-modulaled
and frequency-modulated Vibration.

To solve this equation, we put
q,. er-®-'" (A sin j tu,.dt -f B cos J m,.dt) (II)

where A and B are arbitrary conslanls, whereas sr and ro,. are arbilrary
functions of time which express the damping and the frequency of Vibration
respectively. If this expression is inserled in eq. (10) the two relations

1

Pß-
rjj,. H,.

nr, + H,.
(12«)

N H
w''2 + it-ß<'-ß<--H:+ßr (125)

must hold good in order thal the above expression should satisfy the
differential equation (10).

If we assume lhat the Vibration sels in at the intsant t„ the value
of cxp[—ffirdt] at any arbitrary subsequent instant £ /,¦ can be
calculated by inlegration. By using eq. (12a), we then obtain

exp Pp..*]-./ OT,. (Si) Wr (Sj)

ror (Sf) wr (s,)
(13)

(23) HiLLERuonn, A. L., A Study of Dynamic Influences of Moving Loads on Girders
(International Association for Bridge and Structural Engineering. Congress 1948 at Liege. Preliminary
Publication).
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If the natural frequency is determined by Rayleigh's melhod, it can
be demonstrated that

V
fKr(S{) _ 0», (Sj)

Ur(Sj)
~~

wP («,.)
(14)

Since the modulated frequency njr does not differ from the natural

frequency of Ihe system to any notable extent,

proximately equal to wr (*.)

™r (Sj)

Vr(Sj)
Then

wr (Sj)

»¦V (ff)
"r (Si)

can be put ap-

(15)

that is to say, the free Vibration is damped approximately in proportion
to the square root of the natural frequency.

The difference between the right-hand and left-hand members of
eq. (14) is so small that derivation can be admitted without rnvolving any
considerable error. We get

ta),. 1 /H,
2 l.Hr.

Noticing thal

w,. ur
and inserting this expression in eq (12a) gives

1 /Ür
ß,.~ 4 xHr

Using this relation il can be deduced that the frequency of Vibration is
approximately determined by

ro,/
1 N„ 1

J" +T Ü7~lAJ
Consequently

PT, (s.) UP (Sj)
A **fu

H,
-)' H, + i

H, H, — i

mr di + n cos fp,J Ii
dl

(16)

(17)
OJ,. (s,) w, (s,)

can be regarded as a general Solution of this equation (10). The arbitrary
conslants A and B are determined bv Ihe initial conditions at the instant
t t,.

The Solution of eq. (9) can now also be found by means of generally
known methods. If we assume thal Ihe first of several conseculive loads
travelling on the load-bearing structure passes over the first support at
the instant l 0, the Solution can be written in the form

k

y p» («*,). ?*(**,)
fc-I <>>' (Sj) 1 / OTr (S{) f'i

H,.(5,)-üt,.(S,)
'

Ur(a,) '|/ m,.(Sj)
'&l A9r m.yo

uT,.d< rif, .(18)
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This expression can also be simplified. If the static deformation of the
load-bearing structure due lo the loads in the i-th position is calculated
with the help of series composed of the functions ori and orj, it can readilv
be demonstrated that

<?ri (Ski) T>rj (Sy)

HP(*,)-«„*(*,) H,. (*,).«,*{>,)
(19)

By using this relation and putting m • Hr(»•;)• tor2(s,)= X(Sj) the
Solution of the differential equation (9) can finally be wTitten

k
1 "r (Sj)

M*;) '
\fmr (sj) \'mr (s{) Vjftl / Jt.

dt

(20)

and the problem under consideration can thus be regarded as theoretically
solved.

The present work will be continued in a manner to allow a comparison
between experimentally obtained results and theoretical values calculated
with the aid of the developed theory.

Resume

Le calcul theorique des deformations et des efforts causes dans les
constructions portantes par les charges mobiles peut aussi etre effectue
dans le cas des constructions relativement compliquees. Dans la presente
etude, ce probleme est traite d'une maniere plus generale que dans les

travaux precedents, en faisant usage des fonctions caracteristiques, de sorte
que l'equation differentielle etablie dans le present rapport est applicable
aux conditions aux limites quelconques et a plusieurs charges mobiles
inelastiques avec addition eventuelle d'autres forces depourvues de masse.
L'ötude tient compte de la Variation de la forme de la Vibration naturelle
avec la position de la charge. Une Solution approximative de l'equation
differentielle est presentee. L'auteur examine aussi d'autres methodes
applicables a l'etude de ce probleme.

Zusammenfassung

Die Formänderungen und Spannungen, die in Tragkonstruktionen
infolge einer oder mehrerer beweglichen Lasten entstehen, können auch
bei verhältnismässig verwickelten Konstruktionen theoretisch berechnet
werden. Zum Unterschied von früheren Untersuchungen, wird diese Frage
in der vorliegenden Arbeit einer allgemeineren Behandlung unterzogen,
und zwar mit Hilfe von Eigenfunktionen, so dass die aufgestellte
Differentialgleichung für beliebige Randbedingungen sowie auch für mehrere
bewegliche, nichtfedernde Lasten gegebenenfalls in Verbindung mit anderen
massenlosen Kräften gültig ist. Die Änderung der Eigenschwingungsform
mit der Lage der Last wird ebenfalls berücksichtigt. Eine angenäherte
Lösung der Differentialgleichung ist gegeben. Auch andere Verfahren, die
auf diese Frage anwendbar sind, werden besprochen.
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Summary

The deformations and slresses produced in load-bearing structures by
one or several moving loads can be calculated theoretically, even in the
case of relatively complicated structures. In contradislinclion from previous
investigations, the present paper deals with this problem in a more general
manner with the help of characteristic functions, so that Ihe differential
equation deduced in the paper holds good for any arbitrary boundary
conditions and for several non-elastic moving loads, possibly acting in con-
junction with other forces devoid of mass. The Variation in the form of
the natural Vibration with the position of the load is also taken into aecount.
An approximate Solution of the differential equation is presented. Other
methods for studying the problem are discussed.
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