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Vb3

Equation différentielle pour le calcul des vibrations
produites dans les constructions portantes par les charges mobiles

Differentialgleichung fiir die Schwingungsberechnung
von Tragkonstruktionen infolge beweglicher Lasten

Differential equation for calculation of vibrations
produced in load-bearing structures by moving loads

SVEN T. A. ODMAN, C. E.

Head, Technical Department
Swedish Cement and Concrete Research Institute at the Royal Institute of Technology
Stockholm, Sweden

This paper is a contribution to the theoretical study of the problem of
forced vibrations in load-bearing structures of finite extenl subjected to
any arbitrary boundary conditions. The vibrations are assumed lo be pro-
duced by one or several non-elastically applied loads, and possibly also
transverse forces devoid of mass, which move on the structure with a
constant velocity.

A usual treatment of similar problems consislts in deducing a diffe-
rential equation which represents the motion of the load-bearing structure
and the load, and in finding a formal solution to this equation by means
of a series expansion. This method has been applied by many authors to a
beam which is hinged and freely supported at both ends, and is acted
upon by a single moving load. Among these authors, the followmg deserve
to be mentioned in this CODDeCthH Kryloff (%) nerrlects the influence
exerted by the mass of the load on the natural vibration of the system,
and thus obtains a simple formula for the deformation at any arbitrary
subsequent instant. Inglis (*) expresses the deformation and the load by a
Fourier series, in which he disregards all terms except the first. In other
words, he imagines the concentrated load to be replaced by a load distri-

(V) Krvrorr, A. N., Mathematische Annalen, Vol, 61, 1905. See also Trmosnenko, S.; Vibration
Problems in Engineering, U. S. A., 1928.
(®) Inaus, G. E., 4 Mathematical Trealise on Vibrations in Railway Bridges, Cambridge. 1934.
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buted over the whole beam according to a sine function having a half wave
length which is equal to the length of the beam and an amplitude which
varies in accordance with the same sine function. Schallenkamp (*) deals
in a similar manner with the vibration of the load in a vertical direction
only. Looney (*) tackles the problem by means of the calculus of dif-
ferences on the assumption that the natural vibration can be represented
by a sine function, and disregards all harmonics except the fundamental.
Contrary to Inglis, Rinkert () takes into account a finite number of terms
in the series expressing the concentrated load.

A procedure that is commonly used by most of the investigators
referred to in the above is to obtain the solution of the differential equation
by means of sine series in which each term can be regarded as an analytical
expression of one of the types of vibrations performed by a beam which
is hinged and freely supported at both ends. If the beam is subjected to
an impact caused by a force which is devoid of mass, vibrations will be
produced, the frequencies of which are determined sole]\‘ by the properties
of material, dimensions, and boundary condilions of the beam, and each
of these frequenc1es corresponds to a definite type of vibralion. On the
other hand, if the force acts in conjunction with a mass which takes part
in the vibration, for instance, if the beam is submitted to a moving load,
then different conditions will arise. In this case, a continuous change in
the position of the mass on the beam gives rise to a continuous variation
in each frequency and in the conespondmc type of vibration. If we try to
find a formal solution to the differential equation of vibralion pIOdUCBd
by a moving load by using series of functions, which are not variable with
time, this 1mphes an attempt to calculate a resulting vibration at any
arbilrary gauge point by the aid of a limited number of terms. In reality,
this motion is composed of several entirely separate vibrations, and an
intricale analysis of frequencies will be required in order to segregale these
vibrations.

The use of formal solutions entails insufficient accuracy in the cal-
culation of stresses. Even if the series used for solving the differential equa-
tion is found to be convergent, it is not certain that the second derivative
will approach a correct value, or will be convergent at all. This is due to
the fact that a given initial substitulion used . in solving the differential
equation will prove successful depending on the extent to which the first
term of the series agrees with the actual, total deformation. Comequentlv
the fact that the bound.u\- conditions are satisfied by all terms of the series
alone is not sufficient. An analogous statement has been made by Cou-
rant (°) regarding variational and buckling problems. Therefore, as the
type of vibration varies continuously in the case of moving loads there
must always be an uncertainty in the calculation of stresses.

The purpose of this paper is to demonstrate a method for a more
general study of this problem under any arbitrary boundary conditions.

(®) Scmarreskame, A., Schwingungen von Trigern bei bewegten Lasten (Ingenieur-Archiv,
1937).

(Y Looxey, Ch. T. G., Impact on Railway Bridges (Universily of Illinois, Bulletin No. 19,
Vol. 42, 1944).

(%) RinkemT, A., Vibrations of a Beam with Ilinged Ends under Action of a Load Moving with
Constant Speed. Examinalion Work at the TInstitution of Structural Enginecering and Bridge-
building at the Roval Institule of Technology, Stockholm 1945 (in Swedish).

(8) Counant, R., Variational Methods for the Solution of Problems of Equilibrium and
Vibrations (Bulletin of the American Math. Soc., Vol. 49, No. 1, Jan. 1943).
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In contradistinction from the earlier invesligations, we shall take into
account the variation in the type of natural vibration due to the change
in the position of the load. Each term of the series used in solving the
differential equation corresponds to the type of natural vibration performed
at a given instant, and is therefore dependent on the position of the load,
and hence on time. Accordingly, the state of vibratory motion is known
at any instant, and the increments in moment and in stress due to each
natural vibration can therefore also be calculated. Just as most other inves-
tigators who have dealt with this problem, we neglect the influence of
damping, which has been discussed by Holzer (*) and Sezawa (*). among
others. The deformations are assumed to be so small that the effect of
rotatory inertia and of shear can be disregarded. These questions have been
studied by Timoshenko (°), Goens (**), Pickett (**) and others.

Consider free harmonic vibration of a system which is compound in
the range G and consists of a load-bearing structure in conjunction with
one or several stationary masses. In this case, we can deduce a harmonic
differential equation of the following well-known type, which is inde-
pendent of the time factor

L['{’n] -]l— F : )‘n - ’;‘u == 0 (l)

where <, is a characteristic function which represents the n-th tvpe of
deformation of the system within the range G, and &, is the correspondlng
characteristic value (**). L[z,| is a linear differential expression formed
with respect to the space coordinates x, y, z, and is defined within the
same range, and s is a given dimensionless funcltion which represents
the relative mass densily distribution of the system. Eq. (1) is often called
Euler’s differential equation.

If the section of the load-bearing structure is uniform, the caracteristic
functions and the corresponding natural frequencies can be computed
from the above differential equation by means of the methods given by
Den Hartog (**) or Kdrmdn and Biot (**), and others. For this purpose, a
general solution of the differential equation is found for the ranges between
the boundaries and the point of application of the load. By 'lpplvlnﬂ the
boundary conditions, we obtain a frequency equation, and by means of
this equation we can calculate a set of roots, each of which corresponds to
a definite form of the characteristic function. The lowest root value cor-
responds to the fundamental frequency. Berg (**) has carried out this
calculation for a hinged, freely supported beam, and has tabulated the
values of the characteristic function as a function of the position of the

(" Howzen, H., Zeitschrift fiir angew. Math. und Mech., V. 8, p. 272, 1928.

(3} Sezawa, K., Zeitschrift fiir angew. Math. und Mech., V. 12, p. 275, 1932.

(?) Tivosuenko, S., On the Correction for Shear of the Differential Equalion jor Transverse
Vibration of Prismatic '‘Bars (Philosophical Magazine, Ser. 6, Vol. 41, p. 744 and Vol. 43, p. 125).

(1) Gorns, E., Ueber die Bestimmunqg des Elastiz ititsmoduls von Stiben mit Hilfe von
Biegungsschwingungen (Annalen der Physik, 5. Ser., Vol. 11, p. 649, 1931).

(11) Piwckerr, G., Equations for Computing Elastic Constants from Flexural and Torsional
Resonant Fr('qnoncie: of Vibration of Prisms and Cylinders (American Society for Testing
Materials, Vol. 45, 1945).

(12) Covmnant, R. and Humerrt, D., Methoden der mathematischen Physik, Band 1, Berlin,
1924, Kap. V,

(13) Dex Hanroc. J. P., Mechanical Vibrations, New York and London, 1940.

(1) v. Kinman, T. and Bror, M. A., Mathematical Methods in Engineering, New York and
London, 1940.

(1%) Benc, Owe, Biegungsschwingungen eines in beiden Enden unterstiiizten punklférmig
belasteten Balkens (Zeitschr. angew. Math, Mech., Bd 24, Nr 1, 1944).



672 Yb3. s. T. A. ObDMAN

load and definite given ratios between the masses of the load and the beam.

For the majority of practical purposes, some approximate method can
usually be applied. For instance, Lord Rayleigh (*°) assumes that the
characteristic function approximates to the static deformation curve pro-
duced by the weight of the load. provided that the inertia forces are
neglected, and calculates the frequency by means of the energy method.
Ritz (') puts the characteristic function equal to a series, and detelmme%
the coefficients of expansion and the frequencies by the aid of Hamilton’s
variational principle. Galerkin (**) applies a variational method by which,
however, one arrives at exactly the same expression as is obtained by the
method devised by Ritz. Gran Olsson (*°) has found that with the aid of
the principle of virtual displacements the same results may be obtained as
by the methods of Ritz and Galerkin. Finally, Grammel (*°) takes the inte-
gral equation of the system as a starting-point and determines the frequency
from the relation between an assumed deformation and the nucleus.

All these methods give a sufficiently accurate upper limit of the natural
frequency. The deviations of the approximate expression of the charac-
teristic function from its exact form have scarcely any influence on the
ultimate value, and the error is therefore usually inconsiderable. If greater
importance is attached to the form of the characteristic function, as is
often the case in the determination of stresses, or if the rigidily, section
area and the mass density of the load-bearing structure are variable, it is
convenient to use Vianello’s (**) approximate method for plotling the cha-
racteristic function graphically by means of a funicular polygon. Great
accuracy can be obtained by applying this procedure several times. This
problem has also been dealt with by Infrl]s (**).

The characteristic functions o,, ©,, @5, ..., etc., form a complete ortho-
gonal system which satisfies the conditions for orthogonality, viz.,

[p-%rade =

I % T

o-0,'dv = constant, r=n

-6

i

‘:::_5 (=21

where G denotes the limit range of the integral and < is used to designale
one or several coordinates in space. If the constant is put equal to unity,
the characteristic funclions are termed normalised.

Furthermore, the theorem of expansion of characteristic functions states
that any stepwise finite arbitrary function f which statisfies the same

(*®) Lord Ravrewcm, The Theory of Sound, Vol. 1, 2nd Ed., pp. 111 and 287. Phil. Mag.,
Vol., 47, p. 566, 1899 and Vol. 22, p. 255, 1911.

(2") Rrrz, W., Ueber eine neuc Methode zur Lisung gewissen Variationsprobleme der
mathemalischen Physik. (J. f. reine und angew. Math., Bd 135, pp. 1-61, 1909. — Gesammelle
Werke, p. 265, Paris, 1911).

(*8) Garerkin, B. G., Ezpansion in Series for Solving Some Equilibrium Problems for Plates
and Beams (Wjestnik Ingenerow Petrograd, 1915, Heft 19, in Russian).

(1®*) Gran Owsson, R., Die Anwendung des Prinzips der virtucllen Arbeit bei der Lidsung
Kon Knickproblemen (Det Kongelige Norske Videnskabers Selskal, Forhandlinger Bd XVII,

r 46).

Gran Ovusson, R., The Principle of Virtual Displacement Applied in Approxrimate Solulions
of Eigenvalue Problems (Diziéme Congrés des Mathématiciens Scandinaves, Copenhague, 1946).

(2°) GrammeL, R., Ein neues Verfahren zur Liésung Technischer Eigenwertprobleme (Ing.-
Arch., Bd 10/1939, pp. 35-46). Sce also : Liiscu, Fr., Berechnung der Eigenwerte linearer Integral-
gleichungen (Zeitschr. angew. Math. Mech., Bd 24, Nr 1. 1944).

(21) Vianerro, L., Grafische Untersuchung der Knickfestigkeit gerader Stibe (Z. V. D. I, 1898,
Juli-Dez., p. 1436).

(22) Incris, C. E., Natural Frequencies and Modes of Vibration in Beams of Non-uniform Mass
and Section (Trans. I. N. A., Vol. LXXI, p. 145, 1929).
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boundary conditions as the characteristic functions =, and has a self-
adjungated finite linear differential expression L[7,] can be expressed by
an absolutely and uniformly convergent series composed of these cha-
racteristic functions, viz.,
2]
f': Z Cn:
n=1\

Cn=f9'f'ﬁ?nd‘~~ (3)

G

7n

where

For simplification, we shall deduce, in the first place, the differential
equalion for a single moving load having a mass which cannot be neglected.

It is convenient to imagine the masses of the load-bearing structure
and of the load as a compound system whose natural vibration is unambi-
guously determined by the posilion of the load in a steady state of vibratory
motion and varies with the position of the load, whereas the weight of
the load is regarded as an external vertical force devoid of mass applied
at the centre of gravity of the moving mass. In the treatment of the pro-
blem it makes no difference whether a force devoid of mass, e.g. a pulsating
force, is added to the weight of the load, and the problem is thus reduced
to the determination of the vibration produced by the resultant external
force.

Since the syslem has an infinite number of degrees of freedom for
every position of the moving mass, the deformation from the position of
equilibrium at any arbitrary instant { = {; can be expressed by a series
comprising all those degrees of freedom which come into play at that
instant. Accordingly, we put

w= 2 qn (L) 0,(t;, s) (4)

n=1

where w denotes the deformation from the position of equilibrium, and
®,; corresponds to the n-th characteristic function determined in a steady
state of vibratory motion with the moving mass in the j-th position on the
structure. For instance, ©,; can be imagined to be composed of trigono-
metric and hyperbolic functions in which the arguments are also variable
with time. The quantity g, is an unknown factor which varies with time
only, and is termed a generalised coordinate.

The maximum kinetic and potential energies of the system, which
are denoted by T and V respectively, are determined at the instant when
the load is at the point s;.

For the load-bearing structure alone, we oblain

m ow \*

where m denotes the mass per unil length © of the structure.
The velocity of the moving mass at any arbitrary point is

ow < .
E Z (@0 @t Gn-2ny)

n=1
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where

Therefore, we get

o ?
m . .
To=—2—ﬁ [Z (q.,-’f’,,j—l—(].,'?.,j)] T

n=1

In calculating the corresponding increase in kinetic energy due to
the moving mass having the weight P, we must take into account its curvi-
linear motion whose component in the direction w is determined by

wp(s) = Y, qu ()50 (8, 8))
n=1
where s; is also a function of time. Then the velocity of the load in the
direction w can be written

dwp
00 S [y (5 G (5)]

7 n=4

and the amount contributed by this velocity to the kinetic energy of the
syslem is

Te= -Lg 2 [qn Tnj (SJ) + qn*¥nj (SJ)]

n=1

~

The potential energy of the system is equal to the sum of all inertia
forces times the respective displacement of these forces. Since the inertia
forces are proportional to the deformation, we consider their mean value,
and the amount V, contributed by the load-bearing structure to the polential
_energy of the system is determined by the expression

m o’ w /\d_
2 Ja atj‘ "W

m [+ ] \2/ (- 2]
._,___'/G‘("Ziqn.mn (sj)-c‘p”j).(x q”-c?,,j>d»

n=1

V, =

where w,(s;) is the frequency of the n-th natural vibration.
The corresponding increase in potential energy V, due to the load is

P o e /\ \/ P by 4 R
v, =2—g- (EQn (‘)n?(sj) " i (SJ)) (2 qn:Pn; (37)) T .
n=1 n=1 "

Using the notation

S et ) = Ha )
and observing that the terms of the form

P ..
f‘?’uw d‘+m_g' rj (33) Tnj (31) ’ r%.n
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are zero according to the conditions for orthogonality, see Eq. (2), we can
write the tolal maximum kinetic and potential energies of the system

T="1 f[E (@ ©ns + - ,,j)] d=

=1

P [ ?
=5 g {Zl (= Pns (8) + G- ©n; (s,)]}
V= n?l :;1 g - w," (5;)-Ha(s,) - (9)

Thesc values are inserted in Lagrange’s equation of motion

d (9T\ 0(T—V) —0
di (ai;,. dq, 7

when Q, denotes the force corresponding to ¢, and is termed the generalised
force. We then obtain

QB () f 20 Y, (240t gt 0

_ Qs

m

P
'Jl_ ",—n”" @y (SJ) Z [2 qn Fnj (31) + qn g (SJ)J _I_ q.-w 2 (SJ) H, (

n=1

(6)

The generalised force Q,; is determined so that the work done by the
external force in the case of variation in the generalised coordinate q,
divided by this variation should be equal to Q.

In this case, the work is equal to P(s;)-8q,-e,;(s;), where P(s;)
denoles Lhe weurlll of the load, possibly wilh the addition of an external
force devoid of mass, which is applied at the same point. We then obtain

Q. = P(s;) - w4(sy) .

Eq. (6) gives a system of linear inhomogeneous differential equations
of the second order having an infinite number of terms and variable coeffi-
cients. This equation can be regarded as the complete differential equation
of forced vibration produced in a load-bearing structure by a moving non-
elastic mass. It is very difficult to find an exact solution of this equation.
In order to avoid this difficulty, we must resort lo simplifications.

The influence of the curvilinear motion is so slight that it can be
regarded as a correction, at least in normal structures met with in practice
and subjected lo ordinary permissible loads. In such cases it is obvious
that the error will be nerrhrrlble if the correction consisls in disregarding
the influence of all vibrations except the r-th. If the characteristic functions
are normalised so Lhal [Lp,.ﬁ-dr — 1, the variation in the form of the

JG

characteristic function must be so small that it could be neglected, with

the result that both «,; and 'cjs,j would become equal to zero. If the velocity
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of the moving mass is assumed to be constant and equal to v, we gel

. 1 o 11

©,; (S;) =v-0,;(s,) and 0.; (8,) = v*:¢,, (s;)

. do,; (s d¥z, (s))
where ©,;(8;) = 'Eljs( ) and 0. (8;) = —:I:S 2

Consequently, the complete differential equation takes the simplified
form

P (S ) ] (Sj)

q.: Hr (SJ‘) + q-- H,.(S,-) + q.- [w,.2 (Sj),‘ H, (S ) —1— N. (SJ)] m (S)
where H. (s,) =1 —}—W -6, (8))
N 2 v
() = - Poy (5) 5, (5)
v o 1"
N, (s;) _—"—m‘; s P (s) 9, (s))
§;=v-l;

It makes no great difference whether one or several masses move with
the same velocily on the load-bearing structure. The variation in mass
distribution with time influences the form and the frequency of the cha-
racteristic function in a similar manner. It is convenienl to keep the
notations ¢, and w, unchanged, but they are used to denole the new cha-
racteristic function and the couespondm" natural frequency. Accordingly,
the j-th position of the load at any arbilrary instant ¢ = {; signifies the
location of & loads having the respective Wemhls P P Pl 5oy Bp, and
P, (s;;) denotes the wei,ght P, possibly with the addilion of an external
force devoid of mass, which is applied at the point s,;. The new differential
equation can be written in the form

q.-H,(s) +q.-H s)+q,[ 0,2 (s;)-H. (s,) + N. (s))]

=% Z P\ (51)- 3.5 (50) ©)
n= " Y
where Hos) =1+ 2 Py, (4)
; 20 %
H,.( ' — et Z Pk' l_; (ij) ":J (\h_;)
9 =
k
N ( i Z Ph * Q@ (Siu) ri (skJ)
g =
S;=v-{;

Eq. (9) is an ordinary linear inhomogeneous differential equation
of the second order with variable coefficients.

If the fact that the characteristic function varies wilth time is completely
disregarded, then Eq. (8) corresponds to a formal solution of the problem
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under consideration. In that case, the functions <, and H, are referred to
the non-loaded structure, and o,*(s;) - H,(s;) is constant and equal to the
square of the natural frequency of this structure. For instance if we put

.—l/__ sm—x

which is identical with the normalised characteristic function of the freely
supported beam (I=—length of beam, 0 s < {, and r=integers 1,
2, 3, ...), then we obtain for r=1, the same differential equalion as that
deduced by Inglis. Therefore, it follows that his results can be regarded as
a special case.

The tests made lately by A. Hillerborg (**) seem to indicate that the
variation in the form of the characteristic function with the position of the
load could be neglected in the case of the freely supported beam. It remains
to be demonsirated whether this variation may also be disregarded in
dealing with other structures or under different boundary conditions. This
question can be examined theoretically on the basis of the present investi-
gation.

An approximale solution of the differential equation (9) is briefly
deduced in what follows.

By putting the right-hand member of Eq. (9) equal to zero, we obtain
a homogeneous differential equation. After dividing by H,(s;), this equation
can be wrillen

. N, (s;
q.+ T (;i .+ |[w,F (s)) +H—(3‘ 4, =0 (10)

and can be interpreted as a differential equation of free amplitude-modulaled
and frequency-modulated vibration.
To solve this equation, we put

q,=e 3 (A sinjw.dt+ Bcos|w,.dl) (rn
where A and B are arbitrary constants, whereas s, and w, are arbitrary

functions of time which express the damping and the frequency of vibration
respectively. If this expression is inserted in eq. (10) the two relations

1 |w, , H,
ﬁ,.=—2— z—{—_H] (12 a)
—5»—.31"?:.4—@3 (12b)

must hold good in order that the above expression should satisfy the
differential equation (10).
If we assume that the vibration sets in at the intsant { = t;, the value

f op[— fB.dt] at any arbitrary subsequent instant {=1{; can be cal-
culu_ted by integration. By using eq. (12a), we then obtain
r. o (s) ; .
exp |— /-J:?’.-dt] zl/m,.(S,) L, (s,) . (13)
‘ T W, (S)') W, (sl')

(23) Hirersora, A. L., A Study of Dynamic Influences of Moving Loads on Girders (Inter-
national Association for Bridge and Struclural Engineering. Congress 1948 at Liége. Preliminary
Publication).
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If the natural frequency is determined by Rayleigh’'s melhod, it can
be demonstrated that

( ) W, (8;) ) (14)

H. (SJ) w, ($;)
Since the modulated frequency w, does not differ from the nalural
w, (si)
mr(sj)

frequency of the system to any notable extent, can be put ap-

proximately equal to— w, (5) Then

wr(sj)
exp — [V ~ l/"’ ) (15)

that is Lo say, the free v1b1dt10n is damped approximalely in proportion
to the square root of the natural frequency.

The difference between the right-hand and left-hand members of
eq. (14) is so small that derivation can be admitted without involving any
considerable error. We get

Noticing thal

W,

and inserting this expression in eq (12a) gives

()

Using this relation it can be deduced that the frequency of vibration is
approximalely determined by

1 N 1 (H,\* H, 41
?_ 2 - . r — ) . ) »
ve=el T g 16 (r{) H.—1° (16)

r

Consequently

w, (s;) . b [y 17
l/ - (s)) o) (A sm./f: m,(lt—cho:,‘fu m,.dl) (17)

can be regarded as a general solution of this equation (10). The arbitrary
conslants A and B are determined by the inilial conditions at the instant
t —={,.

The solution of eq. (9) can now also be found by means of generally
known methods. If we assume thal the first of several consecutive loads
travelling on the load-bearing structure passes over the first support at
the instant { = 0, the solutlion can be writien in the form

¢ k
" Z Py (sx) -2, (Sn)

e k=1 . /w (s)) . l S
=W | TH (s)w. (s) (s) I/ el smﬁ m,.dtr dt, .(18)




CALCULATION OF VIBRATIONS BY MOVING LOADS 679

This expression can also be simplified. If the static deformation of the
load-bearing structure due to the loads in the i-th position is calculated
with the help of series composed of the functions =, and ¢,;, it can readily
be demonstrated that

@ (Sx:) g vy (8x) (19)
H. (s) 05 (s)  H.(s) 07 (s:) ‘

By wusing this relation and putting m -H,,(js,—)-wﬁ(sj):)\,.(sj) the

solution of the differential equation (9) can finally be written

S S () [N Y
MEENCN Vw. (s;) (3,).[ ’Vw (s:) (Z kLB sh)) Smjr: m"dt]dt

(20)

and the problem under consideration can thus be regarded as theoretically
solved.

The present work will be continued in a manner to allow a comparison
between experimentally obtained results and theoretical values calculated

with the aid of the developed theory.

Résumé

Le calcul théorique des déformations et des efforts causés dans les
constructions portantes par les charges mobiles peut aussi étre effectué
dans le cas des constructions relativement compliquées. Dans la présente
étude, ce probleme est traité d’'une maniére plus générale que dans les
travaux précédents, en faisant usage des fonctions caractéristiques, de sorte
que l'équation différentielle établie dans le présent rapport est applicable
aux conditions aux limites quelconques et a plusieurs charges mobiles
inélastiques avec addition éventuelle d’autres forces dépourvues de masse.
L’étude tient comple de la variation de la forme de la vibration naturelle
avec la position de la charge. Une solution approximative de 1'équation
différentielle est présentée. L’auteur examine aussi d’autres méthodes appli-
cables a I’étude de ce probléme.

Zusammeniassung

Die Forminderungen und Spannungen, die in Tragkonstruktionen
infolge einer oder mehrerer beweglichen Lasten entstehen, kdnnen auch
bei verhéltnismissig verwickelten Konstruktionen theoretisch berechnet
werden. Zum Unterschled von fritheren Untersuchungen, wird diese Frage
in der vorliegenden Arbeit einer allgemeineren Behandlung unterzogen,
und zwar mit Hilfe von Emenfunktlonen so dass die aufgestellte Diffe-
rentialgleichung fiir beliebige Rundbedingungen sowie auch fiir mehrere
bewegliche, nichtfedernde Lasten gegebenenfalls in Verbindung mit anderen
massenlosen Kriiften giiltig ist. Die Anderung der Eigenschwingungsform
mit der Lage der Last wird ebenfalls beriicksichtigt. Eine angenéherte
Losung der Differentialgleichung ist gegeben. Auch andere Verfahren, die
auf diese Frage anwendbar sind, werden besprochen.
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Summary

The deformations and stresses produced in load-bearing structures by
one or several moving loads can be calculated theoretically, even in the
case of relatively complicated structures. In contradistinction from previous
investigations, the present paper deals with this problem in a more general
manner with the help of characteristic functions, so that the differential
equation deduced in the paper holds good for any arbitrary boundary con-
ditions and for several non-elastic moving loads, possibly acting in con-
junction with other forces devoid of mass. The variation in the form of
the natural vibration with the position of the load is also taken into aceount.
An approximate solution of the differential equation is presented. Other
methods for studying the problem are discussed.
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