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IVbl

Calcul approché des dalles rectangulaires en béton armé
pour une charge uniformément répartie ou hydrostatique

Niherungsmethode zur Berechnung von rechteckigen Platten
aus Eisenbeton bei gleichmissig verteilter
und hydrostatischer Belastung

Approximative method of analysis for rectangular reinforced
concrete plates under uniformly distributed or hydrostatic load

PROF. IR. P. P. BIJLAARD
Technische Hoogeschool Delft, Technical adviser 1. A.B.S.E.

Introduction

As a direct integralion of the differential equation of the plate is in
general not possible for rectangular plates, supported at the edges, several
methods have been developed to cope with this difficulty, using double
and single Fourier series, differences equalions, elc. Some of these
methods lead to sufﬁcwnllv accurate results. They are, however, rather
laborious, especially if all kinds of boundary conditions have lo be taken
into account whilsl no usable general formulae for bending moments, etc.
are obtained. It is true Marcus ( ) gave relatively simple fmmuhe for rec-
tangular plates with um[mmly distributed load, but these have not been
derived directly. They have been composed in such a manner that they
approximate as much as possible the results of his more accurate calcu-
lation (*), which leads only to numerical results.

At the other hand our method (*) is rather simple and gives a clear
insight in the way in which the plates carry the load. Moreover it leads

(1) Marcus, Die vereinfachle Berechnung biegsamer Platten, Springer, Berlin, 1925.

(2) Marcus, Die Theorie eclastischer Gewebe und ihre Anwendung auf die Berechnung
biegsamer Platten, Springer, Berlin, 1924.

(3) Burasnp, De Ingenieur, n° 26, 1934, n° 23, 1935; De Ingenieur in Ned. Indié, no 12,
1935; Proc. Third Enginecring Congress, Tokio, 1936.
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Fig. 1.

Ix

lo simple general formulae for the maximum
bending moments as functions of the ratio
s=1,/l, of the sides, which are similarly
built for all boundary conditions, for uni-
formly distributed as well as for hydrostatic
load. Furthermore our formulae are more
accurate than those of Marcus.

Simply supported plates

Let us consider first a rectangular plate (fig. Iar with simply sup-
porled edges, carrving an .ublll.u\ load g=/(x, vi. An arbitrary N\-strip,
X,, of lhls )lll(‘ h'nln” a breadth dy, will only ]1'1\0 to carry a verlical

I
load gq,, the remainder of the load q heing carried by the vertical shearing
forces acting on its sides. The bending moment per unit breadth of the
g 2 1

strip, due lo this vertical load ¢,, we denole by M,, .

o . OM,
As, however, also twisting moments M,, and \I,,,—r-a’—dy are

acting on the sides of the strip, which cause bending moments M, per
unit breadth of ils cross sections, the real b(’n(]mg momenl per “unit

breadlh of the slrip amounts lo .
M. =M., + M. (1)
so that
M.. =M, — DM, (2)
We know that (*)
g w ot w
M, = — D(—a:r- - ey ) (3)

(¢) Twmosuenko, Theory of Plates and Shells, 1940, p. 88.
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whilst
) 0*w
V) =—=—
dxdy

acting on strip X, as indicated in fig. 1b. Consequently the tolal moment
e\:ercned per unit length of the strip by the (wisting momenls M,, and

’\I“—|— Ly dvy is

M,, = —D(l —

oM o ur
u.n — 1 -

gy =Dl =Ygy

acting on the strip in the opposile direction of the arrows in fig 1b. Hence

the bending moment M,. per unit breadth of the strip, caused by the

twisting moments, amounts to

<, a3w agw L, o° -
MIT:_D(]._V)_/_\. —a‘-ra—yg'dx:-—[)(l-—)){a—y?-Jtzn(l—/)_a?_
()

a similar result being already obtained by Marcus.

But with eqs. (3) and (4) it follows now from eq. (2) thal

0w 2w N
M, =—D (\ 9z’ + dy? ) )
whence we obtain, by changing « and y
*w 0w
— L
M, = — D( G+ 57 ) (6)
so that we draw the conclusion that
M,,=M,,. (7)

Hence at any point of a rectangular plate with simply supporied edges
and acbilrary load, the bending moment M., per unil breadth, that would
occur in an X-strip, if it had to carry its total vertical load ¢, as a simple
beam, without being discharged by the twisling moments M,,, is equal
to the bending moment M,,, occurring al the same point in an Y-sirip,
if it would have 1o carry its tolal verlical load q, as a simple beam, whilst
of course

-+ 9,=q. (8)

Al the other hand we know that, according lo eq. (3), whence M,
follows by changing x and y, we have

a‘)
M, +M,=—D( -+ v (ax e Byw) ()

so that it follows from eqs. (5) and (6) that
M,-FM,=010-+vM,,=(1-+wM,,. (10)

With structures in reinforced concrete, where Poisson’s ratio is usually
equated to zero, this vields
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b Fig. 2.
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q
sl L M, M, = M, =\, (11)
4 or M,=M,,—\, (12)
and M,=M, —M,. (13)
a Furthermore it follows from eq. (4) and also
by comparison of eqs. (1) and (12) that, with
v=20,
M, = —M, (14) and M, = —M, (15)

the latter equation following from the first one by changing z and v.

For e\amplc we shall use eq. (11) in order to f111cl ihe bending
moment in the cenire of a square plate with sides ! which carries a uni-
form load g=—const. (fig. 2a). As at the edges M,=M,=0 according
to eq. (10) in any section of a boundary strip Y, the moment M,, will be
zero too, so that for these strips ¢, must be zero. Therefore, according to
eq. (8), at z=0 and x =1 the middlemost X-strip X,, has to carry a load
g.=¢q, whilst at =1/2, on account of symmetry, ¢.—q,— q/2, so
that g, is distributed according to fig. 2b. Assuming a parabolic limitation
of ¢, we find that in the middle of X, '

5

e 2 _ T q 2 2
M. = 8 W—qgat= 96 a!
so that, because in the centre of the plate M,=M,, eq. (11) vields
7
=M, =1 - 2
M.=M, M., T ql’ = 0.0365 ql* .
According to Nadai (*) the real bending moment with v = 1s

0.0368 gl*?, so that our result is sufficiently accurate.

In order to find the equation of the deflection surface we remark that
according to eq. (14) the moment M,. in X,, is distributed as — M,, conse-
quently practically as the negative deflection w, of X,, so that it may be

R g e £

(5) Napa1, Elastische Platten, Berlin, 1925.
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assumed to be caused by a fictiluous load, being distribuled according to
the second differential quotient of w,, consequently as — M,. -Assuming
again a parabolic limitation of the total fictituous load ¢,/ according to
fig. 2c, it follows that

- 1 2 5 ! -/ 7 2
Nf.rm'—-'gql __K(q qwm)l ——mql

or ¢'.,=0.15 g. The deflection w, of X,, follows from ¢,/ by integrating
four times and dividing by EI. Assuming the deflections of the other
X-strips to be proportional to those of X,, we obtain in this way the
deflection surface of the square plate

. 8 ql'
© 104175 EJ

w (245 —655 75 — 5182+ 17%Y

(247 —6503 750 — 51 45+ 1745 (16)

in which =/l and n =1/l and from which the bending and twisting
moments at any point may be calculated immediately. These are situated
fairly between the values obtained by Marcus (*) and Lewe (°), as was
shown in our third paper in footnote 3. In a similar way we found for
a square plate with a hydrostatic load g=2zp/l the deflection surface

8 pl

— 9 E—_9 53 ___ 49143 57
5187675 To (P08 — 2118 —4254-581¢)

(241 — 654 - 7154 — 51 4%+ 174% (17)

w

Various boundary conditions

If an X-strip is for example fixed at two sides (fig. 3), the moment
M,. =—M,, that would be caused in it by the twisting stresses =, if it
were simply supported, being — M,, in the middle of the strip, will cause
moments ¢,,M,, at the clamped edges (fig. 3b and 3c), by which at
the crossing M of the most loaded strips X,, and Y,, we get, instead of
eqs. (12) and (13)

1\JI:rm - M:z:u - c;'D:L’hlum (18)
and Myn=M,, — oMz . (19)
As for example along X, the moment M,.=—M, is about proportional

to the deflection w, of X,,, values ¢, or ¢, may be calculated if the ratios
of the ordinates of w, or w, are known.

Also to this effect we remark. that, by the twisting moments M,,
alone, the Y-strips, that cross X,, would oblain deflections w,. according
to curve 1 in fig. 3d, being proportional to M,. =—M,. As at their
crossing with X,, their real deflections coincide with the deflection w, of
X,.,, given by curve 2, the part g, they take there of the total load g will
be about proportional to w,— w,., being the distance between curves 1
and 2. Assuming a uniformly distributed load ¢, we therefore find the

(¢) Lewe, Pilzdecken, Berlin, 1926.
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3 g verlical load ¢, on X,, by dra-
(-A)ym] | wing curve 3 at a distance g
9 xrm i 9 above curve 2, load ¢. being
Aq - |L = '” denoted by cross hatching. It
Y~y o follows that near a clamped
N @ a edge the Y-slrips cause an
) I ex excess load ¢, on X, instead
of discharging it. Value gq..
. was computed from the con-
dition that the load ¢,, taken
&) by the boundary strip Y,, being
q,=——(., at G, has to cancel
Al 17 the bending moments
% % M,.=—M,,

caused by the twisting stresses
T,z, in which M., is the mo-
ment M, along the clamped edge. For a square plale wilth all edges built
in ¢q.. is e.g. 0.61 q.
At the crossing M of the most loaded strips (fig. 3a)

Qem —+ Gym = ¢ (20)

whilst the deflections of X,, and Y,, in M must be equal. Expressing these
deflections in the maximum positive moments M,,, and M,,, and assuming
for that the same relations which hold for uniform load, this condilion
gives us Lhe relation

M, == ue® M, (21)

in which e=1,/l,, whilst for the six cases we considered (fig. 4, where
a single line denotes a simply supported and cross hatching a clamped
edge) w is 1, 1, 1, 0.6, 32/45 and 27/32 respeclively. Furthermore in
fig. 3d the deflection w,. of Y,, is the result of the twisling moments M,,,
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iy, iy,

Fig. 4. Z g %
@ ® | @ ¢

Y % Y / Y 7

X A X Z X g

Y Z

(7717777747 / G/ 7777 /7177 SR 7 74477774,

7

which cause in M a moment 3 2

— oM, in Y,. At the other @ @ @ j

hand w, may be considered to il Y Y 2

be the result of the actual ben- . g
i t M, in Y,, being X X

ding moment M, in heing b7, K ///7//// /

M, in M, so that, according
to eq. (21) and fig. 3d we
have e.g.

2

— W, o, M,,, ue
W, — W,y Mym M.z:m 1 +

y

'-6

A =

¥

(22)

We could show (*) that for values ¢ between 0.5 and 2 it is sufficiently accu-
rate to assume curve'l in fig. 3d, the ordinates of which are proportional
to —M,, as a parabola, if M., and M,,, are considered as the maximum
positive moments in the strips and not always as those in M. Then also
curve 3, being proportional to w,, may be easily found. For we showed
above here that the effect of the twisting slresses on X,, is equivalent to
that of a fictituous load proportional to — M,, so that the deflection w, is
between that by a uniform and that by a parabolic load, the latter being
indicated in fig. 3e. With known shapes of w, and w, values o, o, ¢,
and ¢,. can also be computed. The only unknown values in fig. 3d being
now ¢,, and q,,, we may calculate

M., = M (Gem 1 €Gym + [qea) ” (23)
whilst in the same way we find
BC[M‘E":__ﬁr"((}[]"‘l + gqr’"——i_ hqu) l.ll2 ' (24)

Consequently we have six equations, (18), (19), (20), (21), (23) and
(24), with six unknown values, @um, Qym, Mz, My,, M., and M,,. In this
way we got the maximum positive moments M., and M,,, whence we
obtain also the clamping moments

Mae = Mawe =+ ¢ze Mym (26)
and M,,=M,,.+ ¢y M . (26)
For values e=1,/1, between 0.5 and 2 we got
M., =mgqg,/l,> and M,, =nq,/}?

with gt F 2 (27)
—@ 2_'_7 q”_ﬁe"—-]——ys?—}—a’q
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cyxM x
T\)xxM nyM
ya
A S Fig. 5.
c M

M, = mugq,'l.,> and M, =n.q,/l}
s 4 2
with , o~ et we o,

Tz = A et 4y 4 o 154, Tvo = Hy s‘—*—"‘.’s"’—!—&f T<9
(28)
If we put g.. and q., equal to their values for e=1, values 3, v, &/, etc.

are constants (). Somewhat more accurate values could be obtained,
however, by taking into accunt the variation of ¢. and ¢.,, with ¢ In
order to avoid that by this $, vy, «/, etc. would become functions of ¢, we
expressed q., and @, in ¢., and q,., by which @, v, ¢/, etc. remained constant
in the intervals e =—=0.5—1 and e=1—2 (*). In table I, where cases I, - VI,
refer to the 6 cases in fig. 4 and to uniform load, all values of eqs (27)
and (28) are given.

Only for the moments along the short clamped edges it is not allowed
to assume curve 1 in fig. 3d as a parabola. These clamping moments we
derived as follows. M,. for case II, we found by superimposing on the
deflection of a square plate, with sides l,, for which M, is known (see
also under here), a deflection of one of the clamped edges according to
that of the middle strip X, in case ¢e=2, yielding M,,=—0.037 gl,”.
Subsequently we found M, for case IV, and ¢=2 by remarking that
here the X-strips, with lengths I, have the same rigidity as if they were

clamped with lengths IJ)=— [, T/g » so that M,. has about the same value

as for case II, and ¢e= 4—2_— —1.34, being
1/5
M,.——0.057 ql,* =—0.127 ql.*.
As, however, here q,,— 1.22 ¢ instead of 1.32 ¢ for case II,, we have to
multiplicate this value with about 2.22/2.32, yielding M,.=—0.120 ql.”.

Using the carry-over factors, mentioned under here, we computed from
these values M,, and M,, for e=0.5 and 2 for the other cases (fig. 4).
Demanding that dM,/de is continuous at e=1 and zero at e=0.5 and 2,
we obtain for e<C1 and £>>1 respectively

M. =[—A-+B(—05)*]gl, and M,=[—C+D(E—e)"]Jql’
(29)

(") Buvraarp, De Ingenieur, n° 23, 1935.
(®) Buvraarp, De Ingenieur in Ned. Indié. n° 12, 1935.
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in which A, B, C, D and p are given in table II. For case VI and ¢<(1
we got

M, =[—0.057 —0.06 (¢—0.5)*4-0.85 (¢ —0.5)°] ql,° (30)

In the same way we examined cases I and II (fig. 4) for h\dmstauc
load ¢q=—uap/l.. As we considered both cases separately ‘and disposed
already of the data for uniform load, we could approximate the shapes of
curves 1 and 3 (cf. fig. 3d), for whlch in case II we used curves of the
fifth and seventh degree respeclively, still better than before. Eqs. (27)
and (28) hold here as well, the coefficients being given in table III (cases
I, and IIL,), in which M., and M,, refer to the upper (x=0) and lower
edge (x=1,). For the clamping moments at the shorter edges we got for
case II, and ¢ <1

M., —0.002(9— 40 e+ 22¢*)pl,” and M.q=0.0066 (4 — 9)pl,’
(31)

whilst for ¢ > 1 the maximum clamping moment M,,——0.028 pl,*>. The
better approximation appears from the fact, that with the values in
table IIT it follows from case II, and e=1 a chmpmﬂ moment for uniform
load p— ¢, being the sum of M., and Mm, the value M,.——0.0507 ql.?,

whilst with our values for case II, in table 1T we find dlrectly
M. =—0.0529 gl,>, the accurate value being M, =0.0513¢l,*> (°). In
the same way olher cases may be examined. It is, however, easier to deter-
mine from our values for uniform load the carry-over factors ¢ according
to the Cross method of moment distribution (fig. 5). It is for example
obvious that, with reference to the moments at the middles of the edges,

M.cvi — M, ar 1 M,av — M,ax
B, == Moo and ¢,,= 5 (1 Cy) Mo

In a similar way we calculated the influence values v of an edge moment M
(fig. 5) for the posilive moments in the slab. Furthermore we calculated
the factors wilh which the clamping moments at the middle of the sides
have to be multiplicated to get the maximum edge moments. We found
for example the coefficients for case VI, for hydrostatic load (edge z=0
simply supported), as given in lable III, by superimposing the influence
of a moment, opposite to M,.,, on the moments for case II,. We have e.g.
M.ovi = M,anr + €:Mecurr - The clamping moments at the shorler sides are

Mo =[—0.0852 (2 — &)= 0.072 (L — &) — 0.09 (1 —¢)*] pl,*
and M, =[— 0.0367 +0.0074 (2 —)*] pl.* . (32)

Moreover, using the carry-over factors ¢, we are able to calculate con-
tinuous floor slabs, starting from case II for all plates, according to the
Cross method, whereby we can also allow for the torsional rigidities of
the beams. After having found the final edge moments we correct the
positive moments in the slabs by means of the partial influence values ¢
of the edge moments, being valid if each edge moment varies separately.

These values ¢ were calculated in another way by Bittner (*°) (his

values ). From our data for uniform and hvdlostallc load we determined

(®) Timosnenko. Theory of Plates and Shells, 1940, p. 228.
(19) Brrrser, Momententafeln und Einflussflichen fir kreuzweise bewchrte Eiscnbelon-
platten, Vienne, 1938.
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e=1-—2 e=05—1
Case n n m, n, a
] o Y dp | wy| Pyl B o Y A | oy Py
Tu 118 1/8 — — 1 76 1 2 — - — | 7/6 1 2 — —_ —
Hu 1,24 124 |[—1/12 |—1/12 1 1.21 1 0.91 | 0.86 | 1.18 | 0.27 | 0.22 | 1.32 | 1.00 | 0.94 | 1.30 | 0.27 | 0.22
104 ) 9/128 | 9/128 |—1/8 [—1/8 1 1.20 |1 0.9411.33|11.20] 0.37 | 0.24 | 1.29 [ 1.07 | 1.42 | 1.28 | 0.37 | 0.24
IVu 1/8 1/24 — —1/12 5 1.26 | 5.22 | 3.08 | — — — | 1.43 | 6.19 | 3.34 | 6.88 | 0.22 | 0.07
Vu 1/8 9/128 —_ —18 2.5 |1.22 1253|264 — — — | 1.26 | 2.69{2.72 | 3.11 {032 0.12
Viu 9128 | 1/2¢4 |—1/8 |—1/12 2 1.23 11,94 1.55|1.23| 0.40 | 0.38 | 1.36 | 2.29 | 1.68 | 2.66 | 0.25 | 0.1
TaBLE I
Case A B C D p
II, 0.057 0.25 0.057 0.004/: 6
111, 0.08 0.19 0.08 0.006/e3 5
v, — —_ 0.12 0.05 2
v, — — 0.12 0.033 3
Vi, — — 0.08 0.018 4
TasrLe I
e=1—2
Case m n m, n,
B fa o' T dpu | Pzu Paru 'zl Wl Pxt
In [1/8 [1/8 — — 10.6210.52]10.78(1.76 | — — — —_ —_
1, [1)24 |1)24 |-1/12]-1/12] 0.62 | 0.58 | 0.84 | 0.82 | 0.50 | 0.15 | 0.01 | 0.71 | 0.25 | 0.2t
VI, (9/128]1/24 {--1,8 |--1/12{ 0.47 [ 0.94 [ 1.92 [ 0.80 | — — — | 0.64 | 0.04 | 0.60
e= 05— 1
Case : P)=2:2—4¢43
B Pa o T ty Py Py
Do—=2:2—4 e} 7
I, [0.62®, |0.52 0.78 1.76 — — —
II, [ 0,67 &, | 0.126 do| 0.97 0.88 |[0.124 @, 0.28 0.23 |P3—=18 ¢2—36 =-}-23
Vi 0.09 P35 [ 0.18 My 1.42 1.14 |0.175 ®o| 0.31 0.12
Tasre III
- M, Timoshenko Bijlaard
Multiplier
Case I, v, V. 11, v, V.
e=0.5| 0.083 0.084 0.122 0.083 0.083 0.123 gl
e—=1 0.051 0.070 0.084 0.053 0.070 0.087 qly?
g =2 0.057 0.119 0.122 0.057 0.120 0.120 qls®
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values w and ¢ according to Bittner too for values e=0.5 —2. It is evident

Mucv_.MucIv
MUCIV

in cases where this is easier, we can calculate a slab in this way too ().
In table IV we compared the clamping moments M,, according to our

formulae with those according to Timoshenko (**) for cases II,, IV, and

V, and e=0.5, 1 and 2.

that for uniform load e.g. w,=—M,.y and that ¢, = , so that,

Résumé

Par une méthode approximative nous obtenons des formules simples
et générales nous permettant de déterminer, avec une approximaltion sui-
fisante, les moments fléchissants maxima positifs et négatifs. Ces momenis
ainsi délerminés, nous pouvons calculer les coefficients de iransmission
utilisés pour le calcul des dalles continues selon la méthode de Cross.

Zusammenfassung

Durch ein Niherungsverfahren werden fiir die griossten positiven und
negativen Biegungsmomente einfache allgemeine Formeln von geniigen-
der Genauigkeit erhalten. Mit den so berechneten Werten kénnen die
Uebertragungskoeffizienten bestimmt werden, die es erlauben, durchlau-
fende Platten auch nach dem Momentenverteilungsverfahren von Cross zu
berechnen.

Summary

By an approximative method simple general formulae have been
obtained for the maximum positive and negative bending moments,
which give more than sufficiently accurate results. From the data obtained
in this way the carry-over factors were calculated, by which the bending
moments in continuous floors may also be computed by the Cross method
of moment distribution.

(11) These values v, and ¢, have nothing to do with our values W, Py etc.
(*?) Timosmenko, Theory of Plates and Shells, 1940, pp. 228, 206 and 213 resp.
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