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I1Ib3

Calcul des ponts suspendus a grande portée
Berechnung der weitgespannten Hangebriicke

Analysis of the long span suspension bridge

C. D. CROSTHWAITE
A.C. G I, B. Sec, ML C.E, London

In deriving the governing equation of the stiffened suspension bridge,
the following simplifying assumptions are generally made. That the hanger
pull is constant along the cable, and the hangers are inextensible, that the
cable displacements in each span are purely vertical, and the cable slides
over rigid towers, and that the sliffening truss is of uniform rigidily.

Following the lead of Timoshenko and Priester, in recent years the
exponential form of the equation has been replaced by a solution in the
form of a trigonometric series, which takes account of variable hanger pull.
By applying Southwell’s Relaxation lechnique to the series solution, the
author presents a method of analysis which does not embody the remaining
assumptions. In the following pages the method is developed, and applied
to the calculations for a bridge of 3 300 ft span. It is then shewn that for a
structure of this magnitude the usual simplifications are legitimate. but that
the effects of non-uniform stiffening truss rigidity, and of hanger extension
are not negligible.

Derivation of the increment in the horizontal cable tension

The increment H, in the horizontal component of the cable tension
resulting from application of live load, and temperature change, may be
derived from considerations of energy, or from the kinemalics of the dis-
torted cable. The energy solution assumes that the cable displacements are
purely vertical, or if horizontal movements take place, that they are of no
significance. It is not intuitively apparent that this is so, and by a kinema-
tic approach the effect of the horizontal movements of the cable can be
investigated. One result of these horizontal displacements and the conse-
quential inclination of the hangers and translation of the tower tops, is
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that the horizontal component of the cable tension is not constant across
the bridge. The unbalance between centre and side spans arising from the
stifiness of the towers may be corrected for without difficulty. On page 448
(post) the effect of hanger inclination on the moments in the truss is
assessed, and it is found to be small. Neglect is generally on the side of
safety. In what follows, the horizontal component of the cable tension is
assumed to be constant across the bridge.

In fig. 1, which represents a bridge over three spans BC, DE and FG,
as a result of temperalure change and the application of live load, point K
on the cable. distant z, y, from D, moves to K/, at (z-4u), (y-+v). At
the towers there will be horizontal displacements U, and U,, at each end
of the centre span, and corresponding displacements U, and U; in the side
spans. There will also, in general, be movements indicated by BB’ and GG/,
due to the extension of the cable and the anchorage steelwork beyond the
side spans.

An element ds of the cable al K will undergo a change in length of

((1x2+dyz+dvz+2 du - dw+2 dv - dy)é_(.da.z_*_ dy:)4 ’
or to the first order of small quantities,

1t v
L WYV 5 J
dz (14 y) {1 = | —de (L -y

t

)2
ll’ + ylvl + 2
=dx 3 = Ads (say) ,

where « dashes » denote differentiation with respect to x, and s’ =(1 4 y”) %,
Ads can also be expressed in terms of the elastic extension of the cable,
and the effect of temperature change as

CHAH g 2wbayv ey H L
Ads— EA (1+ S )dfl:'—""r‘x s dx

4 owtes (l—|— n +yv)

where H denoles dead-load horizontal component of cable tension ;
H, denotes live-load horizontal component of cable tension ;
» denotes coefficient of expansion of the cable;
E denotes modulus of elasticity of the cable ;
A denotes cross-sectional area of the cable.

Now H/EA, the dead load extension of the cable is small, H,/EA is in
general much smaller, so noting thats s’ will not exceed about 1.1, and
neglecting very small quantities,
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g*
W+ yv' 4 -
"H-L—-s"dz—}— wi-§' d.r=( ; - )(l——%—%)da:

EA s EA

' 1 i
and H, -8 d t-s%dx = SRS 2 (1 2H ()
A r+w NE EA) da .
Integrating between 0 and L,'
2 H . LU Hy 3 2 H
(1_—EX)(L2—U1)_fogEA- & ot 8" d.f+(1_ﬁ)

fo - (vy" _ ‘;) dz (1)

Integrating between 0 and x, and neglecting small quantities,

o === 1—]—] } -7 4 wt-s" idw—-ﬁx y'v'dx (2)

For the side spans, writing w, and z, in place of v, the centre span
deflection, the corresponding equations are

( EA)([ Ua):ﬁl'ggz -5 4wt 5" 2dz+( 2}3)

L, 12
f (wy" — u; ) dx (3)
n=U, 4| f { HI{ s mt-s”%dx ——fx yw'dz (4)
4r 0

and similar equations in U;, U;, and z, for the second side span.
Then expressing the extension of the cable and anchorage steelwork

H;
EA l, + wtl, , and the extension between C and D

-1, -+ wtl; , equation (3) can be writien

between A and B as

H,,
EA

2H _HL l, 12 L 12 A
O R S WA S AR

+( ii)j;' (my”—%m)d.v - (5)

Eliminating U, and U, from equations (1) and (5)

Ho fLs'3dx+2§f" 7 da 41, + 1
EA 0 ) Jo 4 2 4

+wt[f0[’s"dx+2;ﬁ' ¥ dz 41, 41,

. 2H L v“? "
(=3[ (5 )

+f (—— — wy” + i —2)’") dx} (6)

over the tower as
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It is apparent from (6) that the value of H;, although derived from
consideration of the «u» displacements, is independent of them.

The shape of the erected c:ble is intermediate between catenary and
parabola, but closer to the latter. Treatment is simpler with the parabo-
lic form. »

Then for the centre span,

4 fz 4 fz? m "
=5 =?($—T} (say),
For the side spans,
:4{': 4f' + z tan § = — 5 (m——)-{-xtan& (say)
1
Expressing the deflections of centre and side spans by the sine series,
v =X,V, 8sin nft—z— n=1, 2, 3
w= %, W,_sinnx L (7)
- |
nddy ] l[ )
and substituting in (6),
H, 2H
=1 -— == \% AL% A
e Ltetl=(1- 2y [Kn VA K (W, +Z,)
ol , (W47,
L+ 11, ®
where

L 1,
L,mf s’3dx+2$f §*dz zg-|-t4§
0 0
L L,
I, = f std +25 f sdz 4 I 4 1,
0 0
(1 — cos nx)

K,==m and k,==m, i = 608 yom) g
nw nw
The term 2 H/EA is for long span bridges of the order of 1,;200. It will
however be found that omission of this term from equation (8) changes
the value of Hy by very much less than 0.5 9.

Effect of « u» displacements on the partition of
load between stiffening-truss and cable

Referring to fiz. 1, the load taken by the cable on a length dz at K is
originally
—H.y".
Point K on the cable now moves to K/, and point M on the stiffening-
truss to M, the load taken by the cable becomlng



ANALYSIS OF THE LONG SPAN SUSPENSION BRIDGE 439
—H+Hy) (y"4v"), on a length dz (1 —I—%) .

The change in the cable load is to the first order of small quantities,
—Hy -y —(H+-Hy) (0" +uy")=w.  (say),

If M, is the change in the bending moment sustained by the cable, by
integrating w, twice it is found that '

x s L
Me=Hoy+(H+1) v+ [ ude— 2 [Tude )

since for the parabola, y” is constant, and y"/==0.
The moment sustained by the stiffening-truss, of flexural rigidity B is

—B-v"=DM, (say). (10)

Then if M, denote the bending moment from the applied live load and
temperature change,

My, =M¢-+Mg=Hy -y — B-v"4+ (H-{Hp)v
+ (H—+H) y"

* ads— T wdsl i1
udr — —
j; x L./; ua:J()

Substituting for u and » from equations (2) and (7),

. nhwx H
M¢=H; -y + (H -+ Hp) £,V, sin %_+(H+HL)(FX —|—wl> y
1 cos nme
3.V, o L
2 n'¥n
+ H+H) m o 5
z nwr =i ”E”’ Z [1--cosnm
LIk i b HTF—T”J(M

Equation (12) can be expressed as the Fourier series,

Iz

L

Mc = S.r,‘ (Mg)) sin

where

2 L . T
(MC)-,z—EjO- Musm( . )d:v.

Then H, -y gives

L 2 -
92 Hy, (4fx__4fa:)sin ()\ux)dx:16f(1
0

1 I, 12 I — cos A7) Hy

— Hy. (G)) (say) (13)
nwx

L 7

(H4 Hyp) 2V, sin gives
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2 ~-L X / n«= &
Sel ./ sin ( : x) L.V, sin \ - 1:) dz = (H+ H)V;, whena=n.
0

L L L
When A = n, the integral is zero (14)
H, - Hy .
m+HQ&K+mng$HHA+mM%, (15)

H
as Hp-y (E—X—}—wt) can be neglected in comparison with Hy-y. The last

line of equation (12) gives
(H +HL)EH A),n Vn

where, when

2
3 m*V,
)\_— n, L,,A)_,,,V,, == —W .

and, when A3 n,
m?*ni1 - cos (h—n) x|

L ALV =2V, A= (n® — %)

(16)
Expressing M; also in its harmonic componentls,
2 n'n? L I’z nrx
e 2 L . Al P e (
(Mq), I, ¥ T2 '/; B sin ( T ) sin ( T )(Im

When the flexural rigidity B of the stiffening truss is uniform throughout
its length,

NaB

(Mg), = V. (17)

When B is not uniform, the variation of B along the span can always
be expressed as
mezec
L

where in any practical design, at the most three odd values of B, will
represent the variation of B along the span.

Then (Mg), ==X,R,,, V,, where,

2rtB 4mmn*A)1l —cos(h—n—+m)={B,

=2 T 0y, ¥ : . =
E R,V L? Vi mon Vo 1.2} (02 — n%)* — 2 m® (2 4 n®) 4 m*|

B—=B, } X,B, sin

(18)

(19)

(A—n) is either even or zero.
Now since My, =M+ M; the Fourier series for M, and Mg+ Mg, must
be equal term by term, and

H
(Me)s — H (1 4 ) (G) — Hot ),

= (H +H)EA, LV, + V) + IR, LV, (20)

For the side spans, corresponding to equation (20),
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(M,),. —i (1 —|— —_ se('3 B) + Howt sec® § | (g) »

W=iB
— (H 4+ Hy)(S,a; . W, - W;) 42 W, 21)
where
16 f, (1 — cos A=)
(@) = 21! 5o (22)

B, is the flexural rigidity of the side span trusses. (It will rarely be
necessary to take account of variable stiffness in the side spans), and

m12 ‘V)_

Xa,W,=— 5yE T

when A =-n,

when A 2 n,

nm?)1-+cos(h—n)={+2mtanh)l —cos (A —n) = {|

A= (P — )

S, =X W,
(23)

The terms in

H
A and Hwf in equations (20) and (21), included for
completeness, can usually be neglected.

For a uniform load extending from x=—ua, to *x =2,

2 nl? ATa Amb
(M1),= 2 (cos 272 — cos 272 (24)
For a concentrated load P at x —=a,
IJ - )\ﬁa
(M,); = ~gv Sin — (25)

It will be appreciated that H; is an unknown in (20) and (21). A direct
solution may be obtained by substituting for H; from equation (8), and
liquidating the deflection coefficients V., V\,,, 7, b\ Southwell’s Relaxation
method. Numerical work is much simplified if this substitution is not
made, but instead an approximate value of H; is introduced in equations
(20) and (21), and subsequently corrected for. Now very closely equation
(8) can be written

H..

BA L, + otl, =X, KV, + Xk, (W, 4 Z,)
and then approximately

\'
;I‘\ L, -+ oL, = ’Z L 4 2’"‘ (W, + 7,) (26)

Writing . 2
Hy, HL® _  HIP
"= TE=* g T
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g [HL o+ 2 a0, + o;) + wtliaa, —-]—

(mG -+ 2 mlgl)]

+3{ s (14 a)(1 4 o) + OtL, (= 2, - a))

2 2m (M
—}—:gma(‘l—{—a,) G,+2m,o,(1 4+a)g, ¢ — - ( I-;)l ml]
M
+ oty (1 4 (1 4 2) — 2 };)‘ a,) —0. (27)
For live load on a side span, and the terms,
2m, (M), 2m, (M),
P == = u a9

The value of H; given by equation (27) is substituted in (20) and (21).
The « given » moments My and M, are liquidated, and by interpolation cor-
rected values of H; and V, are derived.

The moment M; taken by the stiffening truss is given by

. B T
Mg =23 ,.R; ,V,.sin ax—
’ y L

This expression may be found to converge too slowly.

Now M, = X; (Myp), sin I'I_—"b, and from equation (13),
H[‘~y —— E‘,\HL (G)l sin ( )\;:‘L‘) s
therefore
.\’I(,' — I\’IL — HL'y —_— E)\ [(NIL)l —_— HL (G)) —_— E,,R)”,l\rn] (28)

The term in square brackets is rapidly convergent, since, from (20),
(ML), — H-(G); approximates to X,R, ,V, as A increases.

The effect of the « u» displacements as represented by the parameters
A, @,, is extremely small on long span bridges, and equation (28)

becomes .\IG = i\IL — HL'y —_ (H + HL) E)‘V;_ sin ( );—:x ) . (29)

Numerical application (Bridge of 3.300 ft span)

L—23280ft f— 326ft If —0.09939 m=0.7951 L,— 6366 t
,=1000ft f—30.30ft % =—:},5 m,=0.2424 tan§=0.3708
1

A =980sq.in EA =2744 X 10° H =585 X 10°1b.

p==6100 Ib.ft from a — iL to b = —E)TL, on centre span.
- 16 16

B =28.51 X 10" (average value) B,=28.51 X 10'?1b.ft*

TCZB i n.2 Bl

T = 2.615 X 10° 1b (average value) T = 28-11 X 10°1b .
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The effective area of the centre span stiffening truss, averaging 260 sq.
in, varies from 200 sq. in at the ends, to 290 sq. in at the quarter points, and
240 sq. in at centre span. This variation is closely represented by

T

L

giving the values of R, , in table no. L

In table no. IV, the case of a load of 6100 lb from a=3/16 L to
*b=5/16 L is analysed. This is the loading found to give maximum posi-
tive moment at the quarter point. « U» effects are not considered in the
analysis.

Solving equation (27) for (Mg),=1168.1 X 10° Ib ft, an approximate
value of H;,=—3.15 >(10° 1b gives (My); —H;(G) in line 4. The Relaxation
process begins in line no. 5, where the whole of (M), is liquidated by a
value of V;,=108.2/64.28, whlch contributes — R, V,=—10.2 to (M), etc.
In lines 19 to 25 the residual moments are liquidated by small contribu-

2 2
tions to V;,— V,. Account is kept of VK, + 14VL , in columns 3 to 4 as

relaxation proceeds. Lines 27-28 give the contribution to H; from the side
spans, and a value of Hy 2 690 > 10° is obtained. It is now apparent that
the starting value of H, was too high, so in lines 32-36 relaxation is conti-
nued for an increment in H; of —0.04 > 10°. Finally H; is interpolated as
3114 3> 10° 1b. In lines 38-41, the V, are corrected for the change in Hi,
giving a bending moment in the stiffening truss of 147 > 10° 1b. ft. On the
assumption of uniform truss rigidity, this moment is found to be 139 X 10°
lb. ft, or 5.5 9% less. If account is taken in the above analysis of the «u»
effect as expressed in the parameters A, , and a, ,, the moment at the
quarter point is reduced by only 0.2 9%.

Effect of hanger extension

As a result of hanger extension, the stiffening truss is subject to addi-
tional moments and shears. The increase is not negligible near the ends
of the truss.

Denoting by Av the hanger extension at any section z, of the centre
span, corresponding to a stiffening truss deflection v, and neglecting hori-
zontal displacements,

AM; +M, =M, —(H-+H,) (v

Av -+ Av,) (30)

where Av, denotes the hanger extension at each end of the span, and AM,
the additional moment transferred to the truss by the hanger extension.

Therefore
AM;=(H +H,) (Av— Av,). “(31)
The hanger pull per unit length is given by
d*M d*v
g=— = — (M H) L —Hey (32)
4
But Mg =— Ly therefore

dz?
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\> T 3 s s | e | 7 8 9 o | ou |
n\ | | ° | |
1 2.63 | 0.13 — 0.10 — 0.02 — 0.0l
2 ! 11.04 0.104 — 0.49 — o8 — 0.051
3 1.14 ! 23.93 0.04 — 17 — 0.305 — 0.139
1 L0415 2.2 — 0.035 — 2135 — 0.582
5| —2m | 0.13 63.7 — 0.20 | — 3.44 — 0.5
6 k — 139 —0.12 94.4 — 0.36 — 5.00
7] — 103 } —6.39 — 037 128.4 — 0.58 — 6.36
8 ‘_ 1.38 — 8.62 — 067 167.66 — 0.82
9| — 0.688 : — 2.74 — 111 — 1.0 2124 — 1.10
10 l‘— 1.28 — 3.64 —13.9 — 1.8 261
1| — 0.527 ! — 1.87 — 4.6 — 16.9 — 1.66 316
12 J_ 0.99 —2.45 — 5.62 —20.3 - 2,07
13 0.128 ! — 1.43 — 3.06 — 674 — 23.9 — 2.5
14 i— 0.815 — 1.88 — 370 — T2 — 277
15 | — 0.364 ' — 118 — o34 — 137 — 9.20 — 31.99
16 — 0.693 —1.51 — 280 — 5.00 —10.5
!
R ) p=2018 X 1092 — ¥, p*;, [().” = “2'3‘(’23 T = _]‘13’8 oy 31] X 10
L= j 1 2 3 [ 1 r 5 [ 6 i 8 9 l 10
|
G, 336.45
K., 0.5062 0.1687 0.1009 0.0723 0.0562
2R B X 0 2.6152 | 10.46 | 2351 | 41.84 | 65.38 9.1 | 19281 | 167.4 | 2118 262
H X 10-* 58.5
H (1 4 A) 10-¢ 56.61 | 58.03 | 58.290 | 58.33 | 3342 | 38.5
= B/L?
X 10 61.12 | 68.96 | $2.04 | 100.31 | 123.88 | 152.6 | 186.6 | 225.9 | 270.3 | 320
e 59.23 | 68.19 | S1.83 | 100.22 | 123.80 | 152.6 | 186.6 | 225.9 | 270.3 | 320
+ H (14 A2 X 10-*
s =n 1 2 3 1 5 6 7 3 9
g0 31.27
K. 0.1313 0.0514 0.0309 0.0220 0.0172
B X 107 28.707 | 114.8 |238.4 159 718 Los3 | 1107 | 1837 | 2325
H X 10-* 58.50 58.5 58.5 58.0
H (14 Asz) X 10-¢ 58.32 | 58.46
Wom B - _ . T .
e W §7.21 | 173.3 | 316.9 517 776.5 | 1091 | 1465 | 1895 | 2384
2 s
l+|| l(;1 :u) X 10-* A
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12 13 14 15 16

— 0.027 — 0.016 — 0.011
— 0.077 — 0.047

— 0.272 — 0.154 — 0.097
— 0.432 — 0.259

— 1.4 — 0.679 — 0.394
— 1.95 — 0.921

— 9.02 — 2.59 — 1.27
—1L.5 — 3.31

— 1.45 — 1412 — 4.12
— 1.8 — 173

376 - 219 — 20.5
442 — 2.5

— 2,08 513 — 3.12
— 34 587

— 36.4 — 4.0 669

11 12 13 14 15 16

0.0460 0.0389 0.0337

316 377 412 513 588 669

374 435 500 571 646 727

374 435 500 571 616 727

TasrLE 1

VALUES OF
Bls n >< 10_6
FOR CENTRE SPAN

(3 300 ft)

TasrLe ITA

PARAMETERS
FOR CENTER SPAN

(3 300 ft)

TasrLe II B

PARAMETERS
FOR SIDE SPANS

(1000 ft)

445
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- :
N l’2’ﬁ}-l]a!b"1 8 9 10 11 12
1 |—o0.0322 — 0.0054 —0.0011 _ 0.00038] — 0.00018 —0.00011
2 | —0.0080 —0.0054 —0.0013 — 0.00054 —0.00027 |
3 | 0.0485 —0.0036 — 0.0048! —0.0014 —0.0006
1 0.0215 —0.0020 —0.0013 —0.0013
5 | 0.0268 0.0135 —0.0013 — 0.0038 —0.0013
6 0.0121 0.0097 —0.0009| —0.0035
7 | o0.0188 0.0075 0.0075 — 0.0066 —0.003t
8 0.0086
9 | 0.0145 0.0054
10 0.0067 |
1 | o012
12
13 | o.010
11
15 | 0.009 !
|
. |
b & 1 2 E 3 4
| TasrLe III. — VALUES OF A, ,
1 | —0.0030 | —0.006 |— 0.0005 :
2 0.024 |—0.00075|— 0.005 | —0.0005 Above : for 3300 ft cenlre span
3 0.0041 | 0.011 | — 0.00033| — 0.004 Left:  for 1000 ft side spans
4 0.0096 |  0.002 0.007

H 4 H
([:—I{L'y”+——_£—3 L

Mg (33)
and the hanger extensions are given by

_ Fef—y , (H+4Hp)
AU——]:jr‘—Hl.y TBIG

. FC+f "
Ay,= A, (— Hy-y") (34)

where F. denotes length of cenire hanger, E, denotes hanger modulus of
elasticity, and Ay denote area of hangers per unit length.
Then equation (31) can be written

H H H H
AMg=T B g 4 p ) B HD) oy ppm]  (o5)
E,An B

and the additional shear AS, is

asq— TpEE LR | (Rt — ) 8o — yMo |+ y¥'He| (30)
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BRIDGE. - goé‘_:_ o

E = 28 i 10° ILJin? SIDE H, = 28.71 } 104 1b
FL Y SEANS | he=lgnon
Lopen LenGTis  En g = o
Centre Span s =430 100 TEMPERATURE CONDITION NORMAL
cm..\‘-nlzla s I 1 |J4uinslm‘ﬂ}|a|w|m
Li":' 3 va | Va I A VanKn '~'n+K-| . . MIUME”“ X110 .

b | Ln'\lrn'm- ntVATHL| | O ' s |' (M0, 1 Mk ‘ (M) : o™y ’ Mp o Olh M (M My | M | O | (M | My
1 (H 4 Hy 4 RN for Hy = 3.15 X 106 | s L1038 ' i | wen w0 | oo a1 2 | s @ | s 53| 619 |
2 (M ‘ iz | o= |— 399|383 [ 172 = 805 | 7.8, A7 ; - |—182|=-119|—035] —
3 — H, (G)3 = (6) » X 3.15 X 100 — 1059.9 —393 F— 85 = 3 — 148 - .an[ - 50 - 3
. W8] 4050| — B9 | - |4 - 363 “ -3 - 8.6 W8 3.0 i - |=20 |=12 |[—07 -
5 |V, = 16840 — 108.2 - 02 | | 01 | '

8 |vy = 558 —1405.0 I —06 | 23 0.7 0.3 0.2 0.1 0.1
7 [Vs= 098 -1 — & 1.2 03 [X] ; 0.1

8 |V, =—0.005|V, =—0.0058 06

o Vs =—o037 —-10 8.3 - 01 —13 —-04 [ —02 -0

10 | Ve =—0.215 —0.9 - 3.6 -0 — 11 - 03 —02 - 04
1"V, =—0.101 -0t - 00 = 192! -0 — —02 Y
12 |V = 00028{V, = 0.0028 - 06 !

13 |vy = o020t 02 - —85 | 02 01
W |Vie= 0.0217|V,em 0.0217 0.1 0.3 =10 0.3 0.1
15 |V = 0.0055| V= 00055 0.0003 | 0.0003 0.1 -2.0 (K]

16 | ¥y =—0.0042| ¥,y =—0.0042| — 0.0002 | 0.0001 =0 21
17 [Vie=—=0.0017| ¥\ m—0.0017 id
18 |V, =—0.0011 v.,:-n.wuf | 0.7
19 IV, =—00312/V, = 16498, 0.8 0.8349 2 i
W1V =—00I24| Ve = 5361 0000 | 0.8443 0.9
2 [Vy ==0,007 |V, = 0.970 0.1638 1.0081 0.6
2 [Vy = 0.0016|Vs =—0.377 [ — 0.0380 | 0.9701 - 0.2
D (Vo= 0.0010| Ve ==0.213 — 02
M [V = 0.0005|V; m—0.101 | — 0.0073 | 0.9628 0.1
25 [V, =—00004]V, = 0.0197] 0.0011 | 0.9639 0.1
2 Residuals - - - 01 | — - - - - |-as] = = - o1
27 |SIDE SPANS :

28 4 H 40 --%:m M, = 3.15 X 10¢ 9.3 3%

29 — 3.15 X (§h . 10¢ —98.4 - 38
0 | W, =—1.080 — 0.1080 | —0.1680 |  98.4

an |w, =-o.nm| — 0.0000 | — 0.1686 36

— 03372
0.9639
0.6267 | — 0.0027 | 0.6240 | H, = 2.680 X 108

32 JaH, =-004

3w, = 0019 0.0021 0.0042 1.25
MAIN SPAR 135 0.5 (3]

M (v, = 0210 0.1081 0.1081 =135
35 (V= 0009 0.0010 | 0.0010 —05
30 [Vy = 0.0008 0.0001 | 0.0001 -0

0.7381 | — 0.0032 | 0.7H% H, = 3.168 X 10¢ L
s ) 315
AT8 0.04
K= '%‘l'-‘n 0.8
H, = 3.414 X 100

37 |Interpalated values of V,, etc
38 |V, = 0.1870 1.8368
39 |v, = 0.00s2 0.9752
0 |v, = 0.0007 — 03763 v, vy ' Y. A\ Ve ¥y vy vy Vi YV Vis Vie Vi
41 | Final values of Vi 18368 | 5588 | 09752 | —0.008 | - 0.3763.] —0213 | — 10t | 0.0026 | 0.0197 | 00217 | .00 | - 0.0042 [ = 0.0017 | - a.0011
42 [z Visindn/d =8.1478

Moment st | point = 1409.9 3¢ 10° — Hyy — (I + H )
= (1400.9 — 761.0 — 302.0) X 10*
= 147 % AL (L

TasLe IV. — CALCULATION OF STIFFENING TRUSS MOMENTS
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For the structure under consideration the maximum end shear is
increased by 4 9, and the moment at the 1/16 point by about the same
amount. The effect falls off rapidly towards the centre of the span.

There are also increases in the moments and shears at the ends of the
truss beyond what are given by (35) and (36) arising from the rigid sup-
port afforded to the ends of the truss. In the derivation of equations (35)
and (36) it was assumed that the ends of the truss were on hangers.

If Av, is the end hanger extension given by (34), and K is the average
hanger reaction for unit extension per unit length, then the additional end
shear taken by the truss is

- 8 KAV,
-, ., KL? KL
LS H + n*=*B

The increase in end shear from this cause is only about 1 9.

n=1,3,5, ... (37)

THE EFFECT OF HANGER INCLINATION

The importance of the inclination of the hangers discussed on p.2, in
changing the horizontal component of the cable tension must now be

considered.
Al any section z of the centre span, the hanger inclination is given by

u ; S . .

7 where h, is the length of the hanger at x. The increment in hori-
x

. .oou-

zontal cable tension is g

h,

dr , where u is given by equation (2), and gq

by equation (33).
The total increment of horizontal cable tension at z is

f g P (38)
0 hx

Performing this integration graphically, it is found that at the quarter
point the effect of hanger inclination is to increase H;, by 1 9, with a cor-
responding decrease in M; of only 0.3 9.

Conclusions

A careful study undertaken for a bridge of 3300 ft span, indicates that
the usual assumptions in the orthodox deflection theory are legitimate
when analyzing a structure of this magnitude. On long span bridges, the
principal contribution to moments and shears comes from the higher har-
monics of the deflection. These harmonics are but little affected by quite
large changes in Hy arising from uncertainties as to the exact behaviour of
the structure. On the other hand, the primary harmonic V,, which is
highly geared to variation in H;, contributes only a small amount to the
moments and shears taken by the stiffening truss. On the structure discus-
sed in this paper, a 1 9, change in H;, causes the bending moment to
change by only 0.2 9, on the avérage. Making the assumption of uniform
truss rigidity, it is thus possible to simplify the computation very consi-
derably. Equation (8) is replaced by
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HL ~ o - r ¢
& Lot otl = 5K, 4+ Sk, (W, +2,) . (31)
and equations (20) and (28) by
— X ) (M), — 5 ! AL
Mo—=M, —H .y — =t Meh ZHL G} hme (10)
ik B L
1.2
1
T Th, HLH,.

It will be found that on long span bridges, maximum moments and
shears are given by short loaded lengths of the order of 1/8 to 1/4 of the
span. It will also be found that the maximum moment at any section from
a given loading occurs when the loading extends equally on either side of
the section. Work can be systematized and simplified by tabulating mul-

tiples sines and cosines of —.-, and constructing tables of cos nza,/L-

;J
cos n=b/L for several loaded lengths. The author has made up tables of
this nature which can be applied without modification to a bridge of any
span. By this means, and the use of equations (39) and (40), moments and
shears at any section for a given loading can be obtained very rapidly. The
effect of changes in make-up giving revised dead load and truss rigidity
can be assessed without difficully.

Résumé

La méthode par approximalions successives de Southwell s'applique &
la résolution de ponts suspendus a l’aide de solutions trigonomdétiiques.
Ce procédé de calcul ainsi obtenu ne nécessite pas la simplificalion habi-
luelle de suspentes inextensibles & traction constante, un déplacement
vertical des cdbles, et un coefficient de rigidité conslant. Ce procédé esl
amélioré et étendu & un pont d’une portée de 1000 meétres. L’influence de
ce que 'on néglige les corrections habituelles est éludiée et 1'auteur montre
que seuls les deux facteurs suivants influencent pour des ponis suspendus
de grande porlée: rigidité variable des poulres et longueur variable des
suspentes. Le mémoire se termine par une représeniation simplifiée de Ia
résolution par série suffisante pour la plupart des ouvrages courants.

Zusammenfassung

Die Iterationsmethode von Southwell wird zur Ldsung des Hinge-
briickenproblems mit Hilfe von trigonometrischen Reihen angemeldet. Das
sich dabei ergebende Rechmnwsverfahren verzichtet auf die {iblichen
vereinfachenden Annahmen uber konstanten Hingezug unelastischer
Hinger, vertikale Kabelverschiebungen und konstante Steifigkeit der Ver-
steifungstriger. Das Verfahren wird entwickelt und auf die Berechnung
einer Briicke von 1000 m Spannweite angewendel. Die Einfliisse der iibli-
chen Vernachlissigungen werden untersucht und es wird gezeigt, dass nur
die Auswirkungen einer verinderlichen Triigersieifigkeit und der Hinger-
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dehnungen bei Briicken dieser Griossenordnung von Bedeutung sind. Die
Arbeit schliesst mit einer vereinfachten Darstellung der Lésung mit Reihen,
welche fiir die meisten Tragwerke geniigend ist.

Summary

Soulhwell's Relaxation technique is applied to the Irigonometric series
solution of the problem of the stiffened suspension bridge. The resulting
method of analysis is free from the usual simplifying assumptions of cons-
tant hanger pull, inextensible hangers, vertical cable displacements and
uniform truss rigidity. The method is developed and applied to the cal-
culations for a bridge of 3300 ft span. The results of neglecting the cor-
rections to the orthodox theory are then assessed, and it is shown that only
the effects of non-uniform truss rigidily and hanger extension are signi-
ficant on structures of this magnitude. The paper terminates with a sim-
plified presentation of the series solution, which is sufficiently accurate
for most structures,
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