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IIIb3

Calcul des ponts suspendus ä grande portee

Berechnung der weitgespannten Hängebrücke

Analysis of the long span Suspension bridge

C. D. CROSTHWAITE
A. C. G. I., B. Sc, M. I. C. E., London

In deriving the governing equation of the stiffened Suspension bridge,
the following simplifying assumptions are generally made. That the hanger
pull is constant along the cable, and the hangers are inextensible, that the
cable displacements in each span are purely vertical, and the cable slides
over rigid towers, and lhat the stiffening truss is of uniform rigidily.

Following the lead of Timoshenko and Priester, in recent years the
exponential form of the equation has been replaced by a Solution in the
form of a trigonometric series, which takes aecount of variable hanger pull.
By applying Southwell's Relaxation technique to the series Solution, the
author presents a melhod of analysis which does not embody the remaining
assumptions. In the following pages Ihe melhod is developed, and applied
to the calculations for a bridge of 3 300 ft span. It is then shewn that for a
struclure of this magnitude the usual simplifications are legitimate. but that
the effects of non-uniform stiffening truss rigidity, and of hanger extension
are not negligible.

Derivation of the increment in the horizontal cable tension

The increment HL in the horizontal component of the cable lension
resulting from application of live load, and temperature change, may be
derived from considerations of energy, or from the kinemalics of the dis-
torted cable. The energy Solution assumes that the cable displacements are
purely vertical, or if horizontal movements take place, that they are of no
significance. It is not intuitively apparent that this is so, and by a kinema-
tic approach the effect of the horizontal movements of the cable can be
investigated. One result of these horizontal displacements and the conse-
quential inclination of the hangers and translation of the tower tops, is
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that the horizontal component of Ihe cable tension is not constant across
the bridge. The unbalance between centre and side spans arising from the
stiffness of the towers may be corrected for without difficulty. On page 448
(post) the effect of hanger inclination on the moments in the Iruss is
assessed, and it is found to be small. Neglect is generally on the side of
safety. In what follows, the horizontal component of the cable tension is
assumed to be constant across the bridge.

In fig. 1, which represents a bridge over three spans BC, DE and FG,
as a result of temperature change and the application of live load, point K
on the cable. distant x, y, from D, moves to K', at (x-\-u), (y-\-v). At
the towers there will be horizontal displacements Uj and U2, at each end
of Ihe centre span, and corresponding displacements U3 and U5 in the side
spans. There will also, in general, be movements indicaled by BB' and GG',
due to the exlension of the cable and the anchorage steelwork beyond the
side spans.

An element ds of the cable at K will undergo a change in length of

(dx2 -4- dy2 + dv2-4-2 du ¦ dx -4- 2 dv ¦ dy)* — (dx2-4- dy2)4

or to the first order of small quanlilies,

«' + yV +
dx (1 + y'2)^ 1 + 1+f dx([ 4-y")i

B' + yV+.
dx' A.ds (say)

where « dashes » denote differentiation with respect to x, and s' =(1 -f- y'2)*,
Ads can also be expressed in terms of the elastic extension of Ihe cable,

and the effect of temperature change as

2 u' -f 2 y'v' -f ü" '

Ads -^— -S' 1 dx _H
~~EÄT

-f Mt ¦ S'

¦s2,dx

+ *±*L)d*
where H denotes dead-load horizontal component of cable tension ;

HL denotes live-load horizontal component of cable tension ;

(o denotes coefficient of expansion of the cable ;

E denotes modulus of elasticity of the cable ;

A denotes cross-sectional area of the cable.

Now II/EA, the dead load exlension of the cable is small, HL/EA is in
general much smaller, so noting thats s' will not exceed about 1.1, and
neglecling very small quantities,
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/V + yV + ^' sn dx + wi-s' dx I
j — | | I

and

EA

H
EA

• s'3 dx -\-uit- s'-dx
ii- 4 y'<" 4-

,.'S '

2 H
EÄ7

2 H

dx

dx

Inlegrating between Ö and L,

Inlegrating between 0 and x, and neglecting small quanlities,

u=Ui+yT i"fe 's'3+ut"*w h* ~tt yvd*

2H
EA

(1)

(2)

For the side spans, writing w, and z, in place of v, the centre span
deflection, the corresponding equations are

2H'-4rJ<*-,«-ri-BS--*+"'-',l'to+(1--iL.

» ^4 f* \^-.s,:,-\-<,)t-s'2\dx— f y'w'dx (4)

and similar equations in U5, U6, and z, for the second side span.
Then expressing the extension of the cable and anchorage steelwork

between A and B as

Hr.

Hl
EA

• lt -4- wil3 and the extension between C and D

over the tower as -^-P lt 4- wtL, equation (3) can be written

(j - Ix) Ul ET IX'' *" ^ + <2 + << J + w< { X'' s'° dx + {3 + *s i

Eliminating UT and U, from equations (1) and (5)

(5)

4- ut /" s" dx + 2 J /* s2' dx 4- l3 4- f5

2H
EA r (f -•»•)*•

+jf CO

^y" + -2—*y")dx (6)
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It is apparent from (6) that the value of HL, although derived from
consideration of the «u» displacements, is independent of them.

The shape of the erected cable is intermediate between catenary and
parabola, but closer to the latter. Treatment is simpler with the parabo-
lic form.

Then for the centre span,
4 fx 4 fx*

2

m I x\x TT) (say),

For the side spans,

4/,.r 4/,**
y

h
WL + xtBinl=-?£-lx—-?L j 4-»tan 9 (say)

Expressing the deflections of centre and side spans by the sine series,

v I„V„ sin reit -r-1j

xw= S„W„sin reit ——

re l, 2, 3

(7)

£„Z„ sin m

and substiluling in (6),

HL
EA

¦Ls 4- wt»L,: UM*
EA / " K„V„ + k„ (W„ + Zn)

+
n2 V„ (W„2 -f Z„2)

4L 4 t,

where

L, /"L s'3rfa; 4- 2 j /"' s'3Jx -f l2 + U \

L« /"L s"dx + 2 J p s-'dx + l3 + h J

(1 — cos mr) (1—cos nn)K„=m — and fcn —m,-n- n-rz

(8)

The term 2H/EA is for long span bridges of the order of 1/200. It will
however be found that Omission of this term from equation (8) changes
the value of HL by very much less than 0.5 %.

Effect of « u » displacements on the partition of
load between stiffening-truss and cable

Referring to fig. 1, the load taken by the cable on a length dx at K is
originally

-H-y".
Point K on the cable now moves to K', and point M on the stiffening-

truss to M', the load taken by Ihe cable becoming
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— (H + HL)(y"4--u"), on a lengfli dx U ~\-~) ¦

The change in the cable load is to the first order of small quantities,

-HL.y"-(H + HL)(u" + uy') ™c (say),

If Mc is the change in the bending moment sustained by the cable, by
integrating wc twice it is found that

Mc HL • y -f (H + HL) (v 4- y"£ udx -^~£ udx (9)

since for the parabola, y" is constant, and y'" 0.
The moment sustained by the stiffening-truss, of flexural rigidity B is

_B-u" MG (say). (10)

Then if ML denote the bending moment from the applied live load and
temperature change,

ML Mc 4- MG= HL -y — B-u" + (H + HL) v

4- (H 4- HL) y"
I fX udx —^fh udx\ (11)

Substituting for u and v from equations (2) and (7),

M0= HL -y + (H 4- HL) S„V„ sin ~+ (H + HL) (-j^- 4 <¦><) y

4(H4HL)m'^
H7Z

n-xx
1 — cos —=—

„ imx
2 sm

x mix L x /14- cos 117

-|- ¦=- cos '

L L 7i7c L

Equation (12) can be expressed as the Fourier series

\nx

(12)

Mc Sx (Mc)> sin
L

where

(Mc); j-j Mc sin l-j^A dx

Then HL ¦ y gives

2HL r^tlfx 4/z2\ f\itx\J 16/,,~itI H TT) sm ("IT)dx W(1-cosAw)Hl
HL(G)j(say) (13)

(H -|- HL) E„Vn sin —j— gives
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2 (H 4- HL) rL (l-x\v (nnv\ m.xivv i •
~ / sin I—j:—1 S„V„ sin —-—\ dx — (H -4- HL) V wheiiA=n,

When ~kp£n, the integral is zero (14)

(H-4-HL)(^ + (o/]y gives H (Ä + «oi) (G)i (15)

as HL-y -4- cof I can be neglected in comparison with HL • y. The last

line of equation (12) gives

(H + HL)S„A>.„Vn

where, when
m2V,l=n, SnAi>BV„= —
2 XV '

and, when \-?£n,

Expressing MG also in its harmonic componenls,

(MG)J A S„V„ i^! ^ B sin (2^) sin (™ d*

When the flexural rigidity B of the stiffening truss is uniform throughout
its length,

(MgK^^V^V,. (17)

When B is not uniform, the Variation of B along the span can always
be expressed as

TYl-rr-r
B B0 + SmBmsin-^l (18)

where in any practical design, at the most three odd values of Bm will
represent the Variation of B along the span.

Then (MG)>. S„R,.,„ V„, where,

v« v -** B° V v V 4"m,l3^l1 — cos(A— n-\-m)n[Bm
' )"B "~ L2 * ""''""' l.8 (r - n')? - 2 m2 • 4- n!) 4 ^ I

(1 — n) is either even or zero.
Now since ML MC-|-MG the Fourier series for ML, and Mc-)-MG, must

be equal term by term, and

(ML)) - HL (l +-^-) (G)x- Hwf (G)>.

(H 4- HL)(S„A>.,„VB + Vi) + S„R> .„V,, (20)

For the side spans. corresponding to equation (20),
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(M,), _ jHL (l + -gj- see3 H\ 4- Hcot see2 8 J (g) 1

/here

(H 4- HL)(S„fl; ,„W„ + Wi) + —?A W> (21)
M

fe-%r^ (22)

B! is the flexural rigidity of the side span trusses. (It will rarely be

necessary to take aecount of variable stiffness in the side spans), and

m,2W)
£„rt, ,n W, 2)8-2 ' WllCn '' n '

when X ^_ n,

v v w n [m,! j 1 -f cos (X — re) - [ -4- 2 m, tan 0 ] 1 — cos (X — n) - 11

-„(!;,„ _ -,„ „ ______
(23)

ii
The terms in -=—- and Hau1 in equations (201 and (21), included for

completeness, can usually be neglected.
For a uniform load extending from x «, to x=b,

2 pP I \-a \-rzb
(M_)jf= ^rzr (cos — cos -j- j (24)

For a concentrated load P at _ a,

(ML))-=-|i-rsin-p (25)

It will be appreciated that HL is an unknown in (20) and (21). A direct
Solution may be obtained by substituting for HL from equation (8), and
liquidating the deflection coefficients V„, W„, Z„, by Soulhwell's Relaxation
method. Numerical work is much simplified if Ihis Substitution is not
made, but instead an approximate value of H_ is introduced in equations
(20) and (21), and subsequently corrected for. Now very closely equation
(8) can be written

1' '• L, 4- wtL, 1\K„V„ + Z„k„ (W, + Z„)
EA

and then approximately

EA

Writing

Hl L. + utL,*-^^—(W. + Z.) (26)

iHL (j
HL2 1H,2
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+ ß

^i- (« 4- 2 <_, + a.) + _lLtaa, 4- £^1 (inG, + 2 m.gr,)

TJT
' Js

(1 + a)(l + a,) -4- <ofL{ (a -4- 2 aa, + a,)
EA

_|_ £ j ma (1 + a,) G, + 2 m, a, (1 +a) ffl j - £^- ^_ aa,

4- wZL, (1 + a)(l + a,) - ^-%^ « (1 4- «.) 0

For live load on a side span, and the terms,
2 m, (M,), 2 m, (M,),

— ß g—«a,, and =5— a, (1 -f- a)

(27)

H H

The value of HL given by equation (27) is substituted in (20) and (21).
The ff given » moments ML and M, are liquidaled, and by interpolation cor-
rected values of HL and V„ are derived.

The moment MG taken by the stiffening truss is given by

MG S,.,nRi,„Vn sin X^y-

This expression may be found to converge too slowly.

Now Mi, Si (ML)j sin —^— and from equation (13),

X-_ \

(28)

HL.y _VHL(G)iSin-(^-J ;

therefore
M0 ML — HL.y — Sx [(ML)x - HL (G), - ^RX,.V.

The term in square brackets is rapidly convergent, since, from (20),
(Ml)>.— H|,-(G)> approximales to £„RX>„V„ as X increases.

The effect of the ff u » displacements as represented by the parameters
A>.,„, fl).,„ is extremely small on long span bridges, and equation (28)

Xtt_
becomes MG Mr. -HL-y-(H + HL) S»Vi sin (29)

Numerical application (Bridge of 3.300 ft span)

L 3 280ft /= 326 ft

/, =_ 1 000 ft /,= 30.30 ft

X 0.09939 m=0.7951 Ls 6 366ft

_- _-f, 33

A 980 sq.in EA 27.44 Xw H — 58f> X 100 lb.

m,=0.2424 tan8=0.3708

p—=6100 lb.ft from a — L to b
16-L 011 centre span.

B 28.51 X IO'2 (average value) B,= 28.51 X 10u lb.ft4

2.615 X 1()ö ]b (average value)
-2B =28-11 X 10° lb
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The effective area of the centre span stiffening truss, averaging 260 sq.
in, varies from 200 sq. in at the ends, to 290 sq. in at the quarter points, and
240 sq. in at centre span. This Variation is closely represented by

200.58 -f 80 sin — -\- 40 sin 3 ^-Li Ij
giving the values of R>,„ in table no. I.

In table no. IV, the case of a load of 6100 lb from a 3/16 L to
*b 5/16 L is analysed. This is the loading found to give maximum positive

moment at the quarter point. « U » effects are not considered in the
analysis.

Solving equation (27) for (ML)X^ 1168.1 X^O8 lb ft, an approximate
value of HL 3.15><109 lb gives (ML)>. — HL(G) in line 4. The Relaxation
process begins in line no. 5, where the whole of (ML), is liquidated bv a

value of Vi 108.2/64.28, which contributes — R31V1 —0.2 to (M)3, etc.
In lines 19 to 25 the residual moments are liquidated by small contribu-

lPVJ
tions to Vx — V9. Account is kept of V„K„ -j— in columns 3 to 4 as

relaxation proceeds. Lines 27-28 give the contribution lo HL from the side
spans, and a value of HL 2 690X 10* is obtained. It is now apparent that
the starting value of HL was too high, so in lines 32-36 relaxation is conti-
nued for an increment in HL of —0.04 X 106- Finally HL is interpolated as

3114X108 lb. In lines 38-41, Ihe V>,are corrected for the change in HL,
giving a bending moment in the stiffening truss of 147 X10" lb- ft. On the
assumption of uniform truss rigidity, this moment is found to be 139 X106
lb. ft, or 5.5 % less. If aecount is taken in the above analysis of the ff u»
effect as expressed in the parameters Ax.„ and a> „ the moment at the
quarter point is reduced by only 0.2 %.

Effect of hanger extension

As a result of hanger extension, the stiffening truss is subject to addi-
tional moments and shears. The increase is not negligible near the ends
of the truss.

Denoting by Au the hanger extension at any section x, of the centre
span, corresponding to a stiffening truss deflection v, and neglecting
horizontal displacements,

AMG -j- M0 ML — (R -4- HL1 (v — \v -f Av0) f30)

where Au0 denotes the hanger extension at each end of the span, and AM0.
the additional moment transferred to the truss by the hanger extension.

Therefore

AMr, i/H4-HLVAt' — Aw0). (31)

The hanger pull per unit length is given bv

?=--^=-(H + H^-H-*" <32>

„ Ar Bd2u
But MG =—i— therefore

dx1
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¦\
I

_
I

0.428 |

I — 0.81Ö

0.13

23.93

0.13

— 6.39

— 2.74

— 1.87

— 1.43

— 1.18

0.12

8.62

94.

0.02

i.n

0.20

2S.4

1.0

16.9

- 6.74

- 1.37

— 0.36

1.3

20.3

- 0.5S2

,.00

0.S2

10.5

31.99

K n 2-018 X 'u* 'J — -. n" 5

0' — ll')' - 2 (/.-' — n') + 1 ~ (,-' — "')' — 18 0' + ff') + 81
X 10"

,' -' 1! l.J X Hl"*

II X 10-"

H (I + A//) 10-'

/'=' H;l.J
+ II x 10-"

/' s? II' L=

+ h(i + \;.i.) x io-'

336.45

0.5062 0.1687

2.6152 10.46 23.51 11.84

58.5

56.61 58.03 5S.29 58.3S

61.12 68.96 82.04 100.31

59.23 68.49 81.83 100.22

0.1009

05.38

58 42

123.88

123.80

58.5

152.6

152.6

0.0723

128.1

225.9

0.0562

211.8

k.

'i't? njr x io-*

II X 10-'

II (I + Ai>.) X 10-«

>.' r. 11,,/,=

+ II X io-

;.'«' H,-,.,
+ II (1 A/i) X 10-'

31.27

0.1513

28.707

58.50

58 32

87.21

58.46

173.3

0.0514

258.4

58.5

0.0300

718

58.15

1 091

0.0220

1 107

5S.5

1 465

0.0172

2 325
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12 13 14 15 16

— 0.027

— 0.077

— 0.016

- 0.047

— 0.011

— 0.272

— 0.452

— 0.151

— 0.259

— 0.097

- 1.41

— 1.95

— 0.679

— 0.9E1

— 0.394

— 9.02

- 11.5

— 2.59

— 3.31

— 1.27

— 1.45

— 1.8

— 14.2

— 17.3

— 4.12

376

4 12

- 2.19

— 2.55

— 20.5

— 2.98

— 3.4

513

587

— 3.12

— 36.4 — 4.0 669

Table I

VALUES OF

R), n X IO"'

FOR CENTRE SPAN

(3 300 ft)

11 12 13 14 15 16

0.0460 0.0389 0.0337

316 377 412 513 588 669

371 435 500 571 6IG 727

374 135 500 571 646 727

Table II A

PARAMETERS

FOR CENTER SPAN

(3 300 ft)

Table IIB

PARAMETERS

FOR SIDE SPANS

(1 000 ft)
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„\ 1 2 3 1 5 G 7 8 9 10 11 12

1 — 0.0322 — 0.0054 -0.0011 — 0.00038 -0.00018 — 0.00011

2 — 0.0080 — 0.0054 — 0.0013 — 0.00051 — 0.00027 I

3 0.0485 — 0.0036 -0.0048 — 0.0014 — 0.0006

4 0.0215 - 0.0020 -0.0013 — 0.0013

5 0.0268 0.0135 — 0.0013 — 0.0038 - 0.0013

6 0.0121 0.0007 - 0.0009 — 0.0035

7 0.0188 0.0075 0.0075 — 0.0066 — 0.0031

8 0.0080

9 0.0145 0 0054

10 0.0067

11 0.012

12

13 0.010

14

15 0.009

Vi i 2 3 4

1 — 0.0030 — 0.006 — 0.0005

2 0.024 — 0.00075 — 0.005 — 0.0005

3 0.0041 0.011 — 0.00033 — 0.004

4 0.0090 0.002 0.007

Table III. — VALUES OF A;,„

Above : for 3 300 fl centre span
Left: for 1000 fl side spans

ii » i
H 4" Hl

./_• —HL-y H is— -mg
R

(33)

und the hanger extensions are given by

Au=F- + /-^-H,,-yFc + /-y| u (H + HL)

E„A,

Fr 4- /

MB

(34)

where Fc denotes length of centre hanger, Eh denotes hanger modulus of
elasticity, and AH denote area of hangers per unit length.

Then equation (31) can be written

AMe
H + HL

and the additional shear AS„ is

(Fe + /-y) (H 4- HÜ
R MG4-yy"-HL

ASG
H4-H!

EAAA

H4-HL
R (F, + /-y).Sr.-y'M(:|4-y'y"HL

(35)

(36)
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11-58.5 Y 10*11

LOADEU LENGTHS Ea

28 x lOMbJln'
0.0043

- J 615 X I

3.280 ft
0 09339

SIDE H, =r 28.71 X 10* «•
SPANS I, — 1 000 fl

1,/ti 0.0303
Ud0 03708

TEMPERaTUKE CONDITIO!« NORMAL

MOMENTS '< IV

'

l'Vn'/ll (M),

(|f + HJ + H _ toi HL 3.IS X 10*

<M,J*

- Ht (C)l _ (C) X X 315 X '«•

V, 1 68*0

V, 5.376

V, 0.978

V, -0.0056 V, =-0 0050

V, =—0.37»

V, ^-0.215

V, =-0.101

V, - 0.0020 V, 0.0026

V, 0-KfOt

V»* 0 0217 V„_ 0.0217

V,,= U.0O53 V,(_ 0.0055 ii Ulki3 0.OOU3

V„=-0.«M2 V„ =-0.0042 - ii iMi.' 0.0001

V„_- 0.0017 VU— 0U0I7

V„=— U0011 Vi,^—0.0011

V, =-0 0312 V, s 1 6488 0K34H 08343

V, =-0.01» V, - &„-l O0u9l 0 6443

V, =-0 007 Vi - O.B70 0.1038 1 00X1

v» o.ooie Vi -=—0.377 — 0.0S80 0.9701

V, 0.0010 V, — 0.213

V, 0.0005 V- .- - (UOI -O.0O73 0.9028

V, =—0.0004 V, - 0.0197

ltf.Uut.1

O.OOH 0.9639

SIDE SPANS

» + Ht + V ¦' p lor 1 L-3.15> 10>

- 3 «S X «I 10*

W, =-1.089 1 — 0 1680 -0 1680

W, =-0.01131 — O.0006 - 0 1686

-0 3372

0 96.79

0 tun

4 HL - 0.04

IrV, _ 0.(1139 0.0021 O0O42

MAIN SPAN

V, n 0.210 0.1061 0.1061

V, - 0.0039 0.0010 U.UOIO

V, - 0.0008 u.ooot O.U001

64.28 |

1168 1

- 1059.9

Initrpalatetl villi« ol V,, ele

V, — 0.1870 1 8368 i

0.0052 0.9752

: 0.0007 - 0.3763
1

Final ..Int. ot Vi

I VX «lo l*/4 8 1*7«

Moment »i I poioi 1409.0 X 10* - H^ - (II + I1J

— (1409.0 - 761.0 - J02.0) X 10*

• 147 y in* )¦¦ (i

S1M

1_ i

405 01 - !-.:.('i ¦ —

1038 127.4

- - 39.9

-u
s - -'"|
- 0.6

oc

-
46.3

0 1

„

0 1

- 0.2

156.1

-36.3 I

190 229 ZU

1 - 17.2 - 6.05

- 3.1 — 1.46

| - 203

i

1 2

07

6.0

0 3

- 0.1 — 1.3

19.2

-0.6
-0.1

- - 5J,

0.1

— 0.1

— 0.1

0.1

378 438

3.76 -
- »I

-

HL =¦ 2.690 X 10*

K ^-=0-8

V, V, v, V. V, v V! v y v„ Vi. Vi» V..

8368 5 164 0.9752 — 0.0050 - 0.3763- -0.213 - 0.101 00026 0.0197 0.0317 0.0055 -0.0042 -0 0017

Table IV. — CALCULATION OF STIFFENING TRUSS MOMENTS
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For the structure under consideration the maximum end shear is
increased by 4 %, and the moment at the 1/16 point by about the same
amount. The effect falls off rapidly towards the centre of the span.

There are also increases in the moments and shears at the ends of the
truss beyond what are given by (35) and (36) arising from the rigid
support afforded to the ends of the truss. In the derivation of equations (35)
and (36) it was assumed that the ends of the truss were on hangers.

If \v0 is the end hanger exlension given by (34), and K is the average
hanger reaction for unit extension per unit length, then the additional end
shear tnken bv the truss is

8 KAV0
KL2 KL4

1, 3, 5, (37)

H ' n-rPB

The increase in end shear from this cause is only about 1 %.

THE EFFECT OF HANGER INCLLNATION

The importance of the inclination of the hangers discussed on p. 2, in
changing the horizontal component of the cable tension must now be
considered.

At any section x of the centre span, the hanger inclination is given by

-r—, where hx is the lenglh of the hanger at x. The increment in hori-
nx

zontal cable tension is ——dx where u is given by equation (2), and q

by equation (33).
The total increment of horizontal cable tension at x is

rJ V
^-dx (38)

Performing this Integration graphically, it is found that at the quarter
point the effect of hanger inclination is to increase HL by 1 %, with a
corresponding decrease in MQ of only 0.3 %.

Conclusions

A careful study undertaken for a bridge of 3 300 ft span, indicates that
Ihe usual assumptions in the orthodox deflection Iheory are legitimate
when analyzing a structure of this magnitude. On long span bridges, the
prineipal contribution to moments and shears comes from the higher har-
monics of the deflection. These harmonics are but little affected hy quite
large changes in HL arising from uncertainties as to the exaet behaviour of
the structure. On the other hand, the primary harmonic Vx, which is
highly geared lo Variation in HL, contributes only a small amount to the
moments and shears taken by the stiffening truss. On Ihe structure discussed

in this paper, a 1 % change in HL, causes the bending moment to
change hy only 0.2 % on Ihe average. Making the assumption of uniform
Iruss rigidily, it is thus possible to simplify the computation very consi-
derably. Equation (8~) is replaced by
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i^- _.+ co/L, _ £„£„ _l. v„/e„ (\V„ 4 Z„) (31)

and equations (20) and (28) by

Sl)(Ml)x— HL(G)>,j m._XiwMo=ML-HL-y- _______^Z__.sin^ f {A())

L'
H + Hl

It will be found that on long span bridges, maximum moments and
shears are given by short loaded lengths of the order of 1/8 to 1/4 of Ihe
span. It will also be found lhat the maximum moment at any section from
a given loading occurs when the loading exlends equally on either side of
the section. Work can be systematized and simplified by labulating
multiples sines and cosines of -7—p and constructing iables of cos n-$a/L-

cos n-b/L for several loaded lengths. The author has made up tables of
this nature which can be applied without modification to a bridge of any
span. By this means, and the use of equalions (39) and (40), momenls and
shears at any section for a given loading can be obtained very rapidly. The
effect of changes in make-up giving revised dead load and truss rigidity
can be assessed without diffieullv.

Resume

La methode par approximations successives de Soulhwell s'applique ä

la resolulion de ponts suspendus ä l'aide de Solutions trigonometiiques.
Ce procede de calcul ainsi obtenu ne necessile pas la simplification
habituelle de suspentes inextensibles a traction constante, un deplacement
vertical des cäbles, et un coefficient de rigidite conslanl. Ce procede esl
ameliore el etendu a un pont d'une porlee de 1000 melres. L'influence de
ce que l'on neglige les corrections habituelles esl eludiee et l'auteur montre
que seuls les deux facteurs suivants influencenl pour des ponls suspendus
de grande porlee : rigidite variable des poulres el longueur variable des
suspentes. Le memoire se termine par une representation simplifiee de la
resolution par serie süffisante pour la plupart des ouvrages courants.

Zusammenfassung

Die Iteralionsmethode von Soulhwell wird zur Lösung des
Hängebrückenproblems mit Hilfe von trigonometrischen Reihen angemeldet. Das
sich dabei ergebende Rechnungsverfahren verzichtel auf die üblichen
vereinfachenden Annahmen über konstanten Hängezug unelastischer
Hänger, vertikale Kabelverschiehungen und konstante Steifigkeit der
Versteifungsträger. Das Verfahren wird entwickelt und auf die Berechnung
einer Brücke von 1000 m Spannweite angewendet. Die Einflüsse der
üblichen Vernachlässigungen werden untersucht und es wird gezeigt, dass nur
die Auswirkungen einer veränderlichen TrägerSteifigkeit und der Hänger-
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dehnungen bei Brücken dieser Grössenordnung von Bedeutung sind. Die
Arbeit schliesst mit einer vereinfachten Darstellung der Lösung mit Reihen,
welche für die meisten Tragwerke genügend ist.

Summary

Soulhwell's Relaxation technique is applied to the trigonometric series
Solution of the problem of the stiffened Suspension bridge. The resulting
method of analysis is free from the usual simplifying assumptions of constant

hanger pull, inextensible hangers, vertical cable displacements and
uniform truss rigidity. The method is developed and applied to the cal-
culations for a bridge of 3 300 ft span. The results of neglecting the cor-
rections to the orthodox theory are then assessed, and it is shown that only
Ihe effects of non-uniform truss rigidily and hanger extension are signi-
ficant on structures of this magnitude. The paper terminales with a
simplified presentation of Ihe series Solution, which is sufficienlly accurate
for most structures.
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