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IIIb2

Contiibuiion ä la statique des ponts suspendus ä poutre de rigidite

Beitrag zur Statik der Hängebrücken mit Versteifungsträger

Contribution to the statics of Suspension bridges
with stiffening girders

J. COURBON
Ingenieur, Paris

§ 1. Deux principes fondamenlaux interviennenl dans le calcul
des ponts suspendus : d'une part le theoreme de Godart qui fournil
l'expression de la deformation, du moment flechissant et de 1'effort tran-
chanl dans une travee suspendue en fonction de la poussee; d'autre part
l'equation qui sert ä la determination de la poussee (composante
horizontale de la traction des cäbles).

Rappeions d'abord brievemenl les resultats deduits du theoreme de
Godart.

En Fabsence de toute surcharge et k la temperature de reglage, le
cäble porteur d'une travee, suspendue de portee /, supposee sur appuis
simples et dont la charge permanente est d'intensite constante p', decrit
une parabole dont l'equation rapportee k sa corde (l'origine des abscisses
etant k Fextremit6 de gauche de la travee) est (fig. 1)

y=lLx(l-.r). (1)

Dans ces conditions la poussee du cäble est Q'= // -—-
«7

Supposons maintenant que la temperature vienne k varier ou que
des surcharges (constiluees par des charges isolöes, ou des charges d'enten-
site constante röparties sur tout ou partie de la travee); le cäble se deforme,
son ordonnöe devenant y -4- v; la poussee devientQ' -j- Q. On sait alors que
si u. designe le moment flechissant que produiraient les surcharges dans
la poutre de rigidite si eile n'etait pas suspendue, le moment flechissant M
dans la poutre a pour expression
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Fig. 1.

M ^ — (Q' + Q) v — Qy

et que la deformation v satisfait k l'equation differenlielle

(P_v

dx-
K' D

K-

„, Q'
avec K —

Q' + Q

Q

L>-Qy],

(2)

(»)

El

I designant le moment d'inertie de la poutre de rigidite. que nous suppo-
serons constant et E son module d'elasticite.

Dans les conditions de surcharges definies prec£demment, on peut
partager la poutre en un certain nombre d'intervalles k Finterieur de
chacun desquels la surcharge repartie garde une intensiv uniforme, sans
qu'il y ait de surcharges isolees. Les limites des intervalles sont donc,
outre les extremites de la poutre, les points d'application des surcharges
concentrees et les extremites des zones de surcharges d intensite constante.
A Finterieur de chacun des intervalles ainsi definis, le second membre de
l'equation differentielle (3) est un polynöme du second degre, et son
integrale generale peut s'ecrire :

O

Q' + Q

A
"K7

/>K.v
IB

« + -£--* +
i

"K7"
P_
Q' (i)

p designe 1'intensite de la surcharge dans l'intervalle considere (qui
peut etre nullei el A el B deux constantes. II y a autant de couples de
constantes que d'intervalles. et on les determine en ecrivant que v est nul

n dv
pour x U et x /, et que v et —z— sont Continus aux limites communesdx
ä deux intervalles. On se rend compte qu'on obtient bien ainsi autant
d'equations qu'il y a d'inconnues ä determiner.

Des equations (41 et (2) on deduit aisement 1 expression de M,

M
Q

AeK*-fBe-K-v + iL
O' 0

puis celle de l'effort tranchant T dans la poulre de rigidite

T=-
rfM
dx —~[Ae'"— Be~Kx]

(5)

(6)

S 2. Les resultats du paragraphe precedent montrent que tout le
probleme du calcul de la poutre de rigidite revient ä la determination de
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l'accroissement de la poussee Q du aux surcharges et k la temperature.
Rigoureusement on obtiendrait Q en ecrivant que la Variation de longueur
du cäble due ä la deformation v, compte tenu des deplacements de ses

extremites, est egale ä la Variation de longueur due ä l'allongement elastique
et a la temperature. On obtiendrait ainsi une equation qui conduirait ä des
calculs fort longs, ne pouvant <Hre executes que par des methodes
d'Integration numerique approchee.

On peut simplifier cette equation de bien des facons en negligeant
des quantites tres petites. La methode exposee ci-apres consiste ä utiliser
une relation due ä M. l'Inspecleur general des Ponts et Chaussees Mabilleau
(Annales des Ponts et Chaussees, 19371. Sous forme differentielle cette relation

(dite equation des deplacements orthogonaux) s'ecrit :

du
dx

dy
dx

dv
dx

Q I ds

E'S £)+-( ds y2

~dxl

s designe l'abscisse curviligne du cäble; E' et S son module d'elasticite et

sa section; i la Variation unitaire de longueur due ä la temperature: enfin
u est le deplacement horizontal d'un point du cäble.

On peut integrer la relation precedente, et lui donner la forme
integrale suivante :

J u

vdx -Q-L
E'S 5 tL, (7)

dans laquelle u0 et u, sonl les deplacements horizontaux de l'origine et de
l'extremite du cäble, et L, et L, les integrales

Je, [dx '' Ja
ds

dx
dx (S)

L'equation (7) est en quelque sorte l'analogue de l'equation de Bresse
relative aux deformations des poutres ä fibre moyenne que l'on utilise
pour la determination de la poussee d'un arc ä 2 articulations.

§ 3. On applique aisement les resultats precedents au calcul d'un
pont suspendu k n travees, sans cäbles
de töte. Nous supposons que le cäble ut(
n'exerce aucune reaction horizontale
sur le sommet des pylönes, et que les

poutres de rigidite sont independantes.
Nous utiliserons les nolations de-

finies precedemment, en affectant de
l'indice i celles afferentes ä la P travee,
nous designerons en outre par u„ le
deplacement du cäble au droit du py-
löne p,.

L'equilibre, Sans surcharges ä la temperature de reglage exige que
l'on ait

Q' P/-Ä- ou 4t- Ä (i=l, 2 n). (9)

Fig. 2.

8/, «V

Lorsque les Iravees sont completement ou partiellement surchargees,
ou si la temperature est differente de la temperature de reglage, la poussee
devient Q' -4- Q. On determine Q en ecrivant pour chaque travee et pour les
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cäbles de retenue la relation (7); (en effet la relation (7) s'applique aux
cäbles de retenue s'ils sont suffisamment tendus, en faisant i' 0). On
ajoute les equations obtenues afin deiiminer les u, el l'on oblient l'equation

Q P P v 8 /, rh
10)

I?s et i?, designant les integrales (8) calculees d'une extremite ä lautre du
cäble (d'ancrage ä ancrage).

Si les cäbles de retenue etaient longs, ou trop peu tendus, il süffirail
d^ajouter au premier membre de cette equation un terme correctif depcn-
dant de Q, mais petit; ceci ne modifierait en rien les transformations
effectuees par la suite.

II est alors naturel de remplacer v, par sa valeur deduite de (4): on
parvient ainsi ä l'equation :

Q
?^v#)*-*«*+a>*

Zj l* 3 '" J..K.-8 K* J0 ' ^ '
Q'+Q -

E'S

C'est exactement l'equation utiliscie par les ingenieurs americains pour
le calcul du pont de Philadelphie, et obtenue en utilisant le principe des
travaux virtuels.

Cette equation contient Q au second membre car les (A,, B,) el les E,
dependent de Q. On pourrait la resoudre par iteration, la substilulion
d'une valeur approchee de Q dans le second membre fournissant une
nouvelle valeur de Q plus approchee. Mais les calculs auxquels on est ainsi
conduit sont fort longs, car il faut ä chaque approximation calculer toutes
les constantes (A,, B,), et il faut ne pas perdre de vue qu'il y a, dans
chaque travee autant de couples de constantes qu'il y a d'intervalles de
surcharges, au sens du paragraphe 1, dans cette travee.

§ 4. Mais on peut donner k l'equation (11) une autre forme dans
laquelle ne figurent plus les (A,, B,). On evitera ainsi dans les approxima-
lions successives le calcul fastidieux et long de ces constantes. Les calculs
de transformalion etant assez compliques, nous nous bornerons ä enoncer
les resultats obtenus.

On definit tout d'abord dans chaque travee une fonction S'(x);
l'abscisse x etant comptee ä partir de l'extremite de gauche de la travee :

1 r. 1 (.Kv />K((—.v)

»(,)-_ (3 I,«-3^-^ + ^. -Krq-p- (12)

dont la derivee est

oJI X(l-X) 11 ,K.v+ ,,<„-,)

Supposons alors que la travee consideree supporte des surcharges con-
cenlrees P; aux abscisses a, et des surcharges d'intensite constante pt repar-
ties entre les points d'abscisses ß;_t et ß,, on pourra definir une expression
S7 par la relation

% S Pj9' (o.j) + ^ Pj \® (fr) - ® (?,_,)] (14)
j j
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Cette formule (14) peut du reste encore s'ecrire

9= p (x) &' (x) dx
Ja

(14')

p (x) designant la fonction de charge, p (a;) peut du reste parfaitement ne
pas etre continue et meme comprendre des charges concentrees : dans le
cas, par exemple oü p(x) se reduit ä la seule charge concentree P ä

l'abscisse a, p(x) sera nulle en tout point de l'intervalle (0,1), sauf pour
x a, oü p(x) tend vers l'infini de facon que l'integrale de p(xj prise
dans un intervalle contenant la valeur a soit egale k P; dans ces conditions,
on aura, <o(x) etant une fonction continue

/ P (x) ¦ (x) dx
0 si x PP
Po (a) si x ^> x

Ceci pose, S\ designant 1'expression &• ainsi definie relative ä la i"
travee on peut transformier l'equation (11) de fagon k la mettre sous la
forme :

1 8/, 9, — T(Q'4-Q)i.°,
Q

y _8/,
—i / -'

2 8/.
<Jv r K/J \Q') ek'<

Pt ()'
(15)

E'S

Teile est l'equation que nous avions en vue; eile s'ecrit directement
sans passer par l'intermediaire des constantes (A,, B,). En outre, eile a

l'avantage sur l'equation (11) de conduire k des approximations succes-
sives beaucoup plus rapidement convergenles; il suffit en pratique de
faire deux ou au plus trois approximations successives, de sorte que la
resolution de l'equation (13) ne demande guere plus d'une demi-heure
pour un projeteur entraine disposant d'une table de la fonction ex et d'une
machine ä calculer.

On observera que le denominateur de l'equation (15) ne depend des

surcharges que par l'intermediaire des K„ c'est-ä-dire de Q; ce denominateur

varie peu d'un cas de surcharges k un autre. Cette remarque permet
de trouver la disposition des surcharges conduisant ä un effet maximum
(par exemple, moment flechissant maximum en un point de la poutre de
rigidite) au moyen de la consideration de pseudo-lignes d'influences; en
effet, on connait toujours une valeur approchee de Q correspondant au
cas de surcharges et de temperature envisage; en substituant cetle valeur
dans le second membre de l'equation (15), on peut definir une pseudo-
ligne d'influence de la poussee dont l'equation est, la charge uniie se
trouvant dans la P trave a l'abscisse a :

8/, 9} («)
Q

2 IL
3 h h L K,?

2 Ei
Q'

eKil<

+ 1

Q' + Q

E'S
L,

II faut noter que le denominateur est alors une constante, ainsi que
la valeur de K, qui figure dans 2F,'(a). On peut alors ä partir de la defini-
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tion de la pseudo-ligne d'influence de Q definir la pseudo-ligne d'influence
de l'effet considere (fleche, moment flechissant, effort tranehant en un
point, de la poutre de rigidite). On connaitra ainsi les zones d'ordonnees
positives ou negatives de ces lignes et par suite la disposition des
surcharges la plus defavorable. La disposition des surcharges etant ainsi deter-
minee, on calculera Q au moyen de l'equation (15 i. et l'on pourra si la
valeur de Q qui a servi ä la deiermination des pseudo-lignes d'influence,
n'etait pas suffisamment approchee, recommencer le trace de ces lignes.

L'emploi des pseudo-lignes d'influence permet donc de donner une
Solution theorique au probleme de la recherche du maximum d'un effet.
On peut encore, dans des cas simples oü les surcharges ne dependent que
de un ou de deux parametres, faire le calcul de l'effet pour quelques
valeurs de ces paramelres et determiner le maximum de l'effet au moyen
des formules d'interpolation.

Nous noterons encore la formule suivante qui permet de determiner
le deplacement des cäbles sur les pylones :

8/
ui — ui_l==

S7. Q /_2_, 8 /,
l,2 [ Q' + Q Q' -f Q \ 3 ' >t K,2

*> p! eK<1'— 1

+ Kt3 Q eK«'i + 1

U
L5, + tL„. (16)

E'S

§ 5. Donnons le principe d'une methode permettant de calculer
un couple de constante (A, B) relatif ä un inlervalle de surcharges donne,
sans avoir ä calculer tous les couples. Reprenons l'equation differentielle
(3), et supposons que le cas de surcharges envisage resulte de la super-
position de n cas de surcharges produisant dans la poutre sur appuis
simples de meme poriee l que la travee consideree des momenls flechissants

fXi, ijl2 [ji„. On a evidemment :

fX }Xi -4- (JL2 -(- -\- u„

L'integrale de l'equation (3) que nous cherchons est craacierisee
i •'. - ,i ^ dv

par la propnete que v est nul pour x 0 et x l, et que v et—— sont

Continus dans l'intervalle (0,1).
Considerons alors les equations differentielles

d'v0 K2Q

dx

d2 v• K2

—^-K2,^--^-^, 0 1,2,... n)

(17)

Et soient r0 et vt les integrales de ces equations jouissant des memes
proprieies que v, c'est-ä-dire s'annulant pour x 0 et x l, et continues
ainsi que leurs derivees premieres dans l'intervalle (0,/). II est evident
que l'integrale cherchee v n'est autre que

V t)o + Vi -j- Vt -4- -f- v„
On aboutit ainsi k un principe de superposition permettant de deduire

immediatement tout couple de constantes pour un intervalle quelconque
d'un cas de surcharges tel que celui defini au paragraphe 1, de l'etude des
deux cas de surcharges simples suivants :
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1° Charge concentree unique ä l'abscisse a;
2° Charge repartie d'intensite constante entre les abscisses ß et y.

§ 6. La determination des efforts dans les poutres de rigidite est
ainsi resolue pour les cas de surcharges definis au paragraphe 1. La
methode s'applique encore dans le cas d'une fonction de charge p(x) quel-
conque. La determination de la poussee n'est pas changee si l'on definit,
dans l'equation (15), les S7, par la formule il4'). Par contre, dans
l'integration de l'equation (3), A et B deviennent des fonctions de x que l'on
peut calculer au moyen de la methode classique de Variation des constantes.

On peut enfin, comme Fa montre M. Blaise, ingenieur des Ponts et
Chaussees, dans les Annales des Ponts et Chaussees de mars-avril 1946, ame-
nager la methode exposee ci-dessus de facon ä pouvoir l'appliquer ä des

poutres de rigidite d'inertie variable; il faut alors renoncer ä l'integration
formelle de l'equation (3), et employer les methodes de calcul aux
differences finies, les points de division correspondant aux suspentes; les calculs
deviennent longs, mais tres systematiques.

§ 7. On peut examiner les hypotheses qui ont servi de base ä cette
theorie. En particulier, l'equation (7) n'est qu'approchee; pour se rendre
compte de l'erreur commise, il suffit de refaire le calcul au moyen de la
methode indiquee au debut du paragraphe 2. L'experience montre alors
que l'erreur relative sur la poussee est de l'ordre de IO-3, et l'erreur relative
sur les moments flechissants de 2,5 • 10~3. L'emploi de l'equation (7) est
donc parfailement justifie.

L'allongement des suspentes sous 1'action des surcharges etant parfai-
tement negligeable, il subsiste le point suivant : au cours de la deformation,

les points d'attache des suspentes sur le cäble subissent outre un
deplacement vertical, un deplacement horizontal qui a ete neglige; il en
resulte que les suspentes deviennent obliques, et par suite exercent sur le
cäble des forces horizontales de rappel qui tendent ä diminuer le deplacement

vertical; en consequence, on trouvera dans les poutres de rigidite des
efforts un peu plus grands que les efforts reels. Cet effet esl du resle faible,
si les suspentes courles ont une longueur süffisante. Nous ne croyons pas
du reste qu'aucune theorie des ponts suspendus en ait jamais tenu compte.

Le fait de supposer le moment d'inertie des poutres de rigidite constant
inlroduit egalement des erreurs lorsque les poutres sont de section variable
(le moment d'inertie varie toujours peu le long de la poutre). Aux points
oü le moment d'inertie est maximum, le moment flechissant est plus eleve
que le moment flechissant calcuie, comme on peut s'en rendre compte, soit
en faisant le calcul aux differences finies, soit en divisant la poutre en un
certain nombre d'intervalles dans chacun desquels le moment d'inertie
peut etre considere comme constant. Dans cette derniere hypothese, l'equation

(3) est valable dans chacun des intervalles, K variant seulement, d'un
intervalle ä l'autre.

Nous avons constate sur plusieurs exemples que les erreurs dues k

1'hypothese de la verticalite des suspentes et ä 1'hypothese du moment
d'inertie constant se compensaient sensiblement.

§ 8. Nous avons eu l'occasion d'appliquer la methode precedente
dans de nombreux projets. Permettant d'effectuer sans difficulte le calcul
d'un pont ä plusieurs travees, cette methode a augmente la tendance consis-
tant ä subsliluer toutes les fois qu'on le peut, au pont suspendu ä travee
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unique, le pont suspendu k trois travees symetriques, ä cäbles porteurs
Continus, sans cäbles de tete. On obtient ainsi des ouvrages dont laspect est

tres satisfaisant et qui sont tres economiques. En effet, les cäbles sonl beaucoup

moins importants car ils sont moins longs et leur tension est

beaucoup plus faible; les poutres de rigidite sont plus legeres; la depense
suppiementaire due aux piles est en general compensee par la diminution
des massifs d'ancrage.

L'experience monlre que la portee de la travee centrale doit etre environ
les 6/10 de Louverture totale; on obtient ainsi des efforts du meme ordre
dans les poutres de rigidite de la travee centrale des travees de rive.

La methode exposee permet egalement la determination des deplacements

horizontaux des cäbles en tele des pylönes; ces deplacements sont en
general assez faibles pour qu'on puisse supprimer les appareils de dilatation
ä rouleaux lourds et coüteux places sous les selles d appui des cäbles; les
pylönes encaslres ä leur base, subissent alors des flexions du fait du
deplacement de leur sommet impose par les cäbles; mais on peul montrer que la
flexibilite des pylönes est accrue par la forte charge verticale qu'ils sup-
portent, et que la reaction horizontale qu'ils exercent sur les cäbles est du
meme ordre de grandeur que celle due au frottemenl de roulemenl dans le
cas d'appareils ä rouleaux de dilatation bien entrelenus; il est donc logique
de negliger cette reaction dans le calcul de l'ouvrage. II arrive souvent que
les deplacements des pylönes vers le milieu du pont sont un peu plus
grands que les deplacements vers la rive; on peul alors compenscr les
efforts dans les pylönes en imposant au moment du reglage du pont, c'est-
ä-dire en Fabsence de surcharges et ä temperature moyenne, un leger
deplacement du sommet du pylöne vers la rive.

Dans les petits ouvrages, des pylönes flexibles paraitraient trop greles;
il est alors preferable d'arliculer les pylönes ä leur base, plutöt que de
prevoir des appareils ä rouleaux.

Les pylönes en beton arme sont plus economiques que les pylönes
metalliques. L'articulation de base, lorsqu'elle est prevue, esl du type pre-
conise par M. Freyssinet; on obtient ainsi une articulation tres economique
(jui, en raison des faibles rotations qui lui sont imposees, peut supporler
des reactions elevees par unite de longueur. Dans le cas de pylönes flexibles
on arrive aisement ä eliminer tout effort de traction dans le beton.

Les poutres de rigidite des pelits ouvrages (120 m de portee environ)
sont en general ä äme pleine, pour les ouvrages moyens (200 m de portee
environ), nous preferons employer une poutre de rigidite ä triangulation
Warren double ä membrures ä caissons, dont les nceuds de charge sont les
points de croisement des diagonales; le tablier est place ä mi-hauteur des

poutres, les pieces de pont etant assembiees
sur les poutres par l'intermediaire des mon-

; i i i tanls reliant les nceuds centraux ä la mem-
«. i y\ j y\ [ /* ] ,- brure inferieure; les suspentes, situees dans
__\I/__\^__\Ll__\ti_ l'axe des poulres, sont directement atta-
^/fX^/rX/Tv /T\ chees sur le nceud central; il en resulte des

avantages pour le montage, les pieces de
"0- 3- pont etant d'abord suspendues avant l'exe¬

cution des poutres.
La dalle en beton arme du tablier, qui constitue l'äme de la poutre au

vent, est rendue solidaire de longerons metalliques lateraux assembies sur
les nceuds centraux; les membrures des poutres de rigidite peuvent ainsi
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jouer le röle de membrures de la poutre au vent, sans que les efforts de

compression ou de traction qui leur sont transmis par la dalle par
l'intermediaire des nceuds centraux n'entrainent d'efforts secondaires de flexion
dans la triangulation.

§ 9. II esl possible d'appliquer la theorie prccedente au calcul des

ponts ä cäble de tete, comme Fa montre M. Avenas, ingenieur des Ponts
et Chaussees (Annales des Ponts et Chaussees, 1947). Nous designerons par
Q/ la composante horizontale de la traction du cäble porteur, et par q- la
composante horizontale de la traclion du cäble de tete dans la P travee,
en Fabsence de surcharges et ä la temperature de reglage: l'equilibre dans
ces conditions exige que Q/ -j- q- soit constant.

Lorsque le pont est surcharge, ces composantes horizontales deviennent
respectivement Q/ —{- Q, et qf -j- q,, et comme l'on neglige les reactions
horizontales exercees par les pylönes sur les cäbles, la somme Q Q,, -f- (/,
ne varie pas d'une travee ä Faulre.

L'expression u^ — u,_j est alors donnee, lorsque l'on considere le cäble
porteur associe ä la poutre de rigidite par la relation (16), et lorsque l'on
considere le cäble de tete par la relation suivante :

n, - h,_, -j^t L./ + tL,/ 4- R, (17)

dans laquelle S/ designe la section du cäble de tele, Ls, et L„ les integrales
(8) pour le cäble de tete et R, un terme correctif petit egal ä :

iv i cos2 6, r 1 1

2 11 q7 (q! + <I,)2

9j etant Fangle avec l'horizontale de la corde joignant les extremites du
cäble de tete de la ie travee et P, le poids total du cäble de tele dans cette
travee.

Supposons connues des valeurs de deparl approchees des Q, et des q,. on
pourra calculer des valeurs plus approchees de la facon suivante : en
donnant ä Q, et q, ces valeurs de depart dans les formules (16) et (17), on
aura :

u, — u,_i C, Q, + D, c, q, -}- d,

C, D,, c,, d, ayant des valeurs numeriques connues. En tenanl compte de
ce que q, -j- Q, Q, on en deduira :

Q, a, Q + ßi gf a/Q + ß/ (18)

u,-— ii,_, y,Q + 8i (19)

La condition S(Uj —¦ u:_l) 0 fournira alors la valeur de Q.

Q=- Sv,

Les formules (181 et (19) feront alors connaitre des valeurs plus
approchees pour Q,, q, et u, ¦— u,^.

Deux ou trois approximations au plus suffisent si l'on choisit de la
facon suivante les valeurs de depart des Q, et q, : on prend q, 0, ce qui
revient ä negliger le terme R, de la formule (17) dans la premiere approximation;

et Fon determine les Q, de depart en faisant u, 0; en effet, les Q,
exacts differeront assez peu de ces valeurs, car une legere Variation de la
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distance des appuis des cäbles porteurs d'une travee ne donne qu'une faible
Variation de la poussee des cäbles porteurs.

§ 10. L'equation des deplacements orthogonaux du paragraphe 2

peut egalement se mettre sous la forme suivante :

Uj u,
Ja (Ix-

i i Q idx+ l'SL« •=L„ (20)

qui se prete bien au calcul des ponts suspendus auto-ancres, dans lesquels
le cäble esl fixe ä ses extremites sur la poutre de rigidite.

Considerons donc un pont suspendu
aulo-ancre ä n travees articulees en leurs

_±i extremites, et dont la poutre de rigidite rec¬
tiligne a pour module d'elasticite E, pour
section S et pour longueur totale L. La figure
d'equilibre du cäble dans la P travee, sans
surcharges et ä la temperature de reglage est,
comme dans un pont suspendu ordinaire,
une parabole lorsque la charge permanente
Pi est d'intensite constante; s'il n'en etait pas

<fi-i

Fig. 4.

ainsi, y, serait un funiculaire de p/, ce qui se traduit par l'equation

Q' y, v-l

ijl/ designant le moment flechissant que produirait la charge p/ dans la
poutre sur appuis simples de meme portee que la poutre de rigidite.

Lorsque l'ouvrage est surcharge ou que la temperature est diftcrente
de la temperature de reglage, y, devient y, -\~ v,, la poussee augmente de Q,
et l'on se rend compte immediatement que le momenl flechissant M, dans
la poutre de rigidite, compte tenu du moment (Q' -f- Q) v, du ä la
compression de la poutre a 1'expression simple

M, u, Qy, (21)

II suffit alors pour determiner Q d'ecrire que le deplacement relatif
des extremites du cäble est egal au raccourcissement total de la poutre.
Compte tenu de ce que

d- Vi
_

M,
dx* EI,

on aboutit ä l'equation
-f.

' Jo

y,- dx
EI,

C
ES E'S' -l. y-i y. dx

EL 4-T(L-r?(). (22)

II en resulte que le calcul des ponts suspendus auto-ancres est beaucoup

plus simple que celui des ponts suspendus ordinaires; en particulier
on peut tracer des lignes d'influence pour Q, et pour les momenls flechissants

dans la poutre de rigidite.
Si la poutre de rigidite n'est pas rectiligne, il suffit dans la theorie

precedente de remplacer y, par Y, y, -j- y/, y/ designant l'ordonnee de
la fibre moyenne de la poutre dans la P travee comptee positivemcnt vers
le haut ä partir de la corde joignant ses extremites dans celte travee.
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II serait possible de realiser economiquement des ponts auto-ancres
ä trois travees symetriques, en prevoyant des poutres en beton arme asso-
ciees au hourdis. La portee de la travee centrale pourrait atteindre une
centaine de metres. L'inconvenient de tels ouvrages est le montage qui
exige des echafaudages.

§ 11. La methode exposee dans ces quelques pages n'apporte rien
de nouveau en ce qui concerne les resultats numeriques, par rapport aux
methodes employees lors de la construction des grands ponts suspendus
americains, tels que le pont de Philadelphie, puisque l'equation de la
poussee, sous sa premiere forme (11) est la meme, bien qu'obtenue par
une autre voie. Par contre, la nouvelle forme de l'equation de la poussee,
dont la resolulion est tres rapide, permet d'abreger d'une facon considerable

le temps passe dans les calculs numeriques.
Cette equation presente egalement 1'interet theorique de montrer dans

quelle mesure le principe de superposition est valable pour les ponts
suspendus. On peut dire que pour un pont suspendu considere dans un
etat initial donne de temperature et de surcharges, il existe des lignes
d'influence sous l'action d'une charge concentree infiniment petite se
deplac-ant sur l'ouvrage; mais ces lignes d'influence varient (du reste
assez peu) avec Fetat initial.

Resume

La methode de calcul des ponls suspendus est basee, d'une part sur
Fexpression des efforts dans la poutre de rigidite en fonction de la
composante horizontale (ou poussee) de la traction des cäbles, d'autre part,
sur une relation approchee donnant en fonction du deplacement vertical
des points d'un cäble les deplacements horizontaux des extremites du
cäble. On retrouve ainsi, pour determiner la Variation de poussee due aux
surcharges et aux variations de temperature l'equation utilisee par les
Ingenieurs americains. Mais on a transforme cette equation, dont l'utilisation

entrainait de longs calculs, de maniere ä lui donner une nouvelle
forme conduisant ä des calculs tres rapides, et mettant en evidence les
effets de superposition des charges.

La methode indiquee permet un calcul aise des ponts ä trois travees
symetriques qui sont des ouvrages economiques et d'aspect agreable; eile
a ainsi reagi sur la coneeption meme des ouvrages, notamment en ce qui
concerne les pylönes : suppression des appareils de dilatation au sommet
des pylönes qui sont soit encastres, soit articules ä leur base. On signale
egalement un type de poutre de rigidite bien adapte aux efforts qu'elles
ont k supporter du fait des surcharges et du vent.

La nole se termine par l'extension de la methode aux ponls suspendus
a travees multiples et k cäbles de tete, et aux ponts suspendus auto-ancres.

Zusammenfassung

Die Berechnungsweise der Hängebrücken stützt sich einerseits auf die
Ermittlung der Beanspruchung des Versteifungsträgers durch die
Horizontalkomponente (oder Druckkomponente) des Seilzuges, andererseits auf
eine Näherungsbeziehung, die die Horizontalverschiebungen der Kabel-
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enden in Funktion der vertikalen Verschiebung des Kabels ergibt.
Man kommt so auf die durch die amerikanischen Ingenieure angewandte
Gleichung zur Berechnung der den Auflasten und Temperaturunterschieden
entsprechenden Aenderungen des Druckes. Diese Gleichung, die in ihrer
Anwendung lange Berechnungen nötig macht, wurde nun in eine neue
Form gebracht, in der sie sich sehr schnell lösen lässt und die die Ueber-
lagerungswirkungen der Lasten augenscheinlich macht.

Das beschriebene Verfahren gestattet die einfache Berechnung der
wirtschaftlich und ästhetisch günstigen Brückenbauten mit drei symmetrisch

angeordneten Oeffnungen und war auch von Einfluss auf den
Entwurf solcher Bauwerke, besonders hinsichtlich der Pfeilerausbildung.
Es führte zum Wegfall der Dilatationseinrichtungen auf der Spitze der
entweder eingespannten oder gelenkig gelagerten Pfeiler. Es wird auch
eine Bauart des Versteifungsträgers angegeben, die die Beanspruchungen
infolge Auflasten und Wind gut aufnimmt.

Der Aufsatz schliesst mit der Erweiterung des Verfahrens auf
Hängebrücken mit vielen Oeffnungen und solche mit Schrägkabeln, und auf
Hängebrücken mit aufgehobenem Horizontalschub.

Summary

The method of calculating Suspension bridges is based, on the one
hand, on research as to the stress of the stiffening girder by the horizontal
components (or pressure components) of the traction of the cäbles and,
on the other hand, on an approximale relation which gives the horizontal
displacements of the cable ends in function of the vertical displacement
of the cable. We thus find the equation used by American engineers for
calculating the differences in pressure corresponding to differences in
load and temperature. This equation, for the use of which long calcul-
ations are required, has now been presented in another form in which it
is quickly solved and which places clearly on record the effects of super-
posing of loads.

The process described allows of simple calculation of economically
and aesthetically suitable bridges comprising three symmetrically arranged
spans and also had an influence on the designing of such "structures,
particularly as regards placing of the piers. Information is also given
concerning a type of sliffening-girder well adapted to cope with load and
wind slresses.

The paper ends with an extension of the process to Suspension bridges
with multiple spans and oblique cäbles and to self-anchored Suspension
bridges.
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