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[11b2

Contribuiion a la statique des ponts suspendus a poutre de rigidité
Beitrag zur Statik der Hingebriicken mit Versteifungstrager

Contribution to the statics of suspension bridges
with stiffening girders

J. COURBON

Ingénieur, Paris

§ 1. Deux principes fondamenlaux interviennenl dans le calcul
des ponts suspendus : d’une part le théoréme de Godart qui fournit
I’expression de la déformation, du moment fléchissant et de l'effort (ran-
chant dans une travée suspendue en fonction de la poussée; d'autre part
I'équation qui sert & la détermination de la poussée (composante hori-
zontale de la traction des cidbles).

Rappelons d’abord briévement les résultats déduits du théoréme de
Godart.

En I'absence de loule surcharge et & la température de réglage, le
cable porteur d’une travée, suspendue de portée [, supposée sur appuis
simples et dont la charge permanente est d’intensité constante p’, décrit
une parabole dont 1'équation rapportée a4 sa corde (l'origine des abscisses
étanl & l'extrémité de gauche de la travée) est (fig. 1)

4
y= t?f“’"(t—"’)- (1)

2

8f

Supposons maintenant que la température vienne i varier ou que
des surcharges (constituées par des charges isolées, ou des charges d’enten-
sité constante réparties sur tout ou partie de la travée); le cible se déforme,
son ordonnée devenant y -+ v; la poussée devientQ -+ Q. On sait alors que
si w désigne le moment fléchissanl que produiraient les surcharges dans
la poutre de rigidité si elle n’était pas suspendue, le moment fléchissant M
dans la poutre a pour expression

Dans ces conditions la poussée du cible est Q"= p’
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Fig. 1.
M=u—(Q+Q »—Qy (2)
et que la déformation » satisfait a 1'¢équation différentielle
& v K?
- — Kv= — ———— [2 — Qy]. 3
(l-ﬂv AN v Q’—‘}_QLJ' ~.‘J ()
Q1+ Q
avee K = = l-:ll—t ,

I désignant le moment d’inertie de la poutre de rigidité, que nous suppo-
serons conslant et E son module d’élasticité.

Dans les conditions de surcharges définies précédemment, on peut
partager la poulre en un cerlain nombre d’intervalles & 1l'intérieur de
chacun desquels la surcharge répartie garde une intensilé uniforme, sans
qu’il y ait de surcharges isolées. Les limites des intervalles sont donc,
outre les extrémités de la poutre, les points d’application des surcharges
concentrées et les extrémités des zones de surcharges d’intensilé constante.
A Vintérieur de chacun des intervalles ainsi définis, le second membre de
I'équation différentielle (3) est un polyndme du second degré, et son inté-
grale générale peul s’écrire :

. Q A ke B_ N I/ p P\l
v_Q/+Q Kz(’ +_K2 e +Q_y+ K2 (W—ﬁ)] (4)

p désigne l'intensité de la surcharge dans I'intervalle considéré (qui
peul étre nulle) et A et B deux constantes. I1 v a autant de couples de
constantes que d’intervalles, et on les délermine en écrivant que v est nul

dv 2 .
pour r = Oetx =1, et que v et ar sont continus aux limiles communes

a deux intervalles. On se rend compte qu’on obtient bien ainsi autant
d’équations qu’il y a d’inconnues a déterminer.
Des équations (4) et (2) on déduit aisément 1'expression de M,

Q . . P p
/ —_— ._. Kx »— Kx ,
M= i Ae®~ 4 Be -1 o "0 (3)

-~ >

puis celle de I'effort tranchant T dans la poulre de rigidité :

- dM r— Q Kx —Kx
==~ —=— = [Aek* — Be~K] (6)
§ 2. Les résultats du paragraphe précédent monirent que tout le
probléme du calcul de la poutre de rigidité revient & la détermination de
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’accroissement de la poussée Q d aux surcharges et & la température.
Rigoureusement on obtiendrait Q en écrivant que la variation de longueur
du cible due & la déformation v, compte tenu des déplacements de ses
extrémités, est égale a la variation de longueur due a ’allongement élastique
et & la température. On obtiendrait ainsi une équation qui conduirait & des
calculs fort longs, ne pouvant étre exécutés que par des méthodes d’inté-
gration numérique approchée.

On peut simplifier cette équation de bien des facons en négligeant
des quantités trés petites. La méthode exposée ci-aprés consiste a utiliser
une relation due 4 M. I'Inspecteur général des Ponts et Chaussées Mabilleau
(Annales des Ponlts et Chaussées, 1937). Sous forme différentielle cette rela-
tion (dite équation des déplacements orthogonaux) s’écrit :

du dy dv | Q [dsy _(ds)\?
£ (@) + &)

dz  dz dz ' E'S J

s désigne 1’abscisse curviligne du cable; E' et S son module d’élasticité et
sa section; 7 la variation unitaire de longueur due & la température: enfin
u est le déplacement horizontal d’un point du céble.

On peut intégrer la relation précédente, et lui donner la forme inté-
grale suivante :

8f ! §)
Ill — I'O—_—_ (lc .j U(I.T+ _is;q-IJs+T[‘1 . (7)
0 e

dans laquelle u, et u, sont les déplacements horizontaux de 1'origine et de
I’extrémité du cible, et L, et L, les intégrales

Lyds\? Lrods\?
— i i . 8
_[U (u’w)d‘r Ly ﬁ (d.ﬂ)(u (%)

L’équation (7) est en quelque sorte I'analogue de I'équation de Bresse
relative aux déformations des poutres a fibre moyenne que l'on utilise
pour la détermination de la poussée d’un arc a 2 arliculations.

]Js =

§ 3. On applique aisément les résultats précédents au calcul d'un
pont suspendu & n travées, sans cdbles
de téte. Nous supposons que le céble w
n’exerce aucune réaction horizontale Yy
sur le sommet des pylones, et que les
poutres de rigidité sont indépendantes.

Nous utiliserons les notations dé-

finies précédemment, en affectant de e, & '
I’indice i celles afférentes & la i® travée, —
nous désignerons en outre par u;, le dé- Fig. 2.
placement du cdble au droit du py-

l6ne p;.

L’équilibre, sans surcharges a la température de réglage exige que
I'on ait
"= p/=— ou = i=1, 2 ... n). 9
Q I 8}(‘ (ie Qr ( b ) ( )
Lorsque les Iravées sont complétement ou partiellement surchargées,
ou si la température est différente de la température de réglage, la poussée
devient Q' 4~ Q. On détermine  en écrivant pour chaque travée el pour les
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cibles de retenue la relation (7); (en effet la relation (7) s'applique aux
ciables de retenue s’ils sont suffisamment tendus, en faisant v = 0). On
ajoute les équations obtenues afin d’éliminer les u; et 1'on oblient 1'équation

Q L M8
ﬁﬁ’s—r—.f,._z 2 ,/.: v, dx . (10)

i=1

i=n

L et L2, désignant les intégrales (8) calculées d'une extrémilé a 'autre du
cable (d’ancrage 4 ancrage).

Si les cdbles de relenue étaient longs, ou trop peu tendus, il suffirait
d’ajouter au premier membre de cette équalion un terme correctif dépen-
dant de Q, mais petit; ceci ne modifierait en rien les transformations
effectuées par la suite.

Il est alors naturel de remplacer v, par sa valeur déduite de (4): on
parvient ainsi a l'équalion :

8 f. lf ;
X, )@ rog
Sfi V ()’+Q

Nl 241, __ﬁfi;-—J_-fl"(.\.em-ur B,e-Kixy dg| 1 = 5
~ |37 LK K Jo ' ' ' E'§s 7F

C’est exaclement l'équation utilisée par les ingénieurs américains pour
le calcul du pont de Philadelphie, et obtenue en utilisant le principe des
travaux virtuels.

Cette équation contient Q au second membre car les (A, B, et les K,
dépendent de Q. On pourrait la résoudre par itération, la substitution
d’une valeur approchée de Q dans le second membre fournissant une
nouvelle valeur de Q plus approchée. Mais les calculs auxquels on est ainsi
conduit sont fort longs, car il faut & chaque approximation calculer loutes
les constantes (A, B;), et il faut ne pas perdre de vue qu'il y a, dans
chaque travée autant de couples de constantes qu’il ¥ a d’intervalles de
surcharges, au sens du paragraphe 1, dans cette travée.

§ 4. Mais on peut donner & l'équation (11) une autre forme dans
laquelle ne figurent plus les (A, B;). On évitera ainsi dans les approxima-
lions successives le calcul fastidieux et long de ces constantes. Les calculs
de transformation étant assez compliqués, nous nous bornerons A énoncer
les résultats obtenus.

On définit tout d’abord dans chaque travée une fonction F(x);
I'abscisse z étant comptée a partir de l'extrémité de gauche de la travée :

(.K.\' - eK(l—.\')

1, 9 3 1 9
9(:6)_@(31‘7: ——.-JI)-—- —l-,—g-—'—W*“e'K’l‘_l_l—‘ (l-)
dont la dérivée est
, . I (l—.l,') . -_l__ L CK.\'_I_ ()I\'(l—;\') .
F @) =—7 KET R o (13)

Supposons alors que la travée considérée supporte des surcharges con-
cenirées P; aux abscisses a; et des surcharges d’intensilé constante p; répar-
ties entre les points d’abscisses 3;_, et 8;,, on pourra définir une expression
& par la relation

F=IP,F () +IZp[F B)—F B,0)] (14)

J J
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Cette formule (14) peut du reste encore s’écrire
{
=f p (@) F () da (14')
0

p (z) désignant la fonction de charge, p (z) peut du reste parfaitement ne
pas étre continue et méme comprendre des charges concentrées : dans le
cas, par exemple ou p(x) se réduit a la seule charge concentrée P a
’abscisse «, p(x) sera nulle en tout point de l'intervalle (0,l), sauf pour
x=—ua, ou p(x) tend vers l'infini de facon que l'intégrale de p(z; prise
dans un intervalle contenant la valeur « soit égale & P; dans ces conditions,
on aura, ¢(z) étant une fonction continue

x 0 si <=
fu pix)-5 (0) do = gPo(a)m.L>:.'

Ceci posé, &, désignant l'expression & ainsi définie relative a la "
travée on peul transformer 1'équation (11) de fagon a la mettre sous la
forme :

8f ! o
Q= ; - n (15)
8f [2 8f 2 /pl\ ekt — | Q +Q
Z 3 TR TR (Q) ekt T-gms L

Telle est 1'équation que nous avions en vue; elle s’écrit directement
sans passer par l'intermédiaire des constantes (A;, B;). En outre, elle a
I’avantage sur l'équation (11) de conduire & des approximations succes-
sives beaucoup plus rapidement convergenles; il suffit en pratique de
faire deux ou au plus trois approximations successives, de sorte que la
résolution de l'équation (13) ne demande guére plus d’une demi-heure
pour un projeteur entrainé disposant d’une table de la fonction e* et d'une
machine a calculer.

On observera que le dénominateur de l’équation (15) ne dépend des
surcharges que par l'intermédiaire des K;, c’est-a-dire de Q; ce dénomina-
leur varie peu d’un cas de surcharges & un autre. Cette remarque permet
de trouver la disposition des surcharges conduisant & un effet maximum
(par exemple, moment fléchissant maximum en un point de la poutre de
rigidité) au moyen de la considération de pseudo-lignes d’influences; en
effet, on connait toujours une valeur approchée de Q correspondant au
cas de surcharges et de température envisagé; en substituant cette valeur
dans le second membre de l'équation (15), on peut définir une pseudo-
ligne d’influence de la poussée dont l’équation est, la charge unilé se
trouvant dans la i® travé & l’abscisse « :

8 f;
I{ - F (o)
Q= 8 l K
(2 8f, | 2 (pyeShi—1], Q0 40Q
e T 4 y
ZJ L [3 Jili— II\?+K3(Q’)G“-'“-—{—I ' E'S L,

Il faut noter que le dénominateur est alors une constante, ainsi que
la valeur de K; qui figure dans &/(«). On peut alors a partir de la défini-
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tion de la pseudo-ligne d’influence de Q définir la pseudo-ligne d'influence
de l’effet considéré (fleche, momenl fléchissant, effort tranchant en un
point, de la poutre de rigidité). On connaitra ainsi les zones d’ordonnées
positives ou négatives de ces lignes et par suite la disposition des sur-
charges la plus défavorable. La disposition des surcharges étant ainsi déter-
minée, on calculera Q au moyen de 1'équation (15). et I'on pourra si la
valeur de Q qui a servi 4 la délermination des pseudo-lignes d’influence,
n’était pas suffissmment approchée, recommencer le tracé de ces lignes.

L’emploi des pseudo-lignes d’influence permet donc de donner une
solution théorique au probléeme de la recherche du maximum d'un effet.
On peut encore, dans des cas simples ol les surcharges ne dépendent que
de un ou de deux parametres, faire le calcul de l'effet pour quelques
valeurs de ces parameéires et déterminer le maximum de l’effet au moyen
des formules d’interpolation.

Nous noterons encore la formule suivante qui permet de déterminer
le déplacement des cadbles sur les pylones :

$/| F.  __Q (gﬂ_sn
O F0 T O Fo 3T R

) ! K l;
2 p/ eNili—| Q ) ‘
R G T e

u, — u;_, = —

§ 5. Donnons le principe d'une méthode permettant de calculer
un couple de constante (A, B) relatif & un intervalle de surcharges donné,
sans avoir a calculer tous les couples. Reprenons 1'équation différentielle
(3), et supposons que le cas de surcharges envisagé résulte de la super-
position de n cas de surcharges produisant dans la poutre sur »ppuis
simples de méme portée I que la travée considérée des moments fléchis-
sants @i, M2 ... w,. On a évidemment :

e e T
L’intégrale de l'équation (3) que nous cherchons est craaciérisée
s g0 dv
par la propriélé que v est nul pour x =0 et z =1, et que v et—d— sont
£

continus dans l'intervalle (0,1).
Considérons alors les équations différentielles

d’vo . Kzg

R = i
(17)

(lz'uj 2 K2 .

i & BT QW (j=12,..n)

Et soient v, et v; les intégrales de ces équalions jouissant des mémes
propriétés que v, c’est-a-dire s’annulant pour 2 = 0 et x = [, et continues
ainsi que leurs dérivées premiéres dans l’intervalle (0,1). Il est évident
que l’intégrale cherchée v n’est autre que

V= F v F+ v+ ...... —+ v,

On aboutit ainsi & un principe de superposition permettant de déduire
immédiatement tout couple de constantes pour un intervalle quelconque
d'un cas de surcharges tel que celui défini au paragraphe 1, de 1’étude des
deux cas de surcharges simples suivants :
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1° Charge concentrée unique a l’'abscisse «;
2° Charge répartie d’intensité constante entre les abscisses 3 et 7.

§ 6. La détermination des efforts dans les poutres de rigidité est
ainsi résolue pour les cas de surcharges définis au paragraphe 1. La mé-
thode s’applique encore dans le cas d'une fonction de charge p(xz) quel-
conque. La détermination de la poussée n’est pas changée si I'on définit,
dans 1’équation (15), les &, par la formule (14/). Par contre, dans 1'inté-
gration de 1’équation (3), A et B deviennent des fonctions de = que 1'on
peut calculer au moyen de la méthode classique de variation des conslantes.

On peut enfin, comme 1’a montré M. Blaise, ingénieur des Ponts et
Chaussées, dans les Annales des Ponts et Chaussées de mars-avril 1946, amé-
nager la méthode exposée ci-dessus de facon a pouvoir 'appliquer a des
poutres de rigidilé d’inertie variable; il faut alors renoncer a l’intégration
formelle de I'équation (3), et employer les méthodes de calcul aux diffé-
rences finies, les points de division correspondant aux suspentes; les calculs
deviennent longs, mais trés systématiques.

§ 7. On peut examiner les hypothéses qui ont servi de base & cette
théorie. En particulier, I'équation (7) n’est qu’approchée; pour se rendre
compte de ’erreur commise, il suffit de refaire le calcul au moyen de la
méthode indiquée au début du paragraphe 2. L’expérience montre alors
que D'erreur relative sur la poussée est de I’ordre de 107°, et I'erreur relative
sur les moments fléchissants de 2,5 . 10™. L’emploi de 1'équation (7) est
donc parfailement justifié.

L’allongement des suspenles sous I’'action des surcharges étant parfai-
tement négligeable, il subsiste le point suivant : au cours de la déforma-
tion, les points d’attache des suspentes sur le cdble subissent outre un
déplacement vertical, un déplacement horizontal qui a été négligé; il en
résulte que les suspentes deviennent obliques, et par suite exercent sur le
cable des forces horizontales de rappel qui tendent & diminuer le déplace-
ment vertical; en conséquence, on trouvera dans les poutres de rigidité des
efforts un peu plus grands que les efforts réels. Cet effet est du reste faible,
si les suspentes courtes ont une longueur suffisante. Nous ne croyons pas
du reste qu’aucune théorie des ponts suspendus en ait jamais tenu compte.

Le fait de supposer le moment d’inertie des poutres de rigidité constant
inlroduit également des erreurs lorsque les poutres sont de section variable
(le moment d’inertie varie toujours peu le long de la poutre). Aux points
ou le moment d’inerlie est maximum, le moment fléchissant est plus élevé
que le moment fléchissant calculé, comme on peut s’en rendre compte, soil
en faisant le calcul aux différences finies, soit en divisant la poutre en un
certain nombre d’intervalles dans chacun desquels le moment d’inertie
peut étre considéré comme constant. Dans cette derniére hypotheése, 1’équa-
tion (3) est valable dans chacun des intervalles, K variant seulement, d’un
intervalle & 1’autre.

Nous avons constaté sur plusieurs exemples que les erreurs dues &
I’hypothése de la verticalité des suspentes et a4 1'hypothése du moment
d’inertie constant se compensaient sensiblement.

§ 8. Nous avons eu l'occasion d’appliquer la méthode précédente
dans de nombreux projets. Permettant d’effectuer sans difficulté le calcul
d’un pont & plusieurs travées, cette méthode a augmenté la tendance consis-

by

tant & substiluer toutes les fois qu’on le peut, au pont suspendu & travée
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unique, le pont suspendu & trois travées symétriques, a cibles porteurs con-
tinus, sans cables de téte. On oblient ainsi des ouvrages dont l'aspect est
trés satisfaisant el qui sont trés économiques. En effet, les cdbles sont beau-
coup moins imporlants car ils sont moins longs et leur tension est
beaucoup plus faible; les poutres de rigidilé sont plus légeres; la dépense
supplémentaire due aux piles est en général compensée par la diminution
des massifs d’ancrage.

L’expérience monlre que la portée de la travée centrale doil étre environ
les 6/10 de I'ouverture totale; on obtient ainsi des efforts du méme ordre
dans les poutres de rigidité de la travée centrale des travées de rive.

La méthode exposée permet également la détermination des déplace-
ments horizontaux des ciables en téte des pylones; ces déplacements sont en
général assez faibles pour qu’on puisse supprimer les appareils de dilatation
a rouleaux lourds et colteux placés sous les selles d'appui des cables: les
pylénes encasirés & leur base, subissent alors des flexions du fait du dépla-
cement de leur sommel imposé par les cdbles; mais on peul montrer que la
flexibilité des pylones esl accrue par la forte charge verlicale qu’ils sup-
portent, et que la réaction horizontale qu’ils exercent sur les cébles est du
méme ordre de grandeur que celle due au frottemen! de roulement dans le
cas d’appareils & rouleaux de dilatation bien entrelenus; il est donc logique
de négliger cette réaction dans le calcul de 'ouvrage. Il arrive souvent que
les déplacements des pylones vers le milieu du pont sont un peu plus
grands que les déplacements vers la rive; on peutl alors compenser les
efforts dans les pylones en imposant au moment du réglage du pont, c’est-
a-dire en I'absence de surcharges et & température movenne, un léger dépla-
cement du sommet du pyldne vers la rive.

Dans les petits ouvrages, des pylones flexibles paraitraient trop gréles;
il est alors préférable d’articuler les pylones a leur base, plutét que de
prévoir des appareils & rouleaux,

Les pylénes en béton armé sont plus économiques que les pylones
métalliques. L’articulation de base, lorsqu’elle est prévue, est du type pré-
conisé par M. Freyssinet; on obtient ainsi une articulation trés économique
qui, en raison des faibles rotations qui lui sont imposées, peut supporler
des réactions élevées par unité de longueur. Dans le cas de pylones flexibles
on arrive aisément a éliminer tout effort de traction dans le béton.

Les poutres de rigidité des petits ouvrages (120 m de portée environ)
sont en général & dme pleine, pour les ouvrages moyens (200 m de portée
environ), nous préférons employer une poutre de rigidité a triangulation
Warren double & membrures & caissons, dont les nceuds de charge sont les
points de croisement des diagonales; le tablier est placé & mi-hauteur des
poutres, les piéces de pont étant assemblées
sur les poutres par 'intermédiaire des mon-
tants reliant les nceuds centraux a la mem-
brure inférieure; les suspentes, situées dans
l’axe des poulres, sont directement atta-
chées sur le nceud central; il en résulte des
_ avantages pour le montage, les pieces de

Fig. 3. pont étant d’abord suspendues avant 1’exé-
cution des poutres.

La dalle en béton armé du lablier, qui conslitue 1’dme de la poutre au
vent, est rendue solidaire de longerons métalliques latéraux assemblés sur
les nceuds centraux; les membrures des poutres de rigidité peuvent ainsi

: | ) 1
: ' | I
; ] 1 I

| [} !
! | ] i
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jouer le role de membrures de la poutre au vent, sans que les efforls de
compression ou de traction qui leur sont transmis par la dalle par ’inter-
médiaire des nceuds centraux n’entrainent d’efforts secondaires de flexion
dans la triangulation.

§ 9. Il est possible d’appliquer la théorie précédente au calcul des
ponts & cible de téte, comme 1’'a montré M. Avenas, ingénieur des Ponts
et Chaussées (Annales des Ponts et Chaussées, 1947). Nous désignerons par
Q/ la composante horizontale de la traction du cdble porteur, et par g/ la
composante horizontale de la traction du cdble de téte dans la i° travée,
en l'absence de surcharges et & la température de réglage; 1’équilibre dans
ces conditions exige que Q/ - ¢/ soil constant.

- Lorsque le pont est surchargé, ces composanles horizontales deviennent
respectivement Q/ -+ Q, et g/ -+ ¢, et comme 1’on néglige les réactions
horizontales exercées par les pyldnes sur les cdbles, la somme Q = Q, + ¢,
ne varie pas d'une travée a l'autre.

L’expression u; — u,_, est alors donnée, lorsque 'on considére le cable
porteur associé a la poutre de rigidité par la relation (16), et lorsque 1'on
considere le cible de téte par la relalion suivante :

n, — u,_, = % L,/ <14/ 4+ R,. (17)
dans laquelle S/ désigne la section du céable de téte, L, et L,; les intégrales
(8) pour le cible de 1éte et R, un terme correctif petit égal a :

R — P2l cos®, [ 1 R

21 gt (@t )
B, étant l'angle avec 1’horizontale de la corde joignant les extrémités du
cable de téte de la i travée et P, le poids total du céble de téte dans cette
travée.
Supposons connues des valeurs de départ approchées des Q; et des ¢,. on
pourra calculer des valeurs plus approchées de la fagon suivante : en

donnant a Q, et g, ces valeurs de départ dans les formules (16) et (17), on
aura :

u—u_,=0C,Q-+D=c¢q-+d,

Ci,, Di, ¢, d; ayant des valeurs numériques connues. En tenanl compte de
ce que g, + Q;=Q, on en déduira :

Q=2 Q o g =a! Q+ 3/ (18)
a4 — i, =7y, Q43 (19)
La condition Y(u; — u,_,) = 0 fournira alors la valeur de ().
Yo

Les formules (18) et (19) feront alors connaitre des valeurs plus
approchées pour Q;, g, et u; — u;_;.

Deux ou trois approximalions au plus suffisent si 1'on choisit de la
fagon suivante les valeurs de départ des Q; et ¢, : on prend ¢, = 0, ce qui
revient & négliger le terme R; de la formule (17) dans la premiére approxi-
mation; et ’on détermine les (), de départ en faisant u, = 0; en effet, les Q,
exacts différeront assez peu de ces valeurs, car une légére varialion de la
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distance des appuis des cables porteurs d’une travée ne donne qu’une faible
variation de la poussée des cables porteurs.

§ 10. L’équation des déplacements orthogonaux du paragraphe 2
peut également se mettre sous la forme suivante :

w—uy= [ o G de b DL, (20)

qui se préte bien au calcul des ponts suspendus auto-ancrés, dans lesquels
le cible est fixé & ses extrémilés sur la poutre de rigidité.

" Considérons donc un pont suspendu
aulo-ancré a n travées articulées en leurs
extrémités, et dont la poutre de rigidité rec-
tiligne a pour module d’élasticité L, pour
section S et pour longueur totale L. La figure
d’équilibre du cable dans la i* travée, sans
surcharges et a la température de réglage est,
comme dans un pont suspendu ordinaire,
une parabole lorsque la charge permanente
p/ est d’intensité constante; s’il n’en était pas
ainsi, y, serait un funiculaire de p/, ce qui se traduit par 1'équation

Fig. 4.

Q’ yi = ,u'.",

u;/ désignant le moment fléchissant que produirait la charge p/ dans la
poutre sur appuis simples de méme portée que la poutre de rigidité.

Lorsque 1’ouvrage est surchargé ou que la température est différente
de la température de réglage, y, devient y, 4 v;, la poussée augmente de Q,
et l’on se rend comple immédiatement que le moment fléchissant M, dans
la poutre de rigidilé, compte tenu du moment (Q' 4 Q) », di & la com-
pression de la poutre a l'expression simple

M; = w, — Qy.. (R1)

Il suffit alors pour déterminer Q d’écrire que le déplacement relatif
des extrémités du céble est égal au raccourcissement total de la poutre.
Compte tenu de ce que

d? v, M,

dat LI,

on aboutit a 1'équation

L .
vida L ! }'. (IJ: ) )
Q |:£Z ,/0 EIL —{—( Eb Elb } Z [ - (IJ s L, l)' (22)

Il en résulte que le calcul des ponts suspendus aulo-ancrés est beau-
coup plus simple que celui des ponts suspendus ordinaires; en particulier
on peut tracer des lignes d’influence pour Q, et pour les moments fléchis-
sanis dans la poutre de rigidité.

Si la poutre de rigidité n’est pas rectiligne, il suffit dans la théorie
précédente de remplacer y, par Y, = Yi + y!, y/! désignant 'ordonnée de
la fibre moyenne de la poutre dans la @ travée complée positivement vers
le haut & partir de la corde joignant ses extrémités dans celte travée.
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Il serait possible de réaliser économiquement des ponts auto-ancrés
a trois travées symétriques, en prévoyant des poutres en béton armé asso-
ciées au hourdis. La portée de la travée centrale pourrait atteindre une
centaine de meétres. L’inconvénient de tels ouvrages est le montage qui
exige des échafaudages.

§ 11. La méthode exposée dans ces quelques pages n’apporte rien
de nouveau en ce qui concerne les résultats numériques, par rapport aux
méthodes employées lors de la construction des grands ponts suspendus
américains, tels que le pont de Philadelphie, puisque I’équation de la
poussée, sous sa premiere forme (11) est la méme, bien qu’obtenue par
une autre voie. Par contre, la nouvelle forme de 1'équation de la poussée,
dont la résolution est trés rapide, permet d’abréger d’une fagon considé-
rable le temps passé dans les calculs numériques.

Cette équation présente également I’'intérét théorique de montrer dans
quelle mesure le principe de superposition est valable pour les ponts
suspendus. On peut dire que pour un pont suspendu considéré dans un
état initial donné de température et de surcharges, il existe des lignes
d’influence sous l’action d’une charge concentrée infiniment petile se
déplagant sur l’ouvrage; mais ces lignes d’'influence varient (du reste
assez peu) avec l’état inilial.

Résumeé

La méthode de calcul des ponis suspendus est basée, d’une part sur
I'expression des efforts dans la poutre de rigidité en fonction de la com-
posante horizontale (ou poussée) de la traction des cédbles, d’autre part,
sur une relation approchée donnant en fonction du déplacement vertical
des points d’un cdble les déplacements horizontaux des extrémités du
cible. On retrouve ainsi, pour délerminer la variation de poussée due aux
surcharges et aux variations de température 1’équation utilisée par les
ingénieurs américains. Mais on a transformé cette équation, dont 1'utili-
sation entrainait de longs calculs, de maniére 3 lui donner une nouvelle
forme conduisant & des calculs trés rapides, et mettant en évidence les
effets de superposition des charges.

La méthode indiquée permet un calcul aisé des ponts & trois travées
symétriques qui sont des ouvrages économiques et d’aspect agréable; elle
a ainsi réagi sur la conception méme des ouvrages, notamment en ce qui
concerne les pylones : suppression des appareils de dilatation au sommet
des pyldnes qui sont soit encastrés, soit articulés & leur base. On signale
également un type de poutre de rigidité bien adapté aux efforts qu’elles
ont & supporter du fait des surcharges et du vent.

La note se termine par l’extension de la méthode aux ponts suspendus
A travées multiples et & cdbles de téte, et aux ponts suspendus auto-ancrés.

Zusammenfassung

Die Berechnungsweise der Hingebriicken stiitzt sich einerseits auf die
Ermittlung der Beanspruchung des Versteifungstriigers durch die Hori-
zonlalkomponente (oder Druckkomponente) des Seilzuges, andererseits auf
eine Ndherungsbeziehung, die die Horizontalverschiebungen der Kabel-
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enden in Funktion der vertikalen Verschiebung des Kabels ergibt.
Man kommt so auf die durch die amerikanischen Ingenieure angewandle
Gleichung zur Berechnung der den Auflasten und Temperaturunterschieden
entsprechenden Aenderungen des Druckes. Diese Gleichung, die in ihrer
Anwendung lange Berechnungen nétig macht, wurde nun in eine neue
Form gebracht, in der sie sich sehr schnell 16sen ldsst und die die Ueber-
lagerungswirkungen der Lasten augenscheinlich macht.

Das beschriebene Verfahren gestattet die einfache Berechnung der
wirtschaftlich und #sthetisch giinstigen Briickenbauten mit drei symme-
trisch angeordneten Oeffnungen und war auch von Einfluss auf den
Entwurf solcher Bauwerke, besonders hinsichtlich der Pfeilerausbildung.
Es fiihrte zum Wegfall der Dilatationseinrichtungen auf der Spitze der
entweder eingespannten oder gelenkig gelagerten Pfeiler. Es wird auch
eine Bauart des Versteifungstrigers angegeben, die die Beanspruchungen
infolge Auflasten und Wind gut aufnimmt.

Der Aufsatz schliesst mit der Erweiterung des Verfahrens auf Hinge-
briicken mit vielen Oeffnungen und solche mit Schrigkabeln, und auf
Hingebriicken mit aufgehobenem Horizontalschub.

Summary

The method of calculating suspension bridges is based, on the one
hand, on research as to the stress of the stiffening girder by the horizontal
components (or pressure components) of the traction of the cables and,
on the other hand, on an approximate relation which gives the horizontal
displacements of the cable ends in function of the vertical displacement
of the cable. We thus find the equation used by American engineers for
calculating the differences in pressure corresponding to differences in
load and temperature. This equation, for the use of which long calcul-
alions are required, has now been presented in another form in which it
is quickly solved and which places clearly on record the effects of super-
posing of loads.

The process described allows of simple calculation of economically
and aesthetically suitable bridges comprising three symmetrically arranged
spans and also had an influence on the designing of such structures,
particularly as regards placing of the piers. Information is also given
concerning a type of stiffening-girder well adapted to cope with load and
wind stresses.

The paper ends with an extension of the process to suspension bridges
with multiple spans and oblique cables and to self-anchored suspension
bridges.



	Contribution à la statique des ponts suspendus à poutre de rigidité

