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I1Ib1

Fonctions d'influence pour la correction des déviations angulaires
dans les ponts suspendus

Einflussfunktionen fiir die Beriicksichtigung der Winkelabweichung
bei Hingebriicken

Influence functions for the angular deviation correction
in suspension bridges

D* SVEN OLOF ASPLUND
Orebro

In the classical deflection theory of suspension bridges the differential
equation (')

(EIT‘”)” _ (I.Iw + H).,‘II — Hyfl + p(:r)

of the elastic line 7, of the stiffening truss is established under the assumption

(*) This equation is usually termed Melan's equalion bul was earlier published and solved
by A. Ritler (1877) and H. Miiller-Breslau (1881).

Notations : All nolation, except that which is specific to this paper, is in conformily with
common usage in most American treatises on the theory of suspension bridges. Reference to
the numbered equation where the magnitude is first defined or used is given in parentheses.

Ark”, ark” = angular devialion correction influence functions (10), (12)

¢ = incidental flexibility of one-span bridge (10)

E = modulus of elasticily of truss (1)

f = cable sag (11), f(x) = angular correclion load (4)

Hw = horizonltal force of dead load (1), H = incremenl of horizontal force due to other
causes (1)

I = moment of inertia of truss (1)

ka = influence [funclions (2), il_k = influence funclions for onc-span bridge of unil

length (13)

L jr” = influence functions (2)

k = abscissa. of live load clemenls measured from the left end (2)
t = span lenglth (11)

M = moment in stiffening truss at seclion z (6)
p(k) = dislributed live load at abscissa k (2)
t = .lemporarily used abscissa (10). t, = abscissa measured from low-point of cable (center

of span) (12)
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that the cable-points move along fixed verticals. Rode (*) seems to have
first pointed out that the differential equation may be established without
resorting to that assumption. Rode gave his equation for a constant stiff-
ness EI of the truss, but it can easily be generalized to apply to variable
truss stiffness and rearranged to manifest more plainly ils interesting ma-
thematical character (*)

(ELq")" —(H, 4+ H) [(1+ y) 7] =Hy" -+ p ) 3

Melan’s equation as well as (1) are restricled by homogeneous and
linear boundary conditions namely (he restraint conditions at the supports
of the stiffening truss and the cable condition.

The exact solution of (1) or of Melan’s equation is very complicated,
since by the cable condition the live load horizontal force H is a function
of all 5. In fact, no solution by finite methods has vyet been given. If,
however, the variable H is treated as a constani, the equation (1) logether
with its boundary conditions may be recognized as a self-adjoint linear
boundary problem with variable coefficients in the differential equation.
Accordingly one enters a plausible value of H in the problem. By its solu-
tion a new value of H is calculated from the cable condition. This value
is again entered in the boundary problem. By ileralion of the solution
with successively corrected values of H the exact solution of the funda-
mental equation (1) and its boundary conditions may thus be approached
to any desired accuracy. In practical bridge problems the convergence of
this process is rapid. More than one or two iterations are seldom required.

The general form of the solution of the linear boundary problem (')
(with an assumed constant value of 1) may be obtained by an expansion
of the solution according to the (orthogonal) « eigenfunclions » of the
homogeneous differential equalion associated to (1) (left member = 0) ().
It is :

1
H, 1

This equation indicates that influence lines may be suilably applied in the
solution. The « deflection influence function » I, is a funclion of H (and
of the section z considered and of the load position k). It is independent
of the cable wvield, because all cable yield elfects are comprised in a factor &
and carried to the correclion term ¢J,, J, being a function of H (and of z).
But I, cannot be made to be independent of the form, vy, of the cable (sag-
ratio, etc.). Therefore, if a sel of influence funclions had been computed
and tabulated it could only be used for bridges with the same relalive stiff-

T (%) =

[is Ix p (k) dk -+ oJ ] (2)

w = dead load per unit Ienglh of bridge (13)

z = abscissa measured from Lhe left support to the scclion fo he invesligated (1)

y = ordinale measured downwards from a horizontal line lo Lthe cable under dcad load at
section z (1)

8 = cable yield constant (2)

n = verlical displacemenl of truss al scclion r due to live load, temperature, and anchorage
displacement (1)

£ = horizontal displacement of the cable point originally at z due Lo same causes (8)

(%) Proceedings Am. Soc. of Civ. Eng., 1928, p. 393.

(®) S. O. Asrrunp, On the Deflection Theory of Suspension Bridges (Ingenjirsvelenskaps-
akademins Handlingar 184, Stockholm, 1945, p. 23).

(*) See (%), p. 31-37.
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ness variation and cable sag ratios in the different spans. Moreover, although
the general form (2) of the solution is known, influence functions have
not yet been published for any specific bridge, however simple. A mathe-
matically interesting « exact » (proviso constant I) solution of special
cases of (1) has been undertaken but it is not possible to see how it could
be advantageously applied.

For practical reasons the author considers that the mathematically -
concise form (1) should be given up in favor of

(EIn') " — (H, + Hyn" = Hy" 4 p(2) 4 f(2) (3)
fl@) = (H, 4 H) (y™)’ (4)

in suspension bridge problems. The solution of this form still obtains the
same form (2) with the exceptions that I, is computed from the homoge-
neous part (left hand side) of (3) only and therefore no function of the cable
form y, and that instead of p () the « load » p(2z) -+ f(x) should be applied
under the integral sign of (2). In actual bridge problems the « correction
load » f(x) is much smaller than p(xz). If f(x) is first neglected, n can be
solved by (2) and #' and (y”¢)'=/f(x)/(H,—+ H) computed. When this
function is entered together with p(z) in (2) an improved solution is
obtained which is acceptable for practical purposes even if it can be made
more precise by iteration.

This procedure makes possible the treatment of suspension bridges by
much larger classes, inasmuch as the influence functions I, will be entirely
independent of the cables (size, yield and form): All bridges with the same
relative stiffness variation of the truss may be treated by the same set of
tables 1.

If f(x) is omitted the solution will be the same as that of Melan’s equa-
tion. The application of f(x) is equivalent to a consideration of changes &’
in the horizontal projections of the cable elements and can suitably be
termed the cable angular devialion correction load.

If the solution qccordmg to Melan’s equation is first established, the
addition of an angular deviation correction obviously yields the solution
according to (1).

By differentiation of (2) the change of crrade of the truss becomes

1 ; :
) gAY ! Lnd L E
n (I) Py Hw _I__ H .\s I xh [p (k) + .f(k).l dk + OJ.': ('))
and for instance the moment in the truss
M= [, 1I"4 [p (k) + f (k)] dk 4~ 0J," gy
where '
Ir =T aIxh J T dJa: Ilr AT EI(.’L‘) aI’mk
] —ax_‘ ] ) £ dz ’ S, e R Hu) + H 8.'1: ’
; e
and J, =—=— AED e

Instead of by the laborious computation of f(z) just explained and
application to (2), (5), (6), etc., the angular deviation corrections may
be evaluated separately and dlrectly from the load p(x) by the use of
influence functions. Entering (4) in (6) yields
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Row it ; 0 ! 0.0% ! 0.1 ’ 0.15 }‘ 0.2
1 Bl —1 =214l — 10 | —08 ‘ —0.8 | —0.7 | —0.¢
2 —(h]1)2 et —85 | —308 ‘ —16 | — 12.3 e
3 i 095 | 327 283 } M6 | —6 | —8
4 7 5 ' 104 0 17.2 ‘ 10.0 | 22,2 1.5
5 a2 103 % | —327 | —237 l — 117 1 5¢
6 — e () ) e? 10— x 0 | —347 ‘ — B4 | —258 | —df
7 Sum of rows 6,7 10-3 X | —327 | —6u0d l — 757 | —268 | —5(
8 - 10 -3 0 1.8 i 1.5 22,1 40.9
9 Integrand of a” . 10-3%¢ 0 — 2.8Y i —8.68 | —6.01 | —2.0

M=, I"p (k) dk + 1" (Ho, 4+ H) [(¥" ') ]ocs dk 4 0J." . (7)

The middle term on the right hand side is M: , the angular deviation
correction for moment

My = 1" (H,, )2 yy"n' + ¥ ") _a dk . (8)
Substituling (5) in (8) vields

.N[ef —_ _(, 1"_7:}‘ [(2 y,y”);c:k _is Ik! 1” (t) + f (t)] (”

12 " Hu,' + I—I " i L > I [ag?2 .1
— (Y )es ,/ ) Wl w [P () +F (O] Al dk 48], [y 1), .

The relatively small influence of the correction load f(¢) and the small
3-term could be accounted for by this formula. If they are dropped and k
and { interchanged the comparatively simple formula

M: = A" . p (k) dk - (9)

remains with
; H,4+H _,
@YY o Ve — ()omy T g gy (10)

I/\llr p— -/‘JH;C
i L El (1)
as an influence function for the angular deviation correction for moment.
Such influence functions shall now be numerically evaluated for the
case of a symmetrical one-span bridge wilh constant sliffness EI. If the
span-length is I, the cable sag f, and the uniform dead load w one has

w____ w _ 8f v &f oo 1281
3= I_]w_ [ ’ ST ]'3 Z,, =Yy = l.; Ty,
. 64F
g 84T

l4
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0.3 0.4 ! 0.6 0.8 ! 1.0 N E Row
—04 | —02 0 02 06 | 10 | Yl —1—241 | 1
—14 —1 0 ! 1 —9 !_25 — (D)2 e2 2
—142 | —129 | —92 1 10—3 o 3
10 | —29 | 13 10— o 1
57 26 ; , ] 103 ok /1 5
—4 3 | 1 | 10-3 e (LD e 6
53 29 0 —1 68 | 113 | 10-3 % Sum of rows 6,7 | 7
71 | —6.0 | —10.8 _11.7:  — 8. } 0 10-2 i 8
0.38 | —0.17 0 0.05 —0.55 0 i 10 3% Integrand ofa”z | 9

z, (and t,) being measured from lhe low point of the cable at the center of

the span. The influence functions i,,’ = I,/ and i,,” = 1., /1 are previously
tabulated (°) for different values of
- ' /o —}—H
Equation (10) becomes
- 64 2 ) 2
A", = ju u( 7 I ot it 6;1—4f £, _‘;- li”!k) dt
" 64 n
A xh — l —-P—f? a ok (11)
" il 2 i H i i = t ¢
o ;ckzyzml[——iqu—(—l'—) C?I,k]d—t. (12)

The complete moment formula derived from (7), (9) and (11),
j." =17J."/l, thus becomes

1\11 S fi!f 1)(k) 1_ + 6 I f (l.” __I‘)(k) (l _k_ | 0 s

wi? T ST T et I

The compnlntion of just one value of a.” will be explained here,
namely for ¢ = 10 at /I = 0.2 and /Il = 0.1.

Intermediate values of the mlewmnd may be determined from diagrams
of rows 7 and 8. Finally the mteomnds of a,” are carefully plolled and
integrated by quadrature, yielding the mtegral ! = — 1.03 X 10~°. The
result of similar computations for z/l = 0.2, k/l = 0.05, 0.1, 0.15, 0.2,
0.3, 0.4, 0.5, 0.6 and 0.8, and ¢ = 10 and 20 is diagrammaled in fig. 1
and 2.

These «a,.” influence diagrams can be used for a fairly accurate eva-

(13)

(5) See (%), p. 5.
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-1000Q’,
-1000Q; 100 ki
100 L” k
4|_"WR_._ﬂ c=10  x/1-0.2 2 . =20 x1=02
! i i : i | .
1 Yxki A
2 T .
-421::';&-"\41: | | I\ TS -4 ki kmax,
™ d,e;
| k
J l f\q/ kL

Oo 3 03 \N / O? 03\&?:, =10

‘*nk area=52x10"2 ixk-area = 1,82 «10-2
{ dxk-aren=—0_36i10_5 ;q;k—ar-en--OJ.?xIO‘}
Fig. 1. Fig. 2.

luation of the angular devialion correction for moment at any given load,
for instance composed of concentrations and loaded segments.

For comparison the influence functions i;” to be used simultaneously
in (13) are shown in fig. 1 and 2. It is seen that the shape of the «,.”-dia-
gram is roughly the same as that of the i,;"-diagram.

The maximum ordinate of «,.” is — 4.2 9 and —4.1 9 of that of i..”
for c=10 and 20, respectively, and x=0.21. A calculation for z=20.151
gives the per n,enldoes — 9.3 and — 6.2 for ¢ = 10 and 15, respectively.

The zero point of a," is to the right of that of i,,”. The branches
leading to the maximum point are more straight for «.”. When the posi-
tive area of i,,” is loaded the engaged area of «,,” is — 6.9 9, and —6.6 ¢/
of that of i,,” for ¢ = 10 and 20, respectively, and x = 0.2 I (fig. 1 and 2).
For ordinary cases of loading the maximum positive momenl in a one-
span suspension bridge of even stiffness occurs near the point 2 = 0.2 [,
while the larger part of the i,,”-area is loaded with concentrated or uniform
loads. The given percentages indicale that the angular deviation correction
10 and 20 amounls to between — 6 9% >< 64 f°/I* and
— 7 % X f/I* of the maximum poqitive moment at x = 0.2 l. These values

can be roughly used if influence lines a,,” are lacking. In a one-span bridge

of fIE‘{lbllltV between ¢ =10 and 20 and with a sag-ratio f/l = 0.12 the
angular deviation correction is thus ahout — 6 9 of the maximum mo-
ment.

The completed solution, according to this paper, of the angular devia-
tion correction can be directly apphed to bridges of any sag-ratio. The
direct mathematical solution of (1) mentioned a.bove would be even more
difficult if the influence of a variable f/I had to be taken into account.
When influence functions are determined by tests on model (*), (1) and
its boundary conditions is so to speak solved directly by a model machine.
Then the resulting influence functions I, of (2) will also include the
angular deviation correction, the magnitude of which will not be disclosed.
Therefore the set of 1nfluence lines obtamcd will not be exactly '1ppllcahle
to any other bridges than such with the same sag-ratios of the cable as in
the model bridge used.

In a one-span bridge the maximum moment is seen to reduce the
angular deviation correction. An omission of this correction therefore is

(8) See (3). p. 110
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on the safe side. It should not be overlooked that the absolute value of the
minimum moment at the tower of a continuous bridge is increased by the
angular deviation correction.

Résumé

L’équation différentielle classique et quasi linéaire des ponts suspen-
dus ancrés (équation de Melan) peut se compléter par une expression qui
tient compte des variations d’angles des éléments des cédbles. Il se présente
alors le probléeme de la valeur aux limites, dont la solution purement
mathématique n’est, cependant, pas avantageuse. Si, au lieu de cela, 1'on
ajoute ladite expression a la partie non homogéne de I'équalion comme
fonction d’interférence, cette interférence peut se calculer rapidement en
se servant a plusieurs reprises des fonctions d’influence. L auteur indique
le calcul numérique d’une valeur de la fonction d’influence. Deux courbes
complétes de l'influence, utilisables pour des ponts avec des fleches diffé-
rentes, sont indiquées sur des schémas. Pour un pont ayant une ouverture
et une flexibilité ¢ comprise entre 10 et 20, la dimension de rectification de
la variation d’angle pour les plus grands moments absolus, avec x = 0,2 [
peut atteindre entre — 6 et — 7 O/ de 64 f*/I* fois la valeur du moment,
qui se calcule en se servant de la theone classique des moments flechlsS"mts.

Zusammenfassung

Die klassische quasilineare Differentialgleichung der verankerten Hiin-
gebriicke (Gleichung von Melan) kann durch einen die Winkelabweichun-
gen der Kabelelemenie erfassenden Awusdruck erginzt werden. Dabei
entsteht ein selbstadjungiertes Randwert-Problem, dessen direkte mathe-
matische Losung sich aber als unvorteilhaft erweist. Wenn statt dessen
der genannte Ausdruck dem inhomogenen Teil der Gleichung als Stérungs-
funktion angefiigt wird, kann d1e Storung schnell durch \Vlederholte
Anwendung von Emﬂussfunktmnen berechnel werden. Die numerische
Berechnung eines Wertes der Einflussfunktion wird gezeigt. Zwei be-
stimmte vollstindige Einflusslinien, anwendbar auf Briicken mit verschie-
den grossem Durchhang—\T sind in Dlagrammen dargestellt. Bei einer Briicke
mit einer Oeffnung und einer Biegsamkeit ¢ zwischen 10 und 20 kann die
Korrekturgrosse der Winkelabweichung fur die grossten positiven Mo-
mente bei & — 0,2 1 zwischen — 6 und — 7 9, von 64 f/I* mal den Wert
des Moments erreichen, das mit der klassischen Durchhiegungstheorie
berechnet wird.

Summary

A term accounling for the angular deviations of the cable elements
may be included in the classical quasi-linear differential equation of the
truss (Melan’s equation). A self-adjoining boundary problem is then formed
but a direct mathematical solution appears disadvantageous. If the term
in question is instead carried to the non-homogeneous part of the equation
as a disturbance function, the disturbance may be expediently calculated
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by iterated use of influence functions. The numerical evaluation of one
influence function value is demonstrated. Two significant compleie in-
fluence lines, applicable to bridges of various sag ratio are given in dia-
grams. In a one-span bridge with flexibility ¢ between 10 and 20 the angular
deviation correction for maximum positive moments at z = 0.2 [ may
amount to between — 6 and — 7 9, of 64 f*/[* times the moment as cal-
culated by the classical deflection theory.
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