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Illbl

Fonctions d'iniluence pour la correction des deviations angulaires
dans les ponts suspendus

Einflussfunktionen für die Berücksichtigung der Winkelabweichung
bei Hängebrücken

Influence functions for the angular deviation correction
in Suspension bridges

Dr SVEN OLOF ASPLUND
örebro

In Ihe classical deflection theory of Suspension bridges the differential
equation (')

(Eiy')" — (II, + H)vj" Hy" + p(x)
of the elastic line rt of the stiffening truss is eslablished under the assumption

(') Tliis cqualion is usually termed Melan's cqualion but was earlior published and solved
by A. Ritler (1877) and 11. Müller-Breslau (1881).

Notations : All nolalion, pxrepl that which is specific lo this paper, is in conformily wilh
common usage in most American Irealises on Ihe Iheory of Suspension bridges. Reference lo
the numbered cqualion where Ihe magnitude is first defined or used is given in parentheses.

A ", a " angular deviation correction influence functions (10), (12)
c incidental flcxibilily of one-span bridge (10)
E modulus of elasticily of truss (1)
/ cable sag (11), f(x) - angular correclion load (4)
H horizontal force of dead load (1), H increment of horizontal force due lo other

causes (1)
I moment of inerlia of Iruss (1)

I t influence funclions (2), i influence funclions for onc-span bridge of unit
lenglh (13)

J ", ;' " influence functions (2)
k abscissa of live load elemenls measured from the left end (2)
l span lenglh (11)
M moment in stiffening truss at section x (6)
p(k) dislribuled live load at abscissa k (2)
t lemporarily used abscissa (10). t abscissa measured from low-poinl of cable (center

of span) (12)
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that the cable-points move along fixed verticals. Rode seems to have
first pointed out that the differential equation may be established without
resorting to that assumption. Rode gave his equation for a constant stiff-
ness EI of the truss, but it can easily be generalized to apply to variable
truss stiffness and rearranged to manifest more plainly its interesting ma-
thematical character (3) :

(Eiy)"_(H„ + H) [ (I + y")V]' Hy* + p(aO (1)

Melan's equation as vneil as (1) are restricled by homogeneous and
linear boundary conditions namely Ihe restraint conditions at the supports
of the stiffening truss and the cable condition.

The exaet Solution of (1) or of Melan's equation is very complicaled,
since by the cable condition the live load horizontal force H is a function
of all 7). In fact, no Solution by finite methods has yet been given. If,
however, the variable II is treated as a constant, the equation (1) together
with its boundary conditions may be recognized as a self-adjoint linear
boundary problem writh variable coefficients in the differential equation.
Accordingly one enlers a plausible value of H in the problem. By its Solution

a new value of H is calculated from the cable condition. This value
is again entered in the boundary problem. By ileration of the Solution
with successively correcled values of H the exaet Solution of the
fundamental equation (1) and its boundary conditions may thus be approached
lo any desired accuracy. In practical bridge problems the convergence of
this process is rapid. More than one or two iteralions are seldom required.

The general form of the Solution of the linear boundary problem (')
(with an assumed constant value of 11) may be obtained by an expansion
of the Solution according lo Ihe (orthogonal) « eigenfunetions » of the
homogeneous differential equation associated lo (1) (left member 0) (4).
It is :

T' <*) h + H []i L" P {k) dk + SJx] (2)

This equation indicales that influence lines may be suilably applied in the
Solution. The « deflection influence function » lxk is a function of II (and
of the section x considered and of the load position k). Il is independenl
of the cable yield, because all cable yield effects are comprised in a factor S

and carried to the correction lerm oix, J* being a function of H (and of x).
But Ixk cannot be made to be independent of the form, y, of the cable (sag-
ratio, ele). Therefore, if a sei of influence funclions had been computed
and labulated it could only be used for bridges with Ihe same relative stiff-

w dead load per unit lenglh of bridge (13)
x abscissa measured from Ihe left support lo the srlion to be investigated (1)
y ordinale measured downuards from a horizontal line lo the cable under dead load at

seclion x (1)
8 cable yield conslant (2)
¦n vertical displacement of truss at seclion x due to live load, lemperalurc, and anchorage

displaccmcnl (1)
£ horizontal displacement of Ihe cable point originally at x due tu same causes (8)

(2) Proceedings Am. Soc. of Civ. Eng., 1928, p. 393.
(3) S. 0. Asplunu, On the Deflection Theory of Suspension Bridges {Ingenjörsvetenskaps-

akademins Handlingar 184, Stockholm, 1945, p. 23).
(4) See (3), p. 31-37.
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ness Variation and cable sag ratios in the different spans. Moreover, although
the general form (2) of the Solution is known, influence functions have
not yet been published for any specific bridge, however simple. A mathe-
matically interesting « exaet » (proviso conslant H) Solution of special
cases of (1) has been undertaken but it is not possible to see how it could
be advantageously applied.

For practical reasons the author considers that the malhematically
concise form (1) should be given up in favor of

(ED,") " - (H„ + H) r," Hy" -f- p (*) + /(*) (3)

/(*) (H„, + H)(y'V)' (4)

in Suspension bridge problems. The Solution of this form still obtains the
same form (2) wilh the exceptions that lxk is computed from the homogeneous

part (left hand side) of (3) only and therefore no function of the cable
form y, and that instead oip(x) the « load » p(x) -4- f(x) should be applied
under the integral sign of (2). In actual bridge problems the « correction
load » f(x) is much smaller than p{x). If f(x) is first neglected, v) can be
solved by (2) and i\' and (y'V)' /(*) / (H„-f-H) computed. When this
function is entered together with p{xi in (2) an improved Solution is
obtained which is acceplable for practical purposes even if it can be made
more precise by iteration.

This procedure makes possible Ihe treatment of Suspension bridges by
much larger classes, inasmuch as the influence functions Ixk will be entirely
independent of the cäbles (size, yield and form): All bridges with the same
relative sliffness Variation of the truss may be trealed by Ihe same set of
tables Ixk.

If f(x) is omitted the Solution will be the same as that of Melan's equation.

The application of f(x) is equivalent to a consideration of changes E'

in the horizontal projeelions of the cable elements and can suitably be
termed the cable angular deviation correction load.

If the Solution according to Melan's equation is first established, the
addition of an angular deviation correction obviously yields the Solution
according to (1).

By differenlialion of (2) the change of grade of the truss becomes

V(*)=H, + H
{ U'^[P(fc) + /(fc)Jrf/c + 5j./ j (5)

and for instance the moment in the truss

M \J"xk[p(k) + f(k)]dk + o3J," (6)

where

T, _ 3J k __
dSx _ Elf» d\'xk

dx ' - dx ' ** H,„+H dx

and J ' —
EI (x) dij:

H,,, -f H ~dx~~ '

Instead of by the laborious computation of f(x) just explained and
application to (2), (5), (6), etc., the angular deviation corrections may
be evaluated separately and directly from the load p(x) by the use of
influence functions. Entering (4) in (6) yields
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now t)l ii 0.IH n.i 0.15 0,

1 2f//-l 2£,/( — 1.0 — 0 9 — 0.8 — 0.7 — 0.(

2 -{t-nfc* — 25 — 20.3 — 10 — 12.3 ;

3 i'tk io-'X 327 283 1 IG — G — 8!

4 i" k io- :fx 0 17.2 •10.0 22.2 11.5

5 f',*-2t,// 10-:!X — 327 — 257 — 117 1 5;

ü - i",„-(h l)°c* 10- 3x 0 — 347 — 010 — 272 — 10c

7 Sum of rows 0,7 io 3x -327 — Olli — 757 — 208 — 51

8 i".a iO-'X 0 4.8 11.5 22.4 40.9

9 Integrand of a",,i- 10-8 x 0 — 2.8!) — 8.08 — G.Ol — 2.0i

M j. l"xkP (k) dk + lsl".rt (H„ + H) [(y" r,')'],=t dk + 3J/ CO

The middle term on the right hand side is M? the angular deviation
correction for moment

Me- S. I"-* <H« + H)(2 y'y'V -f y'1 n'%.kdk
Substituling (5) in (8) vields

(8)

Me [s Vxk [(2 y'y"):c=K j, I„ p (t) + / (t)] dt
1' JI

1"*, [/> (0 + / (*)] dt[ dk + oJJ [y" -„']sEl (k)

The relatively small influence of the correction load f(t) and the small
S-term could be accounled for by Ihis formula. If they are dropped and k
and / inlerchanged the comparatively simple formula

M, \,A"xk p (k) dk
remains with

A" — / I"xl / J Xl (2 y'y").e.__, Vlk - (y'%.
H„ H

El (0
I"i a dt

(9)

(10)

as an influence' function for Ihe angular deviation correction for momenl.
Such influence functions shall now be numerically evaluated for the

case of a symmetrical one-span bridge wilh constant sliffness EI. If Ihe
span-lenglh is /, the cable sag /, and the uniform dead load w one has

w
"Hl

¦f 8/ 128 f
64 f x,'
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0.3 0.1 0.5 o.c o.s 1.0 ; / Row

— 0.4 — 0.2 0 0.2 0.G 1.0 2 l l — 1 2 tvl 1

— 4 — 1 0 — 1 — 9 — 25 -(!,//)* C* o

— 142 -129 -92 10-3 x i'lk 3

1.0 — 2.9 — 4.3 10-3 X i"ik 4

57 26 io-3 x i'tk-2 hfl 5

— 4 3 10-3 x -rrt.(t,/o*c« 6

53 29 0 — 4 08 113 10-3 x Sum of rows 6,7 7

7.1 — 6.0 — 10.8 — 11.7, — 8.1 0 10-3 x i"xt 8

0.38 — 0.17 0 0.05 — 0.55 0 io 'x Integrand of u"xix 9

Xi (and ti) being measured from the low point of the cable at the center of
the span. The influence funclions ixk \xk and ixU" \xU" jl are previously
tabulated (5) for different values of

M/ H„ H
KI

Equation (10) becomes

64 f 64 f^"*k jü «",-((-7r- 21,1',,.- ^- i- -V u"lk dt
c

T
A Xh — ¦ —n— O- xk

\i"

p

i l * \i c* i"lk
l

(11)

(12)

The complete moment formula derived from (7), (9) and (11),
)x" 3x"/l, thus becomes

M r.„ P(k) k 64 f-fr.Wl" J ' *" Vu
d

l P J a"X"
U-

" I Wl
P(k) dk Jx (13)

The computation of just one value of axk" will be explained here,
namely for c 10 at x/l 0.2 and k/l 0.1.

Intermediate values of the integrand may be determined from diagrams
of rowrs 7 and 8. Finally the integrands of axk" are carefully plolled and
integrated by quadralure, yielding the integral a^k" — 1.03 X IO"3- The
result of similar computations for x/l 0.2, k/l 0.05, 0.1, 0.15, 0.2,
0.3, 0.4, 0.5, 0.6 and 0.8, and c 10 and 20 is diagrammated in fig. 1

and 2.
These axk" influence diagrams can be used for a fairly accurate eva-

(5) See (3), p. 85.
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,CUk-arca--Q,12 X 10

Fig. 2.

luation of the angular deviation correction for moment at any given load,
for instance composed of concentrations and loaded segments.

For comparison the influence functions \ik" to be used simultaneously
in (13) are shown in fig. 1 and 2. It is seen that the shape of the aIk"-dia-
gram is roughly the same as that of the ix,,"-diagram.

The maximum ordinate of aTk" is — 4.2 % and — 4.1 % of lhat of i,k''
for c—10 and 20, respectively, and a' 0.2f. A calculation for £ 0.15 /

gives the percentages — 5.3 and — 6.2 for c 10 and 15, respectively.
The zero point of axk" is to the right of that of ixk". The branches

leading to the maximum point are more straight for axk". When the positive

area of ixk" is loaded the engaged area of axk" is —6.9 % and —6.6 °,/,

of that of ixk" for c 10 and 20, respectively, and x 0.2 l (fig. 1 and 2).
For ordinary cases of loading the maximum positive momenl in a one-
span Suspension bridge of even stiffness occurs near the point x 0.2 /,
while the larger part of the £Ik"-area is loaded wülh concentrated or uniform
loads. The given percentages indicate that the angular deviation correction
belween c 10 and 20 amounls to between — 6 % X 64 f/P and
— 7 % X f/P or the maximum positive moment at x 0.2 l. These values
can be roughly used if influence lines axk" are lacking. In a one-span bridge
of flexibility between c 10 and 20 and with a sag-ratio f/l 0.12 the
angular deviation correction is thus about — 6 % of the maximum
moment.

The completed Solution, according to Ihis paper, of the angular deviation

correction can be directly applied to bridges of any sag-ratio. The
direct malhematical Solution of (1) mentioned above, would be even more
difficult if the influence of a variable f/l had to be taken into aecount.
When influence functions are determined by tests on model (6), (1) and
its boundary conditions is so to speak solved directly by a model machine.
Then the resulting influence functions lxk of (2) will also include the
angular deviation correction, the magnitude of which will not be disclosed.
Therefore the set of influence lines obtained will not be exactly applicable
lo any other bridges than such with the same sag-ratios of the cable as in
the model bridge used.

In a one-span bridge the maximum moment is seen to reduce the
angular deviation correction. An Omission of this correction therefore is

(•) See (a). p. 110
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on the safe side. It should not be overlooked lhat the absolute value of the
minimum moment at the tower of a continuous bridge is increased by the
angular deviation correction.

Resume

L'equation differentielle classique et quasi lineaire des ponts suspendus

ancres (equation de Melan) peut se completer par une expression qui
tient compte des variations d'angles des elements des cäbles. II se presente
alors le probleme de la valeur aux limites, dont la Solution purement
mathematique n'est, cependant, pas avantageuse. Si, au lieu de cela, l'on
ajoute lachte expression a la partie non homogene de l'equation comme
fonction d'interference, cette inlerlerence peut se calculer rapidement en
se servanl ä plusieurs reprises des fonclions d'influence. L'auteur indique
le calcul numerique d'une valeur de la fonction d'influence. Deux courbes
compleles de Finfluence, utilisables pour des ponts avec des fleches
difförentes, sont indiquees sur des Schemas. Pour un pont ayanl une ouverture
et une flexibilite c comprise entre 10 et 20, la dimension de reclification de
la Variation d'angle pour les plus grands moments absolus, avec x 0,2 l
peut atteindre entre -— 6 et — 7 % de 64 f/l2 fois la valeur du moment,
qui se calcule en se servant de la theorie classique des moments flechissants.

Zusammenfassung

Die klassische quasilineare Differentialgleichung der verankerlen
Hangebrücke (Gleichung von Melan) kann durch einen die Winkelabweichun-
gen der Kabelelemente erfassenden Ausdruck ergänzt werden. Dabei
entsteht ein selbstadjungiertes Randwert-Problem, dessen direkte
mathematische Lösung sich aber als unvorteilhaft erweist. Wenn stall dessen
der genannte Ausdruck dem inhomogenen Teil der Gleichung als Störungsfunktion

angefügt wird, kann die Störung schnell durch wiederholte
Anwendung von Einflussfunktionen berechnet werden. Die numerische
Berechnung eines Wertes der Einflussfunktion wird gezeigt. Zvyei
bestimmte vollständige Einflusslinien, anwendbar auf Brücken mil verschieden

grossem Durchhang sind in Diagrammen dargestellt. Bei einer Brücke
mit einer Oeffnung und einer Biegsamkeit c zwischen 10 und 20 kann die
Korreklurgrösse der Winkelabweichung für die grösslen positiven
Momente bei x 0,2 / zwischen — 6 und — 7 % von 64 f/P mal den Wert
des Moments erreichen, das mit der klassischen Durchbiegungstheorie
berechnet wird.

Summary

A term accounling for the angular deviations of the cable elements
may be included in Ihe classical quasi-linear differential equation of the
truss (Melan's equation). A self-adjoining boundary problem is then formed
but a direct malhematical Solution appears disadvanlageous. If the term
in question is instead carried to the non-homogeneous part of the equation
as a disturbance function, Ihe dislurbance may be expediently calculated
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by iterated use of influence functions. The numerical evaluation of one
influence function value is demonstrated. Two significant complete
influence lines, applicable lo bridges of various sag ratio are given in
diagrams. In a one-span bridge wilh flexibility c between 10 and 20 the angular
deviation correction for maximum positive moments at x 0.2 l maj
amount to between — 6 and — 7 % of 64 f/l2 times the moment as
calculated by the classical deflection Iheory.
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