Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 3 (1948)

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ERRATA 733

ERRATA AU RAPPORT FINAL

Pg.	Ligne	Au lieu de	Lire
223	12	celui-ci	ceux-ci
223	14	soumis par suite	soumis par la suite
224	Fig. 3	Demi-coupe longitudinale	Demi-coupe transversale
225	5	dans les conditions	dans des conditions
225	Fig. 4	Demi-coupe transversale	Demi-élévation longitudinale
229	7	15 mai 1935	15 mai 1939
230	4e du bas	15th May 1929	15th May 1939
369	16	20 lb per sq. yd	2 lb per sq. yd
466	4th from Botom	to avoir	to avoid
467	Fig. 5	Srong-back	Strong-backs
470	23	als einfacher Balken	als Balken auf 2 Stützen

ERRATA A LA PUBLICATION PRELIMINAIRE

Pg.	Ligne	Au lieu de	Lire
105	Titre	A. MOHARRAM	A. MOHARRAM
		M. Sc. (Eng.), A. M. I. Struct. E., Chartered Structural Engineer Department of Civil and Mechanical Engineering, University of London, at King's College	M. Sc. (Eng.), A. M. I. Struct. E., Chartered Structural Engineer Department of Civil and Mechanical Engineering, King's College, London
106	Fig. 1	moments	moment
106	Fig. 2	D: Experimental curve for both the web and the flange cleats.	D: Experimental curve for connection with both web and flange cleats.
108	Fig. 6 and 7	Flange cleat connections	Connections
110	1 from Bottom	the same for two	the same for the two
111	Fig. 14	_	Distribution of forces be- tween connecting rivets in a web-cleat connection.
112	3	$M' = \theta'$	M' — θ'
113	Table III, 3rd colum n	$2 \cos \alpha (x^{1}D)$	$2\cos\alpha(x_1D)$
114	Table IV, 1st column	θ	θ_1
115	Fig. 21	_	Range of variation of ex- perimental curves for a given connection.
115	1 from Bottom	(1 000 + 0')	(1 000 × 9′)
116	6	deph	depth
117	Fig. 25	flange connection	flange-cleat connection

Pg.	Ligne	Au lieu de	Lire		
118	2	américaines	anglaises		
119	3	$\sigma_x > \sigma_t$	$\sigma_x > \sigma_p$		
120	27	$w = w_0 \cdot \sin \frac{n\pi x}{a} \cdot \sin \frac{n\pi y}{b}$	$w = w_0 \cdot \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b}$		
215	Titre	PER OLOV JONSON	PER OLOV JONSSON		
222	15	of a span.	of the span.		
224	14	labortoire	laboratoire		
463	Bottom	Hens Reissner	Hans Reissneit		
465	1 from Bottom	of oscillation in still air.	of oscillation.		
465	Bottom	(3) Standard value of p in ft lb sec units is 0.0765.	(3) Standard value of p in ft lb sec units is 0.0765.		
466	Bottom	by a phase lead on the elastic restoring force. $16 + \sigma e^{iz} \theta =$	by a phase lead ε on the elastic restoring force. $I \ddot{\theta} + \sigma e^{i\varepsilon} \theta =$		
467	7	$\frac{\delta_{z'}}{\delta_{z}} = \left(\frac{I_{z}}{I_{z'}}\right) \left(\frac{B'}{B}\right)^{4} (8)$	$\frac{\delta_{z'}}{\delta_{z}} = \left(\frac{I_{z}}{I_{z'}}\right) \left(\frac{B'}{B}\right)^{2} (8)$		
467	21	$N = N_0$	$N = N_{\theta}$		
468	15 ⁻	benificial	beneficial		
470	5	sidetrak	sidetrack		
-40					
519 à 530	Dans les formules 5, 6, 8, 9, 12, 13, 14, 17, 18, 20, 21, 27, 28 et 29, toutes les fonctions sont à considérer comme fonctions hyperboliques, de même que page 527, première ligne.				
551	Résumé	des coffrages pour toi- tures ondulées raidies par des nervures métalliques.	des coffrages pour toi- tures ondulées raidis par des nervures métalliques.		
551	Zusammen- fassung	Diese werden im vorliegenden Beitrag	Diese werden im vorliegenden Beitrag behandelt unter besonderer Berücksichtigung von Schalentypen mit gewellter Oberfläche. Das Baugerüst besteht aus Stahlrippen die mit einer biegsamen Haut überdeckt werden.		
634	5° du bas	50 %	5 %		

ERRATA AU MÉMOIRE DU PROFESSEUR OLSZAK

(Publication Préliminaire, page 251)

II. Méthode du calcul

D'abord nous établissons les relations entre les dilatations unitaires et les composantes de l'état de tension.

Pour une colonne prismatique en béton en état triple de tension on aura :

$$\varepsilon_{1} = \frac{\partial u}{\partial x} = + \frac{1}{E_{1}} \sigma_{1} - \frac{1}{m_{12}} \frac{1}{E_{2}} \sigma_{2} - \frac{1}{m_{13}} \frac{1}{E_{3}} \sigma_{3};$$

$$\varepsilon_{2} = \frac{\partial v}{\partial y} = - \frac{1}{m_{21}} \frac{1}{E_{1}} \sigma_{1} + \frac{1}{E_{2}} \sigma_{2} - \frac{1}{m_{23}} \frac{1}{E_{3}} \sigma_{3};$$

$$\varepsilon_{3} = \frac{\partial w}{\partial z} = - \frac{1}{m_{31}} \frac{1}{E_{1}} \sigma_{1} - \frac{1}{m_{32}} \frac{1}{E_{2}} \sigma_{2} + \frac{1}{E_{3}} \sigma_{3}.$$
(1)

Nous avons supposé qu'il y a, dans chaque point, trois plans orthogonaux de symétrie élastique et prenons ceux-ci comme les plans de notre système de coordonnées. On trouve, pour une telle structure, de la considération de la forme du potentiel élastique, que trois des neuf constantes qui entrent dans les groupe (1) tombent à cause des égalités :

$$m_{12}E_2 = m_{21}E_1$$
 $m_{23}E_3 = m_{32}E_2$ $m_{31}E_1 = m_{13}E_3$ (1a)

Pour la transition à un corps tranversalement orthotrope nous trouvons

en outre :
$$E_{1} = E_{2} = \underline{E}_{t}$$
ce qui équivaut à
$$\underline{m_{12}} = m_{21} = m_{t};$$
de plus on aura :
$$m_{13} = m_{23} = \underline{m_{t3}}$$
d'où il vient
$$m_{31} = m_{32} = \underline{m_{3t}};$$
et
$$m_{t3}E_{3} = m_{3t}E_{t}.$$
(1b)

Les deux premières équations du groupe (1) se simplifient alors et il

Les deux premières équations du groupe (1) se simplifient alors et il vient

$$\varepsilon_1 = \varepsilon_2 = \varepsilon_t = +\frac{1}{E_t} \frac{m_t - 1}{m_t} t - \frac{1}{m_{t3}} \frac{1}{E_3} \sigma_3 \qquad (2a)$$

tandis que la troisième s'écrit

$$\varepsilon_3 = -\frac{2}{m_{3i}} \frac{1}{E_i} t + \frac{1}{E_3} \sigma_3. \tag{2b}$$

Ces expressions ne contiennent que quatre constantes élastiques : m_t , E_t , E_3 , m_{t3} , m_{3t} , les quatre dernières étant reliées par la relation (1d).

Pour la recherche de la charge limite, de l'état de tension et de déformation et pour les exemples numériques on a employé les quatre constantes

$$m_t$$
, E_t , E_3 et $k = \frac{m_t E_t}{m_{t3} E_3} = \frac{m_t}{m_{3t}}$ (1e)

en assimilant la dernière à la valeur la plus simple possible

$$k \approx 1$$
 (1f)

ce que nous avons jugé opportun car une introduction ultérieure d'une valeur précise pour la constante k serait, à cause d'un manque à l'époque des informations expérimentales à ce sujet presque complet, très difficile.

Si l'on voulait cependant tenir compte, au moins pour l'établissement des formules générales, de la constante k, on trouverait aisément qu'elle entre, d'une façon très simple, dans quelques résultats de notre théorie. Donc, implicitement, dans les formules (2a) et (2b) comme d'ailleurs déjà indiqué. En outre, dans les expressions (8), (9), (13a), (13b), (15a), (15b), (17a), (21a), (21b), qui, pour ce cas général, deviennent alors :

$$t = +k \frac{n_t \lambda}{m_t (1-\lambda) + n_t \lambda (m_t - 1)} \sigma_3 \tag{8}$$

$$\sigma_a = -k \frac{n_t (1 - \lambda)}{m_t (1 - \lambda) + n_t \lambda (m_t - 1)} \sigma_3 \tag{9}$$

$$\frac{\varepsilon_3}{\varepsilon_3^{\circ}} = 1 - \frac{2}{m_{t3}} k \frac{n_t \lambda}{m_t (1 - \lambda) + n_t \lambda (m_t - 1)}$$
 (13a)

$$\frac{\varepsilon_3}{\varepsilon_3^0} = 1 - \frac{2}{m_{t3}} \frac{t}{\sigma_3} \tag{13b}$$

$$\frac{\varepsilon_t}{\varepsilon_t^0} = 1 - (m_t - 1) \frac{n_t \lambda}{m_t (1 - \lambda) + n_t \lambda (m_t - 1)}$$
 (15a)

$$\frac{\varepsilon_t}{\varepsilon_t} = 1 - \frac{m_t - 1}{k} \frac{t}{\tau_3} \tag{15b}$$

$$\alpha_{(II)} = \frac{Q_a}{R_{nc}} \frac{1}{k} \left| \lambda \left(m_t - 1 \right) + \frac{m_t}{n_t} \right| \tag{17a}$$

$$\alpha_{(II)} = \frac{1}{2} \frac{Q_a}{R_{pr}} \frac{1}{k} \left[\mu_n (m_t - 1) + 2 \frac{m_t}{n_t} \right]$$
 (17b)

$$\alpha_{(1a)} = \frac{m_t + n_t \lambda (m_t - 1)}{m_t + n_t \lambda (m_t - 1 - 3,33 k)}$$
(21a)

$$\alpha_{(1a)} = \frac{2 m_t + n_t \mu_n (m_t - 1)}{2 m_t + n_t \mu_n (m_t - 1 - 3,33 k)}$$
(21b)

L'asymptote verticale pour la courbe représentative du coefficient de majoration $\alpha_{\scriptscriptstyle ({\rm I}a)}$ est définie par

$$\lambda = -\frac{m_t}{n_t (m_t - 1 - 3,33 \, k)}.$$

Egalement dans la discussion des cas limites (chap. III) on en pourrait, d'une façon analogue, tenir compte.

Evidemment, en mettant k = 1, on tombe sur les expressions données dans la contribution IIc du Rapport Préliminaire.

Ces mises au point qui présentent certainement un intérêt au point de vue de la théorie générale restent cependant, comme mentionné d'ailleurs déjà plus haut, sans importance pour le calcul pratique et les évaluations numériques, au moins aussi longtemps que nous ne disposons pas d'un ensemble expérimental cohérent englobant toutes les variables du problème.