Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 3 (1948)

Rubrik: Vb: Effect of dynamic forces on structures

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Vb

Vibrations amorties des portiques (Généralisation de la méthode de déformation)

Gedämpfte Schwingungen von Rahmenträgern (Verallgemeinerung der Deformationsmethode)

Damped oscillation of frame girders (Generalisation of the deformation method)

V. KOLOUSEK

Dr Ing., Conseiller au Ministère des Communications, Prague

Dans son mémoire Vibrations amorties de portiques paru dans la Publication Préliminaire du Congrès l'auteur s'est servi, pour le calcul des vibrations amorties des constructions hyperstatiques, de la méthode de déformation. Cette méthode part de la supposition que dans chaque nœud de la structure les conditions d'équilibre pour les moments et pour les forces doivent être remplies.

Si nous envisageons un nœud quelconque g dans lequel se rencontre un nombre n de poutres (fig. 1) les équations suivantes doivent êtres satisfaites :

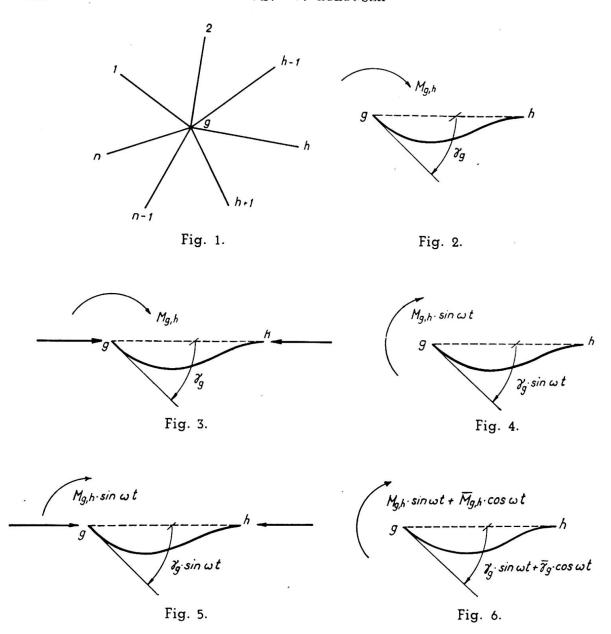
$$\sum_{h=1}^{n} M_{g,h} - M_{g}^{e} = 0;$$

$$\sum_{h=1}^{n} X_{g,h} - X_{g}^{e} = 0;$$

$$\sum_{h=1}^{n} Y_{g,h} - Y_{g}^{e} = 0.$$

Dans ces équations $M_{g,h}$ est le moment qui agit à l'extrémité g de la poutre g - h; $X_{g,h}$ et $Y_{g,h}$ sont les composantes horizontale et verticale de la force à la même extrémité de la même poutre; M_g^e , X_g^e et Y_g^e sont le moment et les forces extérieures.

Ces équations sont absolument générales et on peut les utiliser soit pour l'étude d'une construction statique ou soumise à vibration, soit pour



une construction se trouvant dans l'équilibre instable à la limite du flambage.

Les relations entre les moments et les forces d'une part et les rotations et les déplacements d'autre part sont linéaires. Si nous exprimons alors les forces aux extrémités au moyen de déformations préalablement inconnues et si nous les portons dans les équations d'équilibre, nous obtenons un système d'équations linéaires qui nous donne les déformations cherchées.

Cependant il est clair que les expressions exprimant les moments et les forces aux extrémités diffèrent selon la nature du problème posé qui peut relever de la statique, de la dynamique ou du flambage.

Considérons, par exemple, le moment d'encastrement $M_{g,h}$ engendré par la rotation γ_g de l'extrémité g d'une poutre avec la section constante, les autres déformations — c'est-à-dire le déplacement du point g et le déplacement et la rotation du point h — étant nulles, et recherchons comment varie l'expression pour ce moment dans le cas de la déformation

statique sans ou avec une force axiale, ou dans le cas de la vibration non amortie et ensuite de la vibration amortie.

Pour la déformation statique (fig. 2) on a

$$M_{g,h} = 4 - \frac{EI}{l} \gamma_g$$
.

Si la poutre est en même temps sollicitée par une force axiale (fig. 3) l'expression précédente prend la forme

$$\mathbf{M}_{g,h} = \Gamma(\alpha) \frac{\mathrm{EI}}{l} \gamma_g$$

 $\Gamma(\alpha)$ étant la fonction représentative de la grandeur de la force axiale (1). S'il s'agit de la vibration harmonique non amortie (fig. 4) la relation s'écrit de la façon suivante

$$M_{g,h} \cdot \sin \omega t = F(\lambda) \frac{EI}{l} \gamma_g \cdot \sin \omega t$$

où F(λ) signifie une fonction qui dépend de la fréquence ω de la vibration (2).

Prenons le cas précédent, mais envisageons en plus une force axiale (fig. 5). Pour ce cas nous aurons

$$M_{g,h} \cdot \sin \omega t = F(a, b) \frac{EI}{l} \gamma_g \cdot \sin \omega t$$

où F(a, b) est une fonction qui dépend de la grandeur de la force axiale et en même temps de la fréquence de la vibration (3).

Si la vibration est amortie (fig. 6), les nœuds de la structure vibrent différemment avec un décalage de phases. Il est alors nécessaire d'exprimer le moment d'encastrement par deux membres harmoniquement variables

$$M_{g,h} \cdot \sin \omega t + \overline{M}_{g,h} \cdot \cos \omega t$$

dont les amplitudes sont données par une expression complexe

$$M_{g,h} + i\overline{M}_{g,h} = F(\Lambda + i\overline{\Lambda}) \frac{EI}{l} (\gamma_g + \overline{i\gamma_g}).$$

Dans le mémoire de l'auteur paru dans la Publication Préliminaire les formules pour la fonction $F(\Lambda + i\overline{\Lambda})$ ont été déduites en partant de l'équation de la vibration amortie

$$\mu dx \frac{\partial^2 v(x,t)}{\partial t^2} + b dx \frac{\partial v(x,t)}{\partial t} + EI \frac{\partial^4 v(x,t)}{\partial x^4} dx = 0.$$

Dans l'application numérique de cet article on traite le cas de la vibration amortie d'un portique étagé qui est sollicité par une force harmoniquement variable. Les trois équations aux coefficients complexes ont

Chwalla-Jokisch, Stahlbau, 1941, p. 33.
 Kolousek, 8^e volume des Mémoires de l'A. I. P. C., p. 121.
 Kolousek, 8^e volume des Mémoires de l'A. I. P. C., p. 134.

donné les trois déformations inconnues qui ont aussi la forme complexe. Ces équations sont semblables aux équations dérivées pour la vibration non amortie, ou bien pour la solution statique; mais les coefficients dans cet exemple sont complexes.

Résumé

Les considérations reprises dans ce mémoire nous montrent le caractère général de la méthode de déformation; celle-ci est très facile et convient pour l'étude des problèmes de la statique usuelle du flambage et également pour l'étude des problèmes relevant de la dynamique.

Zusammenfassung

Die vorstehenden Betrachtungen zeigen, dass die beschriebene Deformationsmethode allgemein angewendet werden kann; sie eignet sich besonders gut für die Untersuchung von Problemen der gewöhnlichen Statik und der Knickung, sowie ausserdem auch zur Lösung von dynamischen Problemen.

Summary

Considerations set up in this paper show the general character of the deformation method which is very easy and suits to the study of problems of the usual statics of buckling as well as to the solution of dynamic problems.