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The calculation of flat slab floors
Comparing theoretical values

with moment coefficients specified in flat slab codes

Dr A. M. Haas

's-Gravenhage

Most countries now have a building code, in which rules are given for
the calculation of flat slab floors. In these rules the moment coefficients
always take an important place. They enable the designer without any
theoretical analysis to construct these floors within certain limits. Mostly a
numerical sum of positive and negative bending moments at in the codes
defined critical sections shall be assumed as to be no less than a given
amount. Furthermore the percentages of the bending moment at every
section are defined for different cases; for example with and without the
use of drop panels.

In the U. S. A. the flat slabs have and have had a large field of
application. Apart from the regulalions given by different cities, the American
Concrete Institute issued her flat slab code in 1917 which was then considered

as conservative. This code has frequently been revised and adapted
to more modern practice; the regulations which are now in use are from
the year 1947. In my opinion they are the best available set of flat slab
regulations and superior to the ones formulaled in other countries. In the
comparison to be made they will be laken as the Standard.

For the calculation of flat slabs there are many authors and
consequently many methods of design. Almost all the authors derive their
Iheory from the differential equation of a plate taking into aecount the
boundary conditions. Thereby a plate of uniform thickness is assumed.
The methods of Lewe, Navier, Lavoinne, Nadai', Tölke and Hager employ
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a Solution in the form of series. Grashoff and Eddy make use of an alge-
braic formula whereas Marcus replaces the differential equation of the
plate by two equations of finde differences each of which has the form of
the equation of a stretched membrane.

All these methods have the difficulty that afterwards the Solution
should be adjusted to the varying thickness of the column-head which
has always been done rather roughly.

In the method of computation as developed by the author and published
in 1948 (') the column-head has been introduced from the beginning. Thus
the problem is divided into two parts : the column-head-seclion and the slab
proper. For the computation of the column-head it has been replaced by a
hyperboloid (fig. 1). The Solution of the differential equation is given in
the form of series of which a limited number of terms are used. When
the theoretical value for the bending moment in the plate-centre is
compared for the different theories little divergency is found. For varying size
of the area of column-head reaction, Lewe finds 0.117 lo 0.122 pa2,
(a 1/2 l) Tölke finds 0.114 pa2, the author comes to 0.102 pa2, if for

the contraction-coefficient is taken

in — — 6. The small differences
v

may be readily explained by the
principle of de Venant. The
assumption made in reference to the
restraint in and the support by the
column-head may vary greatly in
the various theories, however they
have little effect on bending
moments and other stress functions in
the plate-centre.

For the other bending moments
and especially for the negative mo-
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i 1 * i ' Fig. 2. Interior flat slab panel supported
by columns arranged in a square.

(') A. M. Haas, De berekening van paddesloelvloeren (The calculation of flat slab floors),
thcsis 1948, Technical University of Delft, the Nelherlands.
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ment at the edge of or above the column-head there is little conformity.
The different assumptions made in the theories are here of direct influence.

Large differencies do not only exist as a result of the theoretical
analysis; there are also important discrepancies between the theoretical values
as a whole and the corresponding moment-coefficients given in the code.
As a result there is little confidence in either the theories or the codes
values. In 1934 the English Code of Practice for flat slab floors still
speaks of " the absence of a satisfactory and easily applied theory"
and largely follows the requirements given in the United States of
America. As things stand now there are two ways of approach to the
problem. One can even spreak of two camps in which engineers who have
to design flat slabs are divided. The ones using the code values do not
look at the theory; on the other hand the engineers indulged in theoretical

analysis do not as a rule bother themselves with the requirements
stated in the regulations.

If the differencies can be explained this is of ultimate importance
for the promotion of flat slab floors especially outside of the United
States of America. This paper is an earnest effort in that direction.

Comparison will be made for an interior flat slab panel supported by
columns arranged in a square. The bending moments in the points marked
A, B, C and at the edge of the column-head will be considered (fig. 2

and 3). The results are shown in tables I and II.

Positive bending moment at the slab centre (Point C)

From the very beginning of the use of flal slab floors testloading
revealed that the bending moments in this centrepoint were very small.
It was one of the outstanding facts which made these floors so populär. On
the other hand, as explained in the introduction, the theoretical value of the
bending moment in this point known. In the older (American) flat
slab codes this bending moment amounts to about 0.06 pa2 (a 1/2 l)
whereas an average from the theoretical analysis (average in regard to the

Theoretical value
Value from

the A. C. I. 1947 Difference

Negative moment
at column-head — 0.56 (ja2 — 0.52 qa2 — 7<y0

Negative moment
A. — 0.065 qa2 — 0.078 qa2 + 20 %

Positive moment
B. + 0.135 (ja2 + 0.104 (ja2 - 23 o/0

Positive moment
C. + 0.102 qa1 + 0.078 ga2 - 24 o/o

Table I. Bending moments in critical points of a flat slab jloor.
Interior panel — Comparison between theory and code
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various sizes of the columnhead) is 0.10 to 0.11 p-a2. The explanation for
this discrepancy is that the theoretical value is derived for a homogeneous
malerial whereas the moments incorporated in the codes are based upon
experimental investigations (mainly measuring elongations during test-
loading). These measurements besides measuring the deflections at several
points consisted chiefly in determining the elongations of the steel
reinforcement. From the results found the bending moments were established.

It is obvious that if the total bending moment is composed of
different parts and one part is furnished by the elongations stresses)

oecurring in the reinforcing steel only a part of the total bending moment
is found. This is the case here. The total bending moment is composed of
two contributions viz. the moment due to the tensile slresses in the
steel and that due to the tensile stresses in the concrete. In contradislinc-
tion to beams the relative contribution of the tensile stresses in concrete
slabs is of importance.

For one • who is familiär with the reinforced concrete theory and
practice there arises the question whether the tensile stresses may be taken
into aecount and if so, may be relied upon.

Column-Hcad
Negative moment

A.
Negative moment

Formula used
Converted

value Formula used
Converted

value

A. C. I. 1917

— 0.5
X 0.09 WL

©H — 0.26 ga2

— 0.12
X0.09WL

©H — 0.062 ga2

New York City regulations
1920

WL
32 — 0.25 ga2

WL
133 — 0.061 ga!

A. C. I. 1947

-0.5X
0.09 WL X

i'-m'
— 0.26 ga2

(*)

-0.15X
0.09 WL X

©f©
— 0,078 ga2

(**)

English code
1938

— 0.046 WL

©H — 0.255 ga2
— 0.016 WL

©©)' — 0.089 ga2

Theoretical value
m 6 — 0.56 ga2 — 0.065 ga*

Lewe
m 6

— 0.3259
ga2

— 0.0734
ga2

(") For the calculation of concrete in compression use 4/3 X 3/2 X 0.26 qa11 0.52 qa3.
(*•) For the calculation of concrete in compression use 4/3 X 0.078 qa3 — 0.102 qd3.
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If the bending moment a slab can resist is determined by the
conventional melhod of design the concrete in tension is supposed to be
cracked. Thus only the reinforcement in tension is taken aecount of and
a certain moment (M3) will be found. If again this moment is eslablished
taking into aecount the tensile stresses in the steel (M,) as well as in the
concrete (in© a different amount will be found for the bending moment
(fig. 4). For slabs wilh a low percentage of reinforcement the bending
moment will be larger than when using the conventional method, even
if the allowable tensile stress in the concrete is limited to a certain
maximum. If for example the slab reinforcement is 0.4 %, n the ratio
of the modulus of elasticity of steel to that of concrete in compression

10; m the ratio of the modulus of elasticily of steel to that of
concrete in tension 40, the bending moment amounts to 5.09 o/r using
the conventional melhod.

If the allowable tensile stress in the concrete is put at 20 kg/cm2 the
slab can resist a moment of 6.20 bh2 per unit of width. Of this 6.20 bh2
67 % or 4.18 bh2 is due to the concrete in tension. The tensile stress

B
Positive moment

c.
Positive mometit

Formula used
Coinerted

value
Cotiverted

Formula used value

0,18
X0,09WL

©4^)* + 0.094 ga2

o.iox
0.09 WLX

(«-H + 0.052 ga2

WL
1

80 + 0.100 ga2
WL
133 + 0.061 ga2

+ 0,20X
0,09 WlX
fi 2<n2 + 0.104 ga2

+ 0.15X
0.09WL X + 0,078 qa-

V 3LJ

+ 0,022 WL

©4»)' + 0.122 ga2
+ 0.016 WL
/' 2 \2 + 0.089 ga2

+ 0.135 ga2 + 0.102gas

+ 0.1818
ga2

+ 0.1176
ga2

iL

7^4-cm *
j—:iTZ\ /

ozes L

L-2d

OA% 2d

Fig. 3. Column heads used
for the calculations of code-
values (above) and for the
theoretical values (right).

Tabli-: II. Bending momenls

in critical points of a flat
slab floor — Interior panel



540 IVal: a. im. iiaas

M,+Mz Fig. 4.

in the reinforcement corresponding to the 20 kg/cm2 amounts to about
670 kg/cma.

If therefore the bending moment is established from elongation-
measurements it will be derived from the value

6.20 bh2 — 4.18 bh2 2.02 bh2,

whereas the moment that the slab can take according to the conventional

method is 5.09 bh2 which is 2 1/2 as high. This shows clearly how
small the apparent moment will be if the percentage of reinforcement is
low. It also explains the large discrepancy between code and theory,
which here in the centre-point amounts only to 24 % (see table I). For
different ratio's of n and m, and for varying percentages of reinforcement
one finds :

<jc 20 kg/cm2, n 10, m 40.

Percentage
of

reinforcement
x/h.

Mi
Moment (lue
to concrete

in
tension

M,
Moment due

tu steel
in

tension

Ml + JI,
M,

M3
Moment

according to
conventional

design
M| + Mj

0.4
0.5
0.6

0.373
0.384
0.392

4.18 bh2
4.11 bh2
4.06 bh2

2.02 bh2
2.61 bh2
3.08 bh2

6.20 bh2
6.72 b/i2
7.14 bh2

0.67
0.61
0.57

5.09 bh2
6.30 bh2
7.50 bh2

<jc 20 kg/cm2, n 10, m 10.

Percentage
of

reinforcement
X//1

Ml
Moment due
to concrete

in
tension

Mi
Moment due

to steel
itt

tension

Ml + MS
Mi

M3
Moment

according to
conventional

design
Mi + M2

0.2
0.3
0.4

0 507
0.511
0.515

3.29 bh2
3.26 bh2
3.25 bh2

0.21 bh2
0.33 bh2
0.45 bh2

3.50 b/i2
3.59 bh2
3.88 bh2

0.94
0.91
0.88

2.61 bh2
3.87 bh2
5.09 btV

The next step is to find for which percentage of reinforcement the
bending moments computed according to the conventional method equal
the ones calculated when the concrete in tension is included.
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Fig. 5. Radial bending moment in
hyperbolical column head.

For o-c 15 resp. 20 kg/cm
found for the relation

M,

2 it is

M,+M,
o-c 15 kg/cm2; n 10

m 10 0.2 % reinforcement: 0.94
20 0.3 % reinforcement: 0.83
40 0.35 % reinforcement: 0.71

ctc 20 kg/cm2; n 10

m=10 0.25 % reinforcement: 0.92
20 0.35 % reinforcement: 0.81
40 0.55 % reinforcement: 0.59

Above these percentages the
bending moments calculated in the
conventional way govern. These percentages

will rank higher if the allowable
maximum tensile slress in the
concrete is taken higher. As a rule the

percentage of reinforcement in and around the slab centre runs from 0.25
to 0.35. These under-reinforced parts corne in the region here described
and are below the maxima here given.

To which exlent this also can be applied to the larger bending moments
in the normal reinforced parts (such as the column-bands) greatly depends
on the quality of the concrete. If the quality is high so that high tensile
stresses can be expected in the concrete the same that is mentioned for the
slab cenlre holds true for these bending moments. However one can no
longer rely upon it.

Concluding for the slab centre-(under-reinforced) parts the small
momenl-coefficients of the codes can be readily explained. To these small
bending moments always comes a complementary moment due to the tensile

stresses in the concrete. One may here speak of a symbiose. In slabs
wilh low percentage of reinforcement this complementary moment even
exceeds the original one. Therefore the difference of 24 % (see table I) will in
general be exceeded depending on the qualily of the concrele.

Negative bending moment at the edge of the column-head

As can readily be understood the bending moment at or near the edge
of Ihe column-head is one of Ihe critical momenls in flat slab design.
When moving from the edge of the column-head to the column axis the
increase of the radial bending moment is more rapid than the increase of
the moment of resistance of the column-head the critical section will be
at the edge. When however due to the form of the column-head the
moment of resistance does not — in the beginning — increase as swiftly
as the bending moment the critical section (that is the section where
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the stresses are maximum) lies more inwardly. For a column-head without
a drop-panel and with flares under 45 % the critical section is at the edge.
For a column-head with a drop panel this section will be located some-
where between Ihe edge of the column-head and the drop panel-edge
depending on the thickness and the size of the drop.

In the building codes the bending moments are specified for bands
which have mostly the width of half a panel. No distinction is made for
bending moments differing over the width of the band. A clear
comparison is therefore not possible. The best one can do is to compare the
bending moment given in the code with the maximum bending moment
resulting from the theory.

The theory of Lewe and others show its shortcomings when
calculating the bending moments in this area. This is due to the assumption
made, namely that a slab of uniform thickness extends above the column-
head. Lewe finds — 0.326 pa2 at the column axis and — 0.067 pa2 at the
edge. The theoretical analysis which takes into aecount a varying slab
Ihickness finds larger bending moment viz. for

r 0.4 a : m — 0.204 pa2

and for
r 1/3 a : m — 0.3324 pa2; r 0.225 a : in — 0.7 pa2.

These bending moments have been computed replacing the column-head
by a hyperboloid which approximates the actual form as closely as
possible (fig. 5).

When the bending moment at the edge of the column-head is taken
as the critical one and 20 % is dedueted for various reasons (plastic
flow, etc.) one arrives at the high figure of 0.56 pa2.

(0.8 X 0.7 pa2 0.56 pa2)

In the rules given by the American Concrete Institute, for the first
time in 1936, and also in the 1947-edition a clause has been introduced in
which the calculation of the negative bending has been revised and made
more severe. Instead of the whole width of the band only 3/4 of it should
be used in determining the compressive stress in the concrete. Thus a
value is found which is 4/3 higher than the one which follows when the
whole section is introduced. The code even goes farther for drop panels
which are often used. In that case the section to be introduced in
the calculation should be restricted to 3/4 of the width of the drop panel.
Wilh a drop panel widlh of 1/3 of the panel this means that the
compression in the concrete should be taken as 3/2 X 4/3 2 X ^ie one which
emanates from the calculation when the normal section is introduced. In
the example the bending moment per unit of width will amount to
2 X 0-26 pa2 0.52 pa2. This comes very well in conformity with the
theoretical value (0.56 pa2).

The clause mentioned is restricted to the calculation of Ihe compressive
stresses in the concrete. In determining the amount of steel reinforcement

no reduction of section is prescribed. This looks rather irrational
but one should bear in mind that these excessive bending moments only
occur in small areas. The steel is determined as a whole for a single band
which has as a rule the width of half a panel. When excessive tensile
stresses occur lateral distribution is very likely to take place as the
quality of the concrete will be rather good in order to resist the high com-



CALCULATION OF FLAT SLAB FLOORS 543

pressive stresses in the concrete. Concrete of good quality also means high
resistance to bond which is essential to lateral distribution. When ruplure

occurs the reinforcing bars will be loaded to the yieldpoinl and all
will take a maximum load (plaslicily-behaviour).

Positive and negative bending moment halfway between the columns
(Points A and B)

These two moments are taken together as the phenomena by which
they are influenced are partly the same. The difference is that the positive

moment lies in an area of rather high percentage of reinforcement
(columnbands) and the negative moment comes in an area of low
percentage. Therefore only for the latter the tensile stresses in the concrete
can be taken aecount of.

Already in 1925 a Hungarian civil engineer Dr. Nemenyi has drawn
attention to the fact that a flat slab floor with its enlarged column-
head bears in itself a possibility of acting as a dorne. When this really
is the case large compressive stresses will occur and consequently a reduction

in the elongation of the steel will be experienced in comparison
with the case when only bending is considered. On this assumption
Dr Nemenyi has made his calculations which resulted in a remarkable
reduction of the bending moments, especially of the plate centre.

This assumption however in general does not hold true as the construction

cannot take the large horizontal thrust which is essential for dome-
(or arch-) action. In the case of uniform loading the thrusts per panel
neutralize each other in horizontal direction at every column support. In
the end panel a similar neutralization will not be at hand and the columns
are in general by no means strong enough to take the heavy thrusts. Thus
the theory advanced by Nemenyi can in general not be applied.

There is however an internal arch-action which though less effective
may aecount for the discrepancies in the bending moments here
mentioned. First of all when the flat slab is loaded there corne into existence
compressive stresses due lo Ihe form of the column-head. As a result of the
loading the deflection of the edge of the column-head will not strictly be
vertical but also a little horizontal. For a normal case it has been calculated
that the horizontal deviation is about 1/14 of the vertical deflection. When
two small bands of the slab are considered the compression in the plate can
be determined when taking into aecount the horizontal deviation of the
columnhead-edge. Thereby the assumption is made that the column-axis
do not move and consequently the distances between the column-axis will
not alter. When certain reasonable assumptions are made (slab thickness

1/17 a 1/34 L; stiffness of the columnhead against compression
twice as large as that of the plate) it has been found by the author that the
compression in the point halfway between the column amounts to 9 % of
the compressive stress due to bending. For the plate centre there is a relation

of 8 % (fig. 6).
A small amount of internal arch-action comes into existence as a result

of the type of construction. If a part of the slab is considered in which the
column band and the column head lie, no appreciable arch-action can take
place because the columns at the end cannot. take the thrust. If however
these columns are more or less hindered in their horizontal movement an
arch comes into shape. The horizontal deviation is hindered because there
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in an end panel.

is a continuous floor slab. On aecount of this, one part of the plate will
experience compression (the column bands) and another part will be
subject to tensile stresses (the bands running alongside of the columns).
This being an internal action the sum of both Ihe tension and compression

must be zero. It is rather an inlricate calculalion to arrive to a
reasonable distribution of these compressive and tensile stresses.

If a rough approximation is made and half of Ihe panel-width is
supposed to be in compression, the other half must be in tension. Thus the
8 lo 9 % compression will correspond to 8 to 9 % tension. The assumed
behaviour of an end panel is shown in figure 7.

When looking at the theoretical value for the positive bending moment
this may be reduced with 9 % to be comparable with the moment-coeffi-
cient of the code : 0.91 X 0.135 pa2 0.123 pa2, whereas the code gives
0.104 pa2 (a difference of 18 %).

For the negative bending moment the 9 % should be added to the
theoretical value. lt then amounts lo — 1.09 X 0.065 pa2 — 0.071 pa2,
whereas the code gives — 0.078 pa2 (a difference of 10 %). Thereby it
should be considered that calculations are made for homogeneous material
and the values in the codes are based upon elongalion-measuremenls.

Concluding there shows itself to a good coneurrence between theory
and code-coefficients if all factors concerned are taking into aecount
and the theory has been adjusted to the form of the construction. Of course
there cannol be expected equalily as the code-values are a result of a com-
promise of a number of considerations.

Also it should be borne in mind that the comparison finds place
between values of unequal weight as the theory gives the stress-funetions
at each point. Whereas in the regulations one value is given for a section
which extends over the width of half a panel generally.

Resume

Lors de la coneeption des dalles Champignons il faut faire choix entre
les prescriptions reglementaires et les resultats theoriques. Ce memoire
compare les deux cventualites, en se basant d'une part sur les derniers
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reglements de l'American Concrete Institute dates de 1947, el d'aulre part,
sur les dernieres theories faisant intervenir, des le debut, l'epaisseur
variable de la tete de colonne. L'auteur attire l'attention sur la faible armature

au cenlre de la dalle. Pour les parties faiblement armees, il faut ajouler
un moment base sur la traction dans le beton (beton tendu) au moment
flechissant correspondant aux armatures. D'autre part l'effel de voüte
interieur modifie les resultats obtenus par la theorie des plaques.

Une derniere ajoute au reglemenl americain, concernant les tensions
de comparaison dans le domaine des moments flechissants negatifs, donne
des tensions de compression plus elevees en accord avec la theorie.

Ce memoire compare les valeurs des moments flechissants en quatre
points critiques d'un cadre. Pour terminer l'auteur donne un exemple
numerique.

Zusammenfassung

Beim Entwurf von Pilzdecken muss man sich entscheiden, ob man
die Vorschriften anwenden oder die theoretischen Ergebnisse gebrauchen
soll. In diesem Beilrag werden die beiden Möglichkeiten verglichen. Zu
diesem Zweck werden die neuesten Vorschriften des American Concrete
Institute vom Jahre 1947 als Grundlage angenommen. Sie wurden verglichen
mit der neuesten Theorie, in der die veränderliche Dicke des Säulenkopfes
schon zu Beginn in die Rechnung eingeführt wird. Es wird aufmerksam
gemacht auf den kleinen A.rmierungsgehalt in der Plattenmitte. Für
geringe Eisenprozent muss zu dem Biegemomenl infolge der Armierung
ein Biegemomenl infolge der Betonzugspannungen gezählt werden. Ferner
verändert eine innere Gewölbewirkung die Resullale der Plattenlheorie.

Ein neuer Paragraph in den ACI-Vorschriflen, der sich auf die Berechnung

negativer Biegemomente bezieht, führt zu höheren Druckspannungen,
was mit der Theorie übereinstimmt.

In vier kritischen Punkten, die in typischen Schnitten eines Innenfeldes
liegen, werden die Werte der Biegungsmomenle verglichen. Ein Beispiel
ist beigefügt.

Summary

In designing flat slab floors a choiee has to be made between two
alternatives viz. following the regulations or using theoretical analysis. In
this paper a comparison will be drawn between these two. For Ulis
purpose Ihe lalest regulations of the American Concrete Institute 1947 are
taken as an example. They have been compared with the latest theory in
which the varying thickness of the columnhead has been introduced
from the beginning.

Attention is drawn to the low percentages of reinforcement in the
slab cenler. For underreinforced parts of Ihe slab a considerable bending
moment due lo tensile stresses in Ihe concrele should be added lo Ihe
bending moment due to the reinforcement. Furlhermore an interior dorne
action modifies the results as given by the plate theory.

A comparatively new clause in the A. C. I. regulations in reference
to the calculation of compression in the areas of negative bending leads
to higher values of the compression stress which is in aecordance with
the theory.

In four critical points situated in typical seclions of an interior panel
the bending moment-values are compared. An example is given.
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Dalles Champignons

Pilzdecken

Mushioom slabs

CARLOS FERNANDEZ CASADO
Ingsnieur-conseil ä Madrid

Parmi les 24 ouvrages que nous avons projetes el construits depuis 1932
avec dalles Champignon, citons notamment 3 ponts, 5 bäliments pour habi-
tation; les autres sont des bätiments industriels de plusieurs classes.

Les avantages de ce type de construction qui nous ont decide ä l'adop-
ler sont : capacite de resistance pour de fortes surcharges, minimum de
hauteur perdue; simplicite constructive; reduction d'obstacles pour l'ame-
nagemenl des tuyauteries, conduits d'air, cäbles; facilite de neltoyage, etc.

Pour les trois ponts, il s'agit des palees d'acces aux travees principales,
et pour lesquelles il allait reduire au minimum la hauteur perdue. Nous
avons dispose deux, trois ou quatre rangees de colonnes en panneaux
de 4,50 X 4,50 ou 5,00 X ^>00 selon le cas, avec des longueurs maxima
sans joints de 40 metres. La surcharge consideree est celle de \'Instruction
officielle des ponts routiers c'est-ä-dire, camions et rouleaux-compresseurs
de 20 tonnes. L'epaisseur de la dalle est de 25 ou 30 cm avec bordures
longitudinales renforcees par la surelevation du troltoir. Les extremites de
la dalle s'appuient' bien sur les coulees de la travde principale ou bien
finissent en dalle verticale que contient le remblai. Dans le pont de Puerta
de Hierro (fig. la) la route etait en pente et en courbe avec la penle
transversale correspondante. Compte tenu de Fadaptation des planchers-cham-
pignons aux ponts, avec petite Separation des piliers, nous avons propose
au Ministere des Travaux publics des modeles normalises pour deux, trois
et quatre voies de circulation, modeles qui ont £{6 approuves officiellement.

Pour les bätiments d'habitation, l'utilisation des dalles-champignons a

son interSt particulier dans les planchers des sous-sols, qui peuvent avoir
a supporter de fortes surcharges avec une hauteur disponible assez reduite.
La distribution des piliers est fixee par l'ossature generale, ce qui donne
lieu a des panneaux irröguliers avec dimensions inegales. Quand le nombre
d'eTages est eleve, la rigidite des piliers en sous-sol est importante, et son
efficacitö est grande pour l'absorption des flexions a la dalle-champignon.
Le projet le plus important oü nous avons adopt6 celte Solution est le
triple sous-sol de l'6difice central de lTnstiluto Nacional de Prevision a

Madrid (fig. 3 el 4"». Les surcharges que nous avons considerecs dans les
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Fig. 1. Pont de Puerta de
Hierro (Madrid). Travees
d'approche de 120 metres
de longueur et de 17 metres

de largeur. Dalle de
30 cm d'epaisseur.

differents projets varient entre 800 et 1 200 kg/m2 et les epaisseurs adoplees
entre 15 et 20 cm.

Dans les bätimenls induslriels le cas typique esl celui du magasin devant
supporler de grandes surcharges. Le distribution des piliers en carres egaux
et la liberte dans le dimensionnement des chapiteaux, permet d'oblenir
tous les avantages de cette construction. Dans Ie porl de Pasajes (San
Sebastian; nous avons construit en 1935-1936 qualre grands magasins ä

deux etages pour des surcharges de 1 500 ä 2 ü00 kg/in2 avec des pan-

SECTION TRANSVERSALE

PAR L'AXE DES PANNEAUX

tO0l2pm S#|2p.m.

i«i;p» '*» 12 p.m.

c^^ SS zz SS zzX/lQgljp.frfl0«Up I0*l2p.m

4 50 4 50

PAR LAXE DESPIUERS2»l2p.m 5812 pm/^~ rr~ lOfJl? p m 4«I2 20«12p

WTr
CTTT- zsE^znrass

'X\lQ»npm

7#12p.m

z z X
7

j CHAPITEAU

ffl 6d30

elriera 00 5 p.m.
X Tm n/

/ m

7 J \

\r\\ 6bdrre5 Ig Jm

n|2bdrre& Ig.3.60m

Fig. 2. Modele normalise de ponts en dalles-champignon
pour trois files de vehicules.
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Fig. 3. Sous-sol du
bätiment central de l'Institut
National de Prevision
(Madrid) d'une surface
utile de 3 600 m2. La
surcharge utile est de
900 kg/m2.

neaux de 5,00 X 5.00 et 6,00 X 6.00 et des dalles de 22 et 26 cm d'epaisseur.

Les facades ont ete construites comme dalles verticales r^sistantes en
beTon arme (fig. 5 et 6).

Nous avons egalement adopte cette Solution pour des planchers sup-
portant des machines legeres (fig. 7), pour des garages pour voitures de
lourisme, plate-formes de service des grosses machines et depöts d'eau
enterres ou non.

Dans tous les cas nous avons dispose l'armature en deux directions,
avec dalles d'epaisseur constante. Les piliers et chapiteaux (sauf le cas du
pont Puerta de Hierro) sont ä sections carr£es.

Pour tous les projets, la methode de calcul utilisee a ete celle des

portiques virtuels preconis£e par Marcus avec les portiques longitudinaux
et transversaux que r^sultaient dans chaque cas particulier. Dans les ponts

lfc«J?
»ü

8*5
1,10 eis6oe Jäs

r •ja
fc*

3.80 A*20 ist i-iMo '•>.i»°.
SS IOC

Fig. 4. Plan du sous-sol du bätiment de l'Institut National de Prevision (Madrid).
(Voir fig. 3.)
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Fig. 5. Magasin ä marchandises au port de Pasajes (San Sebastian) prevu pour
des surcharges de 1 500 ä 2 500 kg/m2 et d'une superficie bätie de 126 X 24 m.

et plates-formes independants il s'agit de portiques ä un etage, mais dans
les bätiments on trouve toujours des portiques ä plusieurs etages.

Pour l'analyse des portiques, nous avons employe la methode de
Cross de distribution des moments d'encastrement parfait. Dans les piliers
nous avons considere la Variation du moment d'inertie qu'entraine le
chapiteau mais pour la dalle nous avons suppose la seclion conslante. Nous
n'avons pas considere les effets de flexion pour les charges situees sur la
longueur correspondante au chapiteau et nous avons admis que la reaction
se distribue uniformement sur cette m&me longueur. Pour la determination
de cette longueur d'appui il faut mener des plans ä 45° depuis la naissance
du chapiteau. Dans ces conditions de distribution des charges les formules
applicables dans les cas de surcharge continue sont respectivement (1) et (2)
pour les moments d'encastrement parfait et maximum isostatique. Dans le
calcul du portique virtuel nous tenons compte des hypotheses de distribution

des surcharges les plus defavorables : total, alternes, etc., et nous avons
pris en consideration les deplacements transversaux quand il s'agissait de
forces horziontales comme dans la poussee de terre ou la poussee de l'eau.

On obtient les moments unitaires pour le calcul de la dalle confor-
mement avec la repartition indiquee par Marcus, en mullipliant les moments

Y& sign r"'¦?'*'' ": ¦¦>•*

u
YV^' ''^'' ''''",^'V\''^b''1^

~~M
3QO 6.QO

-m

,&5«jS'

E

i3P

Fig. 6. Section
transversale du Magasin
visible ä la figure 5.
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Fig. 7. Sous-sol de l'Hötel
des Monnaies (Madrid) sup-
portant des presses. Super-
ficie : 1 200 m2. Surcharge :

1 000 kg/m2.

/ -¦¦

->'%>/.

%

**BS.
-^««-K -».-

fictifs obtenus dans les poutres du portique par les coefficients qui figurent
dans le cadre II

Pour le calcul des piliers on utilise les moments obtenus lors de l'analyse

du portique virtuel. Ils doivent resister egalement ä la compression
longitudinale correspondante.

Dans le projet des magasins de Pasajes avec des panneaux carres egaux
et rögulierement disposes dans les deux sens, nous avons fait une etude
comparative des differentes methodes de calcul utilisables : formules de
Ross et Maillart d'origine experimentale, diagrammes de Westergaard,
methodes des Marcus et Lewe, methodes preconisees par les reglements
americains et danois el methodes des portiques virtuels. Nous avions
trouve" un excellent accord pour cette derniere methode, exception faite, des
valeurs correspondantes aux zones des chapiteaux, lesquels sont beaucoup
plus eleves que tous les autres. Nous n'avons pas reussi ä obtenir une
comparaison experimentale des resultats malgre la dispostion, pendant la
construction, de points de fixation pour des appareils de mesure. La
mise en service prämature ne nous a pas donne l'occasion.

Resume

Nous jugeons que la methode des portiques virtuels est tres appropriec
pour le calcul de ce type de conslruction et qu'elle est la seule utilisable

Fig. 8. Sous-sol de la minote-
rie Vallekermoso (Madrid).
Surcharge : 1 500 kg/m2 ä
distribution irreguliere.

mmmu

:.*•
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pour des panneaux inegaux ou rectangulaires, ou lorsqu'il s'agit de
surcharges isoiees. L'analyse des portiques fictifs consideres se fait le plus
facilement par la methode de Cross, qui permet la resolulion generale
quelle que soit la distribution de panneaux et le nombre d'etages, sans
avoir besoin de recourir ä de nouvelles hypotheses de simplification.

Zusammenfassung

Wir glauben, dass die Methode des stellvertretenden Rahmens " für
die Berechnung der Pilzdecken sehr geeignet und dass sie unersetzlich ist,
wenn die Felder ungleich oder rechteckig sind oder auch, wenn es sich um
Einzellaslen handelt. Für die Analyse dieser Rahmen verwendet man am
besten die Methode von Cross, da sie am schnellsten zum Ziele führt. Sie
ermöglicht die Lösung für beliebige Felderteilung und beliebige Anzahl
Stockwerke, ohne dass auf weitere vereinfachende Hypothesen zurückgegriffen

werden muss.

TorhavC S v/rfve/s

Marcus

Wes/rr0d<src/ <£ Slaftrr

Rij/emenh t^a wj
'ey/ements <3mt*rie&inS

K

76ot> |
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--J Ö Rös
i-Soo

p
ZhOO

- r. soo Chab/f-edd : £0O*2O0
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fct/i/ycett/x 6,OO*6,\0O £*d>Ssseor 3o cm

nfre 4AxC de rt<3nnecn/

2&oo

^-,-JE 3 loo
3 60O

fxjr-
3 900

150
SZOOr--r-rsiooF

Fig. 9.
Comparaison des
resultats obtenus

par diverses
methodes

dans un
panneau de la
dalle de l'en-
trepot de Pa-
sajes.

Summary

We consider that the method of virtual frames is very appropriate for
calculating this type of construction and that it is the only one for un-
equal or rectangular bays, or when it is a question of isolated loads. The
analysis of the fictive gantries is best done by Cross's method which sup-
plies the general Solution, whatever the dispersal of the bays and the
number of storeys, without having recourse to new simplification
hypotheses.
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Introduction d'une theorie generale
poui l'etude des voütes minces de translation

Eine neue allgemeine Theorie von Translationsflächen

Introduction of a general theory of shells of translation

L. BROGLIO
Rome

Si on deplace en translation une courbe I© contenue dans un plan
vertical le long d'une autre courbe Te contenue dans un plan vertical
orthogonal au precedent, on obtient une surface dont la protection sur un
plan horizontal est rectangulaire. Si on pose ladile surface sur le perimetre
de sa protection au moyen de quatre tympans, on realise le Schema geo-
metrique d'une ff voüte de translation » (fig. 1).

Pour l'etude d'un type de toiture si important dans les applications,
dans l'hypothese d'un regime statique ä membrane, il existe un procede
connu, relate par M. Flügge dans son trait6 classique ('), duquel nous
allons donner un bref resume dans ce premier paragraphe.

En un point generique P (fig. 1) de la surface designons par f? et /e

respectivement les tangentes aux courbes \\ et 1% ; soient <o et 9 les angles
que t? et te forment respectivement avec ses projections horizontales ;

assumons comme repere en P le triedre oblique 19 /r,, z, designant par z
la verticale dirigee vers le bas. Soient X, Y, Z les composantes de la charge
exterieure par unite de surface, et soient encore Nc N0, iN© les efforts
interieurs de la structure, a savoir la traction dans la direction tf la
traction dans la direction ti, et le cisaillement selon les deux directions
obliques t.f t„ qui se rencontrent sous l'angle a= arc cos (sin cp ¦ sin 9).
Designons enfin par r¥ r_(cp) et ''0 i©6) les rayons de courbure de
r? et de Te

Le procede que nous allons resumer consiste d'abord a exprimer
mathematiquement les deux conditions suivantes : equilibre de toute
portion elementaire de voüte comprise entre deux r9 et deux r6 infiniment
voisines, et incapacite de chaque tympan (qu'on imagine infiniment
rigide dans son plan) a soutenir des actions orthogonales ä lui.

(') W. Fi.ücce, Statik und Dynamik der Schalen, Berlin, Springer, 1934, pp. 91-100.
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r

\
Fig. 1.

Les conditions d'equilibre selon t.., /$, z sont respectivement donnees

par (2) (fig. 2):

-5— (N, cos o) -1 5^- cos 0 © Xrc cos ta sin a 0 ;
Ö'-O 7's Ob ' '

(Necos9) r. 9N
£— cos 9 © Yre cos 9 sin a 0

(1)

(2)89 v"» — -' '

r? 9?

(NT cos (p) re cos'9 © (Ne cos 9) r? cosf» © Z7'9 re cos'tp cos*9 sin 0. 0 (3)

Les conditions sur les tympans sont respectivement (3):
Le long des deux cötes <p= constante

N9 0 ; (4)

Le long des deux cötes 9 constante

N9 0. (5)

Comme deuxieme pas, le procede en question reduit le sysleme de (1),
(2), (3), (4), (5) a contenir une seule inconnue I\©9 Dans ce but, il
faut d'abord deriver (3) par rapport a <p et a fj, tenant compte des expressions

que (1) et (2) donnent respectivement pour
r) rl

/•9cos*8-=— (N„ cos») et /¦<. cos2o-^- (N6 cos 9)
oo T ' 'ob

(2) Loe. cit., tSqualions (54n. 54(j), et (53c).
(3) Loe. cit., p. 94.
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de sorte qu'on arrive ä l'equation (4)

dl 9N9.9 \ ß
9 / t 3NT,8

r, cos 7 w ^cos2 9 _gf-j + re cos 9
-g- ^cos' <? -^-

ö ^» (Z'"e r9 cos2o cos8 9 sin a) — r, cos <p -55- (Xre cos' 9 sin a)
00 ob ¦ üb

— re cos 9 -5— (Yr„ cos*es sin a). (6)

En outre, si on derive (3) par rapport a 9 en tenant compte de (4)
et qu'on substitue dans (2), ou si on derive (3) par rapport a <p, en tenant
comple de (5) et qu'on substitue dans (1), les conditions aux limites
deviennent :

Pour <p constante

rg- (Li'y re cos2<a cos2 9 sin a) — Yi\ sin a ; (4')

Pour 9 constante

9N,,9 1

(Zi\ re cos2? cos29 sin oc) — Xr9 sin a (5')
98 r<p cos2 9 cos »

Comme troisieme et dernier pas, il faut proceder a l'integration de

l'equation (6) avec les conditions aux limites (4') et (5')- Au point de vue
malhematique ce probleme presente des difficultes tres considerables ;

partant, les resultats obtenus par la methode rappelee sont peu nombreux et
se referent (5) surtout au cas des directrices \\, Te circulaires, et de la
structure bissymelrique, chargee symetriquement uniquement par des
forces verticales, variables selon la loi

Z sin a constante

Fonction des efforts pour la voüte de translation

Considerons le cas general d'une voüte de translation non-symelrique
par rapport a n'importe quelle directrice et chargee de maniere
quelconque. La non-symetrie de la slructure permet d'eludier une loiture
posee sur des murs de hauteur inegale ; la faculte de choisir le type des
directrices presente a son tour un interet parce qu'elle permet un choix
plus large au point de vue economique et esthetique et parce qu'on peut
ainsi satisfaire aux exigences de diverses natures, acoustique ou optique,
evenluellement imposees pour la piece a couvrir ; enfin, le cas de la charge
reparlie de n'importe quelle facon (en particulier, celui de la charge con-
cenlree) a de l'importance pour une etude plus complete de la voüte ou
pour l'examen des slructures minces de translation pour des cas plus
complexes que celui d'une simple toiture.

Designons (fig. 1) par a et b les deux dimensions de la protection
horizontale de la voüle. Assumons comme repere un triedre cartesien, ayant
l'origine a un des sommets du reclangle, et disposons les axes x, y selon

(4) Loe. cit., eq. (55).
(b) Lac. eil., p. 103.
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les cötes a et b dudit rectangle : la direction z, comme on l'a dit au
paragraphe precedent, est verticale, positive vers le bas. Les relations differentielles

entre les coordonnees <s et 9 du paragraphe precedent et les nouvelles
coordonnöes x, y sont naturellement les deux suivantes :

dx dy
_=:r,COSO, ^-=^0088. (/)

Les equations (1) et (2) du paragraphe precedent, cpii expriment
l'equilibre d'un element de voüte dans Ie plan tangent deviennent alors :

-5— (N, cos es) -| ^©^-cos9©Xsina 0; (8)dx ' ' dy

y- (N9 cos 8) -| y^-cos f 4-Ysina 0. (9)

Un ensemble de conditions necessaires pour la resolution du probleme
examine est donc constitue par (8), (9), (3), (4), (5). On constate que les
equations (8) et (9) sont satisfaites si on introduit une fonction des
efforts 4> teile que :

N, cos (-jy + ~t (y) - X (*, y)j cos 9 ; (10)

i\Te cos 0 (**-+JLY(x) - Y (x, y)\ cos? ; (11)

N-=-(-S3T+a-rf(y)dy+^xXfwH-fc <i2)

posant

X(..y) -^ro-/"(X«ln«)rf,; Y(,,y) ^j^(Ysin«)dy. (13)

^ {y) "eosT C (X Sin a) dx * {(''y)'

Y(x)=—— f° (Y sina)dy Y(y,b)
COS? ./„ ' J ¦ '

et designant par C, dans l'equation (12), une constante arbitraire.
Si on substitue les relations (10), (11), (12) dans les equations (3),

(4), (5), on en tire l'equation :

1 92<P 1_ 9!<1>
_

i'e cos38 3x2 r„ cos3? 3y2

(H)

sina 1 / x —\ 1 / y
H — — x —x +fvcos o \ acos cos 9 r^cos3» \a I ' rncos39 \b

avec les conditions de rive :

Y — Y (15)

Pour x a et x 0

Pour y fa et y 0

9'* 0; (16)
9y2

9'*
(17)
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D'ailleurs il est bien evident que les relations (10), (11), (12) dcter-
minent la fonclion <I> ä une fonction pres :

W(x, y) k1-\- k2x © k3y + k4xy (18)

oü fei, k2 ks k4 sont des constantes arbilraires. lin effet, si on ajoute la
fonction W ä <fr pour un choix arbitraire de kl k2 k3 fc.t les equations
(10), (11), (12) restent inchangees, rappelanl que C est une constante
arbitraire eile aussi. Alors il suffit de choisir kt fc,, k3, kt d'une teile
facon qu'elles annulent la fonction <P dans les quatre sommets du rectangle
de base, a savoir, dans les points (0, 0), (et, 0), (a, b), (0, b) pour que les
conditions (16) et (17) puissent etre ecrites :

Le long de toute la limite
<E> 0 (19)

Si zv=z<f.(x) et 2ij=2()(y) sont respectivement les equations carte-
siennes d'une quelconque T9 dans un plan
conque T9 dans un plan x-

partout < — 9 < -© :

constante, et d'une quel-
constante, on a naturellemenl, si on suppose

(20)

(21)

1 d%
dx2

d2z9

dy2

B (*) ;

A (y)

/'«pCOS3?

1

re cos3 9

Rappelant en outre que

Z*
Z sin ol

cos acos 9
(22)
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n'est que la composante verticale de la charge par unite de surface de la
projection horizontale de la voüte, et posant

q (x, y) Z* + B (x) (!L X - x) + A (y) (-£ Y- y) (23)

on tire de (15)

A(y)-ä?-4-B(*)-^r -<z(*,y) (24)

Le probleme relatif ä la determination de la fonction des efforts est
ainsi completement defini : il s'agit d'integrer l'equation (24) avec la
condition ä la limite (19). On voit tout de suite qu'un tel probleme equi-
vaut ä determiner les deplacements verticaux d'une membrane rectangulaire,

fixee le long de tout son contour, soumise ä la charge q(x, y) par
unite de surface et tendue par une tension constante le long de chaque fil,
c'est-ä-dire, variable selon la loi A(y) pour les fils paralleles ä l'axe x, et
selon la loi B(x) pour les fils paralleles ä l'axe y [il faut remarquer que
A(y) et B(x), ä cause de (20) et (21), sont essentiellement positives]. On
a ainsi une precieuse analogie, par laquelle le calcul de la voüte de
translation se transforme dans le calcul d'une simple membrane appuyee au
contour. On peut tirer parti de cette analogie pour determiner la fonction

<I> par la voie experimentale, comme on le dira ensuite. Avant
d'etudier l'integration de (24) avec la condition (19), il vaut mieux de
completer la mise en train generale du probleme par une Observation relative

ä l'effective determination des efforts N?, Ne, N9? par la fonction <J>.

Les conditions de compatibilite pour les voütes minces

Lorsqu'on a determine la fonction des efforts <I> au moyen de (24) et
(19), on tire immediatement de (10), (11) et (12) les efforts N, N9 et N?9.
Mais ce dernier effort est en realite determine par (12) ä une constante
arbitraire C pres. Ce fait est tout logique, et derive de la circonstance
que les conditions d'equilibre (1), (2) et (3) et les conditions de rive (4)
et (5) ne constituent pas en general un ensemble de conditions süffisantes
pour la complete determination des efforts N?, N9, N?e dans la voüte.
En fait on voit immediatement que (1), (2), (3), (4), (5) sont verifies
meme apres l'addition de n'importe quelle constante arbitraire a N„9.
En un mot, la voüte de translation n'est pas, en general, un Systeme
isostatique. c'est-ä-dire une structure oü il est possible de determiner les
efforts au moyen des equations d'equilibre seulement, mais c'est un
Systeme hyperstatique, pour la resolution duquel il est necessaire d'adjoindre
des conditions de compatibilite aux conditions d'equilibre. Si les efforts
inlerieurs sont N? N9, N?9 comme on l'a suppose, l'hyperstaticite de la
voüte de translation se reduit ä un seul parametre, c'est-a-dire a une constante

arbitraire ä ajouter ä N?0 • Comme les equations (24) et (19) sont
une traduction fidele de (1), (2), (3) et de (4), (5), on conclut que
necessairement la connaissance de la fonction $ doit rendre determines les efforts
N9 !\„, N?() ä une constante arbitraire pres ä ajouter ä NT.,0. Pour
completer le calcul des efforts I© Ne, !©„, lorsqu'on a determine <£ par (24)
et (19), il esl süffisant de determiner la valeur de la constante, qui parait
au deuxieme membre de (12). Si la structure est symetrique et chargee
symclriquement, pour des raisons de symetrie, In© doit s'annuler sur le
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plan de symetrie, et la question est toute resolue : cela veut dire que la
voüte symetrique, chargee symetriquement, devient isostatique par l'ad-
jonction de la condition N^ 0 aux conditions (4) et (5) en un point
quelconque de la surface appartenant au plan de symetrie. Dans le cas
general la constante C doit etre determinee, comme on a dit, par des
conditions de compatibilite. A ce propos il faut observer que chaque tympan,
qui a ete suppose infiniment rigide dans son plan, et infiniment elastique
dans la direction orthogonale, constitue pour les surfaces de translation
une contrainte dont les reactions ne fönt pas de travail par effet des
deformations dues ä la charge : en effet les reactions qui apparliennent au plan
du tympan ne fönt pas de travail car le deplacement des points d'application

respectifs est nul, tandis que les reactions orthogonales audit plan ne
fönt pas de travail parce que ce sont elles qui sont nulles par hypothese.
Par consequent on peut appliquer aux voütes de translation le theoreme de
Menabrea : bien mieux, lorsqu'on a satisfait toutes les conditions d'equilibre,

le theoreme de Menabrea resume toutes les conditions de compatibilite
que la structure doit satisfaire ($). Remarquons que cette Observation reste
valable meme si le regime statique de la voüte n'etait pas ä membrane, mais
le plus general qu'il est possible. Comme les efforts N.., Ne, N?9 calcules
d'apres les equations (10), (11), (12), satisfont dejä toutes les conditions
d'equilibre, on peut determiner le parametre C qui parait dans (12); si
l'on pose

N'?9 - (•
9»*

dxdy - /'X(y)dy+- / Y(x)dx (25)

en disant que C doit rendre minimum l'energie de deformation de la voüte
calculee en fonction de N9 N8, N'«o © C ; N.., N9, N't9 etant des fonctions

desormais connues.
Pour calculer le travail elementaire de deformation que les efforls

N.f, Ne, N,^ produisent en une portion elementaire i\ d? r9 d9 de la
voüte, le procede que l'on va indiquer peut reussir avantageuscment. Tma-
ginons pour un moment que le parallelogramme t'-do r9d9 fait partie d'un
rectangle dont les cötes soient i\ do -4- i\ cos a dÖ et r„ sin a d9 (fig. 3).
Supposons que ce rectangle soit soumis : a) ä une traction simple, d'inten-
site unitaire er,, dans la direction de t..;b) ä une traction simple, d'in-
lensite unitaire <j„, dans la direction orthogonale; c) ä un cisaillement
simple, d'intensite unitaire rz, selon les deux directions orthogonales repre-
sentees par les cöu§s du rectangle. Le travail de deformation de la partie
de rectangle qui correspond au parallelogramme de cötes i\d<6, 7-9ri9 esl
alors :

dL-X^. oy h P h
5 r G

du (i\p /-(»sin et) d?d9 (26)

oü E et G sont les modules d'elasticite ä la traction et au cisaillement,

h l'epaisseur variable de la voüte, dÜ rve sin a d? d9 la surface
du parallelogramme, ayant suppose nul le coefficient de contraction laterale

(voüte en beton arm£). Les trois types de tensions a, fa, c ont 6te

(') Cf. par exemple L. Bhoglio, Introduzione d'un metodo in doppio per il calcolo delle
slrutture elastiche (Atti di Guidonia, 1941).
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e,hr+(sin«)dJ
Fig. 3a.

b~2hrfdf

tZh rj.(cos<*)d9

V*

rfdf

(^hr^cosoOd.tf

Fig. 3b.

tr2hrfdf

representes dans les figures 3a, 3fa, 3c. On voit ainsi qu'il suffit de poser :

tTj/t N9 sin a ;

t/i N?0 + N9 cos a ;

¦s.h
N0

sin a

2 N.,9 Nfjcosa
tga tga

pour que la superposition des troi'; cas a, fa, c conduise au vrai etat de
tension de l'eiement de voüte. Le travail de deformation global est alors :

iff 1

E/T
Ng ¦ 2N, No cos a\8

sin a tga
3cosa\8 1

^-)+W(N9s,na)'

-ö^(Nf')+NeCosa), /•? r„ sin a d? d9 (27)

oü l'integrale esl elendue ä toute la voüte. Naturellement il suffil de rappeler
les equations (7) pour que l'integrale ait comme variables d'integration x

et y au lieu de et 9. Comme G =— E, en rappelant que cos a sin sin 9 :

Uf. * f rv + Ne'
[ sin'a

-m (Nf + N,)N„1
sin a tg a

N%„ + 2 N,N0
tg2a

l/l+tg2?+tg29^|^. (28)

Dans l'equation (28) les fonctions

dza
Ig? dx Ig8

dz.
dv

(29)
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r*df
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Fig. 3c.

Zhrrdf
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V*fl
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<©,,r„df

W.*f rtfOi7B» f

" J"„d f V«flf17 f

«o-yy

"f^r^d-ff

ttfC^dV
Fig. 4.

sont des fonctions connues ne dependant que des equations cartcsiennes
Zd> z, (a?) et ze z6 (y) des deux directrices F? et T9 Remarquons que
dans i'integrale (28) N„ et N9 sont traitees symetriquement, exactement

comme il doit etre, etant donne que dans la generation geometrique
de la voüte le röle de r? et r9 peut etre echange. Si l'on pose alors,
d'apres (25),

NT0 N© + C (30)

pour que C rende minimum l'integrale (28), il faut que

fr^^^+Mü^+m+m dxdy
~Eit~

n'('+^)i/r dz9
dx © dZj

dy
dxdy
E/i

Le probleme de la determination des efforts dans la voüte
completement resolu. Naturellemenl si la voüte est symetrique el
symetriquemenl il faut (|ue C 0, comme on le voit de (31), r

Nl > t: ©
que dans ce cas N'„9 ainsi que* sin a tg a
sont antisymetriques.

N,

(31)

est ainsi
chargee

appelant

COS a

Solution du probleme au moyen de l'analogie de la membrane

Comme on l'a dejä observe, par l'equation (24) avec les conditions
aux limites (19), l'etude d'une voüte mince de translation dans les conditions

geomelriques el de charge les plus generales est reduit ä un
probleme qu'on peut dire elementaire, c'est-ä-dire, ä l'etude d'une membrane
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rectangulaire fixee au contour et tendue uniformement le long de chaque
fil. Ce probleme peut, en l'occurrence, etre etudie par voie experimentale.
En effet, il suffit de substituer ä la membrane un reseau de fils suffisamment

serre, produire par des poids une tension constante A(y) le long de
chaque fil parallele ä l'axe x et une tension constante B(© le long de
chaque fil parallele ä l'axe y, et enfin nppliquer ä la membrane la charge
g(x, y), pour avoir dans les deplacements verticaux <P dudil reseau la Solution

de (24). L'auteur a dejä obtenu par celle voie un nombre remarquable
de resultats, se servant d'une methode de mesure des deplacements verticaux

qui permet d'obtenir, avec une grande facilite et rapidite, une
precision superieure ä une fraction de micron. L'analogie de la membrane se

presenle particulierement utile pour l'etude des charges concenlrees.

Solution du probleme par la methode de l'equivalence

La Solution de l'equation (24) avec les conditions (19) peut etre
facilement conduite par voie analytique aussi, par des procedes d'approxima-
lions successives. Outre les methodes de ce type dejä connues, l'auteur a
etudie une application particuliere ä ce probleme de la methode
d'equivalence (7). Faute de place, nous renvoyons ä un autre memoire pour
l'exposition du resultat obtenu par cette voie.

Cas remarquables

Le cas des actions exterieures uniquement verticales est particulierement

important. Dans ce cas le probleme est reduit ä integrer l'equation
92<t> 924>

A(y)^2- + B(x,^© -Z* (32)

Z* £lant la charge par unite de surface de la projection verlicale de la
voüte. Les conditions ä la frontiere sont ä l'ordinaire <L» 0 le long de tout
le contour. Quand on a determine" <I>, il vient :

N
cos es 92«h

cos 9 9y2

cos 9 92ch
ö

cos? 9© '

N*9 — ^rr+ C; N'e9: -

dxdy ' ~ * »" dxdy '

La constante C est donnee par l'equation (31).
Le cas oü les directrices sont deux paraboles est tres interessant aussi.

Alors A(y) et B(x) sont constantes. L'equation (32) devient immediatement

l'equation d'une membrane rectangulaire ä tension constante, char-

(7) L. Bboglio, A melhod of equivalence applied lo the Solution of problems of elasticity and
nj Mathematical Physics (VII. Int. Cong. App. Mech., 1948).
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gee de n'importe quelle facon. Supposanl que les equations des directrices
paraboliques donnent

d'z,
dx'

il est süffisant de poser

i
Tu

IUI« | J
dy2 : " ©

kx Y > hy -f-

et T constante, pour que (32) devienne

5-'(|)
f

a2<\>

^ •/*

~W^~¥iJ" t~ '

equation dont la Solution est bien connue. Pour '//¦' constante on a en
particulier (8) :

4Z*© vi<J>

T-3
ft - i.:i

I H — 1 I

i-:p-^v
cosli ii-y

a l n r.x
C()S (33)

C'OSil
H-b

en prenant l'origine au centre du rectangle qui esl la protection verlicale
de la voüte.

Remarque

Dans le cas qu'on vienl de considerer (directrices paraboliques et
charge verlicale uniforme selon la projeetion horizontale), l'ancienne
theorie, ä savoir les equations (6) avec les conditions (4') el (8') donnenl
Neu constante. Si on suppose la structure symetrique, on a N?IJ 0.
Siibsliluanl dans (1) et (2) et rappelanl (4) el (5) on a © Nr, — 0 En
un mol, l'equation (6) avec les conditions (4') el (5') porte, dans le cas
considere, ä une Solution oü les efforls sonl nuls dans toule la voüte. Celte
Solution n'est pas identique ä celle qu'on oblienl dans l'equation (33) et,
d'ailleurs, ne satisfait pas l'equation d'equilibre (3). Celle diseordance pro-
vient du fail que l'equation (6) avec les conditions (4') el (5') n'a pas ete
deduite des relations (1), (2), (3), (4), (5), mais de (1), (2), (4), (5) et
par des relations derivees de (3). Cela veut dire que (6) avec (4') et (5')
ne tiennent pas comple de la vraie equation d'equilibre, mais seulement de
ddrivees de cette Equation.

Resume

Dans ce memoire on introduit une theorie generale des voütes minces
de translation, qui permet une Solution complete du probleme. Au moyen
d'un changement de variables et gräce ä l'introduction d'une fonction des
efforts, on reduit le probleme ä l'etude de la membrane rectangulaire

(8) S. TntosriENKo, Theory of Elasticity, N'ew York, 1934, p. 246.
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tendue et fixee le long de son contour. La methode permet, sans difficultes
particulieres, l'etude des voütes non symetriques et chargees non symetri-
quement, pour lesquelles on demontre la necessile d'adjoindre aux conditions

d'equilibre (qui sont les seules usitees) une condition de compatibilite
exprimee par le theoreme de Menabrea.
Celle methode permet la resolulion, dans le cas des charges concen-

trees aussi. La Solution de la voüte aux directrices paraboliques soumise
ä une charge quelconque repartie selon la projeelion horizontale, dans
la methode proposee, esl reduite ä celle bien connue d'une membrane
rectangulaire fixee le long de son contour, uniformement tendue et chargee

par la meme charge.

Zusammenfassung

In diesem Beitrag wird eine allgemeine Theorie der Translationsflächen

entwickelt, die die vollständige Lösung dieses Problems
ermöglicht. Mittels einer Variabeintransformation und der Einführung einer
Spannungsfunktion kann das Problem auf dasjenige der an den Rändern
gehallenen, gespannten Membran zurückgeführt werden. Die Methode
erlaubt ohne besondere Schwierigkeiten die Behandlung von unsymmetrischen

und unsymmetrisch belasteten Schalen. Es wird gezeigt, class für die
letzleren den Gleichgewichtsbedingungen (welche in den bisherigen
Veröffentlichungen allein belrachtel wurden) eine Verträglichkeitsbedingung
hinzugefügt werden muss, die mit dem Theorem van Menabrea hergeleitet
werden kann.

Diese Methode ermöglicht die Lösung auch im Falle von konzentrierten
Lasten. Die Lösung der Schale mit parabolischen Leitkurven und mit einer
über die Horizonlalprojeklion gleichmässig verteilten Belastung, wie sie in
der vorgeschlagenen Methode angegeben ist, wird zurückgeführt auf die
wohlbekannte Methode der an den Rändern gehaltenen, gleichmässig
gespannten und gleichmässig belasteten, rechteckigen Membran.

Summary

In this paper one is introduced to a general Iheory of shells of
translation, which provides a complele Solution of the problem. By means of
a change of variable quantities and lhanks lo the introduction of
a slress function, Ihe problem is reduced lo the study of Ihe rectangular
membrane, stretched and fixed along ils boundary. Without any
particular difficulty, the melhod enables to study shells, that are non-
symmetrical and non-symmetrically loaded, for which the author stresses
the necessity of adjoining to the equilibrium conditions (which are the
only ones used) a condition of compatibility expressed by Menabrea's
theorem.

This method provides a Solution, in Ihe case of concentrated loads
too. The Solution of a shell with parabolic directrices, subjected to a load
evenly distributed on the horizontal projeelion in Ihe proposed method,
is reduced to the well known one of a rectangular membrane fixed along
its boundary, uniformly stretched and evenly loaded.
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La charge de xuptuie de dalles en beton arme

Die Bruchlast von Eisenbetonplatten

The ultimate strength of reinforced concrete slabs

K. W. JOHANSEN
Dr techn. Copenhague

Il is evident thal in Ihe determination of the ultimate load the theory
of elasticity is inapplicable. Already after the development of cracks and,
more particularly, after yielding of the reinforcement has begun, Ihe stale
is not elastic any longer. As the working load has to be fixed in proportion
lo Ihe ullimale load, a Iheory of the yielding or plastic stale of reinforced
concrete slabs is desirable. An outline of the « Iheory of lines of fracture »

will therefore be given in the following.
Let us consider a slab with uniform reinforcement in two directions

at right angles to each other. When the reinforcemenl is evenly distributed,
the yield value will be the same in all sections of the slab. The yielding
will begin where the values will have maximum magnitude, and proceed
along Ihe lines of fracture. At the ultimate load the yielding has reached
Ihe edges, and along the lines of fracture the bending moment m per unit
length is conslant and equals the yield value corresponding lo the
reinforcement. This moment m is a maximum value in relation to Ihe momenls
in all sections in Ihe proximity of the lines of fracture. The lines of fraclure
divide the slab into several parts, and if now we assume the elastic
deformations of these slab parts to be insignificant in comparison with
the plastic deformations along the lines of fracture, the slab parts may be
considered as plane. It then follows lhat the lines of fraclure are straight
lines. On the said assumption Ihe deformalion may be considered as angular
rotalions of the plane slab parls about Ihe supports, and consequenlly the
line of fracture between two slab parts must pass through the point of
interseclion of Ihe axes of rotation of Ihe two slab parts. Figure 1 shows
some lypical figures of fractuie of slabs supported on four, Ihree, and two
sides, as well as on two sides and by one column, and on one side and
by two columns, respeclively. Tbc axes of rotation lie in the supporled
sides and pass through Ihe columns. The final determination of the figure
of fraclure and the breaking moment m is nchieved with the conditions
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of equilibrium for Ihe individual parts of the slab. For recording these
condilions it is necessary to know the shearing forces along Ihe lines of
fracture. m being a maximum value in relation to the moments in sections
in other directions through the same point, it is one of the prineipal
moments, that is lo say, the twisting moment is zero along the lines of
fracture. We Ihen find — as is also Ihe case with a beam — that the shearing
force is zero because m is maximum in relation to the moments in sections
parallel to the section of fracture through adjacent points. Thus, only the
bending moment m acts in the section of fracture, and the total momenl
may be represented by a vector equal to the line of fraclure. The resulting
moment for a part of the slab is found by vector addition.

Example 1. — A triangulär slab with evenly distributed load is simply supported
along its sides. According to the above, the figure of fracture will be as shown in
figure 2. Let_us consider the slab part at a. In the line of fracture OB acts the
moment m • BO, and in the line of fracture OC the moment m • CO. On the whole
slab part acts m (BO -f- OC) m ¦ BC m ¦ a. The moment about a gives the
condition of equilibrium m ¦ a ¦= 1/6 wa ¦ h2a, or m 1/6 wh2a. Correspondingly,
we get for the other slab parts m 1/6 wh2b and m 1/6 wh2c, i.e.,

h h, h r, where r is the radius
a b c '

of the inscribed circle. The breaking
moment is m 1/6 wr-, where ic is the
ultimate load.

For all polygons circumscribed the
circle with the radius r (fig. 3). il
will bc seen dircelly that also here
wc have m 1/6 wr2; for Ihe Square
having the side a, specially m=l/24 wa2.

(For rectangle see Ingerslev, Institution
Pia. 3, of Structural Engineers' Journal, 1923.)

*r

Fig

The ultimate load being n limes Ihe working load, and Ihe breaking
moment n times the working moment, where n is Ihe coefficient of safely,
we can also let m and w mean the permissible values.

With a free or simply supported edge, both Ihe bending moment and
the twisting momenl should slrictly speaking be zero. This involves that
the lines of fracture should be al right angles lo Ihe edge. This is really
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the case (fig. 4). but only quile close to the edge do the cracks suddenly
turn so as to be at right angles to it.

As is known from Ihe Iheory of elasticity for thin slabs, there are
also here difficulties with the twisting moment at the edge. These
difficulties are overcome by transforming the twisting moment into shear
forces, as shown in figure 5 and first indicated by Kelvin and Tait. While
the two single forces m, neutralize each other when the slab is considered
as a whole, they must be considered as acting each on its slab part when
the equations of equilibrium for Ihe individual slab parts are to be
developed. The prineipal momenls being m and m2 (fig. 6), the bending
moment along the edge will according to the above be

m cos a m, sin a 0

and Ihe twisting momenl

m, (m —- m2) cos a sin a m cot a, as m, — in cot" a

If we make Ihe same transformalion for plastic slabs, this will correspond
lo a rectilinear extension of the line of fraclure to the edge (fig. 4). The
single force m cot a is then a static equivalent of the twisting momenls
and the shearing forces on the slretch s. Incidentally, this force the edge
force, can also easily be deduced directly from the equation of equilibrium
for Ihe infinitesimal triangle AOB shown in figure 6. As m is a maximum
value, Ihe adjacenl seclion OB has Ihe same m, and as the bending moment
is zero along AB ds, the resultant for the whole triangle

m (ÄÖ + OB) m - ÄB= m ¦ ds

The momenl aboul BO gives then, when magnitudes of a higher order are
ignored.

m • ds ¦ cos ol in, ¦ ds - sin a ; m, m cot a
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Example 2. — A rectangular slab with evenly distributed load is simply supported
on two adjacent sides and free on the two others (fig. 7). The figure of fracture shown

gives the edge force m The moment about a for the slab part A gives

1 x
ma — wax2 4- m • — • x

t> a

and the moment about b for the slab pari B gives

in • x -f- m — • a ¦
a

1 l *— wba 5- wa'x

From these two equations of equilibrium are found

a a
~x~~ "Fi3 b ^ \ ~\ 3 l

,-P t /•

/?/

\ /
JK

KVb«
b > a

+ 1A

7777777777777777777ZP
b

Fig. 7.

In the diagonal section shown is found the negative moment
a'b2

m — fx,'rt' — w
o 6 er -(- b2

It can be proved quite simply that the number of equations is always
equal to the number of unknowns (IABSE, Publications I, 1932, p. 283).
The equations are not linear, so lhal superposition cannot be applied, but it
can be proved that it is safe to superpose loads acting jointly (that is, do
not counteract each other).

Should the Solution of the equations be too cumbersome, the following
method can always be used in practice : By Ihe principle of Virtual work,
in can be determined directly for an arbitrarily chosen figure of fracture
(Zoc. cit., p. 284). The real value of m being a maximum value, the proper
figure of fracture will be the one making the corresponding m the
maximum. As the variations in the proxi-
mity of a maximum are very small, a
fair approximation for m can be
obtained by estimating the figure of
fraclure. By the equations of equilibrium

for the individual slab parls
the estimated figure of fracture may
be improved and a better approximation

be attained. With a little
experience it is possible lo estimate im-
medialely the figure of fracture so
well that the corresponding in will
differ only a few percent from the
real value.

In the development of the equation

of work advantage is taken of the
fact that the work of the moment
vector M in the rotation 0, which is
likewise a vector, is the scalar pro-
duct (MO) M9 cos (MO). If Ihe vec-

©
¦i

»-*

Fig

-*-X
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lors are resolved into components along two axes which are at right angles
to each other, we get the expression (MO) MX8T © M„6H. The rotation is
determined, for instance, by the sinkings as shown in figure 8.

Example 3. — We will apply the equation of work to the preceding example. We
lower C 3; thcreby the slab pari A will get the rotation 0^ S — x; and the slab part B,
0B 3-^a, about the supporls. The Virtual work will be made Mi -|-MJ =0,
i.e.,

1
<)ax2\ —

/ x

1
o

1

m-x — wba- p— wa©4 o

which gives :

3- —1
h_ b_m -=- wab

6 a x
x a

The shearing forces do not contribute, since the two slab parts do not move
vertically in relation to each other. The real figure of fracture is now found by the
condition dm -f- dx 0, which gives the result previously found

If we use as approximation x a, we get m 1/12 wab\3 —I • For b a

we then have m=wab : 6, exactly wab : 5.55. For b=2 a we get m=tt>ab : 4.8, exactly
wab : 4.72. The error is 7.5 and 1.6 percent, respectively, which is of no practical
consequence.

Example 4- —¦ A square slab, simply supported on two adjacent sides and by one
column in the opposite corner, is loaded with a single force P in the centre.

The figure of fraclure will be as
in figure 9. When the force P is
lowered 8 1, the slab parts A get the

rolations 1 : =-=: 2 : a, while the rola-

lion for the slab part B has the
components 1 : a, as hx hy a (fig. 8)

and the moment has the components
2
¦=- ma. Hence is oblained the cqua-

ion of work :

2 2'•l=2.mo \-2- -^-ma-(l <>

i
a

16

-g-m!
m=JLP.

Fig

X

P -$-a

H ^

9.

For fixed-end slabs and slabs &»»»»»<&>'»"»»*
which are continuous over

supporls are assumed lines of fracture over the supports wilh negative
moments corresponding lo the upper reinforcemenl of the slab.

When Ihe reinforcement is uniform, but not equal in the two orthogonal

directions, so that Ihe corresponding yield values are m and um,
m is Ihe same as in a slab with equal yield values m, and affines to the

given slab in the proportion 1 : |/u. and wilh the same load per unit of area.
The theory is very well verified by the tests, both as regards the figures

of fracture and the ultimate loads.
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Resume

Ce memoire donne une description de la Iheorie des lignes de rupture
de dalle en beton arme. On peut determiner ces lignes de ruplure geome-
triquemenl gräce au fait que les deformations elastiques sont faibles com-
parees aux deformations plastiques. Le moment flechissant atteint sa

valeur maximum le long de ces lignes, ce qui permet de determiner les
efforts transversaux et de torsion. Ils sont nuls sauf au bord libre. On en
deduit les conditions d'equilibre pour les surfaces parlielles limitees par
les lignes de rupture connaissant ces lignes de rupture et le moment de
rupture. Une methode approchee peut etre deduite du principe du travail
virtuel. Cette methode est illustree par des exemples.

Zusammenfassung

Fine Beschreibung der Bruchlinienlheorie für Eisenbetonplatten wird
gegeben. Mittels geometrischer Bedingungen, welche aus der Talsache
folgen, dass die elastischen Deformationen unbedeutend sind gegenüber den
plastischen, kann die Form der Bruchfigur bestimmt werden. Da das
Biegungsmoment längs der Bruchlinien einen Grösstwert hat, können die
Querkräfte und die Drillungsinomenle bestimmt werden. Sie sind null,
ausgenommen an einem freien Rand. Hierauf können die Gleichgewichls-
bedingungen aufgestellt werden für die Teilflächen, in die die Platte durch
die Bruchlinien geteilt wird, wobei die Bruchfigur und das Bruchmomenl
bekannt sind. Eine einfache Näherungsmelhode kann durch die Anwendung

des Prinzips der virtuellen Arbeit entwickelt werden. Die Theorie
wird durch Beispiele illustriert

Summary

An outline of the theory of lines of fraclure of reinforced concrete
slabs is given. Through the geometric conditions which are a consequence
of the fact that the elaslic deformations are insignificant as compared with
Ihe plaslic ones the character of the figure of fracture can be determined
(fig. 1). The moment in the lines of fraclure being a maximum value, the
transversal force and the twisting moment can be determined. They
become zero, except al a free edge. The equations of equilibrium for the
individual parts into which the lines of fracture divide the slab can then
be set up, whereby the figure of fraclure and the breaking moment are
determined. A simple method of approximation can be indicated by
application of Ihe principle of Virtual work. The method is illustraled by
examples.
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Dalles continues

Durchlaufende Platten

Continuous slabs

CARLOS FERNANDEZ CASADO
Ingenieur-conseil ä Madrid

La dalle continue est un type de construction utilise constamment dans
les bätiments et dans les ponts.

Nous avons construit 15 ponls en travees droites en dalles continues
du type pur, en ponts portiques ou en ponts cantilever. L'ouverture maximum

que nous avons construite est de 16 metres alors que les trois types
des modeles Standards que nous avons projetes et qui ont ete adoptes
officielllement par le Ministere des Travaux publics sont pour ouvertures
de 5 ä 12 metres.

Le calcul d'une dalle continue independante, ou solidaire des appuis
qui ne cedent pas, est tres simple, exception faite de la determination de
la largeur efficace pour les charges concentrees. Mais, compte tenu de
]'importance normale des ouvertures dans les dalles continues, quelle que
soit la formule appliquee, la largeur efficace qui en resulte permet de
considerer toute la dalle comme rcsistante ä la flexion. La largeur efficace
ä Feffort tranchant constitue une question secondaire. Pour l'analyse des
momenls flechissants nous utilisons toujours la methode de Cross consi-
de>ant la Variation du moment d'inertie dans la dalle et le deplacement
transversal dans le cas du portique multiple. La determination des valeurs
maximum doit se faire par intermediaire des lignes d'influence.

Dans les tabliers des ponts, soit en travees droites ou en arcs, nous
Irouvons de nouveau la dalle continue, dont la continuite peut s'etendre
dans un ou dans les deux sens. Une autre difference avec le cas anterieur
est que les appuis de la dalle sont des poulres qui flechissent sous l'action
des charges. Quand la continuite correspond ä la direction transversale au
trafic, le denivellement des poutres conligues peut 6tre important et il
faut le considerer dans le calcul. Pour la continuite dans la direction du
trafic, la difference de hauteur des poutrelles n'a pas d'influence sur la
flexion de la dalle. L'analyse de la dalle se reduit ä celle d'une poutre
continue avec les memes travees que la dalle et une largeur arbitraire dans le
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cas de surcharges continues ou egales ä la largeur efficace ä flexion pour
les surcharges concentrees. Quand la flexibilite des poulres esl importante,
cas des poulrelles, on peut recourir ä la methode de calcul exposee par
Newmark dans le bullelin n° 304 de la Engineering Exp. Station de
l'Universite d'Illinois.

Quand il y a continuite dans les deux sens, la methode la plus appro-
price pour les charges concentrees et continues esl celle preconisee par
Marcus dans son livre Vereinfachte Berechnung Biegsamer Platten qui
prend en consideration le travail par torsion et qui calcule les moments
de flexion et de torsion dans les differentes regions de la dalle. Ces
derniers sont supposes distribues dans quatre pyramides non symetriques.

Dans les bätiments Ie cas le plus frequent est constitue par une dalle
continue dans un seul sens. Les surcharges ä considerer sonl toujours
uniformement dislribuees et on peut se ramener au cas d'une poutre continue
de largeur unite. Le seul doute important c'est la maniere de prendre en
consideration la rigidite des poulres et des piliers. On peul recourir ä la
methode de Newmark dejä citee, mais dans la plupart des cas on peul se con-
tenter en distribuant uniformement la rigidite du pilier sur la longueur de
la poutre, et prendre une partie de cette valeur (50 % ou 75 %) pour
constituer le portique avec les poutres de largeur unite Substitutes des
dalles.

Quand l'equidistance entre les fermes est considerable, il peut etre
interessant, dans les planchers des bätiments, de recourir ä la Solution de
continuite dans les deux sens, en utilisant comme grillage d'appui la ferme
et les poutres longitudinales On peut obtenir de celle facon des dalles
d'epaisseur constante plus economiques que des dalles nervurees. La
methode de calcul que nous utilisons est celle de Marcus citee pour les
tabliers des ponts, et qui presente dans ce cas de surcharges continues
une application plus simple.

En resume, nous jugeons que dans le cas d'une dalle avec continuite
dans une seule direction, on doit considerer une poulre virtuelle, avec les
memes travees, de largeur unite pour des surcharges continues et de largeur
efficace correspondant pour les surcharges concentrees. Comme hypotheses
simplificatrices il faut uniquement negliger l'aide due ä la torsion des

poutres et flexion des piliers dans le cas des planchers de bätiments. Pour
les dalles avec continuite dans les deux sens nous preconisons la methode
approximative de Marcus, tant pour les surcharges continues comme pour
les surcharges isoiees.

Resume

Schema de la methode

1. Analyse de deux tranches perpendiculaires avec les axes des differents

panneaux de la dalle se prolongeant jusqu'aux bordures de celle-ci.
La largeur des tranches est Funite pour les surcharges continues et celle
qui permet l'inclusion des charges isoiees dans ce dernier cas.

2. Repartition de charges enlre les deux tranches, en fixant la
condition d'egalite des fleches dans le centre du panneau.

3. Determination des moments flechissants dans la zone centrale et
dans les deux extremites d'appui des tranches. Pour le moment au centre
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on doit appliquer la reduction correspondante au coefficient de torsion. Dans
les moments aux appuis on peut obtenir la reduction due ä la largeur
d'appui sur les poulres.

4. Determination des moments de torsion.
5. Calcul des armatures pour resister ä la combination des moments

flechissants et de torsion.

Zusammenfassung

Berechnungsschetna

1. Untersuchung von zwei auf den Achsen der verschiedenen Felder
senkrecht stehenden Streifen, die bis zu den Rändern durchgehen. Als Breite
der Streifen nimmt man die Einheit bei verteilter Belastung. Für Einzellasten

wählt man eine solche, die sich der Querverteilung anpassl.
2. Verteilung der Lasten auf die zwei Streifen mit der Bedingung, dass

die Durchbiegungen der zwei Streifen an den Kreuzungspunkten gleich
werden.

3. Bestimmung der Biegemomente in der Mittelzone und an den
Auflagern. Die Momente der Millelzone können gemäss dem
Drillungskoeffizienten abgemindert werden. Bei den Stützenmomenlen ergibt sich
eine Abminderung infolge der vorhandenen Auflagerbreite.

4. Bestimmung der Drillungsmomente.
5. Bestimmung der Armierung für die Maximalwerte der Biegungsund
Drillung-smomente.

Summary

Outline of the method

1. Analysis of Ihe Iwo perpendicular sections with Ihe axes of Ihe
various panels of the slab prolonged to the edge of Ihe latter.
The widlh of Ihe seclions is the unit for the continuous overloads and thal
which permits inclusion of isolated loads in Ihe latter case.

2. Division of loads between llic Iwo seclions by fixing Ihe condition
of equalily of deflection in the middle panel.

3. Determination of bending momenls in Ihe central zone and in the
two supporting extremilies of the sections. For the central moment, apply
the reduction corresponding to Ihe coefficient of lorsion. In Ihe momenls
at the supports one can obtain Ihe reduction due lo Ihe width of Ihe
bearing on the beams.

4. Determination of lorsion moments.
5. Calculation of Ihe reinforcements to resist Ihe combined bending

and lorsion moments.
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Rappott sui les voiles minces constiuits en Espagne

Bericht übei die in Spanien ausgefühlten Schalenbauten

Report on thin slabs constructed in Spain

PROF. E. TORROJA
Directeur du Laboratoire central de Ensayo de Meteriales de Construcciön, Madrid

Malgre les realisalions parfaitement reussies dejä concues, on peut dire
que Favenir des constructions en voile mince reste toujours ä faire et, en
röalite, ce procede est encore peu exploile.

Les difficultes que presente son calcul d'une part, et la necessite d'elablir
des cinlres et coffrages coüteux d'autre part, limitent assez leurs

possibilites d'application.
Mais il faut esperer que la perspective changera dans peu d annees

puisque pour la resolulion des problemes de ces Miiles, aucune Solution

n'offre actuellement, du point de vue technique, de possibilites plus
grandes, ni meilleures.

A part les voiles polyedriques, tres interessants, les surfaces continues
(non seulement cylindriques mais de double courbure positive ou negative)

presentent des avantages inestimables el des Solutions adequates ä

chaque probleme qui se presente en pratique.
Malheureusement, les conditions de bord ne s'accomplissenl en general

pas dans un equilibre de voile sans flexion, et l'oubli de celte condition

(hypothese simplificatrice tres attrayante) a ete" la cause de beaucoup
plus de d^sastres que ceux commentes dans les publications techniques.

Le probleme des voiles, en considerant la rigidite ä la flexion, necessaire

pour etablir l'equilibre est, en general, difficile ä resoudre; on est
tente de les abandonner frequemment, sauf pour les cas bien connus des
voiles cylindriques ou de revolution et de ne pas profiter des avantages
constructifs des surfaces reglees.

D'autre part, les grandes r£alisations en voiles cylindriques, torales
et de revolution, et leur bon comportement, constituent un indice des
enormes poriges qu'on peul atteindre. L'utilite du precontraint ou d'autres
systemes qui permettent l'introduction pratique des dislocations analogues
ä celles de Volterra ou de Somigliana, et aussi des dislocations continues
dans toute la surface, ouvre un grand champ pratiquement inexplore, quoi-
qu'on en ail dejä realise des exemples de voiles precontrainls dans toute
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Fig. 1. Grande couverture metallique constituee
par un voile continu en treillis metallique.

leur surface qui assurenl des avantages importants comme celui de l'imper-
meabilite des parois de depöts.

On peut etudier, du moins theoriquement, la possibilile de rabaisser les

flexions ou de les alterer de teile facon qu'elles puissent accomplir les
conditions de bord correspondantes aux voiles avec la simplification du calcul
consequente.

Une indication importante c'est que, malgre la legerete de ces voiles

qui arrivcnt ä des sveltcsses de - (quotient de l'epaisseur ä la porlee)

c'est le poids mort qui determine le prix; ce poids ne peut guere etre reduit,
meine avec des materiaux de meilleure qualite et un choix plus heureux
de la forme de la surface, car il existe le danger d'un manque de stabilite
ou de flambage qui limile la sveltcsse; ce danger augmente par la prösence
des deformations lentes ou plastiques que souffre le beton sous l'action des

compressions permanentes comme celles produites par le poids mort; nous
donnerons plus loin un exemple d'un tel cas, quoiqu'il s'agit de fortes
deformations produiles par des causes iinprevucs qui donnerent lieu ä ce

phenomene.
II s'agil donc d'alleger le poids de ces constructions sans diminuer

cxcessivemenl la rigidite du \oile. Lue bonne Solution eonsisle ä elablir
des anneaux de rigidite plus ou moins rapproches. Mais ceux-ci presen-
tent des inconvenients par suite de la difficulte inherente aux coffrages
et dispositifs d'impermeabilisation.

On peut egalement substituer le voile continu par un treillis metallique

(fig. 1). Les grandes couvertures metalliques projetees normale-
ment avec des elements superposes en formant des constructions calcula-
bles par les simples melhodes de la resistance des materiaux, peuvent etre
Substitutes par d'autres oü le treillis esl dispose selon la surface.

A mon avis et, par tout ce que j'ai pu calculer et tätonner, cette
Solution peul offrir des grands avantages el permettre la realisation de

couvertures Economiques tres tHi'j.r<'intes d'aspecl et faciles ä realiser.
Si la maille est suffisamment petite il semble parfaitement acceptable
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Fig. 2. Elevation
du Recoletos
construit en
Espagne en 1936.

d'appliquer le calcul de voile continu pour determiner apres, et avec ses
rEsutats, les efforts resultant ä chaque barre de la triangulation.

Les etudes que j'ai pu faire dans ce sens indiquent clairement que ce
type de construction peut etre tres economique par suite de la diminution
du poids par rapport au bEton, et aussi par la suppression des coffrages et
Echafaudage; on a dejä fait quelques projets en Espagne dans ce sens, pas
encore realises, mais desquels on peut beaucoup esperer.

En dehors du probleme theorique de calcul, il sera nEcessaire de deve-
lopper des investigations experimentales dans les laboratoires, pour mieux
connaitre le comportement de ce type de construction et savoir si les
efforts principaux dans les barres correspondent avec la theorie, et si les
efforts secondaires, tels ceux de torsion dans les barres, sont negligeables
ou non.

Une Solution pratique est de disposer des profus droits selon les
generatrices du cylindre et selon les diagonales necessaires pour former avec
les generatrices un treillis triangulaire; dans ce cas. les contraintes selon
les directrices se Iraduisenl par des compressions et selon les diagonales
par des tractions produites isostatiquement dans les genEratrices. Au
contraire, I'effort selon la generatrice donne lieu ä des compressions et
dEformations transversales tres petites. Peut-etre devrait-on etudier la lame
anisotrope, mais ce probleme necessite une elude minutieuse theorique et
experimentale. On peut admettre les flexions, en premiere approximation,
decomposees vectorialement sur les diagonales, quoique ceci donne lieu
ä des efforls de torsion et aussi ä des anomalies difficiles ä Etudier. J'espere
pouvoir realiser une etude experimentale qui promet d'etre intEressante
du point de vue technique.

Je termine cette communication en completant l'information que j'ai
donnE au Congres de 1936 sur un voile cylindrique qui est entrE dans
Fhistoire pendant la guerre espagnole. Un mEmoire dEtaillE de ce voile a EtE
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Fig. 3. Vue inferieure de la salle du Recoletos.

publie dans les annales de l'Academie des Sciences de Madrid que je mels
ä la disposition de ceux qui s'interessent ä ce theme. Notons d'abord quelques

raisons sur les phenomenes observes avant son ecroulement, du aux
bombardemenls; ces phenomenes confirment les points que jc viens
d'indiquer.

On a exEcutE en Espagne differents exemples de constructions en voiles
minces, dont quelques-unes sont dejä connues par les publications faites
dans differentes revues techniques, notamment celle du Fronton Becoletos,
qui constitua l'objel d'une courte note que je presentai au Congres de 1936.
J'en dirai quelques mots sur son Ecroulement, ä la suite des bombardements
au cours de la guerre espagnole.

La toiture (fig. 2) peut etre dEfinie comme un voile cylindrique de
gEneratrices horizontales, en beton arme, dont la direclrice est formEe par
deux arcs de cercle inegaux lesquels, en partant des tangentes verticales aux
bords, se rejoignent orthogonalement. Le voile a une epaisseur de 8 cm
et est substitue sur une partie de sa surface par des treillis triangulaires
du meme materiau. La longueur des gEneratrices est de 55 metres et la
longueur entre les bords ou gEnEratrices extremes de 32m50. La figure 3

donne l'aspect intErieur de la salle.
La figure 4 donne le rEseau des isostaliques ou lignes de lension principales

obtenucs par le calcul. La figure 5 represente un detail des armatures
du voile, dont l'Epaisseur de 8 cm augmente dans la zone immcdiate ä la
mouette jusqu'ä 17 cm. On peut aussi remarquer la disposition du tirant
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Fig. 4. Reseau des isostatiques
obtenues par le calcul.
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formE de 16 carres de 50 mm, soudes bout ä bout au moyen de soudure ä

l'arc avec Electrodes enrobees.
L'importance de l'ouvrage justifia des essais sur modele reduit (fig. 6)

ä Echelle de 1/10, sur lequel on pourrait non seulement verifier la
resistance ä la rupture, avec une surcharge superieure ä celle du calcul, mais
aussi verifier la correspondance entre les resultats du calcul et la realitE.
On verifia aussi cetle correspondance par des mesures tres minulieuses
sur l'ouvrage meme.

L'ouvrage se comporta parfaitement pendant trois annees; avant la
fin de la guerre, un bombardement d'aviation produisit plusieurs trous
tres importants tel que celui visible sur la figure 7 et un autre beaucoup
plus grand, de 15 ä 20 metres, qui ne put etre Photographie. Jusqu'apres

3elO/m

tetsa®
5»35

letSfim
*4i5

i Jessp*etn
79ISfim

Saiteso,
telOpm \

eeiofim 4t?5

reiopm

ZelQtue.

^ealSemir .eeiopjii
*e ISpa

MISpn
q«j.o

reOfiia
«fCja. ^ÖX*»»

SeOpn

..CÖQ/3CA1 \\\
\tPP[ .cQaeOc*} i VffftW

f»a
ycJueOtektta

Fig. 5. Section transversale et details constructifs du Fronton Recoletos.
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Fig. 6. Modele
reduit du Recoletos
utilise lors des
essais de laboratoire.

la fin de la guerre, on ne put faire aucune inspeclion de l'ouvrage ni
commencer les travaux de reparation qui ne purent avoir lieu par suite
de l'ecroulement qui survint entretemps.

Une fois la guerre terminee et la vie normale relablie ä Madrid, on
dEcouvrit le voile pour entreprendre sa rEparation; on observa des fissures
de deux millimetres dans les diagonales tendues de la lucarne, une des-
cente ou enfoncement general de la lucarne, qui dans les directrices
centrales depassait 60 centimetres et deformait violemmenl la directrice dans
la clef, avec des ouvertures de fissures qui atleignaient plusieurs
millimetres et il etait possible qu'il y eut encore d'autres defauts qu'on ne put
dEceler.

Tout paraissait indiquer que ce n'etait pas 1'impact meme (auquel
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Fig. 7. Etat de la
toiture apres son
bombardement au
cours de la guerre
civile.
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Fig. 8. Deformations consecutives ä
l'onde explosive :

1. Effet instantane de l'onde positive. — 2. Elfet
instantane de l'onde negative. — 3. Stabilisation
de la forme de la toiture apres l'explosion.

l'ouvrage aurait resistE dans de bonnes conditions) mais l'onde explosive
produite par les bombes qui fut la cause de toutes les anomalies observEes.

En considerant le phEnomene au moment de l'onde positive, c'est-
ä-dire de pression centripete sur l'arc, celui-ci dut eprouver un dEplace-
ment radial tres grand vers l'interieur (courbe I, fig. 8); la dalle put
rEsister sans dEpasser sa limite elastique gräce ä sa grande ElasticitE;
la lucarne avait tendance ä se lever ; mais, non seulement sa plus grande
rigidite, mais la courbure meme du voile donneicnl lieu ä un deplacement
radial produisant une flexion beaucoup plus forte de la direclrice vers la
clef et, par consequent, il s'y produisit une deformation plastique de
l'armature, avec une dislocalion complete du voile. Dans le moment de
l'onde negative (courbe 2, 8) le phenomene fut contraire et la lucarne
descendit. Des dEplacements horizontaux durent se produire egalement
dans la clef, et en particulier la composante de l'onde de succion poussa la
clef vers la gauche et ouvrit les fissures par traction.

Une fois la resistance ä la flexion nulle dans ce point, la lucarne dut
descendre, en perdant sa courbure, et la clef s'eleva.

II est interessant d'indiquer qu'une fois qu'un deplacement important
des genEratrices hautes de la lucarne vers 1'intErieur avait Ete produit, ces
gEnEratrices qui travaillent en compression, ont une forte tendance au
flambage.

La genEratrice comprimEe, courbEe vers 1'intErieur tend naturellement
ä augmenter cette dEformation par flambage. Les deformations plastiques
du beton dans ces nouvelles conditions de travail, bien que petites ä cause
de l'äge du bEton peuvent produire, vu le grand eiancement de la piece
(c'est-ä-dire les genEratrices), des deplacements radiaux relativement
grands dans une periode de temps suffisamment longue. C'est pour cette
raison que je conseillai la mise en place d'appareils de mesure pour observer
si la deformation continuait ou non. On constata qu'elle continuait tres
lenlemcnt.

En envisageant le probleme sur ces donnees et possibilites, on eludia
l'avant-projet d'une reparation du voile (fig. 9) consislant ä bEtonner des
anneaux ou nerfs armes selon les directrices sur le grand lobule jusqu'ä
la lucarne, fortement ancres ä la gEnEratrice de celle-ci (la lucarne) d'un
cotE et dans la partie verticale du lobule de Lautre, et en les dotant de
tenseurs dans l'armature longitudinale extErieure et des Etriers d'ancrage ä

la dalle, unis aussi par des tenseurs ä la face exterieure des anneaux.
Pour effectuer les opErations que je viens d'indiquer on commenca

ä monter un echafaudage et ä decouvrir la voüte en enlevant le reveleu-ent
de fibro-ciment de la partie superieure et les verres des lucarnes, afin de
faire aussi une rEvision plus dEtaillEe de l'ouvrage.

Dans ces conditions, dans l'apres-midi du 15 aoüt 1939, lors d'un
orage assez violent et d'une augmentation du degre hygroscopique, les



582 IVcl. E. TORROJA

£tr,»r* 4&mrr.,e.6.
T.^eve- »Ken

ttgaut

iV-
V*©

«öjf
v-/'

=-ar" ^~
Fig. 9. Croquis pour
l'avant-projet de
reparation du voile.

appareils de contröle accuserent une accElEration rapide de la descente de
la lucarne.

Avant minuit, l'ecroulement complet survint, du ä la continuation
des mouvements (fig. 10) c'est-ä-dire provoquE par un accroissement tres
important de la perte de courbure des directrices centrales de la lucarne,
avec une torsion initiale importante de ces directrices et avec une forte

Fig. 10. Diverses phases

de l'ecroulement
de la toiture endom-
magee.
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Fig. 11. Divers aspects de la desagregation du beton.

augmentation de la poussee horizontale dans la clef, laquelle poussa le
grand lobe, en tombant une partie de celui-ci dans la zone laterale, en
dehors du mur.

Etant donne la grande hauteur du bätiment (25 m) le beton se dEsa-

gregea completement (fig. 11). Comme je Tai dejä dit auparavant la
rEsistance de la poutre en mouette fut beaucoup plus grande que prevue,
puisque les zones extremes de la lucarne qui supporte les efforts Iranchants
minima, resterenl intactes en piande partie. Les armatures du tirant formees
de 16 carres de 50 mm soudees electriquement bout ä bout et recouvertes
d'une section de beton relativement petite, furent arrachees du beton mais
sans se rompre, pas meme dans leur section soudee, malgre les efforts
enormes qu'elles durent eprouver aux derniers moments:

Abstraction faite des details et hypotheses des causes immediates de
l'effondrement, il est important de noter, du point de vue technique, que
l'ecroulement fut produit indubitablement, pas par un defaut dans les
travaux que nous pourrions considerer comme principaux de la construction,
mais exclusivement par un manque de rigidite transversale des directrices
centrales de l'arc dans le grand lobe, cause par la ruplure et deformation
brusque de ces directrices, sous l'action de l'onde explosive.

On voit aussi la grande importance que peut avoir le flambement cause
par la deformation lente ou plastique du beton; c'est un des points sur
lesquels il est interessant d'investiguer, puisque dans la plupart des cas,
c'est precisement le danger du flambage plastique qui determine les limites
de sveltesse qu'on peut atteindre dans ce genre de contructions en beton
armE.



584 IVcl. E. TORROJA

Resume

On expose les observations effectuEes pendant l'Ecroulement d'un voile
cylindrique de lobules inegaux, produit par suite des bombardements, qui
introduisirent des fortes ruptures et dEformations plastiques suivies d'un
flambage des generatrices comprimees.

L'auteur signale aussi FintEret que peut avoir la Substitution des voiles
Continus en beton par des treillis metalliques inscrits dans la surface.

Zusammenfassung

Der Verfasser beschreibt das Verhalten eines aus zwei Zylinderschalen
mit ungleichen Badien zusammengesetzten Bauwerks nach dessen Bombardierung.

Diese verursachte grosse plastische Deformationen, die zum
Knicken der gedrückten Erzeugenden führten, sodass die Tragkonstruktion
zusammenbrach. Die aus den Beobachtungen sich ergebenden Schlüsse
werden gezogen.

Der Verfasser erwähnt auch die Möglichkeit, die vollen Belonschalen
durch metallische Fachwerke zu ersetzen, die nach der Oberfläche geformt
sind.

Summary

The author explains the observations carried out during the collapse
of a cylindrical slab of unequal lobules, caused as a result of bombardments
and which produced serious ruptures and plastic deformations followed by
a buckling of the compressed generators.

He also points out the advantage that may lie in substituling for
continuous reinforced concrete slabs, metal latticework implanted in the
surface.



IVc2
Realisation recente d'une construction voütee

Beispiel eines Schalenbauwerkes neueren Datums

Example of a recent shell structure

H. SCHERER
Dipl. Ing. ETH, Luzern

Unter den Zylinderschalen haben in den letzten Jahren die Shedkons-
truktionen aus Eisenbeton für grosse Fabrikationshallen wachsende Bedeutung

erlangt. Sie können den Wettbewerb mit anderen Bauweisen im
allgemeinen erfolgreich bestehen, da sie den Anforderungen, die an solche
Objekte gestellt werden müssen, weitgehend gerecht werden : sie ermöglichen

eine gute und gleichmässige Belichtung, lassen einen verhältnismässig
grossen Slützenabstand zu und sind auch in wirtschaftlicher Hinsicht
konkurrenzfähig.

Für die vorliegende Fabrikalionshalle, 132 m lang und 42 m breit,
war eine gute und gleichmässige Belichtung erwünscht, der Baum sollte
von möglichst wenigen Stützen unterbrochen sein und mit Kranen von 5 t

Nutzlast bestrichen werden können. Beim gezeigten Bau (Abb. 1, Modell)
handelt es sich um einen ersten Ausbau. In jeder der 21 m breiten Hallen
fährt ein Laufkran. Im Anbau im Vordergrund sind Kesselhaus und
Wohlfahrtseinrichtungen untergebracht, in der Halle des Kopfbaus vorne rechts
fährt ein Kran quer über die Längskrane der Shedhallen.

Bei den aus Zylindersektor und Bandlräger zusammengesetzten Shed-
schalen beträgt die grösste bis jetzl erreichte Breite (in Bichlung des
Gewölbes, senkrecht zur Erzeugenden gemessen) ca. 10 m. Werden grössere
Stützenabstände verlangt, so können die in einer Ebene liegenden
Endscheiben zu Fachwerkträgern zusammengefasst werden. Am bequemsten
sind die als rautenförmige Fachwerkträger ausgebildeten einfachen Balken,
da sich bei diesen gewisse Schwierigkeiten in der Ausbildung der Knotenpunkte

und Stösse vermeiden lassen.
Im vorliegenden Fall (Abb. 2, Grundriss u. Schnitte) beträgt die Stützweite

des Fachwerkträgers, bei zwei hintereinanderliegenden Schalen von
je 10,5 m Breite, 21 m. Die Schalen selbst haben eine Spannweite von
24 m. Sowohl die Baugrundverhältnisse als auch das Interesse an einer
mehrmaligen Verwendung der Schalung führten dazu, die Schale als
einfachen Balken auszubilden. Die dadurch bei den Endscheiben entstehenden
Doppellräger sind wohl etwas komplizierter, aber dennoch vorteilhaft. Das
Prinzip der rautenförmigen Träger kam schon bei der bekannten Halle der
Textilfabrik « Grafa » in Buenos Aires zur Anwendung; dort entfiel jedoch
auf eine Stütze eine Grundfläche von 120 m2, hier sind es 504 m2.

Für die statische Berechnung wurden im Hallenquerschnilt bei Stützen
und Fachwerkträgern die Einspannverhällnisse berücksichtigt. Bei der
Schale bestand anfänglich die Absicht, zur Berechnung der Schnittkräfte
eine Näherungslösung anzuwenden. Der Umstand jedoch, dass zwischen
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Abb. 1. Modell der ersten Ausbauetappe.

den Näherungslösungen, welche Finsterwalder, bezw. Jakobsen angegeben
haben, für die Momente Differenzen bis zu 33 % für Schalen mit ähnlichen
Kennziffern auflreten, Hessen eine Lösung nach der genauen Theorie angezeigt

erscheinen, dies umsomebr, als der unlere Bandträger wegen der
Aufhängung der Kranbahn relativ sleif ausgebildet werden mussle. Der
obere Bandträger ist so nachgiebig, dass dort M?" und \'?"=0 angenommen

werden durften. Die am oberen Bande der Shedschale entstehenden
Zugspannungen lassen sich beim Ausrüsten gut beobachten. Man sieht,
dass die Schale nicht nur in der Lotrechten durchgebogen wird, sondern
dass auch eine wagerechte Verschiebung eintritt. Die Bandstörungen beim
Anschluss an den Fachwerkträger und die Torsionsbeanspruchungen des
Randträgers müssen berücksichtigt werden.

Die Aufhängung der Kranbahnen am unleren Randträger der mittleren
Slützenreihe erforderte besondere Beachtung'. Dieser Randträtrer musstc

noo
ABft ZLQQ _ J«J»
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Abb. 2. Grundriss und Schnitte.
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Abb. 3. Isolation und Eindeckung der Schalen.

kräftig ausgebildet werden, um eine gute Verteilung der Einzellaslen auf
die Schale zu ermöglichen. Es widerspricht dies allerdings etwas dem
allgemeinen Prinzip, den Randträger möglichst schwach zu dimensionieren,
und die Schale selbst zur Lebertragung ihres Schubes heranzuziehen.
Durch die Kranlasten werden die Spannungen infolge Eigengewicht und
Sehnee an der ungünstigsten Stelle um ungefähr 25 % erhöht.

Durch die Fensterpfosten sind die beiden übereinanderliegenden
Randträger zweier benachbarter Scheiben gelenkig miteinander verbunden,
sodass vom oberen Randträger nur vertikale Verschiebungen auf den unleren

übertragen werden.
Für die Arbeitsplätze in der Halle wurden die bestmöglichen Be-

lichlungsverhällnisse verlangt. Nun erfordern zwar senkrecht angeordnete
Fensterpfosten gegenüber solchen mit einer Neigung von 60° etwas mehr
Dachfläche samt deren Isolation und Eindeckung. Durch Versuche der
A. E. G. Zürich (© wurde jedoch nachgewiesen, dass bei lotrechten Shed-
fenstern im Zusammenhang mit der Reflexion der Schale eine gleichmässi-
gere Raumbelichtung möglich ist, als bei geneigten Fenstern. (Wird das
so reflektierte Licht in eine vertikale, eine linke und eine rechte horizontale

Komponente zerlegt, so weichen die Grössen der beiden horizontalen
Komponenten am wenigsten von der Grösse der vertikalen Komponente
ab.) Lin weiterer Grund, die Shedfenster verlikal anzuordnen, besland
darin, dass slall dem teureren Drahtglas gewöhnliches, lichtdurchlässigeres

(') A. Staub, Das Schalenshcddach aus Eisenbeton der Schweiz. Bindfadenfabrik Schuf/-
hausen (SBZ, 13. 115 v. 6-1-40).
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Abb. 4. Innenansicht der
Halle.

Fensterglas eingesetzt
werden konnte. Dieses
wird, da senkrecht, in
der stark von Buss und
Staub durchsetzten Luft,
weniger verschmutzt,
und ist zudem von den
Rinnen aus leichter zu
reinigen.

Zur Isolal ion der 7 cm
starken Schale wurden
Glaswollmatten
verwendet. In gewissen
Abständen wurden zuerst t
Holzklölzchen für die
Auflagerung der Pfetten
mit einem auch auf die Dauer als geeignel befundenen Leim auf die Schale
versetzt. Alsdann erfolgte das Verlegen der Glaswollmatten, wobei die
Auflagerstellen der Pfeilen sorgfältig ausgeschnitten und abgedichtet wurden,

um Kältebrücken zu vermeiden (Abb. 3). Hierauf wurden die Pfeilen
und schliesslich die Welleternilplatten verlegt. Diese wurden für den
unteren Teil der Schale im Herstellungswerk gebogen. Die Glaswolle wird
also durch die Eindeckung nicht zusammengedrückt und bildet eine
hochwertige Wärmeisolierung.

Das Dachvvasser aus der ersten und drillen Rinne (siehe Abb. 2,
Schnitt a-a) wird längs dem Fachwerkuntergurtstab zur nächsten Stütze
geleitet. Von dort aus können auch die Lüftungsflügel der Shedfenster
durch ein Gestänge serienweise bedient werden. Abbildung 4 zeigt eine
Innenansicht der Halle, aus welcher die sehr gleichmässige Belichtung
ersichtlich ist.

Resume

Ce memoire donne la description, pour une construction voütee
recente, des principes de base, des calculs statiques, des details d'execution

ainsi que des conditions d'isolation et d'eclairage.

Zusammenfassung

An einem Schalenbau neueren Datums werden die baulichen Grundlagen,

die statischen Verhältnisse, konstruktive Einzelheiten, sowie
Isolation und Belichtunesverhällnisse beschrieben.

Summary

A description is given of the structural rudimenls, statical
conditions, conslructive details, as well as isolation and ligbting conditions,
of a shell structure recently built.
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La resistance des murs minces en beton charges axialement
sous une charge repartie

Die Festigkeit von dünnen, axial gedrückten Betonwänden
unter verteilter Belastung

The strength of thin concrete walls in axial compression
under distributed loading

A. E. SEDDON
M. Sc, A. M. I. Struct. E.

Introduction

The tesls described in Ihis paper are part of a research programme in
progress at IIre Building Research Station, of the Department of Scientific
and Induslrial Besearch, to investigale, in the first instance, the strength
and performance of Ihin concrete walls. That programme has been out-
lined elsewbere ('). Its purpose is to obtain experimental data on which
design recommendations may be based for a more economic use of load-
bearing reinforced concrete walls in multi-storey buildings.

Outline of the tests

Fourleen concrele lest walls, 9 ft 0 in high and 4 in thick, were
subjected to distributed axial compression in short-period tests to destruction.

An ordinary Portland cement and washed, uncrushed, natural river
sand and gravel were used for the concretes, and these malerials and the
water were proportioned by weight to an accuracy of 0.1 %. The cement
was obtained commercially and a quantity sufficient for all the tests was
mixed in successive batches in a mechanical mixer in such a manner as
to produce as uniform a material as possible. Representative samples were
tesled in the manner prescribed in B. S. S. No. 12 (2) and the cement was
found to comply with the requirements of that British Standard. The aggre-

(*) F. G. Tnosus, Structural Engineering Research at Ihr Building Research Station (The
Structural Enqinccr, Vol. 26, N'o. 2, pp. 81-103. Institution of Structural Engineers, London,
February, 1948).

('-) ß. S. S., No. 12. Ordinary Portland and Itapid-Hardeninn Portland Cements, British
Stnndnrds Institution, London, 1947.
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Length

Mean sioraj. e conditions
Age

at

test

J.oa.l

at

fracture

Mcau

crushiug

strenglli

Uefereuce

Xo. Mean
temperature

.Mean
relative

huunditv

(ft in) (•F) (%) (di).] (tont) (Ih/in')

1

1

- G'O"

"

70

69
1 „

|

54 22 395 3 070

1A 2 51 15 351 2 730

3 53 14 308 2 390

1

|

i

65
1

51 15 296 2 300

IB
3

1

1

G'O"
1 63

1 60

54

41 14

>500

>461

> 3 890

> 3 580

4
1

58 50 350 2 720

'
1

1

1

i 63 58 272 2 820

4'6" l 58

' 59

50 240 2 490

5 40 287 2 980

IG 2
|

6
3'0"

\ 62

\ 61

59

44

> 14 ' 165

152

2 570

2 360

3

7 1

1'6"
l 60

64
1

54

44

76.8

80.0

2 390

2 490

Tabi.t- 1. — Wall Test Data : Walls 0 fl 0 in high, 4 in thick.

gates were known to be of good quality, were dried before use and were
well-graded with a maximum size of 3/4 in.

The concreles were prepared in an open-pan, paddle-type mixer in a

laboratory in which the temperature and relative humidily were controlled
at (J4° F and 65 %. From each batch of concrete a sample was drawn to cast
control specimens concurrently with a portion of the wall. These specimens
consisted of 4 in cubes, 6 in X 12 in cylinders and 4 in X 4 in X 1° lXi
beams. and the number of each type varied as the wall series proeeeded
but was in no case less than six for any one condition of slorage. The cubes
and beams were moulded in aecordance wilh the British Standard Code
of Praclice (3), and the cylinders in a manner similar lo lhat specified by
the American Society for Testing Materials (*) wilh the exception that they
were not capped. The walls were cast in Ihe laboratory liousing the com-

(3) British Standard Code of Praclice The Structural Use of Normal Reinforced Concrele in
Buildings, British Standards Institution, London, 1948.

(4) A. S. T. M. Designation C31-44 : Making and Curing Concrete Compression and Flexure
Test Specimens in the Field, American Society for Testing Materials, Philadelphia, 1944.
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fig. 1. View of wall 1B 4
after failure.
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pression machine used in the wall tests, in one lift and on reinforced
concrele pallels. The temperalure and relative humidity of this lesling
laboratory were nol conlrolled, but they were continuously recorded.

After casting the wall and ils control specimens, damp sacking was
spread over them until the wall forms were stripped or Ihe specimens
demoulded. The respective curing periods were three and two days. The
walls were stored in the testing laboratory with certain of the control
specimens, whilst the other specimens were stored in air at 64° F and a

relative humidity of 65 %.
The walls were loaded axially in a hydraulic compression machine of

500 tons capacity. The machine was of the twin-screw type, in which the
walls were compressed by a hydraulic ram against a crosshead located by
the screws. The load on the ram was recorded by a pendulum-type dyna-
mometer, and this load was distributed along the füll length of the wall by
two slout loading beams located between the wall and the bearing plates
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Age

at

test

(days)

4 in cubes 6 in X 12 in cylinders

Uefercnce

No.

Controlled
storage

64" F., 65 o/o R. H.

Storage
with
wall

Controlled
storage

64' F., 65 0/j R. H.

Storage
with
wall

N-
Crushing
strength
(lb/in»)

x°
Crushing
strength
(lb/ius)

X"
Crushing
strength f N*
(lb/in')

Crushing
strength
(lb/in')

1A

1

2

3

22

15

14

6

6

6

3 720

3 440

3 340

6

6

6

2 890

2 500

2 220

IB

1

2

3

4

15

> 14 <

6

6

6

6

2 860

5 260

4 540

4 020

12

12

4 570

3 190

6

6

2 110

3 080

12

12

3 280

2 340

IC

1

4

•1
2

6

3

7

1 6
/

1 6

0

14 j 6

12

I 6

1 12

3 480

3 470

3 610

3 780

3 460

3 250

3 940

6

12

6

12

6

12

3 600

3 720

3 730

3 280

2 860

3 460

6

8

8

2 610

3 100

2 990

0

12

6

8

6

8

2 680

2 790

2 920

2 760

2 290

2 770

of the machine. The top of the wall and the pallet were bedded between
these loading beams using a cement mortar. In loading the wall the procedure

consisted of two test runs, a preliminary run and the test run proper.
During the test run proper the overall loading rate lo failure of the

wall ranged from about 15 to 20 lb/in2/min through the test series. The

wall test data is given in Table 1 and a view of one of the walls after failure
can be seen in Figure 1.

The control specimens were weighed before they were tested at Ihe
same age as that at wdaich the corresponding wall was tested. The cubes
and beams were tested in aecordance with the above-mentioned B. S. Code
of Praclice, but the cylinders were crushed between two sheets of 3/16 in
hard plywood inserted between the cylinders and the steel platens of the
testing machine. The test data obtained from the control specimens is
given in Table 2.

The strengths developed by Ihe walls and those of the cubes and
cylinders are compared in Table 3.
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4 in X 4 iff X 16 in beiilus Mean density (lb/eu. ft)

Controlled
storage

64- F., 65 ff/o R. H.

Storage
wilh
wall

Controlled
stora ge

64" F. 65 o/u

R. H.

Storage
with
wall

N*
Modulus of

rupture
(lb/in')

V
Modulus of

rupture
(lb/in')

6

6

6

530

530

425

143.5

143.2

143.0

6

6

415

500

6

6

455

365

143.3

147.2

144.0

144.8

142.4

142.5

6

6

6

435

475

430

6

6

6

6

6

6

410

490

395

405

360

395

144.4

144.6

143.2

142.8

143.7

144.4

143.2

144.0

142.2

142.5

141.5

143.0

142.6

Table 2. — Control
Specimens : Test Data.

Conclusions

The following conclusions were drawn from the tests :

(i) For 4 in walls stored under laboratory conditions of moderate
temperature and humidity and of lengths nol less than 4 ft 6 in, a fair
average value of Ihe wall strength (defined as the ultimate mean
compressive stress) was 75 % of the mean crushing strength of 4 in cubes cast
in the same concrele and stored in air at 64° F and a relative humidity of
65 % (Ihe controlled-stored cube strength).

(ii) For walls similar in size and materials, the values of Ihe ratio
wall strength : controlled-stored cube slrength did not differ from their
average by more than + 7 1/2 %

(iii) For shorler 4 in walls from 3 ft 0 in to 1 ft 6 in long there was
a small reduction in the average value of Ihe ratio wall strength : controlled-
stored cube slrength to a value not less than 65 %. The average value for
walls of these lengths tended lo approach Ihe lower limit of the values
for the longer walls.
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_ wall strength „ wall strength

Reference

No.

4 in cube strength "" 6 in X 12 in cyliuder strength ""'

Controlled storage |

of cubes Same storage
64' F., 65 % R. H. 1

Controlled storage
of cvlinders

64" F.. 65 "lt R. H.
Same storage

1 82.5 106.0

1A 2 79.5 109.0

3 71.5 107.5

1 80.5 109.0

IB
2 > 74.0 > 105.5

3 > 79.0 > 78.5 > 109.0

4 67.5 85.0 116.0

1 81.0 108.0

4 72.0 69.0 93.0

5 82.5 80.0 107.0

IC 2 68.0 69.0 88.0

6 68.0 72.0 76.0 85.5

3 73.5 83.5 104.5

7 63.0 72.0 83.5 90.0

(iv) The wall strengths were related to the crushing strengths of
6 in X 12 in cylinders stored in air at 64° F and a relative humidity of
65 %, and tested between plywood packings, in a manner consistent with
a fair average value of the ratio cylinder strength : cube strength of 75 %.
Thus, the walls not less than 4 ft 6 in long had strengths which compared
favourably with those of controlled-stored 6 in X 12 m cylinders.

(v) For 4 in walls which were similar in other respects, no significant
decrease in the ratio wall strength : cube strength was evident over a ränge
of controlled-stored cube strengths from about 2 500 to 5 000 lb/in2.

(vi) In no test was instability the criterion of failure of the wall. The
walls crushed wdthout appreciable bending.
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_ 6 in X 12 in cylinder strengt))Ratio 5_ (o/0)
4 iu cube ütreugth

Same storage

77.5

72.5

66.5

74.0

70.0

71.5

73.0

75.0

74.5

75.0

78.0

l 89.5
| 84.0

80.0

l 76.0
80.0

Table 3. — Walls and
Control Specimens :

Proportional Strengths.

(Ratios quoted to ± 0.25 %)

Resume

Les resultats d'essai obtenus sur des murs en beton de 10 cm d'epaisseur

charges axialement montrent qu'en reduisanl la longueur du mur
de 1,80 m a 0,45 m, le rapport de sa charge de rupture moyenne par rapport
ä celle du cube d'essai de 10 cm de cöte" execute dans le meme beton
s'abaisse de 0,75 ä 0,65. On n'a pas pu determiner si ce rapport est
influence par la resistance du cube pour des tensions de 175 ä 350 kg/cm2.
Les essais donnent une valeur moyenne constante de 0,75 pour le rapport
de la charge de rupture de cylindres de 15 cmX30 cm (essayes entre
plaques de multiplex) ä celle des cubes d'essai de 10 cm de cote, dans
le cas oü cylindres el cubes ont ete conserves dans l'air ambiant. Pour
tous les essais, la rupture du mur fut causee par depassement de la
tension de compression du beton. Aucune valeur sensible pour la fleche ou
voilement n'est a signaler.
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Zusammenfassung

Die Ergebnisse von Versuchen an 10 cm dicken, einstöckigen, axial
gedrückten Betonwänden zeigen, dass bei Verkleinerung der Wandlänge

von 1,50 m auf 0,45 m das Verhältnis der höchsten mittleren
Druckspannung in der Wand zur mittleren Druckfestigkeit von 10 cm
Würfeln aus gleichem Beton von ungefähr 0,75 auf höchstens 0,65 sinkt.
Es konnte nicht festgestellt werden, dass dieses Verhältnis durch die A.en-

derung der Würfeldruckfestigkeit innerhalb eines Bereichs von 175 bis
350 kg/cm2 beeinflusst wurde. Die Ergebnisse zeigten einen gleichbleibenden

Durchschnittswert von 0,75 für das Verhältnis der Druckfestigkeit
von 15 X^0 cm Zylindern (geprüft zwischen harten Sperrholzfassungen)
zu derjenigen von 10 cm Würfeln, wenn die Zylinder und die Würfel
zusammen an der Luft gelagert wurden. Bei allen Versuchen versagte die
Wand durch Ueberwindung der Druckfestigkeit des Betons. Weder
nennenswerte Biegung noch Knicken trat auf.¦6

Summary

Data obtained from tests on 4 in concrete walls of single-storey height
under distributed axial compression suggests that as the wall length is
reduced from 6 ft 0 in to 1 ft 6 in the ratio between the ultimate mean
compressive stress in the wall and the mean crushing strength of 4 in cubes
of the concrete used is reduced from about 0.75 to not less than 0.65.
There was no evidence to suggest that the ratio is affected by the cube
strength within a ränge of cube strengths from about 2 500 to 5 000 lb/in2.
The data was consistent with a fair average value of 0.75 of the ratio
between the crushing strengths of 6 in X 12 in cylinders (tested between
hard plywood packings) and 4 in cubes, when the cylinders and cubes
were stored together in air. In all the tests the wall failed by crushing of
the concrete, and neither appreciable bending nor buckling oecurred.
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Contribution ä l'integration de l'equation differentielle
pour voiles minces non flechis

Ueber die Integration der Differentialgleichung
für dünne Schalen ohne Biegung

On integration of the differential equation
for thin shells without bending

K. W. JOHANSEN
Dr techn. Copenhague

For thin shells without bending it is known (*) that the horizontal
components of the membrane forces may be given by a stress function :

32F ./•_.. KT
32F /• „ 32F

which is determined by the differential equation

32F d2z 8»F d'i 32F _3*z_ 3_ T^z_ r j
dx1 3y2 3a; 3y 3x3y 3y* 3a;'2 3a; [3a; _/ j

X and Y are the horizontal components of the load, Z the vertical, and z
the ordinate of the middle surface of the shell. In well-known notation
it may be written :

3*F 32F 32F

t©^-2s^3y-+'-©y=G-- W

We now use Laplace's method for Iransformation of linear equations by
changing the independent variables x and y to E and rj, where E and 7) are
the Solutions of

t dy2 + 2 s dy da; + r da;2 0 (2)

(') L. Bescük^e, Compfcs rendus de l'Acadimie des Sciences de Paris, t. 201, p. 935, 1935.
ß. Laffaille, Memoire sur l'etude generale des surfaces gauches minces (Publications

IABSE, vol. 3, p. 295, 1935).
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P̂P«.*© yy

dl

or

jiy_ _ i
dx

We then get

3F

\/s2 — rt (3)

3F

i/s'-'-'^)+^©-'"^-
where D is the functional determinant.

^=GD

(4)

Substituting H |/s* — rt and u=HF, we get

„„ 3!« „ 32H _ _.2Hy, 2b-5?t- G-D
0;0T, C;<©

(6)

32H
This equation may be integrated at once, when -g„ =0, and that

is the case when

H4 s2 — r< a2 constant (7)

The Solution of this differential equation is obtained by eliminating
q from

(8)

2 ?y + *(g-^) + *(s + £

0= y+^g-iJ +^+ i), j

where cl> or *F are arbitrary functions.

We now have

—*" g

and

* f- (•', - E); y - *' (E) - V (0 ;

z * (E) + l©0 -1 (E + /i)[cf>' (E) © >F (n)]. i

The differential equation (1) then becomes

|^ f[^(E) + »r©0jG.

which is solved by Iwo quadratures.

(9)

(10)

(11)
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When a is real, the shell surface has hyperbolic curvature. When a
is imaginary, a^ib, the shell surface has elliptic curvature. The equation

is more convenient put into real form, and we get the equation of the
potential

»(w+^h™ "2>

where E and r, are the real and imaginary parts, respectively, of the Solution
5 ; + ir, to (2) or (3).

Finally, when r/ .s2, the shell surface is developable. Then E x

dv 5
and 7i is the Solution of —— -• The equation is transformed into

dx t

(13)
3 / t 3F \ _G_ _ jhi_
3fU7~3E"j- rT~; ^""Sy"-

This equation is solved bv two quadratures.
3'H

H constant is a verv special Solution of the equation -^r=— =0.
öEot)

82H
Transforming -^j,— 0 inlo the original variables x and y and putting

— jt) we gel Ihe more general differential equation

r
3*/i „ d2h d2h -l2 s äTTÜT + ' "air 0 : h (.* - r<) " H- (14)3y2

~ 3x3y ' 3x

It is of the 4th order, and the general Solution may be difficult to find,
but special Solutions are

c a ab b

z a; x v

c « h o b ° b '

z * X v y
b '

C a:

z

c

a2 b'

<I> (*) a; © Aye"'

By tlic mathemalical methods it may be somewhat difficult to salisfy
the boundary conditions. I should therefore like lo call attention to a very
simple practical method. In most cases the shell is designed for one load
only, dead load and snow, as the wind-pressure has little influence. We
may now reverse ihe problem, choose tbe stress function, and determine
the shell surface. Usually it will not be difficult to choose a stress function
salisfying the boundary conditions. For Ihe shell surface there are generally
no boundary conditions at all, or only very limited ones.

This circumstance facilitates Ihe Solution of the differential equation,
which may be solved by the methods of finde differences in the simples!
form. In other applications of finde differences one may solve a greal
number of linear equations and Ihe Solution must finally be differentiated
once or twice to get the stresses. This process involves much work and
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great accuracy. But in our case the Ordinate z gives the final Solution at
once, and the lack of boundary conditions makes it possible to choose some
ordinates arbitrarily and thus in most cases compute the rest successively.
One may also start with a rough net, and then interpolate to intermediate
points. In this connection it should be noted that the net need not fit the
contour. when there are no boundarv conditions.

Resume

Gräce ä la transformation de Laplace, on peut obtenir une forme
simple (6) pour l'equation differentielle des tensions (1). Pour le type
de voüte defini par l'equation (8), cette equation peut encore se sim-
plifier pour prendre la forme (11) qui peut etre resolue par deux integra-
tions. Pour les voütes ä courbure elliptique on obtient l'equation
differentielle (12). Cette meme forme simple est egalement obtenue par les
voütes du type (14).

L'auteur montre en outre qu'il est possible de choisir d'abord la
forme de l'equation des tensions et d'en deduire la forme de la voüte, et
cela d'une maniere tres simple par le calcul differentiel.

Zusammenfassung

Mit Hilfe der Transformation von Laplace kann die Differentialgleichung
(1) der Spannungsfunktion in die einfache Form (6) gebracht

werden. Für den Schalentyp, der durch (8) beschrieben wird, kann die
Gleichung weiter vereinfacht werden auf (11), welche durch zwei
Integrationen gelöst werden kann. Für Schalen mit elliptischer Krümmung
erhält man die Potentialgleichung (12). Die gleiche einfache Form wird
auch erhalten für Schalen vom Typus (14).

Ferner wird gezeigt, dass in vielen Fällen die Spannungsfunktion
gewählt und die Schalenform danach bestimmt werden kann. Dies kann
z.B. ganz einfach mittels Differenzenrechnung durchgeführt werden.

Summary

By Laplace's transformation the differential equation (1) for the stress
function can be converted into the simple form (6). For the shell type
represented by (8) the equation is further reduced to (11), which is solved
by two integrations. For surfaces with elliptic curvature. the potential
equation (12) is obtained. The same simple forms are also obtained for
shell types which satisfy (14).

Furthermore, it is pointed out that in many cases the stress function
can be chosen and the shell surface determined thereafter. This
determination can, for instance, be made quite simply by the method of finite
differences.
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Considerations concernant le calcul
et le projet des voütes cylindriques

Kritische Betrachtungen zur Berechnung
und zum Entwurf von Zylinderschalen

Critical notes on the calculation
and design of cylindrical shells

K. W. JOHANSEN
Dr techn. Copenhague

The forces and bending momenls in cylindrical shells are usually
determined by a differential equation of the 8th order. The mathemalical
work is very complicated, especially the determination of the arbitrary
constanls at the boundary conditions. The numerical computations must
be worked out to six decimals, when the final results are required to have
three. The forces and moments thus obtained determine the dimensions
and reinforcement of the shell. How this is done is never mentioned in
the literature, and, I think, with good reason. The fact is that it is done
in a very irrational manner. The tensile stresses are summed up into a
tensile force, and the area of reinforcement is determined by dividing this
tensile force by the working stress, ignoring the fact that the deformation
and the working stress do nol correspond, as they are not constant over
the entire region of tension. With this serious discrepancy between stress
and strain the basis of all the fine mathemalical work and all the complicated

computations is gone, the basis being the theory of elasticity, where
stress and strain correspond. We may put it this way : First we calculate
Ihe forces and momenls according to the theory of elasticity, and then we
design according to assumptions contrary to the same theory. Being very
sensitive to the distribution of the shear forces, the transversal bending
moments may be multiplied when cracks develop and the bars yield, and
we must therefore calculate the shell in a slate of rupture at the ultimate
load, Ihe more so as the working load must be fixed according to the
ultimate load.

For long shells the theory of rupture is very simple. The shell may
be considered as a reinforced concrele beam, and the tension of the concrele
in the tension zone is not taken into aecount. The neutral axis is determined
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tdxds
ds.

dHH.

<* Fig. 1.

as corresponding to the stresses in the concrele and Ihe reinforcemenl.
Then also the momenl arm hi is determined, whereby the lensile force T,
equal to the compressive force C, can be calculated, as M T • h,. On a

strip of the shell act the shear forces — H and H -|- dH, calculated according
lo Ihe elementary theory for reinforced concrete beams. The resultant of
— H and H -f- dH acts as a tangential force tdx on the shell. The forces

dH
t

dx
and Ihe load p Ihen determine Ihe Iransversc moments m in the

shell. Between the reinforcement and the neutral axis, H, and consequently
also /. are constant. For the sake of simplicity Ihe compressive stress is
assumed constant, as in the modern methods for calculation of reinforced
concrele beams. II will Ihen vary in the compression zone proportionally
to the arc ienglh of Ihe normal section.

When calculating the Iransverse momenl m, the normal force n, and

9e
n>

m« mt

z
9o

vpr<p
9. ma

Fig. 2. Fig. 3. Fig. 4.
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the transverse force q we have the following formulae for circular shells

i, ^'rs( [1 — cos(o — 8)]d8 ; n, f rt cos — 8) d9 ;"'«

Hrt sin (» — 9)d8.
-/0

(1)

(5)

For / constant are obtained

mt fra(ij) — sin cp); nt=irsintp; qt ^ ir(l — cos®). (2)

For f =_= k ¦ 0, i.e. proportional to the arc length, are obtained

m, kr2 (1 1-fcoso) -L£- ; n, kr (1 — cos <p) ; /
\ <ä I ** > (3)

f/, /c/' (<s — sin cp)
1

From constant vertical load we gel

/cos a — COS (a — <p)\
m, — 7" • / v

J n,, —pr <s sin (a — cp) ;
\ ©cp sin (a — cp) / (4)

</¦,, — pro cos (a — cp) ]

Finally, from support. or from the adjacent pari, we obtain

m, m0 © 7i07' (1 — cos cp) -j- q0r sin cp ; n, n0 cos cp — q0 sin cp ;

qx =-. q0 eos cp © M0 sin cp

The calculation can be made by means of a combination of these formulae.
Some of the expressions are not suitable for practical calculations, but can
be developed in series as shown, or tables of Ibese expressions may be
calculated once and for all.

Wilh a skew load, or unsymmetrical cross-section, the influence of
the twisting may become so great lhat two compression zones may be
required. This will complicate the calculations somewhat, but. they remain
elementary all the same. It is, however, best — and frequently also feasible
— lo design the shell and the supports in such a way that this case does not
occur. As an example, let us consider the well-known saw-toolh roof. The
resultant P of Ihe load acts here al a distance a from Ihe resultant — P of
the shear forces by mere bending. We then have at twisting moment P • d

per unit length of Ihe shell. The best wav of gelting rid of this is lo design
Pd

the lop-lighls so lhal Ihey can transfer a force F —-— per unit length

from shell to shell. In a thesis for the doctorate, now in the press, H. Lund-
gren has offered a further contribution on this point — also as far as
short shells are concerned.

The slresses being proportional lo Ihe load, it is possible to divide by
the coefficient of safety, whereby the permissible stresses and the
permissible loads will be included in the calculation instead of the rupture
values.

Example. — A circular shell of the cross-section shown in the figure is calculated
for symmetrical loading. Ils length is 30.0 m, and the load is :
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WP F

Fig. 5.

Circular Part :

Self-weight 0.08 ¦ 2 400 192 kg/sq.m
Insulation, etc. 53 »
Snow 75 »

In total

Vertical Part

320 kg/sq.m

Reinforced concrete 0.15 ¦ 2 400 360 kg/sq.i
Insulation, etc. 40 »

In total 400 kg/sq.m

For the whole arc
0.6 • 8.85 • 320 3 400 kg/m

For the whole edge girder
2 • 0.9 • 400 720 kg/m

For the whole cross-section P 4 120 kg/m. M 1/8 ¦ 4 120 • 302 464 000 kg/m.
The neutral axis is assumed to correspond to ß 0.3, i.e. 0.40 m under the top. The

centre of pressure is then 8.85 11 inß\ \_
S )' 6

• 8.85-3' =0-13 m

under the top. so that the moment arm ht is 2.30 — 0.13 2.17 m. The tensile force
and the compressive force will then be 464 000 : 2.17 214 000 kg. The concrete stress
will be

214 000
Qb Töä^ST °°-° kR/sq- cm •

With the reinforcement rod tension 1 800 kg/sq.cm,
214 000

be required for each edge girder, for instance 19 reinforcement rods of 20 mm dia.

Owing to the svmmetrv, H „ _ where Q is the transverse force in the shell
1 dQ P

where Pconsidered as beam with 30 m span. We then have l

4 120
is the load per unit length, i.e. t =¦ 2-2.17

2>i« dx 2 h, •

950 kg/sq.m between the reinforcement

and the neutral axis. From the latter to the top it decreases to zero proportionnally
to 0. The factor of proportionalily fe is 950 : 0.3 3 170 kg/m. In Ihe edge girder
we gel no moment, and the resultant of t and the load is R 950 • 0.75 — 400-0.9
:= 353 kg/m. The following Iransverse moment is then found

m M (5.00 — 8.85 sin 8) + mp + m(,

where m is calculated from formula (4), m, from (2), which. for points over the
neutral axis, is corrected by means of formula (3). n and q are calculated corres-
pondingly. As a check serves that q 0 at the top. i.e. qt 1/2 4 120 — 0.75 -950

1 345 kg/m tr (1 — cos a) — ©- (ß — sin ß) 950 • 8.85 ¦ 0.16, which

lallies. tr2 being 950 • 8.852 74 400 kg. 1/24 kr2 103 000 kg. and
pr2 320 • 8.852 25 100 kg, we get in kg
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Fig. 6.

1.550.0

I
__

230Li T
09 Q75 0.15+

CP
o°
f_^

et

1Q0

8 0.60 0.55 0.50 0.45 0.10 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0

mR 0 131 266 405 547 691 840 991 1 145 1290 1450 1610 1765

'"p 0 — 28 — 107 — 246 — 448 - 712 — 1036 -1430 — 1888 — 2411 — 3006 — 3662 -4 386

o 2 13 42 99 193 332 528 785 1120 1525 2030 2620

corr. 0 — — - — — — 0 - 1 —-5 — 16 — 40 -83

m 0 105 172 201 198 172 136 89 41 — 6 — 47 — 62 - 84

It will be seen that the location of the neutral axis can have little infuence on m,
the correction terms in the compression zone being rather small.

Resume

On calcule en general les voüles cylindriques en se basant sur la
theorie d'elasticite, mais les dimensions choisies ne sont pas en aecord
avec cette theorie. C'est contraire ä la logique. Comme la charge de rupture

est ä la base de la determination de la charge utile, l'auteur indique
une methode de calcul se basant sur l'etat de rupture. II l'applique ä un
exemple numerique.

Zusammenfassung

Zylinderschalen werden gewöhnlich nach der Elastizitätstheorie
berechnet, aber unter Annahmen dimensioniert, die mit dieser Theorie
nicht übereinstimmen. Dies ist nicht logisch. Da die Bruchlast als Grundlage

für die Bestimmung der Tragkraft genommen werden muss, wird
gezeigt, wie eine einfache Berechnungsmethode, die vom Bruchstadium
ausgeht, entwickelt werden kann. Sie wird angewendet auf ein Beispiel.
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Summary

Cylindrical reinforced concrele shells are usually calculated on the
Iheory of elasticity, but are dimensioned under assumptions al variance
with this theory. This is irrational. As the ultimate load must be Ihe slarling
point for the estimation of Ihe carrying capacity, il is shown how a simple
calculation-method based on the rupture slage can be developed. It is illus-
trated by an example.
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Application de l'equation du tiavail virtuel
au calcul des poutres-paxois

Die Anwendung des Prinzips dex virtuellen Axbeit
auf die Berechnung dex wandaxtigen Txägex

The application of the vixtual work equation
for calculating walls-beams

PROF. Dr JERZY MANDES

1. Definition of Wall-Beam

A wall-beam is a flat element, having its height greater than its span
and a small thickness. We assume, that there does not exist any danger of
buckling. They are used for building of : silos, shelters, coal-storages, etc.
Walls-beams could be of Single span, continuous, with brackets, having
rigid or elastic support and constant or variable thickness.

2. The Methods of Calculation for Walls-Beams

The methods of calculation for walls-beams are based, until now, on
the works of Bay, Bortsch, Cramer, Dischinger, L'Hermite, Hager and
Hobel. All those methods could be brought to three fundamental types
such as : general equilibrium equations, Airy's functions and differential
equations. Since in this case the ordinary theory of bending is not applicable

and previous ones have a number of faults like : limited adaptation,
boundary or deformation conditions not fulfilled, disability to choose the
right function of stresses etc., there was applied, therefore, Bitz-Timo-
sbenko's method of Virtual work. This method has following advan-
tages : easy choiee of stresses function, simple equations for slresses, gen-
eralizes the results for variable height, seizes the problem of buckling,
applies to all kinds of loading by using continuous functions. An element
supported continuously, at two points and a brackel were calculated by
this method.
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3. Base of Virtual Work in Application to Walls-Beams

The fundamental equation for a two-dimensional problem with the
Omission of the Volumetrie forces is :

8//V dx dy J (oXvu + SY.v) dx (dy) (1)

Strain energy per unit volume

-I 1 1
(2)

Surface forces

X„ csx cos (xv) -\- -z cos (yv) Y„ t cos (xv) -\- ay cos (yv) (3)

Constituent transfers

"±/ 1 "*

0* — "¦<**) dx v — / (er,, — p.cO dy (4)

The angles of the normal to the edge of an element with axis x and
y : xv, yv.

Let the function of stresses be of a type

F (x, y) fc,/i (x, y) + k,j2 (x, y) + + knfn (x, y) (5)

wilh unknown parameters kL,k2 kn, which are obtained from the equations

-^ffvdxdy f[^-u + ^-v)dx(dy). (6)

Functions /, must fulfil Ihe boundary conditions. The stresses are
determined from following equations :

32F d2F d2F

3y2 " dx2 '— dxdy '

4. Calculation of a Single Element Supported at Two Points

Let the stresses funclion be :

(7)

F p
1

¦
1

~YX* + YW("2 ~~ *?H~ 5-5 h*y* + 5 hy' ~ °-5 yC)

+Ä "(a* ~ aj,)'"{hV ~ 2 hf + y4) (8)

By means of equation (8) we obtain : stresses (7), strain energy (2),
surface forces (3), constituent transfers (4). By substituting the obtained
values from this expression into equation (6) we shall get the unknown
parameter k :

k=- (2.73 -£_ 0.89) : (-^ © 0.57 + -£-) (9)
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expressed in the function of slenderness ratio -y. Substituting now value

of k, oblained from equation (9), into equation (7), we shall get three
constituent stresses in a variable function x and y and also in the slenderness

ratio — having-r-= 1, k — 0.72 hence

YhF ' (~T ~ x')'(_ 66 /l?y5 + 10°/lyS ~ 15 r)
9 SS / h2 \2 1

~^"\T~~X) -(2/lt-12 ''y+12ys) ; (10)

°v p -1 --jp- ¦ (- r,-s '»V +5 /(© - °-5 y6)

+ ^^- • ("^ - 3 ©) • (Vf - 2 /iy3 + y<)

L.. x. (-22 h2y3 +2b hy'-Zf)

- iL** .*¦(-£¦ - ©)• (2 7,«y - 6 hy' + 4 y3)

The distribution of slresses is shown in figure 1.

(11)

(12)

/?•/=/.

Fig. 1. Distribution
of stresses.

1 UUUIUImJC

0.36p

6X

S= 023 pl
<•
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T
>
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zp
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7'he Curve er,, introduces Ihe normal horizontal stresses in the centre
of the span of a beam. For comparison it is also given a curve of stresses
obtained by means of Navier's theorem — dolled line. The numerical value,
in the centre of the top edge of the beam, calculated by means of the
equation for Virtual work and also by Navier's theorem is — 0.36 p and
— 0.75 p. In the centre of Ihe bottom edge the values of above stresses are
© 2.0 p and + 0.75 p.

The Curve i introduces the tangential stresses in the section over the
support but it is not a parabola as il happens in ordinary theory of bending.
The greatest value of the tangential stresses on Ihe neutral axis, wdth

consideration of equation (12) is for — 1 and k — 0.72, y =-- 0.73 h

maXT _©.._lp_2iLp.
With ordinary theory of bending

3 x
max t • — — p2 7i '

hence. by the theory of wall-beams, the maximum tangential slress gets a

grealer value.

The Curve c\, introduces the normal vertical stresses in Ihe middle of
Ihe height of a beam. Those stresses are usually neglected in the ordinary
theory of bending. It is interesting to compare in both the melhods the
positions of the neutral axis, the values of compressive and tensile forces
and also Ihe arms of internal momenls.

Assuming in equation (10) ov 0 and x 0 we shall get the position
of the neutral axis at the centre of the span equal to 0.73 h. The value for
Ihe linear distribution of stresses is 0.5 h; hence the position of the neutral
axis is much lower in walls-beams than in ordinary beams.

The values of the compressive and tensile forces are oblained by inte-
graling Ihe negative and positive areas enclosed by curve 9X when x 0,

7} ,-0.73 h f h

— =--1 'i.e. S= / rSxdy — o-,dy — R — 0.23 plI J o ©.73 h

By Navier's theorem we get a value

SN 0.5 ¦ 9m ¦ 0.5 h — 0.1875 pl < S

The arms of the internal momenls, however, are respectively m
0.566 l and mx 0.667 l.

A simple accounl shows, lhat the moment of Ihe internal forces is
practically equal to the moment of external forces, e.g.

Mw R. m 0.23 pl-0.566 1 0.129 pl* ;

1

~8~
M7, 4- pl' 0.125 pl2

The difference about 3 %.
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The relationship between the stresses and the values of slenderness ratio

The investigalion was done for the stresses in Ihe centre of the top
and bollom surface i.e.

K).v= o=0.5p— fc (9X)X= o=0.5 p-L (4.75 + 7c)

y=0 II y h II

for the stresses av in the section over the supports i.e.

Oy)x=±a p 1 - -jp (- 5-5 h'f + 5 hy" - 0.5 f)
+4r(/i!y!-2/,y3+y4)

for tangential stresses -, wilh x —- i.e.

1 L _L (_ 22 7i*y3 + 25/iy*-3y')
20 fr

+ -^(2 7i'y-6hr + 4y3)

and for tensile force in the cenlre of the span of a beam i.e. x 0

R — /
'

9mdy (0.26 + 0.0455 7c) p\-
Those slresses expressed by means of Navier's theorem will give :

V l2
'(»*).v=o — 0.75-p—y- (».)*-o + 0.75-2)-^

r=o « j=/i n

W,=-i -2-F-(x-y!) R—0.1875 p^-.
Having done the analysis of Ihe given groups of the corresponding

equation we corne to the following conclusions : as the ralio grows

bigger, Ihe stresses <rr are coming to zero, and by —© 0.5 Ihe stresses are

quickly increasing. The compressive stresses calculated by use of Virtual

work with respect to Navier's theorem are grealer for— © 0.65 and smaller

for—> 0.65. The tensile stresses are getting always grealer values using
the accurate method.

The stresses 9„ show thal they are constant al — ©1.5. The slresses <jx

show nearly the same limils of stability. It means, that high beams are
working like columns. This fact is also confirmcd by the tangential stresses.
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Further investigations show that for slenderness ratio — < U.5, the values

of stresses calculated by means of both methods come very fast closer lo
each other and the posilions of Ihe neutral axis are practically identical.

Conclusion

h
The beams having short height i.e. — < 0.5 gets the numerical values

of stresses very close lo lhat from Navier's theorem, and they are closer
as Ihe height of Ihe beam is shorler. The beams with a big height i.e.

-j-> 0.5 cannot be calculated by means of Navier's theorem because of

big divergences and they are bigger as the beam gets higher. Those
results are confirmed by the investigations of the deformations of beams.
The Solutions received by means of Virtual wrork were checked by
differential equations getting practically the same answers.

Resume

Une poutre-paroi est constituee par un element plat dont la hauteur
est superieure ä sa portee et ä sa petite epaisseur. On admet que le cas de
flambage n'a pas lieu. Application : pour la construction des silos, blin-
dages, abris, magasins a charbon, etc.

Les poutres-parois peuvent etre ä une travee, continues, a consoles,
ä un appui rigide ou elastique, a epaisseur constante ou variable.

Le principe de calcul est base sur I'application de l'equation du
travail virtuel dans la forme de Ritz-Timoshenko.

Celle methode presente les avantages suivants : facilile du choix de la
fonction des tensions; generalisation des resullals pour la hauteur variable
et accomplissement du probleme des deformations; enfin, eile esl applicable

a tous les cas de chargemenl en employant des fonctions continues.
On a calcule ä l'aide de cette methode : 1° un element appuye sur toute

sa longueur; 2° un element sur deux appuis; 3° un element-console.
L'ordre du calcul est le suivant : 1° on ecrit l'equation du travail

virtuel; 2° on calcule le travail elaslique, les forces superficielles et les
composantes des deplacements; 3° on subslitue ces valeurs dans l'equation
fundamentale; 4° on determine les tensions comme les derivees partielles
de la fonclion des tensions.

Zusammenfassung

Ein wandartiger Träger ist ein scheibenförmiges Element, dessen Höhe
grösser als seine Spannweite und dessen Dicke gering ist. Man setzt voraus,
dass Beulgefahr nicht existiert. Solche Träger werden für Silos, Luftschutzkeller,

Kohlenbunker, etc., angewendet.
Wandarlige Träger werden einfeldrig, durchlaufend, mit Konsolen,

auf festen oder senkbaren Stützen und mit konstanter oder veränderlicher
Stärke ausgeführt.
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Die Berechnung beruht auf der Anwendung des Prinzips der virtuellen
Arbeil in der von Bilz-Timoshenko vorgeschlagenen Form. Diese Methode
bietet folgende Vorteile : Erleichterung in der Wahl der Spannungsfunktion
und einfache Gleichungen für die Spannungsberechnung. Feiner können
die Ergebnisse auf veränderliche Höhe verallgemeinert werden, das
Beulproblem mil einbezogen und alle Arten von Belastungen durch Einführung
stetiger Funktionen erfasst werden.

Die Berechnung geschieht wie folgt : Aufstellung der Gleichung für
die virtuelle Arbeit als Funk Mon der Formänderungsenergie, der Ober-
flächenkräfle und der Verschiebungskomponenlen. Die Spannungen werden

aus den partiellen Abteilungen der Spannungsfunklion bestimmt.

Summary

A wall-beam is a flat element, having its height grealer than its span
and a small thickness. We assume, thal there does not exisl any danger
of buckling. Theyr are used for building of : silos, shelters, coal-storages, etc.
Walls-beams could be of single-span, continuous, with brackets, having
rigid or elastic support and constant or variable thickness.

The principles of calculation are based on Ihe applicalion of the
virtual work equation in form of Bitz-Timoshenko. This method has
following advanlages : easy choiee of slresses function, simple equations for
stresses, generalizes the results for variable height, seizes the problem of
buckling, applies to all kinds of loading by using continuous functions.
An element supported continuously, al twro points and a brackel were
calculated by this method.

The order of calculation consists on : establishment of the equation
of virtual work, expressed by Ihe elastic energy, surface forces and
displacement components. The stresses are determined as partial derivatives of
stress function.
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Le calcul des toits plisses par le procede des limites de charge

Die Berechnung der Faltwerke nach dem Traglastverfahren

The limit design of shells

Dr TECHN. G. DE KAZINCZY
Stockholm

Die Stahlbeton-Tragwerke werden unter der Annahme berechnet, dass
der Beton keine Zugspannungen überträgt. Dagegen werden Probleme der
Schalen und Faltwerke in der Literatur in solcher Weise gelöst, als ob
Stahlbeton ein homogener Stoff sei. Ich möchte zeigen, dass man auch
diese berechnen kann, wie die üblichen gut bewährten Stahlbetonkon-
struklionen und dass die Lösung sogar einfacher ist.

Ich behandle hier nur weitgespannte Dächer aus viereckigen Scheiben

mit horizontalen Falten, die an deren Enden auf Querscheiben oder
Rahmen frei oder durchlaufend gelagert sind. Ich nenne ein Glied Scheibe,
wenn es in seiner Ebene und Platte, wenn es normal zu seiner Ebene
belastet wird. Ich nehme weder an, dass der Leser die Theorie der
Faltwerke für homogene Stoffe kennt, d.h. die Lösung mit den Dreimomenten-
gleichungen. Ich behandle daher nur die Berechnung nach dem
Traglastverfahren.

Die Berechnung beginnt mil einem Platlenstreifen, der rechtwinklig
zu den Falten ist. I© wird berechnet als gerade, durchlaufende Platte, die
an den Falten gestützt ist. Die Platten werden dementsprechend armiert.
Als Belastung ist immer die zur Platte normale Komponente derselben in
Bechnung zu stellen.

Der zweite Schritt besteht darin, die Auflagerkräfte der Platten an den
an Stelle der Fallen gedachten Stützen zu bestimmen. Für diesen Zweck
werden für die ganze Last (nicht nur deren Komponente) in ihrer
ursprünglichen Richtung die Auflagerkräfle der miteinander gelenkig
verbundenen Platten bestimmt und nachher die auf die Platten normal
wirkenden Kräfte, die von den Stülzenmomenten stammen.

Bei der Berechnung der Momente besteht eine gewisse Freiheit. Ist nur
eine ständige Last vorhanden, dann können die Momente an den Falten
beliebig angenommen und die Feldmomente entsprechend berechnet werden.

Die Bedingung ist, dass die Armierung dieser Annahme entspricht.
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Wir können diese Möglichkeit für verschiedene Zwecke ausnützen : um
z.B. die kleinste Plaltendicke zu erreichen, wählen wir die + und
— Momente gleich gross. Ein anderer Fall : Es gibt Faltwerke, wie die
sogenannten „Nordlicht-Dächer", wo diejenigen Scheiben, in welchen
die Fenster sind, aus praktischen Gründen so klein wie möglich sein
sollten. Es ist also wünschenwert, dass ihre Belastung möglichst klein sei.
Durch entsprechende Wahl der Eckmomente kann das sehr gut erreicht
werden.

Bei asymmetrischen oder asymmetrisch belasteten Faltwerken ist die
Formänderung der Falten verschieden. Dadurch ändern sich die Momente
an den Falten beträchtlich. Die Momente können aber nicht grösser sein,
als es der verwendeten Menge der Armierung entspricht (Gelenke mit
konstanten Momenten). Werden gleich am Anfang diese maximalen
Momente in Bechnung gestellt, so muss wegen der durch die veränderte
Höhenlage veränderten Faltenmomente die ganze Bechnung nicht wiederholt

oder die Aufgabe mit komplizierten Differentialgleichungen gelöst
werden. Ist die Belastung veränderlich, so muss zuerst die Maximalmomen-
tenlinie bestimmt werden und die Freiheit besteht nur in der Verschiebung
der Schlusslinie.

Die an den Falten wirkenden 4 Kräfte werden nun in je 2 zu den
Scheiben parallele Komponenten zerlegt. Die Scheiben werden nun als frei
aufgelagerte, bzw. durchlaufende Balken aufgefasst und die grössten
Momente bestimmt. Da die Scheiben miteinander verbunden sind, müssen
die Längsspannungen an den Berührungspunkten einander gleich sein.
Hier müssen also Schubkräfte wirken und zwTar so, dass die Spannungen
gleich gross werden, wie unter Annahme eines homogenen Stoffes, d.h.
wie sie sich aus den Dreimomentengleichungen ergeben. Ist aber die nötige
Armierung in der Falte konzentriert und wird deren Menge so bestimmt,
dass die gesamte Zugkraft und die Betondruckkräfte mit den äusseren
Kräften im Gleichgewicht stehen und die Stahleinlagen bis zur zulässigen
Grenze beansprucht werden, dann wirken hier keine T-Kräfte, da die
durch die Stahlspannung bedingte Dehnung die gleiche ist. So kann an
denjenigen Falten, wo an beiden Seiten Zugkräfte angreifen, die ermittelte
Menge der Armierung einfach addiert werden.

Berühren sich zwei Scheiben an ihren auf Druck beanspruchten Kanten

und sind die anderen Seiten gezogen, so wirken gewisse T-Schubkräfte,
die die Spannungen ausgleichen. Die Randspannungen ändern sich aber
nicht linear mit den Momenten. Da eine Lösung auf numerischem Wege
zeitraubend wäre, wenden wir eine graphische Methode an, die sehr
einfach und rasch ist.

WTir zeichnen die <t6 /(M0)-Linie ein für allemal auf. (Unter
Pauspapier gelegt kann sie wiederholt verwendet werden.) Das geschieht am
einfachsten mit Hilfe einer gewöhnlichen Bemessungstabelle. Wir tragen
als Ordinaten die Betonspannungen und als Abszissen die dazu gehörigen,
reduzierten Momente auf. M0=—rr —r worin r der Koeffizient in der

bh r
bekannten Formel h — r |/M:b ist. Der Masstab der Abszisse ist kg/cm2.
So bekommen wir die Kurve, Abb. 1, die aber für verschiedene ac zul
verschieden ist. Bedeuten M2 und M., die grössten Feldmomente der beiden
Scheiben 2 und 4 im Grundsystem, so sind die reduzierten Momente

M* M4
M02= -5- und MM= * Wir markieren beide an der Abszissen-

0,11, 'V<V
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Abb. 1. Ermittlung der
Längsdruckspannung bei zwei
zusammenhängende Scheiben.

achse und ziehen je eine Vertikale bis zu der Kurve. Einer dieser Punkte,
am besten der grössere (M0, © MM), soll der Koordinaten-Nullpunkt der
an der Berührungskante wirkenden T-Kraft sein, deren Masstab um b.2h2

grösser ist als für M0 sodass T M06©2 ist. Nach dieser Darstellungsweise
zeigt die Kurve die Bandspannungen bei gleichzeitig wirkenden M und T,
wenn der dem M entsprechende Punkt an der Abszisse als Ausgangspunkt
für die T-Kräfte angenommen wird. Wird eine Gegenkurve gezeichnet für
die Scheibe 4, so, class diese die 2 Vertikalen in der Höhe a4 schneidet, so zeigt
diese zweite Kurve, dass bei einer Aenderung von T die Spannung in der
Scheibe 4 der Gegenkurve entsprechend wächst. Wo die beiden Kurven
sich schneiden, ist die Spannung in beiden Scheiben gleich gross. Ist
b4h4 l--z£ b2h2, so muss für die Scheibe 4 eine Kurve in anderem Masstab
gezeichnet werden, da die T-Kräfte den gleichen Masstab haben. Aber es

genügt, zwei bis drei Punkte der Kurve zu konstruieren. Wie das geschieht,
ist aus der Abb. 1 zu ersehen. Die so konstruierten zwei Punkte verbinden
wir mit einer Geraden und bekommen damit den Schnittpunkt der beiden
Kurven. Wir rechnen nun die nötige Querschnitlsfläche der Armierung
wie üblich aus dem Moment M2 — Th2 und zu dem so erhaltenen F/ kommt

T
noch +Fe"= (im Falle M4 muss Fc" von Fe' abgezogen werden).

°Vztil

Stösst eine Scheibe 4 an beiden Seiten an Scheiben 2 und 6, die stark
auf Zug beansprucht sind, sodass die resultierenden Spannungen an beiden
Seiten der Scheibe 4 Zugspannungen sind, ist die Armierung in der

M< •

n4 ist dieFalte ± Fc Entfernung der Einlasen. Dieser

Fe-Querschnilt soll zu dem — ohne Bücksicht auf die Scheibe 4 berechneten

— Zugarmierungsquerschnitt der anderen Scheibe addiert und auf
der anderen Seite abgezogen werden.

Liegt eine Scheibe 4 zwischen zwei Scheiben 2 und 6, die stark auf
Druck beansprucht sind (Abb. 2), sodass die resultierenden Spannungen
an beiden Seiten der Scheibe 4 in Druckspannungen übergehen, so wenden

wir zur Berechnung wieder die erwähnte Kurve an. Es werden die
aus den Momenten der frei beweglich gedachten Scheiben 2 und 6 be-
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Abb. 2. Ermittlung der Längsdruckspannung
in drei zusammenhängende Scheiben.

rechneten Spannungen an der Kurve bezeichnet, doch wird keine Gegenkurve

mit verschiedenem Masstab konstruiert. T3 und T5 haben aber einen
verschiedenen Masslab: für T3 M0b2/i, und für Ts=M066h6.

Die Scheibe 4 wird wie eine homogene behandelt ; deren <r /(T)
— Diagramm ist eine Gerade. Die Bandspannung im Grundsvstem
M
-~- (W bh2/6) wird auf den Vertikalen 2 und 6 abgetragen, von wo die
VV4

Geraden ausgehen mit den Neigungen a bzw. ß 4/bh. Beide sind im
Masstab von T3 bzw. T5 zu messen, da diese verschieden sind, wie auch a
verschieden von 3 ist. Spannungsausgleich isl vorhanden beim Schnittpunkt
der Linic//A mit der Kurve. Dadurch wird die andere Spannung an der
anderen Seite um die Hälfte (Strecke 1) geändert. Die Linie//B wird
also um diesen Retrag tiefer gezogen bis zur Kurve. Das erzeugt wieder
eine Spannungsänderung 2, von wo wieder eine Gerade bis zur
Kurve unter die Neigung <x//A zu ziehen ist, usw. Es genügen gewöhnlich

2-3 Wiederholungen. So erhalten wir die resultierenden Spannungen
und die Faltenschubkräfte T3 und T5

Sind zwei oder mehr schwach beanspruchte Scheiben zwischen zwei
stark auf Druck beanspruchten, sodass die übertragenen Spannungen die
ersteren zu rein gedrückten Scheiben verwandeln, so ist das Verfahren
dasselbe wie vorher; nur bestimmen wir die Randspannungen im Grundsystem
der dazwischen liegenden Scheiben mit Hilfe der Dreimomentengleichun-
gen, als ob sie unabhängig wären. Die Neigungen der Geraden sind

«=/, 4- U ^
und ß /,

U
/< + /, U + h

F Querschnittfläche I

/

Dies sind die am häufigsten vorkommenden Fälle. Spezialfälle können

wir wegen Platzmangel hier nicht behandeln.
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Spannungenin der Scheibe.

Es schein! auf den ersten Blick, als ob man die Spannungen und die
nötige Armierung über der Stütze bei durchlaufenden Fallwerken
berechnen könnte, wie im Felde. Es besieht aber ein wesentlicher
Unterschied. In der Mitte sind keine ^-Spannungen vorhanden und die
Druckspannungen verteilen sich ziemlich gleichmässig auf die ganze Scheibe.
Dagegen entstehen in der Nähe der Stützen grosse Schubspannungen und
daher können auch die Druckspannungen nicht gleichmässig verteilt sein.
Es ist also gerechtfertigt, gemäss den Bestimmungen nur die „mitwirkende

" Platlenbreite zu berücksichtigen.

Die Schubspannungen und die Schubarmierung

Diejenigen Scheiben, deren ganzer Querschnitt auf Druck beansprucht
ist, werden so berechnet, als ob sie aus homogenem Malerial wären. Die
Schubspannungen am Ort von + Mmax sind Null und wachsen von hier aus
in der Längsrichtung proportional mit der Entfernung. Leber einen
Querschnitt werden sie parabelförmig angenommen mit dem Maximalwert

3 qyt — —j-— in der Mille des Querschnittes. Wirkl an der Kante (Falle)
^ oft

aber auch eine Längsschuhkrafl T, so wird durch T nur die Form der
Verteilungskurve geändert. Das Integral der T-Spannungen in einem
Querschnitt (v const.) isl von T unabhängig, hängt allein von q ab und hat
den Wert

R„ 1 f zxda
J0 2

Die Linie isl immer eine Parabel, die aus 3 gegebenen Punkten konstruiert
werden kann. Zwei der Punkle sind die Falten-Randspannungen. Die
Schubspannung in der Mitte ist (kein max.)

3 y
bh

M+'2
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Abb. 4. Anstrengung des Betons bei gleichseitiger Schub-
und Druckbeanspruchung.

Es ist zu beachten, dass das Vorzeichen von t2 entgegengesetzt demjenigen
von Ti ist, wenn die beiden T die Scheibe auf Druck beanspruchen. In der
Abb. 3 sind einige Fälle gezeigt. Aus der von den T-Kräften unabhängigen
Grösse des Integrals der T-Spannungen (Querkräfte) folgt, dass die auf die
Endscheiben (oder Rahmen) wirkenden Auflagerkräfte nur von den
g-Kräften abhängen und nicht von den T-Kräften.

In einer gedrückten Scheibe haben die Schubspannungen eine andere
Bedeutung als in einem auf Biegung beanspruchten Balken. Da die Armierung

nicht für die Schubspannungen, sondern für die Hauptzugspannungen
eingelegt wird, müssen diese bestimmt werden. Dazu ist die Mohr'sche

Darstellungsweise besonders geeignet. Die Mohr'sche „ Grenzkurve"
wird oft gemäss der punktierten Linie gezeichnet (Abb. 4); das ist aber
vollkommen falsch, da der Zugwiderstand von anderen Bedingungen
abhängt, als der Schubwiderstand. Die GrenzZime (die beinahe eine Gerade
ist) kennzeichnet ausschliesslich den Schiebungsbruch. Die Ueberwindung
der Kohäsion ist durch einen einzigen Punkt an der Abszissenachse
charakterisiert (wenn dies überhaupt von der grössten Spannung und nicht von
der grössten Dehnung abhängt) ('). Ist der ebene Spannungszustand an
einer Stelle eines Flächentragwerkes mit der Normalspannung — 9
(Druck) und auf dieselbe Ebene wirkende t charakterisiert, und wirkt auf
die dazu rechtwinklig stehende Ebene keine Normalkraft, dann soll

<-*„ 0,4 0,36

sein. Wo —5dnBI die auf einaxigen Druck zulässige Spannung bedeutet.
(Bei dieser Formel ist a 41° angenommen. Einfach von Abb. 4
abgeleitet.)

Die zulässige Druckspannung wird also durch die zusätzliche
Schubbeanspruchung beträchtlich, sogar bis zur Hälfte herabgesetzt und dies soll
berücksichtigt werden.

In Scheiben, die an einer Seite auf Zug, an der anderen auf Druck

(') Es scheint, dass die Zugfestigkeit bei Beton mil de
zusammenhangt, wie das die Abb 4 e zeigt.

Druckfestigkeit in solcher Weise

—5-r- + t-ll'll— l) WO •<! -= 90 - o
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Contiibution au calcul des barrages arques

Ueber die Berechnung von Bogenstaumauern

Contribution to the design of arched dams

Dr P. LARDY
Professeur ä l'Ecole Polytechnique federale ä Zürich

Peu avant sa mort, le professeur Bitler avait enlrepris une elude sur
les barrages arques. Nous voudrions rendre hommage ä la memoire de cet
ingenieur si distingue, qui ful pendant de longues annees Secretaire general
de l'AIPC, en developpant brievement et en completant sur quelques points
les idees qu'il a emises.

Ce sujet est lie a ceux du Theme IV du fait qu'un barrage arque
represente geomctriquement un voile qui en vertu de son epaisseur, ne
merite plus exactement le qualificatif de mince. On peut distinguer trois
etapes principales dans l'evolution de la theorie :

1. Le calcul des barrages arques comme Systeme de voütes horizontales
independantes;

2. Le calcul par la methode dite des poutres croisees, les deux
systemes de poutres etant definis par les voütes horizontales et les consoles
verticales. Dans I'application de cette methode, il n'a pas ete tenu compte
jusqu'ici des moments de torsion.

3. Citons enfin les essais d'adaptation de la theorie des voiles minces,
rendu extremement difficile, sinon impossible par la complexite des
conditions aux limites, dictees par la topographie des lieux, par la forme du
barrage et par le fait que l'epaisseur et le rayon de courbure sont variables.

Les travaux du professeur Bitter se rattachent a la methode des poutres
croisees, qui permet de ramener le calcul du voile a un probleme de
statique appliquee concernant les systemes de poutres. Nous evoquerons deux
aspects de la question, le premier d'ordre general, le second traitant un
point particulier et important.

Tout d'abord, nous voudrions insister sur la forme elegante et
systematique des methodes de calcul, adaplees tout specialement aux besoins
de l'elaboration numerique. Les Equations d'elasticite contiennent pour
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les deux systemes de poutres soit les inconnues de la repartition de
la surcharge hydrostatique, soit les moments flechissants des consoles
verticales, ces dernieres etant considerees comme poutres sur appuis elastiques,
formes par les voütes horizontales. Dans une these qui va paraitre prochai-
nement, ces deux methodes ont ete developpees par un de ses eleves. En
vertu de la propagation des erreurs dans la resolulion des systemes d'equations

lineaires, il resulte que chacune des deux methodes a son domaine
d'application bien detini, dependanl du rapport de la hauteur a ia
largeur des barrages.

Par suite du developpement que le professeur Bitter, tout au long
de sa carriere, a su donner ä la theorie de l'arc encastre elastiquement, il n'y
a plus actuellement de difficultes de prendre en compte l'influence de
certaines grandeurs, en partie negligees jadis. Nous pensons particulierement

ä celle de Feffort tranchant qui ne peut etre omise, aux effets de la
temperature, du retrait du beton et ä ceux de la sous-pression. Mais il y a
plus! Le professeur Bitter a mis en evidence et introduit systematiquement la
deformation de la röche dans les calculs des barrages arques. C'est lä le
second point que nous desirons mettre en lumiere dans ce court apercu.

En 1921, le professeur Vogt de Trondheim avait publie un memoire
sur le calcul des deformations des fondations, en utilisant les formules
de Boussinesq et de Cerrutti. Le merite d'avoir developpe el avant tout
adapte ces lormules de maniere simple et claire au calcul des barrages
arques en revient au professeur Bitter, qui a demontre la grande importance

de la deformation de la röche sur la repartition des contraintes et
le comportement general de ces barrages.

Deux facteurs metlent en evidence ces nouvelles considerations.
On sait aujourd'hui que la röche prise sur une certaine etendue, est

loin d'etre une masse rigide. De nombreuses mesures ont montre que son
module d'elasticite est plus petit que celui d'un beton de qualite ordinaire.
Le rapport des modules d'elasticite du beton a celui de la röche peut varier
de 3 pour le granit jusqu'ä 20 pour certaines Varietes de molasse. Meine
si ces chiffres ne sont pas toujours lies suis, leur prise en compte dans les
calculs est certainement plus proche de la realite que l'hypothese d'une
röche indeformable.

D'autre part, si on peut admettre qu'un arc est totalement encaslre
dans la theorie des ponts, il n'en est plus de meme pour les barrages, vu
les dimensions des arcs par rapport ä leur fleche. Une deformation de la
röche, meme petite, a une grande influence sur leur comportement, c'est-
ä-dire sur la repartition des contraintes et sur leur securite.

En transposant ces considerations au Systeme croise des arcs
horizontaux et des consoles verticales, on conslate immediatement que la
deformalion de la röche a pour effet de reduire les moments d'encaslrement des
arcs ainsi que l'influence de la temperature. Mais, et c'est ici que toute
l'importance de la question apparait, la deformation de la röche change
essentiellement la repartition de la charge hydrostatique sur les deux
systemes croises. L'encastrement des consoles ä la base devenant plus faible
et leur deformation par consequent plus grande, celles-ci se trouveront
allegees par rapport aux arcs, surtout dans les parties superieures! On
risque donc, sous l'hypothese d'une röche rigide, de sous-estimer les
sollicitations du Systeme arque, ce qui peut cntrainer de serieux deboires.
C'est lä, nous semble-t-il, la conclusion la plus importante ä tirer de
cette nouvelle coneeption.
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Gräce ä la Iheorie de l'arc encastre elastiquement, il est aise d'effec-
tuer les calculs completes par l'introduction de ces nouvelles deformations.
La theorie du demi-espace elastique, en particulier les formules de Bous-
sinesq et de Cerrutti, permet de determiner les deformations specifiques des
appuis dans des conditions tres generales. Bemarquons que les poutres
croisees ne sont plus independantes les unes des autres dans le Systeme
fondamental, mais se trouvent en connexion aux appuis. Ceci entraine la
dependance reciproque des grandeurs hyperstatiques des arcs et risque de
compliquer la resolution des equations d'elasticite. Gräce ä l'amortisse-
ment rapide de l'effet des sollicitations locales du demi-espace, il est
possible d'appliquer une methode d'iteralion qui conduit ä la resolution du
Systeme d'equation.

Ces breves remarques suffisent ä demontrer la necessile d'introduire
dans le calcul des barrages arques la deformalion de la röche. Le fait de
pouvoir, dans les calculs, tenir compte de facon relativement simple de
ce phenomene, represente sans aucun doute un des progres les plus
interessants dans ce domaine.

Resume

L'importance de la prise en compte de la deformation de la röche pour
le calcul des barrages arques est mise en evidence. Lne methode de calcul,
due au professeur Bitter, qui tient compte de ce fait tres important, est
sommairement decrite.

Zusammenfassung

Die Bedeutung der Berücksichtigung der Fclsdeformation für die
Berechnung der Bogenstaumauern wird hervorgehoben. Eine Methode,
die von Prof. Bitter stammt und diese wichtige Tatsache vollauf
berücksichtig!, wird kurz beschrieben.

Summary

The importance of taking into aecount the rock deformation for Ihe
design of arched dams is outlined by the author. A method of design, due
to Professor Killer, considerin"- Ibis fact is brieflv described.
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Recherches elastostatiques des barrages arques

Elastostatische Modellversuche an Gewölbestaumauern

Elastostatic tests on modeis of arched dams

PROF. Dr TECHN. H. BEER & PROF. Dr TECHN. E. TSCHECH
Graz

Im Anschluss an die Ausführungen von Herrn Prof. Dr. Lardy über
die Methode von Bitter für die Berechnung von Gewölbestaumauern soll hier
kurz über die Ergebnisse von elastoslalischen Modellversuchen berichtet
werden, welche die Verfasser im Auftrage der Steirischen Wasserkraft- und
Elektrizitäts A. G. (Steweag) an der Technischen Hochschule Graz ausführen.

Es handelt sich hierbei um eine Gewölbestaumauer in Obersleiermark
(Salzasperre) von 120 m Kronenlänge und 55 m Höhe im Talsohlenschnitt
(Abb. 1) und eine stark unsymmetrische Mauer in Weststeiermark (llierz-
mannsperre) von 180 m Kronenlänge und 65 m Höhe (Abb. 2). Beide
Mauern sind vom Gleichwinkeltyp.

Das Salzamodell " wurde im Masstab 1 : 50 aus einer Mischung
von Gips, Kieselgur und Wasser hergestellt. Der Elastizitätsmodul dieses
Modellbaustoffes in der entsprechenden Mischung beträgt nur etwa
24 000 kg/cm2, sodass mit mehr als den zehnfachen Durchbiegungen gegenüber

dem Baustoff Beton zu rechnen ist. Die Versuchsanordnung ist aus
Abb. 3 zu ersehen. Für die Belastung des Modells wurde ein neues l'lement
entwickelt, bestehend aus einer Spiralfeder mit Druckslempel und Druckplatte,

die mit Schrauben angespannt werden konnte (Abb. 4). Is war
so möglich mit der schwersten Belastungsfeder einen Druck von 900 kg
auszuüben. Der Federweg — der ja dem ausgeübten Druck proportional
ist — wurde mit einer Messuhr gemessen, wobei eine sorgfältige Eichung
der Belastungselemente unerlässlich war. Der maximale Federweg betrug
etwa 10 mm. Die Federn wurden auf Gcgenkonsolen abgestützt (Abb. 5).
Die Vorteile der Verwendung dieser Belastungselemenle gegenüber der
Aufbringung eines kontinuierlichen Flüssigkeitsdruckes (Quecksilber)
liegen vor allem in der Möglichkeit der stufenweisen Laststeigerung bis zum
Bruch und der Kontrolle des elastischen Verhaltens der Modellmauer bei
der für die Messungen gewählten Laslstufe. Ein weiterer Vorteil der
diskontinuierlichen Belastung bestand in der Mf"trlichkeit, aiich an einzelnen Punkten

der wasserseitigen Maueroberfläche Messungen vornehmen zu können.
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Abb. 1. Salzasperre.
Lageplan mit
Talsohlenquerschnitt.

Die Mauer selbst war in einem zylindrischen Aufbau aus Stahlbeton
gebettet. Die elastische Nachgiebigkeit des Felsens, auf dem sich die
Staumauer abstützt, wurde sorgfältig studiert und im Modell durch einen vouten-
förmigen Ansatz (Mauerverlängerung) — entsprechend den Untersuchungen

von Boussinescj und Vogl für den elastisch-isotropen Italbraum —
berücksichtigt. Bei dem im Bau befindlichen Modell der Hierzmannsperre
wird das nachgiebige Felswiderlager durch eine dicke Schicht aus einem
Baustoff dargestellt, welcher ebenfalls aus Gips, Kieselgur und Wasser
besteht. Durch Variation des Zusatzes an Kieselgur und Wasser gelingt es,
den Elastizitätsmodul zu beeinflussen und man ist so in der Lage, einen
von der Mauer abweichenden Modul des Felsens modellmässig darzustellen.
Für das Modell der Hierzmannsperre wurde der Elastizitätsmodul des Felsens
— zufolge der geologischen Beobachtungen und Messungen an der
Baustelle — nur halb so gross, wie jener der Mauer angenommen.

Abb. 6 zeigt die Ergebnisse der Messungen der radialen Durchbiegungen
(voll ausgezogen) ..im Vergleich zu den Bechnungswerten (strichliert)



MODELLVERSUCHE AN GEWOLBESTALMAL ERN 629

c^

0
V/

6»'

75

©. P
«J

-~~-_qr

.~^^.- -P^-
- —;wf-^ mss^

66i

P
&

686

% 697

v>

Sj
6M

Schalt a-g
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Die Berechnung wurde von der „ Steweag " nach der Methode von Bitter
durchgeführt, wobei die in Fig. 6 angegebenen Bogen- und Kragträgerschnitte

zugrunde gelegt wurden. Es wurden hierbei nur die radialen
Durchbiegungen entsprechender Bogen- und Kragträgerpunkte in Leber-
einstimmung gebracht, ein Vorgang, dem etwa bei der trial load method "
der erste Versuchsgang entspricht. Wie Fig. 6 zeigt, ist die Uebereinstim-
mung zwischen Bechnung und Versuch eine durchaus gute. Es zeigt sich,
dass der Kronenbogen der Mauer etwas steifer ist, als dies nach der
vereinfachten Bechnung zu erwarten war, während die Durchbiegungen im
unteren Drittel gegenüber der Bechnung etwas grösser sind. Das Ergebnis
der Dehnungsmessungen an der Maueroberfläche und die daraus errechneten

Spannungen zeigten in ihrem Verlauf ebenfalls eine gute Ueber-
einstimmung mit der statischen Berechnung, wenngleich die Abweichungen

an einzelnen Stellen grösser sind als bei den Durchbiegungen. Zweifellos

macht sich hier der Einfluss der tangentialen Schubspannungen und
im unteren Teil auch der Drillungsmomente bemerkbar, die ja in der
Berechnung nach der Methode von Bitler keine Berücksichtigung finden.
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Abb. 3. Versuchsmodell.
Anordnung der Messuhren
am Kronenbogen.

Die Ergebnisse der Untersuchungen zeigen, dass für die untersuchte
symmetrische Mauer, mit einem Verhältnis von Kronenlänge zur Höhe,
das kleiner ist als 2,5, und bei der vorhandenen regelmässigen Talform,
das statische Verhalten der Mauer durch das gewählte Berechnungsverfahren
durchaus befriedigend wiedergegeben wird. Die Zahl der Schnitte braucht
dabei nicht gross gehalten zu werden, da schon die einschnittige Berechnung

(mittlerer Kragträgerschnitt) zu einem brauchbaren Bild der
Lastverteilung auf Bogen und Kraglräger führt. Die Steweag " wird sow-ohl
über die Ergebnisse der Modellversuche der Salzasperre, als auch der
stark unsymmetrischen Hierzmannsperre eine eigene Broschüre herausgeben.

Dort werden für beide Sperren ausführliche Daten zu finden sein.

Resume

On realise actuellement ä l'ecole polytechnique de Graz des essais
eUastoslatiques sur modele de barrages arques. L'auteur decrit brievement
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Abb. 4. Belastungsfeder :

a : längster Federweg,- b : kürzester Federwog; c : Messuhr.
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Abb. 5. Versuchsmodell.
Abstützung der
Belastungsfedern.
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l'installation d'essais avec les nouveaux dispositifs de chargement el

compare les resultats d'essais des mesures de flexion sur un modele de
barrage symetrique avec les resultats des calculs suivant la meThode de Bitter.
Cette comparaison donne une correspondance satisfaisante.

Durchbiegungen

Modelt
MM

Berechnung
an der Staumauer

Abb. 6. Ergebnisse der Durchbiegungsmessungen
am Modell im Vergleich zur Berechnung.
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Zusammenfassung

An der Technischen Hochschule Graz sind gegenwärtig elastoslatische
Modellversuche mit Gewölbeslaumauern im Gange. Der Bericht schildert
kurz die Versuchsanordnung mit neuartiger Belaslungseinrichlung und
vergleicht die Ergebnisse der Durchbiegungsmessungen am Modell für
eine symmetrische Mauer mit der Berechnung nach der Methode von Bitter.
Es ergibt sich eine gute Uebereinstimmung im Durchbiegungsbild.

Summary

Elastostatic investigation on modeis of arched dams are now pro-
ceeding at the Technical University at Graz. The report gives a brief view
of the arrangements for the tests with a modern load-apparatus and com-
pares the results of the deflection measurements on the model for a sym-
metrical wall with the calculation made after the Bitter method. There
is good concordance as to deflection.
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