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IVbl

Introduction d'une théorie générale
pour l'étude des voiites minces de translation

Eine neue allgemeine Theorie von Translationsflachen

Introduction of a general theory of shells of translation

L. BROGLIO

Rome

Si on déplace en translation une courbe I', contenue dans un plan
vertical le long d’une autre courbe I's contenue dans un plan vertical
orthogonal au précédent, on obtient une surface donl la projection sur un
plan horizontal est rectangulaire. Si on pose ladile surface sur le périmétre
de sa projection au moyen de quatre tympans, on réalise le schéma géo-
métrique d’une « voiite de translation » (fig. 1).

Pour 1’étude d’un type de toiture si important dans les applications,
dans I’hypothése d’un régime statique & membrane, il existe un procédé
connu, relaté par M. Fliigge dans son traité classique ('), duquel nous
allons donner un bref résumé dans ce premier paragraphe.

En un point générique P (fig. 1) de la surface désignons par f, et fs
respectivement les tangentes aux courbesl’y et I'y ; soient o et § les angles
que t, et t; forment respectivement avec ses projections horizontales ;
assumons comme repere en P le triédre oblique 1., ?,, z, désignant par z
la verticale dirigée vers le bas. Soient X, Y, Z les composantes de la charge
extérieure par unité de surface, et soient encore N.., Ny, N les efforts
intérieurs de la structure, a savoir la traction dans la direction ¢, , la
traction dans la direction ¢, et le cisaillement selon les deux directions
obliques t., f. , qui se rencontrent sous l'angle « = arccos (sin¢ -sin ).
Désignons enfin par r, =r (o) et ry=1,(0) les rayons de courbure de
I'yetdel,.

Le procédé que nous allons résumer consiste d’abord a exprimer
mathématiquement les deux conditions suivantes : équilibre de toute por-
tion élémentaire de volite comprise entre deux I', et deux I'y infiniment
voisines, et incapacité de chaque tympan (qu'on imagine infiniment
rigide dans son plan) a soutenir des actions orthogonales a luj.

(}) W. Frbcee, Statik und Dynamik der Schalen, Berlin, Springer, 1934, pp. 91-100.
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Les conditions d’équilibre selon {., t;, z sont respectivement don-
nées par (*) (fig. 2):

0 r(? aN':.Q - ‘
T Py SO8 )= T~ < 008 & = Kok oS g il = U (1)
aa_e(Nﬂcose)+%%0059+Yr9c0358ina::0; (2)

(N, cos o) ry cos®@ - (N cos 0) r, cos*o + Zr,ry cos’o cos* sin e =0 . (3)

Les conditions sur les tympans sont respectivement (°):

Le long des deux cotés ¢ = constante

N, =0; (4)
Le long des deux cOtés 0= constante
Ng=10. (5)

Comme deuxi¢me pas, le procédé en question réduit le sysiétme de (1),
(), (3), (4), () a contenir une seule inconnue N.g. Dans ce bul, il
faut d’abord dériver (3) par rapport & ¢ et a 4, tenant compte des expres-
sions que (1) et (2) donnent respeclivement pour

0 0
, 2 T ’ N 2
I'yCOS 9-—-8? (Ny,cosv) et r. cos’o 3 (Ng cos ),

(®*) Loc. cit., équalions (54a, 54b), et (53¢).
(3) Loc. cit., p. 94.
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de sorte qu’on arrive i 1’équation (*)

-. a . BN?‘B 0 . aN.qu
Iy COS ¢ =0 (cos b _73—9—) -+ rycos G—é? (cos © ——82?—)
= _82.89 (Zr, rq cos’s cos®f sin @) — r, cos ¢ ;e— (X1 cos® 8 sin a)

0 .
—rgcos 8 . (Yr,cos*osina). (6)
En outre, si on dérive (3) par rapport a2 § en tenant compte de (4)
et qu’on substitue dans (2), ou si on dérive (3) par rapport a ¢, en tenant
compte de (5) et qu’on substitue dans (1), les conditions aux limites
deviennent :

Pour ¢ = constante

Ngy 1 9

oo recos’o cos i 08

(Zr, rocos’o cos*l sina) — Yrgsina; (4

Pour 0= constante

ONgs 1 P , vn o ’
M T cos’icos s 0s (Zr, rg cos’o cos®*f sin a) — Xrgsina. ()

Comme troisieme et dernier pas, il faut procéder a l'intégration de
I’équation (6) avec les conditions aux limites (4') et (5'). Au point de vue
mathématique ce probléme présente des difficultés trés considérables ; par-
tant, les résultats oblenus par la méthode rappelée sont peu nombreux et
se réferent (°) surtout au cas des directrices I'y, 'y circulaires, et de la
structure bissymétrique, chargée symétriquement uniquement par des
forces verticales, variables selon la loi

Z sin o — constante .

Fonction des efforts pour la vofite de translation

Considérons le cas général d’une volte de translation non-syméirique
par rapport & n’importe quelle directrice et chargée de maniére quel-
conque. La non-symétrie de la structure permet d’étudier une tloiture
posée sur des murs de hauteur inégale ; la faculté de choisir le type des
directrices présente & son tour un intérét parce qu’elle permet un choix
plus large au point de vue économique et esthétique et parce qu'on peut
ainsi satisfaire aux exigences de diverses natures, acoustique ou optique,
éventuellement imposées pour la piéce a couvrir ; enfin, le cas de la charge
répartie de n’importe quelle fagon (en particulier, celui de la charge con-
centrée) a de l'importance pour une étude plus compléte de la vouite ou
pour l'examen des structures minces de translation pour des cas plus
complexes que celui d'une simple toiture.

Désignons (fig. 1) par a et b les deux dimensions de la projection
horizontale de la votite. Assumons comme repére un triedre cartésien, ayant
]'origine & un des sommets du rectangle, et disposons les axes z, y selon

(%) Loc. cit., éq. (55).
(3) Loc. cil., p. 103.
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les cOtés a et b dudit rectangle : la direction z, comme on I'a dit au para-
graphe précédent, est verticale, positive vers le bas. Les relations différen-
tielles entre les coordonnées « et § du paragraphe précédent et les nouvelles
coordonnées z, y sont naturellement les deux suivantes :

(_1.7:__*" COS % Ay
de ~ ¢ T db

Les équations (1) et (2) du paragraphe précédent, qui expriment
I’équilibre d'un élément de voiite dans le plan tangent deviennent alors :

=rycosb. (7)

Th—
L(N?cosg)—{— 8(\ 8 cos § - X sin a = 0; (8)
a( LB) " P
—(Neco ) +——"cosec+ Ysinz=0. (9)

Un ensemble de conditions nécessaires pour la résolution du probléeme
examiné est donc constitué par (8), (9), (3), (4), (5). On constate que les
équations (8) et (9) sont satisfaites si on introduit une fonction des
efforts @ telle que :

2
N.i,cos?_:(a q: + \(y)— (z, y))cosﬂ (10}
N, cosﬁ:(%— —{——‘LV(J:)%?(;E, y))coscp; (11)
N (azq’ ‘Kmdy+—+ [ Y@ds)-LC (12
w=—|m 7 [ Xody+5 [ Y@as)tc a2
posant
= 1 PO 1 2 .
X(z,y)_coSe [ (Xsino)yde; Y (r,y)=— ey [ (Ysina)dy. (13)
o Jo
X (y) = cosﬁ / (X sin @) dz = X (a,y); "
Y (&) == cosgo /". (Y sina) dy =Y (y,b) .

et désignant par C, dans 1’équation (12), une constante arbitraire.
Si on substitue les relations (10), (11), (12) dans les équations (3),
(4), (5), on en tire 1'équation :

1 otd 1 otd
rocos*t  dz? + e cos’c 0y
L sin a 1 1 Yo = :
o ZCOSOCOSB+IL()SO((LX ‘()—}_1000539 (FYMY)‘ (15)
avec les conditions de rive :
Pour z=a et =0
o'Pp
oy =0; (16)
Pour y=>b et y=0
P :
BANNTTY (17)
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h ry Sinsl doY —ei

Fig. 2. Fig. 3.

D’ailleurs il est bien évident que les relations (10), (11), (12) déter-
minent la fonction ® & une fonction pres :

U(x, y)=k + k.x + kyy + Ky, (18)

ou ky, k., ky, k, sont des constantes arbitraires. IEn effet, si on ajoute la
fonction W & @ pour un choix arbitraire de k,, k., k;, Fk;, les équations
(10), (11), (1) restent inchangées, rappelant que C est une constante
arbitraire elle aussi. Alors il suffit de choisir k,, k., k,, k, d’une telle
fagon qu’elles annulent la fonction ® dans les quatre sommets du recltangle
de base, & savoir, dans les points (0, 0), (a, 0), (a, b), (0, b) pour que les
conditions (16) et (17) puissent étre écrites :

Le long de toute la limite
b=0. _ (19)

Si z,=12,(x) el z,=12z4(y) sonl respectivement les équalions carté-
siennes d une quelconque ', dans un plan y= constante, et d’une quel-
conque I'y dans un phn x—constante on a naturellement, si on suppose

partout ¢ < ,—)- , 0 —

1 d’z,
—— | |=r@; (20)
1 d2Z9
—_— = . 21
rs cos’d ‘ dy’ A W) 1)
Rappelant en oulre que :
7% — Z sin o (22)

cos © cos b
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n’est que la composante verticale de la charge par unité de surface de la
projection horizontale de la voiite, et posant

q(z,y)=17* + B x)( X = \)+A(y)(%?—'\?) (23)

on lire de (15)

o' d o' P
e | B(.’B)—W-——‘—(I(Ji,y) (24)

Le probleme relatif & la détermination de la fonction des efforts est
ainsi complétement défini: il s’agit d’intégrer 1’équation (24) avec la
condition a la limite (19). On voit tout de suite qu’un tel probléme équi-
vaut & déterminer les déplacements verticaux d’une membrane rectangu-
laire, fixée le long de tout son contour, soumise a la charge q(z, y) par
unité de surface et tendue par une tension constante le lonfr de chaque fil,
c’est-a-dire, variable selon la loi A (y) pour les fils par'llleles a l'axe =z, et
selon la loi B(z) pour les fils paralleles & l'axe y [il faut remarquer que
A(y) et B(x), a cause de (20) et (21), sont essentiellement positives]. On
a ainsi une précieuse analogie, par laquelle le calcul de la votite de trans-
lation se transforme dans le calcul d'une simple membrane appuyée au
contour. On peut tirer parti de cette analogie pour déterminer la fonc-
tion @ par la voie expérimentale, comme on le dira ensuite. Avant
d’étudier I'intégration de (24) avec la condition (19), il vaut mieux de
compléter la mise en train générale du probléme par une observation rela-
tive & l'effective détermination des efforts N,, Ny, Ny par la fonction .

A(y) ==

Les conditions de compatibilité pour les voiites minces

Lorsqu’on a déterminé la fonction des efforts ® au moyen de (24) et
(19), on tire immdédiatement de (10), (11) et (12) les efforts N, Ny et N,.
Mais ce dernier effort est en réalité déterminé par (12) & une constante
arbitraire C prés. Ce fait est tout logique, et dérive de la circonstance
que les conditions d’équilibre (1), (2) et (3) et les conditions de rive (4)
et (5) ne constituent pas en général un ensemble de conditions suffisantes
pour la compleéte determnntlon des efforts N,, Ng, N, dans la voute.
En fait on voit immédiatement que (1), (2), (3), (4), (5) sont vérifiés
méme apres l'addition de n 1mp01te quelle constante arbitraire & N,
En un mot, la volte de translation n’est pas, en général, un systéme 1so—
statique, c’est-a-dire une structure ou il est p0551ble de déterminer les
efforts au moyen des équations d’équilibre seulement, mais c’est un sys-
téme hyperstatique, pour la résolution duquel il est nécessaire d’adjoindre
des conditions de compatibilité aux conditions d’équililne Si les efforts
intérieurs sont N,, Ny, N, comme on 1'a supposé, I’ hypelshtlcne de la
volite de translation se réduit & un seul parametre, ¢’est-a-dire & une cons-
ltante arbitraire & ajouter a N.;. Comme les équations (24) et (1Y) sont
une traduction fidele de (1), (2) (3) et de (4), (5), on conclut que néces-
sairement la connaissance de la fonction ® doit rendre déterminés les efforts
N,, Ny, N.y & une constante arbitraire prés a ajouter & N,;. Pour com-
pléter le calcul des efforts N.,, Ng, N.o, lorsqu’on a detenmne d par (24)
et (19), il est suffisant de déterminer la valeur de la conslante, qui parait
au deuxiéme membre de (12). Si la structure est symétrique et chargée
symétriquement, pour des raisons de symétrie, N.; doit s’annuler sur le
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plan de symétrie, et la question est toute résolue : cela veut dire que la
voltle symétrique, chargée symétriquement, devient isostatique par 1’ad-
jonction de la condition N. =0 aux conditions (4) et (3) en un point
quelconque de la surface appartenant au plan de symétrie. Dans le cas
général la constante C doit étre déterminée, comme on a dit, par des con-
ditions de compatibilité. A ce propos il faut observer que chaque tympan,
qui a été supposé infiniment rigide dans son plan, et infiniment élastique
dans la direction orthogonale, constitue pour les surfaces de translation
une contrainte dont les réactions ne font pas de travail par effet des défor-
mations dues a la charge : en effet les réactions qui apparliennent au plan
du tympan ne font pas de travail car le déplacement des points d’applica-
tion respectifs est nul, tandis que les réactions orthogonales audit plan ne
font pas de travail parce que ce sont elles qui sont nulles par hypothése.
Par conséquent on peut appliquer aux votites de translation le théoreme de
Menabrea : bien mieux, lorsqu’on a satisfait toutes les conditions d’équi-
libre, le théoréme de Menabrea résume toutes les conditions de compaltibilité
que la structure doit satisfaire (°). Remarquons que cette observation reste
valable méme si le régime statique de la volite n’était pas & membrane, mais
le plus général qu’il est possible. Comme les efforts N., N,, N, calculés
d’apres les équations (10), (11), (12), satisfont déja toutes les conditions
d’équilibre, on peut déterminer le parameétre C qui parait dans (12); si
I'on pose

~L —

, otd 1 = = .
NW:_(may +— / X (y)dy + / Y () dx), (25)

. . .o sz n € ’ . A
en disant que C doil rendre minimum 1'énergie de déformation de la voiite
calculée en fonction de N,, Ny, N';y 4 C; N., Ny, N’ étant des fone-
tions désormais connues.

Pour calculer le travail élémentaire de déformation que les efforis
N,, Ng, Ny produisent en une portion élémenlairer,do, rodh de la
volte, le procédé que I'on va indiquer peut réussir avantageusement. Tma-
ginons pour un moment que le parallélogramme r,d< rgdb fait partie d’un
lect'mnle dont les cOtés soient rydo —}— I’y COS o di ot rysin 2 db (fig. 3).
Supposons que ce rectangle soit soumis : @) A une traction simple, d’inlen-
sité¢ unilaire «,, dans la dlrectlon de t.; b) a une traction simple, d'in-
lensité unitaire s,, dans la direction orthogonale; ¢) & un cisaillement
simple, d’intensité unitaire =, selon les deux dlrectlons orthogonales repré-
sentées par les cOtés du rectangle. Le travail de déformation de la partie
de reclangle qui correspond au parallélogramme de cotés r.de, rydb est
alors :

_i s.*h s h ‘Tih) T R ;
dIJ_de( T - T - G dQ = (ro rysin a) dedh (26)

ou E et G sont les modules d’élasticité a la traction et au cisaille-
ment, h 1’épaisseur variable de la voite, dQ =r,rysin a de di la surface
du paralleloglamme ayant supposé nul le coefficient de contraction lalé-
rale (volte en béton armé). Les trois tvpes de tensions a, b, c ont été

(®) Cf. par exemple L. Brocrio, Introduzione d'un metodo in doppio per il calcolo delle
strutture elastiche (Atti di Guidonia, 1941).
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\

représentés dans les figures 3a, 30, 3¢. On voil ainsi qu’il suffit de poser :
gy = Nysina;

wh== Ngo + Ngcosa;

s No_ 4 2Ny

sin « tg a

Ngcos a

+ tga

pour que la superposition des troiz cas a, b, ¢ conduise au vrai état de ten-
sion de 1'élément de voite. Le travail de déformation global est alors :

17 1 N, 2 Nog Ngcosa\® 1 o
L—“ff,[lEh (Sina + ig -+ tga )+ . (Nosin a)

-+ —é—h— (N.y + Ngcos a)’] rorgsinadedi  (27)

ou l'intégrale est ¢tendue a loule la votite. Naturellement il suffil de rappeler
les équations (7) pour que l'intégrale ait comme variables d’intégration z

1
et y au lieu de ¢ et §. Comme G =5 I, en rappelant que cos o = sin ¢ sin §:

— [ e (1 ) 2 B

sin'a tg*a

(N, + Ng) N dzd
e Sl;{xﬂatggctv9 V1+1tg° o4 tg*h y . (28)
Dans 'équation (28) les fonctions
dz, dz,
o — — 3 = — 2
lgo—=—+; tgh Ty (29)
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sont des fonctions connues ne dépendant que des équations cartésiennes
26 =1z, () et z; =24 (y) des deux directrices I'y et I';. Remarquons que
dans l'intégrale (28) N, et Ny sont traitées symétriquement, exacte-
ment comme il doit étre, étant donné que dans la génération géométrique
de la voute le role de I'y et I'; peut étre échangé. Si 'on pose alors,
d’apres (25),

Nf{O - N,.{_g + C (%O)

pour que C rende minimum l'intégrale (28), il faut que
N —}—Vn I/ (dzo *dxdy
N’
0 Jo l( ) °0+91natga, + dy) Eh
2 / Zy dzy\* dzdy
.££P+mdlhwﬂd+uﬂ ER
(31)

Le probléme de la déterminalion des efforts dans la voiile est ainsi
complétement résolu. Naturellemenl si la volte est symélrique et chargée
symétriquement il faut que C=0, comme on le voit de (31), rappelant
M—}— Ny _(N@—{— Ny

sin o {g « sin®o.

que dans ce cas N'gp ainsi que )cos %

sont antisymétriques.

Solution du probléme au moyen de l'analogie de la membrane

Comme on I'a déjd observé, par 1'équation (24) avec les conditions
aux limites (19), I'éiude d'une votite mince de translation dans les condi-
tions géomélriques et de charge les plus gcnera]es est réduit & un pro-
bléme qu’'on peut dire clemenl‘nre c¢’'est-a-dire, a 1’étude d’'une membrane
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rectangulaire fixée au contour et tendue uniformément le long de chaque
fil. Ce probléme peut, en l'occurrence, étre étudié par voie expérimentale.
En effet, il suffit de substituer & la membrane un réseau de fils suffisam-
ment serré, produire par des poids une tension constante A(y) le long de
chaque fil parallele & 1'axe x et une tension constante B(x) le long de
chaque fil paralléle & 'axe y, et enfin appliquer & la membrane la charge
q(z, v), pour avoir dans les déplacements verticaux ® dudit réseau la solu-
tion de (24). L’auteur a déja obtenu par celle voie un nombre remarquable
de résultats, se servant d’une méthode de mesure des déplacements verti-
caux qui permet d’obtenir, avec une grande facilité et rapidité, une pré-
cision supérieure a une fraction de micron. L’analogie de la membrane se
présente particulierement utile pour I’étude des charges concentrées.

Solution du probléme par la méthode de l'équivalence

La solution de 1'équation (24) avec les conditions (19) peut étre faci-
lement conduite par voie analytique aussi, par des procédés d’approxima-
tions successives. Outre les méthodes de ce type déja connues, l'auteur a
étudié¢ une application particuliére & ce probléme de la méthode d’équi-
valence ("). FFaute de place, nous renvoyons a un autre mémoire pour
I’exposition du résultat obtenu par cette voie.

Cas remarquables

Le cas des actions extérieures uniquement verticales est particuliére-
ment important. Dans ce cas le probléme est réduit a intégrer 1’équation

e 5 )
A(y) "a—xe‘—l‘B(I)a—ygz— A (32)

7* étant la charge par unité de surface de la projection verlicale de la
volite. Les conditions & la frontiére sont & 'ordinaire ® =0 le long de tout
le contour. Quand on a déterminé @, il vient :

N cos e °*d ]
®cosh oy’
; cos f o *P
e cose Oz’
* P 02
o 9% C N = —
Neo oz dy 0 Ny oxdy

La constante C est donnée par 1’équation (31).

[Le cas ou les directrices sont deux paraboles est trés intéressant aussi.
Alors A(y) et B(z) sont constantes. L’équation (32) devient immédia-
lement 1’équation d’une membrane rectangulaire & tension constante, char-

(") L. Brocrio, A method of equivalence applied to the solution of problems of elasticity and
“nf Mathematical Physics (VII. Int. Cong. App. Mech., 1948).
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gée de n’importe quelle facon. Supposant que les équations des direcirices
paraboliques donnenl

d’z | 1 &z, | |
deo | N° dy* | K?
il est suffisant de poser
g T,
ke = hy =
r’ YT
cl T'= conslante, pour que (32) devienne
o' o iy
T e T T
¢quation dont la solution est bien connue. Pour 7Z% = conslanle on a en
particulier (*)
4 ] nwy
3 7 n—1 cosit
AR ~ | 7 a n=x
‘I) = T3 3 B ('—"‘ l) 2 1 — cOs (33)
= — nrb
no— 1300 (’()Hl] ___l_)_,‘

en prenant l'origine au centre du reclangle qui est la projection verticale
de la voite.

Remarque

Dans le cas qu'on vienl de considérer (directrices paraboliques et
charge verticale uniforme selon la projection horizonlale), 1'ancienne
théorie, a savoir les équalions (6) avec les conditions (4') el (8) donnent
N¢g == conslante. Si on suppose la slructure symélrique, on a Ny = 0.
Substituant dans (1) et (2) et rappelant (4) el (5) ona N.= Ny=0. En
un mol, I'équation (6) avec les condilions (4') el (5') porte, dans le cas
considéré, & une solution ou les efforls sont nuls dans toute la votte. Celte
solution n’est pas idenlique a celle qu’on oblient dans I'équation (33) et,
d’ailleurs, ne satisfait pas I'équation d’équilibre (3). Cette discordance pro-
vient du fail que I'équation (6) avec les condilions (4") et (5’) n’a pas éLé
déduite des relations (1), (2), (3), (4), (9), mais de (1), (2), (4), (d) et
par des relations dérivées de (3). Cela veut dire que (6) avec (4') et (H)
ne tiennent pas compte de Ia vraie équation d’équilibre, mais seulement de
dérivées de celle équation.

Résumé

Dans ce mémoire on inlroduit une théorie générale des volies minces
de translation, qui permet une solution compléte du probléme. Au moyen
d’un changement de variables el grice a l'introduction d’une fonction des
efforts, on réduit le probléme & 1'étude de la membrane rectangulaire

(8) S. Tivosnenko, Theory of Elasticity, New York, 1934, p. 246.
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tendue et fixée le long de son contour. La méthode permet, sans difficultés
particuliéres, 1'étude des voutes non symélriques et chargées non symétri-
quement, pour lesqquelles on démontre la nécessité d’ ad]omdre aux condi-
tions d’ equﬂlbre (qui sont les seules usitées) une condition de compatibi-
lité exprimée par le théoréme de Menabrea.

Cette méthode permet la résolution, dans le cas des charges concen-
trées aussi. La solution de la voiite aux directrices paraboliques soumise
a une charge quelconque répartie selon la projection horizontale, dans
la méthode proposée, est réduite a celle bien connue d'une membrane
rectangulaire fixée le long de son contour, uniformément tendue et char-
gée par la méme charge

Zusammenfassung

In diesem Beiirag wird eine allgemeine Theorie der Translations-
flichen entwickelt, die die vollstindige Losung dieses Problems er-
moglicht. Mittels einer Variabelntransformation und der Einfiihrung einer
Spannungsfunktion kann das Problem auf dasjenige der an den Riindern
gehallenen, gespannten Membran zuriickgefithrt werden. Die Methode
erlaubt ohne besondere Schwierigkeiten die Behandlung von unsymmetri-
schen und unsymmelrisch belasteten Schalen. Es wird gezeigt, dass fiir die
letzleren den Gleichgewichisbedingungen (welche in den bisherigen Ver-
offentlichungen allein betrachtel wurden) eine Vertriglichkeitsbedingung
hinzugefiigt werden muss, die mit dem Theorem van Menabrea hergeleitet
werden kann.

Diese Methode ermoglichl die Lésung auch im Falle von konzenltrierten
Lasten. Die Losung der Schale mil parabolischen Leitkurven und mil einer
iiber die Horizontalprojeklion gleichmissig verteillen Belastung, wie sie in
der vorgeschlagenen Methode angegeben ist, wird zuriickgefithrt auf die
wohlbekannlc Methode der an den TRiindern gehaltenen, nlelchmassw ge-
spannlen und gleichmiissig belasteten, rechtec kigen Membran,

Summary

In this paper one is introduced to a general theory of shells of trans-
lation, which provides a complele solution of the ploblem By means of
a change of variable quantities and thanks (o the introduction of
a stress funclion, the problem is reduced o the study of the rectangular
membrane, stretched and fixed along its boundary. Without any par-
ticular difficulty, the method enables to study shclls that are non-
symmelrical and non-symmetrically loaded, for which the author stresses
the necessity of adjoining to the equilibrium conditions (which are the
only ones used) a condition of compatibility expressed by Menabrea's
theorem.

This method provides a solulion, in the case of concentraled loads
loo. The solulion of a shell with parabolic directrices, subjected to a load
evenly distributed on the horizontal projection in the proposed method,
is reduced to the well known one of a rectangular membrane fixed along
its boundary, uniformly stretched and evenly loaded.
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La charge de rupture de dalles en béton armé
Die Bruchlast von Eisenbetonplaiten

The ultimate strength of reinforced concrete slabs

K. W. JOHANSEN
Dr techn. Copenhague

Ii. is evident thal in the determination of the ultimate load the theory
of elasticity is inapplicable. Already after the development of cracks and,
more particularly, after yielding of the reinforcement has begun, the state
is not elastic any longer. As the working load has to be fixed in proportion
to the ultimate load, a theory of the vielding or plastic state of reinforced
concrete slabs is desirable. An outline of the « theory of lines of fracture »
will therefore be given in the following.

Let us consider a slab with un1f01m reinforcement in two directions
at right angles to each other. When the reinforcement is evenly distributed,
the yield value will be the same in all sections of the slab. The yielding
will begin where the values will have maximum magnitude, and proceed
along lhe lines of fracture. At the ultimate load the yielding has reached
the edfres, and along the lines of fracture the bending moment m per unit
length is constant and equals the yield value correspondmOr lo the reinfor-
cement. This moment m is a maximum value in relation to the moments
in all sections in the proximity of the lines of fracture. The lines of fraclure
divide the slab into several parts, and if now we assume the elastic
deformations of these slab parts to be insignificant in comparison with
the plaslic-deformations along the lines of fracture, the slab parts may be
considered as plane. It then follows that the lines of fraclure are straight
lines. On the said assumption the deformation may be considered as angular
rolations of the plane slab parls about the supporls, and consequently the
line of fracture between two slab parls must pass through the point of
intersection of the axes of rotation of the two slab parts. Figure 1 shows
some lypical figures of fracture of slabs supported on four, three, and two
sides, as well as on two sides and by one column, and on one side and
by two columns, respeclively. The axes of rotation lie in the supporled
sides and pass lhI‘OU”‘]I the columns. The final delermination of the figure
of fracture and the breaking moment m is achieved with the condmons



566 IVb2. K. wW. JOHANSEN

\\\ \ SNANIN \'\\‘ Z SUNNER NN RN L
\ e
\|
W
~
N

c Fig. 1.

of equilibrium for the individual parts of the slab. For recording these
condilions it is necessary to know the shearing forces along the lines of
fracture. m being a maximum value in relation to the moments in sections
in other directions through the same point, it is one of the principal
moments, that is to say, the twisting moment is zero along the lines of
fracture. We then find — as is also the case with a beam — that the shearing
force is zero because m is maximum in relation to the moments in sections
parallel to the section of fracture through adjacent points. Thus, only the
bending moment m acls in the section of fracture, and the total moment
may be represented by a vector equal to the line of fracture. The resulting
moment for a part of the slab is found by vector addition.

Example 1. — A triangular slab with evenly distributed load is simply supporled
along its sides. According to the above, the figure of fracture will be as shown in
figure 2. Let us consider the slab part at a. In the line of fracture OB acts the
moment m - BO, and in _the line of fracture OC the moment m - CO. On the whole
slab part acts m (BO 4 OC) = m - BC = m . a. The moment about a gives the
condition of equilibrium m . a = 1/6 wa - h*, or m = 1/6 wh?®,. Correspondingly,
we get for the other slab parts m = 1/6 wh® and m = 1/6 wh*, i.e.,

h,=h, = h_,=r, where r is the radius

of the inscribed circle. The breaking mo-
ment is m =1/6 wr?, where w is the
ultimate load.

For all polygons circumscribed the
circle with the radius r (fig. 3), it
will be seen dircctly that also here
we have m=1/6 wr?; for the square
having the side a, specially m=1/24 wa*.
(For reclangle see INgemsLEv, Inslitulion
of Struclural Engineers’ Journal, 1923.)

Fig. 2.

The ultimate load being n limes lhe working load, and the breaking
moiment n times the working moment, where n is the coefficient of safeiy,
we can also let m and w mean the permissible values.

With a free or simply supporled edge, both the bending moment and
the twisting moment should strictly speaking be zero. This involves that
the lines of fracture should be al right angles to the edge. This is really
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the case (fig. 4), but only quite close to the edge do the cracks suddenly
turn so as to be at right angles to it.

As is known from the theory of elasticity for thin slabs, there are
also here difficulties with the twisling moment at the edge. These diffi-
culties are overcome by transforming the twisting moment into shear
forces, as shown in figure 5 and first indicated by Kelvin and Tait. While
the two single forces m, neutralize each other when the slab is considered
as a whole, they must be considered as acting each on its slab part when
the equations of equilibrium for the individual slab parts are to be deve-
loped. The principal moments being m and m, (fig. 6), the bending
moment along the edge will according to the above be

m cos® z -+ m, sin® « = 0
and (he twisting moment
m, = (m —-m,) cos « sin o = m col a, as M, = — mcot” « .

If we make the same transformalion for plastic slabs, this will correspond
lo a rectilinear extension of the line of fracture to the edge (fig. 4). The
single force m cot « is then a static equivalent of the twisting moments
and the shearing forces on Lhe stretch s. Incidentally, this force the edge
force, can also easily be deduced directly from the equation of equilibrium
for the infinitesimal triangle AOB shown in figure 6. As m is a maximum
value, the adjacent section OB has the same m, and as the bending moment
is zero along AB = ds, the resultant for the whole triangle

m (AO-LOB) =m.-AB=m.ds.

The moment about BO gives then, when magnitudes of a higher order arc
ignored,

m-ds-cosa=—m,-ds-sin« ; m,=—mcoto .
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Ezample 2. — A rectangular slab with evenly distributed load is simply supported
on two adjacent sides and free on the two others (fig. 7). The figure of fracture shown

gives the edge force m . ——z— The moment abhout a for the slab part A gives

1 o T
ma = & waz —+ me—--2,
and the moment about b for the slab part B gives X c
m-x—}—m%-a:%wba——é—wa’z' A , //
/
From these two equations of equilibrium are found : Y \\ //
- a ~
a 2
IS VRTINS 7
~
2
2
m :i wh b>a. F_b 7
ig. 7.
14 ]/ 1492 az
In the diagonal section shown is found the negative moment
m' = ! wn? = ! w e b
6 ) a®-4 bt ’

It can be proved quite simply that the number of equations is always
equal to the number of unknowns (IABSE, Publications I, 1932, p. 283).
The equations are not linear, so that superposition cannot be applied, but it
can be proved that it is safe to superpose loads acting jointly (that is, do
not counteract each other).

Should the solution of the equations be too cumbersome, the following
method can always be used in practice : By the principle of virtual work,
m can be determined directly for an arbltmr]]v chosen figure of fﬂclure
(loc. cit., p. 284). The real value of m being a maximum value the proper
figure of fracture will be the one making the corresponding m the maxi-
mum. As the variations in the proxi-
mity of a maximum are very small, a
fair approximation for m can be ob-
tained by estimating the figure of
fracture. By the equations of equili-
brium for the individual slab parls
the estimated figure of fracture may
be improved and a better approxi-
mation be attained. With a little ex-
perience il is possible Lo estimale im-
mediately the figure of fracture so
well that the corresponding m will
differ only a few percent from the
real value.

In the development of the equa-
tion of work advantage is taken of the
fact that the work of the moment
vector M in the rotation 0, which is
likewise a vector, is the scalar pro-
duct (M) =— M0 cos (M). If the vec-
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lors are resolved into components along two axes which are at right angles
to each other, we get the expression (M§) = M.8, -+ M,6,. The rotation is
delerinined, for instance, by the sinkings as shown in flgure 8.

Example 3. — We will apply the equation of work to the preceding example. We
lower C d; thereby the slab part A will get the rotation 0, = d + ; and the slab part B,

(?B—o—a about the supports. The virtual work \\11[ be made M6, + M 0, =0,
i.e.,

(ma = % wuxg) % + (m-:v — % wba® —{—% wa‘-':r?) % =0,

which gives :

X

1 3_'5"
m:-G—wab p b

T T3

The shearing forces do not contribute, since the two slab parts do not move
vertically in relation to each other. The real figure of fracture is now found by the con-
dition dm -+ dz — 0, which gives the result previcusly found

a y
If we use as approximation z = a, we get m = 1/12 wab (3—7). For b = a

we then have m=—wab : 6, exactly wab : 5.55. For b—=2 a we get m—wab : 4.8, exactly
wab : 4.72. The error is 7.5 and 1.6 percent, respectively, which is of no practical
consequence.

Example 4. — A square slab, simply supported on two adjacent sides and by one
column in the opposite corner, is loaded with a single force P in the centre.

The figure of fracture will be as
in figurc 9. When the force P is \

lowered 6 =1, the slab parts A get the \ Fig. 9.
\
rotations 1 : g—: 2 : a, while the rola- L
\ AN
tion for the slab part B has the com- al ) B
ponents 1 :a, as h, =h =a (fig. 8) Y I\\
and the moment has the components \\\ I N
2
3 ma Hence is obtained the cqua- \\ : a \
tion of work : Z ‘ i \\
7 |
2
P.l =2.-ma- — 42 ?ma% 7 : 8 \\
16 4 A WPy #a \
=3 M g ~_ 1" -
3 7 - \
" A ga| TN
. B
For fixed-end slabs and slabs : G a

which are continuous over sup-
ports are assumed lines of fracture over the supports wilh negative
momenls corresponding to the upper reinforcement of the slab.

When the reinforcement is uniform, but not equal in the two ortho-
gonal directions, so that the corresponding yield values are m and um,
m is the same as in a slab with equal yield values m, and affines to the
given slab in the proportion 1 : |/ and with the same load per unit of area.

‘The theory is very well verified by the tests, both as regards the figures
of fracture and the ultimate loads.
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Résumé

Ce mémoire donne une description de la théorie des lignes de rupture
de dalle en béton armé. On peut déterminer ces lignes de ruplure géomé-
triquement grace au fait que les déformations élastiques sont faibles com-
parées aux déformations plastiques. Le moment fléchissant atteint sa
valeur maximum le long de ces lignes, ce qui permet de déterminer les
efforts transversaux et de torsion. lls sonl nuls sauf au bord libre. On en
déduit les conditions d’équilibre pour les surfaces partielles limitées par
les lignes de rupture connaissant ces lignes de rupture et le moment de
rupture. Une méthode approchée peut étre déduite du principe du travail
virtuel. Cette méthode est illustrée par des exemples.

Zusammenfassung

Eine Beschreibung der Bruchlinientheorie fiir Eisenbelonplatten wird
gegehen. Miltels geometrischer Bedingungen, welche aus der Tatsache fol-
gen. dass die elastischen Deformationen unbedeutend sind gegeniiber den
plastischen, kann die Form der Bruchfigur bestimmt werden. Da das
Biegungsmoment lings der Bruchlinien einen Grosstwert hat, kénnen die
Querkrifte und die Drillungsinomente bestimmt werden. Sie sind null,
ausgenommen an einem freien Rand. Hierauf konnen die Gleichgewichls-
bedingungen aufgestellt werden fiir die Teilflichen, in die die Platte durch
die Bruchlinien geteilt wird, wobei die Bruchfigur und das Bruchmoment
bekannt sind. Eine einfache Niherungsmethode kann durch die Anwen-
dung des Prinzips der virtuellen Arbeit entwickelt werden. Die Theorie
wird durch Beispiele illustriert

Summary

An outline of the theory of lines of fracture of reinforced concrele
slabs is given. Through the geometric conditions which are a consequence
of the fact that the elastic deformations are insignificant as compared with
the plaslic ones the character of the figure of fracture can be determined
(fig. 1). The moment in the lines of fracture being a maximum value, the
transversal force and the (wisting moment can be determined. They
become zero, excepl al a free edge. The equations of equilibrium for the
individual parts into which the lines of fracture divide the slab can then
be set up, whereby the figure of fracture and the breaking moment are
determined. A simple method of approximation can be indicated by appli-
cation of the principle of virtual work. The method is illustraled by
examples.
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Dalles continues
Durchlaufende Platten

Continuous slabs

CARLOS FERNANDEZ CASADO

Ingénieur-conseil & Madrid

La dalle continue est un type de construction utilisé constamment dans
les batiments et dans les ponts.

Nous avons construit 15 ponls en travées droites en dalles continues
du type pur, en ponts portiques ou en ponts cantilever. L'ouverture maxi-
mum que nous avons construite est de 16 meétres alors que les trois types
des modeles standards que nous avons projetés et qui ont été adoptés
officielllement par le Ministére des Travaux publics sont pour ouvertures
de 5 & 12 meétres.

Le calcul d’une dalle continue indépendante, ou solidaire des appuis
qui ne ceédent pas, est trés simple, exception faite de la détermination de
la largeur efficace pour les charges concentrées. Mais, compte tenu de
I'importance normale des ouvertures dans les dalles continues, quelle que
soit la formule appliquée, la largeur efficace qui en résulte permet de
considérer toute la dalle comme résistante a la flexion. La largeur efficace
a l'effort tranchant constitue une question secondaire. Pour 1'analyse des
momenls fléchissants nous utilisons toujours la méthode de Cross consi-
dérant la variation du moment d’inertie dans la dalle et le déplacement
transversal dans le cas du portique multiple. La détermination des valeurs
maximum doit se faire par intermédiaire des lignes d’influence.

Dans les tabliers des ponts, soit en travées droites ou en arcs, nous
trouvons de nouveau la dalle continue, dont la continuité peut s’étendre
dans un ou dans les deux sens. Une autre différence avec le cas antérieur
est que les appuis de la dalle sont des poutres qui fléchissent sous ’action
des charges. Quand la continuité correspond a la direction transversale au
trafic, le dénivellement des poutres contigués peut étre important et il
faut le considérer dans le calcul. Pour la continuité dans la direction du
trafic, la différence de hauteur des poutrelles n’a pas d’'influence sur la
flexion de la dalle. L’analyse de la dalle se réduit a celle d’'une poutre con-
tinue avec les mémes travées que la dalle et une largeur arbitraire dans le
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cas de surcharges continues ou égales a la largeur efficace a flexion pour
les surcharges concentrées. Ou'md la flexibilité des poutres est 1mpmtanle
cas des poutlel]es, on peut recourir a la méthode de calcul exposée par
Newmark dans le bullelin n° 304 de la Engineering Exp. Stalion de 1'Uni-
versité d’'Illinois.

Quand il y a continuité dans les deux sens, la méthode la plus appro-
priée pour les charges concentrées et continues est celle préconisée par
Marcus dans son livre Vereinfachte Berechnung Biegsamer Platlen qui
prend en considération le travail par torsion et qui calcule les moments
de flexion et de torsion dans les différentes régions de la dalle. Ces der-
niers sont supposés distribués dans quatre pyramides non symélriques.

Dans les batiments le cas le plus fréquent est constitué par une dalle
continue dans un seul sens. Les surcharges a considérer sonl toujours uni-
formément distribuées et on peut se ramener au cas d’une poutre continue
de largeur unité. Le seul doute important c’est la maniére de prendre en
conmderatlon la rigidité des poulres et des piliers. On peul recourir a la
méthode de Newmark déja citée, mais dans la pluparl des cas on peul se con-
tenter en distribuant uniformément la rigidité du pilier sur la longueur de
la poutre, et prendre une partie de cette valeur (50 9, ou 75 9% ) pour
constituer le portique avec les poutres de largeur unité subslitutes des
dalles.

Quand l’'équidistance entre les fermes est considérable, il peut é&ire
intéressant, dans les planchers des batiments, de recourir & la solution de
continuité dans les deux sens, en utilisant comme grillage d’appui la ferme
et les poutres longltudmdles On peut obtenir de celle facon des dalles
d’épaisseur constante plus économiques que des dalles nervurées. La
méthode de calcul que nous utilisons est celle de Marcus citée pour les
tabliers des ponts, et qui présente dans ce cas de surcharges continues
une application plus simple.

En résumé, nous jugeons que dans le cas d'une dalle avec continuité
dans une seule direction, on doit considérer une poulre virtuelle, avec les
mémes travées, de largeur unité pour des surcharges continues et de largeur
efficace correspondant pour les surcharges concentrées. Comme hypothéses
simplificatrices il faut uniquement négliger 1’aide due & la torsion des
poutres et flexion des piliers dans le cas des planchers de batiments. Pour
les dalles avec continuité dans les deux sens nous préconisons la méthode
approximative de Marcus, tant pour les surcharges continues comme pour
les surcharges isolées.

Résumé

Schéma de la méthode

1. Analyse de deux tranches perpendiculaires avec les axes des diffé-
rents panneaux de la dalle se prolongeant jusqu’aux bordures de celle-ci.
La largeur des tranches est 1’unité pour les surcharges continues et celle
qui permet 'inclusion des charges isolées dans ce dernier cas.

2. Répartition de charges entre les deux tranches, en fixant la con-
dition d’égalité des fleches dans le centre du panneau.

3. Détermination des moments fléchissants dans la zone cenlrale et
dans les deux extrémités d’appui des tranches. Pour le moment au centre
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on doit appliquer la réduclion correspondante au coefficient de torsion. Dans
les moments aux appuis on peut obtenir la réduction due a la largeur
d’appui sur les pouires.

4. Détermination des moments de torsion.

5. Calcul des armatures pour résister 4 la combination des moments
fléchissants et de torsion.

Zusammenfassung

Berechnungsschema

1. Untersuchung von zwei auf den Achsen der verschiedenen Felder
senkrecht stehenden Streifen, die bis zu den Riindern durchgehen. Als Breite
der Streifen nimmt man die Einheit bei verteilter Belastung. Fiir Einzel-
lasten withlt man eine solche, die sich der Querverteilung anpasst.

2. Verteilung der Lasten auf die zwei Streifen mit der Bedingung, dass
die Durchbiegungen der zwei Streifen an den Kreuzungspunkten gleich
werden.

3. Bestimmung der Biegemomente in der Mitlelzone und an den
Auflagern. Die Momenle der Mitlelzone kdnnen gemiss dem Drillungs-
koeffizienten abgemindert werden. Bei den Stiitzenmomenten ergibt sich
eine Abminderung infolge der vorhandenen Auflagerbreite.

4. Bestimmung der Drillungsmomente.

5. Beslimmung der Armierung fiir die Maximalwerle der Biegungs-
und Drillungsmomente.

Summary

Oulline of the method

1. Analysis of the two perpendicular sections with the axes of the
various panels of the slab prolonged to the edge of the Ilatter.
The widlh of the sections is the unit for the continuous overloads and that
which permits inclusion of .isolated loads in the latier case.

2. Division of loads between the (wo sections by fixing the condilion
of equality of deflection in the middle panel.

3. Determination of bending moments in the central zone and in the
two supporting extremities of the sections. For the central moment, apply
the reduction corresponding to the coefficient of torsion. In the moments
at the supports one can obtain the reduction due to the widlh of the
bearing on the beams.

4. Delermination of torsion moments.

5. Calculation of the reinforcements lo resist the combined bending
and torsion moments.
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