Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 3 (1948)

Artikel: Dalles continues

Autor: Casado, Carlos Fernandez

DOI: https://doi.org/10.5169/seals-4121

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

IV_b3

Dalles continues

Durchlaufende Platten

Continuous slabs

CARLOS FERNANDEZ CASADO

Ingénieur-conseil à Madrid

La dalle continue est un type de construction utilisé constamment dans les bâtiments et dans les ponts.

Nous avons construit 15 ponts en travées droites en dalles continues du type pur, en ponts portiques ou en ponts cantilever. L'ouverture maximum que nous avons construite est de 16 mètres alors que les trois types des modèles standards que nous avons projetés et qui ont été adoptés officielllement par le Ministère des Travaux publics sont pour ouvertures de 5 à 12 mètres.

Le calcul d'une dalle continue indépendante, ou solidaire des appuis qui ne cèdent pas, est très simple, exception faite de la détermination de la largeur efficace pour les charges concentrées. Mais, compte tenu de l'importance normale des ouvertures dans les dalles continues, quelle que soit la formule appliquée, la largeur efficace qui en résulte permet de considérer toute la dalle comme résistante à la flexion. La largeur efficace à l'effort tranchant constitue une question secondaire. Pour l'analyse des moments fléchissants nous utilisons toujours la méthode de Cross considérant la variation du moment d'inertie dans la dalle et le déplacement transversal dans le cas du portique multiple. La détermination des valeurs maximum doit se faire par intermédiaire des lignes d'influence.

Dans les tabliers des ponts, soit en travées droites ou en arcs, nous trouvons de nouveau la dalle continue, dont la continuité peut s'étendre dans un ou dans les deux sens. Une autre différence avec le cas antérieur est que les appuis de la dalle sont des poutres qui fléchissent sous l'action des charges. Quand la continuité correspond à la direction transversale au trafic, le dénivellement des poutres contiguës peut être important et il faut le considérer dans le calcul. Pour la continuité dans la direction du trafic, la différence de hauteur des poutrelles n'a pas d'influence sur la flexion de la dalle. L'analyse de la dalle se réduit à celle d'une poutre continue avec les mêmes travées que la dalle et une largeur arbitraire dans le

cas de surcharges continues ou égales à la largeur efficace à flexion pour les surcharges concentrées. Quand la flexibilité des poutres est importante, cas des poutrelles, on peut recourir à la méthode de calcul exposée par Newmark dans le bulletin n° 304 de la Engineering Exp. Station de l'Université d'Illinois.

Quand il y a continuité dans les deux sens, la méthode la plus appropriée pour les charges concentrées et continues est celle préconisée par Marcus dans son livre Vereinfachte Berechnung Biegsamer Platten qui prend en considération le travail par torsion et qui calcule les moments de flexion et de torsion dans les différentes régions de la dalle. Ces derniers sont supposés distribués dans quatre pyramides non symétriques.

Dans les bâtiments le cas le plus fréquent est constitué par une dalle continue dans un seul sens. Les surcharges à considérer sont toujours uniformément distribuées et on peut se ramener au cas d'une poutre continue de largeur unité. Le seul doute important c'est la manière de prendre en considération la rigidité des poutres et des piliers. On peut recourir à la méthode de Newmark déjà citée, mais dans la plupart des cas on peut se contenter en distribuant uniformément la rigidité du pilier sur la longueur de la poutre, et prendre une partie de cette valeur (50 % ou 75 %) pour constituer le portique avec les poutres de largeur unité substitutes des dalles.

Quand l'équidistance entre les fermes est considérable, il peut être intéressant, dans les planchers des bâtiments, de recourir à la solution de continuité dans les deux sens, en utilisant comme grillage d'appui la ferme et les poutres longitudinales. On peut obtenir de cette façon des dalles d'épaisseur constante plus économiques que des dalles nervurées. La méthode de calcul que nous utilisons est celle de Marcus citée pour les tabliers des ponts, et qui présente dans ce cas de surcharges continues une application plus simple.

En résumé, nous jugeons que dans le cas d'une dalle avec continuité dans une seule direction, on doit considérer une poutre virtuelle, avec les mêmes travées, de largeur unité pour des surcharges continues et de largeur efficace correspondant pour les surcharges concentrées. Comme hypothèses simplificatrices il faut uniquement négliger l'aide due à la torsion des poutres et flexion des piliers dans le cas des planchers de bâtiments. Pour les dalles avec continuité dans les deux sens nous préconisons la méthode approximative de Marcus, tant pour les surcharges continues comme pour les surcharges isolées.

Résumé

Schéma de la méthode

- 1. Analyse de deux tranches perpendiculaires avec les axes des différents panneaux de la dalle se prolongeant jusqu'aux bordures de celle-ci. La largeur des tranches est l'unité pour les surcharges continues et celle qui permet l'inclusion des charges isolées dans ce dernier cas.
- 2. Répartition de charges entre les deux tranches, en fixant la condition d'égalité des flèches dans le centre du panneau.
- 3. Détermination des moments fléchissants dans la zone centrale et dans les deux extrémités d'appui des tranches. Pour le moment au centre

on doit appliquer la réduction correspondante au coefficient de torsion. Dans les moments aux appuis on peut obtenir la réduction due à la largeur d'appui sur les poutres.

- 4. Détermination des moments de torsion.
- 5. Calcul des armatures pour résister à la combination des moments fléchissants et de torsion.

Zusammenfassung

Berechnungsschema

- 1. Untersuchung von zwei auf den Achsen der verschiedenen Felder senkrecht stehenden Streifen, die bis zu den Rändern durchgehen. Als Breite der Streifen nimmt man die Einheit bei verteilter Belastung. Für Einzellasten wählt man eine solche, die sich der Querverteilung anpasst.
- 2. Verteilung der Lasten auf die zwei Streifen mit der Bedingung, dass die Durchbiegungen der zwei Streifen an den Kreuzungspunkten gleich werden.
- 3. Bestimmung der Biegemomente in der Mittelzone und an den Auflagern. Die Momente der Mittelzone können gemäss dem Drillungskoeffizienten abgemindert werden. Bei den Stützenmomenten ergibt sich eine Abminderung infolge der vorhandenen Auflagerbreite.
 - 4. Bestimmung der Drillungsmomente.
- 5. Bestimmung der Armierung für die Maximalwerte der Biegungsund Drillungsmomente.

Summary

Outline of the method

- 1. Analysis of the two perpendicular sections with the axes of the various panels of the slab prolonged to the edge of the latter. The width of the sections is the unit for the continuous overloads and that which permits inclusion of isolated loads in the latter case.
- 2. Division of loads between the two sections by fixing the condition of equality of deflection in the middle panel.
- 3. Determination of bending moments in the central zone and in the two supporting extremities of the sections. For the central moment, apply the reduction corresponding to the coefficient of torsion. In the moments at the supports one can obtain the reduction due to the width of the bearing on the beams.
 - 4. Determination of torsion moments.
- 5. Calculation of the reinforcements to resist the combined bending and torsion moments.

Leere Seite Blank page Page vide